2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/div64.h>
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.4-1"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62 /* How long to wait (in milliseconds) for board to go into simple mode */
63 #define MAX_CONFIG_WAIT 30000
64 #define MAX_IOCTL_CONFIG_WAIT 1000
66 /*define how many times we will try a command because of bus resets */
67 #define MAX_CMD_RETRIES 3
69 /* Embedded module documentation macros - see modules.h */
70 MODULE_AUTHOR("Hewlett-Packard Company");
71 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_VERSION(HPSA_DRIVER_VERSION
);
75 MODULE_LICENSE("GPL");
77 static int hpsa_allow_any
;
78 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
79 MODULE_PARM_DESC(hpsa_allow_any
,
80 "Allow hpsa driver to access unknown HP Smart Array hardware");
81 static int hpsa_simple_mode
;
82 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
83 MODULE_PARM_DESC(hpsa_simple_mode
,
84 "Use 'simple mode' rather than 'performant mode'");
86 /* define the PCI info for the cards we can control */
87 static const struct pci_device_id hpsa_pci_device_id
[] = {
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
128 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
129 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
130 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
131 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
132 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
133 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
134 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
138 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
140 /* board_id = Subsystem Device ID & Vendor ID
141 * product = Marketing Name for the board
142 * access = Address of the struct of function pointers
144 static struct board_type products
[] = {
145 {0x3241103C, "Smart Array P212", &SA5_access
},
146 {0x3243103C, "Smart Array P410", &SA5_access
},
147 {0x3245103C, "Smart Array P410i", &SA5_access
},
148 {0x3247103C, "Smart Array P411", &SA5_access
},
149 {0x3249103C, "Smart Array P812", &SA5_access
},
150 {0x324A103C, "Smart Array P712m", &SA5_access
},
151 {0x324B103C, "Smart Array P711m", &SA5_access
},
152 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
153 {0x3350103C, "Smart Array P222", &SA5_access
},
154 {0x3351103C, "Smart Array P420", &SA5_access
},
155 {0x3352103C, "Smart Array P421", &SA5_access
},
156 {0x3353103C, "Smart Array P822", &SA5_access
},
157 {0x3354103C, "Smart Array P420i", &SA5_access
},
158 {0x3355103C, "Smart Array P220i", &SA5_access
},
159 {0x3356103C, "Smart Array P721m", &SA5_access
},
160 {0x1921103C, "Smart Array P830i", &SA5_access
},
161 {0x1922103C, "Smart Array P430", &SA5_access
},
162 {0x1923103C, "Smart Array P431", &SA5_access
},
163 {0x1924103C, "Smart Array P830", &SA5_access
},
164 {0x1926103C, "Smart Array P731m", &SA5_access
},
165 {0x1928103C, "Smart Array P230i", &SA5_access
},
166 {0x1929103C, "Smart Array P530", &SA5_access
},
167 {0x21BD103C, "Smart Array", &SA5_access
},
168 {0x21BE103C, "Smart Array", &SA5_access
},
169 {0x21BF103C, "Smart Array", &SA5_access
},
170 {0x21C0103C, "Smart Array", &SA5_access
},
171 {0x21C1103C, "Smart Array", &SA5_access
},
172 {0x21C2103C, "Smart Array", &SA5_access
},
173 {0x21C3103C, "Smart Array", &SA5_access
},
174 {0x21C4103C, "Smart Array", &SA5_access
},
175 {0x21C5103C, "Smart Array", &SA5_access
},
176 {0x21C6103C, "Smart Array", &SA5_access
},
177 {0x21C7103C, "Smart Array", &SA5_access
},
178 {0x21C8103C, "Smart Array", &SA5_access
},
179 {0x21C9103C, "Smart Array", &SA5_access
},
180 {0x21CA103C, "Smart Array", &SA5_access
},
181 {0x21CB103C, "Smart Array", &SA5_access
},
182 {0x21CC103C, "Smart Array", &SA5_access
},
183 {0x21CD103C, "Smart Array", &SA5_access
},
184 {0x21CE103C, "Smart Array", &SA5_access
},
185 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
186 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
187 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
188 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
189 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
190 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
193 static int number_of_controllers
;
195 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
196 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
197 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
198 static void lock_and_start_io(struct ctlr_info
*h
);
199 static void start_io(struct ctlr_info
*h
, unsigned long *flags
);
202 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
206 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
207 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
);
208 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
209 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
);
210 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
211 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
213 #define VPD_PAGE (1 << 8)
215 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
216 static void hpsa_scan_start(struct Scsi_Host
*);
217 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
218 unsigned long elapsed_time
);
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
222 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
223 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
225 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
226 static int check_for_unit_attention(struct ctlr_info
*h
,
227 struct CommandList
*c
);
228 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
229 struct CommandList
*c
);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket
, int num_buckets
,
232 int nsgs
, int min_blocks
, int *bucket_map
);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
234 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
235 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
236 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
238 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
239 unsigned long *memory_bar
);
240 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
241 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
243 static inline void finish_cmd(struct CommandList
*c
);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
248 static void hpsa_flush_cache(struct ctlr_info
*h
);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
250 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
253 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
255 unsigned long *priv
= shost_priv(sdev
->host
);
256 return (struct ctlr_info
*) *priv
;
259 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
261 unsigned long *priv
= shost_priv(sh
);
262 return (struct ctlr_info
*) *priv
;
265 static int check_for_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
)
268 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
271 switch (c
->err_info
->SenseInfo
[12]) {
273 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
274 "detected, command retried\n", h
->ctlr
);
277 dev_warn(&h
->pdev
->dev
,
278 HPSA
"%d: LUN failure detected\n", h
->ctlr
);
280 case REPORT_LUNS_CHANGED
:
281 dev_warn(&h
->pdev
->dev
,
282 HPSA
"%d: report LUN data changed\n", h
->ctlr
);
284 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 * target (array) devices.
289 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
290 "or device reset detected\n", h
->ctlr
);
292 case UNIT_ATTENTION_CLEARED
:
293 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
294 "cleared by another initiator\n", h
->ctlr
);
297 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
298 "unit attention detected\n", h
->ctlr
);
304 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
306 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
307 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
308 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
310 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
314 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
315 struct device_attribute
*attr
,
316 const char *buf
, size_t count
)
320 struct Scsi_Host
*shost
= class_to_shost(dev
);
323 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
325 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
326 strncpy(tmpbuf
, buf
, len
);
328 if (sscanf(tmpbuf
, "%d", &status
) != 1)
330 h
= shost_to_hba(shost
);
331 h
->acciopath_status
= !!status
;
332 dev_warn(&h
->pdev
->dev
,
333 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 h
->acciopath_status
? "enabled" : "disabled");
338 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
339 struct device_attribute
*attr
,
340 const char *buf
, size_t count
)
342 int debug_level
, len
;
344 struct Scsi_Host
*shost
= class_to_shost(dev
);
347 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
349 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
350 strncpy(tmpbuf
, buf
, len
);
352 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
356 h
= shost_to_hba(shost
);
357 h
->raid_offload_debug
= debug_level
;
358 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
359 h
->raid_offload_debug
);
363 static ssize_t
host_store_rescan(struct device
*dev
,
364 struct device_attribute
*attr
,
365 const char *buf
, size_t count
)
368 struct Scsi_Host
*shost
= class_to_shost(dev
);
369 h
= shost_to_hba(shost
);
370 hpsa_scan_start(h
->scsi_host
);
374 static ssize_t
host_show_firmware_revision(struct device
*dev
,
375 struct device_attribute
*attr
, char *buf
)
378 struct Scsi_Host
*shost
= class_to_shost(dev
);
379 unsigned char *fwrev
;
381 h
= shost_to_hba(shost
);
382 if (!h
->hba_inquiry_data
)
384 fwrev
= &h
->hba_inquiry_data
[32];
385 return snprintf(buf
, 20, "%c%c%c%c\n",
386 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
389 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
390 struct device_attribute
*attr
, char *buf
)
392 struct Scsi_Host
*shost
= class_to_shost(dev
);
393 struct ctlr_info
*h
= shost_to_hba(shost
);
395 return snprintf(buf
, 20, "%d\n",
396 atomic_read(&h
->commands_outstanding
));
399 static ssize_t
host_show_transport_mode(struct device
*dev
,
400 struct device_attribute
*attr
, char *buf
)
403 struct Scsi_Host
*shost
= class_to_shost(dev
);
405 h
= shost_to_hba(shost
);
406 return snprintf(buf
, 20, "%s\n",
407 h
->transMethod
& CFGTBL_Trans_Performant
?
408 "performant" : "simple");
411 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
412 struct device_attribute
*attr
, char *buf
)
415 struct Scsi_Host
*shost
= class_to_shost(dev
);
417 h
= shost_to_hba(shost
);
418 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
419 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller
[] = {
424 0x324a103C, /* Smart Array P712m */
425 0x324b103C, /* SmartArray P711m */
426 0x3223103C, /* Smart Array P800 */
427 0x3234103C, /* Smart Array P400 */
428 0x3235103C, /* Smart Array P400i */
429 0x3211103C, /* Smart Array E200i */
430 0x3212103C, /* Smart Array E200 */
431 0x3213103C, /* Smart Array E200i */
432 0x3214103C, /* Smart Array E200i */
433 0x3215103C, /* Smart Array E200i */
434 0x3237103C, /* Smart Array E500 */
435 0x323D103C, /* Smart Array P700m */
436 0x40800E11, /* Smart Array 5i */
437 0x409C0E11, /* Smart Array 6400 */
438 0x409D0E11, /* Smart Array 6400 EM */
439 0x40700E11, /* Smart Array 5300 */
440 0x40820E11, /* Smart Array 532 */
441 0x40830E11, /* Smart Array 5312 */
442 0x409A0E11, /* Smart Array 641 */
443 0x409B0E11, /* Smart Array 642 */
444 0x40910E11, /* Smart Array 6i */
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller
[] = {
449 0x40800E11, /* Smart Array 5i */
450 0x40700E11, /* Smart Array 5300 */
451 0x40820E11, /* Smart Array 532 */
452 0x40830E11, /* Smart Array 5312 */
453 0x409A0E11, /* Smart Array 641 */
454 0x409B0E11, /* Smart Array 642 */
455 0x40910E11, /* Smart Array 6i */
456 /* Exclude 640x boards. These are two pci devices in one slot
457 * which share a battery backed cache module. One controls the
458 * cache, the other accesses the cache through the one that controls
459 * it. If we reset the one controlling the cache, the other will
460 * likely not be happy. Just forbid resetting this conjoined mess.
461 * The 640x isn't really supported by hpsa anyway.
463 0x409C0E11, /* Smart Array 6400 */
464 0x409D0E11, /* Smart Array 6400 EM */
467 static int ctlr_is_hard_resettable(u32 board_id
)
471 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
472 if (unresettable_controller
[i
] == board_id
)
477 static int ctlr_is_soft_resettable(u32 board_id
)
481 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
482 if (soft_unresettable_controller
[i
] == board_id
)
487 static int ctlr_is_resettable(u32 board_id
)
489 return ctlr_is_hard_resettable(board_id
) ||
490 ctlr_is_soft_resettable(board_id
);
493 static ssize_t
host_show_resettable(struct device
*dev
,
494 struct device_attribute
*attr
, char *buf
)
497 struct Scsi_Host
*shost
= class_to_shost(dev
);
499 h
= shost_to_hba(shost
);
500 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
505 return (scsi3addr
[3] & 0xC0) == 0x40;
508 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
511 #define HPSA_RAID_0 0
512 #define HPSA_RAID_4 1
513 #define HPSA_RAID_1 2 /* also used for RAID 10 */
514 #define HPSA_RAID_5 3 /* also used for RAID 50 */
515 #define HPSA_RAID_51 4
516 #define HPSA_RAID_6 5 /* also used for RAID 60 */
517 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
520 static ssize_t
raid_level_show(struct device
*dev
,
521 struct device_attribute
*attr
, char *buf
)
524 unsigned char rlevel
;
526 struct scsi_device
*sdev
;
527 struct hpsa_scsi_dev_t
*hdev
;
530 sdev
= to_scsi_device(dev
);
531 h
= sdev_to_hba(sdev
);
532 spin_lock_irqsave(&h
->lock
, flags
);
533 hdev
= sdev
->hostdata
;
535 spin_unlock_irqrestore(&h
->lock
, flags
);
539 /* Is this even a logical drive? */
540 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
541 spin_unlock_irqrestore(&h
->lock
, flags
);
542 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
546 rlevel
= hdev
->raid_level
;
547 spin_unlock_irqrestore(&h
->lock
, flags
);
548 if (rlevel
> RAID_UNKNOWN
)
549 rlevel
= RAID_UNKNOWN
;
550 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
554 static ssize_t
lunid_show(struct device
*dev
,
555 struct device_attribute
*attr
, char *buf
)
558 struct scsi_device
*sdev
;
559 struct hpsa_scsi_dev_t
*hdev
;
561 unsigned char lunid
[8];
563 sdev
= to_scsi_device(dev
);
564 h
= sdev_to_hba(sdev
);
565 spin_lock_irqsave(&h
->lock
, flags
);
566 hdev
= sdev
->hostdata
;
568 spin_unlock_irqrestore(&h
->lock
, flags
);
571 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
572 spin_unlock_irqrestore(&h
->lock
, flags
);
573 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
575 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
578 static ssize_t
unique_id_show(struct device
*dev
,
579 struct device_attribute
*attr
, char *buf
)
582 struct scsi_device
*sdev
;
583 struct hpsa_scsi_dev_t
*hdev
;
585 unsigned char sn
[16];
587 sdev
= to_scsi_device(dev
);
588 h
= sdev_to_hba(sdev
);
589 spin_lock_irqsave(&h
->lock
, flags
);
590 hdev
= sdev
->hostdata
;
592 spin_unlock_irqrestore(&h
->lock
, flags
);
595 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
596 spin_unlock_irqrestore(&h
->lock
, flags
);
597 return snprintf(buf
, 16 * 2 + 2,
598 "%02X%02X%02X%02X%02X%02X%02X%02X"
599 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 sn
[0], sn
[1], sn
[2], sn
[3],
601 sn
[4], sn
[5], sn
[6], sn
[7],
602 sn
[8], sn
[9], sn
[10], sn
[11],
603 sn
[12], sn
[13], sn
[14], sn
[15]);
606 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
607 struct device_attribute
*attr
, char *buf
)
610 struct scsi_device
*sdev
;
611 struct hpsa_scsi_dev_t
*hdev
;
615 sdev
= to_scsi_device(dev
);
616 h
= sdev_to_hba(sdev
);
617 spin_lock_irqsave(&h
->lock
, flags
);
618 hdev
= sdev
->hostdata
;
620 spin_unlock_irqrestore(&h
->lock
, flags
);
623 offload_enabled
= hdev
->offload_enabled
;
624 spin_unlock_irqrestore(&h
->lock
, flags
);
625 return snprintf(buf
, 20, "%d\n", offload_enabled
);
628 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
629 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
630 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
631 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
633 host_show_hp_ssd_smart_path_enabled
, NULL
);
634 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
635 host_show_hp_ssd_smart_path_status
,
636 host_store_hp_ssd_smart_path_status
);
637 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
638 host_store_raid_offload_debug
);
639 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
640 host_show_firmware_revision
, NULL
);
641 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
642 host_show_commands_outstanding
, NULL
);
643 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
644 host_show_transport_mode
, NULL
);
645 static DEVICE_ATTR(resettable
, S_IRUGO
,
646 host_show_resettable
, NULL
);
648 static struct device_attribute
*hpsa_sdev_attrs
[] = {
649 &dev_attr_raid_level
,
652 &dev_attr_hp_ssd_smart_path_enabled
,
656 static struct device_attribute
*hpsa_shost_attrs
[] = {
658 &dev_attr_firmware_revision
,
659 &dev_attr_commands_outstanding
,
660 &dev_attr_transport_mode
,
661 &dev_attr_resettable
,
662 &dev_attr_hp_ssd_smart_path_status
,
663 &dev_attr_raid_offload_debug
,
667 static struct scsi_host_template hpsa_driver_template
= {
668 .module
= THIS_MODULE
,
671 .queuecommand
= hpsa_scsi_queue_command
,
672 .scan_start
= hpsa_scan_start
,
673 .scan_finished
= hpsa_scan_finished
,
674 .change_queue_depth
= scsi_change_queue_depth
,
676 .use_clustering
= ENABLE_CLUSTERING
,
677 .eh_abort_handler
= hpsa_eh_abort_handler
,
678 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
680 .slave_alloc
= hpsa_slave_alloc
,
681 .slave_destroy
= hpsa_slave_destroy
,
683 .compat_ioctl
= hpsa_compat_ioctl
,
685 .sdev_attrs
= hpsa_sdev_attrs
,
686 .shost_attrs
= hpsa_shost_attrs
,
692 /* Enqueuing and dequeuing functions for cmdlists. */
693 static inline void addQ(struct list_head
*list
, struct CommandList
*c
)
695 list_add_tail(&c
->list
, list
);
698 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
701 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
703 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
704 return h
->access
.command_completed(h
, q
);
706 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
707 return h
->access
.command_completed(h
, q
);
709 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
710 a
= rq
->head
[rq
->current_entry
];
712 atomic_dec(&h
->commands_outstanding
);
716 /* Check for wraparound */
717 if (rq
->current_entry
== h
->max_commands
) {
718 rq
->current_entry
= 0;
725 * There are some special bits in the bus address of the
726 * command that we have to set for the controller to know
727 * how to process the command:
729 * Normal performant mode:
730 * bit 0: 1 means performant mode, 0 means simple mode.
731 * bits 1-3 = block fetch table entry
732 * bits 4-6 = command type (== 0)
735 * bit 0 = "performant mode" bit.
736 * bits 1-3 = block fetch table entry
737 * bits 4-6 = command type (== 110)
738 * (command type is needed because ioaccel1 mode
739 * commands are submitted through the same register as normal
740 * mode commands, so this is how the controller knows whether
741 * the command is normal mode or ioaccel1 mode.)
744 * bit 0 = "performant mode" bit.
745 * bits 1-4 = block fetch table entry (note extra bit)
746 * bits 4-6 = not needed, because ioaccel2 mode has
747 * a separate special register for submitting commands.
750 /* set_performant_mode: Modify the tag for cciss performant
751 * set bit 0 for pull model, bits 3-1 for block fetch
754 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
756 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
757 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
758 if (likely(h
->msix_vector
> 0))
759 c
->Header
.ReplyQueue
=
760 raw_smp_processor_id() % h
->nreply_queues
;
764 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
765 struct CommandList
*c
)
767 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
769 /* Tell the controller to post the reply to the queue for this
770 * processor. This seems to give the best I/O throughput.
772 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
773 /* Set the bits in the address sent down to include:
774 * - performant mode bit (bit 0)
775 * - pull count (bits 1-3)
776 * - command type (bits 4-6)
778 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
779 IOACCEL1_BUSADDR_CMDTYPE
;
782 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
783 struct CommandList
*c
)
785 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
787 /* Tell the controller to post the reply to the queue for this
788 * processor. This seems to give the best I/O throughput.
790 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
791 /* Set the bits in the address sent down to include:
792 * - performant mode bit not used in ioaccel mode 2
793 * - pull count (bits 0-3)
794 * - command type isn't needed for ioaccel2
796 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
799 static int is_firmware_flash_cmd(u8
*cdb
)
801 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
805 * During firmware flash, the heartbeat register may not update as frequently
806 * as it should. So we dial down lockup detection during firmware flash. and
807 * dial it back up when firmware flash completes.
809 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
810 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
811 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
812 struct CommandList
*c
)
814 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
816 atomic_inc(&h
->firmware_flash_in_progress
);
817 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
820 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
821 struct CommandList
*c
)
823 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
824 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
825 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
828 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
829 struct CommandList
*c
)
833 switch (c
->cmd_type
) {
835 set_ioaccel1_performant_mode(h
, c
);
838 set_ioaccel2_performant_mode(h
, c
);
841 set_performant_mode(h
, c
);
843 dial_down_lockup_detection_during_fw_flash(h
, c
);
844 spin_lock_irqsave(&h
->lock
, flags
);
848 spin_unlock_irqrestore(&h
->lock
, flags
);
851 static inline void removeQ(struct CommandList
*c
)
853 if (WARN_ON(list_empty(&c
->list
)))
855 list_del_init(&c
->list
);
858 static inline int is_hba_lunid(unsigned char scsi3addr
[])
860 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
863 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
865 if (!h
->hba_inquiry_data
)
867 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
872 static int hpsa_find_target_lun(struct ctlr_info
*h
,
873 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
875 /* finds an unused bus, target, lun for a new physical device
876 * assumes h->devlock is held
879 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
881 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
883 for (i
= 0; i
< h
->ndevices
; i
++) {
884 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
885 __set_bit(h
->dev
[i
]->target
, lun_taken
);
888 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
889 if (i
< HPSA_MAX_DEVICES
) {
898 /* Add an entry into h->dev[] array. */
899 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
900 struct hpsa_scsi_dev_t
*device
,
901 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
903 /* assumes h->devlock is held */
906 unsigned char addr1
[8], addr2
[8];
907 struct hpsa_scsi_dev_t
*sd
;
909 if (n
>= HPSA_MAX_DEVICES
) {
910 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
915 /* physical devices do not have lun or target assigned until now. */
916 if (device
->lun
!= -1)
917 /* Logical device, lun is already assigned. */
920 /* If this device a non-zero lun of a multi-lun device
921 * byte 4 of the 8-byte LUN addr will contain the logical
922 * unit no, zero otherise.
924 if (device
->scsi3addr
[4] == 0) {
925 /* This is not a non-zero lun of a multi-lun device */
926 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
927 device
->bus
, &device
->target
, &device
->lun
) != 0)
932 /* This is a non-zero lun of a multi-lun device.
933 * Search through our list and find the device which
934 * has the same 8 byte LUN address, excepting byte 4.
935 * Assign the same bus and target for this new LUN.
936 * Use the logical unit number from the firmware.
938 memcpy(addr1
, device
->scsi3addr
, 8);
940 for (i
= 0; i
< n
; i
++) {
942 memcpy(addr2
, sd
->scsi3addr
, 8);
944 /* differ only in byte 4? */
945 if (memcmp(addr1
, addr2
, 8) == 0) {
946 device
->bus
= sd
->bus
;
947 device
->target
= sd
->target
;
948 device
->lun
= device
->scsi3addr
[4];
952 if (device
->lun
== -1) {
953 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
954 " suspect firmware bug or unsupported hardware "
963 added
[*nadded
] = device
;
966 /* initially, (before registering with scsi layer) we don't
967 * know our hostno and we don't want to print anything first
968 * time anyway (the scsi layer's inquiries will show that info)
970 /* if (hostno != -1) */
971 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
972 scsi_device_type(device
->devtype
), hostno
,
973 device
->bus
, device
->target
, device
->lun
);
977 /* Update an entry in h->dev[] array. */
978 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
979 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
981 /* assumes h->devlock is held */
982 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
984 /* Raid level changed. */
985 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
987 /* Raid offload parameters changed. */
988 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
989 h
->dev
[entry
]->offload_enabled
= new_entry
->offload_enabled
;
990 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
991 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
992 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
994 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
995 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
996 new_entry
->target
, new_entry
->lun
);
999 /* Replace an entry from h->dev[] array. */
1000 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
1001 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1002 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1003 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1005 /* assumes h->devlock is held */
1006 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1007 removed
[*nremoved
] = h
->dev
[entry
];
1011 * New physical devices won't have target/lun assigned yet
1012 * so we need to preserve the values in the slot we are replacing.
1014 if (new_entry
->target
== -1) {
1015 new_entry
->target
= h
->dev
[entry
]->target
;
1016 new_entry
->lun
= h
->dev
[entry
]->lun
;
1019 h
->dev
[entry
] = new_entry
;
1020 added
[*nadded
] = new_entry
;
1022 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
1023 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
1024 new_entry
->target
, new_entry
->lun
);
1027 /* Remove an entry from h->dev[] array. */
1028 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
1029 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1031 /* assumes h->devlock is held */
1033 struct hpsa_scsi_dev_t
*sd
;
1035 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1038 removed
[*nremoved
] = h
->dev
[entry
];
1041 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1042 h
->dev
[i
] = h
->dev
[i
+1];
1044 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
1045 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
1049 #define SCSI3ADDR_EQ(a, b) ( \
1050 (a)[7] == (b)[7] && \
1051 (a)[6] == (b)[6] && \
1052 (a)[5] == (b)[5] && \
1053 (a)[4] == (b)[4] && \
1054 (a)[3] == (b)[3] && \
1055 (a)[2] == (b)[2] && \
1056 (a)[1] == (b)[1] && \
1059 static void fixup_botched_add(struct ctlr_info
*h
,
1060 struct hpsa_scsi_dev_t
*added
)
1062 /* called when scsi_add_device fails in order to re-adjust
1063 * h->dev[] to match the mid layer's view.
