2 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4 * Copyright (C) 2010-2013 Mauro Carvalho Chehab
5 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
20 #include "dvb_frontend.h"
25 enum mb86a20s_bandwidth
{
27 MB86A20S_13SEG_PARTIAL
= 1,
32 static u8 mb86a20s_subchannel
[] = {
33 0xb0, 0xc0, 0xd0, 0xe0,
34 0xf0, 0x00, 0x10, 0x20,
37 struct mb86a20s_state
{
38 struct i2c_adapter
*i2c
;
39 const struct mb86a20s_config
*config
;
42 struct dvb_frontend frontend
;
45 enum mb86a20s_bandwidth bw
;
49 u32 estimated_rate
[NUM_LAYERS
];
50 unsigned long get_strength_time
;
60 #define BER_SAMPLING_RATE 1 /* Seconds */
63 * Initialization sequence: Use whatevere default values that PV SBTVD
64 * does on its initialisation, obtained via USB snoop
66 static struct regdata mb86a20s_init1
[] = {
70 { 0x50, 0xd1 }, { 0x51, 0x20 },
73 static struct regdata mb86a20s_init2
[] = {
74 { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
78 { 0x04, 0x08 }, { 0x05, 0x03 },
79 { 0x04, 0x0e }, { 0x05, 0x00 },
80 { 0x04, 0x0f }, { 0x05, 0x37 },
81 { 0x04, 0x0b }, { 0x05, 0x78 },
82 { 0x04, 0x00 }, { 0x05, 0x00 },
83 { 0x04, 0x01 }, { 0x05, 0x1e },
84 { 0x04, 0x02 }, { 0x05, 0x07 },
85 { 0x04, 0x03 }, { 0x05, 0xd0 },
86 { 0x04, 0x09 }, { 0x05, 0x00 },
87 { 0x04, 0x0a }, { 0x05, 0xff },
88 { 0x04, 0x27 }, { 0x05, 0x00 },
89 { 0x04, 0x28 }, { 0x05, 0x00 },
90 { 0x04, 0x1e }, { 0x05, 0x00 },
91 { 0x04, 0x29 }, { 0x05, 0x64 },
92 { 0x04, 0x32 }, { 0x05, 0x02 },
93 { 0x04, 0x14 }, { 0x05, 0x02 },
94 { 0x04, 0x04 }, { 0x05, 0x00 },
95 { 0x04, 0x05 }, { 0x05, 0x22 },
96 { 0x04, 0x06 }, { 0x05, 0x0e },
97 { 0x04, 0x07 }, { 0x05, 0xd8 },
98 { 0x04, 0x12 }, { 0x05, 0x00 },
99 { 0x04, 0x13 }, { 0x05, 0xff },
100 { 0x04, 0x15 }, { 0x05, 0x4e },
101 { 0x04, 0x16 }, { 0x05, 0x20 },
104 * On this demod, when the bit count reaches the count below,
105 * it collects the bit error count. The bit counters are initialized
106 * to 65535 here. This warrants that all of them will be quickly
107 * calculated when device gets locked. As TMCC is parsed, the values
108 * will be adjusted later in the driver's code.
110 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
111 { 0x50, 0xa7 }, { 0x51, 0x00 },
112 { 0x50, 0xa8 }, { 0x51, 0xff },
113 { 0x50, 0xa9 }, { 0x51, 0xff },
114 { 0x50, 0xaa }, { 0x51, 0x00 },
115 { 0x50, 0xab }, { 0x51, 0xff },
116 { 0x50, 0xac }, { 0x51, 0xff },
117 { 0x50, 0xad }, { 0x51, 0x00 },
118 { 0x50, 0xae }, { 0x51, 0xff },
119 { 0x50, 0xaf }, { 0x51, 0xff },
122 * On this demod, post BER counts blocks. When the count reaches the
123 * value below, it collects the block error count. The block counters
124 * are initialized to 127 here. This warrants that all of them will be
125 * quickly calculated when device gets locked. As TMCC is parsed, the
126 * values will be adjusted later in the driver's code.
128 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
129 { 0x50, 0xdc }, { 0x51, 0x00 },
130 { 0x50, 0xdd }, { 0x51, 0x7f },
131 { 0x50, 0xde }, { 0x51, 0x00 },
132 { 0x50, 0xdf }, { 0x51, 0x7f },
133 { 0x50, 0xe0 }, { 0x51, 0x00 },
134 { 0x50, 0xe1 }, { 0x51, 0x7f },
137 * On this demod, when the block count reaches the count below,
138 * it collects the block error count. The block counters are initialized
139 * to 127 here. This warrants that all of them will be quickly
140 * calculated when device gets locked. As TMCC is parsed, the values
141 * will be adjusted later in the driver's code.
143 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
144 { 0x50, 0xb2 }, { 0x51, 0x00 },
145 { 0x50, 0xb3 }, { 0x51, 0x7f },
146 { 0x50, 0xb4 }, { 0x51, 0x00 },
147 { 0x50, 0xb5 }, { 0x51, 0x7f },
148 { 0x50, 0xb6 }, { 0x51, 0x00 },
149 { 0x50, 0xb7 }, { 0x51, 0x7f },
151 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
152 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
153 { 0x45, 0x04 }, /* CN symbol 4 */
154 { 0x48, 0x04 }, /* CN manual mode */
156 { 0x50, 0xd6 }, { 0x51, 0x1f },
157 { 0x50, 0xd2 }, { 0x51, 0x03 },
158 { 0x50, 0xd7 }, { 0x51, 0xbf },
159 { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
160 { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
162 { 0x04, 0x40 }, { 0x05, 0x00 },
163 { 0x28, 0x00 }, { 0x2b, 0x08 },
164 { 0x28, 0x05 }, { 0x2b, 0x00 },
166 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
167 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
168 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
169 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
170 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
171 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
172 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
173 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
174 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
175 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
176 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
177 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
178 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
179 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
180 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
181 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
182 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
183 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
184 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
185 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
186 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
187 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
188 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
189 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
190 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
191 { 0x50, 0x1e }, { 0x51, 0x5d },
192 { 0x50, 0x22 }, { 0x51, 0x00 },
193 { 0x50, 0x23 }, { 0x51, 0xc8 },
194 { 0x50, 0x24 }, { 0x51, 0x00 },
195 { 0x50, 0x25 }, { 0x51, 0xf0 },
196 { 0x50, 0x26 }, { 0x51, 0x00 },
