1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
16 #include "transaction.h"
17 #include "dev-replace.h"
22 * This is the implementation for the generic read ahead framework.
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
45 #define MAX_IN_FLIGHT 6
48 struct list_head list
;
49 struct reada_control
*rc
;
56 struct list_head extctl
;
59 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
68 struct list_head list
;
71 struct btrfs_device
*device
;
72 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
78 struct reada_machine_work
{
79 struct btrfs_work work
;
80 struct btrfs_fs_info
*fs_info
;
83 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
84 static void reada_control_release(struct kref
*kref
);
85 static void reada_zone_release(struct kref
*kref
);
86 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
87 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
89 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
90 struct btrfs_key
*top
, u64 generation
);
93 /* in case of err, eb might be NULL */
94 static void __readahead_hook(struct btrfs_fs_info
*fs_info
,
95 struct reada_extent
*re
, struct extent_buffer
*eb
,
102 struct list_head list
;
104 spin_lock(&re
->lock
);
106 * just take the full list from the extent. afterwards we
107 * don't need the lock anymore
109 list_replace_init(&re
->extctl
, &list
);
111 spin_unlock(&re
->lock
);
114 * this is the error case, the extent buffer has not been
115 * read correctly. We won't access anything from it and
116 * just cleanup our data structures. Effectively this will
117 * cut the branch below this node from read ahead.
123 * FIXME: currently we just set nritems to 0 if this is a leaf,
124 * effectively ignoring the content. In a next step we could
125 * trigger more readahead depending from the content, e.g.
126 * fetch the checksums for the extents in the leaf.
128 if (!btrfs_header_level(eb
))
131 nritems
= btrfs_header_nritems(eb
);
132 generation
= btrfs_header_generation(eb
);
133 for (i
= 0; i
< nritems
; i
++) {
134 struct reada_extctl
*rec
;
136 struct btrfs_key key
;
137 struct btrfs_key next_key
;
139 btrfs_node_key_to_cpu(eb
, &key
, i
);
141 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
144 bytenr
= btrfs_node_blockptr(eb
, i
);
145 n_gen
= btrfs_node_ptr_generation(eb
, i
);
147 list_for_each_entry(rec
, &list
, list
) {
148 struct reada_control
*rc
= rec
->rc
;
151 * if the generation doesn't match, just ignore this
152 * extctl. This will probably cut off a branch from
153 * prefetch. Alternatively one could start a new (sub-)
154 * prefetch for this branch, starting again from root.
155 * FIXME: move the generation check out of this loop
158 if (rec
->generation
!= generation
) {
160 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161 key
.objectid
, key
.type
, key
.offset
,
162 rec
->generation
, generation
);
165 if (rec
->generation
== generation
&&
166 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
167 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
168 reada_add_block(rc
, bytenr
, &next_key
, n_gen
);
174 * free extctl records
176 while (!list_empty(&list
)) {
177 struct reada_control
*rc
;
178 struct reada_extctl
*rec
;
180 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
181 list_del(&rec
->list
);
185 kref_get(&rc
->refcnt
);
186 if (atomic_dec_and_test(&rc
->elems
)) {
187 kref_put(&rc
->refcnt
, reada_control_release
);
190 kref_put(&rc
->refcnt
, reada_control_release
);
192 reada_extent_put(fs_info
, re
); /* one ref for each entry */
198 int btree_readahead_hook(struct extent_buffer
*eb
, int err
)
200 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
202 struct reada_extent
*re
;
205 spin_lock(&fs_info
->reada_lock
);
206 re
= radix_tree_lookup(&fs_info
->reada_tree
,
207 eb
->start
>> PAGE_SHIFT
);
210 spin_unlock(&fs_info
->reada_lock
);
216 __readahead_hook(fs_info
, re
, eb
, err
);
217 reada_extent_put(fs_info
, re
); /* our ref */
220 reada_start_machine(fs_info
);
224 static struct reada_zone
*reada_find_zone(struct btrfs_device
*dev
, u64 logical
,
225 struct btrfs_bio
*bbio
)
227 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
229 struct reada_zone
*zone
