mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob6bb4611b238a8421813ab761ac1ecaa53a20cd6d
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.4-1"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
62 /* How long to wait (in milliseconds) for board to go into simple mode */
63 #define MAX_CONFIG_WAIT 30000
64 #define MAX_IOCTL_CONFIG_WAIT 1000
66 /*define how many times we will try a command because of bus resets */
67 #define MAX_CMD_RETRIES 3
69 /* Embedded module documentation macros - see modules.h */
70 MODULE_AUTHOR("Hewlett-Packard Company");
71 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 HPSA_DRIVER_VERSION);
73 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_VERSION(HPSA_DRIVER_VERSION);
75 MODULE_LICENSE("GPL");
77 static int hpsa_allow_any;
78 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_allow_any,
80 "Allow hpsa driver to access unknown HP Smart Array hardware");
81 static int hpsa_simple_mode;
82 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_simple_mode,
84 "Use 'simple mode' rather than 'performant mode'");
86 /* define the PCI info for the cards we can control */
87 static const struct pci_device_id hpsa_pci_device_id[] = {
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
128 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
134 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135 {0,}
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140 /* board_id = Subsystem Device ID & Vendor ID
141 * product = Marketing Name for the board
142 * access = Address of the struct of function pointers
144 static struct board_type products[] = {
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
153 {0x3350103C, "Smart Array P222", &SA5_access},
154 {0x3351103C, "Smart Array P420", &SA5_access},
155 {0x3352103C, "Smart Array P421", &SA5_access},
156 {0x3353103C, "Smart Array P822", &SA5_access},
157 {0x3354103C, "Smart Array P420i", &SA5_access},
158 {0x3355103C, "Smart Array P220i", &SA5_access},
159 {0x3356103C, "Smart Array P721m", &SA5_access},
160 {0x1921103C, "Smart Array P830i", &SA5_access},
161 {0x1922103C, "Smart Array P430", &SA5_access},
162 {0x1923103C, "Smart Array P431", &SA5_access},
163 {0x1924103C, "Smart Array P830", &SA5_access},
164 {0x1926103C, "Smart Array P731m", &SA5_access},
165 {0x1928103C, "Smart Array P230i", &SA5_access},
166 {0x1929103C, "Smart Array P530", &SA5_access},
167 {0x21BD103C, "Smart Array", &SA5_access},
168 {0x21BE103C, "Smart Array", &SA5_access},
169 {0x21BF103C, "Smart Array", &SA5_access},
170 {0x21C0103C, "Smart Array", &SA5_access},
171 {0x21C1103C, "Smart Array", &SA5_access},
172 {0x21C2103C, "Smart Array", &SA5_access},
173 {0x21C3103C, "Smart Array", &SA5_access},
174 {0x21C4103C, "Smart Array", &SA5_access},
175 {0x21C5103C, "Smart Array", &SA5_access},
176 {0x21C6103C, "Smart Array", &SA5_access},
177 {0x21C7103C, "Smart Array", &SA5_access},
178 {0x21C8103C, "Smart Array", &SA5_access},
179 {0x21C9103C, "Smart Array", &SA5_access},
180 {0x21CA103C, "Smart Array", &SA5_access},
181 {0x21CB103C, "Smart Array", &SA5_access},
182 {0x21CC103C, "Smart Array", &SA5_access},
183 {0x21CD103C, "Smart Array", &SA5_access},
184 {0x21CE103C, "Smart Array", &SA5_access},
185 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
186 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
187 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
188 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
189 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
190 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
193 static int number_of_controllers;
195 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
196 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
197 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
198 static void lock_and_start_io(struct ctlr_info *h);
199 static void start_io(struct ctlr_info *h, unsigned long *flags);
201 #ifdef CONFIG_COMPAT
202 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
203 void __user *arg);
204 #endif
206 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
207 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
208 static struct CommandList *cmd_alloc(struct ctlr_info *h);
209 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212 int cmd_type);
213 #define VPD_PAGE (1 << 8)
215 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 static void hpsa_scan_start(struct Scsi_Host *);
217 static int hpsa_scan_finished(struct Scsi_Host *sh,
218 unsigned long elapsed_time);
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_slave_alloc(struct scsi_device *sdev);
223 static void hpsa_slave_destroy(struct scsi_device *sdev);
225 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
226 static int check_for_unit_attention(struct ctlr_info *h,
227 struct CommandList *c);
228 static void check_ioctl_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket, int num_buckets,
232 int nsgs, int min_blocks, int *bucket_map);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
234 static inline u32 next_command(struct ctlr_info *h, u8 q);
235 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
236 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
237 u64 *cfg_offset);
238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
239 unsigned long *memory_bar);
240 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
241 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
242 int wait_for_ready);
243 static inline void finish_cmd(struct CommandList *c);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info *h);
248 static void hpsa_flush_cache(struct ctlr_info *h);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
250 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
251 u8 *scsi3addr);
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
255 unsigned long *priv = shost_priv(sdev->host);
256 return (struct ctlr_info *) *priv;
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
261 unsigned long *priv = shost_priv(sh);
262 return (struct ctlr_info *) *priv;
265 static int check_for_unit_attention(struct ctlr_info *h,
266 struct CommandList *c)
268 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269 return 0;
271 switch (c->err_info->SenseInfo[12]) {
272 case STATE_CHANGED:
273 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 "detected, command retried\n", h->ctlr);
275 break;
276 case LUN_FAILED:
277 dev_warn(&h->pdev->dev,
278 HPSA "%d: LUN failure detected\n", h->ctlr);
279 break;
280 case REPORT_LUNS_CHANGED:
281 dev_warn(&h->pdev->dev,
282 HPSA "%d: report LUN data changed\n", h->ctlr);
284 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 * target (array) devices.
287 break;
288 case POWER_OR_RESET:
289 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 "or device reset detected\n", h->ctlr);
291 break;
292 case UNIT_ATTENTION_CLEARED:
293 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 "cleared by another initiator\n", h->ctlr);
295 break;
296 default:
297 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 "unit attention detected\n", h->ctlr);
299 break;
301 return 1;
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
306 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309 return 0;
310 dev_warn(&h->pdev->dev, HPSA "device busy");
311 return 1;
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 struct device_attribute *attr,
316 const char *buf, size_t count)
318 int status, len;
319 struct ctlr_info *h;
320 struct Scsi_Host *shost = class_to_shost(dev);
321 char tmpbuf[10];
323 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324 return -EACCES;
325 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 strncpy(tmpbuf, buf, len);
327 tmpbuf[len] = '\0';
328 if (sscanf(tmpbuf, "%d", &status) != 1)
329 return -EINVAL;
330 h = shost_to_hba(shost);
331 h->acciopath_status = !!status;
332 dev_warn(&h->pdev->dev,
333 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 h->acciopath_status ? "enabled" : "disabled");
335 return count;
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 struct device_attribute *attr,
340 const char *buf, size_t count)
342 int debug_level, len;
343 struct ctlr_info *h;
344 struct Scsi_Host *shost = class_to_shost(dev);
345 char tmpbuf[10];
347 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348 return -EACCES;
349 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 strncpy(tmpbuf, buf, len);
351 tmpbuf[len] = '\0';
352 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353 return -EINVAL;
354 if (debug_level < 0)
355 debug_level = 0;
356 h = shost_to_hba(shost);
357 h->raid_offload_debug = debug_level;
358 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 h->raid_offload_debug);
360 return count;
363 static ssize_t host_store_rescan(struct device *dev,
364 struct device_attribute *attr,
365 const char *buf, size_t count)
367 struct ctlr_info *h;
368 struct Scsi_Host *shost = class_to_shost(dev);
369 h = shost_to_hba(shost);
370 hpsa_scan_start(h->scsi_host);
371 return count;
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 struct device_attribute *attr, char *buf)
377 struct ctlr_info *h;
378 struct Scsi_Host *shost = class_to_shost(dev);
379 unsigned char *fwrev;
381 h = shost_to_hba(shost);
382 if (!h->hba_inquiry_data)
383 return 0;
384 fwrev = &h->hba_inquiry_data[32];
385 return snprintf(buf, 20, "%c%c%c%c\n",
386 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 struct device_attribute *attr, char *buf)
392 struct Scsi_Host *shost = class_to_shost(dev);
393 struct ctlr_info *h = shost_to_hba(shost);
395 return snprintf(buf, 20, "%d\n",
396 atomic_read(&h->commands_outstanding));
399 static ssize_t host_show_transport_mode(struct device *dev,
400 struct device_attribute *attr, char *buf)
402 struct ctlr_info *h;
403 struct Scsi_Host *shost = class_to_shost(dev);
405 h = shost_to_hba(shost);
406 return snprintf(buf, 20, "%s\n",
407 h->transMethod & CFGTBL_Trans_Performant ?
408 "performant" : "simple");
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct ctlr_info *h;
415 struct Scsi_Host *shost = class_to_shost(dev);
417 h = shost_to_hba(shost);
418 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419 (h->acciopath_status == 1) ? "enabled" : "disabled");
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424 0x324a103C, /* Smart Array P712m */
425 0x324b103C, /* SmartArray P711m */
426 0x3223103C, /* Smart Array P800 */
427 0x3234103C, /* Smart Array P400 */
428 0x3235103C, /* Smart Array P400i */
429 0x3211103C, /* Smart Array E200i */
430 0x3212103C, /* Smart Array E200 */
431 0x3213103C, /* Smart Array E200i */
432 0x3214103C, /* Smart Array E200i */
433 0x3215103C, /* Smart Array E200i */
434 0x3237103C, /* Smart Array E500 */
435 0x323D103C, /* Smart Array P700m */
436 0x40800E11, /* Smart Array 5i */
437 0x409C0E11, /* Smart Array 6400 */
438 0x409D0E11, /* Smart Array 6400 EM */
439 0x40700E11, /* Smart Array 5300 */
440 0x40820E11, /* Smart Array 532 */
441 0x40830E11, /* Smart Array 5312 */
442 0x409A0E11, /* Smart Array 641 */
443 0x409B0E11, /* Smart Array 642 */
444 0x40910E11, /* Smart Array 6i */
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449 0x40800E11, /* Smart Array 5i */
450 0x40700E11, /* Smart Array 5300 */
451 0x40820E11, /* Smart Array 532 */
452 0x40830E11, /* Smart Array 5312 */
453 0x409A0E11, /* Smart Array 641 */
454 0x409B0E11, /* Smart Array 642 */
455 0x40910E11, /* Smart Array 6i */
456 /* Exclude 640x boards. These are two pci devices in one slot
457 * which share a battery backed cache module. One controls the
458 * cache, the other accesses the cache through the one that controls
459 * it. If we reset the one controlling the cache, the other will
460 * likely not be happy. Just forbid resetting this conjoined mess.
461 * The 640x isn't really supported by hpsa anyway.
463 0x409C0E11, /* Smart Array 6400 */
464 0x409D0E11, /* Smart Array 6400 EM */
467 static int ctlr_is_hard_resettable(u32 board_id)
469 int i;
471 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472 if (unresettable_controller[i] == board_id)
473 return 0;
474 return 1;
477 static int ctlr_is_soft_resettable(u32 board_id)
479 int i;
481 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482 if (soft_unresettable_controller[i] == board_id)
483 return 0;
484 return 1;
487 static int ctlr_is_resettable(u32 board_id)
489 return ctlr_is_hard_resettable(board_id) ||
490 ctlr_is_soft_resettable(board_id);
493 static ssize_t host_show_resettable(struct device *dev,
494 struct device_attribute *attr, char *buf)
496 struct ctlr_info *h;
497 struct Scsi_Host *shost = class_to_shost(dev);
499 h = shost_to_hba(shost);
500 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
505 return (scsi3addr[3] & 0xC0) == 0x40;
508 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
509 "1(ADM)", "UNKNOWN"
511 #define HPSA_RAID_0 0
512 #define HPSA_RAID_4 1
513 #define HPSA_RAID_1 2 /* also used for RAID 10 */
514 #define HPSA_RAID_5 3 /* also used for RAID 50 */
515 #define HPSA_RAID_51 4
516 #define HPSA_RAID_6 5 /* also used for RAID 60 */
517 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
520 static ssize_t raid_level_show(struct device *dev,
521 struct device_attribute *attr, char *buf)
523 ssize_t l = 0;
524 unsigned char rlevel;
525 struct ctlr_info *h;
526 struct scsi_device *sdev;
527 struct hpsa_scsi_dev_t *hdev;
528 unsigned long flags;
530 sdev = to_scsi_device(dev);
531 h = sdev_to_hba(sdev);
532 spin_lock_irqsave(&h->lock, flags);
533 hdev = sdev->hostdata;
534 if (!hdev) {
535 spin_unlock_irqrestore(&h->lock, flags);
536 return -ENODEV;
539 /* Is this even a logical drive? */
540 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541 spin_unlock_irqrestore(&h->lock, flags);
542 l = snprintf(buf, PAGE_SIZE, "N/A\n");
543 return l;
546 rlevel = hdev->raid_level;
547 spin_unlock_irqrestore(&h->lock, flags);
548 if (rlevel > RAID_UNKNOWN)
549 rlevel = RAID_UNKNOWN;
550 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551 return l;
554 static ssize_t lunid_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
557 struct ctlr_info *h;
558 struct scsi_device *sdev;
559 struct hpsa_scsi_dev_t *hdev;
560 unsigned long flags;
561 unsigned char lunid[8];
563 sdev = to_scsi_device(dev);
564 h = sdev_to_hba(sdev);
565 spin_lock_irqsave(&h->lock, flags);
566 hdev = sdev->hostdata;
567 if (!hdev) {
568 spin_unlock_irqrestore(&h->lock, flags);
569 return -ENODEV;
571 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572 spin_unlock_irqrestore(&h->lock, flags);
573 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574 lunid[0], lunid[1], lunid[2], lunid[3],
575 lunid[4], lunid[5], lunid[6], lunid[7]);
578 static ssize_t unique_id_show(struct device *dev,
579 struct device_attribute *attr, char *buf)
581 struct ctlr_info *h;
582 struct scsi_device *sdev;
583 struct hpsa_scsi_dev_t *hdev;
584 unsigned long flags;
585 unsigned char sn[16];
587 sdev = to_scsi_device(dev);
588 h = sdev_to_hba(sdev);
589 spin_lock_irqsave(&h->lock, flags);
590 hdev = sdev->hostdata;
591 if (!hdev) {
592 spin_unlock_irqrestore(&h->lock, flags);
593 return -ENODEV;
595 memcpy(sn, hdev->device_id, sizeof(sn));
596 spin_unlock_irqrestore(&h->lock, flags);
597 return snprintf(buf, 16 * 2 + 2,
598 "%02X%02X%02X%02X%02X%02X%02X%02X"
599 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 sn[0], sn[1], sn[2], sn[3],
601 sn[4], sn[5], sn[6], sn[7],
602 sn[8], sn[9], sn[10], sn[11],
603 sn[12], sn[13], sn[14], sn[15]);
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607 struct device_attribute *attr, char *buf)
609 struct ctlr_info *h;
610 struct scsi_device *sdev;
611 struct hpsa_scsi_dev_t *hdev;
612 unsigned long flags;
613 int offload_enabled;
615 sdev = to_scsi_device(dev);
616 h = sdev_to_hba(sdev);
617 spin_lock_irqsave(&h->lock, flags);
618 hdev = sdev->hostdata;
619 if (!hdev) {
620 spin_unlock_irqrestore(&h->lock, flags);
621 return -ENODEV;
623 offload_enabled = hdev->offload_enabled;
624 spin_unlock_irqrestore(&h->lock, flags);
625 return snprintf(buf, 20, "%d\n", offload_enabled);
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633 host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635 host_show_hp_ssd_smart_path_status,
636 host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638 host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640 host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642 host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644 host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646 host_show_resettable, NULL);
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649 &dev_attr_raid_level,
650 &dev_attr_lunid,
651 &dev_attr_unique_id,
652 &dev_attr_hp_ssd_smart_path_enabled,
653 NULL,
656 static struct device_attribute *hpsa_shost_attrs[] = {
657 &dev_attr_rescan,
658 &dev_attr_firmware_revision,
659 &dev_attr_commands_outstanding,
660 &dev_attr_transport_mode,
661 &dev_attr_resettable,
662 &dev_attr_hp_ssd_smart_path_status,
663 &dev_attr_raid_offload_debug,
664 NULL,
667 static struct scsi_host_template hpsa_driver_template = {
668 .module = THIS_MODULE,
669 .name = HPSA,
670 .proc_name = HPSA,
671 .queuecommand = hpsa_scsi_queue_command,
672 .scan_start = hpsa_scan_start,
673 .scan_finished = hpsa_scan_finished,
674 .change_queue_depth = scsi_change_queue_depth,
675 .this_id = -1,
676 .use_clustering = ENABLE_CLUSTERING,
677 .eh_abort_handler = hpsa_eh_abort_handler,
678 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
679 .ioctl = hpsa_ioctl,
680 .slave_alloc = hpsa_slave_alloc,
681 .slave_destroy = hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683 .compat_ioctl = hpsa_compat_ioctl,
684 #endif
685 .sdev_attrs = hpsa_sdev_attrs,
686 .shost_attrs = hpsa_shost_attrs,
687 .max_sectors = 8192,
688 .no_write_same = 1,
692 /* Enqueuing and dequeuing functions for cmdlists. */
693 static inline void addQ(struct list_head *list, struct CommandList *c)
695 list_add_tail(&c->list, list);
698 static inline u32 next_command(struct ctlr_info *h, u8 q)
700 u32 a;
701 struct reply_queue_buffer *rq = &h->reply_queue[q];
703 if (h->transMethod & CFGTBL_Trans_io_accel1)
704 return h->access.command_completed(h, q);
706 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
707 return h->access.command_completed(h, q);
709 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
710 a = rq->head[rq->current_entry];
711 rq->current_entry++;
712 atomic_dec(&h->commands_outstanding);
713 } else {
714 a = FIFO_EMPTY;
716 /* Check for wraparound */
717 if (rq->current_entry == h->max_commands) {
718 rq->current_entry = 0;
719 rq->wraparound ^= 1;
721 return a;
725 * There are some special bits in the bus address of the
726 * command that we have to set for the controller to know
727 * how to process the command:
729 * Normal performant mode:
730 * bit 0: 1 means performant mode, 0 means simple mode.
731 * bits 1-3 = block fetch table entry
732 * bits 4-6 = command type (== 0)
734 * ioaccel1 mode:
735 * bit 0 = "performant mode" bit.
736 * bits 1-3 = block fetch table entry
737 * bits 4-6 = command type (== 110)
738 * (command type is needed because ioaccel1 mode
739 * commands are submitted through the same register as normal
740 * mode commands, so this is how the controller knows whether
741 * the command is normal mode or ioaccel1 mode.)
743 * ioaccel2 mode:
744 * bit 0 = "performant mode" bit.
745 * bits 1-4 = block fetch table entry (note extra bit)
746 * bits 4-6 = not needed, because ioaccel2 mode has
747 * a separate special register for submitting commands.
750 /* set_performant_mode: Modify the tag for cciss performant
751 * set bit 0 for pull model, bits 3-1 for block fetch
752 * register number
754 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
756 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
757 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
758 if (likely(h->msix_vector > 0))
759 c->Header.ReplyQueue =
760 raw_smp_processor_id() % h->nreply_queues;
764 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
765 struct CommandList *c)
767 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
769 /* Tell the controller to post the reply to the queue for this
770 * processor. This seems to give the best I/O throughput.
772 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
773 /* Set the bits in the address sent down to include:
774 * - performant mode bit (bit 0)
775 * - pull count (bits 1-3)
776 * - command type (bits 4-6)
778 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
779 IOACCEL1_BUSADDR_CMDTYPE;
782 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
783 struct CommandList *c)
785 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
787 /* Tell the controller to post the reply to the queue for this
788 * processor. This seems to give the best I/O throughput.
790 cp->reply_queue = smp_processor_id() % h->nreply_queues;
791 /* Set the bits in the address sent down to include:
792 * - performant mode bit not used in ioaccel mode 2
793 * - pull count (bits 0-3)
794 * - command type isn't needed for ioaccel2
796 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799 static int is_firmware_flash_cmd(u8 *cdb)
801 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
805 * During firmware flash, the heartbeat register may not update as frequently
806 * as it should. So we dial down lockup detection during firmware flash. and
807 * dial it back up when firmware flash completes.
809 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
810 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
811 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
812 struct CommandList *c)
814 if (!is_firmware_flash_cmd(c->Request.CDB))
815 return;
816 atomic_inc(&h->firmware_flash_in_progress);
817 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
821 struct CommandList *c)
823 if (is_firmware_flash_cmd(c->Request.CDB) &&
824 atomic_dec_and_test(&h->firmware_flash_in_progress))
825 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
829 struct CommandList *c)
831 unsigned long flags;
833 switch (c->cmd_type) {
834 case CMD_IOACCEL1:
835 set_ioaccel1_performant_mode(h, c);
836 break;
837 case CMD_IOACCEL2:
838 set_ioaccel2_performant_mode(h, c);
839 break;
840 default:
841 set_performant_mode(h, c);
843 dial_down_lockup_detection_during_fw_flash(h, c);
844 spin_lock_irqsave(&h->lock, flags);
845 addQ(&h->reqQ, c);
846 h->Qdepth++;
847 start_io(h, &flags);
848 spin_unlock_irqrestore(&h->lock, flags);
851 static inline void removeQ(struct CommandList *c)
853 if (WARN_ON(list_empty(&c->list)))
854 return;
855 list_del_init(&c->list);
858 static inline int is_hba_lunid(unsigned char scsi3addr[])
860 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863 static inline int is_scsi_rev_5(struct ctlr_info *h)
865 if (!h->hba_inquiry_data)
866 return 0;
867 if ((h->hba_inquiry_data[2] & 0x07) == 5)
868 return 1;
869 return 0;
872 static int hpsa_find_target_lun(struct ctlr_info *h,
873 unsigned char scsi3addr[], int bus, int *target, int *lun)
875 /* finds an unused bus, target, lun for a new physical device
876 * assumes h->devlock is held
878 int i, found = 0;
879 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
881 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
883 for (i = 0; i < h->ndevices; i++) {
884 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
885 __set_bit(h->dev[i]->target, lun_taken);
888 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
889 if (i < HPSA_MAX_DEVICES) {
890 /* *bus = 1; */
891 *target = i;
892 *lun = 0;
893 found = 1;
895 return !found;
898 /* Add an entry into h->dev[] array. */
899 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
900 struct hpsa_scsi_dev_t *device,
901 struct hpsa_scsi_dev_t *added[], int *nadded)
903 /* assumes h->devlock is held */
904 int n = h->ndevices;
905 int i;
906 unsigned char addr1[8], addr2[8];
907 struct hpsa_scsi_dev_t *sd;
909 if (n >= HPSA_MAX_DEVICES) {
910 dev_err(&h->pdev->dev, "too many devices, some will be "
911 "inaccessible.\n");
912 return -1;
915 /* physical devices do not have lun or target assigned until now. */
916 if (device->lun != -1)
917 /* Logical device, lun is already assigned. */
918 goto lun_assigned;
920 /* If this device a non-zero lun of a multi-lun device
921 * byte 4 of the 8-byte LUN addr will contain the logical
922 * unit no, zero otherise.
924 if (device->scsi3addr[4] == 0) {
925 /* This is not a non-zero lun of a multi-lun device */
926 if (hpsa_find_target_lun(h, device->scsi3addr,
927 device->bus, &device->target, &device->lun) != 0)
928 return -1;
929 goto lun_assigned;
932 /* This is a non-zero lun of a multi-lun device.
933 * Search through our list and find the device which
934 * has the same 8 byte LUN address, excepting byte 4.
935 * Assign the same bus and target for this new LUN.
936 * Use the logical unit number from the firmware.
938 memcpy(addr1, device->scsi3addr, 8);
939 addr1[4] = 0;
940 for (i = 0; i < n; i++) {
941 sd = h->dev[i];
942 memcpy(addr2, sd->scsi3addr, 8);
943 addr2[4] = 0;
944 /* differ only in byte 4? */
945 if (memcmp(addr1, addr2, 8) == 0) {
946 device->bus = sd->bus;
947 device->target = sd->target;
948 device->lun = device->scsi3addr[4];
949 break;
952 if (device->lun == -1) {
953 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
954 " suspect firmware bug or unsupported hardware "
955 "configuration.\n");
956 return -1;
959 lun_assigned:
961 h->dev[n] = device;
962 h->ndevices++;
963 added[*nadded] = device;
964 (*nadded)++;
966 /* initially, (before registering with scsi layer) we don't
967 * know our hostno and we don't want to print anything first
968 * time anyway (the scsi layer's inquiries will show that info)
970 /* if (hostno != -1) */
971 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
972 scsi_device_type(device->devtype), hostno,
973 device->bus, device->target, device->lun);
974 return 0;
977 /* Update an entry in h->dev[] array. */
978 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
979 int entry, struct hpsa_scsi_dev_t *new_entry)
981 /* assumes h->devlock is held */
982 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
984 /* Raid level changed. */
985 h->dev[entry]->raid_level = new_entry->raid_level;
987 /* Raid offload parameters changed. */
988 h->dev[entry]->offload_config = new_entry->offload_config;
989 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
991 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
992 h->dev[entry]->raid_map = new_entry->raid_map;
994 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
995 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
996 new_entry->target, new_entry->lun);
999 /* Replace an entry from h->dev[] array. */
1000 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1001 int entry, struct hpsa_scsi_dev_t *new_entry,
1002 struct hpsa_scsi_dev_t *added[], int *nadded,
1003 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1005 /* assumes h->devlock is held */
1006 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1007 removed[*nremoved] = h->dev[entry];
1008 (*nremoved)++;
1011 * New physical devices won't have target/lun assigned yet
1012 * so we need to preserve the values in the slot we are replacing.
1014 if (new_entry->target == -1) {
1015 new_entry->target = h->dev[entry]->target;
1016 new_entry->lun = h->dev[entry]->lun;
1019 h->dev[entry] = new_entry;
1020 added[*nadded] = new_entry;
1021 (*nadded)++;
1022 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1023 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1024 new_entry->target, new_entry->lun);
1027 /* Remove an entry from h->dev[] array. */
1028 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1029 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1031 /* assumes h->devlock is held */
1032 int i;
1033 struct hpsa_scsi_dev_t *sd;
1035 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1037 sd = h->dev[entry];
1038 removed[*nremoved] = h->dev[entry];
1039 (*nremoved)++;
1041 for (i = entry; i < h->ndevices-1; i++)
1042 h->dev[i] = h->dev[i+1];
1043 h->ndevices--;
1044 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1045 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1046 sd->lun);
1049 #define SCSI3ADDR_EQ(a, b) ( \
1050 (a)[7] == (b)[7] && \
1051 (a)[6] == (b)[6] && \
1052 (a)[5] == (b)[5] && \
1053 (a)[4] == (b)[4] && \
1054 (a)[3] == (b)[3] && \
1055 (a)[2] == (b)[2] && \
1056 (a)[1] == (b)[1] && \
1057 (a)[0] == (b)[0])
1059 static void fixup_botched_add(struct ctlr_info *h,
1060 struct hpsa_scsi_dev_t *added)
1062 /* called when scsi_add_device fails in order to re-adjust
1063 * h->dev[] to match the mid layer's view.
1065 unsigned long flags;
1066 int i, j;
1068 spin_lock_irqsave(&h->lock, flags);
1069 for (i = 0; i < h->ndevices; i++) {
1070 if (h->dev[i] == added) {
1071 for (j = i; j < h->ndevices-1; j++)
1072 h->dev[j] = h->dev[j+1];
1073 h->ndevices--;
1074 break;
1077 spin_unlock_irqrestore(&h->lock, flags);
1078 kfree(added);
1081 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1082 struct hpsa_scsi_dev_t *dev2)
1084 /* we compare everything except lun and target as these
1085 * are not yet assigned. Compare parts likely
1086 * to differ first
1088 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1089 sizeof(dev1->scsi3addr)) != 0)
1090 return 0;
1091 if (memcmp(dev1->device_id, dev2->device_id,
1092 sizeof(dev1->device_id)) != 0)
1093 return 0;
1094 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1095 return 0;
1096 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1097 return 0;
1098 if (dev1->devtype != dev2->devtype)
1099 return 0;
1100 if (dev1->bus != dev2->bus)
1101 return 0;
1102 return 1;
1105 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1106 struct hpsa_scsi_dev_t *dev2)
1108 /* Device attributes that can change, but don't mean
1109 * that the device is a different device, nor that the OS
1110 * needs to be told anything about the change.