1065 unsigned long flags
;
1068 spin_lock_irqsave(&h
->lock
, flags
);
1069 for (i
= 0; i
< h
->ndevices
; i
++) {
1070 if (h
->dev
[i
] == added
) {
1071 for (j
= i
; j
< h
->ndevices
-1; j
++)
1072 h
->dev
[j
] = h
->dev
[j
+1];
1077 spin_unlock_irqrestore(&h
->lock
, flags
);
1081 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1082 struct hpsa_scsi_dev_t
*dev2
)
1084 /* we compare everything except lun and target as these
1085 * are not yet assigned. Compare parts likely
1088 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1089 sizeof(dev1
->scsi3addr
)) != 0)
1091 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1092 sizeof(dev1
->device_id
)) != 0)
1094 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1096 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1098 if (dev1
->devtype
!= dev2
->devtype
)
1100 if (dev1
->bus
!= dev2
->bus
)
1105 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1106 struct hpsa_scsi_dev_t
*dev2
)
1108 /* Device attributes that can change, but don't mean
1109 * that the device is a different device, nor that the OS
1110 * needs to be told anything about the change.
1112 if (dev1
->raid_level
!= dev2
->raid_level
)
1114 if (dev1
->offload_config
!= dev2
->offload_config
)
1116 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1121 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1122 * and return needle location in *index. If scsi3addr matches, but not
1123 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124 * location in *index.
1125 * In the case of a minor device attribute change, such as RAID level, just
1126 * return DEVICE_UPDATED, along with the updated device's location in index.
1127 * If needle not found, return DEVICE_NOT_FOUND.
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1130 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 for (i
= 0; i
< haystack_size
; i
++) {
1139 if (haystack
[i
] == NULL
) /* previously removed. */
1141 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1143 if (device_is_the_same(needle
, haystack
[i
])) {
1144 if (device_updated(needle
, haystack
[i
]))
1145 return DEVICE_UPDATED
;
1148 /* Keep offline devices offline */
1149 if (needle
->volume_offline
)
1150 return DEVICE_NOT_FOUND
;
1151 return DEVICE_CHANGED
;
1156 return DEVICE_NOT_FOUND
;
1159 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1160 unsigned char scsi3addr
[])
1162 struct offline_device_entry
*device
;
1163 unsigned long flags
;
1165 /* Check to see if device is already on the list */
1166 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1167 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1168 if (memcmp(device
->scsi3addr
, scsi3addr
,
1169 sizeof(device
->scsi3addr
)) == 0) {
1170 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1174 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1176 /* Device is not on the list, add it. */
1177 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1179 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1182 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1183 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1184 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1185 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1190 struct hpsa_scsi_dev_t
*sd
)
1192 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1193 dev_info(&h
->pdev
->dev
,
1194 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 h
->scsi_host
->host_no
,
1196 sd
->bus
, sd
->target
, sd
->lun
);
1197 switch (sd
->volume_offline
) {
1200 case HPSA_LV_UNDERGOING_ERASE
:
1201 dev_info(&h
->pdev
->dev
,
1202 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 h
->scsi_host
->host_no
,
1204 sd
->bus
, sd
->target
, sd
->lun
);
1206 case HPSA_LV_UNDERGOING_RPI
:
1207 dev_info(&h
->pdev
->dev
,
1208 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 h
->scsi_host
->host_no
,
1210 sd
->bus
, sd
->target
, sd
->lun
);
1212 case HPSA_LV_PENDING_RPI
:
1213 dev_info(&h
->pdev
->dev
,
1214 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 h
->scsi_host
->host_no
,
1216 sd
->bus
, sd
->target
, sd
->lun
);
1218 case HPSA_LV_ENCRYPTED_NO_KEY
:
1219 dev_info(&h
->pdev
->dev
,
1220 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 h
->scsi_host
->host_no
,
1222 sd
->bus
, sd
->target
, sd
->lun
);
1224 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1225 dev_info(&h
->pdev
->dev
,
1226 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 h
->scsi_host
->host_no
,
1228 sd
->bus
, sd
->target
, sd
->lun
);
1230 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1231 dev_info(&h
->pdev
->dev
,
1232 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 h
->scsi_host
->host_no
,
1234 sd
->bus
, sd
->target
, sd
->lun
);
1236 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1237 dev_info(&h
->pdev
->dev
,
1238 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 h
->scsi_host
->host_no
,
1240 sd
->bus
, sd
->target
, sd
->lun
);
1242 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1243 dev_info(&h
->pdev
->dev
,
1244 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 h
->scsi_host
->host_no
,
1246 sd
->bus
, sd
->target
, sd
->lun
);
1248 case HPSA_LV_PENDING_ENCRYPTION
:
1249 dev_info(&h
->pdev
->dev
,
1250 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 h
->scsi_host
->host_no
,
1252 sd
->bus
, sd
->target
, sd
->lun
);
1254 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1255 dev_info(&h
->pdev
->dev
,
1256 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 h
->scsi_host
->host_no
,
1258 sd
->bus
, sd
->target
, sd
->lun
);
1263 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
1264 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1266 /* sd contains scsi3 addresses and devtypes, and inquiry
1267 * data. This function takes what's in sd to be the current
1268 * reality and updates h->dev[] to reflect that reality.
1270 int i
, entry
, device_change
, changes
= 0;
1271 struct hpsa_scsi_dev_t
*csd
;
1272 unsigned long flags
;
1273 struct hpsa_scsi_dev_t
**added
, **removed
;
1274 int nadded
, nremoved
;
1275 struct Scsi_Host
*sh
= NULL
;
1277 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1278 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1280 if (!added
|| !removed
) {
1281 dev_warn(&h
->pdev
->dev
, "out of memory in "
1282 "adjust_hpsa_scsi_table\n");
1286 spin_lock_irqsave(&h
->devlock
, flags
);
1288 /* find any devices in h->dev[] that are not in
1289 * sd[] and remove them from h->dev[], and for any
1290 * devices which have changed, remove the old device
1291 * info and add the new device info.
1292 * If minor device attributes change, just update
1293 * the existing device structure.
1298 while (i
< h
->ndevices
) {
1300 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1301 if (device_change
== DEVICE_NOT_FOUND
) {
1303 hpsa_scsi_remove_entry(h
, hostno
, i
,
1304 removed
, &nremoved
);
1305 continue; /* remove ^^^, hence i not incremented */
1306 } else if (device_change
== DEVICE_CHANGED
) {
1308 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
1309 added
, &nadded
, removed
, &nremoved
);
1310 /* Set it to NULL to prevent it from being freed
1311 * at the bottom of hpsa_update_scsi_devices()
1314 } else if (device_change
== DEVICE_UPDATED
) {
1315 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1320 /* Now, make sure every device listed in sd[] is also
1321 * listed in h->dev[], adding them if they aren't found
1324 for (i
= 0; i
< nsds
; i
++) {
1325 if (!sd
[i
]) /* if already added above. */
1328 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1329 * as the SCSI mid-layer does not handle such devices well.
1330 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1331 * at 160Hz, and prevents the system from coming up.
1333 if (sd
[i
]->volume_offline
) {
1334 hpsa_show_volume_status(h
, sd
[i
]);
1335 dev_info(&h
->pdev
->dev
, "c%db%dt%dl%d: temporarily offline\n",
1336 h
->scsi_host
->host_no
,
1337 sd
[i
]->bus
, sd
[i
]->target
, sd
[i
]->lun
);
1341 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1342 h
->ndevices
, &entry
);
1343 if (device_change
== DEVICE_NOT_FOUND
) {
1345 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1346 added
, &nadded
) != 0)
1348 sd
[i
] = NULL
; /* prevent from being freed later. */
1349 } else if (device_change
== DEVICE_CHANGED
) {
1350 /* should never happen... */
1352 dev_warn(&h
->pdev
->dev
,
1353 "device unexpectedly changed.\n");
1354 /* but if it does happen, we just ignore that device */
1357 spin_unlock_irqrestore(&h
->devlock
, flags
);
1359 /* Monitor devices which are in one of several NOT READY states to be
1360 * brought online later. This must be done without holding h->devlock,
1361 * so don't touch h->dev[]
1363 for (i
= 0; i
< nsds
; i
++) {
1364 if (!sd
[i
]) /* if already added above. */
1366 if (sd
[i
]->volume_offline
)
1367 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1370 /* Don't notify scsi mid layer of any changes the first time through
1371 * (or if there are no changes) scsi_scan_host will do it later the
1372 * first time through.
1374 if (hostno
== -1 || !changes
)
1378 /* Notify scsi mid layer of any removed devices */
1379 for (i
= 0; i
< nremoved
; i
++) {
1380 struct scsi_device
*sdev
=
1381 scsi_device_lookup(sh
, removed
[i
]->bus
,
1382 removed
[i
]->target
, removed
[i
]->lun
);
1384 scsi_remove_device(sdev
);
1385 scsi_device_put(sdev
);
1387 /* We don't expect to get here.
1388 * future cmds to this device will get selection
1389 * timeout as if the device was gone.
1391 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1392 " for removal.", hostno
, removed
[i
]->bus
,
1393 removed
[i
]->target
, removed
[i
]->lun
);
1399 /* Notify scsi mid layer of any added devices */
1400 for (i
= 0; i
< nadded
; i
++) {
1401 if (scsi_add_device(sh
, added
[i
]->bus
,
1402 added
[i
]->target
, added
[i
]->lun
) == 0)
1404 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1405 "device not added.\n", hostno
, added
[i
]->bus
,
1406 added
[i
]->target
, added
[i
]->lun
);
1407 /* now we have to remove it from h->dev,
1408 * since it didn't get added to scsi mid layer
1410 fixup_botched_add(h
, added
[i
]);
1419 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1420 * Assume's h->devlock is held.
1422 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1423 int bus
, int target
, int lun
)
1426 struct hpsa_scsi_dev_t
*sd
;
1428 for (i
= 0; i
< h
->ndevices
; i
++) {
1430 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1436 /* link sdev->hostdata to our per-device structure. */
1437 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1439 struct hpsa_scsi_dev_t
*sd
;
1440 unsigned long flags
;
1441 struct ctlr_info
*h
;
1443 h
= sdev_to_hba(sdev
);
1444 spin_lock_irqsave(&h
->devlock
, flags
);
1445 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1446 sdev_id(sdev
), sdev
->lun
);
1448 sdev
->hostdata
= sd
;
1449 spin_unlock_irqrestore(&h
->devlock
, flags
);
1453 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1455 /* nothing to do. */
1458 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1462 if (!h
->cmd_sg_list
)
1464 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1465 kfree(h
->cmd_sg_list
[i
]);
1466 h
->cmd_sg_list
[i
] = NULL
;
1468 kfree(h
->cmd_sg_list
);
1469 h
->cmd_sg_list
= NULL
;
1472 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1476 if (h
->chainsize
<= 0)
1479 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1481 if (!h
->cmd_sg_list
)
1483 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1484 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1485 h
->chainsize
, GFP_KERNEL
);
1486 if (!h
->cmd_sg_list
[i
])
1492 hpsa_free_sg_chain_blocks(h
);
1496 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1497 struct CommandList
*c
)
1499 struct SGDescriptor
*chain_sg
, *chain_block
;
1503 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1504 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1505 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
1506 chain_len
= sizeof(*chain_sg
) *
1507 (c
->Header
.SGTotal
- h
->max_cmd_sg_entries
);
1508 chain_sg
->Len
= cpu_to_le32(chain_len
);
1509 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
1511 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1512 /* prevent subsequent unmapping */
1513 chain_sg
->Addr
= cpu_to_le64(0);
1516 chain_sg
->Addr
= cpu_to_le64(temp64
);
1520 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1521 struct CommandList
*c
)
1523 struct SGDescriptor
*chain_sg
;
1525 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
1528 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1529 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
1530 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
1534 /* Decode the various types of errors on ioaccel2 path.
1535 * Return 1 for any error that should generate a RAID path retry.
1536 * Return 0 for errors that don't require a RAID path retry.
1538 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
1539 struct CommandList
*c
,
1540 struct scsi_cmnd
*cmd
,
1541 struct io_accel2_cmd
*c2
)
1546 switch (c2
->error_data
.serv_response
) {
1547 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
1548 switch (c2
->error_data
.status
) {
1549 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
1551 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
1552 dev_warn(&h
->pdev
->dev
,
1553 "%s: task complete with check condition.\n",
1554 "HP SSD Smart Path");
1555 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
1556 if (c2
->error_data
.data_present
!=
1557 IOACCEL2_SENSE_DATA_PRESENT
) {
1558 memset(cmd
->sense_buffer
, 0,
1559 SCSI_SENSE_BUFFERSIZE
);
1562 /* copy the sense data */
1563 data_len
= c2
->error_data
.sense_data_len
;
1564 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
1565 data_len
= SCSI_SENSE_BUFFERSIZE
;
1566 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
1568 sizeof(c2
->error_data
.sense_data_buff
);
1569 memcpy(cmd
->sense_buffer
,
1570 c2
->error_data
.sense_data_buff
, data_len
);
1573 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
1574 dev_warn(&h
->pdev
->dev
,
1575 "%s: task complete with BUSY status.\n",
1576 "HP SSD Smart Path");
1579 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
1580 dev_warn(&h
->pdev
->dev
,
1581 "%s: task complete with reservation conflict.\n",
1582 "HP SSD Smart Path");
1585 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
1586 /* Make scsi midlayer do unlimited retries */
1587 cmd
->result
= DID_IMM_RETRY
<< 16;
1589 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
1590 dev_warn(&h
->pdev
->dev
,
1591 "%s: task complete with aborted status.\n",
1592 "HP SSD Smart Path");
1596 dev_warn(&h
->pdev
->dev
,
1597 "%s: task complete with unrecognized status: 0x%02x\n",
1598 "HP SSD Smart Path", c2
->error_data
.status
);
1603 case IOACCEL2_SERV_RESPONSE_FAILURE
:
1604 /* don't expect to get here. */
1605 dev_warn(&h
->pdev
->dev
,
1606 "unexpected delivery or target failure, status = 0x%02x\n",
1607 c2
->error_data
.status
);
1610 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
1612 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
1614 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
1615 dev_warn(&h
->pdev
->dev
, "task management function rejected.\n");
1618 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
1619 dev_warn(&h
->pdev
->dev
, "task management function invalid LUN\n");
1622 dev_warn(&h
->pdev
->dev
,
1623 "%s: Unrecognized server response: 0x%02x\n",
1624 "HP SSD Smart Path",
1625 c2
->error_data
.serv_response
);
1630 return retry
; /* retry on raid path? */
1633 static void process_ioaccel2_completion(struct ctlr_info
*h
,
1634 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
1635 struct hpsa_scsi_dev_t
*dev
)
1637 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1640 /* check for good status */
1641 if (likely(c2
->error_data
.serv_response
== 0 &&
1642 c2
->error_data
.status
== 0)) {
1644 cmd
->scsi_done(cmd
);
1648 /* Any RAID offload error results in retry which will use
1649 * the normal I/O path so the controller can handle whatever's
1652 if (is_logical_dev_addr_mode(dev
->scsi3addr
) &&
1653 c2
->error_data
.serv_response
==
1654 IOACCEL2_SERV_RESPONSE_FAILURE
) {
1655 dev
->offload_enabled
= 0;
1656 h
->drv_req_rescan
= 1; /* schedule controller for a rescan */
1657 cmd
->result
= DID_SOFT_ERROR
<< 16;
1659 cmd
->scsi_done(cmd
);
1662 raid_retry
= handle_ioaccel_mode2_error(h
, c
, cmd
, c2
);
1663 /* If error found, disable Smart Path, schedule a rescan,
1664 * and force a retry on the standard path.
1667 dev_warn(&h
->pdev
->dev
, "%s: Retrying on standard path.\n",
1668 "HP SSD Smart Path");
1669 dev
->offload_enabled
= 0; /* Disable Smart Path */
1670 h
->drv_req_rescan
= 1; /* schedule controller rescan */
1671 cmd
->result
= DID_SOFT_ERROR
<< 16;
1674 cmd
->scsi_done(cmd
);
1677 static void complete_scsi_command(struct CommandList
*cp
)
1679 struct scsi_cmnd
*cmd
;
1680 struct ctlr_info
*h
;
1681 struct ErrorInfo
*ei
;
1682 struct hpsa_scsi_dev_t
*dev
;
1684 unsigned char sense_key
;
1685 unsigned char asc
; /* additional sense code */
1686 unsigned char ascq
; /* additional sense code qualifier */
1687 unsigned long sense_data_size
;
1690 cmd
= (struct scsi_cmnd
*) cp
->scsi_cmd
;
1692 dev
= cmd
->device
->hostdata
;
1694 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1695 if ((cp
->cmd_type
== CMD_SCSI
) &&
1696 (cp
->Header
.SGTotal
> h
->max_cmd_sg_entries
))
1697 hpsa_unmap_sg_chain_block(h
, cp
);
1699 cmd
->result
= (DID_OK
<< 16); /* host byte */
1700 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1702 if (cp
->cmd_type
== CMD_IOACCEL2
)
1703 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
1705 cmd
->result
|= ei
->ScsiStatus
;
1707 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1708 if (ei
->CommandStatus
== 0) {
1710 cmd
->scsi_done(cmd
);
1714 /* copy the sense data */
1715 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1716 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1718 sense_data_size
= sizeof(ei
->SenseInfo
);
1719 if (ei
->SenseLen
< sense_data_size
)
1720 sense_data_size
= ei
->SenseLen
;
1722 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1724 /* For I/O accelerator commands, copy over some fields to the normal
1725 * CISS header used below for error handling.
1727 if (cp
->cmd_type
== CMD_IOACCEL1
) {
1728 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
1729 cp
->Header
.SGList
= cp
->Header
.SGTotal
= scsi_sg_count(cmd
);
1730 cp
->Request
.CDBLen
= c
->io_flags
& IOACCEL1_IOFLAGS_CDBLEN_MASK
;
1731 cp
->Header
.tag
= c
->tag
;
1732 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
1733 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
1735 /* Any RAID offload error results in retry which will use
1736 * the normal I/O path so the controller can handle whatever's
1739 if (is_logical_dev_addr_mode(dev
->scsi3addr
)) {
1740 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
1741 dev
->offload_enabled
= 0;
1742 cmd
->result
= DID_SOFT_ERROR
<< 16;
1744 cmd
->scsi_done(cmd
);
1749 /* an error has occurred */
1750 switch (ei
->CommandStatus
) {
1752 case CMD_TARGET_STATUS
:
1753 if (ei
->ScsiStatus
) {
1755 sense_key
= 0xf & ei
->SenseInfo
[2];
1756 /* Get additional sense code */
1757 asc
= ei
->SenseInfo
[12];
1758 /* Get addition sense code qualifier */
1759 ascq
= ei
->SenseInfo
[13];
1761 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1762 if (sense_key
== ABORTED_COMMAND
) {
1763 cmd
->result
|= DID_SOFT_ERROR
<< 16;
1768 /* Problem was not a check condition
1769 * Pass it up to the upper layers...
1771 if (ei
->ScsiStatus
) {
1772 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1773 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1774 "Returning result: 0x%x\n",
1776 sense_key
, asc
, ascq
,
1778 } else { /* scsi status is zero??? How??? */
1779 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1780 "Returning no connection.\n", cp
),
1782 /* Ordinarily, this case should never happen,
1783 * but there is a bug in some released firmware
1784 * revisions that allows it to happen if, for
1785 * example, a 4100 backplane loses power and
1786 * the tape drive is in it. We assume that
1787 * it's a fatal error of some kind because we
1788 * can't show that it wasn't. We will make it
1789 * look like selection timeout since that is
1790 * the most common reason for this to occur,
1791 * and it's severe enough.
1794 cmd
->result
= DID_NO_CONNECT
<< 16;
1798 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1800 case CMD_DATA_OVERRUN
:
1801 dev_warn(&h
->pdev
->dev
, "cp %p has"
1802 " completed with data overrun "
1806 /* print_bytes(cp, sizeof(*cp), 1, 0);
1808 /* We get CMD_INVALID if you address a non-existent device
1809 * instead of a selection timeout (no response). You will
1810 * see this if you yank out a drive, then try to access it.
1811 * This is kind of a shame because it means that any other
1812 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1813 * missing target. */
1814 cmd
->result
= DID_NO_CONNECT
<< 16;
1817 case CMD_PROTOCOL_ERR
:
1818 cmd
->result
= DID_ERROR
<< 16;
1819 dev_warn(&h
->pdev
->dev
, "cp %p has "
1820 "protocol error\n", cp
);
1822 case CMD_HARDWARE_ERR
:
1823 cmd
->result
= DID_ERROR
<< 16;
1824 dev_warn(&h
->pdev
->dev
, "cp %p had hardware error\n", cp
);
1826 case CMD_CONNECTION_LOST
:
1827 cmd
->result
= DID_ERROR
<< 16;
1828 dev_warn(&h
->pdev
->dev
, "cp %p had connection lost\n", cp
);
1831 cmd
->result
= DID_ABORT
<< 16;
1832 dev_warn(&h
->pdev
->dev
, "cp %p was aborted with status 0x%x\n",
1833 cp
, ei
->ScsiStatus
);
1835 case CMD_ABORT_FAILED
:
1836 cmd
->result
= DID_ERROR
<< 16;
1837 dev_warn(&h
->pdev
->dev
, "cp %p reports abort failed\n", cp
);
1839 case CMD_UNSOLICITED_ABORT
:
1840 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1841 dev_warn(&h
->pdev
->dev
, "cp %p aborted due to an unsolicited "
1845 cmd
->result
= DID_TIME_OUT
<< 16;
1846 dev_warn(&h
->pdev
->dev
, "cp %p timedout\n", cp
);
1848 case CMD_UNABORTABLE
:
1849 cmd
->result
= DID_ERROR
<< 16;
1850 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1852 case CMD_IOACCEL_DISABLED
:
1853 /* This only handles the direct pass-through case since RAID
1854 * offload is handled above. Just attempt a retry.
1856 cmd
->result
= DID_SOFT_ERROR
<< 16;
1857 dev_warn(&h
->pdev
->dev
,
1858 "cp %p had HP SSD Smart Path error\n", cp
);
1861 cmd
->result
= DID_ERROR
<< 16;
1862 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1863 cp
, ei
->CommandStatus
);
1866 cmd
->scsi_done(cmd
);
1869 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1870 struct CommandList
*c
, int sg_used
, int data_direction
)
1874 for (i
= 0; i
< sg_used
; i
++)
1875 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
1876 le32_to_cpu(c
->SG
[i
].Len
),
1880 static int hpsa_map_one(struct pci_dev
*pdev
,
1881 struct CommandList
*cp
,
1888 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1889 cp
->Header
.SGList
= 0;
1890 cp
->Header
.SGTotal
= cpu_to_le16(0);
1894 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
1895 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
1896 /* Prevent subsequent unmap of something never mapped */
1897 cp
->Header
.SGList
= 0;
1898 cp
->Header
.SGTotal
= cpu_to_le16(0);
1901 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
1902 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
1903 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
1904 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
1905 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
1909 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
1910 struct CommandList
*c
)
1912 DECLARE_COMPLETION_ONSTACK(wait
);
1915 enqueue_cmd_and_start_io(h
, c
);
1916 wait_for_completion(&wait
);
1919 static u32
lockup_detected(struct ctlr_info
*h
)
1922 u32 rc
, *lockup_detected
;
1925 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
1926 rc
= *lockup_detected
;
1931 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
1932 struct CommandList
*c
)
1934 /* If controller lockup detected, fake a hardware error. */
1935 if (unlikely(lockup_detected(h
)))
1936 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
1938 hpsa_scsi_do_simple_cmd_core(h
, c
);
1941 #define MAX_DRIVER_CMD_RETRIES 25
1942 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
1943 struct CommandList
*c
, int data_direction
)
1945 int backoff_time
= 10, retry_count
= 0;
1948 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
1949 hpsa_scsi_do_simple_cmd_core(h
, c
);
1951 if (retry_count
> 3) {
1952 msleep(backoff_time
);
1953 if (backoff_time
< 1000)
1956 } while ((check_for_unit_attention(h
, c
) ||
1957 check_for_busy(h
, c
)) &&
1958 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
1959 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
1962 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
1963 struct CommandList
*c
)
1965 const u8
*cdb
= c
->Request
.CDB
;
1966 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
1968 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1969 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1970 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
1971 lun
[4], lun
[5], lun
[6], lun
[7],
1972 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
1973 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
1974 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
1975 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
1978 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
1979 struct CommandList
*cp
)
1981 const struct ErrorInfo
*ei
= cp
->err_info
;
1982 struct device
*d
= &cp
->h
->pdev
->dev
;
1983 const u8
*sd
= ei
->SenseInfo
;
1985 switch (ei
->CommandStatus
) {
1986 case CMD_TARGET_STATUS
:
1987 hpsa_print_cmd(h
, "SCSI status", cp
);
1988 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
1989 dev_warn(d
, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1990 sd
[2] & 0x0f, sd
[12], sd
[13]);
1992 dev_warn(d
, "SCSI Status = %02x\n", ei
->ScsiStatus
);
1993 if (ei
->ScsiStatus
== 0)
1994 dev_warn(d
, "SCSI status is abnormally zero. "
1995 "(probably indicates selection timeout "
1996 "reported incorrectly due to a known "
1997 "firmware bug, circa July, 2001.)\n");
1999 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2001 case CMD_DATA_OVERRUN
:
2002 hpsa_print_cmd(h
, "overrun condition", cp
);
2005 /* controller unfortunately reports SCSI passthru's
2006 * to non-existent targets as invalid commands.