;
230 struct btrfs_block_group_cache
*cache
= NULL
;
236 spin_lock(&fs_info
->reada_lock
);
237 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
238 logical
>> PAGE_SHIFT
, 1);
239 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
) {
240 kref_get(&zone
->refcnt
);
241 spin_unlock(&fs_info
->reada_lock
);
245 spin_unlock(&fs_info
->reada_lock
);
247 cache
= btrfs_lookup_block_group(fs_info
, logical
);
251 start
= cache
->key
.objectid
;
252 end
= start
+ cache
->key
.offset
- 1;
253 btrfs_put_block_group(cache
);
255 zone
= kzalloc(sizeof(*zone
), GFP_KERNEL
);
259 ret
= radix_tree_preload(GFP_KERNEL
);
267 INIT_LIST_HEAD(&zone
->list
);
268 spin_lock_init(&zone
->lock
);
270 kref_init(&zone
->refcnt
);
272 zone
->device
= dev
; /* our device always sits at index 0 */
273 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
274 /* bounds have already been checked */
275 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
277 zone
->ndevs
= bbio
->num_stripes
;
279 spin_lock(&fs_info
->reada_lock
);
280 ret
= radix_tree_insert(&dev
->reada_zones
,
281 (unsigned long)(zone
->end
>> PAGE_SHIFT
),
284 if (ret
== -EEXIST
) {
286 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
287 logical
>> PAGE_SHIFT
, 1);
288 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
)
289 kref_get(&zone
->refcnt
);
293 spin_unlock(&fs_info
->reada_lock
);
294 radix_tree_preload_end();
299 static struct reada_extent
*reada_find_extent(struct btrfs_fs_info
*fs_info
,
301 struct btrfs_key
*top
)
304 struct reada_extent
*re
= NULL
;
305 struct reada_extent
*re_exist
= NULL
;
306 struct btrfs_bio
*bbio
= NULL
;
307 struct btrfs_device
*dev
;
308 struct btrfs_device
*prev_dev
;
312 unsigned long index
= logical
>> PAGE_SHIFT
;
313 int dev_replace_is_ongoing
;
316 spin_lock(&fs_info
->reada_lock
);
317 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
320 spin_unlock(&fs_info
->reada_lock
);
325 re
= kzalloc(sizeof(*re
), GFP_KERNEL
);
329 re
->logical
= logical
;
331 INIT_LIST_HEAD(&re
->extctl
);
332 spin_lock_init(&re
->lock
);
338 length
= fs_info
->nodesize
;
339 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
341 if (ret
|| !bbio
|| length
< fs_info
->nodesize
)
344 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
346 "readahead: more than %d copies not supported",
351 real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
352 for (nzones
= 0; nzones
< real_stripes
; ++nzones
) {
353 struct reada_zone
*zone
;
355 dev
= bbio
->stripes
[nzones
].dev
;
357 /* cannot read ahead on missing device. */
361 zone
= reada_find_zone(dev
, logical
, bbio
);
365 re
->zones
[re
->nzones
++] = zone
;
366 spin_lock(&zone
->lock
);
368 kref_get(&zone
->refcnt
);
370 spin_unlock(&zone
->lock
);
371 spin_lock(&fs_info
->reada_lock
);
372 kref_put(&zone
->refcnt
, reada_zone_release
);
373 spin_unlock(&fs_info
->reada_lock
);
375 if (re
->nzones
== 0) {
376 /* not a single zone found, error and out */
380 ret
= radix_tree_preload(GFP_KERNEL
);
384 /* insert extent in reada_tree + all per-device trees, all or nothing */
385 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
386 spin_lock(&fs_info
->reada_lock
);
387 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
388 if (ret
== -EEXIST
) {
389 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
391 spin_unlock(&fs_info
->reada_lock
);
392 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
393 radix_tree_preload_end();
397 spin_unlock(&fs_info
->reada_lock
);
398 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
399 radix_tree_preload_end();
402 radix_tree_preload_end();
404 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
405 &fs_info
->dev_replace
);
406 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
407 dev
= re
->zones
[nzones
]->device
;
409 if (dev
== prev_dev
) {
411 * in case of DUP, just add the first zone. As both
412 * are on the same device, there's nothing to gain
414 * Also, it wouldn't work, as the tree is per device
415 * and adding would fail with EEXIST
422 if (dev_replace_is_ongoing
&&
423 dev
== fs_info
->dev_replace
.tgtdev
) {
425 * as this device is selected for reading only as
426 * a last resort, skip it for read ahead.