1112 if (dev1->raid_level != dev2->raid_level)
1113 return 1;
1114 if (dev1->offload_config != dev2->offload_config)
1115 return 1;
1116 if (dev1->offload_enabled != dev2->offload_enabled)
1117 return 1;
1118 return 0;
1121 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1122 * and return needle location in *index. If scsi3addr matches, but not
1123 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124 * location in *index.
1125 * In the case of a minor device attribute change, such as RAID level, just
1126 * return DEVICE_UPDATED, along with the updated device's location in index.
1127 * If needle not found, return DEVICE_NOT_FOUND.
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131 int *index)
1133 int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 for (i = 0; i < haystack_size; i++) {
1139 if (haystack[i] == NULL) /* previously removed. */
1140 continue;
1141 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142 *index = i;
1143 if (device_is_the_same(needle, haystack[i])) {
1144 if (device_updated(needle, haystack[i]))
1145 return DEVICE_UPDATED;
1146 return DEVICE_SAME;
1147 } else {
1148 /* Keep offline devices offline */
1149 if (needle->volume_offline)
1150 return DEVICE_NOT_FOUND;
1151 return DEVICE_CHANGED;
1155 *index = -1;
1156 return DEVICE_NOT_FOUND;
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160 unsigned char scsi3addr[])
1162 struct offline_device_entry *device;
1163 unsigned long flags;
1165 /* Check to see if device is already on the list */
1166 spin_lock_irqsave(&h->offline_device_lock, flags);
1167 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168 if (memcmp(device->scsi3addr, scsi3addr,
1169 sizeof(device->scsi3addr)) == 0) {
1170 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171 return;
1174 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1176 /* Device is not on the list, add it. */
1177 device = kmalloc(sizeof(*device), GFP_KERNEL);
1178 if (!device) {
1179 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180 return;
1182 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183 spin_lock_irqsave(&h->offline_device_lock, flags);
1184 list_add_tail(&device->offline_list, &h->offline_device_list);
1185 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190 struct hpsa_scsi_dev_t *sd)
1192 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193 dev_info(&h->pdev->dev,
1194 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 h->scsi_host->host_no,
1196 sd->bus, sd->target, sd->lun);
1197 switch (sd->volume_offline) {
1198 case HPSA_LV_OK:
1199 break;
1200 case HPSA_LV_UNDERGOING_ERASE:
1201 dev_info(&h->pdev->dev,
1202 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 h->scsi_host->host_no,
1204 sd->bus, sd->target, sd->lun);
1205 break;
1206 case HPSA_LV_UNDERGOING_RPI:
1207 dev_info(&h->pdev->dev,
1208 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 h->scsi_host->host_no,
1210 sd->bus, sd->target, sd->lun);
1211 break;
1212 case HPSA_LV_PENDING_RPI:
1213 dev_info(&h->pdev->dev,
1214 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 h->scsi_host->host_no,
1216 sd->bus, sd->target, sd->lun);
1217 break;
1218 case HPSA_LV_ENCRYPTED_NO_KEY:
1219 dev_info(&h->pdev->dev,
1220 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 h->scsi_host->host_no,
1222 sd->bus, sd->target, sd->lun);
1223 break;
1224 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225 dev_info(&h->pdev->dev,
1226 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 h->scsi_host->host_no,
1228 sd->bus, sd->target, sd->lun);
1229 break;
1230 case HPSA_LV_UNDERGOING_ENCRYPTION:
1231 dev_info(&h->pdev->dev,
1232 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 h->scsi_host->host_no,
1234 sd->bus, sd->target, sd->lun);
1235 break;
1236 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237 dev_info(&h->pdev->dev,
1238 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 h->scsi_host->host_no,
1240 sd->bus, sd->target, sd->lun);
1241 break;
1242 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243 dev_info(&h->pdev->dev,
1244 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 h->scsi_host->host_no,
1246 sd->bus, sd->target, sd->lun);
1247 break;
1248 case HPSA_LV_PENDING_ENCRYPTION:
1249 dev_info(&h->pdev->dev,
1250 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 h->scsi_host->host_no,
1252 sd->bus, sd->target, sd->lun);
1253 break;
1254 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255 dev_info(&h->pdev->dev,
1256 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 h->scsi_host->host_no,
1258 sd->bus, sd->target, sd->lun);
1259 break;
1263 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1264 struct hpsa_scsi_dev_t *sd[], int nsds)
1266 /* sd contains scsi3 addresses and devtypes, and inquiry
1267 * data. This function takes what's in sd to be the current
1268 * reality and updates h->dev[] to reflect that reality.
1270 int i, entry, device_change, changes = 0;
1271 struct hpsa_scsi_dev_t *csd;
1272 unsigned long flags;
1273 struct hpsa_scsi_dev_t **added, **removed;
1274 int nadded, nremoved;
1275 struct Scsi_Host *sh = NULL;
1277 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1278 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 if (!added || !removed) {
1281 dev_warn(&h->pdev->dev, "out of memory in "
1282 "adjust_hpsa_scsi_table\n");
1283 goto free_and_out;
1286 spin_lock_irqsave(&h->devlock, flags);
1288 /* find any devices in h->dev[] that are not in
1289 * sd[] and remove them from h->dev[], and for any
1290 * devices which have changed, remove the old device
1291 * info and add the new device info.
1292 * If minor device attributes change, just update
1293 * the existing device structure.
1295 i = 0;
1296 nremoved = 0;
1297 nadded = 0;
1298 while (i < h->ndevices) {
1299 csd = h->dev[i];
1300 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1301 if (device_change == DEVICE_NOT_FOUND) {
1302 changes++;
1303 hpsa_scsi_remove_entry(h, hostno, i,
1304 removed, &nremoved);
1305 continue; /* remove ^^^, hence i not incremented */
1306 } else if (device_change == DEVICE_CHANGED) {
1307 changes++;
1308 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1309 added, &nadded, removed, &nremoved);
1310 /* Set it to NULL to prevent it from being freed
1311 * at the bottom of hpsa_update_scsi_devices()
1313 sd[entry] = NULL;
1314 } else if (device_change == DEVICE_UPDATED) {
1315 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1317 i++;
1320 /* Now, make sure every device listed in sd[] is also
1321 * listed in h->dev[], adding them if they aren't found
1324 for (i = 0; i < nsds; i++) {
1325 if (!sd[i]) /* if already added above. */
1326 continue;
1328 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1329 * as the SCSI mid-layer does not handle such devices well.
1330 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1331 * at 160Hz, and prevents the system from coming up.
1333 if (sd[i]->volume_offline) {
1334 hpsa_show_volume_status(h, sd[i]);
1335 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1336 h->scsi_host->host_no,
1337 sd[i]->bus, sd[i]->target, sd[i]->lun);
1338 continue;
1341 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1342 h->ndevices, &entry);
1343 if (device_change == DEVICE_NOT_FOUND) {
1344 changes++;
1345 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1346 added, &nadded) != 0)
1347 break;
1348 sd[i] = NULL; /* prevent from being freed later. */
1349 } else if (device_change == DEVICE_CHANGED) {
1350 /* should never happen... */
1351 changes++;
1352 dev_warn(&h->pdev->dev,
1353 "device unexpectedly changed.\n");
1354 /* but if it does happen, we just ignore that device */
1357 spin_unlock_irqrestore(&h->devlock, flags);
1359 /* Monitor devices which are in one of several NOT READY states to be
1360 * brought online later. This must be done without holding h->devlock,
1361 * so don't touch h->dev[]
1363 for (i = 0; i < nsds; i++) {
1364 if (!sd[i]) /* if already added above. */
1365 continue;
1366 if (sd[i]->volume_offline)
1367 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370 /* Don't notify scsi mid layer of any changes the first time through
1371 * (or if there are no changes) scsi_scan_host will do it later the
1372 * first time through.
1374 if (hostno == -1 || !changes)
1375 goto free_and_out;
1377 sh = h->scsi_host;
1378 /* Notify scsi mid layer of any removed devices */
1379 for (i = 0; i < nremoved; i++) {
1380 struct scsi_device *sdev =
1381 scsi_device_lookup(sh, removed[i]->bus,
1382 removed[i]->target, removed[i]->lun);
1383 if (sdev != NULL) {
1384 scsi_remove_device(sdev);
1385 scsi_device_put(sdev);
1386 } else {
1387 /* We don't expect to get here.
1388 * future cmds to this device will get selection
1389 * timeout as if the device was gone.
1391 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1392 " for removal.", hostno, removed[i]->bus,
1393 removed[i]->target, removed[i]->lun);
1395 kfree(removed[i]);
1396 removed[i] = NULL;
1399 /* Notify scsi mid layer of any added devices */
1400 for (i = 0; i < nadded; i++) {
1401 if (scsi_add_device(sh, added[i]->bus,
1402 added[i]->target, added[i]->lun) == 0)
1403 continue;
1404 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1405 "device not added.\n", hostno, added[i]->bus,
1406 added[i]->target, added[i]->lun);
1407 /* now we have to remove it from h->dev,
1408 * since it didn't get added to scsi mid layer
1410 fixup_botched_add(h, added[i]);
1413 free_and_out:
1414 kfree(added);
1415 kfree(removed);
1419 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1420 * Assume's h->devlock is held.
1422 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1423 int bus, int target, int lun)
1425 int i;
1426 struct hpsa_scsi_dev_t *sd;
1428 for (i = 0; i < h->ndevices; i++) {
1429 sd = h->dev[i];
1430 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1431 return sd;
1433 return NULL;
1436 /* link sdev->hostdata to our per-device structure. */
1437 static int hpsa_slave_alloc(struct scsi_device *sdev)
1439 struct hpsa_scsi_dev_t *sd;
1440 unsigned long flags;
1441 struct ctlr_info *h;
1443 h = sdev_to_hba(sdev);
1444 spin_lock_irqsave(&h->devlock, flags);
1445 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1446 sdev_id(sdev), sdev->lun);
1447 if (sd != NULL)
1448 sdev->hostdata = sd;
1449 spin_unlock_irqrestore(&h->devlock, flags);
1450 return 0;
1453 static void hpsa_slave_destroy(struct scsi_device *sdev)
1455 /* nothing to do. */
1458 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1460 int i;
1462 if (!h->cmd_sg_list)
1463 return;
1464 for (i = 0; i < h->nr_cmds; i++) {
1465 kfree(h->cmd_sg_list[i]);
1466 h->cmd_sg_list[i] = NULL;
1468 kfree(h->cmd_sg_list);
1469 h->cmd_sg_list = NULL;
1472 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1474 int i;
1476 if (h->chainsize <= 0)
1477 return 0;
1479 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1480 GFP_KERNEL);
1481 if (!h->cmd_sg_list)
1482 return -ENOMEM;
1483 for (i = 0; i < h->nr_cmds; i++) {
1484 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1485 h->chainsize, GFP_KERNEL);
1486 if (!h->cmd_sg_list[i])
1487 goto clean;
1489 return 0;
1491 clean:
1492 hpsa_free_sg_chain_blocks(h);
1493 return -ENOMEM;
1496 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1497 struct CommandList *c)
1499 struct SGDescriptor *chain_sg, *chain_block;
1500 u64 temp64;
1501 u32 chain_len;
1503 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1504 chain_block = h->cmd_sg_list[c->cmdindex];
1505 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1506 chain_len = sizeof(*chain_sg) *
1507 (c->Header.SGTotal - h->max_cmd_sg_entries);
1508 chain_sg->Len = cpu_to_le32(chain_len);
1509 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1510 PCI_DMA_TODEVICE);
1511 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1512 /* prevent subsequent unmapping */
1513 chain_sg->Addr = cpu_to_le64(0);
1514 return -1;
1516 chain_sg->Addr = cpu_to_le64(temp64);
1517 return 0;
1520 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1521 struct CommandList *c)
1523 struct SGDescriptor *chain_sg;
1525 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1526 return;
1528 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1529 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1530 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1534 /* Decode the various types of errors on ioaccel2 path.
1535 * Return 1 for any error that should generate a RAID path retry.
1536 * Return 0 for errors that don't require a RAID path retry.
1538 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1539 struct CommandList *c,
1540 struct scsi_cmnd *cmd,
1541 struct io_accel2_cmd *c2)
1543 int data_len;
1544 int retry = 0;
1546 switch (c2->error_data.serv_response) {
1547 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1548 switch (c2->error_data.status) {
1549 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1550 break;
1551 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1552 dev_warn(&h->pdev->dev,
1553 "%s: task complete with check condition.\n",
1554 "HP SSD Smart Path");
1555 cmd->result |= SAM_STAT_CHECK_CONDITION;
1556 if (c2->error_data.data_present !=
1557 IOACCEL2_SENSE_DATA_PRESENT) {
1558 memset(cmd->sense_buffer, 0,
1559 SCSI_SENSE_BUFFERSIZE);
1560 break;
1562 /* copy the sense data */
1563 data_len = c2->error_data.sense_data_len;
1564 if (data_len > SCSI_SENSE_BUFFERSIZE)
1565 data_len = SCSI_SENSE_BUFFERSIZE;
1566 if (data_len > sizeof(c2->error_data.sense_data_buff))
1567 data_len =
1568 sizeof(c2->error_data.sense_data_buff);
1569 memcpy(cmd->sense_buffer,
1570 c2->error_data.sense_data_buff, data_len);
1571 retry = 1;
1572 break;
1573 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1574 dev_warn(&h->pdev->dev,
1575 "%s: task complete with BUSY status.\n",
1576 "HP SSD Smart Path");
1577 retry = 1;
1578 break;
1579 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1580 dev_warn(&h->pdev->dev,
1581 "%s: task complete with reservation conflict.\n",
1582 "HP SSD Smart Path");
1583 retry = 1;
1584 break;
1585 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1586 /* Make scsi midlayer do unlimited retries */
1587 cmd->result = DID_IMM_RETRY << 16;
1588 break;
1589 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1590 dev_warn(&h->pdev->dev,
1591 "%s: task complete with aborted status.\n",
1592 "HP SSD Smart Path");
1593 retry = 1;
1594 break;
1595 default:
1596 dev_warn(&h->pdev->dev,
1597 "%s: task complete with unrecognized status: 0x%02x\n",
1598 "HP SSD Smart Path", c2->error_data.status);
1599 retry = 1;
1600 break;
1602 break;
1603 case IOACCEL2_SERV_RESPONSE_FAILURE:
1604 /* don't expect to get here. */
1605 dev_warn(&h->pdev->dev,
1606 "unexpected delivery or target failure, status = 0x%02x\n",
1607 c2->error_data.status);
1608 retry = 1;
1609 break;
1610 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1611 break;
1612 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1613 break;
1614 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1615 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1616 retry = 1;
1617 break;
1618 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1619 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1620 break;
1621 default:
1622 dev_warn(&h->pdev->dev,
1623 "%s: Unrecognized server response: 0x%02x\n",
1624 "HP SSD Smart Path",
1625 c2->error_data.serv_response);
1626 retry = 1;
1627 break;
1630 return retry; /* retry on raid path? */
1633 static void process_ioaccel2_completion(struct ctlr_info *h,
1634 struct CommandList *c, struct scsi_cmnd *cmd,
1635 struct hpsa_scsi_dev_t *dev)
1637 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1638 int raid_retry = 0;
1640 /* check for good status */
1641 if (likely(c2->error_data.serv_response == 0 &&
1642 c2->error_data.status == 0)) {
1643 cmd_free(h, c);
1644 cmd->scsi_done(cmd);
1645 return;
1648 /* Any RAID offload error results in retry which will use
1649 * the normal I/O path so the controller can handle whatever's
1650 * wrong.
1652 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1653 c2->error_data.serv_response ==
1654 IOACCEL2_SERV_RESPONSE_FAILURE) {
1655 dev->offload_enabled = 0;
1656 h->drv_req_rescan = 1; /* schedule controller for a rescan */
1657 cmd->result = DID_SOFT_ERROR << 16;
1658 cmd_free(h, c);
1659 cmd->scsi_done(cmd);
1660 return;
1662 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1663 /* If error found, disable Smart Path, schedule a rescan,
1664 * and force a retry on the standard path.
1666 if (raid_retry) {
1667 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1668 "HP SSD Smart Path");
1669 dev->offload_enabled = 0; /* Disable Smart Path */
1670 h->drv_req_rescan = 1; /* schedule controller rescan */
1671 cmd->result = DID_SOFT_ERROR << 16;
1673 cmd_free(h, c);
1674 cmd->scsi_done(cmd);
1677 static void complete_scsi_command(struct CommandList *cp)
1679 struct scsi_cmnd *cmd;
1680 struct ctlr_info *h;
1681 struct ErrorInfo *ei;
1682 struct hpsa_scsi_dev_t *dev;
1684 unsigned char sense_key;
1685 unsigned char asc; /* additional sense code */
1686 unsigned char ascq; /* additional sense code qualifier */
1687 unsigned long sense_data_size;
1689 ei = cp->err_info;
1690 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1691 h = cp->h;
1692 dev = cmd->device->hostdata;
1694 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1695 if ((cp->cmd_type == CMD_SCSI) &&
1696 (cp->Header.SGTotal > h->max_cmd_sg_entries))
1697 hpsa_unmap_sg_chain_block(h, cp);
1699 cmd->result = (DID_OK << 16); /* host byte */
1700 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1702 if (cp->cmd_type == CMD_IOACCEL2)
1703 return process_ioaccel2_completion(h, cp, cmd, dev);
1705 cmd->result |= ei->ScsiStatus;
1707 scsi_set_resid(cmd, ei->ResidualCnt);
1708 if (ei->CommandStatus == 0) {
1709 cmd_free(h, cp);
1710 cmd->scsi_done(cmd);
1711 return;
1714 /* copy the sense data */
1715 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1716 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1717 else
1718 sense_data_size = sizeof(ei->SenseInfo);
1719 if (ei->SenseLen < sense_data_size)
1720 sense_data_size = ei->SenseLen;
1722 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1724 /* For I/O accelerator commands, copy over some fields to the normal
1725 * CISS header used below for error handling.
1727 if (cp->cmd_type == CMD_IOACCEL1) {
1728 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1729 cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1730 cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1731 cp->Header.tag = c->tag;
1732 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1733 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1735 /* Any RAID offload error results in retry which will use
1736 * the normal I/O path so the controller can handle whatever's
1737 * wrong.
1739 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1740 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1741 dev->offload_enabled = 0;
1742 cmd->result = DID_SOFT_ERROR << 16;
1743 cmd_free(h, cp);
1744 cmd->scsi_done(cmd);
1745 return;
1749 /* an error has occurred */
1750 switch (ei->CommandStatus) {
1752 case CMD_TARGET_STATUS:
1753 if (ei->ScsiStatus) {
1754 /* Get sense key */
1755 sense_key = 0xf & ei->SenseInfo[2];
1756 /* Get additional sense code */
1757 asc = ei->SenseInfo[12];
1758 /* Get addition sense code qualifier */
1759 ascq = ei->SenseInfo[13];
1761 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1762 if (sense_key == ABORTED_COMMAND) {
1763 cmd->result |= DID_SOFT_ERROR << 16;
1764 break;
1766 break;
1768 /* Problem was not a check condition
1769 * Pass it up to the upper layers...
1771 if (ei->ScsiStatus) {
1772 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1773 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1774 "Returning result: 0x%x\n",
1775 cp, ei->ScsiStatus,
1776 sense_key, asc, ascq,
1777 cmd->result);
1778 } else { /* scsi status is zero??? How??? */
1779 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1780 "Returning no connection.\n", cp),
1782 /* Ordinarily, this case should never happen,
1783 * but there is a bug in some released firmware
1784 * revisions that allows it to happen if, for
1785 * example, a 4100 backplane loses power and
1786 * the tape drive is in it. We assume that
1787 * it's a fatal error of some kind because we
1788 * can't show that it wasn't. We will make it
1789 * look like selection timeout since that is
1790 * the most common reason for this to occur,
1791 * and it's severe enough.
1794 cmd->result = DID_NO_CONNECT << 16;
1796 break;
1798 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1799 break;
1800 case CMD_DATA_OVERRUN:
1801 dev_warn(&h->pdev->dev, "cp %p has"
1802 " completed with data overrun "
1803 "reported\n", cp);
1804 break;
1805 case CMD_INVALID: {
1806 /* print_bytes(cp, sizeof(*cp), 1, 0);
1807 print_cmd(cp); */
1808 /* We get CMD_INVALID if you address a non-existent device
1809 * instead of a selection timeout (no response). You will
1810 * see this if you yank out a drive, then try to access it.
1811 * This is kind of a shame because it means that any other
1812 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1813 * missing target. */
1814 cmd->result = DID_NO_CONNECT << 16;
1816 break;
1817 case CMD_PROTOCOL_ERR:
1818 cmd->result = DID_ERROR << 16;
1819 dev_warn(&h->pdev->dev, "cp %p has "
1820 "protocol error\n", cp);
1821 break;
1822 case CMD_HARDWARE_ERR:
1823 cmd->result = DID_ERROR << 16;
1824 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1825 break;
1826 case CMD_CONNECTION_LOST:
1827 cmd->result = DID_ERROR << 16;
1828 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1829 break;
1830 case CMD_ABORTED:
1831 cmd->result = DID_ABORT << 16;
1832 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1833 cp, ei->ScsiStatus);
1834 break;
1835 case CMD_ABORT_FAILED:
1836 cmd->result = DID_ERROR << 16;
1837 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1838 break;
1839 case CMD_UNSOLICITED_ABORT:
1840 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1841 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1842 "abort\n", cp);
1843 break;
1844 case CMD_TIMEOUT:
1845 cmd->result = DID_TIME_OUT << 16;
1846 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1847 break;
1848 case CMD_UNABORTABLE:
1849 cmd->result = DID_ERROR << 16;
1850 dev_warn(&h->pdev->dev, "Command unabortable\n");
1851 break;
1852 case CMD_IOACCEL_DISABLED:
1853 /* This only handles the direct pass-through case since RAID
1854 * offload is handled above. Just attempt a retry.
1856 cmd->result = DID_SOFT_ERROR << 16;
1857 dev_warn(&h->pdev->dev,
1858 "cp %p had HP SSD Smart Path error\n", cp);
1859 break;
1860 default:
1861 cmd->result = DID_ERROR << 16;
1862 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1863 cp, ei->CommandStatus);
1865 cmd_free(h, cp);
1866 cmd->scsi_done(cmd);
1869 static void hpsa_pci_unmap(struct pci_dev *pdev,
1870 struct CommandList *c, int sg_used, int data_direction)
1872 int i;
1874 for (i = 0; i < sg_used; i++)
1875 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1876 le32_to_cpu(c->SG[i].Len),
1877 data_direction);
1880 static int hpsa_map_one(struct pci_dev *pdev,
1881 struct CommandList *cp,
1882 unsigned char *buf,
1883 size_t buflen,
1884 int data_direction)
1886 u64 addr64;
1888 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1889 cp->Header.SGList = 0;
1890 cp->Header.SGTotal = cpu_to_le16(0);
1891 return 0;
1894 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1895 if (dma_mapping_error(&pdev->dev, addr64)) {
1896 /* Prevent subsequent unmap of something never mapped */
1897 cp->Header.SGList = 0;
1898 cp->Header.SGTotal = cpu_to_le16(0);
1899 return -1;
1901 cp->SG[0].Addr = cpu_to_le64(addr64);
1902 cp->SG[0].Len = cpu_to_le32(buflen);
1903 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1904 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1905 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1906 return 0;
1909 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1910 struct CommandList *c)
1912 DECLARE_COMPLETION_ONSTACK(wait);
1914 c->waiting = &wait;
1915 enqueue_cmd_and_start_io(h, c);
1916 wait_for_completion(&wait);
1919 static u32 lockup_detected(struct ctlr_info *h)
1921 int cpu;
1922 u32 rc, *lockup_detected;
1924 cpu = get_cpu();
1925 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1926 rc = *lockup_detected;
1927 put_cpu();
1928 return rc;
1931 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1932 struct CommandList *c)
1934 /* If controller lockup detected, fake a hardware error. */
1935 if (unlikely(lockup_detected(h)))
1936 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1937 else
1938 hpsa_scsi_do_simple_cmd_core(h, c);
1941 #define MAX_DRIVER_CMD_RETRIES 25
1942 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1943 struct CommandList *c, int data_direction)
1945 int backoff_time = 10, retry_count = 0;
1947 do {
1948 memset(c->err_info, 0, sizeof(*c->err_info));
1949 hpsa_scsi_do_simple_cmd_core(h, c);
1950 retry_count++;
1951 if (retry_count > 3) {
1952 msleep(backoff_time);
1953 if (backoff_time < 1000)
1954 backoff_time *= 2;
1956 } while ((check_for_unit_attention(h, c) ||
1957 check_for_busy(h, c)) &&
1958 retry_count <= MAX_DRIVER_CMD_RETRIES);
1959 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1962 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1963 struct CommandList *c)
1965 const u8 *cdb = c->Request.CDB;
1966 const u8 *lun = c->Header.LUN.LunAddrBytes;
1968 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1969 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1970 txt, lun[0], lun[1], lun[2], lun[3],
1971 lun[4], lun[5], lun[6], lun[7],
1972 cdb[0], cdb[1], cdb[2], cdb[3],
1973 cdb[4], cdb[5], cdb[6], cdb[7],
1974 cdb[8], cdb[9], cdb[10], cdb[11],
1975 cdb[12], cdb[13], cdb[14], cdb[15]);
1978 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1979 struct CommandList *cp)
1981 const struct ErrorInfo *ei = cp->err_info;
1982 struct device *d = &cp->h->pdev->dev;
1983 const u8 *sd = ei->SenseInfo;
1985 switch (ei->CommandStatus) {
1986 case CMD_TARGET_STATUS:
1987 hpsa_print_cmd(h, "SCSI status", cp);
1988 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1989 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1990 sd[2] & 0x0f, sd[12], sd[13]);
1991 else
1992 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1993 if (ei->ScsiStatus == 0)
1994 dev_warn(d, "SCSI status is abnormally zero. "
1995 "(probably indicates selection timeout "
1996 "reported incorrectly due to a known "
1997 "firmware bug, circa July, 2001.)\n");
1998 break;
1999 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2000 break;
2001 case CMD_DATA_OVERRUN:
2002 hpsa_print_cmd(h, "overrun condition", cp);
2003 break;
2004 case CMD_INVALID: {
2005 /* controller unfortunately reports SCSI passthru's
2006 * to non-existent targets as invalid commands.