2008 hpsa_print_cmd(h
, "invalid command", cp
);
2009 dev_warn(d
, "probably means device no longer present\n");
2012 case CMD_PROTOCOL_ERR
:
2013 hpsa_print_cmd(h
, "protocol error", cp
);
2015 case CMD_HARDWARE_ERR
:
2016 hpsa_print_cmd(h
, "hardware error", cp
);
2018 case CMD_CONNECTION_LOST
:
2019 hpsa_print_cmd(h
, "connection lost", cp
);
2022 hpsa_print_cmd(h
, "aborted", cp
);
2024 case CMD_ABORT_FAILED
:
2025 hpsa_print_cmd(h
, "abort failed", cp
);
2027 case CMD_UNSOLICITED_ABORT
:
2028 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2031 hpsa_print_cmd(h
, "timed out", cp
);
2033 case CMD_UNABORTABLE
:
2034 hpsa_print_cmd(h
, "unabortable", cp
);
2037 hpsa_print_cmd(h
, "unknown status", cp
);
2038 dev_warn(d
, "Unknown command status %x\n",
2043 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2044 u16 page
, unsigned char *buf
,
2045 unsigned char bufsize
)
2048 struct CommandList
*c
;
2049 struct ErrorInfo
*ei
;
2051 c
= cmd_special_alloc(h
);
2053 if (c
== NULL
) { /* trouble... */
2054 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2058 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2059 page
, scsi3addr
, TYPE_CMD
)) {
2063 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2065 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2066 hpsa_scsi_interpret_error(h
, c
);
2070 cmd_special_free(h
, c
);
2074 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info
*h
,
2075 unsigned char *scsi3addr
, unsigned char page
,
2076 struct bmic_controller_parameters
*buf
, size_t bufsize
)
2079 struct CommandList
*c
;
2080 struct ErrorInfo
*ei
;
2082 c
= cmd_special_alloc(h
);
2084 if (c
== NULL
) { /* trouble... */
2085 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2089 if (fill_cmd(c
, BMIC_SENSE_CONTROLLER_PARAMETERS
, h
, buf
, bufsize
,
2090 page
, scsi3addr
, TYPE_CMD
)) {
2094 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2096 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2097 hpsa_scsi_interpret_error(h
, c
);
2101 cmd_special_free(h
, c
);
2105 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2109 struct CommandList
*c
;
2110 struct ErrorInfo
*ei
;
2112 c
= cmd_special_alloc(h
);
2114 if (c
== NULL
) { /* trouble... */
2115 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2119 /* fill_cmd can't fail here, no data buffer to map. */
2120 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
2121 scsi3addr
, TYPE_MSG
);
2122 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to LUN reset */
2123 hpsa_scsi_do_simple_cmd_core(h
, c
);
2124 /* no unmap needed here because no data xfer. */
2127 if (ei
->CommandStatus
!= 0) {
2128 hpsa_scsi_interpret_error(h
, c
);
2131 cmd_special_free(h
, c
);
2135 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2136 unsigned char *scsi3addr
, unsigned char *raid_level
)
2141 *raid_level
= RAID_UNKNOWN
;
2142 buf
= kzalloc(64, GFP_KERNEL
);
2145 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2147 *raid_level
= buf
[8];
2148 if (*raid_level
> RAID_UNKNOWN
)
2149 *raid_level
= RAID_UNKNOWN
;
2154 #define HPSA_MAP_DEBUG
2155 #ifdef HPSA_MAP_DEBUG
2156 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2157 struct raid_map_data
*map_buff
)
2159 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2161 u16 map_cnt
, row_cnt
, disks_per_row
;
2166 /* Show details only if debugging has been activated. */
2167 if (h
->raid_offload_debug
< 2)
2170 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
2171 le32_to_cpu(map_buff
->structure_size
));
2172 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
2173 le32_to_cpu(map_buff
->volume_blk_size
));
2174 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
2175 le64_to_cpu(map_buff
->volume_blk_cnt
));
2176 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
2177 map_buff
->phys_blk_shift
);
2178 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
2179 map_buff
->parity_rotation_shift
);
2180 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
2181 le16_to_cpu(map_buff
->strip_size
));
2182 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
2183 le64_to_cpu(map_buff
->disk_starting_blk
));
2184 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
2185 le64_to_cpu(map_buff
->disk_blk_cnt
));
2186 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
2187 le16_to_cpu(map_buff
->data_disks_per_row
));
2188 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
2189 le16_to_cpu(map_buff
->metadata_disks_per_row
));
2190 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
2191 le16_to_cpu(map_buff
->row_cnt
));
2192 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
2193 le16_to_cpu(map_buff
->layout_map_count
));
2194 dev_info(&h
->pdev
->dev
, "flags = %u\n",
2195 le16_to_cpu(map_buff
->flags
));
2196 if (map_buff
->flags
& RAID_MAP_FLAG_ENCRYPT_ON
)
2197 dev_info(&h
->pdev
->dev
, "encrypytion = ON\n");
2199 dev_info(&h
->pdev
->dev
, "encrypytion = OFF\n");
2200 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
2201 le16_to_cpu(map_buff
->dekindex
));
2203 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
2204 for (map
= 0; map
< map_cnt
; map
++) {
2205 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
2206 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
2207 for (row
= 0; row
< row_cnt
; row
++) {
2208 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
2210 le16_to_cpu(map_buff
->data_disks_per_row
);
2211 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2212 dev_info(&h
->pdev
->dev
,
2213 " D%02u: h=0x%04x xor=%u,%u\n",
2214 col
, dd
->ioaccel_handle
,
2215 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2217 le16_to_cpu(map_buff
->metadata_disks_per_row
);
2218 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2219 dev_info(&h
->pdev
->dev
,
2220 " M%02u: h=0x%04x xor=%u,%u\n",
2221 col
, dd
->ioaccel_handle
,
2222 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2227 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
2228 __attribute__((unused
)) int rc
,
2229 __attribute__((unused
)) struct raid_map_data
*map_buff
)
2234 static int hpsa_get_raid_map(struct ctlr_info
*h
,
2235 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2238 struct CommandList
*c
;
2239 struct ErrorInfo
*ei
;
2241 c
= cmd_special_alloc(h
);
2243 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2246 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
2247 sizeof(this_device
->raid_map
), 0,
2248 scsi3addr
, TYPE_CMD
)) {
2249 dev_warn(&h
->pdev
->dev
, "Out of memory in hpsa_get_raid_map()\n");
2250 cmd_special_free(h
, c
);
2253 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2255 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2256 hpsa_scsi_interpret_error(h
, c
);
2257 cmd_special_free(h
, c
);
2260 cmd_special_free(h
, c
);
2262 /* @todo in the future, dynamically allocate RAID map memory */
2263 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
2264 sizeof(this_device
->raid_map
)) {
2265 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
2268 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
2272 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
2273 unsigned char scsi3addr
[], u8 page
)
2278 unsigned char *buf
, bufsize
;
2280 buf
= kzalloc(256, GFP_KERNEL
);
2284 /* Get the size of the page list first */
2285 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2286 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2287 buf
, HPSA_VPD_HEADER_SZ
);
2289 goto exit_unsupported
;
2291 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
2292 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
2296 /* Get the whole VPD page list */
2297 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2298 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2301 goto exit_unsupported
;
2304 for (i
= 1; i
<= pages
; i
++)
2305 if (buf
[3 + i
] == page
)
2306 goto exit_supported
;
2315 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
2316 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2322 this_device
->offload_config
= 0;
2323 this_device
->offload_enabled
= 0;
2325 buf
= kzalloc(64, GFP_KERNEL
);
2328 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
2330 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2331 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
2335 #define IOACCEL_STATUS_BYTE 4
2336 #define OFFLOAD_CONFIGURED_BIT 0x01
2337 #define OFFLOAD_ENABLED_BIT 0x02
2338 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
2339 this_device
->offload_config
=
2340 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
2341 if (this_device
->offload_config
) {
2342 this_device
->offload_enabled
=
2343 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
2344 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
2345 this_device
->offload_enabled
= 0;
2352 /* Get the device id from inquiry page 0x83 */
2353 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2354 unsigned char *device_id
, int buflen
)
2361 buf
= kzalloc(64, GFP_KERNEL
);
2364 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
2366 memcpy(device_id
, &buf
[8], buflen
);
2371 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
2372 struct ReportLUNdata
*buf
, int bufsize
,
2373 int extended_response
)
2376 struct CommandList
*c
;
2377 unsigned char scsi3addr
[8];
2378 struct ErrorInfo
*ei
;
2380 c
= cmd_special_alloc(h
);
2381 if (c
== NULL
) { /* trouble... */
2382 dev_err(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2385 /* address the controller */
2386 memset(scsi3addr
, 0, sizeof(scsi3addr
));
2387 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
2388 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
2392 if (extended_response
)
2393 c
->Request
.CDB
[1] = extended_response
;
2394 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2396 if (ei
->CommandStatus
!= 0 &&
2397 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2398 hpsa_scsi_interpret_error(h
, c
);
2401 if (buf
->extended_response_flag
!= extended_response
) {
2402 dev_err(&h
->pdev
->dev
,
2403 "report luns requested format %u, got %u\n",
2405 buf
->extended_response_flag
);
2410 cmd_special_free(h
, c
);
2414 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
2415 struct ReportLUNdata
*buf
,
2416 int bufsize
, int extended_response
)
2418 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
, extended_response
);
2421 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
2422 struct ReportLUNdata
*buf
, int bufsize
)
2424 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
2427 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
2428 int bus
, int target
, int lun
)
2431 device
->target
= target
;
2435 /* Use VPD inquiry to get details of volume status */
2436 static int hpsa_get_volume_status(struct ctlr_info
*h
,
2437 unsigned char scsi3addr
[])
2444 buf
= kzalloc(64, GFP_KERNEL
);
2446 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2448 /* Does controller have VPD for logical volume status? */
2449 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
2452 /* Get the size of the VPD return buffer */
2453 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
2454 buf
, HPSA_VPD_HEADER_SZ
);
2459 /* Now get the whole VPD buffer */
2460 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
2461 buf
, size
+ HPSA_VPD_HEADER_SZ
);
2464 status
= buf
[4]; /* status byte */
2470 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2473 /* Determine offline status of a volume.
2476 * 0xff (offline for unknown reasons)
2477 * # (integer code indicating one of several NOT READY states
2478 * describing why a volume is to be kept offline)
2480 static int hpsa_volume_offline(struct ctlr_info
*h
,
2481 unsigned char scsi3addr
[])
2483 struct CommandList
*c
;
2484 unsigned char *sense
, sense_key
, asc
, ascq
;
2488 #define ASC_LUN_NOT_READY 0x04
2489 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2490 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2495 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
2496 hpsa_scsi_do_simple_cmd_core(h
, c
);
2497 sense
= c
->err_info
->SenseInfo
;
2498 sense_key
= sense
[2];
2501 cmd_status
= c
->err_info
->CommandStatus
;
2502 scsi_status
= c
->err_info
->ScsiStatus
;
2504 /* Is the volume 'not ready'? */
2505 if (cmd_status
!= CMD_TARGET_STATUS
||
2506 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
2507 sense_key
!= NOT_READY
||
2508 asc
!= ASC_LUN_NOT_READY
) {
2512 /* Determine the reason for not ready state */
2513 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
2515 /* Keep volume offline in certain cases: */
2517 case HPSA_LV_UNDERGOING_ERASE
:
2518 case HPSA_LV_UNDERGOING_RPI
:
2519 case HPSA_LV_PENDING_RPI
:
2520 case HPSA_LV_ENCRYPTED_NO_KEY
:
2521 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
2522 case HPSA_LV_UNDERGOING_ENCRYPTION
:
2523 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
2524 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
2526 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
2527 /* If VPD status page isn't available,
2528 * use ASC/ASCQ to determine state
2530 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
2531 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
2540 static int hpsa_update_device_info(struct ctlr_info
*h
,
2541 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
2542 unsigned char *is_OBDR_device
)
2545 #define OBDR_SIG_OFFSET 43
2546 #define OBDR_TAPE_SIG "$DR-10"
2547 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2548 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2550 unsigned char *inq_buff
;
2551 unsigned char *obdr_sig
;
2553 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
2557 /* Do an inquiry to the device to see what it is. */
2558 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
2559 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
2560 /* Inquiry failed (msg printed already) */
2561 dev_err(&h
->pdev
->dev
,
2562 "hpsa_update_device_info: inquiry failed\n");
2566 this_device
->devtype
= (inq_buff
[0] & 0x1f);
2567 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
2568 memcpy(this_device
->vendor
, &inq_buff
[8],
2569 sizeof(this_device
->vendor
));
2570 memcpy(this_device
->model
, &inq_buff
[16],
2571 sizeof(this_device
->model
));
2572 memset(this_device
->device_id
, 0,
2573 sizeof(this_device
->device_id
));
2574 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
2575 sizeof(this_device
->device_id
));
2577 if (this_device
->devtype
== TYPE_DISK
&&
2578 is_logical_dev_addr_mode(scsi3addr
)) {
2581 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
2582 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
2583 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
2584 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
2585 if (volume_offline
< 0 || volume_offline
> 0xff)
2586 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2587 this_device
->volume_offline
= volume_offline
& 0xff;
2589 this_device
->raid_level
= RAID_UNKNOWN
;
2590 this_device
->offload_config
= 0;
2591 this_device
->offload_enabled
= 0;
2592 this_device
->volume_offline
= 0;
2595 if (is_OBDR_device
) {
2596 /* See if this is a One-Button-Disaster-Recovery device
2597 * by looking for "$DR-10" at offset 43 in inquiry data.
2599 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
2600 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
2601 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
2602 OBDR_SIG_LEN
) == 0);
2613 static unsigned char *ext_target_model
[] = {
2623 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
2627 for (i
= 0; ext_target_model
[i
]; i
++)
2628 if (strncmp(device
->model
, ext_target_model
[i
],
2629 strlen(ext_target_model
[i
])) == 0)
2634 /* Helper function to assign bus, target, lun mapping of devices.
2635 * Puts non-external target logical volumes on bus 0, external target logical
2636 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2637 * Logical drive target and lun are assigned at this time, but
2638 * physical device lun and target assignment are deferred (assigned
2639 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2641 static void figure_bus_target_lun(struct ctlr_info
*h
,
2642 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
2644 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
2646 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
2647 /* physical device, target and lun filled in later */
2648 if (is_hba_lunid(lunaddrbytes
))
2649 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
2651 /* defer target, lun assignment for physical devices */
2652 hpsa_set_bus_target_lun(device
, 2, -1, -1);
2655 /* It's a logical device */
2656 if (is_ext_target(h
, device
)) {
2657 /* external target way, put logicals on bus 1
2658 * and match target/lun numbers box
2659 * reports, other smart array, bus 0, target 0, match lunid
2661 hpsa_set_bus_target_lun(device
,
2662 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
2665 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
2669 * If there is no lun 0 on a target, linux won't find any devices.
2670 * For the external targets (arrays), we have to manually detect the enclosure
2671 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2672 * it for some reason. *tmpdevice is the target we're adding,
2673 * this_device is a pointer into the current element of currentsd[]
2674 * that we're building up in update_scsi_devices(), below.
2675 * lunzerobits is a bitmap that tracks which targets already have a
2677 * Returns 1 if an enclosure was added, 0 if not.
2679 static int add_ext_target_dev(struct ctlr_info
*h
,
2680 struct hpsa_scsi_dev_t
*tmpdevice
,
2681 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
2682 unsigned long lunzerobits
[], int *n_ext_target_devs
)
2684 unsigned char scsi3addr
[8];
2686 if (test_bit(tmpdevice
->target
, lunzerobits
))
2687 return 0; /* There is already a lun 0 on this target. */
2689 if (!is_logical_dev_addr_mode(lunaddrbytes
))
2690 return 0; /* It's the logical targets that may lack lun 0. */
2692 if (!is_ext_target(h
, tmpdevice
))
2693 return 0; /* Only external target devices have this problem. */
2695 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
2698 memset(scsi3addr
, 0, 8);
2699 scsi3addr
[3] = tmpdevice
->target
;
2700 if (is_hba_lunid(scsi3addr
))
2701 return 0; /* Don't add the RAID controller here. */
2703 if (is_scsi_rev_5(h
))
2704 return 0; /* p1210m doesn't need to do this. */
2706 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
2707 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
2708 "target devices exceeded. Check your hardware "
2713 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
2715 (*n_ext_target_devs
)++;
2716 hpsa_set_bus_target_lun(this_device
,
2717 tmpdevice
->bus
, tmpdevice
->target
, 0);
2718 set_bit(tmpdevice
->target
, lunzerobits
);
2723 * Get address of physical disk used for an ioaccel2 mode command:
2724 * 1. Extract ioaccel2 handle from the command.
2725 * 2. Find a matching ioaccel2 handle from list of physical disks.
2727 * 1 and set scsi3addr to address of matching physical
2728 * 0 if no matching physical disk was found.
2730 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
2731 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
2733 struct ReportExtendedLUNdata
*physicals
= NULL
;
2734 int responsesize
= 24; /* size of physical extended response */
2735 int extended
= 2; /* flag forces reporting 'other dev info'. */
2736 int reportsize
= sizeof(*physicals
) + HPSA_MAX_PHYS_LUN
* responsesize
;
2737 u32 nphysicals
= 0; /* number of reported physical devs */
2738 int found
= 0; /* found match (1) or not (0) */
2739 u32 find
; /* handle we need to match */
2741 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
2742 struct hpsa_scsi_dev_t
*d
; /* device of request being aborted */
2743 struct io_accel2_cmd
*c2a
; /* ioaccel2 command to abort */
2744 u32 it_nexus
; /* 4 byte device handle for the ioaccel2 cmd */
2745 u32 scsi_nexus
; /* 4 byte device handle for the ioaccel2 cmd */
2747 if (ioaccel2_cmd_to_abort
->cmd_type
!= CMD_IOACCEL2
)
2748 return 0; /* no match */
2750 /* point to the ioaccel2 device handle */
2751 c2a
= &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
2753 return 0; /* no match */
2755 scmd
= (struct scsi_cmnd
*) ioaccel2_cmd_to_abort
->scsi_cmd
;
2757 return 0; /* no match */
2759 d
= scmd
->device
->hostdata
;
2761 return 0; /* no match */
2763 it_nexus
= cpu_to_le32(d
->ioaccel_handle
);
2764 scsi_nexus
= cpu_to_le32(c2a
->scsi_nexus
);
2765 find
= c2a
->scsi_nexus
;
2767 if (h
->raid_offload_debug
> 0)
2768 dev_info(&h
->pdev
->dev
,
2769 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2770 __func__
, scsi_nexus
,
2771 d
->device_id
[0], d
->device_id
[1], d
->device_id
[2],
2772 d
->device_id
[3], d
->device_id
[4], d
->device_id
[5],
2773 d
->device_id
[6], d
->device_id
[7], d
->device_id
[8],
2774 d
->device_id
[9], d
->device_id
[10], d
->device_id
[11],
2775 d
->device_id
[12], d
->device_id
[13], d
->device_id
[14],
2778 /* Get the list of physical devices */
2779 physicals
= kzalloc(reportsize
, GFP_KERNEL
);
2780 if (physicals
== NULL
)
2782 if (hpsa_scsi_do_report_phys_luns(h
, (struct ReportLUNdata
*) physicals
,
2783 reportsize
, extended
)) {
2784 dev_err(&h
->pdev
->dev
,
2785 "Can't lookup %s device handle: report physical LUNs failed.\n",
2786 "HP SSD Smart Path");
2790 nphysicals
= be32_to_cpu(*((__be32
*)physicals
->LUNListLength
)) /
2793 /* find ioaccel2 handle in list of physicals: */
2794 for (i
= 0; i
< nphysicals
; i
++) {
2795 struct ext_report_lun_entry
*entry
= &physicals
->LUN
[i
];
2797 /* handle is in bytes 28-31 of each lun */
2798 if (entry
->ioaccel_handle
!= find
)
2799 continue; /* didn't match */
2801 memcpy(scsi3addr
, entry
->lunid
, 8);
2802 if (h
->raid_offload_debug
> 0)
2803 dev_info(&h
->pdev
->dev
,
2804 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2806 entry
->ioaccel_handle
, scsi3addr
);
2807 break; /* found it */
2818 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2819 * logdev. The number of luns in physdev and logdev are returned in
2820 * *nphysicals and *nlogicals, respectively.
2821 * Returns 0 on success, -1 otherwise.
2823 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
2824 int reportphyslunsize
, int reportloglunsize
,
2825 struct ReportLUNdata
*physdev
, u32
*nphysicals
, int *physical_mode
,
2826 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
2828 int physical_entry_size
= 8;
2832 /* For I/O accelerator mode we need to read physical device handles */
2833 if (h
->transMethod
& CFGTBL_Trans_io_accel1
||
2834 h
->transMethod
& CFGTBL_Trans_io_accel2
) {
2835 *physical_mode
= HPSA_REPORT_PHYS_EXTENDED
;
2836 physical_entry_size
= 24;
2838 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, reportphyslunsize
,
2840 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
2843 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) /
2844 physical_entry_size
;
2845 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
2846 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded."
2847 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
2848 *nphysicals
- HPSA_MAX_PHYS_LUN
);
2849 *nphysicals
= HPSA_MAX_PHYS_LUN
;
2851 if (hpsa_scsi_do_report_log_luns(h
, logdev
, reportloglunsize
)) {
2852 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
2855 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
2856 /* Reject Logicals in excess of our max capability. */
2857 if (*nlogicals
> HPSA_MAX_LUN
) {
2858 dev_warn(&h
->pdev
->dev
,
2859 "maximum logical LUNs (%d) exceeded. "
2860 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
2861 *nlogicals
- HPSA_MAX_LUN
);
2862 *nlogicals
= HPSA_MAX_LUN
;
2864 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
2865 dev_warn(&h
->pdev
->dev
,
2866 "maximum logical + physical LUNs (%d) exceeded. "
2867 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
2868 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
2869 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
2874 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
2875 int i
, int nphysicals
, int nlogicals
,
2876 struct ReportExtendedLUNdata
*physdev_list
,
2877 struct ReportLUNdata
*logdev_list
)
2879 /* Helper function, figure out where the LUN ID info is coming from
2880 * given index i, lists of physical and logical devices, where in
2881 * the list the raid controller is supposed to appear (first or last)
2884 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
2885 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
2887 if (i
== raid_ctlr_position
)
2888 return RAID_CTLR_LUNID
;
2890 if (i
< logicals_start
)
2891 return &physdev_list
->LUN
[i
-
2892 (raid_ctlr_position
== 0)].lunid
[0];
2894 if (i
< last_device
)
2895 return &logdev_list
->LUN
[i
- nphysicals
-
2896 (raid_ctlr_position
== 0)][0];
2901 static int hpsa_hba_mode_enabled(struct ctlr_info
*h
)
2904 int hba_mode_enabled
;
2905 struct bmic_controller_parameters
*ctlr_params
;
2906 ctlr_params
= kzalloc(sizeof(struct bmic_controller_parameters
),
2911 rc
= hpsa_bmic_ctrl_mode_sense(h
, RAID_CTLR_LUNID
, 0, ctlr_params
,
2912 sizeof(struct bmic_controller_parameters
));
2919 ((ctlr_params
->nvram_flags
& HBA_MODE_ENABLED_FLAG
) != 0);
2921 return hba_mode_enabled
;
2924 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
2926 /* the idea here is we could get notified
2927 * that some devices have changed, so we do a report
2928 * physical luns and report logical luns cmd, and adjust
2929 * our list of devices accordingly.
2931 * The scsi3addr's of devices won't change so long as the
2932 * adapter is not reset. That means we can rescan and
2933 * tell which devices we already know about, vs. new
2934 * devices, vs. disappearing devices.