431 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
433 while (--nzones
>= 0) {
434 dev
= re
->zones
[nzones
]->device
;
436 /* ignore whether the entry was inserted */
437 radix_tree_delete(&dev
->reada_extents
, index
);
439 radix_tree_delete(&fs_info
->reada_tree
, index
);
440 spin_unlock(&fs_info
->reada_lock
);
441 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
446 spin_unlock(&fs_info
->reada_lock
);
447 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
452 btrfs_put_bbio(bbio
);
456 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
457 struct reada_zone
*zone
;
459 zone
= re
->zones
[nzones
];
460 kref_get(&zone
->refcnt
);
461 spin_lock(&zone
->lock
);
463 if (zone
->elems
== 0) {
465 * no fs_info->reada_lock needed, as this can't be
468 kref_put(&zone
->refcnt
, reada_zone_release
);
470 spin_unlock(&zone
->lock
);
472 spin_lock(&fs_info
->reada_lock
);
473 kref_put(&zone
->refcnt
, reada_zone_release
);
474 spin_unlock(&fs_info
->reada_lock
);
476 btrfs_put_bbio(bbio
);
481 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
482 struct reada_extent
*re
)
485 unsigned long index
= re
->logical
>> PAGE_SHIFT
;
487 spin_lock(&fs_info
->reada_lock
);
489 spin_unlock(&fs_info
->reada_lock
);
493 radix_tree_delete(&fs_info
->reada_tree
, index
);
494 for (i
= 0; i
< re
->nzones
; ++i
) {
495 struct reada_zone
*zone
= re
->zones
[i
];
497 radix_tree_delete(&zone
->device
->reada_extents
, index
);
500 spin_unlock(&fs_info
->reada_lock
);
502 for (i
= 0; i
< re
->nzones
; ++i
) {
503 struct reada_zone
*zone
= re
->zones
[i
];
505 kref_get(&zone
->refcnt
);
506 spin_lock(&zone
->lock
);
508 if (zone
->elems
== 0) {
509 /* no fs_info->reada_lock needed, as this can't be
511 kref_put(&zone
->refcnt
, reada_zone_release
);
513 spin_unlock(&zone
->lock
);
515 spin_lock(&fs_info
->reada_lock
);
516 kref_put(&zone
->refcnt
, reada_zone_release
);
517 spin_unlock(&fs_info
->reada_lock
);
523 static void reada_zone_release(struct kref
*kref
)
525 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
527 radix_tree_delete(&zone
->device
->reada_zones
,
528 zone
->end
>> PAGE_SHIFT
);
533 static void reada_control_release(struct kref
*kref
)
535 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
541 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
542 struct btrfs_key
*top
, u64 generation
)
544 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
545 struct reada_extent
*re
;
546 struct reada_extctl
*rec
;
549 re
= reada_find_extent(fs_info
, logical
, top
);
553 rec
= kzalloc(sizeof(*rec
), GFP_KERNEL
);
555 reada_extent_put(fs_info
, re
);
560 rec
->generation
= generation
;
561 atomic_inc(&rc
->elems
);
563 spin_lock(&re
->lock
);
564 list_add_tail(&rec
->list
, &re
->extctl
);
565 spin_unlock(&re
->lock
);
567 /* leave the ref on the extent */
573 * called with fs_info->reada_lock held
575 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
578 unsigned long index
= zone
->end
>> PAGE_SHIFT
;
580 for (i
= 0; i
< zone
->ndevs
; ++i
) {
581 struct reada_zone
*peer
;
582 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
583 if (peer
&& peer
->device
!= zone
->device
)
589 * called with fs_info->reada_lock held
591 static int reada_pick_zone(struct btrfs_device
*dev
)
593 struct reada_zone
*top_zone
= NULL
;
594 struct reada_zone
*top_locked_zone
= NULL
;
596 u64 top_locked_elems
= 0;
597 unsigned long index
= 0;
600 if (dev
->reada_curr_zone
) {
601 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
602 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
603 dev
->reada_curr_zone
= NULL
;
605 /* pick the zone with the most elements */
607 struct reada_zone
*zone
;
609 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
610 (void **)&zone
, index
, 1);
613 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
615 if (zone