2008 hpsa_print_cmd(h, "invalid command", cp);
2009 dev_warn(d, "probably means device no longer present\n");
2011 break;
2012 case CMD_PROTOCOL_ERR:
2013 hpsa_print_cmd(h, "protocol error", cp);
2014 break;
2015 case CMD_HARDWARE_ERR:
2016 hpsa_print_cmd(h, "hardware error", cp);
2017 break;
2018 case CMD_CONNECTION_LOST:
2019 hpsa_print_cmd(h, "connection lost", cp);
2020 break;
2021 case CMD_ABORTED:
2022 hpsa_print_cmd(h, "aborted", cp);
2023 break;
2024 case CMD_ABORT_FAILED:
2025 hpsa_print_cmd(h, "abort failed", cp);
2026 break;
2027 case CMD_UNSOLICITED_ABORT:
2028 hpsa_print_cmd(h, "unsolicited abort", cp);
2029 break;
2030 case CMD_TIMEOUT:
2031 hpsa_print_cmd(h, "timed out", cp);
2032 break;
2033 case CMD_UNABORTABLE:
2034 hpsa_print_cmd(h, "unabortable", cp);
2035 break;
2036 default:
2037 hpsa_print_cmd(h, "unknown status", cp);
2038 dev_warn(d, "Unknown command status %x\n",
2039 ei->CommandStatus);
2043 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2044 u16 page, unsigned char *buf,
2045 unsigned char bufsize)
2047 int rc = IO_OK;
2048 struct CommandList *c;
2049 struct ErrorInfo *ei;
2051 c = cmd_special_alloc(h);
2053 if (c == NULL) { /* trouble... */
2054 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2055 return -ENOMEM;
2058 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2059 page, scsi3addr, TYPE_CMD)) {
2060 rc = -1;
2061 goto out;
2063 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2064 ei = c->err_info;
2065 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2066 hpsa_scsi_interpret_error(h, c);
2067 rc = -1;
2069 out:
2070 cmd_special_free(h, c);
2071 return rc;
2074 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2075 unsigned char *scsi3addr, unsigned char page,
2076 struct bmic_controller_parameters *buf, size_t bufsize)
2078 int rc = IO_OK;
2079 struct CommandList *c;
2080 struct ErrorInfo *ei;
2082 c = cmd_special_alloc(h);
2084 if (c == NULL) { /* trouble... */
2085 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2086 return -ENOMEM;
2089 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2090 page, scsi3addr, TYPE_CMD)) {
2091 rc = -1;
2092 goto out;
2094 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2095 ei = c->err_info;
2096 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2097 hpsa_scsi_interpret_error(h, c);
2098 rc = -1;
2100 out:
2101 cmd_special_free(h, c);
2102 return rc;
2105 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2106 u8 reset_type)
2108 int rc = IO_OK;
2109 struct CommandList *c;
2110 struct ErrorInfo *ei;
2112 c = cmd_special_alloc(h);
2114 if (c == NULL) { /* trouble... */
2115 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2116 return -ENOMEM;
2119 /* fill_cmd can't fail here, no data buffer to map. */
2120 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2121 scsi3addr, TYPE_MSG);
2122 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2123 hpsa_scsi_do_simple_cmd_core(h, c);
2124 /* no unmap needed here because no data xfer. */
2126 ei = c->err_info;
2127 if (ei->CommandStatus != 0) {
2128 hpsa_scsi_interpret_error(h, c);
2129 rc = -1;
2131 cmd_special_free(h, c);
2132 return rc;
2135 static void hpsa_get_raid_level(struct ctlr_info *h,
2136 unsigned char *scsi3addr, unsigned char *raid_level)
2138 int rc;
2139 unsigned char *buf;
2141 *raid_level = RAID_UNKNOWN;
2142 buf = kzalloc(64, GFP_KERNEL);
2143 if (!buf)
2144 return;
2145 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2146 if (rc == 0)
2147 *raid_level = buf[8];
2148 if (*raid_level > RAID_UNKNOWN)
2149 *raid_level = RAID_UNKNOWN;
2150 kfree(buf);
2151 return;
2154 #define HPSA_MAP_DEBUG
2155 #ifdef HPSA_MAP_DEBUG
2156 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2157 struct raid_map_data *map_buff)
2159 struct raid_map_disk_data *dd = &map_buff->data[0];
2160 int map, row, col;
2161 u16 map_cnt, row_cnt, disks_per_row;
2163 if (rc != 0)
2164 return;
2166 /* Show details only if debugging has been activated. */
2167 if (h->raid_offload_debug < 2)
2168 return;
2170 dev_info(&h->pdev->dev, "structure_size = %u\n",
2171 le32_to_cpu(map_buff->structure_size));
2172 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2173 le32_to_cpu(map_buff->volume_blk_size));
2174 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2175 le64_to_cpu(map_buff->volume_blk_cnt));
2176 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2177 map_buff->phys_blk_shift);
2178 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2179 map_buff->parity_rotation_shift);
2180 dev_info(&h->pdev->dev, "strip_size = %u\n",
2181 le16_to_cpu(map_buff->strip_size));
2182 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2183 le64_to_cpu(map_buff->disk_starting_blk));
2184 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2185 le64_to_cpu(map_buff->disk_blk_cnt));
2186 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2187 le16_to_cpu(map_buff->data_disks_per_row));
2188 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2189 le16_to_cpu(map_buff->metadata_disks_per_row));
2190 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2191 le16_to_cpu(map_buff->row_cnt));
2192 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2193 le16_to_cpu(map_buff->layout_map_count));
2194 dev_info(&h->pdev->dev, "flags = %u\n",
2195 le16_to_cpu(map_buff->flags));
2196 if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2197 dev_info(&h->pdev->dev, "encrypytion = ON\n");
2198 else
2199 dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2200 dev_info(&h->pdev->dev, "dekindex = %u\n",
2201 le16_to_cpu(map_buff->dekindex));
2203 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2204 for (map = 0; map < map_cnt; map++) {
2205 dev_info(&h->pdev->dev, "Map%u:\n", map);
2206 row_cnt = le16_to_cpu(map_buff->row_cnt);
2207 for (row = 0; row < row_cnt; row++) {
2208 dev_info(&h->pdev->dev, " Row%u:\n", row);
2209 disks_per_row =
2210 le16_to_cpu(map_buff->data_disks_per_row);
2211 for (col = 0; col < disks_per_row; col++, dd++)
2212 dev_info(&h->pdev->dev,
2213 " D%02u: h=0x%04x xor=%u,%u\n",
2214 col, dd->ioaccel_handle,
2215 dd->xor_mult[0], dd->xor_mult[1]);
2216 disks_per_row =
2217 le16_to_cpu(map_buff->metadata_disks_per_row);
2218 for (col = 0; col < disks_per_row; col++, dd++)
2219 dev_info(&h->pdev->dev,
2220 " M%02u: h=0x%04x xor=%u,%u\n",
2221 col, dd->ioaccel_handle,
2222 dd->xor_mult[0], dd->xor_mult[1]);
2226 #else
2227 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2228 __attribute__((unused)) int rc,
2229 __attribute__((unused)) struct raid_map_data *map_buff)
2232 #endif
2234 static int hpsa_get_raid_map(struct ctlr_info *h,
2235 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2237 int rc = 0;
2238 struct CommandList *c;
2239 struct ErrorInfo *ei;
2241 c = cmd_special_alloc(h);
2242 if (c == NULL) {
2243 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2244 return -ENOMEM;
2246 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2247 sizeof(this_device->raid_map), 0,
2248 scsi3addr, TYPE_CMD)) {
2249 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2250 cmd_special_free(h, c);
2251 return -ENOMEM;
2253 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2254 ei = c->err_info;
2255 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2256 hpsa_scsi_interpret_error(h, c);
2257 cmd_special_free(h, c);
2258 return -1;
2260 cmd_special_free(h, c);
2262 /* @todo in the future, dynamically allocate RAID map memory */
2263 if (le32_to_cpu(this_device->raid_map.structure_size) >
2264 sizeof(this_device->raid_map)) {
2265 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2266 rc = -1;
2268 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2269 return rc;
2272 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2273 unsigned char scsi3addr[], u8 page)
2275 int rc;
2276 int i;
2277 int pages;
2278 unsigned char *buf, bufsize;
2280 buf = kzalloc(256, GFP_KERNEL);
2281 if (!buf)
2282 return 0;
2284 /* Get the size of the page list first */
2285 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2286 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2287 buf, HPSA_VPD_HEADER_SZ);
2288 if (rc != 0)
2289 goto exit_unsupported;
2290 pages = buf[3];
2291 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2292 bufsize = pages + HPSA_VPD_HEADER_SZ;
2293 else
2294 bufsize = 255;
2296 /* Get the whole VPD page list */
2297 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2298 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2299 buf, bufsize);
2300 if (rc != 0)
2301 goto exit_unsupported;
2303 pages = buf[3];
2304 for (i = 1; i <= pages; i++)
2305 if (buf[3 + i] == page)
2306 goto exit_supported;
2307 exit_unsupported:
2308 kfree(buf);
2309 return 0;
2310 exit_supported:
2311 kfree(buf);
2312 return 1;
2315 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2316 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2318 int rc;
2319 unsigned char *buf;
2320 u8 ioaccel_status;
2322 this_device->offload_config = 0;
2323 this_device->offload_enabled = 0;
2325 buf = kzalloc(64, GFP_KERNEL);
2326 if (!buf)
2327 return;
2328 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2329 goto out;
2330 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2331 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2332 if (rc != 0)
2333 goto out;
2335 #define IOACCEL_STATUS_BYTE 4
2336 #define OFFLOAD_CONFIGURED_BIT 0x01
2337 #define OFFLOAD_ENABLED_BIT 0x02
2338 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2339 this_device->offload_config =
2340 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2341 if (this_device->offload_config) {
2342 this_device->offload_enabled =
2343 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2344 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2345 this_device->offload_enabled = 0;
2347 out:
2348 kfree(buf);
2349 return;
2352 /* Get the device id from inquiry page 0x83 */
2353 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2354 unsigned char *device_id, int buflen)
2356 int rc;
2357 unsigned char *buf;
2359 if (buflen > 16)
2360 buflen = 16;
2361 buf = kzalloc(64, GFP_KERNEL);
2362 if (!buf)
2363 return -ENOMEM;
2364 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2365 if (rc == 0)
2366 memcpy(device_id, &buf[8], buflen);
2367 kfree(buf);
2368 return rc != 0;
2371 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2372 struct ReportLUNdata *buf, int bufsize,
2373 int extended_response)
2375 int rc = IO_OK;
2376 struct CommandList *c;
2377 unsigned char scsi3addr[8];
2378 struct ErrorInfo *ei;
2380 c = cmd_special_alloc(h);
2381 if (c == NULL) { /* trouble... */
2382 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2383 return -1;
2385 /* address the controller */
2386 memset(scsi3addr, 0, sizeof(scsi3addr));
2387 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2388 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2389 rc = -1;
2390 goto out;
2392 if (extended_response)
2393 c->Request.CDB[1] = extended_response;
2394 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2395 ei = c->err_info;
2396 if (ei->CommandStatus != 0 &&
2397 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2398 hpsa_scsi_interpret_error(h, c);
2399 rc = -1;
2400 } else {
2401 if (buf->extended_response_flag != extended_response) {
2402 dev_err(&h->pdev->dev,
2403 "report luns requested format %u, got %u\n",
2404 extended_response,
2405 buf->extended_response_flag);
2406 rc = -1;
2409 out:
2410 cmd_special_free(h, c);
2411 return rc;
2414 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2415 struct ReportLUNdata *buf,
2416 int bufsize, int extended_response)
2418 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2421 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2422 struct ReportLUNdata *buf, int bufsize)
2424 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2427 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2428 int bus, int target, int lun)
2430 device->bus = bus;
2431 device->target = target;
2432 device->lun = lun;
2435 /* Use VPD inquiry to get details of volume status */
2436 static int hpsa_get_volume_status(struct ctlr_info *h,
2437 unsigned char scsi3addr[])
2439 int rc;
2440 int status;
2441 int size;
2442 unsigned char *buf;
2444 buf = kzalloc(64, GFP_KERNEL);
2445 if (!buf)
2446 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2448 /* Does controller have VPD for logical volume status? */
2449 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2450 goto exit_failed;
2452 /* Get the size of the VPD return buffer */
2453 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2454 buf, HPSA_VPD_HEADER_SZ);
2455 if (rc != 0)
2456 goto exit_failed;
2457 size = buf[3];
2459 /* Now get the whole VPD buffer */
2460 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2461 buf, size + HPSA_VPD_HEADER_SZ);
2462 if (rc != 0)
2463 goto exit_failed;
2464 status = buf[4]; /* status byte */
2466 kfree(buf);
2467 return status;
2468 exit_failed:
2469 kfree(buf);
2470 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2473 /* Determine offline status of a volume.
2474 * Return either:
2475 * 0 (not offline)
2476 * 0xff (offline for unknown reasons)
2477 * # (integer code indicating one of several NOT READY states
2478 * describing why a volume is to be kept offline)
2480 static int hpsa_volume_offline(struct ctlr_info *h,
2481 unsigned char scsi3addr[])
2483 struct CommandList *c;
2484 unsigned char *sense, sense_key, asc, ascq;
2485 int ldstat = 0;
2486 u16 cmd_status;
2487 u8 scsi_status;
2488 #define ASC_LUN_NOT_READY 0x04
2489 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2490 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2492 c = cmd_alloc(h);
2493 if (!c)
2494 return 0;
2495 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2496 hpsa_scsi_do_simple_cmd_core(h, c);
2497 sense = c->err_info->SenseInfo;
2498 sense_key = sense[2];
2499 asc = sense[12];
2500 ascq = sense[13];
2501 cmd_status = c->err_info->CommandStatus;
2502 scsi_status = c->err_info->ScsiStatus;
2503 cmd_free(h, c);
2504 /* Is the volume 'not ready'? */
2505 if (cmd_status != CMD_TARGET_STATUS ||
2506 scsi_status != SAM_STAT_CHECK_CONDITION ||
2507 sense_key != NOT_READY ||
2508 asc != ASC_LUN_NOT_READY) {
2509 return 0;
2512 /* Determine the reason for not ready state */
2513 ldstat = hpsa_get_volume_status(h, scsi3addr);
2515 /* Keep volume offline in certain cases: */
2516 switch (ldstat) {
2517 case HPSA_LV_UNDERGOING_ERASE:
2518 case HPSA_LV_UNDERGOING_RPI:
2519 case HPSA_LV_PENDING_RPI:
2520 case HPSA_LV_ENCRYPTED_NO_KEY:
2521 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2522 case HPSA_LV_UNDERGOING_ENCRYPTION:
2523 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2524 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2525 return ldstat;
2526 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2527 /* If VPD status page isn't available,
2528 * use ASC/ASCQ to determine state
2530 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2531 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2532 return ldstat;
2533 break;
2534 default:
2535 break;
2537 return 0;
2540 static int hpsa_update_device_info(struct ctlr_info *h,
2541 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2542 unsigned char *is_OBDR_device)
2545 #define OBDR_SIG_OFFSET 43
2546 #define OBDR_TAPE_SIG "$DR-10"
2547 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2548 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2550 unsigned char *inq_buff;
2551 unsigned char *obdr_sig;
2553 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2554 if (!inq_buff)
2555 goto bail_out;
2557 /* Do an inquiry to the device to see what it is. */
2558 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2559 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2560 /* Inquiry failed (msg printed already) */
2561 dev_err(&h->pdev->dev,
2562 "hpsa_update_device_info: inquiry failed\n");
2563 goto bail_out;
2566 this_device->devtype = (inq_buff[0] & 0x1f);
2567 memcpy(this_device->scsi3addr, scsi3addr, 8);
2568 memcpy(this_device->vendor, &inq_buff[8],
2569 sizeof(this_device->vendor));
2570 memcpy(this_device->model, &inq_buff[16],
2571 sizeof(this_device->model));
2572 memset(this_device->device_id, 0,
2573 sizeof(this_device->device_id));
2574 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2575 sizeof(this_device->device_id));
2577 if (this_device->devtype == TYPE_DISK &&
2578 is_logical_dev_addr_mode(scsi3addr)) {
2579 int volume_offline;
2581 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2582 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2583 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2584 volume_offline = hpsa_volume_offline(h, scsi3addr);
2585 if (volume_offline < 0 || volume_offline > 0xff)
2586 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2587 this_device->volume_offline = volume_offline & 0xff;
2588 } else {
2589 this_device->raid_level = RAID_UNKNOWN;
2590 this_device->offload_config = 0;
2591 this_device->offload_enabled = 0;
2592 this_device->volume_offline = 0;
2595 if (is_OBDR_device) {
2596 /* See if this is a One-Button-Disaster-Recovery device
2597 * by looking for "$DR-10" at offset 43 in inquiry data.
2599 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2600 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2601 strncmp(obdr_sig, OBDR_TAPE_SIG,
2602 OBDR_SIG_LEN) == 0);
2605 kfree(inq_buff);
2606 return 0;
2608 bail_out:
2609 kfree(inq_buff);
2610 return 1;
2613 static unsigned char *ext_target_model[] = {
2614 "MSA2012",
2615 "MSA2024",
2616 "MSA2312",
2617 "MSA2324",
2618 "P2000 G3 SAS",
2619 "MSA 2040 SAS",
2620 NULL,
2623 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2625 int i;
2627 for (i = 0; ext_target_model[i]; i++)
2628 if (strncmp(device->model, ext_target_model[i],
2629 strlen(ext_target_model[i])) == 0)
2630 return 1;
2631 return 0;
2634 /* Helper function to assign bus, target, lun mapping of devices.
2635 * Puts non-external target logical volumes on bus 0, external target logical
2636 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2637 * Logical drive target and lun are assigned at this time, but
2638 * physical device lun and target assignment are deferred (assigned
2639 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2641 static void figure_bus_target_lun(struct ctlr_info *h,
2642 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2644 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2646 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2647 /* physical device, target and lun filled in later */
2648 if (is_hba_lunid(lunaddrbytes))
2649 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2650 else
2651 /* defer target, lun assignment for physical devices */
2652 hpsa_set_bus_target_lun(device, 2, -1, -1);
2653 return;
2655 /* It's a logical device */
2656 if (is_ext_target(h, device)) {
2657 /* external target way, put logicals on bus 1
2658 * and match target/lun numbers box
2659 * reports, other smart array, bus 0, target 0, match lunid
2661 hpsa_set_bus_target_lun(device,
2662 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2663 return;
2665 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2669 * If there is no lun 0 on a target, linux won't find any devices.
2670 * For the external targets (arrays), we have to manually detect the enclosure
2671 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2672 * it for some reason. *tmpdevice is the target we're adding,
2673 * this_device is a pointer into the current element of currentsd[]
2674 * that we're building up in update_scsi_devices(), below.
2675 * lunzerobits is a bitmap that tracks which targets already have a
2676 * lun 0 assigned.
2677 * Returns 1 if an enclosure was added, 0 if not.
2679 static int add_ext_target_dev(struct ctlr_info *h,
2680 struct hpsa_scsi_dev_t *tmpdevice,
2681 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2682 unsigned long lunzerobits[], int *n_ext_target_devs)
2684 unsigned char scsi3addr[8];
2686 if (test_bit(tmpdevice->target, lunzerobits))
2687 return 0; /* There is already a lun 0 on this target. */
2689 if (!is_logical_dev_addr_mode(lunaddrbytes))
2690 return 0; /* It's the logical targets that may lack lun 0. */
2692 if (!is_ext_target(h, tmpdevice))
2693 return 0; /* Only external target devices have this problem. */
2695 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2696 return 0;
2698 memset(scsi3addr, 0, 8);
2699 scsi3addr[3] = tmpdevice->target;
2700 if (is_hba_lunid(scsi3addr))
2701 return 0; /* Don't add the RAID controller here. */
2703 if (is_scsi_rev_5(h))
2704 return 0; /* p1210m doesn't need to do this. */
2706 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2707 dev_warn(&h->pdev->dev, "Maximum number of external "
2708 "target devices exceeded. Check your hardware "
2709 "configuration.");
2710 return 0;
2713 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2714 return 0;
2715 (*n_ext_target_devs)++;
2716 hpsa_set_bus_target_lun(this_device,
2717 tmpdevice->bus, tmpdevice->target, 0);
2718 set_bit(tmpdevice->target, lunzerobits);
2719 return 1;
2723 * Get address of physical disk used for an ioaccel2 mode command:
2724 * 1. Extract ioaccel2 handle from the command.
2725 * 2. Find a matching ioaccel2 handle from list of physical disks.
2726 * 3. Return:
2727 * 1 and set scsi3addr to address of matching physical
2728 * 0 if no matching physical disk was found.
2730 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2731 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2733 struct ReportExtendedLUNdata *physicals = NULL;
2734 int responsesize = 24; /* size of physical extended response */
2735 int extended = 2; /* flag forces reporting 'other dev info'. */
2736 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2737 u32 nphysicals = 0; /* number of reported physical devs */
2738 int found = 0; /* found match (1) or not (0) */
2739 u32 find; /* handle we need to match */
2740 int i;
2741 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2742 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2743 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2744 u32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2745 u32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2747 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2748 return 0; /* no match */
2750 /* point to the ioaccel2 device handle */
2751 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2752 if (c2a == NULL)
2753 return 0; /* no match */
2755 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2756 if (scmd == NULL)
2757 return 0; /* no match */
2759 d = scmd->device->hostdata;
2760 if (d == NULL)
2761 return 0; /* no match */
2763 it_nexus = cpu_to_le32(d->ioaccel_handle);
2764 scsi_nexus = cpu_to_le32(c2a->scsi_nexus);
2765 find = c2a->scsi_nexus;
2767 if (h->raid_offload_debug > 0)
2768 dev_info(&h->pdev->dev,
2769 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2770 __func__, scsi_nexus,
2771 d->device_id[0], d->device_id[1], d->device_id[2],
2772 d->device_id[3], d->device_id[4], d->device_id[5],
2773 d->device_id[6], d->device_id[7], d->device_id[8],
2774 d->device_id[9], d->device_id[10], d->device_id[11],
2775 d->device_id[12], d->device_id[13], d->device_id[14],
2776 d->device_id[15]);
2778 /* Get the list of physical devices */
2779 physicals = kzalloc(reportsize, GFP_KERNEL);
2780 if (physicals == NULL)
2781 return 0;
2782 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2783 reportsize, extended)) {
2784 dev_err(&h->pdev->dev,
2785 "Can't lookup %s device handle: report physical LUNs failed.\n",
2786 "HP SSD Smart Path");
2787 kfree(physicals);
2788 return 0;
2790 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2791 responsesize;
2793 /* find ioaccel2 handle in list of physicals: */
2794 for (i = 0; i < nphysicals; i++) {
2795 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2797 /* handle is in bytes 28-31 of each lun */
2798 if (entry->ioaccel_handle != find)
2799 continue; /* didn't match */
2800 found = 1;
2801 memcpy(scsi3addr, entry->lunid, 8);
2802 if (h->raid_offload_debug > 0)
2803 dev_info(&h->pdev->dev,
2804 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2805 __func__, find,
2806 entry->ioaccel_handle, scsi3addr);
2807 break; /* found it */
2810 kfree(physicals);
2811 if (found)
2812 return 1;
2813 else
2814 return 0;
2818 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2819 * logdev. The number of luns in physdev and logdev are returned in
2820 * *nphysicals and *nlogicals, respectively.
2821 * Returns 0 on success, -1 otherwise.
2823 static int hpsa_gather_lun_info(struct ctlr_info *h,
2824 int reportphyslunsize, int reportloglunsize,
2825 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2826 struct ReportLUNdata *logdev, u32 *nlogicals)
2828 int physical_entry_size = 8;
2830 *physical_mode = 0;
2832 /* For I/O accelerator mode we need to read physical device handles */
2833 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2834 h->transMethod & CFGTBL_Trans_io_accel2) {
2835 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2836 physical_entry_size = 24;
2838 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2839 *physical_mode)) {
2840 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2841 return -1;
2843 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2844 physical_entry_size;
2845 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2846 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2847 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2848 *nphysicals - HPSA_MAX_PHYS_LUN);
2849 *nphysicals = HPSA_MAX_PHYS_LUN;
2851 if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2852 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2853 return -1;
2855 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2856 /* Reject Logicals in excess of our max capability. */
2857 if (*nlogicals > HPSA_MAX_LUN) {
2858 dev_warn(&h->pdev->dev,
2859 "maximum logical LUNs (%d) exceeded. "
2860 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2861 *nlogicals - HPSA_MAX_LUN);
2862 *nlogicals = HPSA_MAX_LUN;
2864 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2865 dev_warn(&h->pdev->dev,
2866 "maximum logical + physical LUNs (%d) exceeded. "
2867 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2868 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2869 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2871 return 0;
2874 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2875 int i, int nphysicals, int nlogicals,
2876 struct ReportExtendedLUNdata *physdev_list,
2877 struct ReportLUNdata *logdev_list)
2879 /* Helper function, figure out where the LUN ID info is coming from
2880 * given index i, lists of physical and logical devices, where in
2881 * the list the raid controller is supposed to appear (first or last)
2884 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2885 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2887 if (i == raid_ctlr_position)
2888 return RAID_CTLR_LUNID;
2890 if (i < logicals_start)
2891 return &physdev_list->LUN[i -
2892 (raid_ctlr_position == 0)].lunid[0];
2894 if (i < last_device)
2895 return &logdev_list->LUN[i - nphysicals -
2896 (raid_ctlr_position == 0)][0];
2897 BUG();
2898 return NULL;
2901 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2903 int rc;
2904 int hba_mode_enabled;
2905 struct bmic_controller_parameters *ctlr_params;
2906 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2907 GFP_KERNEL);
2909 if (!ctlr_params)
2910 return -ENOMEM;
2911 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2912 sizeof(struct bmic_controller_parameters));
2913 if (rc) {
2914 kfree(ctlr_params);
2915 return rc;
2918 hba_mode_enabled =
2919 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2920 kfree(ctlr_params);
2921 return hba_mode_enabled;
2924 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2926 /* the idea here is we could get notified
2927 * that some devices have changed, so we do a report
2928 * physical luns and report logical luns cmd, and adjust
2929 * our list of devices accordingly.
2931 * The scsi3addr's of devices won't change so long as the
2932 * adapter is not reset. That means we can rescan and
2933 * tell which devices we already know about, vs. new
2934 * devices, vs. disappearing devices.
2936 struct ReportExtendedLUNdata *physdev_list = NULL;
2937 struct ReportLUNdata *logdev_list = NULL;
2938 u32 nphysicals = 0;
2939 u32 nlogicals = 0;
2940 int physical_mode = 0;
2941 u32 ndev_allocated = 0;
2942 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2943 int ncurrent = 0;
2944 int i, n_ext_target_devs, ndevs_to_allocate;
2945 int raid_ctlr_position;
2946 int rescan_hba_mode;
2947 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2949 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2950 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2951 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2952 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2954 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2955 dev_err(&h->pdev->dev, "out of memory\n");
2956 goto out;
2958 memset(lunzerobits, 0, sizeof(lunzerobits));
2960 rescan_hba_mode = hpsa_hba_mode_enabled(h);
2961 if (rescan_hba_mode < 0)
2962 goto out;
2964 if (!h->hba_mode_enabled && rescan_hba_mode)
2965 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2966 else if (h->hba_mode_enabled && !rescan_hba_mode)
2967 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2969 h->hba_mode_enabled = rescan_hba_mode;
2971 if (hpsa_gather_lun_info(h,
2972 sizeof(*physdev_list), sizeof(*logdev_list),
2973 (struct ReportLUNdata *) physdev_list, &nphysicals,
2974 &physical_mode, logdev_list, &nlogicals))
2975 goto out;
2977 /* We might see up to the maximum number of logical and physical disks
2978 * plus external target devices, and a device for the local RAID
2979 * controller.
2981 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2983 /* Allocate the per device structures */
2984 for (i = 0; i < ndevs_to_allocate; i++) {
2985 if (i >= HPSA_MAX_DEVICES) {
2986 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2987 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2988 ndevs_to_allocate - HPSA_MAX_DEVICES);
2989 break;
2992 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2993 if (!currentsd[i]) {
2994 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2995 __FILE__, __LINE__);
2996 goto out;
2998 ndev_allocated++;
3001 if (is_scsi_rev_5(h))
3002 raid_ctlr_position = 0;
3003 else
3004 raid_ctlr_position = nphysicals + nlogicals;
3006 /* adjust our table of devices */
3007 n_ext_target_devs = 0;
3008 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3009 u8 *lunaddrbytes, is_OBDR = 0;
3011 /* Figure out where the LUN ID info is coming from */
3012 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3013 i, nphysicals, nlogicals, physdev_list, logdev_list);
3014 /* skip masked physical devices. */
3015 if (lunaddrbytes[3] & 0xC0 &&
3016 i < nphysicals + (raid_ctlr_position == 0))
3017 continue;
3019 /* Get device type, vendor, model, device id */
3020 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3021 &is_OBDR))
3022 continue; /* skip it if we can't talk to it. */
3023 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3024 this_device = currentsd[ncurrent];
3027 * For external target devices, we have to insert a LUN 0 which
3028 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3029 * is nonetheless an enclosure device there. We have to
3030 * present that otherwise linux won't find anything if
3031 * there is no lun 0.