2936 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
2937 struct ReportLUNdata
*logdev_list
= NULL
;
2940 int physical_mode
= 0;
2941 u32 ndev_allocated
= 0;
2942 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
2944 int i
, n_ext_target_devs
, ndevs_to_allocate
;
2945 int raid_ctlr_position
;
2946 int rescan_hba_mode
;
2947 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
2949 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
2950 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
2951 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
2952 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
2954 if (!currentsd
|| !physdev_list
|| !logdev_list
|| !tmpdevice
) {
2955 dev_err(&h
->pdev
->dev
, "out of memory\n");
2958 memset(lunzerobits
, 0, sizeof(lunzerobits
));
2960 rescan_hba_mode
= hpsa_hba_mode_enabled(h
);
2961 if (rescan_hba_mode
< 0)
2964 if (!h
->hba_mode_enabled
&& rescan_hba_mode
)
2965 dev_warn(&h
->pdev
->dev
, "HBA mode enabled\n");
2966 else if (h
->hba_mode_enabled
&& !rescan_hba_mode
)
2967 dev_warn(&h
->pdev
->dev
, "HBA mode disabled\n");
2969 h
->hba_mode_enabled
= rescan_hba_mode
;
2971 if (hpsa_gather_lun_info(h
,
2972 sizeof(*physdev_list
), sizeof(*logdev_list
),
2973 (struct ReportLUNdata
*) physdev_list
, &nphysicals
,
2974 &physical_mode
, logdev_list
, &nlogicals
))
2977 /* We might see up to the maximum number of logical and physical disks
2978 * plus external target devices, and a device for the local RAID
2981 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
2983 /* Allocate the per device structures */
2984 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
2985 if (i
>= HPSA_MAX_DEVICES
) {
2986 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
2987 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
2988 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
2992 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
2993 if (!currentsd
[i
]) {
2994 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
2995 __FILE__
, __LINE__
);
3001 if (is_scsi_rev_5(h
))
3002 raid_ctlr_position
= 0;
3004 raid_ctlr_position
= nphysicals
+ nlogicals
;
3006 /* adjust our table of devices */
3007 n_ext_target_devs
= 0;
3008 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
3009 u8
*lunaddrbytes
, is_OBDR
= 0;
3011 /* Figure out where the LUN ID info is coming from */
3012 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
3013 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
3014 /* skip masked physical devices. */
3015 if (lunaddrbytes
[3] & 0xC0 &&
3016 i
< nphysicals
+ (raid_ctlr_position
== 0))
3019 /* Get device type, vendor, model, device id */
3020 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
3022 continue; /* skip it if we can't talk to it. */
3023 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
3024 this_device
= currentsd
[ncurrent
];
3027 * For external target devices, we have to insert a LUN 0 which
3028 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3029 * is nonetheless an enclosure device there. We have to
3030 * present that otherwise linux won't find anything if
3031 * there is no lun 0.
3033 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
3034 lunaddrbytes
, lunzerobits
,
3035 &n_ext_target_devs
)) {
3037 this_device
= currentsd
[ncurrent
];
3040 *this_device
= *tmpdevice
;
3042 switch (this_device
->devtype
) {
3044 /* We don't *really* support actual CD-ROM devices,
3045 * just "One Button Disaster Recovery" tape drive
3046 * which temporarily pretends to be a CD-ROM drive.
3047 * So we check that the device is really an OBDR tape
3048 * device by checking for "$DR-10" in bytes 43-48 of
3055 if (h
->hba_mode_enabled
) {
3056 /* never use raid mapper in HBA mode */
3057 this_device
->offload_enabled
= 0;
3060 } else if (h
->acciopath_status
) {
3061 if (i
>= nphysicals
) {
3071 if (physical_mode
== HPSA_REPORT_PHYS_EXTENDED
) {
3072 memcpy(&this_device
->ioaccel_handle
,
3074 sizeof(this_device
->ioaccel_handle
));
3079 case TYPE_MEDIUM_CHANGER
:
3083 /* Only present the Smartarray HBA as a RAID controller.
3084 * If it's a RAID controller other than the HBA itself
3085 * (an external RAID controller, MSA500 or similar)
3088 if (!is_hba_lunid(lunaddrbytes
))
3095 if (ncurrent
>= HPSA_MAX_DEVICES
)
3098 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
3101 for (i
= 0; i
< ndev_allocated
; i
++)
3102 kfree(currentsd
[i
]);
3104 kfree(physdev_list
);
3108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3109 * dma mapping and fills in the scatter gather entries of the
3112 static int hpsa_scatter_gather(struct ctlr_info
*h
,
3113 struct CommandList
*cp
,
3114 struct scsi_cmnd
*cmd
)
3117 struct scatterlist
*sg
;
3119 int use_sg
, i
, sg_index
, chained
;
3120 struct SGDescriptor
*curr_sg
;
3122 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
3124 use_sg
= scsi_dma_map(cmd
);
3129 goto sglist_finished
;
3134 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3135 if (i
== h
->max_cmd_sg_entries
- 1 &&
3136 use_sg
> h
->max_cmd_sg_entries
) {
3138 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
3141 addr64
= (u64
) sg_dma_address(sg
);
3142 len
= sg_dma_len(sg
);
3143 curr_sg
->Addr
= cpu_to_le64(addr64
);
3144 curr_sg
->Len
= cpu_to_le32(len
);
3145 curr_sg
->Ext
= cpu_to_le32(0);
3148 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3150 if (use_sg
+ chained
> h
->maxSG
)
3151 h
->maxSG
= use_sg
+ chained
;
3154 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
3155 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
3156 if (hpsa_map_sg_chain_block(h
, cp
)) {
3157 scsi_dma_unmap(cmd
);
3165 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
3166 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in this cmd list */
3170 #define IO_ACCEL_INELIGIBLE (1)
3171 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
3177 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3184 if (*cdb_len
== 6) {
3185 block
= (((u32
) cdb
[2]) << 8) | cdb
[3];
3188 BUG_ON(*cdb_len
!= 12);
3189 block
= (((u32
) cdb
[2]) << 24) |
3190 (((u32
) cdb
[3]) << 16) |
3191 (((u32
) cdb
[4]) << 8) |
3194 (((u32
) cdb
[6]) << 24) |
3195 (((u32
) cdb
[7]) << 16) |
3196 (((u32
) cdb
[8]) << 8) |
3199 if (block_cnt
> 0xffff)
3200 return IO_ACCEL_INELIGIBLE
;
3202 cdb
[0] = is_write
? WRITE_10
: READ_10
;
3204 cdb
[2] = (u8
) (block
>> 24);
3205 cdb
[3] = (u8
) (block
>> 16);
3206 cdb
[4] = (u8
) (block
>> 8);
3207 cdb
[5] = (u8
) (block
);
3209 cdb
[7] = (u8
) (block_cnt
>> 8);
3210 cdb
[8] = (u8
) (block_cnt
);
3218 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
3219 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3222 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3223 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
3225 unsigned int total_len
= 0;
3226 struct scatterlist
*sg
;
3229 struct SGDescriptor
*curr_sg
;
3230 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
3232 /* TODO: implement chaining support */
3233 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
)
3234 return IO_ACCEL_INELIGIBLE
;
3236 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
3238 if (fixup_ioaccel_cdb(cdb
, &cdb_len
))
3239 return IO_ACCEL_INELIGIBLE
;
3241 c
->cmd_type
= CMD_IOACCEL1
;
3243 /* Adjust the DMA address to point to the accelerated command buffer */
3244 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
3245 (c
->cmdindex
* sizeof(*cp
));
3246 BUG_ON(c
->busaddr
& 0x0000007F);
3248 use_sg
= scsi_dma_map(cmd
);
3254 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3255 addr64
= (u64
) sg_dma_address(sg
);
3256 len
= sg_dma_len(sg
);
3258 curr_sg
->Addr
= cpu_to_le64(addr64
);
3259 curr_sg
->Len
= cpu_to_le32(len
);
3260 curr_sg
->Ext
= cpu_to_le32(0);
3263 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3265 switch (cmd
->sc_data_direction
) {
3267 control
|= IOACCEL1_CONTROL_DATA_OUT
;
3269 case DMA_FROM_DEVICE
:
3270 control
|= IOACCEL1_CONTROL_DATA_IN
;
3273 control
|= IOACCEL1_CONTROL_NODATAXFER
;
3276 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
3277 cmd
->sc_data_direction
);
3282 control
|= IOACCEL1_CONTROL_NODATAXFER
;
3285 c
->Header
.SGList
= use_sg
;
3286 /* Fill out the command structure to submit */
3287 cp
->dev_handle
= ioaccel_handle
& 0xFFFF;
3288 cp
->transfer_len
= total_len
;
3289 cp
->io_flags
= IOACCEL1_IOFLAGS_IO_REQ
|
3290 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
);
3291 cp
->control
= control
;
3292 memcpy(cp
->CDB
, cdb
, cdb_len
);
3293 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
3294 /* Tag was already set at init time. */
3295 enqueue_cmd_and_start_io(h
, c
);
3300 * Queue a command directly to a device behind the controller using the
3301 * I/O accelerator path.
3303 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
3304 struct CommandList
*c
)
3306 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3307 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3309 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
3310 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
);
3314 * Set encryption parameters for the ioaccel2 request
3316 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
3317 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
3319 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3320 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3321 struct raid_map_data
*map
= &dev
->raid_map
;
3324 BUG_ON(!(dev
->offload_config
&& dev
->offload_enabled
));
3326 /* Are we doing encryption on this device */
3327 if (!(map
->flags
& RAID_MAP_FLAG_ENCRYPT_ON
))
3329 /* Set the data encryption key index. */
3330 cp
->dekindex
= map
->dekindex
;
3332 /* Set the encryption enable flag, encoded into direction field. */
3333 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
3335 /* Set encryption tweak values based on logical block address
3336 * If block size is 512, tweak value is LBA.
3337 * For other block sizes, tweak is (LBA * block size)/ 512)
3339 switch (cmd
->cmnd
[0]) {
3340 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3343 if (map
->volume_blk_size
== 512) {
3345 (((u32
) cmd
->cmnd
[2]) << 8) |
3347 cp
->tweak_upper
= 0;
3350 (((u64
) cmd
->cmnd
[2]) << 8) |
3352 first_block
= (first_block
* map
->volume_blk_size
)/512;
3353 cp
->tweak_lower
= (u32
)first_block
;
3354 cp
->tweak_upper
= (u32
)(first_block
>> 32);
3359 if (map
->volume_blk_size
== 512) {
3361 (((u32
) cmd
->cmnd
[2]) << 24) |
3362 (((u32
) cmd
->cmnd
[3]) << 16) |
3363 (((u32
) cmd
->cmnd
[4]) << 8) |
3365 cp
->tweak_upper
= 0;
3368 (((u64
) cmd
->cmnd
[2]) << 24) |
3369 (((u64
) cmd
->cmnd
[3]) << 16) |
3370 (((u64
) cmd
->cmnd
[4]) << 8) |
3372 first_block
= (first_block
* map
->volume_blk_size
)/512;
3373 cp
->tweak_lower
= (u32
)first_block
;
3374 cp
->tweak_upper
= (u32
)(first_block
>> 32);
3377 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3380 if (map
->volume_blk_size
== 512) {
3382 (((u32
) cmd
->cmnd
[2]) << 24) |
3383 (((u32
) cmd
->cmnd
[3]) << 16) |
3384 (((u32
) cmd
->cmnd
[4]) << 8) |
3386 cp
->tweak_upper
= 0;
3389 (((u64
) cmd
->cmnd
[2]) << 24) |
3390 (((u64
) cmd
->cmnd
[3]) << 16) |
3391 (((u64
) cmd
->cmnd
[4]) << 8) |
3393 first_block
= (first_block
* map
->volume_blk_size
)/512;
3394 cp
->tweak_lower
= (u32
)first_block
;
3395 cp
->tweak_upper
= (u32
)(first_block
>> 32);
3400 if (map
->volume_blk_size
== 512) {
3402 (((u32
) cmd
->cmnd
[6]) << 24) |
3403 (((u32
) cmd
->cmnd
[7]) << 16) |
3404 (((u32
) cmd
->cmnd
[8]) << 8) |
3407 (((u32
) cmd
->cmnd
[2]) << 24) |
3408 (((u32
) cmd
->cmnd
[3]) << 16) |
3409 (((u32
) cmd
->cmnd
[4]) << 8) |
3413 (((u64
) cmd
->cmnd
[2]) << 56) |
3414 (((u64
) cmd
->cmnd
[3]) << 48) |
3415 (((u64
) cmd
->cmnd
[4]) << 40) |
3416 (((u64
) cmd
->cmnd
[5]) << 32) |
3417 (((u64
) cmd
->cmnd
[6]) << 24) |
3418 (((u64
) cmd
->cmnd
[7]) << 16) |
3419 (((u64
) cmd
->cmnd
[8]) << 8) |
3421 first_block
= (first_block
* map
->volume_blk_size
)/512;
3422 cp
->tweak_lower
= (u32
)first_block
;
3423 cp
->tweak_upper
= (u32
)(first_block
>> 32);
3427 dev_err(&h
->pdev
->dev
,
3428 "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3435 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
3436 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3439 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3440 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3441 struct ioaccel2_sg_element
*curr_sg
;
3443 struct scatterlist
*sg
;
3448 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
)
3449 return IO_ACCEL_INELIGIBLE
;
3451 if (fixup_ioaccel_cdb(cdb
, &cdb_len
))
3452 return IO_ACCEL_INELIGIBLE
;
3453 c
->cmd_type
= CMD_IOACCEL2
;
3454 /* Adjust the DMA address to point to the accelerated command buffer */
3455 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
3456 (c
->cmdindex
* sizeof(*cp
));
3457 BUG_ON(c
->busaddr
& 0x0000007F);
3459 memset(cp
, 0, sizeof(*cp
));
3460 cp
->IU_type
= IOACCEL2_IU_TYPE
;
3462 use_sg
= scsi_dma_map(cmd
);
3467 BUG_ON(use_sg
> IOACCEL2_MAXSGENTRIES
);
3469 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3470 addr64
= (u64
) sg_dma_address(sg
);
3471 len
= sg_dma_len(sg
);
3473 curr_sg
->address
= cpu_to_le64(addr64
);
3474 curr_sg
->length
= cpu_to_le32(len
);
3475 curr_sg
->reserved
[0] = 0;
3476 curr_sg
->reserved
[1] = 0;
3477 curr_sg
->reserved
[2] = 0;
3478 curr_sg
->chain_indicator
= 0;
3482 switch (cmd
->sc_data_direction
) {
3484 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3485 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
3487 case DMA_FROM_DEVICE
:
3488 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3489 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
3492 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3493 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
3496 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
3497 cmd
->sc_data_direction
);
3502 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3503 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
3506 /* Set encryption parameters, if necessary */
3507 set_encrypt_ioaccel2(h
, c
, cp
);
3509 cp
->scsi_nexus
= ioaccel_handle
;
3510 cp
->Tag
= (c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
) |
3512 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
3514 /* fill in sg elements */
3515 cp
->sg_count
= (u8
) use_sg
;
3517 cp
->data_len
= cpu_to_le32(total_len
);
3518 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
3519 offsetof(struct io_accel2_cmd
, error_data
));
3520 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
3522 enqueue_cmd_and_start_io(h
, c
);
3527 * Queue a command to the correct I/O accelerator path.
3529 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
3530 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3533 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
3534 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
3535 cdb
, cdb_len
, scsi3addr
);
3537 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
3538 cdb
, cdb_len
, scsi3addr
);
3541 static void raid_map_helper(struct raid_map_data
*map
,
3542 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
3544 if (offload_to_mirror
== 0) {
3545 /* use physical disk in the first mirrored group. */
3546 *map_index
%= map
->data_disks_per_row
;
3550 /* determine mirror group that *map_index indicates */
3551 *current_group
= *map_index
/ map
->data_disks_per_row
;
3552 if (offload_to_mirror
== *current_group
)
3554 if (*current_group
< (map
->layout_map_count
- 1)) {
3555 /* select map index from next group */
3556 *map_index
+= map
->data_disks_per_row
;
3559 /* select map index from first group */
3560 *map_index
%= map
->data_disks_per_row
;
3563 } while (offload_to_mirror
!= *current_group
);
3567 * Attempt to perform offload RAID mapping for a logical volume I/O.
3569 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
3570 struct CommandList
*c
)
3572 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3573 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3574 struct raid_map_data
*map
= &dev
->raid_map
;
3575 struct raid_map_disk_data
*dd
= &map
->data
[0];
3578 u64 first_block
, last_block
;
3581 u64 first_row
, last_row
;
3582 u32 first_row_offset
, last_row_offset
;
3583 u32 first_column
, last_column
;
3584 u64 r0_first_row
, r0_last_row
;
3585 u32 r5or6_blocks_per_row
;
3586 u64 r5or6_first_row
, r5or6_last_row
;
3587 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
3588 u32 r5or6_first_column
, r5or6_last_column
;
3589 u32 total_disks_per_row
;
3591 u32 first_group
, last_group
, current_group
;
3598 #if BITS_PER_LONG == 32
3601 int offload_to_mirror
;
3603 BUG_ON(!(dev
->offload_config
&& dev
->offload_enabled
));
3605 /* check for valid opcode, get LBA and block count */
3606 switch (cmd
->cmnd
[0]) {
3611 (((u64
) cmd
->cmnd
[2]) << 8) |
3613 block_cnt
= cmd
->cmnd
[4];
3621 (((u64
) cmd
->cmnd
[2]) << 24) |
3622 (((u64
) cmd
->cmnd
[3]) << 16) |
3623 (((u64
) cmd
->cmnd
[4]) << 8) |
3626 (((u32
) cmd
->cmnd
[7]) << 8) |
3633 (((u64
) cmd
->cmnd
[2]) << 24) |
3634 (((u64
) cmd
->cmnd
[3]) << 16) |
3635 (((u64
) cmd
->cmnd
[4]) << 8) |
3638 (((u32
) cmd
->cmnd
[6]) << 24) |
3639 (((u32
) cmd
->cmnd
[7]) << 16) |
3640 (((u32
) cmd
->cmnd
[8]) << 8) |
3647 (((u64
) cmd
->cmnd
[2]) << 56) |
3648 (((u64
) cmd
->cmnd
[3]) << 48) |
3649 (((u64
) cmd
->cmnd
[4]) << 40) |
3650 (((u64
) cmd
->cmnd
[5]) << 32) |
3651 (((u64
) cmd
->cmnd
[6]) << 24) |
3652 (((u64
) cmd
->cmnd
[7]) << 16) |
3653 (((u64
) cmd
->cmnd
[8]) << 8) |
3656 (((u32
) cmd
->cmnd
[10]) << 24) |
3657 (((u32
) cmd
->cmnd
[11]) << 16) |
3658 (((u32
) cmd
->cmnd
[12]) << 8) |
3662 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
3664 last_block
= first_block
+ block_cnt
- 1;
3666 /* check for write to non-RAID-0 */
3667 if (is_write
&& dev
->raid_level
!= 0)
3668 return IO_ACCEL_INELIGIBLE
;
3670 /* check for invalid block or wraparound */
3671 if (last_block
>= map
->volume_blk_cnt
|| last_block
< first_block
)
3672 return IO_ACCEL_INELIGIBLE
;
3674 /* calculate stripe information for the request */
3675 blocks_per_row
= map
->data_disks_per_row
* map
->strip_size
;
3676 #if BITS_PER_LONG == 32
3677 tmpdiv
= first_block
;
3678 (void) do_div(tmpdiv
, blocks_per_row
);
3680 tmpdiv
= last_block
;
3681 (void) do_div(tmpdiv
, blocks_per_row
);
3683 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
3684 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
3685 tmpdiv
= first_row_offset
;
3686 (void) do_div(tmpdiv
, map
->strip_size
);
3687 first_column
= tmpdiv
;
3688 tmpdiv
= last_row_offset
;
3689 (void) do_div(tmpdiv
, map
->strip_size
);
3690 last_column
= tmpdiv
;
3692 first_row
= first_block
/ blocks_per_row
;
3693 last_row
= last_block
/ blocks_per_row
;
3694 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
3695 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
3696 first_column
= first_row_offset
/ map
->strip_size
;
3697 last_column
= last_row_offset
/ map
->strip_size
;
3700 /* if this isn't a single row/column then give to the controller */
3701 if ((first_row
!= last_row
) || (first_column
!= last_column
))
3702 return IO_ACCEL_INELIGIBLE
;
3704 /* proceeding with driver mapping */
3705 total_disks_per_row
= map
->data_disks_per_row
+
3706 map
->metadata_disks_per_row
;
3707 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
3709 map_index
= (map_row
* total_disks_per_row
) + first_column
;
3711 switch (dev
->raid_level
) {
3713 break; /* nothing special to do */
3715 /* Handles load balance across RAID 1 members.
3716 * (2-drive R1 and R10 with even # of drives.)
3717 * Appropriate for SSDs, not optimal for HDDs
3719 BUG_ON(map
->layout_map_count
!= 2);
3720 if (dev
->offload_to_mirror
)
3721 map_index
+= map
->data_disks_per_row
;
3722 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
3725 /* Handles N-way mirrors (R1-ADM)
3726 * and R10 with # of drives divisible by 3.)
3728 BUG_ON(map
->layout_map_count
!= 3);
3730 offload_to_mirror
= dev
->offload_to_mirror
;
3731 raid_map_helper(map
, offload_to_mirror
,
3732 &map_index
, ¤t_group
);
3733 /* set mirror group to use next time */
3735 (offload_to_mirror
>= map
->layout_map_count
- 1)
3736 ? 0 : offload_to_mirror
+ 1;
3737 dev
->offload_to_mirror
= offload_to_mirror
;
3738 /* Avoid direct use of dev->offload_to_mirror within this
3739 * function since multiple threads might simultaneously
3740 * increment it beyond the range of dev->layout_map_count -1.
