2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
96 int _node_numa_mem_
[MAX_NUMNODES
];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex
);
101 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy
;
105 EXPORT_SYMBOL(latent_entropy
);
109 * Array of node states.
111 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
112 [N_POSSIBLE
] = NODE_MASK_ALL
,
113 [N_ONLINE
] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
119 [N_MEMORY
] = { { [0] = 1UL } },
120 [N_CPU
] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states
);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock
);
128 unsigned long totalram_pages __read_mostly
;
129 unsigned long totalreserve_pages __read_mostly
;
130 unsigned long totalcma_pages __read_mostly
;
132 int percpu_pagelist_fraction
;
133 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page
*page
)
148 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
150 page
->index
= migratetype
;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages
);
223 static char * const zone_names
[MAX_NR_ZONES
] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names
[MIGRATE_TYPES
] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor
* const compound_page_dtors
[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes
= 1024;
265 int user_min_free_kbytes
= -1;
266 int watermark_scale_factor
= 10;
268 static unsigned long nr_kernel_pages __meminitdata
;
269 static unsigned long nr_all_pages __meminitdata
;
270 static unsigned long dma_reserve __meminitdata
;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
274 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
275 static unsigned long required_kernelcore __initdata
;
276 static unsigned long required_kernelcore_percent __initdata
;
277 static unsigned long required_movablecore __initdata
;
278 static unsigned long required_movablecore_percent __initdata
;
279 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __meminitdata
;
280 static bool mirrored_kernelcore __meminitdata
;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone
);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
289 int nr_online_nodes __read_mostly
= 1;
290 EXPORT_SYMBOL(nr_node_ids
);
291 EXPORT_SYMBOL(nr_online_nodes
);
294 int page_group_by_mobility_disabled __read_mostly
;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
300 int nid
= early_pfn_to_nid(pfn
);
302 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t
*pgdat
,
313 unsigned long pfn
, unsigned long zone_end
,
314 unsigned long *nr_initialised
)
316 /* Always populate low zones for address-constrained allocations */
317 if (zone_end
< pgdat_end_pfn(pgdat
))
320 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
321 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
322 pgdat
->first_deferred_pfn
= pfn
;
329 static inline bool early_page_uninitialised(unsigned long pfn
)
334 static inline bool update_defer_init(pg_data_t
*pgdat
,
335 unsigned long pfn
, unsigned long zone_end
,
336 unsigned long *nr_initialised
)
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
346 #ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn
)->pageblock_flags
;
349 return page_zone(page
)->pageblock_flags
;
350 #endif /* CONFIG_SPARSEMEM */
353 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
355 #ifdef CONFIG_SPARSEMEM
356 pfn
&= (PAGES_PER_SECTION
-1);
357 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
359 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
360 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
361 #endif /* CONFIG_SPARSEMEM */
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
371 * Return: pageblock_bits flags
373 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
375 unsigned long end_bitidx
,
378 unsigned long *bitmap
;
379 unsigned long bitidx
, word_bitidx
;
382 bitmap
= get_pageblock_bitmap(page
, pfn
);
383 bitidx
= pfn_to_bitidx(page
, pfn
);
384 word_bitidx
= bitidx
/ BITS_PER_LONG
;
385 bitidx
&= (BITS_PER_LONG
-1);
387 word
= bitmap
[word_bitidx
];
388 bitidx
+= end_bitidx
;
389 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
392 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
393 unsigned long end_bitidx
,
396 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
399 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
401 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
412 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
414 unsigned long end_bitidx
,
417 unsigned long *bitmap
;
418 unsigned long bitidx
, word_bitidx
;
419 unsigned long old_word
, word
;
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
423 bitmap
= get_pageblock_bitmap(page
, pfn
);
424 bitidx
= pfn_to_bitidx(page
, pfn
);
425 word_bitidx
= bitidx
/ BITS_PER_LONG
;
426 bitidx
&= (BITS_PER_LONG
-1);
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
430 bitidx
+= end_bitidx
;
431 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
432 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
434 word
= READ_ONCE(bitmap
[word_bitidx
]);
436 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
437 if (word
== old_word
)
443 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
445 if (unlikely(page_group_by_mobility_disabled
&&
446 migratetype
< MIGRATE_PCPTYPES
))
447 migratetype
= MIGRATE_UNMOVABLE
;
449 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
450 PB_migrate
, PB_migrate_end
);
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
458 unsigned long pfn
= page_to_pfn(page
);
459 unsigned long sp
, start_pfn
;
462 seq
= zone_span_seqbegin(zone
);
463 start_pfn
= zone
->zone_start_pfn
;
464 sp
= zone
->spanned_pages
;
465 if (!zone_spans_pfn(zone
, pfn
))
467 } while (zone_span_seqretry(zone
, seq
));
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn
, zone_to_nid(zone
), zone
->name
,
472 start_pfn
, start_pfn
+ sp
);
477 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
479 if (!pfn_valid_within(page_to_pfn(page
)))
481 if (zone
!= page_zone(page
))
487 * Temporary debugging check for pages not lying within a given zone.
489 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
491 if (page_outside_zone_boundaries(zone
, page
))
493 if (!page_is_consistent(zone
, page
))
499 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
505 static void bad_page(struct page
*page
, const char *reason
,
506 unsigned long bad_flags
)
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
523 "BUG: Bad page state: %lu messages suppressed\n",
530 resume
= jiffies
+ 60 * HZ
;
532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
533 current
->comm
, page_to_pfn(page
));
534 __dump_page(page
, reason
);
535 bad_flags
&= page
->flags
;
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags
, &bad_flags
);
539 dump_page_owner(page
);
544 /* Leave bad fields for debug, except PageBuddy could make trouble */
545 page_mapcount_reset(page
); /* remove PageBuddy */
546 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
550 * Higher-order pages are called "compound pages". They are structured thusly:
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
560 * The first tail page's ->compound_order holds the order of allocation.