197 { 0x50, 0x27 }, { 0x51, 0xc3 },
198 { 0x50, 0x39 }, { 0x51, 0x02 },
201 { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
205 static struct regdata mb86a20s_reset_reception
[] = {
212 static struct regdata mb86a20s_per_ber_reset
[] = {
213 { 0x53, 0x00 }, /* pre BER Counter reset */
216 { 0x5f, 0x00 }, /* post BER Counter reset */
219 { 0x50, 0xb1 }, /* PER Counter reset */
225 * I2C read/write functions and macros
228 static int mb86a20s_i2c_writereg(struct mb86a20s_state
*state
,
229 u8 i2c_addr
, u8 reg
, u8 data
)
231 u8 buf
[] = { reg
, data
};
232 struct i2c_msg msg
= {
233 .addr
= i2c_addr
, .flags
= 0, .buf
= buf
, .len
= 2
237 rc
= i2c_transfer(state
->i2c
, &msg
, 1);
239 dev_err(&state
->i2c
->dev
,
240 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
241 __func__
, rc
, reg
, data
);
248 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state
*state
,
249 u8 i2c_addr
, struct regdata
*rd
, int size
)
253 for (i
= 0; i
< size
; i
++) {
254 rc
= mb86a20s_i2c_writereg(state
, i2c_addr
, rd
[i
].reg
,
262 static int mb86a20s_i2c_readreg(struct mb86a20s_state
*state
,
267 struct i2c_msg msg
[] = {
268 { .addr
= i2c_addr
, .flags
= 0, .buf
= ®
, .len
= 1 },
269 { .addr
= i2c_addr
, .flags
= I2C_M_RD
, .buf
= &val
, .len
= 1 }
272 rc
= i2c_transfer(state
->i2c
, msg
, 2);
275 dev_err(&state
->i2c
->dev
, "%s: reg=0x%x (error=%d)\n",
277 return (rc
< 0) ? rc
: -EIO
;
283 #define mb86a20s_readreg(state, reg) \
284 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
285 #define mb86a20s_writereg(state, reg, val) \
286 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
287 #define mb86a20s_writeregdata(state, regdata) \
288 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
289 regdata, ARRAY_SIZE(regdata))
292 * Ancillary internal routines (likely compiled inlined)
294 * The functions below assume that gateway lock has already obtained
297 static int mb86a20s_read_status(struct dvb_frontend
*fe
, enum fe_status
*status
)
299 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
304 val
= mb86a20s_readreg(state
, 0x0a) & 0xf;
309 *status
|= FE_HAS_SIGNAL
;
312 *status
|= FE_HAS_CARRIER
;
315 *status
|= FE_HAS_VITERBI
;
318 *status
|= FE_HAS_SYNC
;
320 if (val
>= 8) /* Maybe 9? */
321 *status
|= FE_HAS_LOCK
;
323 dev_dbg(&state
->i2c
->dev
, "%s: Status = 0x%02x (state = %d)\n",
324 __func__
, *status
, val
);
329 static int mb86a20s_read_signal_strength(struct dvb_frontend
*fe
)
331 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
332 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
334 unsigned rf_max
, rf_min
, rf
;
336 if (state
->get_strength_time
&&
337 (!time_after(jiffies
, state
->get_strength_time
)))
338 return c
->strength
.stat
[0].uvalue
;
340 /* Reset its value if an error happen */
341 c
->strength
.stat
[0].uvalue
= 0;
343 /* Does a binary search to get RF strength */
347 rf
= (rf_max
+ rf_min
) / 2;
348 rc
= mb86a20s_writereg(state
, 0x04, 0x1f);
351 rc
= mb86a20s_writereg(state
, 0x05, rf
>> 8);
354 rc
= mb86a20s_writereg(state
, 0x04, 0x20);
357 rc
= mb86a20s_writereg(state
, 0x05, rf
);
361 rc
= mb86a20s_readreg(state
, 0x02);
365 rf_min
= (rf_max
+ rf_min
) / 2;
367 rf_max
= (rf_max
+ rf_min
) / 2;
368 if (rf_max
- rf_min
< 4) {
369 rf
= (rf_max
+ rf_min
) / 2;
371 /* Rescale it from 2^12 (4096) to 2^16 */
372 rf
= rf
<< (16 - 12);
376 dev_dbg(&state
->i2c
->dev
,
377 "%s: signal strength = %d (%d < RF=%d < %d)\n",
378 __func__
, rf
, rf_min
, rf
>> 4, rf_max
);
379 c
->strength
.stat
[0].uvalue
= rf
;
380 state
->get_strength_time
= jiffies
+
381 msecs_to_jiffies(1000);
387 static int mb86a20s_get_modulation(struct mb86a20s_state
*state
,
391 static unsigned char reg
[] = {
392 [0] = 0x86, /* Layer A */
393 [1] = 0x8a, /* Layer B */
394 [2] = 0x8e, /* Layer C */
397 if (layer
>= ARRAY_SIZE(reg
))
399 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
402 rc
= mb86a20s_readreg(state
, 0x6e);
405 switch ((rc
>> 4) & 0x07) {
419 static int mb86a20s_get_fec(struct mb86a20s_state
*state
,
424 static unsigned char reg
[] = {
425 [0] = 0x87, /* Layer A */
426 [1] = 0x8b, /* Layer B */
427 [2] = 0x8f, /* Layer C */
430 if (layer
>= ARRAY_SIZE(reg
))
432 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
435 rc
= mb86a20s_readreg(state
, 0x6e);
438 switch ((rc
>> 4) & 0x07) {
454 static int mb86a20s_get_interleaving(struct mb86a20s_state
*state
,
458 int interleaving
[] = {
462 static unsigned char reg
[] = {
463 [0] = 0x88, /* Layer A */
464 [1] = 0x8c, /* Layer B */
465 [2] = 0x90, /* Layer C */
468 if (layer
>= ARRAY_SIZE(reg
))
470 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
473 rc
= mb86a20s_readreg(state
, 0x6e);
477 return interleaving
[(rc
>> 4) & 0x07];
480 static int mb86a20s_get_segment_count(struct mb86a20s_state
*state
,
484 static unsigned char reg
[] = {
485 [0] = 0x89, /* Layer A */
486 [1] = 0x8d, /* Layer B */
487 [2] = 0x91, /* Layer C */
490 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
492 if (layer
>= ARRAY_SIZE(reg
))
495 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
498 rc
= mb86a20s_readreg(state
, 0x6e);
501 count
= (rc
>> 4) & 0x0f;
503 dev_dbg(&state
->i2c
->dev
, "%s: segments: %d.\n", __func__
, count
);
508 static void mb86a20s_reset_frontend_cache(struct dvb_frontend
*fe
)
510 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
511 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
513 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
515 /* Fixed parameters */
516 c
->delivery_system
= SYS_ISDBT
;
517 c
->bandwidth_hz
= 6000000;
519 /* Initialize values that will be later autodetected */
520 c
->isdbt_layer_enabled
= 0;
521 c
->transmission_mode
= TRANSMISSION_MODE_AUTO
;
522 c
->guard_interval
= GUARD_INTERVAL_AUTO
;
523 c
->isdbt_sb_mode
= 0;
524 c
->isdbt_sb_segment_count
= 0;
528 * Estimates the bit rate using the per-segment bit rate given by
529 * ABNT/NBR 15601 spec (table 4).