3745 if (map
->layout_map_count
<= 1)
3748 /* Verify first and last block are in same RAID group */
3749 r5or6_blocks_per_row
=
3750 map
->strip_size
* map
->data_disks_per_row
;
3751 BUG_ON(r5or6_blocks_per_row
== 0);
3752 stripesize
= r5or6_blocks_per_row
* map
->layout_map_count
;
3753 #if BITS_PER_LONG == 32
3754 tmpdiv
= first_block
;
3755 first_group
= do_div(tmpdiv
, stripesize
);
3756 tmpdiv
= first_group
;
3757 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
3758 first_group
= tmpdiv
;
3759 tmpdiv
= last_block
;
3760 last_group
= do_div(tmpdiv
, stripesize
);
3761 tmpdiv
= last_group
;
3762 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
3763 last_group
= tmpdiv
;
3765 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
3766 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
3768 if (first_group
!= last_group
)
3769 return IO_ACCEL_INELIGIBLE
;
3771 /* Verify request is in a single row of RAID 5/6 */
3772 #if BITS_PER_LONG == 32
3773 tmpdiv
= first_block
;
3774 (void) do_div(tmpdiv
, stripesize
);
3775 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
3776 tmpdiv
= last_block
;
3777 (void) do_div(tmpdiv
, stripesize
);
3778 r5or6_last_row
= r0_last_row
= tmpdiv
;
3780 first_row
= r5or6_first_row
= r0_first_row
=
3781 first_block
/ stripesize
;
3782 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
3784 if (r5or6_first_row
!= r5or6_last_row
)
3785 return IO_ACCEL_INELIGIBLE
;
3788 /* Verify request is in a single column */
3789 #if BITS_PER_LONG == 32
3790 tmpdiv
= first_block
;
3791 first_row_offset
= do_div(tmpdiv
, stripesize
);
3792 tmpdiv
= first_row_offset
;
3793 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
3794 r5or6_first_row_offset
= first_row_offset
;
3795 tmpdiv
= last_block
;
3796 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
3797 tmpdiv
= r5or6_last_row_offset
;
3798 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
3799 tmpdiv
= r5or6_first_row_offset
;
3800 (void) do_div(tmpdiv
, map
->strip_size
);
3801 first_column
= r5or6_first_column
= tmpdiv
;
3802 tmpdiv
= r5or6_last_row_offset
;
3803 (void) do_div(tmpdiv
, map
->strip_size
);
3804 r5or6_last_column
= tmpdiv
;
3806 first_row_offset
= r5or6_first_row_offset
=
3807 (u32
)((first_block
% stripesize
) %
3808 r5or6_blocks_per_row
);
3810 r5or6_last_row_offset
=
3811 (u32
)((last_block
% stripesize
) %
3812 r5or6_blocks_per_row
);
3814 first_column
= r5or6_first_column
=
3815 r5or6_first_row_offset
/ map
->strip_size
;
3817 r5or6_last_row_offset
/ map
->strip_size
;
3819 if (r5or6_first_column
!= r5or6_last_column
)
3820 return IO_ACCEL_INELIGIBLE
;
3822 /* Request is eligible */
3823 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
3826 map_index
= (first_group
*
3827 (map
->row_cnt
* total_disks_per_row
)) +
3828 (map_row
* total_disks_per_row
) + first_column
;
3831 return IO_ACCEL_INELIGIBLE
;
3834 disk_handle
= dd
[map_index
].ioaccel_handle
;
3835 disk_block
= map
->disk_starting_blk
+ (first_row
* map
->strip_size
) +
3836 (first_row_offset
- (first_column
* map
->strip_size
));
3837 disk_block_cnt
= block_cnt
;
3839 /* handle differing logical/physical block sizes */
3840 if (map
->phys_blk_shift
) {
3841 disk_block
<<= map
->phys_blk_shift
;
3842 disk_block_cnt
<<= map
->phys_blk_shift
;
3844 BUG_ON(disk_block_cnt
> 0xffff);
3846 /* build the new CDB for the physical disk I/O */
3847 if (disk_block
> 0xffffffff) {
3848 cdb
[0] = is_write
? WRITE_16
: READ_16
;
3850 cdb
[2] = (u8
) (disk_block
>> 56);
3851 cdb
[3] = (u8
) (disk_block
>> 48);
3852 cdb
[4] = (u8
) (disk_block
>> 40);
3853 cdb
[5] = (u8
) (disk_block
>> 32);
3854 cdb
[6] = (u8
) (disk_block
>> 24);
3855 cdb
[7] = (u8
) (disk_block
>> 16);
3856 cdb
[8] = (u8
) (disk_block
>> 8);
3857 cdb
[9] = (u8
) (disk_block
);
3858 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
3859 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
3860 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
3861 cdb
[13] = (u8
) (disk_block_cnt
);
3866 cdb
[0] = is_write
? WRITE_10
: READ_10
;
3868 cdb
[2] = (u8
) (disk_block
>> 24);
3869 cdb
[3] = (u8
) (disk_block
>> 16);
3870 cdb
[4] = (u8
) (disk_block
>> 8);
3871 cdb
[5] = (u8
) (disk_block
);
3873 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
3874 cdb
[8] = (u8
) (disk_block_cnt
);
3878 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
3883 * Running in struct Scsi_Host->host_lock less mode using LLD internal
3884 * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3886 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
3888 struct ctlr_info
*h
;
3889 struct hpsa_scsi_dev_t
*dev
;
3890 unsigned char scsi3addr
[8];
3891 struct CommandList
*c
;
3894 /* Get the ptr to our adapter structure out of cmd->host. */
3895 h
= sdev_to_hba(cmd
->device
);
3896 dev
= cmd
->device
->hostdata
;
3898 cmd
->result
= DID_NO_CONNECT
<< 16;
3899 cmd
->scsi_done(cmd
);
3902 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
3904 if (unlikely(lockup_detected(h
))) {
3905 cmd
->result
= DID_ERROR
<< 16;
3906 cmd
->scsi_done(cmd
);
3910 if (c
== NULL
) { /* trouble... */
3911 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
3912 return SCSI_MLQUEUE_HOST_BUSY
;
3915 /* Fill in the command list header */
3916 /* save c in case we have to abort it */
3917 cmd
->host_scribble
= (unsigned char *) c
;
3919 c
->cmd_type
= CMD_SCSI
;
3922 /* Call alternate submit routine for I/O accelerated commands.
3923 * Retries always go down the normal I/O path.
3925 if (likely(cmd
->retries
== 0 &&
3926 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
3927 h
->acciopath_status
)) {
3928 if (dev
->offload_enabled
) {
3929 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
3931 return 0; /* Sent on ioaccel path */
3932 if (rc
< 0) { /* scsi_dma_map failed. */
3934 return SCSI_MLQUEUE_HOST_BUSY
;
3936 } else if (dev
->ioaccel_handle
) {
3937 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
3939 return 0; /* Sent on direct map path */
3940 if (rc
< 0) { /* scsi_dma_map failed. */
3942 return SCSI_MLQUEUE_HOST_BUSY
;
3947 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3948 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
3949 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
) |
3952 /* Fill in the request block... */
3954 c
->Request
.Timeout
= 0;
3955 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
3956 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
3957 c
->Request
.CDBLen
= cmd
->cmd_len
;
3958 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
3959 switch (cmd
->sc_data_direction
) {
3961 c
->Request
.type_attr_dir
=
3962 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
3964 case DMA_FROM_DEVICE
:
3965 c
->Request
.type_attr_dir
=
3966 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
3969 c
->Request
.type_attr_dir
=
3970 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
3972 case DMA_BIDIRECTIONAL
:
3973 /* This can happen if a buggy application does a scsi passthru
3974 * and sets both inlen and outlen to non-zero. ( see
3975 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3978 c
->Request
.type_attr_dir
=
3979 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
3980 /* This is technically wrong, and hpsa controllers should
3981 * reject it with CMD_INVALID, which is the most correct
3982 * response, but non-fibre backends appear to let it
3983 * slide by, and give the same results as if this field
3984 * were set correctly. Either way is acceptable for
3985 * our purposes here.
3991 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
3992 cmd
->sc_data_direction
);
3997 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
3999 return SCSI_MLQUEUE_HOST_BUSY
;
4001 enqueue_cmd_and_start_io(h
, c
);
4002 /* the cmd'll come back via intr handler in complete_scsi_command() */
4006 static int do_not_scan_if_controller_locked_up(struct ctlr_info
*h
)
4008 unsigned long flags
;
4011 * Don't let rescans be initiated on a controller known
4012 * to be locked up. If the controller locks up *during*
4013 * a rescan, that thread is probably hosed, but at least
4014 * we can prevent new rescan threads from piling up on a
4015 * locked up controller.
4017 if (unlikely(lockup_detected(h
))) {
4018 spin_lock_irqsave(&h
->scan_lock
, flags
);
4019 h
->scan_finished
= 1;
4020 wake_up_all(&h
->scan_wait_queue
);
4021 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4027 static void hpsa_scan_start(struct Scsi_Host
*sh
)
4029 struct ctlr_info
*h
= shost_to_hba(sh
);
4030 unsigned long flags
;
4032 if (do_not_scan_if_controller_locked_up(h
))
4035 /* wait until any scan already in progress is finished. */
4037 spin_lock_irqsave(&h
->scan_lock
, flags
);
4038 if (h
->scan_finished
)
4040 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4041 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
4042 /* Note: We don't need to worry about a race between this
4043 * thread and driver unload because the midlayer will
4044 * have incremented the reference count, so unload won't
4045 * happen if we're in here.
4048 h
->scan_finished
= 0; /* mark scan as in progress */
4049 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4051 if (do_not_scan_if_controller_locked_up(h
))
4054 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
4056 spin_lock_irqsave(&h
->scan_lock
, flags
);
4057 h
->scan_finished
= 1; /* mark scan as finished. */
4058 wake_up_all(&h
->scan_wait_queue
);
4059 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4062 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
4063 unsigned long elapsed_time
)
4065 struct ctlr_info
*h
= shost_to_hba(sh
);
4066 unsigned long flags
;
4069 spin_lock_irqsave(&h
->scan_lock
, flags
);
4070 finished
= h
->scan_finished
;
4071 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4075 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
4077 /* we are being forcibly unloaded, and may not refuse. */
4078 scsi_remove_host(h
->scsi_host
);
4079 scsi_host_put(h
->scsi_host
);
4080 h
->scsi_host
= NULL
;
4083 static int hpsa_register_scsi(struct ctlr_info
*h
)
4085 struct Scsi_Host
*sh
;
4088 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
4095 sh
->max_channel
= 3;
4096 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
4097 sh
->max_lun
= HPSA_MAX_LUN
;
4098 sh
->max_id
= HPSA_MAX_LUN
;
4099 sh
->can_queue
= h
->nr_cmds
;
4100 if (h
->hba_mode_enabled
)
4101 sh
->cmd_per_lun
= 7;
4103 sh
->cmd_per_lun
= h
->nr_cmds
;
4104 sh
->sg_tablesize
= h
->maxsgentries
;
4106 sh
->hostdata
[0] = (unsigned long) h
;
4107 sh
->irq
= h
->intr
[h
->intr_mode
];
4108 sh
->unique_id
= sh
->irq
;
4109 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
4116 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
4117 " failed for controller %d\n", __func__
, h
->ctlr
);
4121 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
4122 " failed for controller %d\n", __func__
, h
->ctlr
);
4126 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
4127 unsigned char lunaddr
[])
4131 int waittime
= 1; /* seconds */
4132 struct CommandList
*c
;
4134 c
= cmd_special_alloc(h
);
4136 dev_warn(&h
->pdev
->dev
, "out of memory in "
4137 "wait_for_device_to_become_ready.\n");
4141 /* Send test unit ready until device ready, or give up. */
4142 while (count
< HPSA_TUR_RETRY_LIMIT
) {
4144 /* Wait for a bit. do this first, because if we send
4145 * the TUR right away, the reset will just abort it.
4147 msleep(1000 * waittime
);
4149 rc
= 0; /* Device ready. */
4151 /* Increase wait time with each try, up to a point. */
4152 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
4153 waittime
= waittime
* 2;
4155 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4156 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
4157 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
4158 hpsa_scsi_do_simple_cmd_core(h
, c
);
4159 /* no unmap needed here because no data xfer. */
4161 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
4164 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
4165 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
4166 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
4167 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
4170 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
4171 "for device to become ready.\n", waittime
);
4172 rc
= 1; /* device not ready. */
4176 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
4178 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
4180 cmd_special_free(h
, c
);
4184 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4185 * complaining. Doing a host- or bus-reset can't do anything good here.
4187 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
4190 struct ctlr_info
*h
;
4191 struct hpsa_scsi_dev_t
*dev
;
4193 /* find the controller to which the command to be aborted was sent */
4194 h
= sdev_to_hba(scsicmd
->device
);
4195 if (h
== NULL
) /* paranoia */
4197 dev
= scsicmd
->device
->hostdata
;
4199 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
4200 "device lookup failed.\n");
4203 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
4204 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
4205 /* send a reset to the SCSI LUN which the command was sent to */
4206 rc
= hpsa_send_reset(h
, dev
->scsi3addr
, HPSA_RESET_TYPE_LUN
);
4207 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
4210 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
4214 static void swizzle_abort_tag(u8
*tag
)
4218 memcpy(original_tag
, tag
, 8);
4219 tag
[0] = original_tag
[3];
4220 tag
[1] = original_tag
[2];
4221 tag
[2] = original_tag
[1];
4222 tag
[3] = original_tag
[0];
4223 tag
[4] = original_tag
[7];
4224 tag
[5] = original_tag
[6];
4225 tag
[6] = original_tag
[5];
4226 tag
[7] = original_tag
[4];
4229 static void hpsa_get_tag(struct ctlr_info
*h
,
4230 struct CommandList
*c
, u32
*taglower
, u32
*tagupper
)
4232 if (c
->cmd_type
== CMD_IOACCEL1
) {
4233 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
4234 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4235 *tagupper
= (u32
) (cm1
->tag
>> 32);
4236 *taglower
= (u32
) (cm1
->tag
& 0x0ffffffffULL
);
4239 if (c
->cmd_type
== CMD_IOACCEL2
) {
4240 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
4241 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4242 /* upper tag not used in ioaccel2 mode */
4243 memset(tagupper
, 0, sizeof(*tagupper
));
4244 *taglower
= cm2
->Tag
;
4247 *tagupper
= (u32
) (c
->Header
.tag
>> 32);
4248 *taglower
= (u32
) (c
->Header
.tag
& 0x0ffffffffULL
);
4251 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
4252 struct CommandList
*abort
, int swizzle
)
4255 struct CommandList
*c
;
4256 struct ErrorInfo
*ei
;
4257 u32 tagupper
, taglower
;
4259 c
= cmd_special_alloc(h
);
4260 if (c
== NULL
) { /* trouble... */
4261 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
4265 /* fill_cmd can't fail here, no buffer to map */
4266 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
,
4267 0, 0, scsi3addr
, TYPE_MSG
);
4269 swizzle_abort_tag(&c
->Request
.CDB
[4]);
4270 hpsa_scsi_do_simple_cmd_core(h
, c
);
4271 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
4272 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4273 __func__
, tagupper
, taglower
);
4274 /* no unmap needed here because no data xfer. */
4277 switch (ei
->CommandStatus
) {
4280 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
4284 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4285 __func__
, tagupper
, taglower
);
4286 hpsa_scsi_interpret_error(h
, c
);
4290 cmd_special_free(h
, c
);
4291 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
4292 __func__
, tagupper
, taglower
);
4297 * hpsa_find_cmd_in_queue
4299 * Used to determine whether a command (find) is still present
4300 * in queue_head. Optionally excludes the last element of queue_head.
4302 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4303 * not yet been submitted, and so can be aborted by the driver without
4304 * sending an abort to the hardware.
4306 * Returns pointer to command if found in queue, NULL otherwise.
4308 static struct CommandList
*hpsa_find_cmd_in_queue(struct ctlr_info
*h
,
4309 struct scsi_cmnd
*find
, struct list_head
*queue_head
)
4311 unsigned long flags
;
4312 struct CommandList
*c
= NULL
; /* ptr into cmpQ */
4316 spin_lock_irqsave(&h
->lock
, flags
);
4317 list_for_each_entry(c
, queue_head
, list
) {
4318 if (c
->scsi_cmd
== NULL
) /* e.g.: passthru ioctl */
4320 if (c
->scsi_cmd
== find
) {
4321 spin_unlock_irqrestore(&h
->lock
, flags
);
4325 spin_unlock_irqrestore(&h
->lock
, flags
);
4329 static struct CommandList
*hpsa_find_cmd_in_queue_by_tag(struct ctlr_info
*h
,
4330 u8
*tag
, struct list_head
*queue_head
)
4332 unsigned long flags
;
4333 struct CommandList
*c
;
4335 spin_lock_irqsave(&h
->lock
, flags
);
4336 list_for_each_entry(c
, queue_head
, list
) {
4337 if (memcmp(&c
->Header
.tag
, tag
, 8) != 0)
4339 spin_unlock_irqrestore(&h
->lock
, flags
);
4342 spin_unlock_irqrestore(&h
->lock
, flags
);
4346 /* ioaccel2 path firmware cannot handle abort task requests.
4347 * Change abort requests to physical target reset, and send to the
4348 * address of the physical disk used for the ioaccel 2 command.
4349 * Return 0 on success (IO_OK)
4353 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
4354 unsigned char *scsi3addr
, struct CommandList
*abort
)
4357 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
4358 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
4359 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
4360 unsigned char *psa
= &phys_scsi3addr
[0];
4362 /* Get a pointer to the hpsa logical device. */
4363 scmd
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
4364 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
4366 dev_warn(&h
->pdev
->dev
,
4367 "Cannot abort: no device pointer for command.\n");
4368 return -1; /* not abortable */
4371 if (h
->raid_offload_debug
> 0)
4372 dev_info(&h
->pdev
->dev
,
4373 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
4375 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
4376 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
4378 if (!dev
->offload_enabled
) {
4379 dev_warn(&h
->pdev
->dev
,
4380 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4381 return -1; /* not abortable */
4384 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4385 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
4386 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
4387 return -1; /* not abortable */
4390 /* send the reset */
4391 if (h
->raid_offload_debug
> 0)
4392 dev_info(&h
->pdev
->dev
,
4393 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4394 psa
[0], psa
[1], psa
[2], psa
[3],
4395 psa
[4], psa
[5], psa
[6], psa
[7]);
4396 rc
= hpsa_send_reset(h
, psa
, HPSA_RESET_TYPE_TARGET
);
4398 dev_warn(&h
->pdev
->dev
,
4399 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4400 psa
[0], psa
[1], psa
[2], psa
[3],
4401 psa
[4], psa
[5], psa
[6], psa
[7]);
4402 return rc
; /* failed to reset */
4405 /* wait for device to recover */
4406 if (wait_for_device_to_become_ready(h
, psa
) != 0) {
4407 dev_warn(&h
->pdev
->dev
,
4408 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4409 psa
[0], psa
[1], psa
[2], psa
[3],
4410 psa
[4], psa
[5], psa
[6], psa
[7]);
4411 return -1; /* failed to recover */
4414 /* device recovered */
4415 dev_info(&h
->pdev
->dev
,
4416 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4417 psa
[0], psa
[1], psa
[2], psa
[3],
4418 psa
[4], psa
[5], psa
[6], psa
[7]);
4420 return rc
; /* success */
4423 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4424 * tell which kind we're dealing with, so we send the abort both ways. There
4425 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4426 * way we construct our tags but we check anyway in case the assumptions which
4427 * make this true someday become false.
4429 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
4430 unsigned char *scsi3addr
, struct CommandList
*abort
)
4433 struct CommandList
*c
;
4434 int rc
= 0, rc2
= 0;
4436 /* ioccelerator mode 2 commands should be aborted via the
4437 * accelerated path, since RAID path is unaware of these commands,
4438 * but underlying firmware can't handle abort TMF.
4439 * Change abort to physical device reset.
4441 if (abort
->cmd_type
== CMD_IOACCEL2
)
4442 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
, abort
);
4444 /* we do not expect to find the swizzled tag in our queue, but
4445 * check anyway just to be sure the assumptions which make this
4446 * the case haven't become wrong.
4448 memcpy(swizzled_tag
, &abort
->Request
.CDB
[4], 8);
4449 swizzle_abort_tag(swizzled_tag
);
4450 c
= hpsa_find_cmd_in_queue_by_tag(h
, swizzled_tag
, &h
->cmpQ
);
4452 dev_warn(&h
->pdev
->dev
, "Unexpectedly found byte-swapped tag in completion queue.\n");
4453 return hpsa_send_abort(h
, scsi3addr
, abort
, 0);
4455 rc
= hpsa_send_abort(h
, scsi3addr
, abort
, 0);
4457 /* if the command is still in our queue, we can't conclude that it was
4458 * aborted (it might have just completed normally) but in any case
4459 * we don't need to try to abort it another way.
4461 c
= hpsa_find_cmd_in_queue(h
, abort
->scsi_cmd
, &h
->cmpQ
);
4463 rc2
= hpsa_send_abort(h
, scsi3addr
, abort
, 1);
4467 /* Send an abort for the specified command.
4468 * If the device and controller support it,
4469 * send a task abort request.
4471 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
4475 struct ctlr_info
*h
;
4476 struct hpsa_scsi_dev_t
*dev
;
4477 struct CommandList
*abort
; /* pointer to command to be aborted */
4478 struct CommandList
*found
;
4479 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
4480 char msg
[256]; /* For debug messaging. */
4482 u32 tagupper
, taglower
;
4484 /* Find the controller of the command to be aborted */
4485 h
= sdev_to_hba(sc
->device
);
4487 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4490 /* Check that controller supports some kind of task abort */
4491 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
4492 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
4495 memset(msg
, 0, sizeof(msg
));
4496 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4497 h
->scsi_host
->host_no
, sc
->device
->channel
,
4498 sc
->device
->id
, sc
->device
->lun
);
4500 /* Find the device of the command to be aborted */
4501 dev
= sc
->device
->hostdata
;
4503 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
4508 /* Get SCSI command to be aborted */
4509 abort
= (struct CommandList
*) sc
->host_scribble
;
4510 if (abort
== NULL
) {
4511 dev_err(&h
->pdev
->dev
, "%s FAILED, Command to abort is NULL.\n",
4515 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
4516 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
4517 as
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
4519 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
4520 as
->cmnd
[0], as
->serial_number
);
4521 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
4522 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
4523 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
4525 /* Search reqQ to See if command is queued but not submitted,
4526 * if so, complete the command with aborted status and remove
4529 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->reqQ
);
4531 found
->err_info
->CommandStatus
= CMD_ABORTED
;
4533 dev_info(&h
->pdev
->dev
, "%s Request SUCCEEDED (driver queue).\n",
4538 /* not in reqQ, if also not in cmpQ, must have already completed */
4539 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
4541 dev_dbg(&h
->pdev
->dev
, "%s Request SUCCEEDED (not known to driver).\n",
4547 * Command is in flight, or possibly already completed
4548 * by the firmware (but not to the scsi mid layer) but we can't
4549 * distinguish which. Send the abort down.
4551 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
4553 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
4554 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4555 h
->scsi_host
->host_no
,
4556 dev
->bus
, dev
->target
, dev
->lun
);
4559 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
4561 /* If the abort(s) above completed and actually aborted the
4562 * command, then the command to be aborted should already be
4563 * completed. If not, wait around a bit more to see if they
4564 * manage to complete normally.
4566 #define ABORT_COMPLETE_WAIT_SECS 30
4567 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
4568 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
4573 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4574 msg
, ABORT_COMPLETE_WAIT_SECS
);
4580 * For operations that cannot sleep, a command block is allocated at init,
4581 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4582 * which ones are free or in use. Lock must be held when calling this.
4583 * cmd_free() is the complement.
4585 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
4587 struct CommandList
*c
;
4589 union u64bit temp64
;
4590 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4593 /* There is some *extremely* small but non-zero chance that that
4594 * multiple threads could get in here, and one thread could
4595 * be scanning through the list of bits looking for a free
4596 * one, but the free ones are always behind him, and other
4597 * threads sneak in behind him and eat them before he can
4598 * get to them, so that while there is always a free one, a
4599 * very unlucky thread might be starved anyway, never able to
4600 * beat the other threads. In reality, this happens so
4601 * infrequently as to be indistinguishable from never.
4606 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
4607 if (i
== h
->nr_cmds
)
4610 } while (test_and_set_bit(i
& (BITS_PER_LONG
- 1),
4611 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0 &&
4614 /* Thread got starved? We do not expect this to ever happen. */
4615 if (loopcount
>= 10)
4618 c
= h
->cmd_pool
+ i
;
4619 memset(c
, 0, sizeof(*c
));
4620 cmd_dma_handle
= h
->cmd_pool_dhandle
4622 c
->err_info
= h
->errinfo_pool
+ i
;
4623 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4624 err_dma_handle
= h
->errinfo_pool_dhandle
4625 + i
* sizeof(*c
->err_info
);
4629 INIT_LIST_HEAD(&c
->list
);
4630 c
->busaddr
= (u32
) cmd_dma_handle
;
4631 temp64
.val
= (u64
) err_dma_handle
;
4632 c
->ErrDesc
.Addr
= cpu_to_le64(err_dma_handle
);
4633 c
->ErrDesc
.Len
= cpu_to_le32(sizeof(*c
->err_info
));
4639 /* For operations that can wait for kmalloc to possibly sleep,
4640 * this routine can be called. Lock need not be held to call
4641 * cmd_special_alloc. cmd_special_free() is the complement.