561 * This usage means that zero-order pages may not be compound.
564 void free_compound_page(struct page
*page
)
566 __free_pages_ok(page
, compound_order(page
));
569 void prep_compound_page(struct page
*page
, unsigned int order
)
572 int nr_pages
= 1 << order
;
574 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
575 set_compound_order(page
, order
);
577 for (i
= 1; i
< nr_pages
; i
++) {
578 struct page
*p
= page
+ i
;
579 set_page_count(p
, 0);
580 p
->mapping
= TAIL_MAPPING
;
581 set_compound_head(p
, page
);
583 atomic_set(compound_mapcount_ptr(page
), -1);
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder
;
588 bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
591 bool _debug_guardpage_enabled __read_mostly
;
593 static int __init
early_debug_pagealloc(char *buf
)
597 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
599 early_param("debug_pagealloc", early_debug_pagealloc
);
601 static bool need_debug_guardpage(void)
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
607 if (!debug_guardpage_minorder())
613 static void init_debug_guardpage(void)
615 if (!debug_pagealloc_enabled())
618 if (!debug_guardpage_minorder())
621 _debug_guardpage_enabled
= true;
624 struct page_ext_operations debug_guardpage_ops
= {
625 .need
= need_debug_guardpage
,
626 .init
= init_debug_guardpage
,
629 static int __init
debug_guardpage_minorder_setup(char *buf
)
633 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
634 pr_err("Bad debug_guardpage_minorder value\n");
637 _debug_guardpage_minorder
= res
;
638 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
643 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
644 unsigned int order
, int migratetype
)
646 struct page_ext
*page_ext
;
648 if (!debug_guardpage_enabled())
651 if (order
>= debug_guardpage_minorder())
654 page_ext
= lookup_page_ext(page
);
655 if (unlikely(!page_ext
))
658 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
660 INIT_LIST_HEAD(&page
->lru
);
661 set_page_private(page
, order
);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
668 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
669 unsigned int order
, int migratetype
)
671 struct page_ext
*page_ext
;
673 if (!debug_guardpage_enabled())
676 page_ext
= lookup_page_ext(page
);
677 if (unlikely(!page_ext
))
680 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
682 set_page_private(page
, 0);
683 if (!is_migrate_isolate(migratetype
))
684 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
687 struct page_ext_operations debug_guardpage_ops
;
688 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
689 unsigned int order
, int migratetype
) { return false; }
690 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
691 unsigned int order
, int migratetype
) {}
694 static inline void set_page_order(struct page
*page
, unsigned int order
)
696 set_page_private(page
, order
);
697 __SetPageBuddy(page
);
700 static inline void rmv_page_order(struct page
*page
)
702 __ClearPageBuddy(page
);
703 set_page_private(page
, 0);
707 * This function checks whether a page is free && is the buddy
708 * we can coalesce a page and its buddy if
709 * (a) the buddy is not in a hole (check before calling!) &&
710 * (b) the buddy is in the buddy system &&
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
717 * For recording page's order, we use page_private(page).
719 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
722 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
723 if (page_zone_id(page
) != page_zone_id(buddy
))
726 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
731 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
737 if (page_zone_id(page
) != page_zone_id(buddy
))
740 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page
*page
,
773 struct zone
*zone
, unsigned int order
,
776 unsigned long combined_pfn
;
777 unsigned long uninitialized_var(buddy_pfn
);
779 unsigned int max_order
;
781 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
783 VM_BUG_ON(!zone_is_initialized(zone
));
784 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
786 VM_BUG_ON(migratetype
== -1);
787 if (likely(!is_migrate_isolate(migratetype
)))
788 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
790 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
791 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
794 while (order
< max_order
- 1) {
795 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
796 buddy
= page
+ (buddy_pfn
- pfn
);
798 if (!pfn_valid_within(buddy_pfn
))
800 if (!page_is_buddy(page
, buddy
, order
))
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
806 if (page_is_guard(buddy
)) {
807 clear_page_guard(zone
, buddy
, order
, migratetype
);
809 list_del(&buddy
->lru
);
810 zone
->free_area
[order
].nr_free
--;
811 rmv_page_order(buddy
);
813 combined_pfn
= buddy_pfn
& pfn
;
814 page
= page
+ (combined_pfn
- pfn
);
818 if (max_order
< MAX_ORDER
) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
824 * We don't want to hit this code for the more frequent
827 if (unlikely(has_isolate_pageblock(zone
))) {
830 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
831 buddy
= page
+ (buddy_pfn
- pfn
);
832 buddy_mt
= get_pageblock_migratetype(buddy
);
834 if (migratetype
!= buddy_mt
835 && (is_migrate_isolate(migratetype
) ||
836 is_migrate_isolate(buddy_mt
)))
840 goto continue_merging
;
844 set_page_order(page
, order
);
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
854 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
855 struct page
*higher_page
, *higher_buddy
;
856 combined_pfn
= buddy_pfn
& pfn
;
857 higher_page
= page
+ (combined_pfn
- pfn
);
858 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
859 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
860 if (pfn_valid_within(buddy_pfn
) &&
861 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
862 list_add_tail(&page
->lru
,
863 &zone
->free_area
[order
].free_list
[migratetype
]);
868 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
870 zone
->free_area
[order
].nr_free
++;
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
878 static inline bool page_expected_state(struct page
*page
,
879 unsigned long check_flags
)
881 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
884 if (unlikely((unsigned long)page
->mapping
|
885 page_ref_count(page
) |
887 (unsigned long)page
->mem_cgroup
|
889 (page
->flags
& check_flags
)))
895 static void free_pages_check_bad(struct page
*page
)
897 const char *bad_reason
;
898 unsigned long bad_flags
;
903 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
904 bad_reason
= "nonzero mapcount";
905 if (unlikely(page
->mapping
!= NULL
))
906 bad_reason
= "non-NULL mapping";
907 if (unlikely(page_ref_count(page
) != 0))
908 bad_reason
= "nonzero _refcount";
909 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
910 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
914 if (unlikely(page
->mem_cgroup
))
915 bad_reason
= "page still charged to cgroup";
917 bad_page(page
, bad_reason
, bad_flags
);
920 static inline int free_pages_check(struct page
*page
)
922 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page
);
930 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
940 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
944 switch (page
- head_page
) {
946 /* the first tail page: ->mapping may be compound_mapcount() */
947 if (unlikely(compound_mapcount(page
))) {
948 bad_page(page
, "nonzero compound_mapcount", 0);
954 * the second tail page: ->mapping is
955 * deferred_list.next -- ignore value.