3033 if (add_ext_target_dev(h, tmpdevice, this_device,
3034 lunaddrbytes, lunzerobits,
3035 &n_ext_target_devs)) {
3036 ncurrent++;
3037 this_device = currentsd[ncurrent];
3040 *this_device = *tmpdevice;
3042 switch (this_device->devtype) {
3043 case TYPE_ROM:
3044 /* We don't *really* support actual CD-ROM devices,
3045 * just "One Button Disaster Recovery" tape drive
3046 * which temporarily pretends to be a CD-ROM drive.
3047 * So we check that the device is really an OBDR tape
3048 * device by checking for "$DR-10" in bytes 43-48 of
3049 * the inquiry data.
3051 if (is_OBDR)
3052 ncurrent++;
3053 break;
3054 case TYPE_DISK:
3055 if (h->hba_mode_enabled) {
3056 /* never use raid mapper in HBA mode */
3057 this_device->offload_enabled = 0;
3058 ncurrent++;
3059 break;
3060 } else if (h->acciopath_status) {
3061 if (i >= nphysicals) {
3062 ncurrent++;
3063 break;
3065 } else {
3066 if (i < nphysicals)
3067 break;
3068 ncurrent++;
3069 break;
3071 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3072 memcpy(&this_device->ioaccel_handle,
3073 &lunaddrbytes[20],
3074 sizeof(this_device->ioaccel_handle));
3075 ncurrent++;
3077 break;
3078 case TYPE_TAPE:
3079 case TYPE_MEDIUM_CHANGER:
3080 ncurrent++;
3081 break;
3082 case TYPE_RAID:
3083 /* Only present the Smartarray HBA as a RAID controller.
3084 * If it's a RAID controller other than the HBA itself
3085 * (an external RAID controller, MSA500 or similar)
3086 * don't present it.
3088 if (!is_hba_lunid(lunaddrbytes))
3089 break;
3090 ncurrent++;
3091 break;
3092 default:
3093 break;
3095 if (ncurrent >= HPSA_MAX_DEVICES)
3096 break;
3098 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3099 out:
3100 kfree(tmpdevice);
3101 for (i = 0; i < ndev_allocated; i++)
3102 kfree(currentsd[i]);
3103 kfree(currentsd);
3104 kfree(physdev_list);
3105 kfree(logdev_list);
3108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3109 * dma mapping and fills in the scatter gather entries of the
3110 * hpsa command, cp.
3112 static int hpsa_scatter_gather(struct ctlr_info *h,
3113 struct CommandList *cp,
3114 struct scsi_cmnd *cmd)
3116 unsigned int len;
3117 struct scatterlist *sg;
3118 u64 addr64;
3119 int use_sg, i, sg_index, chained;
3120 struct SGDescriptor *curr_sg;
3122 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3124 use_sg = scsi_dma_map(cmd);
3125 if (use_sg < 0)
3126 return use_sg;
3128 if (!use_sg)
3129 goto sglist_finished;
3131 curr_sg = cp->SG;
3132 chained = 0;
3133 sg_index = 0;
3134 scsi_for_each_sg(cmd, sg, use_sg, i) {
3135 if (i == h->max_cmd_sg_entries - 1 &&
3136 use_sg > h->max_cmd_sg_entries) {
3137 chained = 1;
3138 curr_sg = h->cmd_sg_list[cp->cmdindex];
3139 sg_index = 0;
3141 addr64 = (u64) sg_dma_address(sg);
3142 len = sg_dma_len(sg);
3143 curr_sg->Addr = cpu_to_le64(addr64);
3144 curr_sg->Len = cpu_to_le32(len);
3145 curr_sg->Ext = cpu_to_le32(0);
3146 curr_sg++;
3148 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3150 if (use_sg + chained > h->maxSG)
3151 h->maxSG = use_sg + chained;
3153 if (chained) {
3154 cp->Header.SGList = h->max_cmd_sg_entries;
3155 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3156 if (hpsa_map_sg_chain_block(h, cp)) {
3157 scsi_dma_unmap(cmd);
3158 return -1;
3160 return 0;
3163 sglist_finished:
3165 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3166 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3167 return 0;
3170 #define IO_ACCEL_INELIGIBLE (1)
3171 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3173 int is_write = 0;
3174 u32 block;
3175 u32 block_cnt;
3177 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3178 switch (cdb[0]) {
3179 case WRITE_6:
3180 case WRITE_12:
3181 is_write = 1;
3182 case READ_6:
3183 case READ_12:
3184 if (*cdb_len == 6) {
3185 block = (((u32) cdb[2]) << 8) | cdb[3];
3186 block_cnt = cdb[4];
3187 } else {
3188 BUG_ON(*cdb_len != 12);
3189 block = (((u32) cdb[2]) << 24) |
3190 (((u32) cdb[3]) << 16) |
3191 (((u32) cdb[4]) << 8) |
3192 cdb[5];
3193 block_cnt =
3194 (((u32) cdb[6]) << 24) |
3195 (((u32) cdb[7]) << 16) |
3196 (((u32) cdb[8]) << 8) |
3197 cdb[9];
3199 if (block_cnt > 0xffff)
3200 return IO_ACCEL_INELIGIBLE;
3202 cdb[0] = is_write ? WRITE_10 : READ_10;
3203 cdb[1] = 0;
3204 cdb[2] = (u8) (block >> 24);
3205 cdb[3] = (u8) (block >> 16);
3206 cdb[4] = (u8) (block >> 8);
3207 cdb[5] = (u8) (block);
3208 cdb[6] = 0;
3209 cdb[7] = (u8) (block_cnt >> 8);
3210 cdb[8] = (u8) (block_cnt);
3211 cdb[9] = 0;
3212 *cdb_len = 10;
3213 break;
3215 return 0;
3218 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3219 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3220 u8 *scsi3addr)
3222 struct scsi_cmnd *cmd = c->scsi_cmd;
3223 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3224 unsigned int len;
3225 unsigned int total_len = 0;
3226 struct scatterlist *sg;
3227 u64 addr64;
3228 int use_sg, i;
3229 struct SGDescriptor *curr_sg;
3230 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3232 /* TODO: implement chaining support */
3233 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3234 return IO_ACCEL_INELIGIBLE;
3236 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3238 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3239 return IO_ACCEL_INELIGIBLE;
3241 c->cmd_type = CMD_IOACCEL1;
3243 /* Adjust the DMA address to point to the accelerated command buffer */
3244 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3245 (c->cmdindex * sizeof(*cp));
3246 BUG_ON(c->busaddr & 0x0000007F);
3248 use_sg = scsi_dma_map(cmd);
3249 if (use_sg < 0)
3250 return use_sg;
3252 if (use_sg) {
3253 curr_sg = cp->SG;
3254 scsi_for_each_sg(cmd, sg, use_sg, i) {
3255 addr64 = (u64) sg_dma_address(sg);
3256 len = sg_dma_len(sg);
3257 total_len += len;
3258 curr_sg->Addr = cpu_to_le64(addr64);
3259 curr_sg->Len = cpu_to_le32(len);
3260 curr_sg->Ext = cpu_to_le32(0);
3261 curr_sg++;
3263 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3265 switch (cmd->sc_data_direction) {
3266 case DMA_TO_DEVICE:
3267 control |= IOACCEL1_CONTROL_DATA_OUT;
3268 break;
3269 case DMA_FROM_DEVICE:
3270 control |= IOACCEL1_CONTROL_DATA_IN;
3271 break;
3272 case DMA_NONE:
3273 control |= IOACCEL1_CONTROL_NODATAXFER;
3274 break;
3275 default:
3276 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3277 cmd->sc_data_direction);
3278 BUG();
3279 break;
3281 } else {
3282 control |= IOACCEL1_CONTROL_NODATAXFER;
3285 c->Header.SGList = use_sg;
3286 /* Fill out the command structure to submit */
3287 cp->dev_handle = ioaccel_handle & 0xFFFF;
3288 cp->transfer_len = total_len;
3289 cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3290 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3291 cp->control = control;
3292 memcpy(cp->CDB, cdb, cdb_len);
3293 memcpy(cp->CISS_LUN, scsi3addr, 8);
3294 /* Tag was already set at init time. */
3295 enqueue_cmd_and_start_io(h, c);
3296 return 0;
3300 * Queue a command directly to a device behind the controller using the
3301 * I/O accelerator path.
3303 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3304 struct CommandList *c)
3306 struct scsi_cmnd *cmd = c->scsi_cmd;
3307 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3309 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3310 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3314 * Set encryption parameters for the ioaccel2 request
3316 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3317 struct CommandList *c, struct io_accel2_cmd *cp)
3319 struct scsi_cmnd *cmd = c->scsi_cmd;
3320 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3321 struct raid_map_data *map = &dev->raid_map;
3322 u64 first_block;
3324 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3326 /* Are we doing encryption on this device */
3327 if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3328 return;
3329 /* Set the data encryption key index. */
3330 cp->dekindex = map->dekindex;
3332 /* Set the encryption enable flag, encoded into direction field. */
3333 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3335 /* Set encryption tweak values based on logical block address
3336 * If block size is 512, tweak value is LBA.
3337 * For other block sizes, tweak is (LBA * block size)/ 512)
3339 switch (cmd->cmnd[0]) {
3340 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3341 case WRITE_6:
3342 case READ_6:
3343 if (map->volume_blk_size == 512) {
3344 cp->tweak_lower =
3345 (((u32) cmd->cmnd[2]) << 8) |
3346 cmd->cmnd[3];
3347 cp->tweak_upper = 0;
3348 } else {
3349 first_block =
3350 (((u64) cmd->cmnd[2]) << 8) |
3351 cmd->cmnd[3];
3352 first_block = (first_block * map->volume_blk_size)/512;
3353 cp->tweak_lower = (u32)first_block;
3354 cp->tweak_upper = (u32)(first_block >> 32);
3356 break;
3357 case WRITE_10:
3358 case READ_10:
3359 if (map->volume_blk_size == 512) {
3360 cp->tweak_lower =
3361 (((u32) cmd->cmnd[2]) << 24) |
3362 (((u32) cmd->cmnd[3]) << 16) |
3363 (((u32) cmd->cmnd[4]) << 8) |
3364 cmd->cmnd[5];
3365 cp->tweak_upper = 0;
3366 } else {
3367 first_block =
3368 (((u64) cmd->cmnd[2]) << 24) |
3369 (((u64) cmd->cmnd[3]) << 16) |
3370 (((u64) cmd->cmnd[4]) << 8) |
3371 cmd->cmnd[5];
3372 first_block = (first_block * map->volume_blk_size)/512;
3373 cp->tweak_lower = (u32)first_block;
3374 cp->tweak_upper = (u32)(first_block >> 32);
3376 break;
3377 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3378 case WRITE_12:
3379 case READ_12:
3380 if (map->volume_blk_size == 512) {
3381 cp->tweak_lower =
3382 (((u32) cmd->cmnd[2]) << 24) |
3383 (((u32) cmd->cmnd[3]) << 16) |
3384 (((u32) cmd->cmnd[4]) << 8) |
3385 cmd->cmnd[5];
3386 cp->tweak_upper = 0;
3387 } else {
3388 first_block =
3389 (((u64) cmd->cmnd[2]) << 24) |
3390 (((u64) cmd->cmnd[3]) << 16) |
3391 (((u64) cmd->cmnd[4]) << 8) |
3392 cmd->cmnd[5];
3393 first_block = (first_block * map->volume_blk_size)/512;
3394 cp->tweak_lower = (u32)first_block;
3395 cp->tweak_upper = (u32)(first_block >> 32);
3397 break;
3398 case WRITE_16:
3399 case READ_16:
3400 if (map->volume_blk_size == 512) {
3401 cp->tweak_lower =
3402 (((u32) cmd->cmnd[6]) << 24) |
3403 (((u32) cmd->cmnd[7]) << 16) |
3404 (((u32) cmd->cmnd[8]) << 8) |
3405 cmd->cmnd[9];
3406 cp->tweak_upper =
3407 (((u32) cmd->cmnd[2]) << 24) |
3408 (((u32) cmd->cmnd[3]) << 16) |
3409 (((u32) cmd->cmnd[4]) << 8) |
3410 cmd->cmnd[5];
3411 } else {
3412 first_block =
3413 (((u64) cmd->cmnd[2]) << 56) |
3414 (((u64) cmd->cmnd[3]) << 48) |
3415 (((u64) cmd->cmnd[4]) << 40) |
3416 (((u64) cmd->cmnd[5]) << 32) |
3417 (((u64) cmd->cmnd[6]) << 24) |
3418 (((u64) cmd->cmnd[7]) << 16) |
3419 (((u64) cmd->cmnd[8]) << 8) |
3420 cmd->cmnd[9];
3421 first_block = (first_block * map->volume_blk_size)/512;
3422 cp->tweak_lower = (u32)first_block;
3423 cp->tweak_upper = (u32)(first_block >> 32);
3425 break;
3426 default:
3427 dev_err(&h->pdev->dev,
3428 "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3429 __func__);
3430 BUG();
3431 break;
3435 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3436 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3437 u8 *scsi3addr)
3439 struct scsi_cmnd *cmd = c->scsi_cmd;
3440 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3441 struct ioaccel2_sg_element *curr_sg;
3442 int use_sg, i;
3443 struct scatterlist *sg;
3444 u64 addr64;
3445 u32 len;
3446 u32 total_len = 0;
3448 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3449 return IO_ACCEL_INELIGIBLE;
3451 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3452 return IO_ACCEL_INELIGIBLE;
3453 c->cmd_type = CMD_IOACCEL2;
3454 /* Adjust the DMA address to point to the accelerated command buffer */
3455 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3456 (c->cmdindex * sizeof(*cp));
3457 BUG_ON(c->busaddr & 0x0000007F);
3459 memset(cp, 0, sizeof(*cp));
3460 cp->IU_type = IOACCEL2_IU_TYPE;
3462 use_sg = scsi_dma_map(cmd);
3463 if (use_sg < 0)
3464 return use_sg;
3466 if (use_sg) {
3467 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3468 curr_sg = cp->sg;
3469 scsi_for_each_sg(cmd, sg, use_sg, i) {
3470 addr64 = (u64) sg_dma_address(sg);
3471 len = sg_dma_len(sg);
3472 total_len += len;
3473 curr_sg->address = cpu_to_le64(addr64);
3474 curr_sg->length = cpu_to_le32(len);
3475 curr_sg->reserved[0] = 0;
3476 curr_sg->reserved[1] = 0;
3477 curr_sg->reserved[2] = 0;
3478 curr_sg->chain_indicator = 0;
3479 curr_sg++;
3482 switch (cmd->sc_data_direction) {
3483 case DMA_TO_DEVICE:
3484 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3485 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3486 break;
3487 case DMA_FROM_DEVICE:
3488 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3489 cp->direction |= IOACCEL2_DIR_DATA_IN;
3490 break;
3491 case DMA_NONE:
3492 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3493 cp->direction |= IOACCEL2_DIR_NO_DATA;
3494 break;
3495 default:
3496 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3497 cmd->sc_data_direction);
3498 BUG();
3499 break;
3501 } else {
3502 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3503 cp->direction |= IOACCEL2_DIR_NO_DATA;
3506 /* Set encryption parameters, if necessary */
3507 set_encrypt_ioaccel2(h, c, cp);
3509 cp->scsi_nexus = ioaccel_handle;
3510 cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3511 DIRECT_LOOKUP_BIT;
3512 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3514 /* fill in sg elements */
3515 cp->sg_count = (u8) use_sg;
3517 cp->data_len = cpu_to_le32(total_len);
3518 cp->err_ptr = cpu_to_le64(c->busaddr +
3519 offsetof(struct io_accel2_cmd, error_data));
3520 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3522 enqueue_cmd_and_start_io(h, c);
3523 return 0;
3527 * Queue a command to the correct I/O accelerator path.
3529 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3530 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3531 u8 *scsi3addr)
3533 if (h->transMethod & CFGTBL_Trans_io_accel1)
3534 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3535 cdb, cdb_len, scsi3addr);
3536 else
3537 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3538 cdb, cdb_len, scsi3addr);
3541 static void raid_map_helper(struct raid_map_data *map,
3542 int offload_to_mirror, u32 *map_index, u32 *current_group)
3544 if (offload_to_mirror == 0) {
3545 /* use physical disk in the first mirrored group. */
3546 *map_index %= map->data_disks_per_row;
3547 return;
3549 do {
3550 /* determine mirror group that *map_index indicates */
3551 *current_group = *map_index / map->data_disks_per_row;
3552 if (offload_to_mirror == *current_group)
3553 continue;
3554 if (*current_group < (map->layout_map_count - 1)) {
3555 /* select map index from next group */
3556 *map_index += map->data_disks_per_row;
3557 (*current_group)++;
3558 } else {
3559 /* select map index from first group */
3560 *map_index %= map->data_disks_per_row;
3561 *current_group = 0;
3563 } while (offload_to_mirror != *current_group);
3567 * Attempt to perform offload RAID mapping for a logical volume I/O.
3569 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3570 struct CommandList *c)
3572 struct scsi_cmnd *cmd = c->scsi_cmd;
3573 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3574 struct raid_map_data *map = &dev->raid_map;
3575 struct raid_map_disk_data *dd = &map->data[0];
3576 int is_write = 0;
3577 u32 map_index;
3578 u64 first_block, last_block;
3579 u32 block_cnt;
3580 u32 blocks_per_row;
3581 u64 first_row, last_row;
3582 u32 first_row_offset, last_row_offset;
3583 u32 first_column, last_column;
3584 u64 r0_first_row, r0_last_row;
3585 u32 r5or6_blocks_per_row;
3586 u64 r5or6_first_row, r5or6_last_row;
3587 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3588 u32 r5or6_first_column, r5or6_last_column;
3589 u32 total_disks_per_row;
3590 u32 stripesize;
3591 u32 first_group, last_group, current_group;
3592 u32 map_row;
3593 u32 disk_handle;
3594 u64 disk_block;
3595 u32 disk_block_cnt;
3596 u8 cdb[16];
3597 u8 cdb_len;
3598 #if BITS_PER_LONG == 32
3599 u64 tmpdiv;
3600 #endif
3601 int offload_to_mirror;
3603 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3605 /* check for valid opcode, get LBA and block count */
3606 switch (cmd->cmnd[0]) {
3607 case WRITE_6:
3608 is_write = 1;
3609 case READ_6:
3610 first_block =
3611 (((u64) cmd->cmnd[2]) << 8) |
3612 cmd->cmnd[3];
3613 block_cnt = cmd->cmnd[4];
3614 if (block_cnt == 0)
3615 block_cnt = 256;
3616 break;
3617 case WRITE_10:
3618 is_write = 1;
3619 case READ_10:
3620 first_block =
3621 (((u64) cmd->cmnd[2]) << 24) |
3622 (((u64) cmd->cmnd[3]) << 16) |
3623 (((u64) cmd->cmnd[4]) << 8) |
3624 cmd->cmnd[5];
3625 block_cnt =
3626 (((u32) cmd->cmnd[7]) << 8) |
3627 cmd->cmnd[8];
3628 break;
3629 case WRITE_12:
3630 is_write = 1;
3631 case READ_12:
3632 first_block =
3633 (((u64) cmd->cmnd[2]) << 24) |
3634 (((u64) cmd->cmnd[3]) << 16) |
3635 (((u64) cmd->cmnd[4]) << 8) |
3636 cmd->cmnd[5];
3637 block_cnt =
3638 (((u32) cmd->cmnd[6]) << 24) |
3639 (((u32) cmd->cmnd[7]) << 16) |
3640 (((u32) cmd->cmnd[8]) << 8) |
3641 cmd->cmnd[9];
3642 break;
3643 case WRITE_16:
3644 is_write = 1;
3645 case READ_16:
3646 first_block =
3647 (((u64) cmd->cmnd[2]) << 56) |
3648 (((u64) cmd->cmnd[3]) << 48) |
3649 (((u64) cmd->cmnd[4]) << 40) |
3650 (((u64) cmd->cmnd[5]) << 32) |
3651 (((u64) cmd->cmnd[6]) << 24) |
3652 (((u64) cmd->cmnd[7]) << 16) |
3653 (((u64) cmd->cmnd[8]) << 8) |
3654 cmd->cmnd[9];
3655 block_cnt =
3656 (((u32) cmd->cmnd[10]) << 24) |
3657 (((u32) cmd->cmnd[11]) << 16) |
3658 (((u32) cmd->cmnd[12]) << 8) |
3659 cmd->cmnd[13];
3660 break;
3661 default:
3662 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3664 last_block = first_block + block_cnt - 1;
3666 /* check for write to non-RAID-0 */
3667 if (is_write && dev->raid_level != 0)
3668 return IO_ACCEL_INELIGIBLE;
3670 /* check for invalid block or wraparound */
3671 if (last_block >= map->volume_blk_cnt || last_block < first_block)
3672 return IO_ACCEL_INELIGIBLE;
3674 /* calculate stripe information for the request */
3675 blocks_per_row = map->data_disks_per_row * map->strip_size;
3676 #if BITS_PER_LONG == 32
3677 tmpdiv = first_block;
3678 (void) do_div(tmpdiv, blocks_per_row);
3679 first_row = tmpdiv;
3680 tmpdiv = last_block;
3681 (void) do_div(tmpdiv, blocks_per_row);
3682 last_row = tmpdiv;
3683 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3684 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3685 tmpdiv = first_row_offset;
3686 (void) do_div(tmpdiv, map->strip_size);
3687 first_column = tmpdiv;
3688 tmpdiv = last_row_offset;
3689 (void) do_div(tmpdiv, map->strip_size);
3690 last_column = tmpdiv;
3691 #else
3692 first_row = first_block / blocks_per_row;
3693 last_row = last_block / blocks_per_row;
3694 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3695 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3696 first_column = first_row_offset / map->strip_size;
3697 last_column = last_row_offset / map->strip_size;
3698 #endif
3700 /* if this isn't a single row/column then give to the controller */
3701 if ((first_row != last_row) || (first_column != last_column))
3702 return IO_ACCEL_INELIGIBLE;
3704 /* proceeding with driver mapping */
3705 total_disks_per_row = map->data_disks_per_row +
3706 map->metadata_disks_per_row;
3707 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3708 map->row_cnt;
3709 map_index = (map_row * total_disks_per_row) + first_column;
3711 switch (dev->raid_level) {
3712 case HPSA_RAID_0:
3713 break; /* nothing special to do */
3714 case HPSA_RAID_1:
3715 /* Handles load balance across RAID 1 members.
3716 * (2-drive R1 and R10 with even # of drives.)
3717 * Appropriate for SSDs, not optimal for HDDs
3719 BUG_ON(map->layout_map_count != 2);
3720 if (dev->offload_to_mirror)
3721 map_index += map->data_disks_per_row;
3722 dev->offload_to_mirror = !dev->offload_to_mirror;
3723 break;
3724 case HPSA_RAID_ADM:
3725 /* Handles N-way mirrors (R1-ADM)
3726 * and R10 with # of drives divisible by 3.)
3728 BUG_ON(map->layout_map_count != 3);
3730 offload_to_mirror = dev->offload_to_mirror;
3731 raid_map_helper(map, offload_to_mirror,
3732 &map_index, &current_group);
3733 /* set mirror group to use next time */
3734 offload_to_mirror =
3735 (offload_to_mirror >= map->layout_map_count - 1)
3736 ? 0 : offload_to_mirror + 1;
3737 dev->offload_to_mirror = offload_to_mirror;
3738 /* Avoid direct use of dev->offload_to_mirror within this
3739 * function since multiple threads might simultaneously
3740 * increment it beyond the range of dev->layout_map_count -1.
3742 break;
3743 case HPSA_RAID_5:
3744 case HPSA_RAID_6:
3745 if (map->layout_map_count <= 1)
3746 break;
3748 /* Verify first and last block are in same RAID group */
3749 r5or6_blocks_per_row =
3750 map->strip_size * map->data_disks_per_row;
3751 BUG_ON(r5or6_blocks_per_row == 0);
3752 stripesize = r5or6_blocks_per_row * map->layout_map_count;
3753 #if BITS_PER_LONG == 32
3754 tmpdiv = first_block;
3755 first_group = do_div(tmpdiv, stripesize);
3756 tmpdiv = first_group;
3757 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3758 first_group = tmpdiv;
3759 tmpdiv = last_block;
3760 last_group = do_div(tmpdiv, stripesize);
3761 tmpdiv = last_group;
3762 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3763 last_group = tmpdiv;
3764 #else
3765 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3766 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3767 #endif
3768 if (first_group != last_group)
3769 return IO_ACCEL_INELIGIBLE;
3771 /* Verify request is in a single row of RAID 5/6 */
3772 #if BITS_PER_LONG == 32
3773 tmpdiv = first_block;
3774 (void) do_div(tmpdiv, stripesize);
3775 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3776 tmpdiv = last_block;
3777 (void) do_div(tmpdiv, stripesize);
3778 r5or6_last_row = r0_last_row = tmpdiv;
3779 #else
3780 first_row = r5or6_first_row = r0_first_row =
3781 first_block / stripesize;
3782 r5or6_last_row = r0_last_row = last_block / stripesize;
3783 #endif
3784 if (r5or6_first_row != r5or6_last_row)
3785 return IO_ACCEL_INELIGIBLE;
3788 /* Verify request is in a single column */
3789 #if BITS_PER_LONG == 32
3790 tmpdiv = first_block;
3791 first_row_offset = do_div(tmpdiv, stripesize);
3792 tmpdiv = first_row_offset;
3793 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3794 r5or6_first_row_offset = first_row_offset;
3795 tmpdiv = last_block;
3796 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3797 tmpdiv = r5or6_last_row_offset;
3798 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3799 tmpdiv = r5or6_first_row_offset;
3800 (void) do_div(tmpdiv, map->strip_size);
3801 first_column = r5or6_first_column = tmpdiv;
3802 tmpdiv = r5or6_last_row_offset;
3803 (void) do_div(tmpdiv, map->strip_size);
3804 r5or6_last_column = tmpdiv;
3805 #else
3806 first_row_offset = r5or6_first_row_offset =
3807 (u32)((first_block % stripesize) %
3808 r5or6_blocks_per_row);
3810 r5or6_last_row_offset =
3811 (u32)((last_block % stripesize) %
3812 r5or6_blocks_per_row);
3814 first_column = r5or6_first_column =
3815 r5or6_first_row_offset / map->strip_size;
3816 r5or6_last_column =
3817 r5or6_last_row_offset / map->strip_size;
3818 #endif
3819 if (r5or6_first_column != r5or6_last_column)
3820 return IO_ACCEL_INELIGIBLE;
3822 /* Request is eligible */
3823 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3824 map->row_cnt;
3826 map_index = (first_group *
3827 (map->row_cnt * total_disks_per_row)) +
3828 (map_row * total_disks_per_row) + first_column;
3829 break;
3830 default:
3831 return IO_ACCEL_INELIGIBLE;
3834 disk_handle = dd[map_index].ioaccel_handle;
3835 disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3836 (first_row_offset - (first_column * map->strip_size));
3837 disk_block_cnt = block_cnt;
3839 /* handle differing logical/physical block sizes */
3840 if (map->phys_blk_shift) {
3841 disk_block <<= map->phys_blk_shift;
3842 disk_block_cnt <<= map->phys_blk_shift;
3844 BUG_ON(disk_block_cnt > 0xffff);
3846 /* build the new CDB for the physical disk I/O */
3847 if (disk_block > 0xffffffff) {
3848 cdb[0] = is_write ? WRITE_16 : READ_16;
3849 cdb[1] = 0;
3850 cdb[2] = (u8) (disk_block >> 56);
3851 cdb[3] = (u8) (disk_block >> 48);
3852 cdb[4] = (u8) (disk_block >> 40);
3853 cdb[5] = (u8) (disk_block >> 32);
3854 cdb[6] = (u8) (disk_block >> 24);
3855 cdb[7] = (u8) (disk_block >> 16);
3856 cdb[8] = (u8) (disk_block >> 8);
3857 cdb[9] = (u8) (disk_block);
3858 cdb[10] = (u8) (disk_block_cnt >> 24);
3859 cdb[11] = (u8) (disk_block_cnt >> 16);
3860 cdb[12] = (u8) (disk_block_cnt >> 8);
3861 cdb[13] = (u8) (disk_block_cnt);
3862 cdb[14] = 0;
3863 cdb[15] = 0;
3864 cdb_len = 16;
3865 } else {
3866 cdb[0] = is_write ? WRITE_10 : READ_10;
3867 cdb[1] = 0;
3868 cdb[2] = (u8) (disk_block >> 24);
3869 cdb[3] = (u8) (disk_block >> 16);
3870 cdb[4] = (u8) (disk_block >> 8);
3871 cdb[5] = (u8) (disk_block);
3872 cdb[6] = 0;
3873 cdb[7] = (u8) (disk_block_cnt >> 8);
3874 cdb[8] = (u8) (disk_block_cnt);
3875 cdb[9] = 0;
3876 cdb_len = 10;
3878 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3879 dev->scsi3addr);
3883 * Running in struct Scsi_Host->host_lock less mode using LLD internal
3884 * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3886 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3888 struct ctlr_info *h;
3889 struct hpsa_scsi_dev_t *dev;
3890 unsigned char scsi3addr[8];
3891 struct CommandList *c;
3892 int rc = 0;
3894 /* Get the ptr to our adapter structure out of cmd->host. */
3895 h = sdev_to_hba(cmd->device);
3896 dev = cmd->device->hostdata;
3897 if (!dev) {
3898 cmd->result = DID_NO_CONNECT << 16;
3899 cmd->scsi_done(cmd);
3900 return 0;
3902 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3904 if (unlikely(lockup_detected(h))) {
3905 cmd->result = DID_ERROR << 16;
3906 cmd->scsi_done(cmd);
3907 return 0;
3909 c = cmd_alloc(h);
3910 if (c == NULL) { /* trouble... */
3911 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3912 return SCSI_MLQUEUE_HOST_BUSY;
3915 /* Fill in the command list header */
3916 /* save c in case we have to abort it */
3917 cmd->host_scribble = (unsigned char *) c;
3919 c->cmd_type = CMD_SCSI;
3920 c->scsi_cmd = cmd;
3922 /* Call alternate submit routine for I/O accelerated commands.