531 static u32 isdbt_rate
[3][5][4] = {
533 { 280850, 312060, 330420, 340430 }, /* 1/2 */
534 { 374470, 416080, 440560, 453910 }, /* 2/3 */
535 { 421280, 468090, 495630, 510650 }, /* 3/4 */
536 { 468090, 520100, 550700, 567390 }, /* 5/6 */
537 { 491500, 546110, 578230, 595760 }, /* 7/8 */
539 { 561710, 624130, 660840, 680870 }, /* 1/2 */
540 { 748950, 832170, 881120, 907820 }, /* 2/3 */
541 { 842570, 936190, 991260, 1021300 }, /* 3/4 */
542 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
543 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
545 { 842570, 936190, 991260, 1021300 }, /* 1/2 */
546 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
547 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
548 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
549 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
553 static void mb86a20s_layer_bitrate(struct dvb_frontend
*fe
, u32 layer
,
554 u32 modulation
, u32 forward_error_correction
,
558 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
563 * If modulation/fec/guard is not detected, the default is
564 * to consider the lowest bit rate, to avoid taking too long time
567 switch (modulation
) {
581 switch (forward_error_correction
) {
601 switch (guard_interval
) {
603 case GUARD_INTERVAL_1_4
:
606 case GUARD_INTERVAL_1_8
:
609 case GUARD_INTERVAL_1_16
:
612 case GUARD_INTERVAL_1_32
:
617 /* Samples BER at BER_SAMPLING_RATE seconds */
618 rate
= isdbt_rate
[mod
][fec
][guard
] * segment
* BER_SAMPLING_RATE
;
620 /* Avoids sampling too quickly or to overflow the register */
623 else if (rate
> (1 << 24) - 1)
624 rate
= (1 << 24) - 1;
626 dev_dbg(&state
->i2c
->dev
,
627 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
628 __func__
, 'A' + layer
,
629 segment
* isdbt_rate
[mod
][fec
][guard
]/1000,
632 state
->estimated_rate
[layer
] = rate
;
635 static int mb86a20s_get_frontend(struct dvb_frontend
*fe
)
637 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
638 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
641 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
643 /* Reset frontend cache to default values */
644 mb86a20s_reset_frontend_cache(fe
);
646 /* Check for partial reception */
647 rc
= mb86a20s_writereg(state
, 0x6d, 0x85);
650 rc
= mb86a20s_readreg(state
, 0x6e);
653 c
->isdbt_partial_reception
= (rc
& 0x10) ? 1 : 0;
655 /* Get per-layer data */
657 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
658 dev_dbg(&state
->i2c
->dev
, "%s: getting data for layer %c.\n",
659 __func__
, 'A' + layer
);
661 rc
= mb86a20s_get_segment_count(state
, layer
);
663 goto noperlayer_error
;
664 if (rc
>= 0 && rc
< 14) {
665 c
->layer
[layer
].segment_count
= rc
;
667 c
->layer
[layer
].segment_count
= 0;
668 state
->estimated_rate
[layer
] = 0;
671 c
->isdbt_layer_enabled
|= 1 << layer
;
672 rc
= mb86a20s_get_modulation(state
, layer
);
674 goto noperlayer_error
;
675 dev_dbg(&state
->i2c
->dev
, "%s: modulation %d.\n",
677 c
->layer
[layer
].modulation
= rc
;
678 rc
= mb86a20s_get_fec(state
, layer
);
680 goto noperlayer_error
;
681 dev_dbg(&state
->i2c
->dev
, "%s: FEC %d.\n",
683 c
->layer
[layer
].fec
= rc
;
684 rc
= mb86a20s_get_interleaving(state
, layer
);
686 goto noperlayer_error
;
687 dev_dbg(&state
->i2c
->dev
, "%s: interleaving %d.\n",
689 c
->layer
[layer
].interleaving
= rc
;
690 mb86a20s_layer_bitrate(fe
, layer
, c
->layer
[layer
].modulation
,
693 c
->layer
[layer
].segment_count
);
696 rc
= mb86a20s_writereg(state
, 0x6d, 0x84);
699 if ((rc
& 0x60) == 0x20) {
700 c
->isdbt_sb_mode
= 1;
701 /* At least, one segment should exist */
702 if (!c
->isdbt_sb_segment_count
)
703 c
->isdbt_sb_segment_count
= 1;
706 /* Get transmission mode and guard interval */
707 rc
= mb86a20s_readreg(state
, 0x07);
710 c
->transmission_mode
= TRANSMISSION_MODE_AUTO
;
711 if ((rc
& 0x60) == 0x20) {
712 /* Only modes 2 and 3 are supported */
713 switch ((rc
>> 2) & 0x03) {
715 c
->transmission_mode
= TRANSMISSION_MODE_4K
;
718 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
722 c
->guard_interval
= GUARD_INTERVAL_AUTO
;
724 /* Guard interval 1/32 is not supported */
727 c
->guard_interval
= GUARD_INTERVAL_1_4
;
730 c
->guard_interval
= GUARD_INTERVAL_1_8
;
733 c
->guard_interval
= GUARD_INTERVAL_1_16
;
741 /* per-layer info is incomplete; discard all per-layer */
742 c
->isdbt_layer_enabled
= 0;
747 static int mb86a20s_reset_counters(struct dvb_frontend
*fe
)
749 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
750 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
753 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
755 /* Reset the counters, if the channel changed */
756 if (state
->last_frequency
!= c
->frequency
) {
757 memset(&c
->cnr
, 0, sizeof(c
->cnr
));
758 memset(&c
->pre_bit_error
, 0, sizeof(c
->pre_bit_error
));
759 memset(&c
->pre_bit_count
, 0, sizeof(c
->pre_bit_count
));
760 memset(&c
->post_bit_error
, 0, sizeof(c
->post_bit_error
));
761 memset(&c
->post_bit_count
, 0, sizeof(c
->post_bit_count
));
762 memset(&c
->block_error
, 0, sizeof(c
->block_error
));
763 memset(&c
->block_count
, 0, sizeof(c
->block_count
));
765 state
->last_frequency
= c
->frequency
;
768 /* Clear status for most stats */
770 /* BER/PER counter reset */
771 rc
= mb86a20s_writeregdata(state
, mb86a20s_per_ber_reset
);
775 /* CNR counter reset */
776 rc
= mb86a20s_readreg(state
, 0x45);
780 rc
= mb86a20s_writereg(state
, 0x45, val
| 0x10);
783 rc
= mb86a20s_writereg(state
, 0x45, val
& 0x6f);
787 /* MER counter reset */
788 rc
= mb86a20s_writereg(state
, 0x50, 0x50);
791 rc
= mb86a20s_readreg(state
, 0x51);
795 rc
= mb86a20s_writereg(state
, 0x51, val
| 0x01);
798 rc
= mb86a20s_writereg(state
, 0x51, val
& 0x06);
804 dev_err(&state
->i2c
->dev
,
805 "%s: Can't reset FE statistics (error %d).\n",
811 static int mb86a20s_get_pre_ber(struct dvb_frontend
*fe
,
813 u32
*error
, u32