959 if (page
->mapping
!= TAIL_MAPPING
) {
960 bad_page(page
, "corrupted mapping in tail page", 0);
965 if (unlikely(!PageTail(page
))) {
966 bad_page(page
, "PageTail not set", 0);
969 if (unlikely(compound_head(page
) != head_page
)) {
970 bad_page(page
, "compound_head not consistent", 0);
975 page
->mapping
= NULL
;
976 clear_compound_head(page
);
980 static __always_inline
bool free_pages_prepare(struct page
*page
,
981 unsigned int order
, bool check_free
)
985 VM_BUG_ON_PAGE(PageTail(page
), page
);
987 trace_mm_page_free(page
, order
);
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
993 if (unlikely(order
)) {
994 bool compound
= PageCompound(page
);
997 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1000 ClearPageDoubleMap(page
);
1001 for (i
= 1; i
< (1 << order
); i
++) {
1003 bad
+= free_tail_pages_check(page
, page
+ i
);
1004 if (unlikely(free_pages_check(page
+ i
))) {
1008 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1011 if (PageMappingFlags(page
))
1012 page
->mapping
= NULL
;
1013 if (memcg_kmem_enabled() && PageKmemcg(page
))
1014 memcg_kmem_uncharge(page
, order
);
1016 bad
+= free_pages_check(page
);
1020 page_cpupid_reset_last(page
);
1021 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1022 reset_page_owner(page
, order
);
1024 if (!PageHighMem(page
)) {
1025 debug_check_no_locks_freed(page_address(page
),
1026 PAGE_SIZE
<< order
);
1027 debug_check_no_obj_freed(page_address(page
),
1028 PAGE_SIZE
<< order
);
1030 arch_free_page(page
, order
);
1031 kernel_poison_pages(page
, 1 << order
, 0);
1032 kernel_map_pages(page
, 1 << order
, 0);
1033 kasan_free_pages(page
, order
);
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page
*page
)
1041 return free_pages_prepare(page
, 0, true);
1044 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1049 static bool free_pcp_prepare(struct page
*page
)
1051 return free_pages_prepare(page
, 0, false);
1054 static bool bulkfree_pcp_prepare(struct page
*page
)
1056 return free_pages_check(page
);
1058 #endif /* CONFIG_DEBUG_VM */
1060 static inline void prefetch_buddy(struct page
*page
)
1062 unsigned long pfn
= page_to_pfn(page
);
1063 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1064 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1080 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1081 struct per_cpu_pages
*pcp
)
1083 int migratetype
= 0;
1085 int prefetch_nr
= 0;
1086 bool isolated_pageblocks
;
1087 struct page
*page
, *tmp
;
1091 struct list_head
*list
;
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1102 if (++migratetype
== MIGRATE_PCPTYPES
)
1104 list
= &pcp
->lists
[migratetype
];
1105 } while (list_empty(list
));
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free
== MIGRATE_PCPTYPES
)
1112 page
= list_last_entry(list
, struct page
, lru
);
1113 /* must delete to avoid corrupting pcp list */
1114 list_del(&page
->lru
);
1117 if (bulkfree_pcp_prepare(page
))
1120 list_add_tail(&page
->lru
, &head
);
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1131 if (prefetch_nr
++ < pcp
->batch
)
1132 prefetch_buddy(page
);
1133 } while (--count
&& --batch_free
&& !list_empty(list
));
1136 spin_lock(&zone
->lock
);
1137 isolated_pageblocks
= has_isolate_pageblock(zone
);
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1143 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1144 int mt
= get_pcppage_migratetype(page
);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks
))
1149 mt
= get_pageblock_migratetype(page
);
1151 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1152 trace_mm_page_pcpu_drain(page
, 0, mt
);
1154 spin_unlock(&zone
->lock
);
1157 static void free_one_page(struct zone
*zone
,
1158 struct page
*page
, unsigned long pfn
,
1162 spin_lock(&zone
->lock
);
1163 if (unlikely(has_isolate_pageblock(zone
) ||
1164 is_migrate_isolate(migratetype
))) {
1165 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1167 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1168 spin_unlock(&zone
->lock
);
1171 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1172 unsigned long zone
, int nid
)
1174 mm_zero_struct_page(page
);
1175 set_page_links(page
, zone
, nid
, pfn
);
1176 init_page_count(page
);
1177 page_mapcount_reset(page
);
1178 page_cpupid_reset_last(page
);
1180 INIT_LIST_HEAD(&page
->lru
);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone
))
1184 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void __meminit
init_reserved_page(unsigned long pfn
)
1194 if (!early_page_uninitialised(pfn
))
1197 nid
= early_pfn_to_nid(pfn
);
1198 pgdat
= NODE_DATA(nid
);
1200 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1201 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1203 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1206 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1209 static inline void init_reserved_page(unsigned long pfn
)
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1220 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1222 unsigned long start_pfn
= PFN_DOWN(start
);
1223 unsigned long end_pfn
= PFN_UP(end
);
1225 for (; start_pfn
< end_pfn
; start_pfn
++) {
1226 if (pfn_valid(start_pfn
)) {
1227 struct page
*page
= pfn_to_page(start_pfn
);
1229 init_reserved_page(start_pfn
);
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page
->lru
);
1234 SetPageReserved(page
);
1239 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1241 unsigned long flags
;
1243 unsigned long pfn
= page_to_pfn(page
);
1245 if (!free_pages_prepare(page
, order
, true))
1248 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1249 local_irq_save(flags
);
1250 __count_vm_events(PGFREE
, 1 << order
);
1251 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1252 local_irq_restore(flags
);
1255 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1257 unsigned int nr_pages
= 1 << order
;
1258 struct page
*p
= page
;
1262 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1264 __ClearPageReserved(p
);
1265 set_page_count(p
, 0);
1267 __ClearPageReserved(p
);
1268 set_page_count(p
, 0);
1270 page_zone(page
)->managed_pages
+= nr_pages
;
1271 set_page_refcounted(page
);
1272 __free_pages(page
, order
);
1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1280 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1282 static DEFINE_SPINLOCK(early_pfn_lock
);
1285 spin_lock(&early_pfn_lock
);
1286 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1288 nid
= first_online_node
;
1289 spin_unlock(&early_pfn_lock
);
1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 static inline bool __meminit __maybe_unused
1297 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1298 struct mminit_pfnnid_cache
*state
)
1302 nid
= __early_pfn_to_nid(pfn
, state
);
1303 if (nid
>= 0 && nid
!= node
)