3923 * Retries always go down the normal I/O path.
3925 if (likely(cmd->retries == 0 &&
3926 cmd->request->cmd_type == REQ_TYPE_FS &&
3927 h->acciopath_status)) {
3928 if (dev->offload_enabled) {
3929 rc = hpsa_scsi_ioaccel_raid_map(h, c);
3930 if (rc == 0)
3931 return 0; /* Sent on ioaccel path */
3932 if (rc < 0) { /* scsi_dma_map failed. */
3933 cmd_free(h, c);
3934 return SCSI_MLQUEUE_HOST_BUSY;
3936 } else if (dev->ioaccel_handle) {
3937 rc = hpsa_scsi_ioaccel_direct_map(h, c);
3938 if (rc == 0)
3939 return 0; /* Sent on direct map path */
3940 if (rc < 0) { /* scsi_dma_map failed. */
3941 cmd_free(h, c);
3942 return SCSI_MLQUEUE_HOST_BUSY;
3947 c->Header.ReplyQueue = 0; /* unused in simple mode */
3948 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3949 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3950 DIRECT_LOOKUP_BIT);
3952 /* Fill in the request block... */
3954 c->Request.Timeout = 0;
3955 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3956 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3957 c->Request.CDBLen = cmd->cmd_len;
3958 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3959 switch (cmd->sc_data_direction) {
3960 case DMA_TO_DEVICE:
3961 c->Request.type_attr_dir =
3962 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3963 break;
3964 case DMA_FROM_DEVICE:
3965 c->Request.type_attr_dir =
3966 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3967 break;
3968 case DMA_NONE:
3969 c->Request.type_attr_dir =
3970 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3971 break;
3972 case DMA_BIDIRECTIONAL:
3973 /* This can happen if a buggy application does a scsi passthru
3974 * and sets both inlen and outlen to non-zero. ( see
3975 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3978 c->Request.type_attr_dir =
3979 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3980 /* This is technically wrong, and hpsa controllers should
3981 * reject it with CMD_INVALID, which is the most correct
3982 * response, but non-fibre backends appear to let it
3983 * slide by, and give the same results as if this field
3984 * were set correctly. Either way is acceptable for
3985 * our purposes here.
3988 break;
3990 default:
3991 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3992 cmd->sc_data_direction);
3993 BUG();
3994 break;
3997 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3998 cmd_free(h, c);
3999 return SCSI_MLQUEUE_HOST_BUSY;
4001 enqueue_cmd_and_start_io(h, c);
4002 /* the cmd'll come back via intr handler in complete_scsi_command() */
4003 return 0;
4006 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4008 unsigned long flags;
4011 * Don't let rescans be initiated on a controller known
4012 * to be locked up. If the controller locks up *during*
4013 * a rescan, that thread is probably hosed, but at least
4014 * we can prevent new rescan threads from piling up on a
4015 * locked up controller.
4017 if (unlikely(lockup_detected(h))) {
4018 spin_lock_irqsave(&h->scan_lock, flags);
4019 h->scan_finished = 1;
4020 wake_up_all(&h->scan_wait_queue);
4021 spin_unlock_irqrestore(&h->scan_lock, flags);
4022 return 1;
4024 return 0;
4027 static void hpsa_scan_start(struct Scsi_Host *sh)
4029 struct ctlr_info *h = shost_to_hba(sh);
4030 unsigned long flags;
4032 if (do_not_scan_if_controller_locked_up(h))
4033 return;
4035 /* wait until any scan already in progress is finished. */
4036 while (1) {
4037 spin_lock_irqsave(&h->scan_lock, flags);
4038 if (h->scan_finished)
4039 break;
4040 spin_unlock_irqrestore(&h->scan_lock, flags);
4041 wait_event(h->scan_wait_queue, h->scan_finished);
4042 /* Note: We don't need to worry about a race between this
4043 * thread and driver unload because the midlayer will
4044 * have incremented the reference count, so unload won't
4045 * happen if we're in here.
4048 h->scan_finished = 0; /* mark scan as in progress */
4049 spin_unlock_irqrestore(&h->scan_lock, flags);
4051 if (do_not_scan_if_controller_locked_up(h))
4052 return;
4054 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4056 spin_lock_irqsave(&h->scan_lock, flags);
4057 h->scan_finished = 1; /* mark scan as finished. */
4058 wake_up_all(&h->scan_wait_queue);
4059 spin_unlock_irqrestore(&h->scan_lock, flags);
4062 static int hpsa_scan_finished(struct Scsi_Host *sh,
4063 unsigned long elapsed_time)
4065 struct ctlr_info *h = shost_to_hba(sh);
4066 unsigned long flags;
4067 int finished;
4069 spin_lock_irqsave(&h->scan_lock, flags);
4070 finished = h->scan_finished;
4071 spin_unlock_irqrestore(&h->scan_lock, flags);
4072 return finished;
4075 static void hpsa_unregister_scsi(struct ctlr_info *h)
4077 /* we are being forcibly unloaded, and may not refuse. */
4078 scsi_remove_host(h->scsi_host);
4079 scsi_host_put(h->scsi_host);
4080 h->scsi_host = NULL;
4083 static int hpsa_register_scsi(struct ctlr_info *h)
4085 struct Scsi_Host *sh;
4086 int error;
4088 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4089 if (sh == NULL)
4090 goto fail;
4092 sh->io_port = 0;
4093 sh->n_io_port = 0;
4094 sh->this_id = -1;
4095 sh->max_channel = 3;
4096 sh->max_cmd_len = MAX_COMMAND_SIZE;
4097 sh->max_lun = HPSA_MAX_LUN;
4098 sh->max_id = HPSA_MAX_LUN;
4099 sh->can_queue = h->nr_cmds;
4100 if (h->hba_mode_enabled)
4101 sh->cmd_per_lun = 7;
4102 else
4103 sh->cmd_per_lun = h->nr_cmds;
4104 sh->sg_tablesize = h->maxsgentries;
4105 h->scsi_host = sh;
4106 sh->hostdata[0] = (unsigned long) h;
4107 sh->irq = h->intr[h->intr_mode];
4108 sh->unique_id = sh->irq;
4109 error = scsi_add_host(sh, &h->pdev->dev);
4110 if (error)
4111 goto fail_host_put;
4112 scsi_scan_host(sh);
4113 return 0;
4115 fail_host_put:
4116 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4117 " failed for controller %d\n", __func__, h->ctlr);
4118 scsi_host_put(sh);
4119 return error;
4120 fail:
4121 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4122 " failed for controller %d\n", __func__, h->ctlr);
4123 return -ENOMEM;
4126 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4127 unsigned char lunaddr[])
4129 int rc;
4130 int count = 0;
4131 int waittime = 1; /* seconds */
4132 struct CommandList *c;
4134 c = cmd_special_alloc(h);
4135 if (!c) {
4136 dev_warn(&h->pdev->dev, "out of memory in "
4137 "wait_for_device_to_become_ready.\n");
4138 return IO_ERROR;
4141 /* Send test unit ready until device ready, or give up. */
4142 while (count < HPSA_TUR_RETRY_LIMIT) {
4144 /* Wait for a bit. do this first, because if we send
4145 * the TUR right away, the reset will just abort it.
4147 msleep(1000 * waittime);
4148 count++;
4149 rc = 0; /* Device ready. */
4151 /* Increase wait time with each try, up to a point. */
4152 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4153 waittime = waittime * 2;
4155 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4156 (void) fill_cmd(c, TEST_UNIT_READY, h,
4157 NULL, 0, 0, lunaddr, TYPE_CMD);
4158 hpsa_scsi_do_simple_cmd_core(h, c);
4159 /* no unmap needed here because no data xfer. */
4161 if (c->err_info->CommandStatus == CMD_SUCCESS)
4162 break;
4164 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4165 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4166 (c->err_info->SenseInfo[2] == NO_SENSE ||
4167 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4168 break;
4170 dev_warn(&h->pdev->dev, "waiting %d secs "
4171 "for device to become ready.\n", waittime);
4172 rc = 1; /* device not ready. */
4175 if (rc)
4176 dev_warn(&h->pdev->dev, "giving up on device.\n");
4177 else
4178 dev_warn(&h->pdev->dev, "device is ready.\n");
4180 cmd_special_free(h, c);
4181 return rc;
4184 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4185 * complaining. Doing a host- or bus-reset can't do anything good here.
4187 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4189 int rc;
4190 struct ctlr_info *h;
4191 struct hpsa_scsi_dev_t *dev;
4193 /* find the controller to which the command to be aborted was sent */
4194 h = sdev_to_hba(scsicmd->device);
4195 if (h == NULL) /* paranoia */
4196 return FAILED;
4197 dev = scsicmd->device->hostdata;
4198 if (!dev) {
4199 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4200 "device lookup failed.\n");
4201 return FAILED;
4203 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4204 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4205 /* send a reset to the SCSI LUN which the command was sent to */
4206 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4207 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4208 return SUCCESS;
4210 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4211 return FAILED;
4214 static void swizzle_abort_tag(u8 *tag)
4216 u8 original_tag[8];
4218 memcpy(original_tag, tag, 8);
4219 tag[0] = original_tag[3];
4220 tag[1] = original_tag[2];
4221 tag[2] = original_tag[1];
4222 tag[3] = original_tag[0];
4223 tag[4] = original_tag[7];
4224 tag[5] = original_tag[6];
4225 tag[6] = original_tag[5];
4226 tag[7] = original_tag[4];
4229 static void hpsa_get_tag(struct ctlr_info *h,
4230 struct CommandList *c, u32 *taglower, u32 *tagupper)
4232 if (c->cmd_type == CMD_IOACCEL1) {
4233 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4234 &h->ioaccel_cmd_pool[c->cmdindex];
4235 *tagupper = (u32) (cm1->tag >> 32);
4236 *taglower = (u32) (cm1->tag & 0x0ffffffffULL);
4237 return;
4239 if (c->cmd_type == CMD_IOACCEL2) {
4240 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4241 &h->ioaccel2_cmd_pool[c->cmdindex];
4242 /* upper tag not used in ioaccel2 mode */
4243 memset(tagupper, 0, sizeof(*tagupper));
4244 *taglower = cm2->Tag;
4245 return;
4247 *tagupper = (u32) (c->Header.tag >> 32);
4248 *taglower = (u32) (c->Header.tag & 0x0ffffffffULL);
4251 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4252 struct CommandList *abort, int swizzle)
4254 int rc = IO_OK;
4255 struct CommandList *c;
4256 struct ErrorInfo *ei;
4257 u32 tagupper, taglower;
4259 c = cmd_special_alloc(h);
4260 if (c == NULL) { /* trouble... */
4261 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4262 return -ENOMEM;
4265 /* fill_cmd can't fail here, no buffer to map */
4266 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4267 0, 0, scsi3addr, TYPE_MSG);
4268 if (swizzle)
4269 swizzle_abort_tag(&c->Request.CDB[4]);
4270 hpsa_scsi_do_simple_cmd_core(h, c);
4271 hpsa_get_tag(h, abort, &taglower, &tagupper);
4272 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4273 __func__, tagupper, taglower);
4274 /* no unmap needed here because no data xfer. */
4276 ei = c->err_info;
4277 switch (ei->CommandStatus) {
4278 case CMD_SUCCESS:
4279 break;
4280 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4281 rc = -1;
4282 break;
4283 default:
4284 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4285 __func__, tagupper, taglower);
4286 hpsa_scsi_interpret_error(h, c);
4287 rc = -1;
4288 break;
4290 cmd_special_free(h, c);
4291 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4292 __func__, tagupper, taglower);
4293 return rc;
4297 * hpsa_find_cmd_in_queue
4299 * Used to determine whether a command (find) is still present
4300 * in queue_head. Optionally excludes the last element of queue_head.
4302 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4303 * not yet been submitted, and so can be aborted by the driver without
4304 * sending an abort to the hardware.
4306 * Returns pointer to command if found in queue, NULL otherwise.
4308 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4309 struct scsi_cmnd *find, struct list_head *queue_head)
4311 unsigned long flags;
4312 struct CommandList *c = NULL; /* ptr into cmpQ */
4314 if (!find)
4315 return NULL;
4316 spin_lock_irqsave(&h->lock, flags);
4317 list_for_each_entry(c, queue_head, list) {
4318 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4319 continue;
4320 if (c->scsi_cmd == find) {
4321 spin_unlock_irqrestore(&h->lock, flags);
4322 return c;
4325 spin_unlock_irqrestore(&h->lock, flags);
4326 return NULL;
4329 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4330 u8 *tag, struct list_head *queue_head)
4332 unsigned long flags;
4333 struct CommandList *c;
4335 spin_lock_irqsave(&h->lock, flags);
4336 list_for_each_entry(c, queue_head, list) {
4337 if (memcmp(&c->Header.tag, tag, 8) != 0)
4338 continue;
4339 spin_unlock_irqrestore(&h->lock, flags);
4340 return c;
4342 spin_unlock_irqrestore(&h->lock, flags);
4343 return NULL;
4346 /* ioaccel2 path firmware cannot handle abort task requests.
4347 * Change abort requests to physical target reset, and send to the
4348 * address of the physical disk used for the ioaccel 2 command.
4349 * Return 0 on success (IO_OK)
4350 * -1 on failure
4353 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4354 unsigned char *scsi3addr, struct CommandList *abort)
4356 int rc = IO_OK;
4357 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4358 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4359 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4360 unsigned char *psa = &phys_scsi3addr[0];
4362 /* Get a pointer to the hpsa logical device. */
4363 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4364 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4365 if (dev == NULL) {
4366 dev_warn(&h->pdev->dev,
4367 "Cannot abort: no device pointer for command.\n");
4368 return -1; /* not abortable */
4371 if (h->raid_offload_debug > 0)
4372 dev_info(&h->pdev->dev,
4373 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4375 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4376 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4378 if (!dev->offload_enabled) {
4379 dev_warn(&h->pdev->dev,
4380 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4381 return -1; /* not abortable */
4384 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4385 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4386 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4387 return -1; /* not abortable */
4390 /* send the reset */
4391 if (h->raid_offload_debug > 0)
4392 dev_info(&h->pdev->dev,
4393 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4394 psa[0], psa[1], psa[2], psa[3],
4395 psa[4], psa[5], psa[6], psa[7]);
4396 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4397 if (rc != 0) {
4398 dev_warn(&h->pdev->dev,
4399 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4400 psa[0], psa[1], psa[2], psa[3],
4401 psa[4], psa[5], psa[6], psa[7]);
4402 return rc; /* failed to reset */
4405 /* wait for device to recover */
4406 if (wait_for_device_to_become_ready(h, psa) != 0) {
4407 dev_warn(&h->pdev->dev,
4408 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4409 psa[0], psa[1], psa[2], psa[3],
4410 psa[4], psa[5], psa[6], psa[7]);
4411 return -1; /* failed to recover */
4414 /* device recovered */
4415 dev_info(&h->pdev->dev,
4416 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4417 psa[0], psa[1], psa[2], psa[3],
4418 psa[4], psa[5], psa[6], psa[7]);
4420 return rc; /* success */
4423 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4424 * tell which kind we're dealing with, so we send the abort both ways. There
4425 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4426 * way we construct our tags but we check anyway in case the assumptions which
4427 * make this true someday become false.
4429 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4430 unsigned char *scsi3addr, struct CommandList *abort)
4432 u8 swizzled_tag[8];
4433 struct CommandList *c;
4434 int rc = 0, rc2 = 0;
4436 /* ioccelerator mode 2 commands should be aborted via the
4437 * accelerated path, since RAID path is unaware of these commands,
4438 * but underlying firmware can't handle abort TMF.
4439 * Change abort to physical device reset.
4441 if (abort->cmd_type == CMD_IOACCEL2)
4442 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4444 /* we do not expect to find the swizzled tag in our queue, but
4445 * check anyway just to be sure the assumptions which make this
4446 * the case haven't become wrong.
4448 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4449 swizzle_abort_tag(swizzled_tag);
4450 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4451 if (c != NULL) {
4452 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4453 return hpsa_send_abort(h, scsi3addr, abort, 0);
4455 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4457 /* if the command is still in our queue, we can't conclude that it was
4458 * aborted (it might have just completed normally) but in any case
4459 * we don't need to try to abort it another way.
4461 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4462 if (c)
4463 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4464 return rc && rc2;
4467 /* Send an abort for the specified command.
4468 * If the device and controller support it,
4469 * send a task abort request.
4471 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4474 int i, rc;
4475 struct ctlr_info *h;
4476 struct hpsa_scsi_dev_t *dev;
4477 struct CommandList *abort; /* pointer to command to be aborted */
4478 struct CommandList *found;
4479 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4480 char msg[256]; /* For debug messaging. */
4481 int ml = 0;
4482 u32 tagupper, taglower;
4484 /* Find the controller of the command to be aborted */
4485 h = sdev_to_hba(sc->device);
4486 if (WARN(h == NULL,
4487 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4488 return FAILED;
4490 /* Check that controller supports some kind of task abort */
4491 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4492 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4493 return FAILED;
4495 memset(msg, 0, sizeof(msg));
4496 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4497 h->scsi_host->host_no, sc->device->channel,
4498 sc->device->id, sc->device->lun);
4500 /* Find the device of the command to be aborted */
4501 dev = sc->device->hostdata;
4502 if (!dev) {
4503 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4504 msg);
4505 return FAILED;
4508 /* Get SCSI command to be aborted */
4509 abort = (struct CommandList *) sc->host_scribble;
4510 if (abort == NULL) {
4511 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4512 msg);
4513 return FAILED;
4515 hpsa_get_tag(h, abort, &taglower, &tagupper);
4516 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4517 as = (struct scsi_cmnd *) abort->scsi_cmd;
4518 if (as != NULL)
4519 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4520 as->cmnd[0], as->serial_number);
4521 dev_dbg(&h->pdev->dev, "%s\n", msg);
4522 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4523 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4525 /* Search reqQ to See if command is queued but not submitted,
4526 * if so, complete the command with aborted status and remove
4527 * it from the reqQ.
4529 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4530 if (found) {
4531 found->err_info->CommandStatus = CMD_ABORTED;
4532 finish_cmd(found);
4533 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4534 msg);
4535 return SUCCESS;
4538 /* not in reqQ, if also not in cmpQ, must have already completed */
4539 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4540 if (!found) {
4541 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4542 msg);
4543 return SUCCESS;
4547 * Command is in flight, or possibly already completed
4548 * by the firmware (but not to the scsi mid layer) but we can't
4549 * distinguish which. Send the abort down.
4551 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4552 if (rc != 0) {
4553 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4554 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4555 h->scsi_host->host_no,
4556 dev->bus, dev->target, dev->lun);
4557 return FAILED;
4559 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4561 /* If the abort(s) above completed and actually aborted the
4562 * command, then the command to be aborted should already be
4563 * completed. If not, wait around a bit more to see if they
4564 * manage to complete normally.
4566 #define ABORT_COMPLETE_WAIT_SECS 30
4567 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4568 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4569 if (!found)
4570 return SUCCESS;
4571 msleep(100);
4573 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4574 msg, ABORT_COMPLETE_WAIT_SECS);
4575 return FAILED;
4580 * For operations that cannot sleep, a command block is allocated at init,
4581 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4582 * which ones are free or in use. Lock must be held when calling this.
4583 * cmd_free() is the complement.
4585 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4587 struct CommandList *c;
4588 int i;
4589 union u64bit temp64;
4590 dma_addr_t cmd_dma_handle, err_dma_handle;
4591 int loopcount;
4593 /* There is some *extremely* small but non-zero chance that that
4594 * multiple threads could get in here, and one thread could
4595 * be scanning through the list of bits looking for a free
4596 * one, but the free ones are always behind him, and other
4597 * threads sneak in behind him and eat them before he can
4598 * get to them, so that while there is always a free one, a
4599 * very unlucky thread might be starved anyway, never able to
4600 * beat the other threads. In reality, this happens so
4601 * infrequently as to be indistinguishable from never.
4604 loopcount = 0;
4605 do {
4606 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4607 if (i == h->nr_cmds)
4608 i = 0;
4609 loopcount++;
4610 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4611 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4612 loopcount < 10);
4614 /* Thread got starved? We do not expect this to ever happen. */
4615 if (loopcount >= 10)
4616 return NULL;
4618 c = h->cmd_pool + i;
4619 memset(c, 0, sizeof(*c));
4620 cmd_dma_handle = h->cmd_pool_dhandle
4621 + i * sizeof(*c);
4622 c->err_info = h->errinfo_pool + i;
4623 memset(c->err_info, 0, sizeof(*c->err_info));
4624 err_dma_handle = h->errinfo_pool_dhandle
4625 + i * sizeof(*c->err_info);
4627 c->cmdindex = i;
4629 INIT_LIST_HEAD(&c->list);
4630 c->busaddr = (u32) cmd_dma_handle;
4631 temp64.val = (u64) err_dma_handle;
4632 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4633 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4635 c->h = h;
4636 return c;
4639 /* For operations that can wait for kmalloc to possibly sleep,
4640 * this routine can be called. Lock need not be held to call
4641 * cmd_special_alloc. cmd_special_free() is the complement.