4643 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
)
4645 struct CommandList
*c
;
4646 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4648 c
= pci_zalloc_consistent(h
->pdev
, sizeof(*c
), &cmd_dma_handle
);
4652 c
->cmd_type
= CMD_SCSI
;
4655 c
->err_info
= pci_zalloc_consistent(h
->pdev
, sizeof(*c
->err_info
),
4658 if (c
->err_info
== NULL
) {
4659 pci_free_consistent(h
->pdev
,
4660 sizeof(*c
), c
, cmd_dma_handle
);
4664 INIT_LIST_HEAD(&c
->list
);
4665 c
->busaddr
= (u32
) cmd_dma_handle
;
4666 c
->ErrDesc
.Addr
= cpu_to_le64(err_dma_handle
);
4667 c
->ErrDesc
.Len
= cpu_to_le32(sizeof(*c
->err_info
));
4673 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
4677 i
= c
- h
->cmd_pool
;
4678 clear_bit(i
& (BITS_PER_LONG
- 1),
4679 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
4682 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
)
4684 pci_free_consistent(h
->pdev
, sizeof(*c
->err_info
),
4686 (dma_addr_t
) le64_to_cpu(c
->ErrDesc
.Addr
));
4687 pci_free_consistent(h
->pdev
, sizeof(*c
),
4688 c
, (dma_addr_t
) (c
->busaddr
& DIRECT_LOOKUP_MASK
));
4691 #ifdef CONFIG_COMPAT
4693 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
4696 IOCTL32_Command_struct __user
*arg32
=
4697 (IOCTL32_Command_struct __user
*) arg
;
4698 IOCTL_Command_struct arg64
;
4699 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
4703 memset(&arg64
, 0, sizeof(arg64
));
4705 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
4706 sizeof(arg64
.LUN_info
));
4707 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
4708 sizeof(arg64
.Request
));
4709 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
4710 sizeof(arg64
.error_info
));
4711 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
4712 err
|= get_user(cp
, &arg32
->buf
);
4713 arg64
.buf
= compat_ptr(cp
);
4714 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
4719 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
4722 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
4723 sizeof(arg32
->error_info
));
4729 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
4730 int cmd
, void __user
*arg
)
4732 BIG_IOCTL32_Command_struct __user
*arg32
=
4733 (BIG_IOCTL32_Command_struct __user
*) arg
;
4734 BIG_IOCTL_Command_struct arg64
;
4735 BIG_IOCTL_Command_struct __user
*p
=
4736 compat_alloc_user_space(sizeof(arg64
));
4740 memset(&arg64
, 0, sizeof(arg64
));
4742 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
4743 sizeof(arg64
.LUN_info
));
4744 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
4745 sizeof(arg64
.Request
));
4746 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
4747 sizeof(arg64
.error_info
));
4748 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
4749 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
4750 err
|= get_user(cp
, &arg32
->buf
);
4751 arg64
.buf
= compat_ptr(cp
);
4752 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
4757 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
4760 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
4761 sizeof(arg32
->error_info
));
4767 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
4770 case CCISS_GETPCIINFO
:
4771 case CCISS_GETINTINFO
:
4772 case CCISS_SETINTINFO
:
4773 case CCISS_GETNODENAME
:
4774 case CCISS_SETNODENAME
:
4775 case CCISS_GETHEARTBEAT
:
4776 case CCISS_GETBUSTYPES
:
4777 case CCISS_GETFIRMVER
:
4778 case CCISS_GETDRIVVER
:
4779 case CCISS_REVALIDVOLS
:
4780 case CCISS_DEREGDISK
:
4781 case CCISS_REGNEWDISK
:
4783 case CCISS_RESCANDISK
:
4784 case CCISS_GETLUNINFO
:
4785 return hpsa_ioctl(dev
, cmd
, arg
);
4787 case CCISS_PASSTHRU32
:
4788 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
4789 case CCISS_BIG_PASSTHRU32
:
4790 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
4793 return -ENOIOCTLCMD
;
4798 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4800 struct hpsa_pci_info pciinfo
;
4804 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
4805 pciinfo
.bus
= h
->pdev
->bus
->number
;
4806 pciinfo
.dev_fn
= h
->pdev
->devfn
;
4807 pciinfo
.board_id
= h
->board_id
;
4808 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
4813 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4815 DriverVer_type DriverVer
;
4816 unsigned char vmaj
, vmin
, vsubmin
;
4819 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
4820 &vmaj
, &vmin
, &vsubmin
);
4822 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
4823 "unrecognized.", HPSA_DRIVER_VERSION
);
4828 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
4831 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
4836 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4838 IOCTL_Command_struct iocommand
;
4839 struct CommandList
*c
;
4846 if (!capable(CAP_SYS_RAWIO
))
4848 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
4850 if ((iocommand
.buf_size
< 1) &&
4851 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
4854 if (iocommand
.buf_size
> 0) {
4855 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
4858 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
4859 /* Copy the data into the buffer we created */
4860 if (copy_from_user(buff
, iocommand
.buf
,
4861 iocommand
.buf_size
)) {
4866 memset(buff
, 0, iocommand
.buf_size
);
4869 c
= cmd_special_alloc(h
);
4874 /* Fill in the command type */
4875 c
->cmd_type
= CMD_IOCTL_PEND
;
4876 /* Fill in Command Header */
4877 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4878 if (iocommand
.buf_size
> 0) { /* buffer to fill */
4879 c
->Header
.SGList
= 1;
4880 c
->Header
.SGTotal
= cpu_to_le16(1);
4881 } else { /* no buffers to fill */
4882 c
->Header
.SGList
= 0;
4883 c
->Header
.SGTotal
= cpu_to_le16(0);
4885 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
4886 /* use the kernel address the cmd block for tag */
4887 c
->Header
.tag
= c
->busaddr
;
4889 /* Fill in Request block */
4890 memcpy(&c
->Request
, &iocommand
.Request
,
4891 sizeof(c
->Request
));
4893 /* Fill in the scatter gather information */
4894 if (iocommand
.buf_size
> 0) {
4895 temp64
= pci_map_single(h
->pdev
, buff
,
4896 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
4897 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
4898 c
->SG
[0].Addr
= cpu_to_le64(0);
4899 c
->SG
[0].Len
= cpu_to_le32(0);
4903 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
4904 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
4905 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
4907 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
4908 if (iocommand
.buf_size
> 0)
4909 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
4910 check_ioctl_unit_attention(h
, c
);
4912 /* Copy the error information out */
4913 memcpy(&iocommand
.error_info
, c
->err_info
,
4914 sizeof(iocommand
.error_info
));
4915 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
4919 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
4920 iocommand
.buf_size
> 0) {
4921 /* Copy the data out of the buffer we created */
4922 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
4928 cmd_special_free(h
, c
);
4934 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4936 BIG_IOCTL_Command_struct
*ioc
;
4937 struct CommandList
*c
;
4938 unsigned char **buff
= NULL
;
4939 int *buff_size
= NULL
;
4946 BYTE __user
*data_ptr
;
4950 if (!capable(CAP_SYS_RAWIO
))
4952 ioc
= (BIG_IOCTL_Command_struct
*)
4953 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
4958 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
4962 if ((ioc
->buf_size
< 1) &&
4963 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
4967 /* Check kmalloc limits using all SGs */
4968 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
4972 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
4976 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
4981 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
4986 left
= ioc
->buf_size
;
4987 data_ptr
= ioc
->buf
;
4989 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
4990 buff_size
[sg_used
] = sz
;
4991 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
4992 if (buff
[sg_used
] == NULL
) {
4996 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
4997 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
5002 memset(buff
[sg_used
], 0, sz
);
5007 c
= cmd_special_alloc(h
);
5012 c
->cmd_type
= CMD_IOCTL_PEND
;
5013 c
->Header
.ReplyQueue
= 0;
5014 c
->Header
.SGList
= (u8
) sg_used
;
5015 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
5016 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
5017 c
->Header
.tag
= c
->busaddr
;
5018 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
5019 if (ioc
->buf_size
> 0) {
5021 for (i
= 0; i
< sg_used
; i
++) {
5022 temp64
= pci_map_single(h
->pdev
, buff
[i
],
5023 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
5024 if (dma_mapping_error(&h
->pdev
->dev
,
5025 (dma_addr_t
) temp64
)) {
5026 c
->SG
[i
].Addr
= cpu_to_le64(0);
5027 c
->SG
[i
].Len
= cpu_to_le32(0);
5028 hpsa_pci_unmap(h
->pdev
, c
, i
,
5029 PCI_DMA_BIDIRECTIONAL
);
5033 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
5034 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
5035 c
->SG
[i
].Ext
= cpu_to_le32(0);
5037 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
5039 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
5041 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
5042 check_ioctl_unit_attention(h
, c
);
5043 /* Copy the error information out */
5044 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
5045 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
5049 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
5050 /* Copy the data out of the buffer we created */
5051 BYTE __user
*ptr
= ioc
->buf
;
5052 for (i
= 0; i
< sg_used
; i
++) {
5053 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
5057 ptr
+= buff_size
[i
];
5062 cmd_special_free(h
, c
);
5065 for (i
= 0; i
< sg_used
; i
++)
5074 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
5075 struct CommandList
*c
)
5077 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5078 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
5079 (void) check_for_unit_attention(h
, c
);
5082 static int increment_passthru_count(struct ctlr_info
*h
)
5084 unsigned long flags
;
5086 spin_lock_irqsave(&h
->passthru_count_lock
, flags
);
5087 if (h
->passthru_count
>= HPSA_MAX_CONCURRENT_PASSTHRUS
) {
5088 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
5091 h
->passthru_count
++;
5092 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
5096 static void decrement_passthru_count(struct ctlr_info
*h
)
5098 unsigned long flags
;
5100 spin_lock_irqsave(&h
->passthru_count_lock
, flags
);
5101 if (h
->passthru_count
<= 0) {
5102 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
5103 /* not expecting to get here. */
5104 dev_warn(&h
->pdev
->dev
, "Bug detected, passthru_count seems to be incorrect.\n");
5107 h
->passthru_count
--;
5108 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
5114 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
5116 struct ctlr_info
*h
;
5117 void __user
*argp
= (void __user
*)arg
;
5120 h
= sdev_to_hba(dev
);
5123 case CCISS_DEREGDISK
:
5124 case CCISS_REGNEWDISK
:
5126 hpsa_scan_start(h
->scsi_host
);
5128 case CCISS_GETPCIINFO
:
5129 return hpsa_getpciinfo_ioctl(h
, argp
);
5130 case CCISS_GETDRIVVER
:
5131 return hpsa_getdrivver_ioctl(h
, argp
);
5132 case CCISS_PASSTHRU
:
5133 if (increment_passthru_count(h
))
5135 rc
= hpsa_passthru_ioctl(h
, argp
);
5136 decrement_passthru_count(h
);
5138 case CCISS_BIG_PASSTHRU
:
5139 if (increment_passthru_count(h
))
5141 rc
= hpsa_big_passthru_ioctl(h
, argp
);
5142 decrement_passthru_count(h
);
5149 static int hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5152 struct CommandList
*c
;
5157 /* fill_cmd can't fail here, no data buffer to map */
5158 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
5159 RAID_CTLR_LUNID
, TYPE_MSG
);
5160 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
5162 enqueue_cmd_and_start_io(h
, c
);
5163 /* Don't wait for completion, the reset won't complete. Don't free
5164 * the command either. This is the last command we will send before
5165 * re-initializing everything, so it doesn't matter and won't leak.
5170 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
5171 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
5174 int pci_dir
= XFER_NONE
;
5175 struct CommandList
*a
; /* for commands to be aborted */
5178 c
->cmd_type
= CMD_IOCTL_PEND
;
5179 c
->Header
.ReplyQueue
= 0;
5180 if (buff
!= NULL
&& size
> 0) {
5181 c
->Header
.SGList
= 1;
5182 c
->Header
.SGTotal
= cpu_to_le16(1);
5184 c
->Header
.SGList
= 0;
5185 c
->Header
.SGTotal
= cpu_to_le16(0);
5187 c
->Header
.tag
= c
->busaddr
;
5188 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
5190 if (cmd_type
== TYPE_CMD
) {
5193 /* are we trying to read a vital product page */
5194 if (page_code
& VPD_PAGE
) {
5195 c
->Request
.CDB
[1] = 0x01;
5196 c
->Request
.CDB
[2] = (page_code
& 0xff);
5198 c
->Request
.CDBLen
= 6;
5199 c
->Request
.type_attr_dir
=
5200 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5201 c
->Request
.Timeout
= 0;
5202 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
5203 c
->Request
.CDB
[4] = size
& 0xFF;
5205 case HPSA_REPORT_LOG
:
5206 case HPSA_REPORT_PHYS
:
5207 /* Talking to controller so It's a physical command
5208 mode = 00 target = 0. Nothing to write.
5210 c
->Request
.CDBLen
= 12;
5211 c
->Request
.type_attr_dir
=
5212 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5213 c
->Request
.Timeout
= 0;
5214 c
->Request
.CDB
[0] = cmd
;
5215 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
5216 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5217 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5218 c
->Request
.CDB
[9] = size
& 0xFF;
5220 case HPSA_CACHE_FLUSH
:
5221 c
->Request
.CDBLen
= 12;
5222 c
->Request
.type_attr_dir
=
5223 TYPE_ATTR_DIR(cmd_type
,
5224 ATTR_SIMPLE
, XFER_WRITE
);
5225 c
->Request
.Timeout
= 0;
5226 c
->Request
.CDB
[0] = BMIC_WRITE
;
5227 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
5228 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
5229 c
->Request
.CDB
[8] = size
& 0xFF;
5231 case TEST_UNIT_READY
:
5232 c
->Request
.CDBLen
= 6;
5233 c
->Request
.type_attr_dir
=
5234 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
5235 c
->Request
.Timeout
= 0;
5237 case HPSA_GET_RAID_MAP
:
5238 c
->Request
.CDBLen
= 12;
5239 c
->Request
.type_attr_dir
=
5240 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5241 c
->Request
.Timeout
= 0;
5242 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
5243 c
->Request
.CDB
[1] = cmd
;
5244 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
5245 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5246 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5247 c
->Request
.CDB
[9] = size
& 0xFF;
5249 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
5250 c
->Request
.CDBLen
= 10;
5251 c
->Request
.type_attr_dir
=
5252 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5253 c
->Request
.Timeout
= 0;
5254 c
->Request
.CDB
[0] = BMIC_READ
;
5255 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
5256 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5257 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5260 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
5264 } else if (cmd_type
== TYPE_MSG
) {
5267 case HPSA_DEVICE_RESET_MSG
:
5268 c
->Request
.CDBLen
= 16;
5269 c
->Request
.type_attr_dir
=
5270 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
5271 c
->Request
.Timeout
= 0; /* Don't time out */
5272 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
5273 c
->Request
.CDB
[0] = cmd
;
5274 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
5275 /* If bytes 4-7 are zero, it means reset the */
5277 c
->Request
.CDB
[4] = 0x00;
5278 c
->Request
.CDB
[5] = 0x00;
5279 c
->Request
.CDB
[6] = 0x00;
5280 c
->Request
.CDB
[7] = 0x00;
5282 case HPSA_ABORT_MSG
:
5283 a
= buff
; /* point to command to be aborted */
5284 dev_dbg(&h
->pdev
->dev
, "Abort Tag:0x%016llx using request Tag:0x%016llx",
5285 a
->Header
.tag
, c
->Header
.tag
);
5286 tlower
= (u32
) (a
->Header
.tag
>> 32);
5287 tupper
= (u32
) (a
->Header
.tag
& 0x0ffffffffULL
);
5288 c
->Request
.CDBLen
= 16;
5289 c
->Request
.type_attr_dir
=
5290 TYPE_ATTR_DIR(cmd_type
,
5291 ATTR_SIMPLE
, XFER_WRITE
);
5292 c
->Request
.Timeout
= 0; /* Don't time out */
5293 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
5294 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
5295 c
->Request
.CDB
[2] = 0x00; /* reserved */
5296 c
->Request
.CDB
[3] = 0x00; /* reserved */
5297 /* Tag to abort goes in CDB[4]-CDB[11] */
5298 c
->Request
.CDB
[4] = tlower
& 0xFF;
5299 c
->Request
.CDB
[5] = (tlower
>> 8) & 0xFF;
5300 c
->Request
.CDB
[6] = (tlower
>> 16) & 0xFF;
5301 c
->Request
.CDB
[7] = (tlower
>> 24) & 0xFF;
5302 c
->Request
.CDB
[8] = tupper
& 0xFF;
5303 c
->Request
.CDB
[9] = (tupper
>> 8) & 0xFF;
5304 c
->Request
.CDB
[10] = (tupper
>> 16) & 0xFF;
5305 c
->Request
.CDB
[11] = (tupper
>> 24) & 0xFF;
5306 c
->Request
.CDB
[12] = 0x00; /* reserved */
5307 c
->Request
.CDB
[13] = 0x00; /* reserved */
5308 c
->Request
.CDB
[14] = 0x00; /* reserved */
5309 c
->Request
.CDB
[15] = 0x00; /* reserved */
5312 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
5317 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
5321 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
5323 pci_dir
= PCI_DMA_FROMDEVICE
;
5326 pci_dir
= PCI_DMA_TODEVICE
;
5329 pci_dir
= PCI_DMA_NONE
;
5332 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
5334 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
5340 * Map (physical) PCI mem into (virtual) kernel space
5342 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
5344 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
5345 ulong page_offs
= ((ulong
) base
) - page_base
;
5346 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
5349 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
5352 /* Takes cmds off the submission queue and sends them to the hardware,
5353 * then puts them on the queue of cmds waiting for completion.
5354 * Assumes h->lock is held
5356 static void start_io(struct ctlr_info
*h
, unsigned long *flags
)
5358 struct CommandList
*c
;
5360 while (!list_empty(&h
->reqQ
)) {
5361 c
= list_entry(h
->reqQ
.next
, struct CommandList
, list
);
5362 /* can't do anything if fifo is full */
5363 if ((h
->access
.fifo_full(h
))) {
5364 h
->fifo_recently_full
= 1;
5365 dev_warn(&h
->pdev
->dev
, "fifo full\n");
5368 h
->fifo_recently_full
= 0;
5370 /* Get the first entry from the Request Q */
5374 /* Put job onto the completed Q */
5376 atomic_inc(&h
->commands_outstanding
);
5377 spin_unlock_irqrestore(&h
->lock
, *flags
);
5378 /* Tell the controller execute command */
5379 h
->access
.submit_command(h
, c
);
5380 spin_lock_irqsave(&h
->lock
, *flags
);
5384 static void lock_and_start_io(struct ctlr_info
*h
)
5386 unsigned long flags
;
5388 spin_lock_irqsave(&h
->lock
, flags
);
5389 start_io(h
, &flags
);
5390 spin_unlock_irqrestore(&h
->lock
, flags
);
5393 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
5395 return h
->access
.command_completed(h
, q
);
5398 static inline bool interrupt_pending(struct ctlr_info
*h
)
5400 return h
->access
.intr_pending(h
);
5403 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
5405 return (h
->access
.intr_pending(h
) == 0) ||
5406 (h
->interrupts_enabled
== 0);
5409 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
5412 if (unlikely(tag_index
>= h
->nr_cmds
)) {
5413 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
5419 static inline void finish_cmd(struct CommandList
*c
)
5421 unsigned long flags
;
5422 int io_may_be_stalled
= 0;
5423 struct ctlr_info
*h
= c
->h
;
5426 spin_lock_irqsave(&h
->lock
, flags
);
5430 * Check for possibly stalled i/o.
5432 * If a fifo_full condition is encountered, requests will back up
5433 * in h->reqQ. This queue is only emptied out by start_io which is
5434 * only called when a new i/o request comes in. If no i/o's are
5435 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5436 * start_io from here if we detect such a danger.
5438 * Normally, we shouldn't hit this case, but pounding on the
5439 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5440 * commands_outstanding is low. We want to avoid calling
5441 * start_io from in here as much as possible, and esp. don't
5442 * want to get in a cycle where we call start_io every time
5445 count
= atomic_read(&h
->commands_outstanding
);
5446 spin_unlock_irqrestore(&h
->lock
, flags
);
5447 if (unlikely(h
->fifo_recently_full
) && count
< 5)
5448 io_may_be_stalled
= 1;
5450 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
5451 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
5452 || c
->cmd_type
== CMD_IOACCEL2
))
5453 complete_scsi_command(c
);
5454 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
5455 complete(c
->waiting
);
5456 if (unlikely(io_may_be_stalled
))
5457 lock_and_start_io(h
);
5460 static inline u32
hpsa_tag_contains_index(u32 tag
)
5462 return tag
& DIRECT_LOOKUP_BIT
;
5465 static inline u32
hpsa_tag_to_index(u32 tag
)
5467 return tag
>> DIRECT_LOOKUP_SHIFT
;
5471 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
5473 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5474 #define HPSA_SIMPLE_ERROR_BITS 0x03
5475 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
5476 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
5477 return tag
& ~HPSA_PERF_ERROR_BITS
;
5480 /* process completion of an indexed ("direct lookup") command */
5481 static inline void process_indexed_cmd(struct ctlr_info
*h
,
5485 struct CommandList
*c
;
5487 tag_index
= hpsa_tag_to_index(raw_tag
);
5488 if (!bad_tag(h
, tag_index
, raw_tag
)) {
5489 c
= h
->cmd_pool
+ tag_index
;
5494 /* process completion of a non-indexed command */
5495 static inline void process_nonindexed_cmd(struct ctlr_info
*h
,
5499 struct CommandList
*c
= NULL
;
5500 unsigned long flags
;
5502 tag
= hpsa_tag_discard_error_bits(h
, raw_tag
);
5503 spin_lock_irqsave(&h
->lock
, flags
);
5504 list_for_each_entry(c
, &h
->cmpQ
, list
) {
5505 if ((c
->busaddr
& 0xFFFFFFE0) == (tag
& 0xFFFFFFE0)) {
5506 spin_unlock_irqrestore(&h
->lock
, flags
);
5511 spin_unlock_irqrestore(&h
->lock
, flags
);
5512 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
5515 /* Some controllers, like p400, will give us one interrupt
5516 * after a soft reset, even if we turned interrupts off.
5517 * Only need to check for this in the hpsa_xxx_discard_completions
5520 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
5522 if (likely(!reset_devices
))
5525 if (likely(h
->interrupts_enabled
))
5528 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
5529 "(known firmware bug.) Ignoring.\n");
5535 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5536 * Relies on (h-q[x] == x) being true for x such that
5537 * 0 <= x < MAX_REPLY_QUEUES.
5539 static struct ctlr_info
*queue_to_hba(u8
*queue
)
5541 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
5544 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
5546 struct ctlr_info
*h
= queue_to_hba(queue
);
5547 u8 q
= *(u8
*) queue
;
5550 if (ignore_bogus_interrupt(h
))
5553 if (interrupt_not_for_us(h
))
5555 h
->last_intr_timestamp
= get_jiffies_64();
5556 while (interrupt_pending(h
)) {
5557 raw_tag
= get_next_completion(h
, q
);
5558 while (raw_tag
!= FIFO_EMPTY
)
5559 raw_tag
= next_command(h
, q
);
5564 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
5566 struct ctlr_info
*h
= queue_to_hba(queue
);
5568 u8 q
= *(u8
*) queue
;
5570 if (ignore_bogus_interrupt(h
))
5573 h
->last_intr_timestamp
= get_jiffies_64();
5574 raw_tag
= get_next_completion(h
, q
);
5575 while (raw_tag
!= FIFO_EMPTY
)
5576 raw_tag
= next_command(h
, q
);
5580 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
5582 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
5584 u8 q
= *(u8
*) queue
;
5586 if (interrupt_not_for_us(h
))
5588 h
->last_intr_timestamp
= get_jiffies_64();
5589 while (interrupt_pending(h
)) {
5590 raw_tag
= get_next_completion(h
, q
);
5591 while (raw_tag
!= FIFO_EMPTY
) {
5592 if (likely(hpsa_tag_contains_index(raw_tag
)))
5593 process_indexed_cmd(h
, raw_tag
);
5595 process_nonindexed_cmd(h
, raw_tag
);
5596 raw_tag
= next_command(h
, q
);
5602 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
5604 struct ctlr_info
*h
= queue_to_hba(queue
);
5606 u8 q
= *(u8
*) queue
;
5608 h
->last_intr_timestamp
= get_jiffies_64();
5609 raw_tag
= get_next_completion(h
, q
);
5610 while (raw_tag
!= FIFO_EMPTY
) {
5611 if (likely(hpsa_tag_contains_index(raw_tag
)))
5612 process_indexed_cmd(h
, raw_tag
);
5614 process_nonindexed_cmd(h
, raw_tag
);
5615 raw_tag
= next_command(h
, q
);
5620 /* Send a message CDB to the firmware. Careful, this only works
5621 * in simple mode, not performant mode due to the tag lookup.
5622 * We only ever use this immediately after a controller reset.
5624 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
5628 struct CommandListHeader CommandHeader
;
5629 struct RequestBlock Request
;
5630 struct ErrDescriptor ErrorDescriptor
;
5632 struct Command
*cmd
;
5633 static const size_t cmd_sz
= sizeof(*cmd
) +
5634 sizeof(cmd
->ErrorDescriptor
);
5636 uint32_t paddr32
, tag
;
5637 void __iomem
*vaddr
;
5640 vaddr
= pci_ioremap_bar(pdev
, 0);
5644 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5645 * CCISS commands, so they must be allocated from the lower 4GiB of
5648 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
5654 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
5660 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5661 * although there's no guarantee, we assume that the address is at
5662 * least 4-byte aligned (most likely, it's page-aligned).
5666 cmd
->CommandHeader
.ReplyQueue
= 0;
5667 cmd
->CommandHeader
.SGList
= 0;
5668 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
5669 cmd
->CommandHeader
.tag
= paddr32
;
5670 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
5672 cmd
->Request
.CDBLen
= 16;
5673 cmd
->Request
.type_attr_dir
=
5674 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
5675 cmd
->Request
.Timeout
= 0; /* Don't time out */
5676 cmd
->Request
.CDB
[0] = opcode
;
5677 cmd
->Request
.CDB
[1] = type
;
5678 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
5679 cmd
->ErrorDescriptor
.Addr
=
5680 cpu_to_le64((paddr32
+ sizeof(*cmd
)));
5681 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
5683 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
5685 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
5686 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
5687 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr32
)
5689 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
5694 /* we leak the DMA buffer here ... no choice since the controller could
5695 * still complete the command.
5697 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
5698 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
5703 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
5705 if (tag
& HPSA_ERROR_BIT
) {
5706 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
5711 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
5716 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5718 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
5719 void __iomem
*vaddr
, u32 use_doorbell
)
5725 /* For everything after the P600, the PCI power state method
5726 * of resetting the controller doesn't work, so we have this
5727 * other way using the doorbell register.
5729 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
5730 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
5732 /* PMC hardware guys tell us we need a 10 second delay after
5733 * doorbell reset and before any attempt to talk to the board
5734 * at all to ensure that this actually works and doesn't fall
5735 * over in some weird corner cases.