*count
)
815 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
818 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
820 if (layer
>= NUM_LAYERS
)
823 /* Check if the BER measures are already available */
824 rc
= mb86a20s_readreg(state
, 0x54);
828 /* Check if data is available for that layer */
829 if (!(rc
& (1 << layer
))) {
830 dev_dbg(&state
->i2c
->dev
,
831 "%s: preBER for layer %c is not available yet.\n",
832 __func__
, 'A' + layer
);
836 /* Read Bit Error Count */
837 rc
= mb86a20s_readreg(state
, 0x55 + layer
* 3);
841 rc
= mb86a20s_readreg(state
, 0x56 + layer
* 3);
845 rc
= mb86a20s_readreg(state
, 0x57 + layer
* 3);
850 dev_dbg(&state
->i2c
->dev
,
851 "%s: bit error before Viterbi for layer %c: %d.\n",
852 __func__
, 'A' + layer
, *error
);
855 rc
= mb86a20s_writereg(state
, 0x50, 0xa7 + layer
* 3);
858 rc
= mb86a20s_readreg(state
, 0x51);
862 rc
= mb86a20s_writereg(state
, 0x50, 0xa8 + layer
* 3);
865 rc
= mb86a20s_readreg(state
, 0x51);
869 rc
= mb86a20s_writereg(state
, 0x50, 0xa9 + layer
* 3);
872 rc
= mb86a20s_readreg(state
, 0x51);
877 dev_dbg(&state
->i2c
->dev
,
878 "%s: bit count before Viterbi for layer %c: %d.\n",
879 __func__
, 'A' + layer
, *count
);
883 * As we get TMCC data from the frontend, we can better estimate the
884 * BER bit counters, in order to do the BER measure during a longer
885 * time. Use those data, if available, to update the bit count
889 if (state
->estimated_rate
[layer
]
890 && state
->estimated_rate
[layer
] != *count
) {
891 dev_dbg(&state
->i2c
->dev
,
892 "%s: updating layer %c preBER counter to %d.\n",
893 __func__
, 'A' + layer
, state
->estimated_rate
[layer
]);
895 /* Turn off BER before Viterbi */
896 rc
= mb86a20s_writereg(state
, 0x52, 0x00);
898 /* Update counter for this layer */
899 rc
= mb86a20s_writereg(state
, 0x50, 0xa7 + layer
* 3);
902 rc
= mb86a20s_writereg(state
, 0x51,
903 state
->estimated_rate
[layer
] >> 16);
906 rc
= mb86a20s_writereg(state
, 0x50, 0xa8 + layer
* 3);
909 rc
= mb86a20s_writereg(state
, 0x51,
910 state
->estimated_rate
[layer
] >> 8);
913 rc
= mb86a20s_writereg(state
, 0x50, 0xa9 + layer
* 3);
916 rc
= mb86a20s_writereg(state
, 0x51,
917 state
->estimated_rate
[layer
]);
921 /* Turn on BER before Viterbi */
922 rc
= mb86a20s_writereg(state
, 0x52, 0x01);
924 /* Reset all preBER counters */
925 rc
= mb86a20s_writereg(state
, 0x53, 0x00);
928 rc
= mb86a20s_writereg(state
, 0x53, 0x07);
930 /* Reset counter to collect new data */
931 rc
= mb86a20s_readreg(state
, 0x53);
935 rc
= mb86a20s_writereg(state
, 0x53, val
& ~(1 << layer
));
938 rc
= mb86a20s_writereg(state
, 0x53, val
| (1 << layer
));
944 static int mb86a20s_get_post_ber(struct dvb_frontend
*fe
,
946 u32
*error
, u32
*count
)
948 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
949 u32 counter
, collect_rate
;
952 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
954 if (layer
>= NUM_LAYERS
)
957 /* Check if the BER measures are already available */
958 rc
= mb86a20s_readreg(state
, 0x60);
962 /* Check if data is available for that layer */
963 if (!(rc
& (1 << layer
))) {
964 dev_dbg(&state
->i2c
->dev
,
965 "%s: post BER for layer %c is not available yet.\n",
966 __func__
, 'A' + layer
);
970 /* Read Bit Error Count */
971 rc
= mb86a20s_readreg(state
, 0x64 + layer
* 3);
975 rc
= mb86a20s_readreg(state
, 0x65 + layer
* 3);
979 rc
= mb86a20s_readreg(state
, 0x66 + layer
* 3);
984 dev_dbg(&state
->i2c
->dev
,
985 "%s: post bit error for layer %c: %d.\n",
986 __func__
, 'A' + layer
, *error
);
989 rc
= mb86a20s_writereg(state
, 0x50, 0xdc + layer
* 2);
992 rc
= mb86a20s_readreg(state
, 0x51);
996 rc
= mb86a20s_writereg(state
, 0x50, 0xdd + layer
* 2);
999 rc
= mb86a20s_readreg(state
, 0x51);
1003 *count
= counter
* 204 * 8;
1005 dev_dbg(&state
->i2c
->dev
,
1006 "%s: post bit count for layer %c: %d.\n",
1007 __func__
, 'A' + layer
, *count
);
1010 * As we get TMCC data from the frontend, we can better estimate the
1011 * BER bit counters, in order to do the BER measure during a longer
1012 * time. Use those data, if available, to update the bit count
1016 if (!state
->estimated_rate
[layer
])
1017 goto reset_measurement
;
1019 collect_rate
= state
->estimated_rate
[layer
] / 204 / 8;
1020 if (collect_rate
< 32)
1022 if (collect_rate
> 65535)
1023 collect_rate
= 65535;
1024 if (collect_rate
!= counter
) {
1025 dev_dbg(&state
->i2c
->dev
,
1026 "%s: updating postBER counter on layer %c to %d.\n",
1027 __func__
, 'A' + layer
, collect_rate
);
1029 /* Turn off BER after Viterbi */
1030 rc
= mb86a20s_writereg(state
, 0x5e, 0x00);
1032 /* Update counter for this layer */
1033 rc
= mb86a20s_writereg(state
, 0x50, 0xdc + layer
* 2);
1036 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
>> 8);
1039 rc
= mb86a20s_writereg(state
, 0x50, 0xdd + layer
* 2);
1042 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
& 0xff);
1046 /* Turn on BER after Viterbi */
1047 rc
= mb86a20s_writereg(state
, 0x5e, 0x07);
1049 /* Reset all preBER counters */
1050 rc
= mb86a20s_writereg(state
, 0x5f, 0x00);
1053 rc
= mb86a20s_writereg(state
, 0x5f, 0x07);
1059 /* Reset counter to collect new data */
1060 rc
= mb86a20s_readreg(state
, 0x5f);
1064 rc
= mb86a20s_writereg(state
, 0x5f, val
& ~(1 << layer
));
1067 rc
= mb86a20s_writereg(state
, 0x5f, val
| (1 << layer
));
1072 static int mb86a20s_get_blk_error(struct dvb_frontend
*fe
,
1074 u32
*error
, u32
*count
)
1076 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1079 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1081 if (layer
>= NUM_LAYERS
)
1084 /* Check if the PER measures are already available */
1085 rc
= mb86a20s_writereg(state
, 0x50, 0xb8);
1088 rc
= mb86a20s_readreg(state
, 0x51);
1092 /* Check if data is available for that layer */
1094 if (!(rc
& (1 << layer
))) {
1095 dev_dbg(&state
->i2c
->dev
,
1096 "%s: block counts for layer %c aren't available yet.\n",