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1311 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1316 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1320 static inline bool __meminit __maybe_unused
1321 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1322 struct mminit_pfnnid_cache
*state
)
1329 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1332 if (early_page_uninitialised(pfn
))
1334 return __free_pages_boot_core(page
, order
);
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1354 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1355 unsigned long end_pfn
, struct zone
*zone
)
1357 struct page
*start_page
;
1358 struct page
*end_page
;
1360 /* end_pfn is one past the range we are checking */
1363 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1366 start_page
= pfn_to_online_page(start_pfn
);
1370 if (page_zone(start_page
) != zone
)
1373 end_page
= pfn_to_page(end_pfn
);
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1382 void set_zone_contiguous(struct zone
*zone
)
1384 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1385 unsigned long block_end_pfn
;
1387 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1388 for (; block_start_pfn
< zone_end_pfn(zone
);
1389 block_start_pfn
= block_end_pfn
,
1390 block_end_pfn
+= pageblock_nr_pages
) {
1392 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1394 if (!__pageblock_pfn_to_page(block_start_pfn
,
1395 block_end_pfn
, zone
))
1399 /* We confirm that there is no hole */
1400 zone
->contiguous
= true;
1403 void clear_zone_contiguous(struct zone
*zone
)
1405 zone
->contiguous
= false;
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init
deferred_free_range(unsigned long pfn
,
1410 unsigned long nr_pages
)
1418 page
= pfn_to_page(pfn
);
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages
== pageblock_nr_pages
&&
1422 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1423 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1424 __free_pages_boot_core(page
, pageblock_order
);
1428 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1429 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1430 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1431 __free_pages_boot_core(page
, 0);
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata
;
1437 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1439 static inline void __init
pgdat_init_report_one_done(void)
1441 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1442 complete(&pgdat_init_all_done_comp
);
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1452 * Then, we check if a current large page is valid by only checking the validity
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
1459 static inline bool __init
1460 deferred_pfn_valid(int nid
, unsigned long pfn
,
1461 struct mminit_pfnnid_cache
*nid_init_state
)
1463 if (!pfn_valid_within(pfn
))
1465 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1467 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1476 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1477 unsigned long end_pfn
)
1479 struct mminit_pfnnid_cache nid_init_state
= { };
1480 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1481 unsigned long nr_free
= 0;
1483 for (; pfn
< end_pfn
; pfn
++) {
1484 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1485 deferred_free_range(pfn
- nr_free
, nr_free
);
1487 } else if (!(pfn
& nr_pgmask
)) {
1488 deferred_free_range(pfn
- nr_free
, nr_free
);
1490 touch_nmi_watchdog();
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn
- nr_free
, nr_free
);
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1504 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1506 unsigned long end_pfn
)
1508 struct mminit_pfnnid_cache nid_init_state
= { };
1509 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1510 unsigned long nr_pages
= 0;
1511 struct page
*page
= NULL
;
1513 for (; pfn
< end_pfn
; pfn
++) {
1514 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1517 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1518 page
= pfn_to_page(pfn
);
1519 touch_nmi_watchdog();
1523 __init_single_page(page
, pfn
, zid
, nid
);
1529 /* Initialise remaining memory on a node */
1530 static int __init
deferred_init_memmap(void *data
)
1532 pg_data_t
*pgdat
= data
;
1533 int nid
= pgdat
->node_id
;
1534 unsigned long start
= jiffies
;
1535 unsigned long nr_pages
= 0;
1536 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1537 phys_addr_t spa
, epa
;
1540 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask
))
1545 set_cpus_allowed_ptr(current
, cpumask
);
1547 pgdat_resize_lock(pgdat
, &flags
);
1548 first_init_pfn
= pgdat
->first_deferred_pfn
;
1549 if (first_init_pfn
== ULONG_MAX
) {
1550 pgdat_resize_unlock(pgdat
, &flags
);
1551 pgdat_init_report_one_done();
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1557 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1558 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1560 /* Only the highest zone is deferred so find it */
1561 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1562 zone
= pgdat
->node_zones
+ zid
;
1563 if (first_init_pfn
< zone_end_pfn(zone
))
1566 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1574 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1575 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1576 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1577 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1579 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1580 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1581 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1582 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1584 pgdat_resize_unlock(pgdat
, &flags
);
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1589 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1590 jiffies_to_msecs(jiffies
- start
));
1592 pgdat_init_report_one_done();
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1618 static noinline
bool __init
1619 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1621 int zid
= zone_idx(zone
);
1622 int nid
= zone_to_nid(zone
);
1623 pg_data_t
*pgdat
= NODE_DATA(nid
);
1624 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1625 unsigned long nr_pages
= 0;
1626 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1627 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1628 phys_addr_t spa
, epa
;
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1635 pgdat_resize_lock(pgdat
, &flags
);
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1643 if (!static_branch_unlikely(&deferred_pages
)) {
1644 pgdat_resize_unlock(pgdat
, &flags
);
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1652 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1653 pgdat_resize_unlock(pgdat
, &flags
);