5738 } else { /* Try to do it the PCI power state way */
5740 /* Quoting from the Open CISS Specification: "The Power
5741 * Management Control/Status Register (CSR) controls the power
5742 * state of the device. The normal operating state is D0,
5743 * CSR=00h. The software off state is D3, CSR=03h. To reset
5744 * the controller, place the interface device in D3 then to D0,
5745 * this causes a secondary PCI reset which will reset the
5748 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
5751 "hpsa_reset_controller: "
5752 "PCI PM not supported\n");
5755 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
5756 /* enter the D3hot power management state */
5757 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
5758 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
5760 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
5764 /* enter the D0 power management state */
5765 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
5767 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
5770 * The P600 requires a small delay when changing states.
5771 * Otherwise we may think the board did not reset and we bail.
5772 * This for kdump only and is particular to the P600.
5779 static void init_driver_version(char *driver_version
, int len
)
5781 memset(driver_version
, 0, len
);
5782 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
5785 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
5787 char *driver_version
;
5788 int i
, size
= sizeof(cfgtable
->driver_version
);
5790 driver_version
= kmalloc(size
, GFP_KERNEL
);
5791 if (!driver_version
)
5794 init_driver_version(driver_version
, size
);
5795 for (i
= 0; i
< size
; i
++)
5796 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
5797 kfree(driver_version
);
5801 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
5802 unsigned char *driver_ver
)
5806 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
5807 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
5810 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
5813 char *driver_ver
, *old_driver_ver
;
5814 int rc
, size
= sizeof(cfgtable
->driver_version
);
5816 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
5817 if (!old_driver_ver
)
5819 driver_ver
= old_driver_ver
+ size
;
5821 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5822 * should have been changed, otherwise we know the reset failed.
5824 init_driver_version(old_driver_ver
, size
);
5825 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
5826 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
5827 kfree(old_driver_ver
);
5830 /* This does a hard reset of the controller using PCI power management
5831 * states or the using the doorbell register.
5833 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
5837 u64 cfg_base_addr_index
;
5838 void __iomem
*vaddr
;
5839 unsigned long paddr
;
5840 u32 misc_fw_support
;
5842 struct CfgTable __iomem
*cfgtable
;
5845 u16 command_register
;
5847 /* For controllers as old as the P600, this is very nearly
5850 * pci_save_state(pci_dev);
5851 * pci_set_power_state(pci_dev, PCI_D3hot);
5852 * pci_set_power_state(pci_dev, PCI_D0);
5853 * pci_restore_state(pci_dev);
5855 * For controllers newer than the P600, the pci power state
5856 * method of resetting doesn't work so we have another way
5857 * using the doorbell register.
5860 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
5861 if (rc
< 0 || !ctlr_is_resettable(board_id
)) {
5862 dev_warn(&pdev
->dev
, "Not resetting device.\n");
5866 /* if controller is soft- but not hard resettable... */
5867 if (!ctlr_is_hard_resettable(board_id
))
5868 return -ENOTSUPP
; /* try soft reset later. */
5870 /* Save the PCI command register */
5871 pci_read_config_word(pdev
, 4, &command_register
);
5872 pci_save_state(pdev
);
5874 /* find the first memory BAR, so we can find the cfg table */
5875 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
5878 vaddr
= remap_pci_mem(paddr
, 0x250);
5882 /* find cfgtable in order to check if reset via doorbell is supported */
5883 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
5884 &cfg_base_addr_index
, &cfg_offset
);
5887 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
5888 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
5893 rc
= write_driver_ver_to_cfgtable(cfgtable
);
5897 /* If reset via doorbell register is supported, use that.
5898 * There are two such methods. Favor the newest method.
5900 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
5901 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
5903 use_doorbell
= DOORBELL_CTLR_RESET2
;
5905 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
5907 dev_warn(&pdev
->dev
, "Soft reset not supported. "
5908 "Firmware update is required.\n");
5909 rc
= -ENOTSUPP
; /* try soft reset */
5910 goto unmap_cfgtable
;
5914 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
5916 goto unmap_cfgtable
;
5918 pci_restore_state(pdev
);
5919 pci_write_config_word(pdev
, 4, command_register
);
5921 /* Some devices (notably the HP Smart Array 5i Controller)
5922 need a little pause here */
5923 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
5925 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
5927 dev_warn(&pdev
->dev
,
5928 "failed waiting for board to become ready "
5929 "after hard reset\n");
5930 goto unmap_cfgtable
;
5933 rc
= controller_reset_failed(vaddr
);
5935 goto unmap_cfgtable
;
5937 dev_warn(&pdev
->dev
, "Unable to successfully reset "
5938 "controller. Will try soft reset.\n");
5941 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
5953 * We cannot read the structure directly, for portability we must use
5955 * This is for debug only.
5957 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
5963 dev_info(dev
, "Controller Configuration information\n");
5964 dev_info(dev
, "------------------------------------\n");
5965 for (i
= 0; i
< 4; i
++)
5966 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
5967 temp_name
[4] = '\0';
5968 dev_info(dev
, " Signature = %s\n", temp_name
);
5969 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
5970 dev_info(dev
, " Transport methods supported = 0x%x\n",
5971 readl(&(tb
->TransportSupport
)));
5972 dev_info(dev
, " Transport methods active = 0x%x\n",
5973 readl(&(tb
->TransportActive
)));
5974 dev_info(dev
, " Requested transport Method = 0x%x\n",
5975 readl(&(tb
->HostWrite
.TransportRequest
)));
5976 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
5977 readl(&(tb
->HostWrite
.CoalIntDelay
)));
5978 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
5979 readl(&(tb
->HostWrite
.CoalIntCount
)));
5980 dev_info(dev
, " Max outstanding commands = 0x%d\n",
5981 readl(&(tb
->CmdsOutMax
)));
5982 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
5983 for (i
= 0; i
< 16; i
++)
5984 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
5985 temp_name
[16] = '\0';
5986 dev_info(dev
, " Server Name = %s\n", temp_name
);
5987 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
5988 readl(&(tb
->HeartBeat
)));
5989 #endif /* HPSA_DEBUG */
5992 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
5994 int i
, offset
, mem_type
, bar_type
;
5996 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
5999 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
6000 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
6001 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
6004 mem_type
= pci_resource_flags(pdev
, i
) &
6005 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
6007 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
6008 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
6009 offset
+= 4; /* 32 bit */
6011 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
6014 default: /* reserved in PCI 2.2 */
6015 dev_warn(&pdev
->dev
,
6016 "base address is invalid\n");
6021 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
6027 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6028 * controllers that are capable. If not, we use IO-APIC mode.
6031 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
6033 #ifdef CONFIG_PCI_MSI
6035 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
6037 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
6038 hpsa_msix_entries
[i
].vector
= 0;
6039 hpsa_msix_entries
[i
].entry
= i
;
6042 /* Some boards advertise MSI but don't really support it */
6043 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
6044 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
6045 goto default_int_mode
;
6046 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
6047 dev_info(&h
->pdev
->dev
, "MSIX\n");
6048 h
->msix_vector
= MAX_REPLY_QUEUES
;
6049 if (h
->msix_vector
> num_online_cpus())
6050 h
->msix_vector
= num_online_cpus();
6051 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
6054 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
6056 goto single_msi_mode
;
6057 } else if (err
< h
->msix_vector
) {
6058 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
6059 "available\n", err
);
6061 h
->msix_vector
= err
;
6062 for (i
= 0; i
< h
->msix_vector
; i
++)
6063 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
6067 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
6068 dev_info(&h
->pdev
->dev
, "MSI\n");
6069 if (!pci_enable_msi(h
->pdev
))
6072 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
6075 #endif /* CONFIG_PCI_MSI */
6076 /* if we get here we're going to use the default interrupt mode */
6077 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
6080 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
6083 u32 subsystem_vendor_id
, subsystem_device_id
;
6085 subsystem_vendor_id
= pdev
->subsystem_vendor
;
6086 subsystem_device_id
= pdev
->subsystem_device
;
6087 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
6088 subsystem_vendor_id
;
6090 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
6091 if (*board_id
== products
[i
].board_id
)
6094 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
6095 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
6097 dev_warn(&pdev
->dev
, "unrecognized board ID: "
6098 "0x%08x, ignoring.\n", *board_id
);
6101 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
6104 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
6105 unsigned long *memory_bar
)
6109 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
6110 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
6111 /* addressing mode bits already removed */
6112 *memory_bar
= pci_resource_start(pdev
, i
);
6113 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
6117 dev_warn(&pdev
->dev
, "no memory BAR found\n");
6121 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
6127 iterations
= HPSA_BOARD_READY_ITERATIONS
;
6129 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
6131 for (i
= 0; i
< iterations
; i
++) {
6132 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
6133 if (wait_for_ready
) {
6134 if (scratchpad
== HPSA_FIRMWARE_READY
)
6137 if (scratchpad
!= HPSA_FIRMWARE_READY
)
6140 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
6142 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
6146 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
6147 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
6150 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
6151 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
6152 *cfg_base_addr
&= (u32
) 0x0000ffff;
6153 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
6154 if (*cfg_base_addr_index
== -1) {
6155 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
6161 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
6165 u64 cfg_base_addr_index
;
6169 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
6170 &cfg_base_addr_index
, &cfg_offset
);
6173 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
6174 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
6177 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
6180 /* Find performant mode table. */
6181 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
6182 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
6183 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
6184 sizeof(*h
->transtable
));
6190 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
6192 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
6194 /* Limit commands in memory limited kdump scenario. */
6195 if (reset_devices
&& h
->max_commands
> 32)
6196 h
->max_commands
= 32;
6198 if (h
->max_commands
< 16) {
6199 dev_warn(&h
->pdev
->dev
, "Controller reports "
6200 "max supported commands of %d, an obvious lie. "
6201 "Using 16. Ensure that firmware is up to date.\n",
6203 h
->max_commands
= 16;
6207 /* Interrogate the hardware for some limits:
6208 * max commands, max SG elements without chaining, and with chaining,
6209 * SG chain block size, etc.
6211 static void hpsa_find_board_params(struct ctlr_info
*h
)
6213 hpsa_get_max_perf_mode_cmds(h
);
6214 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
6215 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
6216 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
6218 * Limit in-command s/g elements to 32 save dma'able memory.
6219 * Howvever spec says if 0, use 31
6221 h
->max_cmd_sg_entries
= 31;
6222 if (h
->maxsgentries
> 512) {
6223 h
->max_cmd_sg_entries
= 32;
6224 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
6225 h
->maxsgentries
--; /* save one for chain pointer */
6228 h
->maxsgentries
= 31; /* default to traditional values */
6231 /* Find out what task management functions are supported and cache */
6232 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
6233 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
6234 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
6235 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6236 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
6239 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
6241 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
6242 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
6248 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
6252 driver_support
= readl(&(h
->cfgtable
->driver_support
));
6253 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6255 driver_support
|= ENABLE_SCSI_PREFETCH
;
6257 driver_support
|= ENABLE_UNIT_ATTN
;
6258 writel(driver_support
, &(h
->cfgtable
->driver_support
));
6261 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6262 * in a prefetch beyond physical memory.
6264 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
6268 if (h
->board_id
!= 0x3225103C)
6270 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
6271 dma_prefetch
|= 0x8000;
6272 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
6275 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
6279 unsigned long flags
;
6280 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6281 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
6282 spin_lock_irqsave(&h
->lock
, flags
);
6283 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
6284 spin_unlock_irqrestore(&h
->lock
, flags
);
6285 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
6287 /* delay and try again */
6292 static void hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
6296 unsigned long flags
;
6298 /* under certain very rare conditions, this can take awhile.
6299 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6300 * as we enter this code.)
6302 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
6303 spin_lock_irqsave(&h
->lock
, flags
);
6304 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
6305 spin_unlock_irqrestore(&h
->lock
, flags
);
6306 if (!(doorbell_value
& CFGTBL_ChangeReq
))
6308 /* delay and try again */
6309 usleep_range(10000, 20000);
6313 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
6317 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
6318 if (!(trans_support
& SIMPLE_MODE
))
6321 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
6323 /* Update the field, and then ring the doorbell */
6324 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
6325 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
6326 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
6327 hpsa_wait_for_mode_change_ack(h
);
6328 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
6329 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
6331 h
->transMethod
= CFGTBL_Trans_Simple
;
6334 dev_warn(&h
->pdev
->dev
, "unable to get board into simple mode\n");
6338 static int hpsa_pci_init(struct ctlr_info
*h
)
6340 int prod_index
, err
;
6342 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
6345 h
->product_name
= products
[prod_index
].product_name
;
6346 h
->access
= *(products
[prod_index
].access
);
6348 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
6349 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
6351 err
= pci_enable_device(h
->pdev
);
6353 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
6357 err
= pci_request_regions(h
->pdev
, HPSA
);
6359 dev_err(&h
->pdev
->dev
,
6360 "cannot obtain PCI resources, aborting\n");
6364 pci_set_master(h
->pdev
);
6366 hpsa_interrupt_mode(h
);
6367 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
6369 goto err_out_free_res
;
6370 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
6373 goto err_out_free_res
;
6375 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
6377 goto err_out_free_res
;
6378 err
= hpsa_find_cfgtables(h
);
6380 goto err_out_free_res
;
6381 hpsa_find_board_params(h
);
6383 if (!hpsa_CISS_signature_present(h
)) {
6385 goto err_out_free_res
;
6387 hpsa_set_driver_support_bits(h
);
6388 hpsa_p600_dma_prefetch_quirk(h
);
6389 err
= hpsa_enter_simple_mode(h
);
6391 goto err_out_free_res
;
6396 iounmap(h
->transtable
);
6398 iounmap(h
->cfgtable
);
6401 pci_disable_device(h
->pdev
);
6402 pci_release_regions(h
->pdev
);
6406 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
6410 #define HBA_INQUIRY_BYTE_COUNT 64
6411 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
6412 if (!h
->hba_inquiry_data
)
6414 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
6415 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
6417 kfree(h
->hba_inquiry_data
);
6418 h
->hba_inquiry_data
= NULL
;
6422 static int hpsa_init_reset_devices(struct pci_dev
*pdev
)
6429 /* kdump kernel is loading, we don't know in which state is
6430 * the pci interface. The dev->enable_cnt is equal zero
6431 * so we call enable+disable, wait a while and switch it on.
6433 rc
= pci_enable_device(pdev
);
6435 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
6438 pci_disable_device(pdev
);
6439 msleep(260); /* a randomly chosen number */
6440 rc
= pci_enable_device(pdev
);
6442 dev_warn(&pdev
->dev
, "failed to enable device.\n");
6446 pci_set_master(pdev
);
6448 /* Reset the controller with a PCI power-cycle or via doorbell */
6449 rc
= hpsa_kdump_hard_reset_controller(pdev
);
6451 /* -ENOTSUPP here means we cannot reset the controller
6452 * but it's already (and still) up and running in
6453 * "performant mode". Or, it might be 640x, which can't reset
6454 * due to concerns about shared bbwc between 6402/6404 pair.
6457 if (rc
!= -ENOTSUPP
) /* just try to do the kdump anyhow. */
6462 /* Now try to get the controller to respond to a no-op */
6463 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
6464 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
6465 if (hpsa_noop(pdev
) == 0)
6468 dev_warn(&pdev
->dev
, "no-op failed%s\n",
6469 (i
< 11 ? "; re-trying" : ""));
6474 pci_disable_device(pdev
);
6478 static int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
6480 h
->cmd_pool_bits
= kzalloc(
6481 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
6482 sizeof(unsigned long), GFP_KERNEL
);
6483 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
6484 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
6485 &(h
->cmd_pool_dhandle
));
6486 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
6487 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
6488 &(h
->errinfo_pool_dhandle
));
6489 if ((h
->cmd_pool_bits
== NULL
)
6490 || (h
->cmd_pool
== NULL
)
6491 || (h
->errinfo_pool
== NULL
)) {
6492 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
6498 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
6500 kfree(h
->cmd_pool_bits
);
6502 pci_free_consistent(h
->pdev
,
6503 h
->nr_cmds
* sizeof(struct CommandList
),
6504 h
->cmd_pool
, h
->cmd_pool_dhandle
);
6505 if (h
->ioaccel2_cmd_pool
)
6506 pci_free_consistent(h
->pdev
,
6507 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
6508 h
->ioaccel2_cmd_pool
, h
->ioaccel2_cmd_pool_dhandle
);
6509 if (h
->errinfo_pool
)
6510 pci_free_consistent(h
->pdev
,
6511 h
->nr_cmds
* sizeof(struct ErrorInfo
),
6513 h
->errinfo_pool_dhandle
);
6514 if (h
->ioaccel_cmd_pool
)
6515 pci_free_consistent(h
->pdev
,
6516 h
->nr_cmds
* sizeof(struct io_accel1_cmd
),
6517 h
->ioaccel_cmd_pool
, h
->ioaccel_cmd_pool_dhandle
);
6520 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
6524 cpu
= cpumask_first(cpu_online_mask
);
6525 for (i
= 0; i
< h
->msix_vector
; i
++) {
6526 rc
= irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
6527 cpu
= cpumask_next(cpu
, cpu_online_mask
);
6531 static int hpsa_request_irq(struct ctlr_info
*h
,
6532 irqreturn_t (*msixhandler
)(int, void *),
6533 irqreturn_t (*intxhandler
)(int, void *))
6538 * initialize h->q[x] = x so that interrupt handlers know which
6541 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
6544 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
6545 /* If performant mode and MSI-X, use multiple reply queues */
6546 for (i
= 0; i
< h
->msix_vector
; i
++)
6547 rc
= request_irq(h
->intr
[i
], msixhandler
,
6550 hpsa_irq_affinity_hints(h
);
6552 /* Use single reply pool */
6553 if (h
->msix_vector
> 0 || h
->msi_vector
) {
6554 rc
= request_irq(h
->intr
[h
->intr_mode
],
6555 msixhandler
, 0, h
->devname
,
6556 &h
->q
[h
->intr_mode
]);
6558 rc
= request_irq(h
->intr
[h
->intr_mode
],
6559 intxhandler
, IRQF_SHARED
, h
->devname
,
6560 &h
->q
[h
->intr_mode
]);
6564 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
6565 h
->intr
[h
->intr_mode
], h
->devname
);
6571 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
6573 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
6574 HPSA_RESET_TYPE_CONTROLLER
)) {
6575 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
6579 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
6580 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
6581 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
6585 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
6586 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
6587 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
6588 "after soft reset.\n");
6595 static void free_irqs(struct ctlr_info
*h
)
6599 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
6600 /* Single reply queue, only one irq to free */
6602 irq_set_affinity_hint(h
->intr
[i
], NULL
);
6603 free_irq(h
->intr
[i
], &h
->q
[i
]);
6607 for (i
= 0; i
< h
->msix_vector
; i
++) {
6608 irq_set_affinity_hint(h
->intr
[i
], NULL
);
6609 free_irq(h
->intr
[i
], &h
->q
[i
]);
6613 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
6616 #ifdef CONFIG_PCI_MSI
6617 if (h
->msix_vector
) {
6618 if (h
->pdev
->msix_enabled
)
6619 pci_disable_msix(h
->pdev
);
6620 } else if (h
->msi_vector
) {
6621 if (h
->pdev
->msi_enabled
)
6622 pci_disable_msi(h
->pdev
);
6624 #endif /* CONFIG_PCI_MSI */
6627 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
6631 for (i
= 0; i
< h
->nreply_queues
; i
++) {
6632 if (!h
->reply_queue
[i
].head
)
6634 pci_free_consistent(h
->pdev
, h
->reply_queue_size
,
6635 h
->reply_queue
[i
].head
, h
->reply_queue
[i
].busaddr
);
6636 h
->reply_queue
[i
].head
= NULL
;
6637 h
->reply_queue
[i
].busaddr
= 0;
6641 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
6643 hpsa_free_irqs_and_disable_msix(h
);
6644 hpsa_free_sg_chain_blocks(h
);
6645 hpsa_free_cmd_pool(h
);
6646 kfree(h
->ioaccel1_blockFetchTable
);
6647 kfree(h
->blockFetchTable
);
6648 hpsa_free_reply_queues(h
);
6652 iounmap(h
->transtable
);
6654 iounmap(h
->cfgtable
);
6655 pci_disable_device(h
->pdev
);
6656 pci_release_regions(h
->pdev
);
6660 /* Called when controller lockup detected. */
6661 static void fail_all_cmds_on_list(struct ctlr_info
*h
, struct list_head
*list
)
6663 struct CommandList
*c
= NULL
;
6665 assert_spin_locked(&h
->lock
);
6666 /* Mark all outstanding commands as failed and complete them. */
6667 while (!list_empty(list
)) {
6668 c
= list_entry(list
->next
, struct CommandList
, list
);
6669 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
6674 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
6678 cpu
= cpumask_first(cpu_online_mask
);
6679 for (i
= 0; i
< num_online_cpus(); i
++) {
6680 u32
*lockup_detected
;
6681 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
6682 *lockup_detected
= value
;
6683 cpu
= cpumask_next(cpu
, cpu_online_mask
);
6685 wmb(); /* be sure the per-cpu variables are out to memory */
6688 static void controller_lockup_detected(struct ctlr_info
*h
)
6690 unsigned long flags
;
6691 u32 lockup_detected
;
6693 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6694 spin_lock_irqsave(&h
->lock
, flags
);
6695 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
6696 if (!lockup_detected
) {
6697 /* no heartbeat, but controller gave us a zero. */
6698 dev_warn(&h
->pdev
->dev
,
6699 "lockup detected but scratchpad register is zero\n");
6700 lockup_detected
= 0xffffffff;
6702 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
6703 spin_unlock_irqrestore(&h
->lock
, flags
);
6704 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
6706 pci_disable_device(h
->pdev
);
6707 spin_lock_irqsave(&h
->lock
, flags
);
6708 fail_all_cmds_on_list(h
, &h
->cmpQ
);
6709 fail_all_cmds_on_list(h
, &h
->reqQ
);
6710 spin_unlock_irqrestore(&h
->lock
, flags
);
6713 static void detect_controller_lockup(struct ctlr_info
*h
)
6717 unsigned long flags
;
6719 now
= get_jiffies_64();
6720 /* If we've received an interrupt recently, we're ok. */
6721 if (time_after64(h
->last_intr_timestamp
+
6722 (h
->heartbeat_sample_interval
), now
))
6726 * If we've already checked the heartbeat recently, we're ok.
6727 * This could happen if someone sends us a signal. We
6728 * otherwise don't care about signals in this thread.
6730 if (time_after64(h
->last_heartbeat_timestamp
+
6731 (h
->heartbeat_sample_interval
), now
))
6734 /* If heartbeat has not changed since we last looked, we're not ok. */
6735 spin_lock_irqsave(&h
->lock
, flags
);
6736 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
6737 spin_unlock_irqrestore(&h
->lock
, flags
);
6738 if (h
->last_heartbeat
== heartbeat
) {
6739 controller_lockup_detected(h
);
6744 h
->last_heartbeat
= heartbeat
;
6745 h
->last_heartbeat_timestamp
= now
;
6748 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
6753 /* Clear the driver-requested rescan flag */
6754 h
->drv_req_rescan
= 0;
6756 /* Ask the controller to clear the events we're handling. */
6757 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
6758 | CFGTBL_Trans_io_accel2
)) &&
6759 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
6760 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
6762 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
6763 event_type
= "state change";
6764 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
6765 event_type
= "configuration change";
6766 /* Stop sending new RAID offload reqs via the IO accelerator */
6767 scsi_block_requests(h
->scsi_host
);
6768 for (i
= 0; i
< h
->ndevices
; i
++)
6769 h
->dev
[i
]->offload_enabled
= 0;
6770 hpsa_drain_accel_commands(h
);
6771 /* Set 'accelerator path config change' bit */
6772 dev_warn(&h
->pdev
->dev
,
6773 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6774 h
->events
, event_type
);
6775 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
6776 /* Set the "clear event notify field update" bit 6 */
6777 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
6778 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6779 hpsa_wait_for_clear_event_notify_ack(h
);
6780 scsi_unblock_requests(h
->scsi_host
);
6782 /* Acknowledge controller notification events. */
6783 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
6784 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
6785 hpsa_wait_for_clear_event_notify_ack(h
);
6787 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
6788 hpsa_wait_for_mode_change_ack(h
);
6794 /* Check a register on the controller to see if there are configuration
6795 * changes (added/changed/removed logical drives, etc.) which mean that
6796 * we should rescan the controller for devices.
6797 * Also check flag for driver-initiated rescan.