1097 __func__
, 'A' + layer
);
1101 /* Read Packet error Count */
1102 rc
= mb86a20s_writereg(state
, 0x50, 0xb9 + layer
* 2);
1105 rc
= mb86a20s_readreg(state
, 0x51);
1109 rc
= mb86a20s_writereg(state
, 0x50, 0xba + layer
* 2);
1112 rc
= mb86a20s_readreg(state
, 0x51);
1116 dev_dbg(&state
->i2c
->dev
, "%s: block error for layer %c: %d.\n",
1117 __func__
, 'A' + layer
, *error
);
1119 /* Read Bit Count */
1120 rc
= mb86a20s_writereg(state
, 0x50, 0xb2 + layer
* 2);
1123 rc
= mb86a20s_readreg(state
, 0x51);
1127 rc
= mb86a20s_writereg(state
, 0x50, 0xb3 + layer
* 2);
1130 rc
= mb86a20s_readreg(state
, 0x51);
1135 dev_dbg(&state
->i2c
->dev
,
1136 "%s: block count for layer %c: %d.\n",
1137 __func__
, 'A' + layer
, *count
);
1140 * As we get TMCC data from the frontend, we can better estimate the
1141 * BER bit counters, in order to do the BER measure during a longer
1142 * time. Use those data, if available, to update the bit count
1146 if (!state
->estimated_rate
[layer
])
1147 goto reset_measurement
;
1149 collect_rate
= state
->estimated_rate
[layer
] / 204 / 8;
1150 if (collect_rate
< 32)
1152 if (collect_rate
> 65535)
1153 collect_rate
= 65535;
1155 if (collect_rate
!= *count
) {
1156 dev_dbg(&state
->i2c
->dev
,
1157 "%s: updating PER counter on layer %c to %d.\n",
1158 __func__
, 'A' + layer
, collect_rate
);
1160 /* Stop PER measurement */
1161 rc
= mb86a20s_writereg(state
, 0x50, 0xb0);
1164 rc
= mb86a20s_writereg(state
, 0x51, 0x00);
1168 /* Update this layer's counter */
1169 rc
= mb86a20s_writereg(state
, 0x50, 0xb2 + layer
* 2);
1172 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
>> 8);
1175 rc
= mb86a20s_writereg(state
, 0x50, 0xb3 + layer
* 2);
1178 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
& 0xff);
1182 /* start PER measurement */
1183 rc
= mb86a20s_writereg(state
, 0x50, 0xb0);
1186 rc
= mb86a20s_writereg(state
, 0x51, 0x07);
1190 /* Reset all counters to collect new data */
1191 rc
= mb86a20s_writereg(state
, 0x50, 0xb1);
1194 rc
= mb86a20s_writereg(state
, 0x51, 0x07);
1197 rc
= mb86a20s_writereg(state
, 0x51, 0x00);
1203 /* Reset counter to collect new data */
1204 rc
= mb86a20s_writereg(state
, 0x50, 0xb1);
1207 rc
= mb86a20s_readreg(state
, 0x51);
1211 rc
= mb86a20s_writereg(state
, 0x51, val
| (1 << layer
));
1214 rc
= mb86a20s_writereg(state
, 0x51, val
& ~(1 << layer
));
1219 struct linear_segments
{
1224 * All tables below return a dB/1000 measurement
1227 static const struct linear_segments cnr_to_db_table
[] = {
1261 static const struct linear_segments cnr_64qam_table
[] = {
1295 static const struct linear_segments cnr_16qam_table
[] = {
1329 static const struct linear_segments cnr_qpsk_table
[] = {
1363 static u32
interpolate_value(u32 value
, const struct linear_segments
*segments
,
1370 if (value
>= segments
[0].x
)
1371 return segments
[0].y
;
1372 if (value
< segments
[len
-1].x
)
1373 return segments
[len
-1].y
;
1375 for (i
= 1; i
< len
- 1; i
++) {
1376 /* If value is identical, no need to interpolate */
1377 if (value
== segments
[i
].x
)
1378 return segments
[i
].y
;
1379 if (value
> segments
[i
].x
)
1383 /* Linear interpolation between the two (x,y) points */
1384 dy
= segments
[i
].y
- segments
[i
- 1].y
;
1385 dx
= segments
[i
- 1].x
- segments
[i
].x
;
1386 tmp64
= value
- segments
[i
].x
;
1389 ret
= segments
[i
].y
- tmp64
;
1394 static int mb86a20s_get_main_CNR(struct dvb_frontend
*fe
)
1396 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1397 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1398 u32 cnr_linear
, cnr
;
1401 /* Check if CNR is available */
1402 rc
= mb86a20s_readreg(state
, 0x45);
1407 dev_dbg(&state
->i2c
->dev
, "%s: CNR is not available yet.\n",
1413 rc
= mb86a20s_readreg(state
, 0x46);
1416 cnr_linear
= rc
<< 8;
1418 rc
= mb86a20s_readreg(state
, 0x46);
1423 cnr
= interpolate_value(cnr_linear
,
1424 cnr_to_db_table
, ARRAY_SIZE(cnr_to_db_table
));
1426 c
->cnr
.stat
[0].scale
= FE_SCALE_DECIBEL
;
1427 c
->cnr
.stat
[0].svalue
= cnr
;
1429 dev_dbg(&state
->i2c
->dev
, "%s: CNR is %d.%03d dB (%d)\n",
1430 __func__
, cnr
/ 1000, cnr
% 1000, cnr_linear
);
1432 /* CNR counter reset */
1433 rc
= mb86a20s_writereg(state
, 0x45, val
| 0x10);
1436 rc
= mb86a20s_writereg(state
, 0x45, val
& 0x6f);
1441 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend
*fe
)
1443 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1444 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1447 const struct linear_segments
*segs
;
1450 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1452 /* Check if the measures are already available */
1453 rc
= mb86a20s_writereg(state
, 0x50, 0x5b);
1456 rc
= mb86a20s_readreg(state
, 0x51);
1460 /* Check if data is available */
1462 dev_dbg(&state
->i2c
->dev
,
1463 "%s: MER measures aren't available yet.\n", __func__
);
1467 /* Read all layers */
1468 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
1469 if (!(c
->isdbt_layer_enabled
& (1 << layer
))) {
1470 c
->cnr
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1474 rc
= mb86a20s_writereg(state
, 0x50, 0x52 + layer
* 3);
1477 rc
= mb86a20s_readreg(state
, 0x51);
1481 rc
= mb86a20s_writereg(state
, 0x50, 0x53 + layer
* 3);
1484 rc
= mb86a20s_readreg(state
, 0x51);
1488 rc
= mb86a20s_writereg(state
, 0x50, 0x54 + layer
* 3);
1491 rc
= mb86a20s_readreg(state
, 0x51);
1496 switch (c
->layer
[layer
].modulation
) {
1499 segs
= cnr_qpsk_table
;
1500 segs_len
= ARRAY_SIZE(cnr_qpsk_table
);
1503 segs
= cnr_16qam_table
;
1504 segs_len
= ARRAY_SIZE(cnr_16qam_table
);
1508 segs
= cnr_64qam_table
;
1509 segs_len
= ARRAY_SIZE(cnr_64qam_table
);
1512 cnr
= interpolate_value(mer
, segs
, segs_len
);
1514 c
->cnr
.stat
[1 + layer
].scale
= FE_SCALE_DECIBEL
;
1515 c
->cnr
.stat
[1 + layer
].svalue
= cnr
;
1517 dev_dbg(&state
->i2c
->dev
,
1518 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1519 __func__