1657 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1659 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1660 pgdat_resize_unlock(pgdat
, &flags
);
1664 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1665 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1666 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1668 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1669 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1670 first_deferred_pfn
= min(t
, epfn
);
1671 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1672 first_deferred_pfn
);
1673 spfn
= first_deferred_pfn
;
1676 if (nr_pages
>= nr_pages_needed
)
1680 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1681 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1682 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1683 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1685 if (first_deferred_pfn
== epfn
)
1688 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1689 pgdat_resize_unlock(pgdat
, &flags
);
1691 return nr_pages
> 0;
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1701 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1703 return deferred_grow_zone(zone
, order
);
1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708 void __init
page_alloc_init_late(void)
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1717 for_each_node_state(nid
, N_MEMORY
) {
1718 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1721 /* Block until all are initialised */
1722 wait_for_completion(&pgdat_init_all_done_comp
);
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1728 static_branch_disable(&deferred_pages
);
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1738 for_each_populated_zone(zone
)
1739 set_zone_contiguous(zone
);
1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 void __init
init_cma_reserved_pageblock(struct page
*page
)
1746 unsigned i
= pageblock_nr_pages
;
1747 struct page
*p
= page
;
1750 __ClearPageReserved(p
);
1751 set_page_count(p
, 0);
1754 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1756 if (pageblock_order
>= MAX_ORDER
) {
1757 i
= pageblock_nr_pages
;
1760 set_page_refcounted(p
);
1761 __free_pages(p
, MAX_ORDER
- 1);
1762 p
+= MAX_ORDER_NR_PAGES
;
1763 } while (i
-= MAX_ORDER_NR_PAGES
);
1765 set_page_refcounted(page
);
1766 __free_pages(page
, pageblock_order
);
1769 adjust_managed_page_count(page
, pageblock_nr_pages
);
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1787 static inline void expand(struct zone
*zone
, struct page
*page
,
1788 int low
, int high
, struct free_area
*area
,
1791 unsigned long size
= 1 << high
;
1793 while (high
> low
) {
1797 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1805 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1808 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1810 set_page_order(&page
[size
], high
);
1814 static void check_new_page_bad(struct page
*page
)
1816 const char *bad_reason
= NULL
;
1817 unsigned long bad_flags
= 0;
1819 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1820 bad_reason
= "nonzero mapcount";
1821 if (unlikely(page
->mapping
!= NULL
))
1822 bad_reason
= "non-NULL mapping";
1823 if (unlikely(page_ref_count(page
) != 0))
1824 bad_reason
= "nonzero _count";
1825 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1826 bad_reason
= "HWPoisoned (hardware-corrupted)";
1827 bad_flags
= __PG_HWPOISON
;
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page
); /* remove PageBuddy */
1832 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1833 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1837 if (unlikely(page
->mem_cgroup
))
1838 bad_reason
= "page still charged to cgroup";
1840 bad_page(page
, bad_reason
, bad_flags
);
1844 * This page is about to be returned from the page allocator
1846 static inline int check_new_page(struct page
*page
)
1848 if (likely(page_expected_state(page
,
1849 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1852 check_new_page_bad(page
);
1856 static inline bool free_pages_prezeroed(void)
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1859 page_poisoning_enabled();
1862 #ifdef CONFIG_DEBUG_VM
1863 static bool check_pcp_refill(struct page
*page
)
1868 static bool check_new_pcp(struct page
*page
)
1870 return check_new_page(page
);
1873 static bool check_pcp_refill(struct page
*page
)
1875 return check_new_page(page
);
1877 static bool check_new_pcp(struct page
*page
)
1881 #endif /* CONFIG_DEBUG_VM */
1883 static bool check_new_pages(struct page
*page
, unsigned int order
)
1886 for (i
= 0; i
< (1 << order
); i
++) {
1887 struct page
*p
= page
+ i
;
1889 if (unlikely(check_new_page(p
)))
1896 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1899 set_page_private(page
, 0);
1900 set_page_refcounted(page
);
1902 arch_alloc_page(page
, order
);
1903 kernel_map_pages(page
, 1 << order
, 1);
1904 kernel_poison_pages(page
, 1 << order
, 1);
1905 kasan_alloc_pages(page
, order
);
1906 set_page_owner(page
, order
, gfp_flags
);
1909 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1910 unsigned int alloc_flags
)
1914 post_alloc_hook(page
, order
, gfp_flags
);
1916 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1917 for (i
= 0; i
< (1 << order
); i
++)
1918 clear_highpage(page
+ i
);
1920 if (order
&& (gfp_flags
& __GFP_COMP
))
1921 prep_compound_page(page
, order
);
1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1929 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1930 set_page_pfmemalloc(page
);
1932 clear_page_pfmemalloc(page
);
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1939 static __always_inline
1940 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1943 unsigned int current_order
;
1944 struct free_area
*area
;
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1949 area
= &(zone
->free_area
[current_order
]);
1950 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1954 list_del(&page
->lru
);
1955 rmv_page_order(page
);
1957 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1958 set_pcppage_migratetype(page
, migratetype
);
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1970 static int fallbacks
[MIGRATE_TYPES
][4] = {
1971 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1972 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1973 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1975 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1977 #ifdef CONFIG_MEMORY_ISOLATION
1978 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1983 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1986 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1989 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1990 unsigned int order
) { return NULL
; }
1994 * Move the free pages in a range to the free lists of the requested type.