4643 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4645 struct CommandList *c;
4646 dma_addr_t cmd_dma_handle, err_dma_handle;
4648 c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4649 if (c == NULL)
4650 return NULL;
4652 c->cmd_type = CMD_SCSI;
4653 c->cmdindex = -1;
4655 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4656 &err_dma_handle);
4658 if (c->err_info == NULL) {
4659 pci_free_consistent(h->pdev,
4660 sizeof(*c), c, cmd_dma_handle);
4661 return NULL;
4664 INIT_LIST_HEAD(&c->list);
4665 c->busaddr = (u32) cmd_dma_handle;
4666 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4667 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4669 c->h = h;
4670 return c;
4673 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4675 int i;
4677 i = c - h->cmd_pool;
4678 clear_bit(i & (BITS_PER_LONG - 1),
4679 h->cmd_pool_bits + (i / BITS_PER_LONG));
4682 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4684 pci_free_consistent(h->pdev, sizeof(*c->err_info),
4685 c->err_info,
4686 (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4687 pci_free_consistent(h->pdev, sizeof(*c),
4688 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4691 #ifdef CONFIG_COMPAT
4693 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4694 void __user *arg)
4696 IOCTL32_Command_struct __user *arg32 =
4697 (IOCTL32_Command_struct __user *) arg;
4698 IOCTL_Command_struct arg64;
4699 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4700 int err;
4701 u32 cp;
4703 memset(&arg64, 0, sizeof(arg64));
4704 err = 0;
4705 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4706 sizeof(arg64.LUN_info));
4707 err |= copy_from_user(&arg64.Request, &arg32->Request,
4708 sizeof(arg64.Request));
4709 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4710 sizeof(arg64.error_info));
4711 err |= get_user(arg64.buf_size, &arg32->buf_size);
4712 err |= get_user(cp, &arg32->buf);
4713 arg64.buf = compat_ptr(cp);
4714 err |= copy_to_user(p, &arg64, sizeof(arg64));
4716 if (err)
4717 return -EFAULT;
4719 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4720 if (err)
4721 return err;
4722 err |= copy_in_user(&arg32->error_info, &p->error_info,
4723 sizeof(arg32->error_info));
4724 if (err)
4725 return -EFAULT;
4726 return err;
4729 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4730 int cmd, void __user *arg)
4732 BIG_IOCTL32_Command_struct __user *arg32 =
4733 (BIG_IOCTL32_Command_struct __user *) arg;
4734 BIG_IOCTL_Command_struct arg64;
4735 BIG_IOCTL_Command_struct __user *p =
4736 compat_alloc_user_space(sizeof(arg64));
4737 int err;
4738 u32 cp;
4740 memset(&arg64, 0, sizeof(arg64));
4741 err = 0;
4742 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4743 sizeof(arg64.LUN_info));
4744 err |= copy_from_user(&arg64.Request, &arg32->Request,
4745 sizeof(arg64.Request));
4746 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4747 sizeof(arg64.error_info));
4748 err |= get_user(arg64.buf_size, &arg32->buf_size);
4749 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4750 err |= get_user(cp, &arg32->buf);
4751 arg64.buf = compat_ptr(cp);
4752 err |= copy_to_user(p, &arg64, sizeof(arg64));
4754 if (err)
4755 return -EFAULT;
4757 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4758 if (err)
4759 return err;
4760 err |= copy_in_user(&arg32->error_info, &p->error_info,
4761 sizeof(arg32->error_info));
4762 if (err)
4763 return -EFAULT;
4764 return err;
4767 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4769 switch (cmd) {
4770 case CCISS_GETPCIINFO:
4771 case CCISS_GETINTINFO:
4772 case CCISS_SETINTINFO:
4773 case CCISS_GETNODENAME:
4774 case CCISS_SETNODENAME:
4775 case CCISS_GETHEARTBEAT:
4776 case CCISS_GETBUSTYPES:
4777 case CCISS_GETFIRMVER:
4778 case CCISS_GETDRIVVER:
4779 case CCISS_REVALIDVOLS:
4780 case CCISS_DEREGDISK:
4781 case CCISS_REGNEWDISK:
4782 case CCISS_REGNEWD:
4783 case CCISS_RESCANDISK:
4784 case CCISS_GETLUNINFO:
4785 return hpsa_ioctl(dev, cmd, arg);
4787 case CCISS_PASSTHRU32:
4788 return hpsa_ioctl32_passthru(dev, cmd, arg);
4789 case CCISS_BIG_PASSTHRU32:
4790 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4792 default:
4793 return -ENOIOCTLCMD;
4796 #endif
4798 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4800 struct hpsa_pci_info pciinfo;
4802 if (!argp)
4803 return -EINVAL;
4804 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4805 pciinfo.bus = h->pdev->bus->number;
4806 pciinfo.dev_fn = h->pdev->devfn;
4807 pciinfo.board_id = h->board_id;
4808 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4809 return -EFAULT;
4810 return 0;
4813 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4815 DriverVer_type DriverVer;
4816 unsigned char vmaj, vmin, vsubmin;
4817 int rc;
4819 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4820 &vmaj, &vmin, &vsubmin);
4821 if (rc != 3) {
4822 dev_info(&h->pdev->dev, "driver version string '%s' "
4823 "unrecognized.", HPSA_DRIVER_VERSION);
4824 vmaj = 0;
4825 vmin = 0;
4826 vsubmin = 0;
4828 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4829 if (!argp)
4830 return -EINVAL;
4831 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4832 return -EFAULT;
4833 return 0;
4836 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4838 IOCTL_Command_struct iocommand;
4839 struct CommandList *c;
4840 char *buff = NULL;
4841 u64 temp64;
4842 int rc = 0;
4844 if (!argp)
4845 return -EINVAL;
4846 if (!capable(CAP_SYS_RAWIO))
4847 return -EPERM;
4848 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4849 return -EFAULT;
4850 if ((iocommand.buf_size < 1) &&
4851 (iocommand.Request.Type.Direction != XFER_NONE)) {
4852 return -EINVAL;
4854 if (iocommand.buf_size > 0) {
4855 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4856 if (buff == NULL)
4857 return -EFAULT;
4858 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4859 /* Copy the data into the buffer we created */
4860 if (copy_from_user(buff, iocommand.buf,
4861 iocommand.buf_size)) {
4862 rc = -EFAULT;
4863 goto out_kfree;
4865 } else {
4866 memset(buff, 0, iocommand.buf_size);
4869 c = cmd_special_alloc(h);
4870 if (c == NULL) {
4871 rc = -ENOMEM;
4872 goto out_kfree;
4874 /* Fill in the command type */
4875 c->cmd_type = CMD_IOCTL_PEND;
4876 /* Fill in Command Header */
4877 c->Header.ReplyQueue = 0; /* unused in simple mode */
4878 if (iocommand.buf_size > 0) { /* buffer to fill */
4879 c->Header.SGList = 1;
4880 c->Header.SGTotal = cpu_to_le16(1);
4881 } else { /* no buffers to fill */
4882 c->Header.SGList = 0;
4883 c->Header.SGTotal = cpu_to_le16(0);
4885 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4886 /* use the kernel address the cmd block for tag */
4887 c->Header.tag = c->busaddr;
4889 /* Fill in Request block */
4890 memcpy(&c->Request, &iocommand.Request,
4891 sizeof(c->Request));
4893 /* Fill in the scatter gather information */
4894 if (iocommand.buf_size > 0) {
4895 temp64 = pci_map_single(h->pdev, buff,
4896 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4897 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4898 c->SG[0].Addr = cpu_to_le64(0);
4899 c->SG[0].Len = cpu_to_le32(0);
4900 rc = -ENOMEM;
4901 goto out;
4903 c->SG[0].Addr = cpu_to_le64(temp64);
4904 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4905 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4907 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4908 if (iocommand.buf_size > 0)
4909 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4910 check_ioctl_unit_attention(h, c);
4912 /* Copy the error information out */
4913 memcpy(&iocommand.error_info, c->err_info,
4914 sizeof(iocommand.error_info));
4915 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4916 rc = -EFAULT;
4917 goto out;
4919 if ((iocommand.Request.Type.Direction & XFER_READ) &&
4920 iocommand.buf_size > 0) {
4921 /* Copy the data out of the buffer we created */
4922 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4923 rc = -EFAULT;
4924 goto out;
4927 out:
4928 cmd_special_free(h, c);
4929 out_kfree:
4930 kfree(buff);
4931 return rc;
4934 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4936 BIG_IOCTL_Command_struct *ioc;
4937 struct CommandList *c;
4938 unsigned char **buff = NULL;
4939 int *buff_size = NULL;
4940 u64 temp64;
4941 BYTE sg_used = 0;
4942 int status = 0;
4943 int i;
4944 u32 left;
4945 u32 sz;
4946 BYTE __user *data_ptr;
4948 if (!argp)
4949 return -EINVAL;
4950 if (!capable(CAP_SYS_RAWIO))
4951 return -EPERM;
4952 ioc = (BIG_IOCTL_Command_struct *)
4953 kmalloc(sizeof(*ioc), GFP_KERNEL);
4954 if (!ioc) {
4955 status = -ENOMEM;
4956 goto cleanup1;
4958 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4959 status = -EFAULT;
4960 goto cleanup1;
4962 if ((ioc->buf_size < 1) &&
4963 (ioc->Request.Type.Direction != XFER_NONE)) {
4964 status = -EINVAL;
4965 goto cleanup1;
4967 /* Check kmalloc limits using all SGs */
4968 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4969 status = -EINVAL;
4970 goto cleanup1;
4972 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4973 status = -EINVAL;
4974 goto cleanup1;
4976 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4977 if (!buff) {
4978 status = -ENOMEM;
4979 goto cleanup1;
4981 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4982 if (!buff_size) {
4983 status = -ENOMEM;
4984 goto cleanup1;
4986 left = ioc->buf_size;
4987 data_ptr = ioc->buf;
4988 while (left) {
4989 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4990 buff_size[sg_used] = sz;
4991 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4992 if (buff[sg_used] == NULL) {
4993 status = -ENOMEM;
4994 goto cleanup1;
4996 if (ioc->Request.Type.Direction & XFER_WRITE) {
4997 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4998 status = -EFAULT;
4999 goto cleanup1;
5001 } else
5002 memset(buff[sg_used], 0, sz);
5003 left -= sz;
5004 data_ptr += sz;
5005 sg_used++;
5007 c = cmd_special_alloc(h);
5008 if (c == NULL) {
5009 status = -ENOMEM;
5010 goto cleanup1;
5012 c->cmd_type = CMD_IOCTL_PEND;
5013 c->Header.ReplyQueue = 0;
5014 c->Header.SGList = (u8) sg_used;
5015 c->Header.SGTotal = cpu_to_le16(sg_used);
5016 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5017 c->Header.tag = c->busaddr;
5018 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5019 if (ioc->buf_size > 0) {
5020 int i;
5021 for (i = 0; i < sg_used; i++) {
5022 temp64 = pci_map_single(h->pdev, buff[i],
5023 buff_size[i], PCI_DMA_BIDIRECTIONAL);
5024 if (dma_mapping_error(&h->pdev->dev,
5025 (dma_addr_t) temp64)) {
5026 c->SG[i].Addr = cpu_to_le64(0);
5027 c->SG[i].Len = cpu_to_le32(0);
5028 hpsa_pci_unmap(h->pdev, c, i,
5029 PCI_DMA_BIDIRECTIONAL);
5030 status = -ENOMEM;
5031 goto cleanup0;
5033 c->SG[i].Addr = cpu_to_le64(temp64);
5034 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5035 c->SG[i].Ext = cpu_to_le32(0);
5037 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5039 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5040 if (sg_used)
5041 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5042 check_ioctl_unit_attention(h, c);
5043 /* Copy the error information out */
5044 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5045 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5046 status = -EFAULT;
5047 goto cleanup0;
5049 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5050 /* Copy the data out of the buffer we created */
5051 BYTE __user *ptr = ioc->buf;
5052 for (i = 0; i < sg_used; i++) {
5053 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5054 status = -EFAULT;
5055 goto cleanup0;
5057 ptr += buff_size[i];
5060 status = 0;
5061 cleanup0:
5062 cmd_special_free(h, c);
5063 cleanup1:
5064 if (buff) {
5065 for (i = 0; i < sg_used; i++)
5066 kfree(buff[i]);
5067 kfree(buff);
5069 kfree(buff_size);
5070 kfree(ioc);
5071 return status;
5074 static void check_ioctl_unit_attention(struct ctlr_info *h,
5075 struct CommandList *c)
5077 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5078 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5079 (void) check_for_unit_attention(h, c);
5082 static int increment_passthru_count(struct ctlr_info *h)
5084 unsigned long flags;
5086 spin_lock_irqsave(&h->passthru_count_lock, flags);
5087 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5088 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5089 return -1;
5091 h->passthru_count++;
5092 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5093 return 0;
5096 static void decrement_passthru_count(struct ctlr_info *h)
5098 unsigned long flags;
5100 spin_lock_irqsave(&h->passthru_count_lock, flags);
5101 if (h->passthru_count <= 0) {
5102 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5103 /* not expecting to get here. */
5104 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5105 return;
5107 h->passthru_count--;
5108 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5112 * ioctl
5114 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5116 struct ctlr_info *h;
5117 void __user *argp = (void __user *)arg;
5118 int rc;
5120 h = sdev_to_hba(dev);
5122 switch (cmd) {
5123 case CCISS_DEREGDISK:
5124 case CCISS_REGNEWDISK:
5125 case CCISS_REGNEWD:
5126 hpsa_scan_start(h->scsi_host);
5127 return 0;
5128 case CCISS_GETPCIINFO:
5129 return hpsa_getpciinfo_ioctl(h, argp);
5130 case CCISS_GETDRIVVER:
5131 return hpsa_getdrivver_ioctl(h, argp);
5132 case CCISS_PASSTHRU:
5133 if (increment_passthru_count(h))
5134 return -EAGAIN;
5135 rc = hpsa_passthru_ioctl(h, argp);
5136 decrement_passthru_count(h);
5137 return rc;
5138 case CCISS_BIG_PASSTHRU:
5139 if (increment_passthru_count(h))
5140 return -EAGAIN;
5141 rc = hpsa_big_passthru_ioctl(h, argp);
5142 decrement_passthru_count(h);
5143 return rc;
5144 default:
5145 return -ENOTTY;
5149 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5150 u8 reset_type)
5152 struct CommandList *c;
5154 c = cmd_alloc(h);
5155 if (!c)
5156 return -ENOMEM;
5157 /* fill_cmd can't fail here, no data buffer to map */
5158 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5159 RAID_CTLR_LUNID, TYPE_MSG);
5160 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5161 c->waiting = NULL;
5162 enqueue_cmd_and_start_io(h, c);
5163 /* Don't wait for completion, the reset won't complete. Don't free
5164 * the command either. This is the last command we will send before
5165 * re-initializing everything, so it doesn't matter and won't leak.
5167 return 0;
5170 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5171 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5172 int cmd_type)
5174 int pci_dir = XFER_NONE;
5175 struct CommandList *a; /* for commands to be aborted */
5176 u32 tupper, tlower;
5178 c->cmd_type = CMD_IOCTL_PEND;
5179 c->Header.ReplyQueue = 0;
5180 if (buff != NULL && size > 0) {
5181 c->Header.SGList = 1;
5182 c->Header.SGTotal = cpu_to_le16(1);
5183 } else {
5184 c->Header.SGList = 0;
5185 c->Header.SGTotal = cpu_to_le16(0);
5187 c->Header.tag = c->busaddr;
5188 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5190 if (cmd_type == TYPE_CMD) {
5191 switch (cmd) {
5192 case HPSA_INQUIRY:
5193 /* are we trying to read a vital product page */
5194 if (page_code & VPD_PAGE) {
5195 c->Request.CDB[1] = 0x01;
5196 c->Request.CDB[2] = (page_code & 0xff);
5198 c->Request.CDBLen = 6;
5199 c->Request.type_attr_dir =
5200 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5201 c->Request.Timeout = 0;
5202 c->Request.CDB[0] = HPSA_INQUIRY;
5203 c->Request.CDB[4] = size & 0xFF;
5204 break;
5205 case HPSA_REPORT_LOG:
5206 case HPSA_REPORT_PHYS:
5207 /* Talking to controller so It's a physical command
5208 mode = 00 target = 0. Nothing to write.
5210 c->Request.CDBLen = 12;
5211 c->Request.type_attr_dir =
5212 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5213 c->Request.Timeout = 0;
5214 c->Request.CDB[0] = cmd;
5215 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5216 c->Request.CDB[7] = (size >> 16) & 0xFF;
5217 c->Request.CDB[8] = (size >> 8) & 0xFF;
5218 c->Request.CDB[9] = size & 0xFF;
5219 break;
5220 case HPSA_CACHE_FLUSH:
5221 c->Request.CDBLen = 12;
5222 c->Request.type_attr_dir =
5223 TYPE_ATTR_DIR(cmd_type,
5224 ATTR_SIMPLE, XFER_WRITE);
5225 c->Request.Timeout = 0;
5226 c->Request.CDB[0] = BMIC_WRITE;
5227 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5228 c->Request.CDB[7] = (size >> 8) & 0xFF;
5229 c->Request.CDB[8] = size & 0xFF;
5230 break;
5231 case TEST_UNIT_READY:
5232 c->Request.CDBLen = 6;
5233 c->Request.type_attr_dir =
5234 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5235 c->Request.Timeout = 0;
5236 break;
5237 case HPSA_GET_RAID_MAP:
5238 c->Request.CDBLen = 12;
5239 c->Request.type_attr_dir =
5240 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5241 c->Request.Timeout = 0;
5242 c->Request.CDB[0] = HPSA_CISS_READ;
5243 c->Request.CDB[1] = cmd;
5244 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5245 c->Request.CDB[7] = (size >> 16) & 0xFF;
5246 c->Request.CDB[8] = (size >> 8) & 0xFF;
5247 c->Request.CDB[9] = size & 0xFF;
5248 break;
5249 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5250 c->Request.CDBLen = 10;
5251 c->Request.type_attr_dir =
5252 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5253 c->Request.Timeout = 0;
5254 c->Request.CDB[0] = BMIC_READ;
5255 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5256 c->Request.CDB[7] = (size >> 16) & 0xFF;
5257 c->Request.CDB[8] = (size >> 8) & 0xFF;
5258 break;
5259 default:
5260 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5261 BUG();
5262 return -1;
5264 } else if (cmd_type == TYPE_MSG) {
5265 switch (cmd) {
5267 case HPSA_DEVICE_RESET_MSG:
5268 c->Request.CDBLen = 16;
5269 c->Request.type_attr_dir =
5270 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5271 c->Request.Timeout = 0; /* Don't time out */
5272 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5273 c->Request.CDB[0] = cmd;
5274 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5275 /* If bytes 4-7 are zero, it means reset the */
5276 /* LunID device */
5277 c->Request.CDB[4] = 0x00;
5278 c->Request.CDB[5] = 0x00;
5279 c->Request.CDB[6] = 0x00;
5280 c->Request.CDB[7] = 0x00;
5281 break;
5282 case HPSA_ABORT_MSG:
5283 a = buff; /* point to command to be aborted */
5284 dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using request Tag:0x%016llx",
5285 a->Header.tag, c->Header.tag);
5286 tlower = (u32) (a->Header.tag >> 32);
5287 tupper = (u32) (a->Header.tag & 0x0ffffffffULL);
5288 c->Request.CDBLen = 16;
5289 c->Request.type_attr_dir =
5290 TYPE_ATTR_DIR(cmd_type,
5291 ATTR_SIMPLE, XFER_WRITE);
5292 c->Request.Timeout = 0; /* Don't time out */
5293 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5294 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5295 c->Request.CDB[2] = 0x00; /* reserved */
5296 c->Request.CDB[3] = 0x00; /* reserved */
5297 /* Tag to abort goes in CDB[4]-CDB[11] */
5298 c->Request.CDB[4] = tlower & 0xFF;
5299 c->Request.CDB[5] = (tlower >> 8) & 0xFF;
5300 c->Request.CDB[6] = (tlower >> 16) & 0xFF;
5301 c->Request.CDB[7] = (tlower >> 24) & 0xFF;
5302 c->Request.CDB[8] = tupper & 0xFF;
5303 c->Request.CDB[9] = (tupper >> 8) & 0xFF;
5304 c->Request.CDB[10] = (tupper >> 16) & 0xFF;
5305 c->Request.CDB[11] = (tupper >> 24) & 0xFF;
5306 c->Request.CDB[12] = 0x00; /* reserved */
5307 c->Request.CDB[13] = 0x00; /* reserved */
5308 c->Request.CDB[14] = 0x00; /* reserved */
5309 c->Request.CDB[15] = 0x00; /* reserved */
5310 break;
5311 default:
5312 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5313 cmd);
5314 BUG();
5316 } else {
5317 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5318 BUG();
5321 switch (GET_DIR(c->Request.type_attr_dir)) {
5322 case XFER_READ:
5323 pci_dir = PCI_DMA_FROMDEVICE;
5324 break;
5325 case XFER_WRITE:
5326 pci_dir = PCI_DMA_TODEVICE;
5327 break;
5328 case XFER_NONE:
5329 pci_dir = PCI_DMA_NONE;
5330 break;
5331 default:
5332 pci_dir = PCI_DMA_BIDIRECTIONAL;
5334 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5335 return -1;
5336 return 0;
5340 * Map (physical) PCI mem into (virtual) kernel space
5342 static void __iomem *remap_pci_mem(ulong base, ulong size)
5344 ulong page_base = ((ulong) base) & PAGE_MASK;
5345 ulong page_offs = ((ulong) base) - page_base;
5346 void __iomem *page_remapped = ioremap_nocache(page_base,
5347 page_offs + size);
5349 return page_remapped ? (page_remapped + page_offs) : NULL;
5352 /* Takes cmds off the submission queue and sends them to the hardware,
5353 * then puts them on the queue of cmds waiting for completion.
5354 * Assumes h->lock is held
5356 static void start_io(struct ctlr_info *h, unsigned long *flags)
5358 struct CommandList *c;
5360 while (!list_empty(&h->reqQ)) {
5361 c = list_entry(h->reqQ.next, struct CommandList, list);
5362 /* can't do anything if fifo is full */
5363 if ((h->access.fifo_full(h))) {
5364 h->fifo_recently_full = 1;
5365 dev_warn(&h->pdev->dev, "fifo full\n");
5366 break;
5368 h->fifo_recently_full = 0;
5370 /* Get the first entry from the Request Q */
5371 removeQ(c);
5372 h->Qdepth--;
5374 /* Put job onto the completed Q */
5375 addQ(&h->cmpQ, c);
5376 atomic_inc(&h->commands_outstanding);
5377 spin_unlock_irqrestore(&h->lock, *flags);
5378 /* Tell the controller execute command */
5379 h->access.submit_command(h, c);
5380 spin_lock_irqsave(&h->lock, *flags);
5384 static void lock_and_start_io(struct ctlr_info *h)
5386 unsigned long flags;
5388 spin_lock_irqsave(&h->lock, flags);
5389 start_io(h, &flags);
5390 spin_unlock_irqrestore(&h->lock, flags);
5393 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5395 return h->access.command_completed(h, q);
5398 static inline bool interrupt_pending(struct ctlr_info *h)
5400 return h->access.intr_pending(h);
5403 static inline long interrupt_not_for_us(struct ctlr_info *h)
5405 return (h->access.intr_pending(h) == 0) ||
5406 (h->interrupts_enabled == 0);
5409 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5410 u32 raw_tag)
5412 if (unlikely(tag_index >= h->nr_cmds)) {
5413 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5414 return 1;
5416 return 0;
5419 static inline void finish_cmd(struct CommandList *c)
5421 unsigned long flags;
5422 int io_may_be_stalled = 0;
5423 struct ctlr_info *h = c->h;
5424 int count;
5426 spin_lock_irqsave(&h->lock, flags);
5427 removeQ(c);
5430 * Check for possibly stalled i/o.
5432 * If a fifo_full condition is encountered, requests will back up
5433 * in h->reqQ. This queue is only emptied out by start_io which is
5434 * only called when a new i/o request comes in. If no i/o's are
5435 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5436 * start_io from here if we detect such a danger.
5438 * Normally, we shouldn't hit this case, but pounding on the
5439 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5440 * commands_outstanding is low. We want to avoid calling
5441 * start_io from in here as much as possible, and esp. don't
5442 * want to get in a cycle where we call start_io every time
5443 * through here.
5445 count = atomic_read(&h->commands_outstanding);
5446 spin_unlock_irqrestore(&h->lock, flags);
5447 if (unlikely(h->fifo_recently_full) && count < 5)
5448 io_may_be_stalled = 1;
5450 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5451 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5452 || c->cmd_type == CMD_IOACCEL2))
5453 complete_scsi_command(c);
5454 else if (c->cmd_type == CMD_IOCTL_PEND)
5455 complete(c->waiting);
5456 if (unlikely(io_may_be_stalled))
5457 lock_and_start_io(h);
5460 static inline u32 hpsa_tag_contains_index(u32 tag)
5462 return tag & DIRECT_LOOKUP_BIT;
5465 static inline u32 hpsa_tag_to_index(u32 tag)
5467 return tag >> DIRECT_LOOKUP_SHIFT;
5471 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5473 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5474 #define HPSA_SIMPLE_ERROR_BITS 0x03
5475 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5476 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5477 return tag & ~HPSA_PERF_ERROR_BITS;
5480 /* process completion of an indexed ("direct lookup") command */
5481 static inline void process_indexed_cmd(struct ctlr_info *h,
5482 u32 raw_tag)
5484 u32 tag_index;
5485 struct CommandList *c;
5487 tag_index = hpsa_tag_to_index(raw_tag);
5488 if (!bad_tag(h, tag_index, raw_tag)) {
5489 c = h->cmd_pool + tag_index;
5490 finish_cmd(c);
5494 /* process completion of a non-indexed command */
5495 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5496 u32 raw_tag)
5498 u32 tag;
5499 struct CommandList *c = NULL;
5500 unsigned long flags;
5502 tag = hpsa_tag_discard_error_bits(h, raw_tag);
5503 spin_lock_irqsave(&h->lock, flags);
5504 list_for_each_entry(c, &h->cmpQ, list) {
5505 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5506 spin_unlock_irqrestore(&h->lock, flags);
5507 finish_cmd(c);
5508 return;
5511 spin_unlock_irqrestore(&h->lock, flags);
5512 bad_tag(h, h->nr_cmds + 1, raw_tag);
5515 /* Some controllers, like p400, will give us one interrupt
5516 * after a soft reset, even if we turned interrupts off.
5517 * Only need to check for this in the hpsa_xxx_discard_completions
5518 * functions.
5520 static int ignore_bogus_interrupt(struct ctlr_info *h)
5522 if (likely(!reset_devices))
5523 return 0;
5525 if (likely(h->interrupts_enabled))
5526 return 0;
5528 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5529 "(known firmware bug.) Ignoring.\n");
5531 return 1;
5535 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5536 * Relies on (h-q[x] == x) being true for x such that
5537 * 0 <= x < MAX_REPLY_QUEUES.
5539 static struct ctlr_info *queue_to_hba(u8 *queue)
5541 return container_of((queue - *queue), struct ctlr_info, q[0]);
5544 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5546 struct ctlr_info *h = queue_to_hba(queue);
5547 u8 q = *(u8 *) queue;
5548 u32 raw_tag;
5550 if (ignore_bogus_interrupt(h))
5551 return IRQ_NONE;
5553 if (interrupt_not_for_us(h))
5554 return IRQ_NONE;
5555 h->last_intr_timestamp = get_jiffies_64();
5556 while (interrupt_pending(h)) {
5557 raw_tag = get_next_completion(h, q);
5558 while (raw_tag != FIFO_EMPTY)
5559 raw_tag = next_command(h, q);
5561 return IRQ_HANDLED;
5564 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5566 struct ctlr_info *h = queue_to_hba(queue);
5567 u32 raw_tag;
5568 u8 q = *(u8 *) queue;
5570 if (ignore_bogus_interrupt(h))
5571 return IRQ_NONE;
5573 h->last_intr_timestamp = get_jiffies_64();
5574 raw_tag = get_next_completion(h, q);
5575 while (raw_tag != FIFO_EMPTY)
5576 raw_tag = next_command(h, q);
5577 return IRQ_HANDLED;
5580 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5582 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5583 u32 raw_tag;
5584 u8 q = *(u8 *) queue;
5586 if (interrupt_not_for_us(h))
5587 return IRQ_NONE;
5588 h->last_intr_timestamp = get_jiffies_64();
5589 while (interrupt_pending(h)) {
5590 raw_tag = get_next_completion(h, q);
5591 while (raw_tag != FIFO_EMPTY) {
5592 if (likely(hpsa_tag_contains_index(raw_tag)))
5593 process_indexed_cmd(h, raw_tag);
5594 else
5595 process_nonindexed_cmd(h, raw_tag);
5596 raw_tag = next_command(h, q);
5599 return IRQ_HANDLED;
5602 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5604 struct ctlr_info *h = queue_to_hba(queue);
5605 u32 raw_tag;
5606 u8 q = *(u8 *) queue;
5608 h->last_intr_timestamp = get_jiffies_64();
5609 raw_tag = get_next_completion(h, q);
5610 while (raw_tag != FIFO_EMPTY) {
5611 if (likely(hpsa_tag_contains_index(raw_tag)))
5612 process_indexed_cmd(h, raw_tag);
5613 else
5614 process_nonindexed_cmd(h, raw_tag);
5615 raw_tag = next_command(h, q);
5617 return IRQ_HANDLED;
5620 /* Send a message CDB to the firmware. Careful, this only works
5621 * in simple mode, not performant mode due to the tag lookup.
5622 * We only ever use this immediately after a controller reset.
5624 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5625 unsigned char type)
5627 struct Command {
5628 struct CommandListHeader CommandHeader;
5629 struct RequestBlock Request;
5630 struct ErrDescriptor ErrorDescriptor;
5632 struct Command *cmd;
5633 static const size_t cmd_sz = sizeof(*cmd) +
5634 sizeof(cmd->ErrorDescriptor);
5635 dma_addr_t paddr64;
5636 uint32_t paddr32, tag;
5637 void __iomem *vaddr;
5638 int i, err;
5640 vaddr = pci_ioremap_bar(pdev, 0);
5641 if (vaddr == NULL)
5642 return -ENOMEM;
5644 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5645 * CCISS commands, so they must be allocated from the lower 4GiB of
5646 * memory.
5648 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5649 if (err) {
5650 iounmap(vaddr);
5651 return -ENOMEM;
5654 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5655 if (cmd == NULL) {
5656 iounmap(vaddr);
5657 return -ENOMEM;
5660 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5661 * although there's no guarantee, we assume that the address is at
5662 * least 4-byte aligned (most likely, it's page-aligned).
5664 paddr32 = paddr64;
5666 cmd->CommandHeader.ReplyQueue = 0;
5667 cmd->CommandHeader.SGList = 0;
5668 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5669 cmd->CommandHeader.tag = paddr32;
5670 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5672 cmd->Request.CDBLen = 16;
5673 cmd->Request.type_attr_dir =
5674 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5675 cmd->Request.Timeout = 0; /* Don't time out */
5676 cmd->Request.CDB[0] = opcode;
5677 cmd->Request.CDB[1] = type;
5678 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5679 cmd->ErrorDescriptor.Addr =
5680 cpu_to_le64((paddr32 + sizeof(*cmd)));
5681 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5683 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5685 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5686 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5687 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5688 break;
5689 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5692 iounmap(vaddr);
5694 /* we leak the DMA buffer here ... no choice since the controller could
5695 * still complete the command.
5697 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5698 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5699 opcode, type);
5700 return -ETIMEDOUT;
5703 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5705 if (tag & HPSA_ERROR_BIT) {
5706 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5707 opcode, type);
5708 return -EIO;
5711 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5712 opcode, type);
5713 return 0;
5716 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5718 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5719 void __iomem *vaddr, u32 use_doorbell)
5721 u16 pmcsr;
5722 int pos;
5724 if (use_doorbell) {
5725 /* For everything after the P600, the PCI power state method
5726 * of resetting the controller doesn't work, so we have this
5727 * other way using the doorbell register.
5729 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5730 writel(use_doorbell, vaddr + SA5_DOORBELL);
5732 /* PMC hardware guys tell us we need a 10 second delay after
5733 * doorbell reset and before any attempt to talk to the board
5734 * at all to ensure that this actually works and doesn't fall
5735 * over in some weird corner cases.