, 'A' + layer
, cnr
/ 1000, cnr
% 1000, mer
);
1523 /* Start a new MER measurement */
1524 /* MER counter reset */
1525 rc
= mb86a20s_writereg(state
, 0x50, 0x50);
1528 rc
= mb86a20s_readreg(state
, 0x51);
1533 rc
= mb86a20s_writereg(state
, 0x51, val
| 0x01);
1536 rc
= mb86a20s_writereg(state
, 0x51, val
& 0x06);
1543 static void mb86a20s_stats_not_ready(struct dvb_frontend
*fe
)
1545 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1546 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1549 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1551 /* Fill the length of each status counter */
1553 /* Only global stats */
1554 c
->strength
.len
= 1;
1556 /* Per-layer stats - 3 layers + global */
1557 c
->cnr
.len
= NUM_LAYERS
+ 1;
1558 c
->pre_bit_error
.len
= NUM_LAYERS
+ 1;
1559 c
->pre_bit_count
.len
= NUM_LAYERS
+ 1;
1560 c
->post_bit_error
.len
= NUM_LAYERS
+ 1;
1561 c
->post_bit_count
.len
= NUM_LAYERS
+ 1;
1562 c
->block_error
.len
= NUM_LAYERS
+ 1;
1563 c
->block_count
.len
= NUM_LAYERS
+ 1;
1565 /* Signal is always available */
1566 c
->strength
.stat
[0].scale
= FE_SCALE_RELATIVE
;
1567 c
->strength
.stat
[0].uvalue
= 0;
1569 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1570 for (layer
= 0; layer
< NUM_LAYERS
+ 1; layer
++) {
1571 c
->cnr
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1572 c
->pre_bit_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1573 c
->pre_bit_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1574 c
->post_bit_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1575 c
->post_bit_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1576 c
->block_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1577 c
->block_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1581 static int mb86a20s_get_stats(struct dvb_frontend
*fe
, int status_nr
)
1583 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1584 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1586 u32 bit_error
= 0, bit_count
= 0;
1587 u32 t_pre_bit_error
= 0, t_pre_bit_count
= 0;
1588 u32 t_post_bit_error
= 0, t_post_bit_count
= 0;
1589 u32 block_error
= 0, block_count
= 0;
1590 u32 t_block_error
= 0, t_block_count
= 0;
1591 int active_layers
= 0, pre_ber_layers
= 0, post_ber_layers
= 0;
1594 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1596 mb86a20s_get_main_CNR(fe
);
1598 /* Get per-layer stats */
1599 mb86a20s_get_blk_error_layer_CNR(fe
);
1602 * At state 7, only CNR is available
1603 * For BER measures, state=9 is required
1604 * FIXME: we may get MER measures with state=8
1609 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
1610 if (c
->isdbt_layer_enabled
& (1 << layer
)) {
1611 /* Layer is active and has rc segments */
1614 /* Handle BER before vterbi */
1615 rc
= mb86a20s_get_pre_ber(fe
, layer
,
1616 &bit_error
, &bit_count
);
1618 c
->pre_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1619 c
->pre_bit_error
.stat
[1 + layer
].uvalue
+= bit_error
;
1620 c
->pre_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1621 c
->pre_bit_count
.stat
[1 + layer
].uvalue
+= bit_count
;
1622 } else if (rc
!= -EBUSY
) {
1624 * If an I/O error happened,
1625 * measures are now unavailable
1627 c
->pre_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1628 c
->pre_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1629 dev_err(&state
->i2c
->dev
,
1630 "%s: Can't get BER for layer %c (error %d).\n",
1631 __func__
, 'A' + layer
, rc
);
1633 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1636 /* Handle BER post vterbi */
1637 rc
= mb86a20s_get_post_ber(fe
, layer
,
1638 &bit_error
, &bit_count
);
1640 c
->post_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1641 c
->post_bit_error
.stat
[1 + layer
].uvalue
+= bit_error
;
1642 c
->post_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1643 c
->post_bit_count
.stat
[1 + layer
].uvalue
+= bit_count
;
1644 } else if (rc
!= -EBUSY
) {
1646 * If an I/O error happened,
1647 * measures are now unavailable
1649 c
->post_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1650 c
->post_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1651 dev_err(&state
->i2c
->dev
,
1652 "%s: Can't get BER for layer %c (error %d).\n",
1653 __func__
, 'A' + layer
, rc
);
1655 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1658 /* Handle Block errors for PER/UCB reports */
1659 rc
= mb86a20s_get_blk_error(fe
, layer
,
1663 c
->block_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1664 c
->block_error
.stat
[1 + layer
].uvalue
+= block_error
;
1665 c
->block_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1666 c
->block_count
.stat
[1 + layer
].uvalue
+= block_count
;
1667 } else if (rc
!= -EBUSY
) {
1669 * If an I/O error happened,
1670 * measures are now unavailable
1672 c
->block_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1673 c
->block_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1674 dev_err(&state
->i2c
->dev
,
1675 "%s: Can't get PER for layer %c (error %d).\n",
1676 __func__
, 'A' + layer
, rc
);
1679 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1682 /* Update total preBER */
1683 t_pre_bit_error
+= c
->pre_bit_error
.stat
[1 + layer
].uvalue
;
1684 t_pre_bit_count
+= c
->pre_bit_count
.stat
[1 + layer
].uvalue
;
1686 /* Update total postBER */
1687 t_post_bit_error
+= c
->post_bit_error
.stat
[1 + layer
].uvalue
;
1688 t_post_bit_count
+= c
->post_bit_count
.stat
[1 + layer
].uvalue
;
1690 /* Update total PER */
1691 t_block_error
+= c
->block_error
.stat
[1 + layer
].uvalue
;
1692 t_block_count
+= c
->block_count
.stat
[1 + layer
].uvalue
;
1697 * Start showing global count if at least one error count is
1700 if (pre_ber_layers
) {
1702 * At least one per-layer BER measure was read. We can now
1703 * calculate the total BER
1705 * Total Bit Error/Count is calculated as the sum of the
1706 * bit errors on all active layers.