1995 * Note that start_page and end_pages are not aligned on a pageblock
1996 * boundary. If alignment is required, use move_freepages_block()
1998 static int move_freepages(struct zone
*zone
,
1999 struct page
*start_page
, struct page
*end_page
,
2000 int migratetype
, int *num_movable
)
2004 int pages_moved
= 0;
2006 #ifndef CONFIG_HOLES_IN_ZONE
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
2012 * grouping pages by mobility
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2015 pfn_valid(page_to_pfn(end_page
)) &&
2016 page_zone(start_page
) != page_zone(end_page
));
2022 for (page
= start_page
; page
<= end_page
;) {
2023 if (!pfn_valid_within(page_to_pfn(page
))) {
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2031 if (!PageBuddy(page
)) {
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2038 (PageLRU(page
) || __PageMovable(page
)))
2045 order
= page_order(page
);
2046 list_move(&page
->lru
,
2047 &zone
->free_area
[order
].free_list
[migratetype
]);
2049 pages_moved
+= 1 << order
;
2055 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2056 int migratetype
, int *num_movable
)
2058 unsigned long start_pfn
, end_pfn
;
2059 struct page
*start_page
, *end_page
;
2061 start_pfn
= page_to_pfn(page
);
2062 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2063 start_page
= pfn_to_page(start_pfn
);
2064 end_page
= start_page
+ pageblock_nr_pages
- 1;
2065 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2067 /* Do not cross zone boundaries */
2068 if (!zone_spans_pfn(zone
, start_pfn
))
2070 if (!zone_spans_pfn(zone
, end_pfn
))
2073 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2077 static void change_pageblock_range(struct page
*pageblock_page
,
2078 int start_order
, int migratetype
)
2080 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2082 while (nr_pageblocks
--) {
2083 set_pageblock_migratetype(pageblock_page
, migratetype
);
2084 pageblock_page
+= pageblock_nr_pages
;
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2100 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2109 if (order
>= pageblock_order
)
2112 if (order
>= pageblock_order
/ 2 ||
2113 start_mt
== MIGRATE_RECLAIMABLE
||
2114 start_mt
== MIGRATE_UNMOVABLE
||
2115 page_group_by_mobility_disabled
)
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
2129 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2130 int start_type
, bool whole_block
)
2132 unsigned int current_order
= page_order(page
);
2133 struct free_area
*area
;
2134 int free_pages
, movable_pages
, alike_pages
;
2137 old_block_type
= get_pageblock_migratetype(page
);
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2143 if (is_migrate_highatomic(old_block_type
))
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order
>= pageblock_order
) {
2148 change_pageblock_range(page
, current_order
, start_type
);
2152 /* We are not allowed to try stealing from the whole block */
2156 free_pages
= move_freepages_block(zone
, page
, start_type
,
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2163 if (start_type
== MIGRATE_MOVABLE
) {
2164 alike_pages
= movable_pages
;
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2173 if (old_block_type
== MIGRATE_MOVABLE
)
2174 alike_pages
= pageblock_nr_pages
2175 - (free_pages
+ movable_pages
);
2180 /* moving whole block can fail due to zone boundary conditions */
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2188 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2189 page_group_by_mobility_disabled
)
2190 set_pageblock_migratetype(page
, start_type
);
2195 area
= &zone
->free_area
[current_order
];
2196 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2205 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2206 int migratetype
, bool only_stealable
, bool *can_steal
)
2211 if (area
->nr_free
== 0)
2216 fallback_mt
= fallbacks
[migratetype
][i
];
2217 if (fallback_mt
== MIGRATE_TYPES
)
2220 if (list_empty(&area
->free_list
[fallback_mt
]))
2223 if (can_steal_fallback(order
, migratetype
))
2226 if (!only_stealable
)
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2240 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2241 unsigned int alloc_order
)
2244 unsigned long max_managed
, flags
;
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2250 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2251 if (zone
->nr_reserved_highatomic
>= max_managed
)
2254 spin_lock_irqsave(&zone
->lock
, flags
);
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone
->nr_reserved_highatomic
>= max_managed
)
2261 mt
= get_pageblock_migratetype(page
);
2262 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2263 && !is_migrate_cma(mt
)) {
2264 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2265 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2266 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2270 spin_unlock_irqrestore(&zone
->lock
, flags
);
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
2282 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2285 struct zonelist
*zonelist
= ac
->zonelist
;
2286 unsigned long flags
;
2293 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2296 * Preserve at least one pageblock unless memory pressure
2299 if (!force
&& zone
->nr_reserved_highatomic
<=
2303 spin_lock_irqsave(&zone
->lock
, flags
);
2304 for (order
= 0; order
< MAX_ORDER
; order
++) {
2305 struct free_area
*area
= &(zone
->free_area
[order
]);
2307 page
= list_first_entry_or_null(
2308 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
2320 if (is_migrate_highatomic_page(page
)) {
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2328 zone
->nr_reserved_highatomic
-= min(
2330 zone
->nr_reserved_highatomic
);
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2342 set_pageblock_migratetype(page
, ac
->migratetype
);
2343 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2346 spin_unlock_irqrestore(&zone