5737 msleep(10000);
5738 } else { /* Try to do it the PCI power state way */
5740 /* Quoting from the Open CISS Specification: "The Power
5741 * Management Control/Status Register (CSR) controls the power
5742 * state of the device. The normal operating state is D0,
5743 * CSR=00h. The software off state is D3, CSR=03h. To reset
5744 * the controller, place the interface device in D3 then to D0,
5745 * this causes a secondary PCI reset which will reset the
5746 * controller." */
5748 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5749 if (pos == 0) {
5750 dev_err(&pdev->dev,
5751 "hpsa_reset_controller: "
5752 "PCI PM not supported\n");
5753 return -ENODEV;
5755 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5756 /* enter the D3hot power management state */
5757 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5758 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5759 pmcsr |= PCI_D3hot;
5760 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5762 msleep(500);
5764 /* enter the D0 power management state */
5765 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5766 pmcsr |= PCI_D0;
5767 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5770 * The P600 requires a small delay when changing states.
5771 * Otherwise we may think the board did not reset and we bail.
5772 * This for kdump only and is particular to the P600.
5774 msleep(500);
5776 return 0;
5779 static void init_driver_version(char *driver_version, int len)
5781 memset(driver_version, 0, len);
5782 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5785 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5787 char *driver_version;
5788 int i, size = sizeof(cfgtable->driver_version);
5790 driver_version = kmalloc(size, GFP_KERNEL);
5791 if (!driver_version)
5792 return -ENOMEM;
5794 init_driver_version(driver_version, size);
5795 for (i = 0; i < size; i++)
5796 writeb(driver_version[i], &cfgtable->driver_version[i]);
5797 kfree(driver_version);
5798 return 0;
5801 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5802 unsigned char *driver_ver)
5804 int i;
5806 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5807 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5810 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5813 char *driver_ver, *old_driver_ver;
5814 int rc, size = sizeof(cfgtable->driver_version);
5816 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5817 if (!old_driver_ver)
5818 return -ENOMEM;
5819 driver_ver = old_driver_ver + size;
5821 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5822 * should have been changed, otherwise we know the reset failed.
5824 init_driver_version(old_driver_ver, size);
5825 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5826 rc = !memcmp(driver_ver, old_driver_ver, size);
5827 kfree(old_driver_ver);
5828 return rc;
5830 /* This does a hard reset of the controller using PCI power management
5831 * states or the using the doorbell register.
5833 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5835 u64 cfg_offset;
5836 u32 cfg_base_addr;
5837 u64 cfg_base_addr_index;
5838 void __iomem *vaddr;
5839 unsigned long paddr;
5840 u32 misc_fw_support;
5841 int rc;
5842 struct CfgTable __iomem *cfgtable;
5843 u32 use_doorbell;
5844 u32 board_id;
5845 u16 command_register;
5847 /* For controllers as old as the P600, this is very nearly
5848 * the same thing as
5850 * pci_save_state(pci_dev);
5851 * pci_set_power_state(pci_dev, PCI_D3hot);
5852 * pci_set_power_state(pci_dev, PCI_D0);
5853 * pci_restore_state(pci_dev);
5855 * For controllers newer than the P600, the pci power state
5856 * method of resetting doesn't work so we have another way
5857 * using the doorbell register.
5860 rc = hpsa_lookup_board_id(pdev, &board_id);
5861 if (rc < 0 || !ctlr_is_resettable(board_id)) {
5862 dev_warn(&pdev->dev, "Not resetting device.\n");
5863 return -ENODEV;
5866 /* if controller is soft- but not hard resettable... */
5867 if (!ctlr_is_hard_resettable(board_id))
5868 return -ENOTSUPP; /* try soft reset later. */
5870 /* Save the PCI command register */
5871 pci_read_config_word(pdev, 4, &command_register);
5872 pci_save_state(pdev);
5874 /* find the first memory BAR, so we can find the cfg table */
5875 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5876 if (rc)
5877 return rc;
5878 vaddr = remap_pci_mem(paddr, 0x250);
5879 if (!vaddr)
5880 return -ENOMEM;
5882 /* find cfgtable in order to check if reset via doorbell is supported */
5883 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5884 &cfg_base_addr_index, &cfg_offset);
5885 if (rc)
5886 goto unmap_vaddr;
5887 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5888 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5889 if (!cfgtable) {
5890 rc = -ENOMEM;
5891 goto unmap_vaddr;
5893 rc = write_driver_ver_to_cfgtable(cfgtable);
5894 if (rc)
5895 goto unmap_vaddr;
5897 /* If reset via doorbell register is supported, use that.
5898 * There are two such methods. Favor the newest method.
5900 misc_fw_support = readl(&cfgtable->misc_fw_support);
5901 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5902 if (use_doorbell) {
5903 use_doorbell = DOORBELL_CTLR_RESET2;
5904 } else {
5905 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5906 if (use_doorbell) {
5907 dev_warn(&pdev->dev, "Soft reset not supported. "
5908 "Firmware update is required.\n");
5909 rc = -ENOTSUPP; /* try soft reset */
5910 goto unmap_cfgtable;
5914 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5915 if (rc)
5916 goto unmap_cfgtable;
5918 pci_restore_state(pdev);
5919 pci_write_config_word(pdev, 4, command_register);
5921 /* Some devices (notably the HP Smart Array 5i Controller)
5922 need a little pause here */
5923 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5925 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5926 if (rc) {
5927 dev_warn(&pdev->dev,
5928 "failed waiting for board to become ready "
5929 "after hard reset\n");
5930 goto unmap_cfgtable;
5933 rc = controller_reset_failed(vaddr);
5934 if (rc < 0)
5935 goto unmap_cfgtable;
5936 if (rc) {
5937 dev_warn(&pdev->dev, "Unable to successfully reset "
5938 "controller. Will try soft reset.\n");
5939 rc = -ENOTSUPP;
5940 } else {
5941 dev_info(&pdev->dev, "board ready after hard reset.\n");
5944 unmap_cfgtable:
5945 iounmap(cfgtable);
5947 unmap_vaddr:
5948 iounmap(vaddr);
5949 return rc;
5953 * We cannot read the structure directly, for portability we must use
5954 * the io functions.
5955 * This is for debug only.
5957 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5959 #ifdef HPSA_DEBUG
5960 int i;
5961 char temp_name[17];
5963 dev_info(dev, "Controller Configuration information\n");
5964 dev_info(dev, "------------------------------------\n");
5965 for (i = 0; i < 4; i++)
5966 temp_name[i] = readb(&(tb->Signature[i]));
5967 temp_name[4] = '\0';
5968 dev_info(dev, " Signature = %s\n", temp_name);
5969 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5970 dev_info(dev, " Transport methods supported = 0x%x\n",
5971 readl(&(tb->TransportSupport)));
5972 dev_info(dev, " Transport methods active = 0x%x\n",
5973 readl(&(tb->TransportActive)));
5974 dev_info(dev, " Requested transport Method = 0x%x\n",
5975 readl(&(tb->HostWrite.TransportRequest)));
5976 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5977 readl(&(tb->HostWrite.CoalIntDelay)));
5978 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5979 readl(&(tb->HostWrite.CoalIntCount)));
5980 dev_info(dev, " Max outstanding commands = 0x%d\n",
5981 readl(&(tb->CmdsOutMax)));
5982 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5983 for (i = 0; i < 16; i++)
5984 temp_name[i] = readb(&(tb->ServerName[i]));
5985 temp_name[16] = '\0';
5986 dev_info(dev, " Server Name = %s\n", temp_name);
5987 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5988 readl(&(tb->HeartBeat)));
5989 #endif /* HPSA_DEBUG */
5992 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5994 int i, offset, mem_type, bar_type;
5996 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5997 return 0;
5998 offset = 0;
5999 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6000 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6001 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6002 offset += 4;
6003 else {
6004 mem_type = pci_resource_flags(pdev, i) &
6005 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6006 switch (mem_type) {
6007 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6008 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6009 offset += 4; /* 32 bit */
6010 break;
6011 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6012 offset += 8;
6013 break;
6014 default: /* reserved in PCI 2.2 */
6015 dev_warn(&pdev->dev,
6016 "base address is invalid\n");
6017 return -1;
6018 break;
6021 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6022 return i + 1;
6024 return -1;
6027 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6028 * controllers that are capable. If not, we use IO-APIC mode.
6031 static void hpsa_interrupt_mode(struct ctlr_info *h)
6033 #ifdef CONFIG_PCI_MSI
6034 int err, i;
6035 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6037 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6038 hpsa_msix_entries[i].vector = 0;
6039 hpsa_msix_entries[i].entry = i;
6042 /* Some boards advertise MSI but don't really support it */
6043 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6044 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6045 goto default_int_mode;
6046 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6047 dev_info(&h->pdev->dev, "MSIX\n");
6048 h->msix_vector = MAX_REPLY_QUEUES;
6049 if (h->msix_vector > num_online_cpus())
6050 h->msix_vector = num_online_cpus();
6051 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6052 1, h->msix_vector);
6053 if (err < 0) {
6054 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6055 h->msix_vector = 0;
6056 goto single_msi_mode;
6057 } else if (err < h->msix_vector) {
6058 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6059 "available\n", err);
6061 h->msix_vector = err;
6062 for (i = 0; i < h->msix_vector; i++)
6063 h->intr[i] = hpsa_msix_entries[i].vector;
6064 return;
6066 single_msi_mode:
6067 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6068 dev_info(&h->pdev->dev, "MSI\n");
6069 if (!pci_enable_msi(h->pdev))
6070 h->msi_vector = 1;
6071 else
6072 dev_warn(&h->pdev->dev, "MSI init failed\n");
6074 default_int_mode:
6075 #endif /* CONFIG_PCI_MSI */
6076 /* if we get here we're going to use the default interrupt mode */
6077 h->intr[h->intr_mode] = h->pdev->irq;
6080 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6082 int i;
6083 u32 subsystem_vendor_id, subsystem_device_id;
6085 subsystem_vendor_id = pdev->subsystem_vendor;
6086 subsystem_device_id = pdev->subsystem_device;
6087 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6088 subsystem_vendor_id;
6090 for (i = 0; i < ARRAY_SIZE(products); i++)
6091 if (*board_id == products[i].board_id)
6092 return i;
6094 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6095 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6096 !hpsa_allow_any) {
6097 dev_warn(&pdev->dev, "unrecognized board ID: "
6098 "0x%08x, ignoring.\n", *board_id);
6099 return -ENODEV;
6101 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6104 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6105 unsigned long *memory_bar)
6107 int i;
6109 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6110 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6111 /* addressing mode bits already removed */
6112 *memory_bar = pci_resource_start(pdev, i);
6113 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6114 *memory_bar);
6115 return 0;
6117 dev_warn(&pdev->dev, "no memory BAR found\n");
6118 return -ENODEV;
6121 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6122 int wait_for_ready)
6124 int i, iterations;
6125 u32 scratchpad;
6126 if (wait_for_ready)
6127 iterations = HPSA_BOARD_READY_ITERATIONS;
6128 else
6129 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6131 for (i = 0; i < iterations; i++) {
6132 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6133 if (wait_for_ready) {
6134 if (scratchpad == HPSA_FIRMWARE_READY)
6135 return 0;
6136 } else {
6137 if (scratchpad != HPSA_FIRMWARE_READY)
6138 return 0;
6140 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6142 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6143 return -ENODEV;
6146 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6147 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6148 u64 *cfg_offset)
6150 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6151 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6152 *cfg_base_addr &= (u32) 0x0000ffff;
6153 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6154 if (*cfg_base_addr_index == -1) {
6155 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6156 return -ENODEV;
6158 return 0;
6161 static int hpsa_find_cfgtables(struct ctlr_info *h)
6163 u64 cfg_offset;
6164 u32 cfg_base_addr;
6165 u64 cfg_base_addr_index;
6166 u32 trans_offset;
6167 int rc;
6169 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6170 &cfg_base_addr_index, &cfg_offset);
6171 if (rc)
6172 return rc;
6173 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6174 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6175 if (!h->cfgtable)
6176 return -ENOMEM;
6177 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6178 if (rc)
6179 return rc;
6180 /* Find performant mode table. */
6181 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6182 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6183 cfg_base_addr_index)+cfg_offset+trans_offset,
6184 sizeof(*h->transtable));
6185 if (!h->transtable)
6186 return -ENOMEM;
6187 return 0;
6190 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6192 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6194 /* Limit commands in memory limited kdump scenario. */
6195 if (reset_devices && h->max_commands > 32)
6196 h->max_commands = 32;
6198 if (h->max_commands < 16) {
6199 dev_warn(&h->pdev->dev, "Controller reports "
6200 "max supported commands of %d, an obvious lie. "
6201 "Using 16. Ensure that firmware is up to date.\n",
6202 h->max_commands);
6203 h->max_commands = 16;
6207 /* Interrogate the hardware for some limits:
6208 * max commands, max SG elements without chaining, and with chaining,
6209 * SG chain block size, etc.
6211 static void hpsa_find_board_params(struct ctlr_info *h)
6213 hpsa_get_max_perf_mode_cmds(h);
6214 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6215 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6216 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6218 * Limit in-command s/g elements to 32 save dma'able memory.
6219 * Howvever spec says if 0, use 31
6221 h->max_cmd_sg_entries = 31;
6222 if (h->maxsgentries > 512) {
6223 h->max_cmd_sg_entries = 32;
6224 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6225 h->maxsgentries--; /* save one for chain pointer */
6226 } else {
6227 h->chainsize = 0;
6228 h->maxsgentries = 31; /* default to traditional values */
6231 /* Find out what task management functions are supported and cache */
6232 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6233 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6234 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6235 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6236 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6239 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6241 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6242 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6243 return false;
6245 return true;
6248 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6250 u32 driver_support;
6252 driver_support = readl(&(h->cfgtable->driver_support));
6253 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6254 #ifdef CONFIG_X86
6255 driver_support |= ENABLE_SCSI_PREFETCH;
6256 #endif
6257 driver_support |= ENABLE_UNIT_ATTN;
6258 writel(driver_support, &(h->cfgtable->driver_support));
6261 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6262 * in a prefetch beyond physical memory.
6264 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6266 u32 dma_prefetch;
6268 if (h->board_id != 0x3225103C)
6269 return;
6270 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6271 dma_prefetch |= 0x8000;
6272 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6275 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6277 int i;
6278 u32 doorbell_value;
6279 unsigned long flags;
6280 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6281 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6282 spin_lock_irqsave(&h->lock, flags);
6283 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6284 spin_unlock_irqrestore(&h->lock, flags);
6285 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6286 break;
6287 /* delay and try again */
6288 msleep(20);
6292 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6294 int i;
6295 u32 doorbell_value;
6296 unsigned long flags;
6298 /* under certain very rare conditions, this can take awhile.
6299 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6300 * as we enter this code.)
6302 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6303 spin_lock_irqsave(&h->lock, flags);
6304 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6305 spin_unlock_irqrestore(&h->lock, flags);
6306 if (!(doorbell_value & CFGTBL_ChangeReq))
6307 break;
6308 /* delay and try again */
6309 usleep_range(10000, 20000);
6313 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6315 u32 trans_support;
6317 trans_support = readl(&(h->cfgtable->TransportSupport));
6318 if (!(trans_support & SIMPLE_MODE))
6319 return -ENOTSUPP;
6321 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6323 /* Update the field, and then ring the doorbell */
6324 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6325 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6326 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6327 hpsa_wait_for_mode_change_ack(h);
6328 print_cfg_table(&h->pdev->dev, h->cfgtable);
6329 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6330 goto error;
6331 h->transMethod = CFGTBL_Trans_Simple;
6332 return 0;
6333 error:
6334 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6335 return -ENODEV;
6338 static int hpsa_pci_init(struct ctlr_info *h)
6340 int prod_index, err;
6342 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6343 if (prod_index < 0)
6344 return -ENODEV;
6345 h->product_name = products[prod_index].product_name;
6346 h->access = *(products[prod_index].access);
6348 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6349 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6351 err = pci_enable_device(h->pdev);
6352 if (err) {
6353 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6354 return err;
6357 err = pci_request_regions(h->pdev, HPSA);
6358 if (err) {
6359 dev_err(&h->pdev->dev,
6360 "cannot obtain PCI resources, aborting\n");
6361 return err;
6364 pci_set_master(h->pdev);
6366 hpsa_interrupt_mode(h);
6367 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6368 if (err)
6369 goto err_out_free_res;
6370 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6371 if (!h->vaddr) {
6372 err = -ENOMEM;
6373 goto err_out_free_res;
6375 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6376 if (err)
6377 goto err_out_free_res;
6378 err = hpsa_find_cfgtables(h);
6379 if (err)
6380 goto err_out_free_res;
6381 hpsa_find_board_params(h);
6383 if (!hpsa_CISS_signature_present(h)) {
6384 err = -ENODEV;
6385 goto err_out_free_res;
6387 hpsa_set_driver_support_bits(h);
6388 hpsa_p600_dma_prefetch_quirk(h);
6389 err = hpsa_enter_simple_mode(h);
6390 if (err)
6391 goto err_out_free_res;
6392 return 0;
6394 err_out_free_res:
6395 if (h->transtable)
6396 iounmap(h->transtable);
6397 if (h->cfgtable)
6398 iounmap(h->cfgtable);
6399 if (h->vaddr)
6400 iounmap(h->vaddr);
6401 pci_disable_device(h->pdev);
6402 pci_release_regions(h->pdev);
6403 return err;
6406 static void hpsa_hba_inquiry(struct ctlr_info *h)
6408 int rc;
6410 #define HBA_INQUIRY_BYTE_COUNT 64
6411 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6412 if (!h->hba_inquiry_data)
6413 return;
6414 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6415 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6416 if (rc != 0) {
6417 kfree(h->hba_inquiry_data);
6418 h->hba_inquiry_data = NULL;
6422 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6424 int rc, i;
6426 if (!reset_devices)
6427 return 0;
6429 /* kdump kernel is loading, we don't know in which state is
6430 * the pci interface. The dev->enable_cnt is equal zero
6431 * so we call enable+disable, wait a while and switch it on.
6433 rc = pci_enable_device(pdev);
6434 if (rc) {
6435 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6436 return -ENODEV;
6438 pci_disable_device(pdev);
6439 msleep(260); /* a randomly chosen number */
6440 rc = pci_enable_device(pdev);
6441 if (rc) {
6442 dev_warn(&pdev->dev, "failed to enable device.\n");
6443 return -ENODEV;
6446 pci_set_master(pdev);
6448 /* Reset the controller with a PCI power-cycle or via doorbell */
6449 rc = hpsa_kdump_hard_reset_controller(pdev);
6451 /* -ENOTSUPP here means we cannot reset the controller
6452 * but it's already (and still) up and running in
6453 * "performant mode". Or, it might be 640x, which can't reset
6454 * due to concerns about shared bbwc between 6402/6404 pair.
6456 if (rc) {
6457 if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
6458 rc = -ENODEV;
6459 goto out_disable;
6462 /* Now try to get the controller to respond to a no-op */
6463 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6464 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6465 if (hpsa_noop(pdev) == 0)
6466 break;
6467 else
6468 dev_warn(&pdev->dev, "no-op failed%s\n",
6469 (i < 11 ? "; re-trying" : ""));
6472 out_disable:
6474 pci_disable_device(pdev);
6475 return rc;
6478 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6480 h->cmd_pool_bits = kzalloc(
6481 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6482 sizeof(unsigned long), GFP_KERNEL);
6483 h->cmd_pool = pci_alloc_consistent(h->pdev,
6484 h->nr_cmds * sizeof(*h->cmd_pool),
6485 &(h->cmd_pool_dhandle));
6486 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6487 h->nr_cmds * sizeof(*h->errinfo_pool),
6488 &(h->errinfo_pool_dhandle));
6489 if ((h->cmd_pool_bits == NULL)
6490 || (h->cmd_pool == NULL)
6491 || (h->errinfo_pool == NULL)) {
6492 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6493 return -ENOMEM;
6495 return 0;
6498 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6500 kfree(h->cmd_pool_bits);
6501 if (h->cmd_pool)
6502 pci_free_consistent(h->pdev,
6503 h->nr_cmds * sizeof(struct CommandList),
6504 h->cmd_pool, h->cmd_pool_dhandle);
6505 if (h->ioaccel2_cmd_pool)
6506 pci_free_consistent(h->pdev,
6507 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6508 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6509 if (h->errinfo_pool)
6510 pci_free_consistent(h->pdev,
6511 h->nr_cmds * sizeof(struct ErrorInfo),
6512 h->errinfo_pool,
6513 h->errinfo_pool_dhandle);
6514 if (h->ioaccel_cmd_pool)
6515 pci_free_consistent(h->pdev,
6516 h->nr_cmds * sizeof(struct io_accel1_cmd),
6517 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6520 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6522 int i, cpu, rc;
6524 cpu = cpumask_first(cpu_online_mask);
6525 for (i = 0; i < h->msix_vector; i++) {
6526 rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6527 cpu = cpumask_next(cpu, cpu_online_mask);
6531 static int hpsa_request_irq(struct ctlr_info *h,
6532 irqreturn_t (*msixhandler)(int, void *),
6533 irqreturn_t (*intxhandler)(int, void *))
6535 int rc, i;
6538 * initialize h->q[x] = x so that interrupt handlers know which
6539 * queue to process.
6541 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6542 h->q[i] = (u8) i;
6544 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6545 /* If performant mode and MSI-X, use multiple reply queues */
6546 for (i = 0; i < h->msix_vector; i++)
6547 rc = request_irq(h->intr[i], msixhandler,
6548 0, h->devname,
6549 &h->q[i]);
6550 hpsa_irq_affinity_hints(h);
6551 } else {
6552 /* Use single reply pool */
6553 if (h->msix_vector > 0 || h->msi_vector) {
6554 rc = request_irq(h->intr[h->intr_mode],
6555 msixhandler, 0, h->devname,
6556 &h->q[h->intr_mode]);
6557 } else {
6558 rc = request_irq(h->intr[h->intr_mode],
6559 intxhandler, IRQF_SHARED, h->devname,
6560 &h->q[h->intr_mode]);
6563 if (rc) {
6564 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6565 h->intr[h->intr_mode], h->devname);
6566 return -ENODEV;
6568 return 0;
6571 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6573 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6574 HPSA_RESET_TYPE_CONTROLLER)) {
6575 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6576 return -EIO;
6579 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6580 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6581 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6582 return -1;
6585 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6586 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6587 dev_warn(&h->pdev->dev, "Board failed to become ready "
6588 "after soft reset.\n");
6589 return -1;
6592 return 0;
6595 static void free_irqs(struct ctlr_info *h)
6597 int i;
6599 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6600 /* Single reply queue, only one irq to free */
6601 i = h->intr_mode;
6602 irq_set_affinity_hint(h->intr[i], NULL);
6603 free_irq(h->intr[i], &h->q[i]);
6604 return;
6607 for (i = 0; i < h->msix_vector; i++) {
6608 irq_set_affinity_hint(h->intr[i], NULL);
6609 free_irq(h->intr[i], &h->q[i]);
6613 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6615 free_irqs(h);
6616 #ifdef CONFIG_PCI_MSI
6617 if (h->msix_vector) {
6618 if (h->pdev->msix_enabled)
6619 pci_disable_msix(h->pdev);
6620 } else if (h->msi_vector) {
6621 if (h->pdev->msi_enabled)
6622 pci_disable_msi(h->pdev);
6624 #endif /* CONFIG_PCI_MSI */
6627 static void hpsa_free_reply_queues(struct ctlr_info *h)
6629 int i;
6631 for (i = 0; i < h->nreply_queues; i++) {
6632 if (!h->reply_queue[i].head)
6633 continue;
6634 pci_free_consistent(h->pdev, h->reply_queue_size,
6635 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6636 h->reply_queue[i].head = NULL;
6637 h->reply_queue[i].busaddr = 0;
6641 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6643 hpsa_free_irqs_and_disable_msix(h);
6644 hpsa_free_sg_chain_blocks(h);
6645 hpsa_free_cmd_pool(h);
6646 kfree(h->ioaccel1_blockFetchTable);
6647 kfree(h->blockFetchTable);
6648 hpsa_free_reply_queues(h);
6649 if (h->vaddr)
6650 iounmap(h->vaddr);
6651 if (h->transtable)
6652 iounmap(h->transtable);
6653 if (h->cfgtable)
6654 iounmap(h->cfgtable);
6655 pci_disable_device(h->pdev);
6656 pci_release_regions(h->pdev);
6657 kfree(h);
6660 /* Called when controller lockup detected. */
6661 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6663 struct CommandList *c = NULL;
6665 assert_spin_locked(&h->lock);
6666 /* Mark all outstanding commands as failed and complete them. */
6667 while (!list_empty(list)) {
6668 c = list_entry(list->next, struct CommandList, list);
6669 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6670 finish_cmd(c);
6674 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6676 int i, cpu;
6678 cpu = cpumask_first(cpu_online_mask);
6679 for (i = 0; i < num_online_cpus(); i++) {
6680 u32 *lockup_detected;
6681 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6682 *lockup_detected = value;
6683 cpu = cpumask_next(cpu, cpu_online_mask);
6685 wmb(); /* be sure the per-cpu variables are out to memory */
6688 static void controller_lockup_detected(struct ctlr_info *h)
6690 unsigned long flags;
6691 u32 lockup_detected;
6693 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6694 spin_lock_irqsave(&h->lock, flags);
6695 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6696 if (!lockup_detected) {
6697 /* no heartbeat, but controller gave us a zero. */
6698 dev_warn(&h->pdev->dev,
6699 "lockup detected but scratchpad register is zero\n");
6700 lockup_detected = 0xffffffff;
6702 set_lockup_detected_for_all_cpus(h, lockup_detected);
6703 spin_unlock_irqrestore(&h->lock, flags);
6704 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6705 lockup_detected);
6706 pci_disable_device(h->pdev);
6707 spin_lock_irqsave(&h->lock, flags);
6708 fail_all_cmds_on_list(h, &h->cmpQ);
6709 fail_all_cmds_on_list(h, &h->reqQ);
6710 spin_unlock_irqrestore(&h->lock, flags);
6713 static void detect_controller_lockup(struct ctlr_info *h)
6715 u64 now;
6716 u32 heartbeat;
6717 unsigned long flags;
6719 now = get_jiffies_64();
6720 /* If we've received an interrupt recently, we're ok. */
6721 if (time_after64(h->last_intr_timestamp +
6722 (h->heartbeat_sample_interval), now))
6723 return;
6726 * If we've already checked the heartbeat recently, we're ok.
6727 * This could happen if someone sends us a signal. We
6728 * otherwise don't care about signals in this thread.
6730 if (time_after64(h->last_heartbeat_timestamp +
6731 (h->heartbeat_sample_interval), now))
6732 return;
6734 /* If heartbeat has not changed since we last looked, we're not ok. */
6735 spin_lock_irqsave(&h->lock, flags);
6736 heartbeat = readl(&h->cfgtable->HeartBeat);
6737 spin_unlock_irqrestore(&h->lock, flags);
6738 if (h->last_heartbeat == heartbeat) {
6739 controller_lockup_detected(h);
6740 return;
6743 /* We're ok. */
6744 h->last_heartbeat = heartbeat;
6745 h->last_heartbeat_timestamp = now;
6748 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6750 int i;
6751 char *event_type;
6753 /* Clear the driver-requested rescan flag */
6754 h->drv_req_rescan = 0;
6756 /* Ask the controller to clear the events we're handling. */
6757 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6758 | CFGTBL_Trans_io_accel2)) &&
6759 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6760 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6762 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6763 event_type = "state change";
6764 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6765 event_type = "configuration change";
6766 /* Stop sending new RAID offload reqs via the IO accelerator */
6767 scsi_block_requests(h->scsi_host);
6768 for (i = 0; i < h->ndevices; i++)
6769 h->dev[i]->offload_enabled = 0;
6770 hpsa_drain_accel_commands(h);
6771 /* Set 'accelerator path config change' bit */
6772 dev_warn(&h->pdev->dev,
6773 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6774 h->events, event_type);
6775 writel(h->events, &(h->cfgtable->clear_event_notify));
6776 /* Set the "clear event notify field update" bit 6 */
6777 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6778 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6779 hpsa_wait_for_clear_event_notify_ack(h);
6780 scsi_unblock_requests(h->scsi_host);
6781 } else {
6782 /* Acknowledge controller notification events. */
6783 writel(h->events, &(h->cfgtable->clear_event_notify));
6784 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6785 hpsa_wait_for_clear_event_notify_ack(h);
6786 #if 0
6787 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6788 hpsa_wait_for_mode_change_ack(h);
6789 #endif
6791 return;
6794 /* Check a register on the controller to see if there are configuration
6795 * changes (added/changed/removed logical drives, etc.) which mean that
6796 * we should rescan the controller for devices.