6799 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
6801 if (h
->drv_req_rescan
)
6804 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
6807 h
->events
= readl(&(h
->cfgtable
->event_notify
));
6808 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
6812 * Check if any of the offline devices have become ready
6814 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
6816 unsigned long flags
;
6817 struct offline_device_entry
*d
;
6818 struct list_head
*this, *tmp
;
6820 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6821 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
6822 d
= list_entry(this, struct offline_device_entry
,
6824 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6825 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
6826 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6827 list_del(&d
->offline_list
);
6828 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6831 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6833 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6838 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
6840 unsigned long flags
;
6841 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
6842 struct ctlr_info
, monitor_ctlr_work
);
6843 detect_controller_lockup(h
);
6844 if (lockup_detected(h
))
6847 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
6848 scsi_host_get(h
->scsi_host
);
6849 h
->drv_req_rescan
= 0;
6850 hpsa_ack_ctlr_events(h
);
6851 hpsa_scan_start(h
->scsi_host
);
6852 scsi_host_put(h
->scsi_host
);
6855 spin_lock_irqsave(&h
->lock
, flags
);
6856 if (h
->remove_in_progress
) {
6857 spin_unlock_irqrestore(&h
->lock
, flags
);
6860 schedule_delayed_work(&h
->monitor_ctlr_work
,
6861 h
->heartbeat_sample_interval
);
6862 spin_unlock_irqrestore(&h
->lock
, flags
);
6865 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6868 struct ctlr_info
*h
;
6869 int try_soft_reset
= 0;
6870 unsigned long flags
;
6872 if (number_of_controllers
== 0)
6873 printk(KERN_INFO DRIVER_NAME
"\n");
6875 rc
= hpsa_init_reset_devices(pdev
);
6877 if (rc
!= -ENOTSUPP
)
6879 /* If the reset fails in a particular way (it has no way to do
6880 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6881 * a soft reset once we get the controller configured up to the
6882 * point that it can accept a command.
6888 reinit_after_soft_reset
:
6890 /* Command structures must be aligned on a 32-byte boundary because
6891 * the 5 lower bits of the address are used by the hardware. and by
6892 * the driver. See comments in hpsa.h for more info.
6894 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
6895 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
6900 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
6901 INIT_LIST_HEAD(&h
->cmpQ
);
6902 INIT_LIST_HEAD(&h
->reqQ
);
6903 INIT_LIST_HEAD(&h
->offline_device_list
);
6904 spin_lock_init(&h
->lock
);
6905 spin_lock_init(&h
->offline_device_lock
);
6906 spin_lock_init(&h
->scan_lock
);
6907 spin_lock_init(&h
->passthru_count_lock
);
6909 /* Allocate and clear per-cpu variable lockup_detected */
6910 h
->lockup_detected
= alloc_percpu(u32
);
6911 if (!h
->lockup_detected
) {
6915 set_lockup_detected_for_all_cpus(h
, 0);
6917 rc
= hpsa_pci_init(h
);
6921 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
6922 h
->ctlr
= number_of_controllers
;
6923 number_of_controllers
++;
6925 /* configure PCI DMA stuff */
6926 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
6930 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
6934 dev_err(&pdev
->dev
, "no suitable DMA available\n");
6939 /* make sure the board interrupts are off */
6940 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6942 if (hpsa_request_irq(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
6944 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
6945 h
->devname
, pdev
->device
,
6946 h
->intr
[h
->intr_mode
], dac
? "" : " not");
6947 if (hpsa_allocate_cmd_pool(h
))
6949 if (hpsa_allocate_sg_chain_blocks(h
))
6951 init_waitqueue_head(&h
->scan_wait_queue
);
6952 h
->scan_finished
= 1; /* no scan currently in progress */
6954 pci_set_drvdata(pdev
, h
);
6956 h
->hba_mode_enabled
= 0;
6957 h
->scsi_host
= NULL
;
6958 spin_lock_init(&h
->devlock
);
6959 hpsa_put_ctlr_into_performant_mode(h
);
6961 /* At this point, the controller is ready to take commands.
6962 * Now, if reset_devices and the hard reset didn't work, try
6963 * the soft reset and see if that works.
6965 if (try_soft_reset
) {
6967 /* This is kind of gross. We may or may not get a completion
6968 * from the soft reset command, and if we do, then the value
6969 * from the fifo may or may not be valid. So, we wait 10 secs
6970 * after the reset throwing away any completions we get during
6971 * that time. Unregister the interrupt handler and register
6972 * fake ones to scoop up any residual completions.
6974 spin_lock_irqsave(&h
->lock
, flags
);
6975 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6976 spin_unlock_irqrestore(&h
->lock
, flags
);
6978 rc
= hpsa_request_irq(h
, hpsa_msix_discard_completions
,
6979 hpsa_intx_discard_completions
);
6981 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
6986 rc
= hpsa_kdump_soft_reset(h
);
6988 /* Neither hard nor soft reset worked, we're hosed. */
6991 dev_info(&h
->pdev
->dev
, "Board READY.\n");
6992 dev_info(&h
->pdev
->dev
,
6993 "Waiting for stale completions to drain.\n");
6994 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
6996 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6998 rc
= controller_reset_failed(h
->cfgtable
);
7000 dev_info(&h
->pdev
->dev
,
7001 "Soft reset appears to have failed.\n");
7003 /* since the controller's reset, we have to go back and re-init
7004 * everything. Easiest to just forget what we've done and do it
7007 hpsa_undo_allocations_after_kdump_soft_reset(h
);
7010 /* don't go to clean4, we already unallocated */
7013 goto reinit_after_soft_reset
;
7016 /* Enable Accelerated IO path at driver layer */
7017 h
->acciopath_status
= 1;
7019 h
->drv_req_rescan
= 0;
7021 /* Turn the interrupts on so we can service requests */
7022 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
7024 hpsa_hba_inquiry(h
);
7025 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
7027 /* Monitor the controller for firmware lockups */
7028 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
7029 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
7030 schedule_delayed_work(&h
->monitor_ctlr_work
,
7031 h
->heartbeat_sample_interval
);
7035 hpsa_free_sg_chain_blocks(h
);
7036 hpsa_free_cmd_pool(h
);
7040 if (h
->lockup_detected
)
7041 free_percpu(h
->lockup_detected
);
7046 static void hpsa_flush_cache(struct ctlr_info
*h
)
7049 struct CommandList
*c
;
7051 /* Don't bother trying to flush the cache if locked up */
7052 if (unlikely(lockup_detected(h
)))
7054 flush_buf
= kzalloc(4, GFP_KERNEL
);
7058 c
= cmd_special_alloc(h
);
7060 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
7063 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
7064 RAID_CTLR_LUNID
, TYPE_CMD
)) {
7067 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
7068 if (c
->err_info
->CommandStatus
!= 0)
7070 dev_warn(&h
->pdev
->dev
,
7071 "error flushing cache on controller\n");
7072 cmd_special_free(h
, c
);
7077 static void hpsa_shutdown(struct pci_dev
*pdev
)
7079 struct ctlr_info
*h
;
7081 h
= pci_get_drvdata(pdev
);
7082 /* Turn board interrupts off and send the flush cache command
7083 * sendcmd will turn off interrupt, and send the flush...
7084 * To write all data in the battery backed cache to disks
7086 hpsa_flush_cache(h
);
7087 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7088 hpsa_free_irqs_and_disable_msix(h
);
7091 static void hpsa_free_device_info(struct ctlr_info
*h
)
7095 for (i
= 0; i
< h
->ndevices
; i
++)
7099 static void hpsa_remove_one(struct pci_dev
*pdev
)
7101 struct ctlr_info
*h
;
7102 unsigned long flags
;
7104 if (pci_get_drvdata(pdev
) == NULL
) {
7105 dev_err(&pdev
->dev
, "unable to remove device\n");
7108 h
= pci_get_drvdata(pdev
);
7110 /* Get rid of any controller monitoring work items */
7111 spin_lock_irqsave(&h
->lock
, flags
);
7112 h
->remove_in_progress
= 1;
7113 cancel_delayed_work(&h
->monitor_ctlr_work
);
7114 spin_unlock_irqrestore(&h
->lock
, flags
);
7116 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
7117 hpsa_shutdown(pdev
);
7119 iounmap(h
->transtable
);
7120 iounmap(h
->cfgtable
);
7121 hpsa_free_device_info(h
);
7122 hpsa_free_sg_chain_blocks(h
);
7123 pci_free_consistent(h
->pdev
,
7124 h
->nr_cmds
* sizeof(struct CommandList
),
7125 h
->cmd_pool
, h
->cmd_pool_dhandle
);
7126 pci_free_consistent(h
->pdev
,
7127 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7128 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
7129 hpsa_free_reply_queues(h
);
7130 kfree(h
->cmd_pool_bits
);
7131 kfree(h
->blockFetchTable
);
7132 kfree(h
->ioaccel1_blockFetchTable
);
7133 kfree(h
->ioaccel2_blockFetchTable
);
7134 kfree(h
->hba_inquiry_data
);
7135 pci_disable_device(pdev
);
7136 pci_release_regions(pdev
);
7137 free_percpu(h
->lockup_detected
);
7141 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
7142 __attribute__((unused
)) pm_message_t state
)
7147 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
7152 static struct pci_driver hpsa_pci_driver
= {
7154 .probe
= hpsa_init_one
,
7155 .remove
= hpsa_remove_one
,
7156 .id_table
= hpsa_pci_device_id
, /* id_table */
7157 .shutdown
= hpsa_shutdown
,
7158 .suspend
= hpsa_suspend
,
7159 .resume
= hpsa_resume
,
7162 /* Fill in bucket_map[], given nsgs (the max number of
7163 * scatter gather elements supported) and bucket[],
7164 * which is an array of 8 integers. The bucket[] array
7165 * contains 8 different DMA transfer sizes (in 16
7166 * byte increments) which the controller uses to fetch
7167 * commands. This function fills in bucket_map[], which
7168 * maps a given number of scatter gather elements to one of
7169 * the 8 DMA transfer sizes. The point of it is to allow the
7170 * controller to only do as much DMA as needed to fetch the
7171 * command, with the DMA transfer size encoded in the lower
7172 * bits of the command address.
7174 static void calc_bucket_map(int bucket
[], int num_buckets
,
7175 int nsgs
, int min_blocks
, int *bucket_map
)
7179 /* Note, bucket_map must have nsgs+1 entries. */
7180 for (i
= 0; i
<= nsgs
; i
++) {
7181 /* Compute size of a command with i SG entries */
7182 size
= i
+ min_blocks
;
7183 b
= num_buckets
; /* Assume the biggest bucket */
7184 /* Find the bucket that is just big enough */
7185 for (j
= 0; j
< num_buckets
; j
++) {
7186 if (bucket
[j
] >= size
) {
7191 /* for a command with i SG entries, use bucket b. */
7196 static void hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
7199 unsigned long register_value
;
7200 unsigned long transMethod
= CFGTBL_Trans_Performant
|
7201 (trans_support
& CFGTBL_Trans_use_short_tags
) |
7202 CFGTBL_Trans_enable_directed_msix
|
7203 (trans_support
& (CFGTBL_Trans_io_accel1
|
7204 CFGTBL_Trans_io_accel2
));
7205 struct access_method access
= SA5_performant_access
;
7207 /* This is a bit complicated. There are 8 registers on
7208 * the controller which we write to to tell it 8 different
7209 * sizes of commands which there may be. It's a way of
7210 * reducing the DMA done to fetch each command. Encoded into
7211 * each command's tag are 3 bits which communicate to the controller
7212 * which of the eight sizes that command fits within. The size of
7213 * each command depends on how many scatter gather entries there are.
7214 * Each SG entry requires 16 bytes. The eight registers are programmed
7215 * with the number of 16-byte blocks a command of that size requires.
7216 * The smallest command possible requires 5 such 16 byte blocks.
7217 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7218 * blocks. Note, this only extends to the SG entries contained
7219 * within the command block, and does not extend to chained blocks
7220 * of SG elements. bft[] contains the eight values we write to
7221 * the registers. They are not evenly distributed, but have more
7222 * sizes for small commands, and fewer sizes for larger commands.
7224 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
7225 #define MIN_IOACCEL2_BFT_ENTRY 5
7226 #define HPSA_IOACCEL2_HEADER_SZ 4
7227 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
7228 13, 14, 15, 16, 17, 18, 19,
7229 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
7230 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
7231 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
7232 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
7233 16 * MIN_IOACCEL2_BFT_ENTRY
);
7234 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
7235 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
7236 /* 5 = 1 s/g entry or 4k
7237 * 6 = 2 s/g entry or 8k
7238 * 8 = 4 s/g entry or 16k
7239 * 10 = 6 s/g entry or 24k
7242 /* If the controller supports either ioaccel method then
7243 * we can also use the RAID stack submit path that does not
7244 * perform the superfluous readl() after each command submission.
7246 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
7247 access
= SA5_performant_access_no_read
;
7249 /* Controller spec: zero out this buffer. */
7250 for (i
= 0; i
< h
->nreply_queues
; i
++)
7251 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
7253 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
7254 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
7255 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
7256 for (i
= 0; i
< 8; i
++)
7257 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
7259 /* size of controller ring buffer */
7260 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
7261 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
7262 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
7263 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
7265 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7266 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
7267 writel(h
->reply_queue
[i
].busaddr
,
7268 &h
->transtable
->RepQAddr
[i
].lower
);
7271 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7272 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7274 * enable outbound interrupt coalescing in accelerator mode;
7276 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7277 access
= SA5_ioaccel_mode1_access
;
7278 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
7279 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
7281 if (trans_support
& CFGTBL_Trans_io_accel2
) {
7282 access
= SA5_ioaccel_mode2_access
;
7283 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
7284 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
7287 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7288 hpsa_wait_for_mode_change_ack(h
);
7289 register_value
= readl(&(h
->cfgtable
->TransportActive
));
7290 if (!(register_value
& CFGTBL_Trans_Performant
)) {
7291 dev_warn(&h
->pdev
->dev
, "unable to get board into"
7292 " performant mode\n");
7295 /* Change the access methods to the performant access methods */
7297 h
->transMethod
= transMethod
;
7299 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
7300 (trans_support
& CFGTBL_Trans_io_accel2
)))
7303 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7304 /* Set up I/O accelerator mode */
7305 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7306 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
7307 h
->reply_queue
[i
].current_entry
=
7308 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
7310 bft
[7] = h
->ioaccel_maxsg
+ 8;
7311 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
7312 h
->ioaccel1_blockFetchTable
);
7314 /* initialize all reply queue entries to unused */
7315 for (i
= 0; i
< h
->nreply_queues
; i
++)
7316 memset(h
->reply_queue
[i
].head
,
7317 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
7318 h
->reply_queue_size
);
7320 /* set all the constant fields in the accelerator command
7321 * frames once at init time to save CPU cycles later.
7323 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7324 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
7326 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
7327 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
7328 (i
* sizeof(struct ErrorInfo
)));
7329 cp
->err_info_len
= sizeof(struct ErrorInfo
);
7330 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
7331 cp
->host_context_flags
= IOACCEL1_HCFLAGS_CISS_FORMAT
;
7332 cp
->timeout_sec
= 0;
7335 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
) |
7338 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
7339 (i
* sizeof(struct io_accel1_cmd
)));
7341 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
7342 u64 cfg_offset
, cfg_base_addr_index
;
7343 u32 bft2_offset
, cfg_base_addr
;
7346 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7347 &cfg_base_addr_index
, &cfg_offset
);
7348 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
7349 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
7350 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
7351 4, h
->ioaccel2_blockFetchTable
);
7352 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
7353 BUILD_BUG_ON(offsetof(struct CfgTable
,
7354 io_accel_request_size_offset
) != 0xb8);
7355 h
->ioaccel2_bft2_regs
=
7356 remap_pci_mem(pci_resource_start(h
->pdev
,
7357 cfg_base_addr_index
) +
7358 cfg_offset
+ bft2_offset
,
7360 sizeof(*h
->ioaccel2_bft2_regs
));
7361 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
7362 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
7364 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7365 hpsa_wait_for_mode_change_ack(h
);
7368 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info
*h
)
7371 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
7372 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
7373 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
7375 /* Command structures must be aligned on a 128-byte boundary
7376 * because the 7 lower bits of the address are used by the
7379 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
7380 IOACCEL1_COMMANDLIST_ALIGNMENT
);
7381 h
->ioaccel_cmd_pool
=
7382 pci_alloc_consistent(h
->pdev
,
7383 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
7384 &(h
->ioaccel_cmd_pool_dhandle
));
7386 h
->ioaccel1_blockFetchTable
=
7387 kmalloc(((h
->ioaccel_maxsg
+ 1) *
7388 sizeof(u32
)), GFP_KERNEL
);
7390 if ((h
->ioaccel_cmd_pool
== NULL
) ||
7391 (h
->ioaccel1_blockFetchTable
== NULL
))
7394 memset(h
->ioaccel_cmd_pool
, 0,
7395 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
7399 if (h
->ioaccel_cmd_pool
)
7400 pci_free_consistent(h
->pdev
,
7401 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
7402 h
->ioaccel_cmd_pool
, h
->ioaccel_cmd_pool_dhandle
);
7403 kfree(h
->ioaccel1_blockFetchTable
);
7407 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info
*h
)
7409 /* Allocate ioaccel2 mode command blocks and block fetch table */
7412 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
7413 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
7414 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
7416 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
7417 IOACCEL2_COMMANDLIST_ALIGNMENT
);
7418 h
->ioaccel2_cmd_pool
=
7419 pci_alloc_consistent(h
->pdev
,
7420 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
7421 &(h
->ioaccel2_cmd_pool_dhandle
));
7423 h
->ioaccel2_blockFetchTable
=
7424 kmalloc(((h
->ioaccel_maxsg
+ 1) *
7425 sizeof(u32
)), GFP_KERNEL
);
7427 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
7428 (h
->ioaccel2_blockFetchTable
== NULL
))
7431 memset(h
->ioaccel2_cmd_pool
, 0,
7432 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
7436 if (h
->ioaccel2_cmd_pool
)
7437 pci_free_consistent(h
->pdev
,
7438 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
7439 h
->ioaccel2_cmd_pool
, h
->ioaccel2_cmd_pool_dhandle
);
7440 kfree(h
->ioaccel2_blockFetchTable
);
7444 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
7447 unsigned long transMethod
= CFGTBL_Trans_Performant
|
7448 CFGTBL_Trans_use_short_tags
;
7451 if (hpsa_simple_mode
)
7454 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7455 if (!(trans_support
& PERFORMANT_MODE
))
7458 /* Check for I/O accelerator mode support */
7459 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7460 transMethod
|= CFGTBL_Trans_io_accel1
|
7461 CFGTBL_Trans_enable_directed_msix
;
7462 if (hpsa_alloc_ioaccel_cmd_and_bft(h
))
7465 if (trans_support
& CFGTBL_Trans_io_accel2
) {
7466 transMethod
|= CFGTBL_Trans_io_accel2
|
7467 CFGTBL_Trans_enable_directed_msix
;
7468 if (ioaccel2_alloc_cmds_and_bft(h
))
7473 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
7474 hpsa_get_max_perf_mode_cmds(h
);
7475 /* Performant mode ring buffer and supporting data structures */
7476 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
7478 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7479 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
7480 h
->reply_queue_size
,
7481 &(h
->reply_queue
[i
].busaddr
));
7482 if (!h
->reply_queue
[i
].head
)
7484 h
->reply_queue
[i
].size
= h
->max_commands
;
7485 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
7486 h
->reply_queue
[i
].current_entry
= 0;
7489 /* Need a block fetch table for performant mode */
7490 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
7491 sizeof(u32
)), GFP_KERNEL
);
7492 if (!h
->blockFetchTable
)
7495 hpsa_enter_performant_mode(h
, trans_support
);
7499 hpsa_free_reply_queues(h
);
7500 kfree(h
->blockFetchTable
);
7503 static int is_accelerated_cmd(struct CommandList
*c
)
7505 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
7508 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
7510 struct CommandList
*c
= NULL
;
7511 unsigned long flags
;
7514 do { /* wait for all outstanding commands to drain out */
7516 spin_lock_irqsave(&h
->lock
, flags
);
7517 list_for_each_entry(c
, &h
->cmpQ
, list
)
7518 accel_cmds_out
+= is_accelerated_cmd(c
);
7519 list_for_each_entry(c
, &h
->reqQ
, list
)
7520 accel_cmds_out
+= is_accelerated_cmd(c
);
7521 spin_unlock_irqrestore(&h
->lock
, flags
);
7522 if (accel_cmds_out
<= 0)
7529 * This is it. Register the PCI driver information for the cards we control
7530 * the OS will call our registered routines when it finds one of our cards.
7532 static int __init
hpsa_init(void)
7534 return pci_register_driver(&hpsa_pci_driver
);
7537 static void __exit
hpsa_cleanup(void)
7539 pci_unregister_driver(&hpsa_pci_driver
);
7542 static void __attribute__((unused
)) verify_offsets(void)
7544 #define VERIFY_OFFSET(member, offset) \
7545 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7547 VERIFY_OFFSET(structure_size
, 0);
7548 VERIFY_OFFSET(volume_blk_size
, 4);
7549 VERIFY_OFFSET(volume_blk_cnt
, 8);
7550 VERIFY_OFFSET(phys_blk_shift
, 16);
7551 VERIFY_OFFSET(parity_rotation_shift
, 17);
7552 VERIFY_OFFSET(strip_size
, 18);
7553 VERIFY_OFFSET(disk_starting_blk
, 20);
7554 VERIFY_OFFSET(disk_blk_cnt
, 28);
7555 VERIFY_OFFSET(data_disks_per_row
, 36);
7556 VERIFY_OFFSET(metadata_disks_per_row
, 38);
7557 VERIFY_OFFSET(row_cnt
, 40);
7558 VERIFY_OFFSET(layout_map_count
, 42);
7559 VERIFY_OFFSET(flags
, 44);
7560 VERIFY_OFFSET(dekindex
, 46);
7561 /* VERIFY_OFFSET(reserved, 48 */
7562 VERIFY_OFFSET(data
, 64);
7564 #undef VERIFY_OFFSET
7566 #define VERIFY_OFFSET(member, offset) \
7567 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7569 VERIFY_OFFSET(IU_type
, 0);
7570 VERIFY_OFFSET(direction
, 1);
7571 VERIFY_OFFSET(reply_queue
, 2);
7572 /* VERIFY_OFFSET(reserved1, 3); */
7573 VERIFY_OFFSET(scsi_nexus
, 4);
7574 VERIFY_OFFSET(Tag
, 8);
7575 VERIFY_OFFSET(cdb
, 16);
7576 VERIFY_OFFSET(cciss_lun
, 32);
7577 VERIFY_OFFSET(data_len
, 40);
7578 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
7579 VERIFY_OFFSET(sg_count
, 45);
7580 /* VERIFY_OFFSET(reserved3 */
7581 VERIFY_OFFSET(err_ptr
, 48);
7582 VERIFY_OFFSET(err_len
, 56);
7583 /* VERIFY_OFFSET(reserved4 */
7584 VERIFY_OFFSET(sg
, 64);
7586 #undef VERIFY_OFFSET
7588 #define VERIFY_OFFSET(member, offset) \
7589 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7591 VERIFY_OFFSET(dev_handle
, 0x00);
7592 VERIFY_OFFSET(reserved1
, 0x02);
7593 VERIFY_OFFSET(function
, 0x03);
7594 VERIFY_OFFSET(reserved2
, 0x04);
7595 VERIFY_OFFSET(err_info
, 0x0C);
7596 VERIFY_OFFSET(reserved3
, 0x10);
7597 VERIFY_OFFSET(err_info_len
, 0x12);
7598 VERIFY_OFFSET(reserved4
, 0x13);
7599 VERIFY_OFFSET(sgl_offset
, 0x14);
7600 VERIFY_OFFSET(reserved5
, 0x15);
7601 VERIFY_OFFSET(transfer_len
, 0x1C);
7602 VERIFY_OFFSET(reserved6
, 0x20);
7603 VERIFY_OFFSET(io_flags
, 0x24);
7604 VERIFY_OFFSET(reserved7
, 0x26);
7605 VERIFY_OFFSET(LUN
, 0x34);
7606 VERIFY_OFFSET(control
, 0x3C);
7607 VERIFY_OFFSET(CDB
, 0x40);
7608 VERIFY_OFFSET(reserved8
, 0x50);
7609 VERIFY_OFFSET(host_context_flags
, 0x60);
7610 VERIFY_OFFSET(timeout_sec
, 0x62);
7611 VERIFY_OFFSET(ReplyQueue
, 0x64);
7612 VERIFY_OFFSET(reserved9
, 0x65);
7613 VERIFY_OFFSET(tag
, 0x68);
7614 VERIFY_OFFSET(host_addr
, 0x70);
7615 VERIFY_OFFSET(CISS_LUN
, 0x78);
7616 VERIFY_OFFSET(SG
, 0x78 + 8);
7617 #undef VERIFY_OFFSET
7620 module_init(hpsa_init
);
7621 module_exit(hpsa_cleanup
);