->elems
> top_locked_elems
) {
616 top_locked_elems
= zone
->elems
;
617 top_locked_zone
= zone
;
620 if (zone
->elems
> top_elems
) {
621 top_elems
= zone
->elems
;
627 dev
->reada_curr_zone
= top_zone
;
628 else if (top_locked_zone
)
629 dev
->reada_curr_zone
= top_locked_zone
;
633 dev
->reada_next
= dev
->reada_curr_zone
->start
;
634 kref_get(&dev
->reada_curr_zone
->refcnt
);
635 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
640 static int reada_start_machine_dev(struct btrfs_device
*dev
)
642 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
643 struct reada_extent
*re
= NULL
;
645 struct extent_buffer
*eb
= NULL
;
650 spin_lock(&fs_info
->reada_lock
);
651 if (dev
->reada_curr_zone
== NULL
) {
652 ret
= reada_pick_zone(dev
);
654 spin_unlock(&fs_info
->reada_lock
);
659 * FIXME currently we issue the reads one extent at a time. If we have
660 * a contiguous block of extents, we could also coagulate them or use
661 * plugging to speed things up
663 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
664 dev
->reada_next
>> PAGE_SHIFT
, 1);
665 if (ret
== 0 || re
->logical
> dev
->reada_curr_zone
->end
) {
666 ret
= reada_pick_zone(dev
);
668 spin_unlock(&fs_info
->reada_lock
);
672 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
673 dev
->reada_next
>> PAGE_SHIFT
, 1);
676 spin_unlock(&fs_info
->reada_lock
);
679 dev
->reada_next
= re
->logical
+ fs_info
->nodesize
;
682 spin_unlock(&fs_info
->reada_lock
);
684 spin_lock(&re
->lock
);
685 if (re
->scheduled
|| list_empty(&re
->extctl
)) {
686 spin_unlock(&re
->lock
);
687 reada_extent_put(fs_info
, re
);
691 spin_unlock(&re
->lock
);
696 for (i
= 0; i
< re
->nzones
; ++i
) {
697 if (re
->zones
[i
]->device
== dev
) {
702 logical
= re
->logical
;
704 atomic_inc(&dev
->reada_in_flight
);
705 ret
= reada_tree_block_flagged(fs_info
, logical
, mirror_num
, &eb
);
707 __readahead_hook(fs_info
, re
, NULL
, ret
);
709 __readahead_hook(fs_info
, re
, eb
, ret
);
712 free_extent_buffer(eb
);
714 atomic_dec(&dev
->reada_in_flight
);
715 reada_extent_put(fs_info
, re
);
721 static void reada_start_machine_worker(struct btrfs_work
*work
)
723 struct reada_machine_work
*rmw
;
724 struct btrfs_fs_info
*fs_info
;
727 rmw
= container_of(work
, struct reada_machine_work
, work
);
728 fs_info
= rmw
->fs_info
;
732 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
733 task_nice_ioprio(current
));
734 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
735 __reada_start_machine(fs_info
);
736 set_task_ioprio(current
, old_ioprio
);
738 atomic_dec(&fs_info
->reada_works_cnt
);
741 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
743 struct btrfs_device
*device
;
744 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
751 mutex_lock(&fs_devices
->device_list_mutex
);
752 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
753 if (atomic_read(&device
->reada_in_flight
) <
755 enqueued
+= reada_start_machine_dev(device
);
757 mutex_unlock(&fs_devices
->device_list_mutex
);
759 } while (enqueued
&& total
< 10000);
765 * If everything is already in the cache, this is effectively single
766 * threaded. To a) not hold the caller for too long and b) to utilize
767 * more cores, we broke the loop above after 10000 iterations and now
768 * enqueue to workers to finish it. This will distribute the load to
771 for (i
= 0; i
< 2; ++i
) {
772 reada_start_machine(fs_info
);
773 if (atomic_read(&fs_info
->reada_works_cnt
) >
774 BTRFS_MAX_MIRRORS
* 2)
779 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
781 struct reada_machine_work
*rmw
;
783 rmw
= kzalloc(sizeof(*rmw
), GFP_KERNEL
);
785 /* FIXME we cannot handle this properly right now */
788 btrfs_init_work(&rmw
->work
, btrfs_readahead_helper
,
789 reada_start_machine_worker
, NULL
, NULL
);
790 rmw
->fs_info
= fs_info
;