6797 * Also check flag for driver-initiated rescan.
6799 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6801 if (h->drv_req_rescan)
6802 return 1;
6804 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6805 return 0;
6807 h->events = readl(&(h->cfgtable->event_notify));
6808 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6812 * Check if any of the offline devices have become ready
6814 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6816 unsigned long flags;
6817 struct offline_device_entry *d;
6818 struct list_head *this, *tmp;
6820 spin_lock_irqsave(&h->offline_device_lock, flags);
6821 list_for_each_safe(this, tmp, &h->offline_device_list) {
6822 d = list_entry(this, struct offline_device_entry,
6823 offline_list);
6824 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6825 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6826 spin_lock_irqsave(&h->offline_device_lock, flags);
6827 list_del(&d->offline_list);
6828 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6829 return 1;
6831 spin_lock_irqsave(&h->offline_device_lock, flags);
6833 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6834 return 0;
6838 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6840 unsigned long flags;
6841 struct ctlr_info *h = container_of(to_delayed_work(work),
6842 struct ctlr_info, monitor_ctlr_work);
6843 detect_controller_lockup(h);
6844 if (lockup_detected(h))
6845 return;
6847 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6848 scsi_host_get(h->scsi_host);
6849 h->drv_req_rescan = 0;
6850 hpsa_ack_ctlr_events(h);
6851 hpsa_scan_start(h->scsi_host);
6852 scsi_host_put(h->scsi_host);
6855 spin_lock_irqsave(&h->lock, flags);
6856 if (h->remove_in_progress) {
6857 spin_unlock_irqrestore(&h->lock, flags);
6858 return;
6860 schedule_delayed_work(&h->monitor_ctlr_work,
6861 h->heartbeat_sample_interval);
6862 spin_unlock_irqrestore(&h->lock, flags);
6865 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6867 int dac, rc;
6868 struct ctlr_info *h;
6869 int try_soft_reset = 0;
6870 unsigned long flags;
6872 if (number_of_controllers == 0)
6873 printk(KERN_INFO DRIVER_NAME "\n");
6875 rc = hpsa_init_reset_devices(pdev);
6876 if (rc) {
6877 if (rc != -ENOTSUPP)
6878 return rc;
6879 /* If the reset fails in a particular way (it has no way to do
6880 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6881 * a soft reset once we get the controller configured up to the
6882 * point that it can accept a command.
6884 try_soft_reset = 1;
6885 rc = 0;
6888 reinit_after_soft_reset:
6890 /* Command structures must be aligned on a 32-byte boundary because
6891 * the 5 lower bits of the address are used by the hardware. and by
6892 * the driver. See comments in hpsa.h for more info.
6894 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6895 h = kzalloc(sizeof(*h), GFP_KERNEL);
6896 if (!h)
6897 return -ENOMEM;
6899 h->pdev = pdev;
6900 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6901 INIT_LIST_HEAD(&h->cmpQ);
6902 INIT_LIST_HEAD(&h->reqQ);
6903 INIT_LIST_HEAD(&h->offline_device_list);
6904 spin_lock_init(&h->lock);
6905 spin_lock_init(&h->offline_device_lock);
6906 spin_lock_init(&h->scan_lock);
6907 spin_lock_init(&h->passthru_count_lock);
6909 /* Allocate and clear per-cpu variable lockup_detected */
6910 h->lockup_detected = alloc_percpu(u32);
6911 if (!h->lockup_detected) {
6912 rc = -ENOMEM;
6913 goto clean1;
6915 set_lockup_detected_for_all_cpus(h, 0);
6917 rc = hpsa_pci_init(h);
6918 if (rc != 0)
6919 goto clean1;
6921 sprintf(h->devname, HPSA "%d", number_of_controllers);
6922 h->ctlr = number_of_controllers;
6923 number_of_controllers++;
6925 /* configure PCI DMA stuff */
6926 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6927 if (rc == 0) {
6928 dac = 1;
6929 } else {
6930 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6931 if (rc == 0) {
6932 dac = 0;
6933 } else {
6934 dev_err(&pdev->dev, "no suitable DMA available\n");
6935 goto clean1;
6939 /* make sure the board interrupts are off */
6940 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6942 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6943 goto clean2;
6944 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6945 h->devname, pdev->device,
6946 h->intr[h->intr_mode], dac ? "" : " not");
6947 if (hpsa_allocate_cmd_pool(h))
6948 goto clean4;
6949 if (hpsa_allocate_sg_chain_blocks(h))
6950 goto clean4;
6951 init_waitqueue_head(&h->scan_wait_queue);
6952 h->scan_finished = 1; /* no scan currently in progress */
6954 pci_set_drvdata(pdev, h);
6955 h->ndevices = 0;
6956 h->hba_mode_enabled = 0;
6957 h->scsi_host = NULL;
6958 spin_lock_init(&h->devlock);
6959 hpsa_put_ctlr_into_performant_mode(h);
6961 /* At this point, the controller is ready to take commands.
6962 * Now, if reset_devices and the hard reset didn't work, try
6963 * the soft reset and see if that works.
6965 if (try_soft_reset) {
6967 /* This is kind of gross. We may or may not get a completion
6968 * from the soft reset command, and if we do, then the value
6969 * from the fifo may or may not be valid. So, we wait 10 secs
6970 * after the reset throwing away any completions we get during
6971 * that time. Unregister the interrupt handler and register
6972 * fake ones to scoop up any residual completions.
6974 spin_lock_irqsave(&h->lock, flags);
6975 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6976 spin_unlock_irqrestore(&h->lock, flags);
6977 free_irqs(h);
6978 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6979 hpsa_intx_discard_completions);
6980 if (rc) {
6981 dev_warn(&h->pdev->dev, "Failed to request_irq after "
6982 "soft reset.\n");
6983 goto clean4;
6986 rc = hpsa_kdump_soft_reset(h);
6987 if (rc)
6988 /* Neither hard nor soft reset worked, we're hosed. */
6989 goto clean4;
6991 dev_info(&h->pdev->dev, "Board READY.\n");
6992 dev_info(&h->pdev->dev,
6993 "Waiting for stale completions to drain.\n");
6994 h->access.set_intr_mask(h, HPSA_INTR_ON);
6995 msleep(10000);
6996 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6998 rc = controller_reset_failed(h->cfgtable);
6999 if (rc)
7000 dev_info(&h->pdev->dev,
7001 "Soft reset appears to have failed.\n");
7003 /* since the controller's reset, we have to go back and re-init
7004 * everything. Easiest to just forget what we've done and do it
7005 * all over again.
7007 hpsa_undo_allocations_after_kdump_soft_reset(h);
7008 try_soft_reset = 0;
7009 if (rc)
7010 /* don't go to clean4, we already unallocated */
7011 return -ENODEV;
7013 goto reinit_after_soft_reset;
7016 /* Enable Accelerated IO path at driver layer */
7017 h->acciopath_status = 1;
7019 h->drv_req_rescan = 0;
7021 /* Turn the interrupts on so we can service requests */
7022 h->access.set_intr_mask(h, HPSA_INTR_ON);
7024 hpsa_hba_inquiry(h);
7025 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7027 /* Monitor the controller for firmware lockups */
7028 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7029 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7030 schedule_delayed_work(&h->monitor_ctlr_work,
7031 h->heartbeat_sample_interval);
7032 return 0;
7034 clean4:
7035 hpsa_free_sg_chain_blocks(h);
7036 hpsa_free_cmd_pool(h);
7037 free_irqs(h);
7038 clean2:
7039 clean1:
7040 if (h->lockup_detected)
7041 free_percpu(h->lockup_detected);
7042 kfree(h);
7043 return rc;
7046 static void hpsa_flush_cache(struct ctlr_info *h)
7048 char *flush_buf;
7049 struct CommandList *c;
7051 /* Don't bother trying to flush the cache if locked up */
7052 if (unlikely(lockup_detected(h)))
7053 return;
7054 flush_buf = kzalloc(4, GFP_KERNEL);
7055 if (!flush_buf)
7056 return;
7058 c = cmd_special_alloc(h);
7059 if (!c) {
7060 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7061 goto out_of_memory;
7063 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7064 RAID_CTLR_LUNID, TYPE_CMD)) {
7065 goto out;
7067 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7068 if (c->err_info->CommandStatus != 0)
7069 out:
7070 dev_warn(&h->pdev->dev,
7071 "error flushing cache on controller\n");
7072 cmd_special_free(h, c);
7073 out_of_memory:
7074 kfree(flush_buf);
7077 static void hpsa_shutdown(struct pci_dev *pdev)
7079 struct ctlr_info *h;
7081 h = pci_get_drvdata(pdev);
7082 /* Turn board interrupts off and send the flush cache command
7083 * sendcmd will turn off interrupt, and send the flush...
7084 * To write all data in the battery backed cache to disks
7086 hpsa_flush_cache(h);
7087 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7088 hpsa_free_irqs_and_disable_msix(h);
7091 static void hpsa_free_device_info(struct ctlr_info *h)
7093 int i;
7095 for (i = 0; i < h->ndevices; i++)
7096 kfree(h->dev[i]);
7099 static void hpsa_remove_one(struct pci_dev *pdev)
7101 struct ctlr_info *h;
7102 unsigned long flags;
7104 if (pci_get_drvdata(pdev) == NULL) {
7105 dev_err(&pdev->dev, "unable to remove device\n");
7106 return;
7108 h = pci_get_drvdata(pdev);
7110 /* Get rid of any controller monitoring work items */
7111 spin_lock_irqsave(&h->lock, flags);
7112 h->remove_in_progress = 1;
7113 cancel_delayed_work(&h->monitor_ctlr_work);
7114 spin_unlock_irqrestore(&h->lock, flags);
7116 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7117 hpsa_shutdown(pdev);
7118 iounmap(h->vaddr);
7119 iounmap(h->transtable);
7120 iounmap(h->cfgtable);
7121 hpsa_free_device_info(h);
7122 hpsa_free_sg_chain_blocks(h);
7123 pci_free_consistent(h->pdev,
7124 h->nr_cmds * sizeof(struct CommandList),
7125 h->cmd_pool, h->cmd_pool_dhandle);
7126 pci_free_consistent(h->pdev,
7127 h->nr_cmds * sizeof(struct ErrorInfo),
7128 h->errinfo_pool, h->errinfo_pool_dhandle);
7129 hpsa_free_reply_queues(h);
7130 kfree(h->cmd_pool_bits);
7131 kfree(h->blockFetchTable);
7132 kfree(h->ioaccel1_blockFetchTable);
7133 kfree(h->ioaccel2_blockFetchTable);
7134 kfree(h->hba_inquiry_data);
7135 pci_disable_device(pdev);
7136 pci_release_regions(pdev);
7137 free_percpu(h->lockup_detected);
7138 kfree(h);
7141 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7142 __attribute__((unused)) pm_message_t state)
7144 return -ENOSYS;
7147 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7149 return -ENOSYS;
7152 static struct pci_driver hpsa_pci_driver = {
7153 .name = HPSA,
7154 .probe = hpsa_init_one,
7155 .remove = hpsa_remove_one,
7156 .id_table = hpsa_pci_device_id, /* id_table */
7157 .shutdown = hpsa_shutdown,
7158 .suspend = hpsa_suspend,
7159 .resume = hpsa_resume,
7162 /* Fill in bucket_map[], given nsgs (the max number of
7163 * scatter gather elements supported) and bucket[],
7164 * which is an array of 8 integers. The bucket[] array
7165 * contains 8 different DMA transfer sizes (in 16
7166 * byte increments) which the controller uses to fetch
7167 * commands. This function fills in bucket_map[], which
7168 * maps a given number of scatter gather elements to one of
7169 * the 8 DMA transfer sizes. The point of it is to allow the
7170 * controller to only do as much DMA as needed to fetch the
7171 * command, with the DMA transfer size encoded in the lower
7172 * bits of the command address.
7174 static void calc_bucket_map(int bucket[], int num_buckets,
7175 int nsgs, int min_blocks, int *bucket_map)
7177 int i, j, b, size;
7179 /* Note, bucket_map must have nsgs+1 entries. */
7180 for (i = 0; i <= nsgs; i++) {
7181 /* Compute size of a command with i SG entries */
7182 size = i + min_blocks;
7183 b = num_buckets; /* Assume the biggest bucket */
7184 /* Find the bucket that is just big enough */
7185 for (j = 0; j < num_buckets; j++) {
7186 if (bucket[j] >= size) {
7187 b = j;
7188 break;
7191 /* for a command with i SG entries, use bucket b. */
7192 bucket_map[i] = b;
7196 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7198 int i;
7199 unsigned long register_value;
7200 unsigned long transMethod = CFGTBL_Trans_Performant |
7201 (trans_support & CFGTBL_Trans_use_short_tags) |
7202 CFGTBL_Trans_enable_directed_msix |
7203 (trans_support & (CFGTBL_Trans_io_accel1 |
7204 CFGTBL_Trans_io_accel2));
7205 struct access_method access = SA5_performant_access;
7207 /* This is a bit complicated. There are 8 registers on
7208 * the controller which we write to to tell it 8 different
7209 * sizes of commands which there may be. It's a way of
7210 * reducing the DMA done to fetch each command. Encoded into
7211 * each command's tag are 3 bits which communicate to the controller
7212 * which of the eight sizes that command fits within. The size of
7213 * each command depends on how many scatter gather entries there are.
7214 * Each SG entry requires 16 bytes. The eight registers are programmed
7215 * with the number of 16-byte blocks a command of that size requires.
7216 * The smallest command possible requires 5 such 16 byte blocks.
7217 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7218 * blocks. Note, this only extends to the SG entries contained
7219 * within the command block, and does not extend to chained blocks
7220 * of SG elements. bft[] contains the eight values we write to
7221 * the registers. They are not evenly distributed, but have more
7222 * sizes for small commands, and fewer sizes for larger commands.
7224 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7225 #define MIN_IOACCEL2_BFT_ENTRY 5
7226 #define HPSA_IOACCEL2_HEADER_SZ 4
7227 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7228 13, 14, 15, 16, 17, 18, 19,
7229 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7230 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7231 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7232 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7233 16 * MIN_IOACCEL2_BFT_ENTRY);
7234 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7235 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7236 /* 5 = 1 s/g entry or 4k
7237 * 6 = 2 s/g entry or 8k
7238 * 8 = 4 s/g entry or 16k
7239 * 10 = 6 s/g entry or 24k
7242 /* If the controller supports either ioaccel method then
7243 * we can also use the RAID stack submit path that does not
7244 * perform the superfluous readl() after each command submission.
7246 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7247 access = SA5_performant_access_no_read;
7249 /* Controller spec: zero out this buffer. */
7250 for (i = 0; i < h->nreply_queues; i++)
7251 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7253 bft[7] = SG_ENTRIES_IN_CMD + 4;
7254 calc_bucket_map(bft, ARRAY_SIZE(bft),
7255 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7256 for (i = 0; i < 8; i++)
7257 writel(bft[i], &h->transtable->BlockFetch[i]);
7259 /* size of controller ring buffer */
7260 writel(h->max_commands, &h->transtable->RepQSize);
7261 writel(h->nreply_queues, &h->transtable->RepQCount);
7262 writel(0, &h->transtable->RepQCtrAddrLow32);
7263 writel(0, &h->transtable->RepQCtrAddrHigh32);
7265 for (i = 0; i < h->nreply_queues; i++) {
7266 writel(0, &h->transtable->RepQAddr[i].upper);
7267 writel(h->reply_queue[i].busaddr,
7268 &h->transtable->RepQAddr[i].lower);
7271 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7272 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7274 * enable outbound interrupt coalescing in accelerator mode;
7276 if (trans_support & CFGTBL_Trans_io_accel1) {
7277 access = SA5_ioaccel_mode1_access;
7278 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7279 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7280 } else {
7281 if (trans_support & CFGTBL_Trans_io_accel2) {
7282 access = SA5_ioaccel_mode2_access;
7283 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7284 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7287 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7288 hpsa_wait_for_mode_change_ack(h);
7289 register_value = readl(&(h->cfgtable->TransportActive));
7290 if (!(register_value & CFGTBL_Trans_Performant)) {
7291 dev_warn(&h->pdev->dev, "unable to get board into"
7292 " performant mode\n");
7293 return;
7295 /* Change the access methods to the performant access methods */
7296 h->access = access;
7297 h->transMethod = transMethod;
7299 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7300 (trans_support & CFGTBL_Trans_io_accel2)))
7301 return;
7303 if (trans_support & CFGTBL_Trans_io_accel1) {
7304 /* Set up I/O accelerator mode */
7305 for (i = 0; i < h->nreply_queues; i++) {
7306 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7307 h->reply_queue[i].current_entry =
7308 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7310 bft[7] = h->ioaccel_maxsg + 8;
7311 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7312 h->ioaccel1_blockFetchTable);
7314 /* initialize all reply queue entries to unused */
7315 for (i = 0; i < h->nreply_queues; i++)
7316 memset(h->reply_queue[i].head,
7317 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7318 h->reply_queue_size);
7320 /* set all the constant fields in the accelerator command
7321 * frames once at init time to save CPU cycles later.
7323 for (i = 0; i < h->nr_cmds; i++) {
7324 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7326 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7327 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7328 (i * sizeof(struct ErrorInfo)));
7329 cp->err_info_len = sizeof(struct ErrorInfo);
7330 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7331 cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7332 cp->timeout_sec = 0;
7333 cp->ReplyQueue = 0;
7334 cp->tag =
7335 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7336 DIRECT_LOOKUP_BIT);
7337 cp->host_addr =
7338 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7339 (i * sizeof(struct io_accel1_cmd)));
7341 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7342 u64 cfg_offset, cfg_base_addr_index;
7343 u32 bft2_offset, cfg_base_addr;
7344 int rc;
7346 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7347 &cfg_base_addr_index, &cfg_offset);
7348 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7349 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7350 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7351 4, h->ioaccel2_blockFetchTable);
7352 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7353 BUILD_BUG_ON(offsetof(struct CfgTable,
7354 io_accel_request_size_offset) != 0xb8);
7355 h->ioaccel2_bft2_regs =
7356 remap_pci_mem(pci_resource_start(h->pdev,
7357 cfg_base_addr_index) +
7358 cfg_offset + bft2_offset,
7359 ARRAY_SIZE(bft2) *
7360 sizeof(*h->ioaccel2_bft2_regs));
7361 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7362 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7364 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7365 hpsa_wait_for_mode_change_ack(h);
7368 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7370 h->ioaccel_maxsg =
7371 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7372 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7373 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7375 /* Command structures must be aligned on a 128-byte boundary
7376 * because the 7 lower bits of the address are used by the
7377 * hardware.
7379 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7380 IOACCEL1_COMMANDLIST_ALIGNMENT);
7381 h->ioaccel_cmd_pool =
7382 pci_alloc_consistent(h->pdev,
7383 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7384 &(h->ioaccel_cmd_pool_dhandle));
7386 h->ioaccel1_blockFetchTable =
7387 kmalloc(((h->ioaccel_maxsg + 1) *
7388 sizeof(u32)), GFP_KERNEL);
7390 if ((h->ioaccel_cmd_pool == NULL) ||
7391 (h->ioaccel1_blockFetchTable == NULL))
7392 goto clean_up;
7394 memset(h->ioaccel_cmd_pool, 0,
7395 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7396 return 0;
7398 clean_up:
7399 if (h->ioaccel_cmd_pool)
7400 pci_free_consistent(h->pdev,
7401 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7402 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7403 kfree(h->ioaccel1_blockFetchTable);
7404 return 1;
7407 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7409 /* Allocate ioaccel2 mode command blocks and block fetch table */
7411 h->ioaccel_maxsg =
7412 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7413 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7414 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7416 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7417 IOACCEL2_COMMANDLIST_ALIGNMENT);
7418 h->ioaccel2_cmd_pool =
7419 pci_alloc_consistent(h->pdev,
7420 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7421 &(h->ioaccel2_cmd_pool_dhandle));
7423 h->ioaccel2_blockFetchTable =
7424 kmalloc(((h->ioaccel_maxsg + 1) *
7425 sizeof(u32)), GFP_KERNEL);
7427 if ((h->ioaccel2_cmd_pool == NULL) ||
7428 (h->ioaccel2_blockFetchTable == NULL))
7429 goto clean_up;
7431 memset(h->ioaccel2_cmd_pool, 0,
7432 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7433 return 0;
7435 clean_up:
7436 if (h->ioaccel2_cmd_pool)
7437 pci_free_consistent(h->pdev,
7438 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7439 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7440 kfree(h->ioaccel2_blockFetchTable);
7441 return 1;
7444 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7446 u32 trans_support;
7447 unsigned long transMethod = CFGTBL_Trans_Performant |
7448 CFGTBL_Trans_use_short_tags;
7449 int i;
7451 if (hpsa_simple_mode)
7452 return;
7454 trans_support = readl(&(h->cfgtable->TransportSupport));
7455 if (!(trans_support & PERFORMANT_MODE))
7456 return;
7458 /* Check for I/O accelerator mode support */
7459 if (trans_support & CFGTBL_Trans_io_accel1) {
7460 transMethod |= CFGTBL_Trans_io_accel1 |
7461 CFGTBL_Trans_enable_directed_msix;
7462 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7463 goto clean_up;
7464 } else {
7465 if (trans_support & CFGTBL_Trans_io_accel2) {
7466 transMethod |= CFGTBL_Trans_io_accel2 |
7467 CFGTBL_Trans_enable_directed_msix;
7468 if (ioaccel2_alloc_cmds_and_bft(h))
7469 goto clean_up;
7473 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7474 hpsa_get_max_perf_mode_cmds(h);
7475 /* Performant mode ring buffer and supporting data structures */
7476 h->reply_queue_size = h->max_commands * sizeof(u64);
7478 for (i = 0; i < h->nreply_queues; i++) {
7479 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7480 h->reply_queue_size,
7481 &(h->reply_queue[i].busaddr));
7482 if (!h->reply_queue[i].head)
7483 goto clean_up;
7484 h->reply_queue[i].size = h->max_commands;
7485 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7486 h->reply_queue[i].current_entry = 0;
7489 /* Need a block fetch table for performant mode */
7490 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7491 sizeof(u32)), GFP_KERNEL);
7492 if (!h->blockFetchTable)
7493 goto clean_up;
7495 hpsa_enter_performant_mode(h, trans_support);
7496 return;
7498 clean_up:
7499 hpsa_free_reply_queues(h);
7500 kfree(h->blockFetchTable);
7503 static int is_accelerated_cmd(struct CommandList *c)
7505 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7508 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7510 struct CommandList *c = NULL;
7511 unsigned long flags;
7512 int accel_cmds_out;
7514 do { /* wait for all outstanding commands to drain out */
7515 accel_cmds_out = 0;
7516 spin_lock_irqsave(&h->lock, flags);
7517 list_for_each_entry(c, &h->cmpQ, list)
7518 accel_cmds_out += is_accelerated_cmd(c);
7519 list_for_each_entry(c, &h->reqQ, list)
7520 accel_cmds_out += is_accelerated_cmd(c);
7521 spin_unlock_irqrestore(&h->lock, flags);
7522 if (accel_cmds_out <= 0)
7523 break;
7524 msleep(100);
7525 } while (1);
7529 * This is it. Register the PCI driver information for the cards we control
7530 * the OS will call our registered routines when it finds one of our cards.
7532 static int __init hpsa_init(void)
7534 return pci_register_driver(&hpsa_pci_driver);
7537 static void __exit hpsa_cleanup(void)
7539 pci_unregister_driver(&hpsa_pci_driver);
7542 static void __attribute__((unused)) verify_offsets(void)
7544 #define VERIFY_OFFSET(member, offset) \
7545 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7547 VERIFY_OFFSET(structure_size, 0);
7548 VERIFY_OFFSET(volume_blk_size, 4);
7549 VERIFY_OFFSET(volume_blk_cnt, 8);
7550 VERIFY_OFFSET(phys_blk_shift, 16);
7551 VERIFY_OFFSET(parity_rotation_shift, 17);
7552 VERIFY_OFFSET(strip_size, 18);
7553 VERIFY_OFFSET(disk_starting_blk, 20);
7554 VERIFY_OFFSET(disk_blk_cnt, 28);
7555 VERIFY_OFFSET(data_disks_per_row, 36);
7556 VERIFY_OFFSET(metadata_disks_per_row, 38);
7557 VERIFY_OFFSET(row_cnt, 40);
7558 VERIFY_OFFSET(layout_map_count, 42);
7559 VERIFY_OFFSET(flags, 44);
7560 VERIFY_OFFSET(dekindex, 46);
7561 /* VERIFY_OFFSET(reserved, 48 */
7562 VERIFY_OFFSET(data, 64);
7564 #undef VERIFY_OFFSET
7566 #define VERIFY_OFFSET(member, offset) \
7567 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7569 VERIFY_OFFSET(IU_type, 0);
7570 VERIFY_OFFSET(direction, 1);
7571 VERIFY_OFFSET(reply_queue, 2);
7572 /* VERIFY_OFFSET(reserved1, 3); */
7573 VERIFY_OFFSET(scsi_nexus, 4);
7574 VERIFY_OFFSET(Tag, 8);
7575 VERIFY_OFFSET(cdb, 16);
7576 VERIFY_OFFSET(cciss_lun, 32);
7577 VERIFY_OFFSET(data_len, 40);
7578 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7579 VERIFY_OFFSET(sg_count, 45);
7580 /* VERIFY_OFFSET(reserved3 */
7581 VERIFY_OFFSET(err_ptr, 48);
7582 VERIFY_OFFSET(err_len, 56);
7583 /* VERIFY_OFFSET(reserved4 */
7584 VERIFY_OFFSET(sg, 64);
7586 #undef VERIFY_OFFSET
7588 #define VERIFY_OFFSET(member, offset) \
7589 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7591 VERIFY_OFFSET(dev_handle, 0x00);
7592 VERIFY_OFFSET(reserved1, 0x02);
7593 VERIFY_OFFSET(function, 0x03);
7594 VERIFY_OFFSET(reserved2, 0x04);
7595 VERIFY_OFFSET(err_info, 0x0C);
7596 VERIFY_OFFSET(reserved3, 0x10);
7597 VERIFY_OFFSET(err_info_len, 0x12);
7598 VERIFY_OFFSET(reserved4, 0x13);
7599 VERIFY_OFFSET(sgl_offset, 0x14);
7600 VERIFY_OFFSET(reserved5, 0x15);
7601 VERIFY_OFFSET(transfer_len, 0x1C);
7602 VERIFY_OFFSET(reserved6, 0x20);
7603 VERIFY_OFFSET(io_flags, 0x24);
7604 VERIFY_OFFSET(reserved7, 0x26);
7605 VERIFY_OFFSET(LUN, 0x34);
7606 VERIFY_OFFSET(control, 0x3C);
7607 VERIFY_OFFSET(CDB, 0x40);
7608 VERIFY_OFFSET(reserved8, 0x50);
7609 VERIFY_OFFSET(host_context_flags, 0x60);
7610 VERIFY_OFFSET(timeout_sec, 0x62);
7611 VERIFY_OFFSET(ReplyQueue, 0x64);
7612 VERIFY_OFFSET(reserved9, 0x65);
7613 VERIFY_OFFSET(tag, 0x68);
7614 VERIFY_OFFSET(host_addr, 0x70);
7615 VERIFY_OFFSET(CISS_LUN, 0x78);
7616 VERIFY_OFFSET(SG, 0x78 + 8);
7617 #undef VERIFY_OFFSET
7620 module_init(hpsa_init);
7621 module_exit(hpsa_cleanup);