->lock
, flags
);
2350 spin_unlock_irqrestore(&zone
->lock
, flags
);
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
2366 static __always_inline
bool
2367 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2369 struct free_area
*area
;
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2380 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2382 area
= &(zone
->free_area
[current_order
]);
2383 fallback_mt
= find_suitable_fallback(area
, current_order
,
2384 start_migratetype
, false, &can_steal
);
2385 if (fallback_mt
== -1)
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2396 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2397 && current_order
> order
)
2406 for (current_order
= order
; current_order
< MAX_ORDER
;
2408 area
= &(zone
->free_area
[current_order
]);
2409 fallback_mt
= find_suitable_fallback(area
, current_order
,
2410 start_migratetype
, false, &can_steal
);
2411 if (fallback_mt
!= -1)
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2419 VM_BUG_ON(current_order
== MAX_ORDER
);
2422 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2425 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2427 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2428 start_migratetype
, fallback_mt
);
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2438 static __always_inline
struct page
*
2439 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2444 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2445 if (unlikely(!page
)) {
2446 if (migratetype
== MIGRATE_MOVABLE
)
2447 page
= __rmqueue_cma_fallback(zone
, order
);
2449 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2453 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2462 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2463 unsigned long count
, struct list_head
*list
,
2468 spin_lock(&zone
->lock
);
2469 for (i
= 0; i
< count
; ++i
) {
2470 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2471 if (unlikely(page
== NULL
))
2474 if (unlikely(check_pcp_refill(page
)))
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
2487 list_add_tail(&page
->lru
, list
);
2489 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2490 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2500 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2501 spin_unlock(&zone
->lock
);
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
2514 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2516 unsigned long flags
;
2517 int to_drain
, batch
;
2519 local_irq_save(flags
);
2520 batch
= READ_ONCE(pcp
->batch
);
2521 to_drain
= min(pcp
->count
, batch
);
2523 free_pcppages_bulk(zone
, to_drain
, pcp
);
2524 local_irq_restore(flags
);
2529 * Drain pcplists of the indicated processor and zone.
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2535 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2537 unsigned long flags
;
2538 struct per_cpu_pageset
*pset
;
2539 struct per_cpu_pages
*pcp
;
2541 local_irq_save(flags
);
2542 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2546 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2547 local_irq_restore(flags
);
2551 * Drain pcplists of all zones on the indicated processor.
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2557 static void drain_pages(unsigned int cpu
)
2561 for_each_populated_zone(zone
) {
2562 drain_pages_zone(cpu
, zone
);
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
2572 void drain_local_pages(struct zone
*zone
)
2574 int cpu
= smp_processor_id();
2577 drain_pages_zone(cpu
, zone
);
2582 static void drain_local_pages_wq(struct work_struct
*work
)
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2592 drain_local_pages(NULL
);
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2601 * Note that this can be extremely slow as the draining happens in a workqueue.
2603 void drain_all_pages(struct zone
*zone
)
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2611 static cpumask_t cpus_with_pcps
;
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2617 if (WARN_ON_ONCE(!mm_percpu_wq
))
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2628 mutex_lock(&pcpu_drain_mutex
);
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2637 for_each_online_cpu(cpu
) {
2638 struct per_cpu_pageset
*pcp
;
2640 bool has_pcps
= false;
2643 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2647 for_each_populated_zone(z
) {
2648 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2649 if (pcp
->pcp
.count
) {
2657 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2659 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2662 for_each_cpu(cpu
, &cpus_with_pcps
) {
2663 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2664 INIT_WORK(work
, drain_local_pages_wq
);
2665 queue_work_on(cpu
, mm_percpu_wq
, work
);
2667 for_each_cpu(cpu
, &cpus_with_pcps
)
2668 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2670 mutex_unlock(&pcpu_drain_mutex
);
2673 #ifdef CONFIG_HIBERNATION
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2678 #define WD_PAGE_COUNT (128*1024)
2680 void mark_free_pages(struct zone
*zone
)
2682 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2683 unsigned long flags
;
2684 unsigned int order
, t
;
2687 if (zone_is_empty(zone
))
2690 spin_lock_irqsave(&zone
->lock
, flags
);
2692 max_zone_pfn
= zone_end_pfn(zone
);
2693 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2694 if (pfn_valid(pfn
)) {
2695 page
= pfn_to_page(pfn
);
2697 if (!--page_count
) {
2698 touch_nmi_watchdog();
2699 page_count
= WD_PAGE_COUNT
;
2702 if (page_zone(page
) != zone
)
2705 if (!swsusp_page_is_forbidden(page
))
2706 swsusp_unset_page_free(page
);
2709 for_each_migratetype_order(order
, t
) {
2710 list_for_each_entry(page
,
2711 &zone
->free_area
[order
].free_list
[t
], lru
) {
2714 pfn
= page_to_pfn(page
);
2715 for (i