1708 c
->pre_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1709 c
->pre_bit_error
.stat
[0].uvalue
= t_pre_bit_error
;
1710 c
->pre_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1711 c
->pre_bit_count
.stat
[0].uvalue
= t_pre_bit_count
;
1713 c
->pre_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1714 c
->pre_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1718 * Start showing global count if at least one error count is
1721 if (post_ber_layers
) {
1723 * At least one per-layer BER measure was read. We can now
1724 * calculate the total BER
1726 * Total Bit Error/Count is calculated as the sum of the
1727 * bit errors on all active layers.
1729 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1730 c
->post_bit_error
.stat
[0].uvalue
= t_post_bit_error
;
1731 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1732 c
->post_bit_count
.stat
[0].uvalue
= t_post_bit_count
;
1734 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1735 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1740 * At least one per-layer UCB measure was read. We can now
1741 * calculate the total UCB
1743 * Total block Error/Count is calculated as the sum of the
1744 * block errors on all active layers.
1746 c
->block_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1747 c
->block_error
.stat
[0].uvalue
= t_block_error
;
1748 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1749 c
->block_count
.stat
[0].uvalue
= t_block_count
;
1751 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1752 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1759 * The functions below are called via DVB callbacks, so they need to
1760 * properly use the I2C gate control
1763 static int mb86a20s_initfe(struct dvb_frontend
*fe
)
1765 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1769 u8 regD5
= 1, reg71
, reg09
= 0x3a;
1771 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1773 if (fe
->ops
.i2c_gate_ctrl
)
1774 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1776 /* Initialize the frontend */
1777 rc
= mb86a20s_writeregdata(state
, mb86a20s_init1
);
1781 if (!state
->inversion
)
1783 rc
= mb86a20s_writereg(state
, 0x09, reg09
);
1790 rc
= mb86a20s_writereg(state
, 0x39, reg71
);
1793 rc
= mb86a20s_writereg(state
, 0x71, state
->bw
);
1796 if (state
->subchannel
) {
1797 rc
= mb86a20s_writereg(state
, 0x44, state
->subchannel
);
1802 fclk
= state
->config
->fclk
;
1806 /* Adjust IF frequency to match tuner */
1807 if (fe
->ops
.tuner_ops
.get_if_frequency
)
1808 fe
->ops
.tuner_ops
.get_if_frequency(fe
, &state
->if_freq
);
1810 if (!state
->if_freq
)
1811 state
->if_freq
= 3300000;
1813 pll
= (((u64
)1) << 34) * state
->if_freq
;
1814 do_div(pll
, 63 * fclk
);
1815 pll
= (1 << 25) - pll
;
1816 rc
= mb86a20s_writereg(state
, 0x28, 0x2a);
1819 rc
= mb86a20s_writereg(state
, 0x29, (pll
>> 16) & 0xff);
1822 rc
= mb86a20s_writereg(state
, 0x2a, (pll
>> 8) & 0xff);
1825 rc
= mb86a20s_writereg(state
, 0x2b, pll
& 0xff);
1828 dev_dbg(&state
->i2c
->dev
, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1829 __func__
, fclk
, state
->if_freq
, (long long)pll
);
1831 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1832 pll
= state
->if_freq
* 1677721600L;
1833 do_div(pll
, 1628571429L);
1834 rc
= mb86a20s_writereg(state
, 0x28, 0x20);
1837 rc
= mb86a20s_writereg(state
, 0x29, (pll
>> 16) & 0xff);
1840 rc
= mb86a20s_writereg(state
, 0x2a, (pll
>> 8) & 0xff);
1843 rc
= mb86a20s_writereg(state
, 0x2b, pll
& 0xff);
1846 dev_dbg(&state
->i2c
->dev
, "%s: IF=%d, IF reg=0x%06llx\n",
1847 __func__
, state
->if_freq
, (long long)pll
);
1849 if (!state
->config
->is_serial
)
1852 rc
= mb86a20s_writereg(state
, 0x50, 0xd5);
1855 rc
= mb86a20s_writereg(state
, 0x51, regD5
);
1859 rc
= mb86a20s_writeregdata(state
, mb86a20s_init2
);
1865 if (fe
->ops
.i2c_gate_ctrl
)
1866 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1869 state
->need_init
= true;
1870 dev_info(&state
->i2c
->dev
,
1871 "mb86a20s: Init failed. Will try again later\n");
1873 state
->need_init
= false;
1874 dev_dbg(&state
->i2c
->dev
, "Initialization succeeded.\n");
1879 static int mb86a20s_set_frontend(struct dvb_frontend
*fe
)
1881 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1882 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1884 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1886 if (!c
->isdbt_layer_enabled
)
1887 c
->isdbt_layer_enabled
= 7;
1889 if (c
->isdbt_layer_enabled
== 1)
1890 state
->bw
= MB86A20S_1SEG
;
1891 else if (c
->isdbt_partial_reception
)
1892 state
->bw
= MB86A20S_13SEG_PARTIAL
;
1894 state
->bw
= MB86A20S_13SEG
;
1896 if (c
->inversion
== INVERSION_ON
)
1897 state
->inversion
= true;
1899 state
->inversion
= false;
1901 if (!c
->isdbt_sb_mode
) {
1902 state
->subchannel
= 0;
1904 if (c
->isdbt_sb_subchannel
>= ARRAY_SIZE(mb86a20s_subchannel
))
1905 c
->isdbt_sb_subchannel
= 0;
1907 state
->subchannel
= mb86a20s_subchannel
[c
->isdbt_sb_subchannel
];
1911 * Gate should already be opened, but it doesn't hurt to
1914 if (fe
->ops
.i2c_gate_ctrl
)
1915 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1916 fe
->ops
.tuner_ops
.set_params(fe
);
1918 if (fe
->ops
.tuner_ops
.get_if_frequency
)
1919 fe
->ops
.tuner_ops
.get_if_frequency(fe
, &if_freq
);
1922 * Make it more reliable: if, for some reason, the initial
1923 * device initialization doesn't happen, initialize it when
1924 * a SBTVD parameters are adjusted.