792 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
793 atomic_inc(&fs_info
->reada_works_cnt
);
797 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
799 struct btrfs_device
*device
;
800 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
807 spin_lock(&fs_info
->reada_lock
);
808 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
809 btrfs_debug(fs_info
, "dev %lld has %d in flight", device
->devid
,
810 atomic_read(&device
->reada_in_flight
));
813 struct reada_zone
*zone
;
814 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
815 (void **)&zone
, index
, 1);
818 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
819 zone
->start
, zone
->end
, zone
->elems
,
821 for (j
= 0; j
< zone
->ndevs
; ++j
) {
823 zone
->devs
[j
]->devid
);
825 if (device
->reada_curr_zone
== zone
)
826 pr_cont(" curr off %llu",
827 device
->reada_next
- zone
->start
);
829 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
834 struct reada_extent
*re
= NULL
;
836 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
837 (void **)&re
, index
, 1);
840 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
841 re
->logical
, fs_info
->nodesize
,
842 list_empty(&re
->extctl
), re
->scheduled
);
844 for (i
= 0; i
< re
->nzones
; ++i
) {
845 pr_cont(" zone %llu-%llu devs",
848 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
850 re
->zones
[i
]->devs
[j
]->devid
);
854 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
863 struct reada_extent
*re
= NULL
;
865 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
869 if (!re
->scheduled
) {
870 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
873 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
874 re
->logical
, fs_info
->nodesize
,
875 list_empty(&re
->extctl
), re
->scheduled
);
876 for (i
= 0; i
< re
->nzones
; ++i
) {
877 pr_cont(" zone %llu-%llu devs",
880 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
882 re
->zones
[i
]->devs
[j
]->devid
);
886 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
888 spin_unlock(&fs_info
->reada_lock
);
895 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
896 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
898 struct reada_control
*rc
;
902 struct extent_buffer
*node
;
903 static struct btrfs_key max_key
= {
909 rc
= kzalloc(sizeof(*rc
), GFP_KERNEL
);
911 return ERR_PTR(-ENOMEM
);
913 rc
->fs_info
= root
->fs_info
;
914 rc
->key_start
= *key_start
;
915 rc
->key_end
= *key_end
;
916 atomic_set(&rc
->elems
, 0);
917 init_waitqueue_head(&rc
->wait
);
918 kref_init(&rc
->refcnt
);
919 kref_get(&rc
->refcnt
); /* one ref for having elements */
921 node
= btrfs_root_node(root
);
923 generation
= btrfs_header_generation(node
);
924 free_extent_buffer(node
);
926 ret
= reada_add_block(rc
, start
, &max_key
, generation
);
932 reada_start_machine(root
->fs_info
);
938 int btrfs_reada_wait(void *handle
)
940 struct reada_control
*rc
= handle
;
941 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
943 while (atomic_read(&rc
->elems
)) {
944 if (!atomic_read(&fs_info
->reada_works_cnt
))
945 reada_start_machine(fs_info
);
946 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
948 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
951 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
953 kref_put(&rc
->refcnt
, reada_control_release
);
958 int btrfs_reada_wait(void *handle
)
960 struct reada_control
*rc
= handle
;
961 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
963 while (atomic_read(&rc
->elems
)) {
964 if (!atomic_read(&fs_info
->reada_works_cnt
))
965 reada_start_machine(fs_info
);
966 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
970 kref_put(&rc
->refcnt
, reada_control_release
);
976 void btrfs_reada_detach(void *handle
)
978 struct reada_control
*rc
= handle
;
980 kref_put(&rc
->refcnt
, reada_control_release
);