1926 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1927 * the agc callback logic is not called during DVB attach time,
1928 * causing mb86a20s to not be initialized with Kworld SBTVD.
1929 * So, this hack is needed, in order to make Kworld SBTVD to work.
1931 * It is also needed to change the IF after the initial init.
1933 * HACK: Always init the frontend when set_frontend is called:
1934 * it was noticed that, on some devices, it fails to lock on a
1935 * different channel. So, it is better to reset everything, even
1936 * wasting some time, than to loose channel lock.
1938 mb86a20s_initfe(fe
);
1940 if (fe
->ops
.i2c_gate_ctrl
)
1941 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1943 rc
= mb86a20s_writeregdata(state
, mb86a20s_reset_reception
);
1944 mb86a20s_reset_counters(fe
);
1945 mb86a20s_stats_not_ready(fe
);
1947 if (fe
->ops
.i2c_gate_ctrl
)
1948 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1953 static int mb86a20s_read_status_and_stats(struct dvb_frontend
*fe
,
1954 enum fe_status
*status
)
1956 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1959 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1961 if (fe
->ops
.i2c_gate_ctrl
)
1962 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1965 status_nr
= mb86a20s_read_status(fe
, status
);
1966 if (status_nr
< 7) {
1967 mb86a20s_stats_not_ready(fe
);
1968 mb86a20s_reset_frontend_cache(fe
);
1970 if (status_nr
< 0) {
1971 dev_err(&state
->i2c
->dev
,
1972 "%s: Can't read frontend lock status\n", __func__
);
1976 /* Get signal strength */
1977 rc
= mb86a20s_read_signal_strength(fe
);
1979 dev_err(&state
->i2c
->dev
,
1980 "%s: Can't reset VBER registers.\n", __func__
);
1981 mb86a20s_stats_not_ready(fe
);
1982 mb86a20s_reset_frontend_cache(fe
);
1984 rc
= 0; /* Status is OK */
1988 if (status_nr
>= 7) {
1990 rc
= mb86a20s_get_frontend(fe
);
1992 dev_err(&state
->i2c
->dev
,
1993 "%s: Can't get FE TMCC data.\n", __func__
);
1994 rc
= 0; /* Status is OK */
1998 /* Get statistics */
1999 rc
= mb86a20s_get_stats(fe
, status_nr
);
2000 if (rc
< 0 && rc
!= -EBUSY
) {
2001 dev_err(&state
->i2c
->dev
,
2002 "%s: Can't get FE statistics.\n", __func__
);
2006 rc
= 0; /* Don't return EBUSY to userspace */
2011 mb86a20s_stats_not_ready(fe
);
2014 if (fe
->ops
.i2c_gate_ctrl
)
2015 fe
->ops
.i2c_gate_ctrl(fe
, 1);
2020 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend
*fe
,
2023 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
2026 *strength
= c
->strength
.stat
[0].uvalue
;
2031 static int mb86a20s_get_frontend_dummy(struct dvb_frontend
*fe
)
2034 * get_frontend is now handled together with other stats
2035 * retrival, when read_status() is called, as some statistics
2036 * will depend on the layers detection.
2041 static int mb86a20s_tune(struct dvb_frontend
*fe
,
2043 unsigned int mode_flags
,
2044 unsigned int *delay
,
2045 enum fe_status
*status
)
2047 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
2050 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
2053 rc
= mb86a20s_set_frontend(fe
);
2055 if (!(mode_flags
& FE_TUNE_MODE_ONESHOT
))
2056 mb86a20s_read_status_and_stats(fe
, status
);
2061 static void mb86a20s_release(struct dvb_frontend
*fe
)
2063 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
2065 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
2070 static struct dvb_frontend_ops mb86a20s_ops
;
2072 struct dvb_frontend
*mb86a20s_attach(const struct mb86a20s_config
*config
,
2073 struct i2c_adapter
*i2c
)
2075 struct mb86a20s_state
*state
;
2078 dev_dbg(&i2c
->dev
, "%s called.\n", __func__
);
2080 /* allocate memory for the internal state */
2081 state
= kzalloc(sizeof(struct mb86a20s_state
), GFP_KERNEL
);
2082 if (state
== NULL
) {
2084 "%s: unable to allocate memory for state\n", __func__
);
2088 /* setup the state */
2089 state
->config
= config
;
2092 /* create dvb_frontend */
2093 memcpy(&state
->frontend
.ops
, &mb86a20s_ops
,
2094 sizeof(struct dvb_frontend_ops
));
2095 state
->frontend
.demodulator_priv
= state
;
2097 /* Check if it is a mb86a20s frontend */
2098 rev
= mb86a20s_readreg(state
, 0);
2102 "Detected a Fujitsu mb86a20s frontend\n");
2105 "Frontend revision %d is unknown - aborting.\n",
2110 return &state
->frontend
;
2116 EXPORT_SYMBOL(mb86a20s_attach
);
2118 static struct dvb_frontend_ops mb86a20s_ops
= {
2119 .delsys
= { SYS_ISDBT
},
2120 /* Use dib8000 values per default */
2122 .name
= "Fujitsu mb86A20s",
2123 .caps
= FE_CAN_RECOVER
|
2124 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
2125 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
2126 FE_CAN_QPSK
| FE_CAN_QAM_16
| FE_CAN_QAM_64
|
2127 FE_CAN_TRANSMISSION_MODE_AUTO
| FE_CAN_QAM_AUTO
|
2128 FE_CAN_GUARD_INTERVAL_AUTO
| FE_CAN_HIERARCHY_AUTO
,
2129 /* Actually, those values depend on the used tuner */
2130 .frequency_min
= 45000000,
2131 .frequency_max
= 864000000,
2132 .frequency_stepsize
= 62500,
2135 .release
= mb86a20s_release
,
2137 .init
= mb86a20s_initfe
,
2138 .set_frontend
= mb86a20s_set_frontend
,
2139 .get_frontend
= mb86a20s_get_frontend_dummy
,
2140 .read_status
= mb86a20s_read_status_and_stats
,
2141 .read_signal_strength
= mb86a20s_read_signal_strength_from_cache
,
2142 .tune
= mb86a20s_tune
,
2145 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2146 MODULE_AUTHOR("Mauro Carvalho Chehab");
2147 MODULE_LICENSE("GPL");