= 0; i
< (1UL << order
); i
++) {
2716 if (!--page_count
) {
2717 touch_nmi_watchdog();
2718 page_count
= WD_PAGE_COUNT
;
2720 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2724 spin_unlock_irqrestore(&zone
->lock
, flags
);
2726 #endif /* CONFIG_PM */
2728 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2732 if (!free_pcp_prepare(page
))
2735 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2736 set_pcppage_migratetype(page
, migratetype
);
2740 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2742 struct zone
*zone
= page_zone(page
);
2743 struct per_cpu_pages
*pcp
;
2746 migratetype
= get_pcppage_migratetype(page
);
2747 __count_vm_event(PGFREE
);
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2756 if (migratetype
>= MIGRATE_PCPTYPES
) {
2757 if (unlikely(is_migrate_isolate(migratetype
))) {
2758 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2761 migratetype
= MIGRATE_MOVABLE
;
2764 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2765 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2767 if (pcp
->count
>= pcp
->high
) {
2768 unsigned long batch
= READ_ONCE(pcp
->batch
);
2769 free_pcppages_bulk(zone
, batch
, pcp
);
2774 * Free a 0-order page
2776 void free_unref_page(struct page
*page
)
2778 unsigned long flags
;
2779 unsigned long pfn
= page_to_pfn(page
);
2781 if (!free_unref_page_prepare(page
, pfn
))
2784 local_irq_save(flags
);
2785 free_unref_page_commit(page
, pfn
);
2786 local_irq_restore(flags
);
2790 * Free a list of 0-order pages
2792 void free_unref_page_list(struct list_head
*list
)
2794 struct page
*page
, *next
;
2795 unsigned long flags
, pfn
;
2796 int batch_count
= 0;
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page
, next
, list
, lru
) {
2800 pfn
= page_to_pfn(page
);
2801 if (!free_unref_page_prepare(page
, pfn
))
2802 list_del(&page
->lru
);
2803 set_page_private(page
, pfn
);
2806 local_irq_save(flags
);
2807 list_for_each_entry_safe(page
, next
, list
, lru
) {
2808 unsigned long pfn
= page_private(page
);
2810 set_page_private(page
, 0);
2811 trace_mm_page_free_batched(page
);
2812 free_unref_page_commit(page
, pfn
);
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2818 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2819 local_irq_restore(flags
);
2821 local_irq_save(flags
);
2824 local_irq_restore(flags
);
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2835 void split_page(struct page
*page
, unsigned int order
)
2839 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2840 VM_BUG_ON_PAGE(!page_count(page
), page
);
2842 for (i
= 1; i
< (1 << order
); i
++)
2843 set_page_refcounted(page
+ i
);
2844 split_page_owner(page
, order
);
2846 EXPORT_SYMBOL_GPL(split_page
);
2848 int __isolate_free_page(struct page
*page
, unsigned int order
)
2850 unsigned long watermark
;
2854 BUG_ON(!PageBuddy(page
));
2856 zone
= page_zone(page
);
2857 mt
= get_pageblock_migratetype(page
);
2859 if (!is_migrate_isolate(mt
)) {
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2866 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2867 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2870 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2873 /* Remove page from free list */
2874 list_del(&page
->lru
);
2875 zone
->free_area
[order
].nr_free
--;
2876 rmv_page_order(page
);
2879 * Set the pageblock if the isolated page is at least half of a
2882 if (order
>= pageblock_order
- 1) {
2883 struct page
*endpage
= page
+ (1 << order
) - 1;
2884 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2885 int mt
= get_pageblock_migratetype(page
);
2886 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2887 && !is_migrate_highatomic(mt
))
2888 set_pageblock_migratetype(page
,
2894 return 1UL << order
;
2898 * Update NUMA hit/miss statistics
2900 * Must be called with interrupts disabled.
2902 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2905 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key
))
2911 if (z
->node
!= numa_node_id())
2912 local_stat
= NUMA_OTHER
;
2914 if (z
->node
== preferred_zone
->node
)
2915 __inc_numa_state(z
, NUMA_HIT
);
2917 __inc_numa_state(z
, NUMA_MISS
);
2918 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2920 __inc_numa_state(z
, local_stat
);
2924 /* Remove page from the per-cpu list, caller must protect the list */
2925 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2926 struct per_cpu_pages
*pcp
,
2927 struct list_head
*list
)
2932 if (list_empty(list
)) {
2933 pcp
->count
+= rmqueue_bulk(zone
, 0,
2936 if (unlikely(list_empty(list
)))
2940 page
= list_first_entry(list
, struct page
, lru
);
2941 list_del(&page
->lru
);
2943 } while (check_new_pcp(page
));
2948 /* Lock and remove page from the per-cpu list */
2949 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2950 struct zone
*zone
, unsigned int order
,
2951 gfp_t gfp_flags
, int migratetype
)
2953 struct per_cpu_pages
*pcp
;
2954 struct list_head
*list
;
2956 unsigned long flags
;
2958 local_irq_save(flags
);
2959 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2960 list
= &pcp
->lists
[migratetype
];
2961 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2963 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2964 zone_statistics(preferred_zone
, zone
);
2966 local_irq_restore(flags
);
2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2974 struct page
*rmqueue(struct zone
*preferred_zone
,
2975 struct zone
*zone
, unsigned int order
,
2976 gfp_t gfp_flags
, unsigned int alloc_flags
,
2979 unsigned long flags
;
2982 if (likely(order
== 0)) {
2983 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2984 gfp_flags
, migratetype
);
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2992 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2993 spin_lock_irqsave(&zone
->lock
, flags
);
2997 if (alloc_flags
& ALLOC_HARDER
) {
2998 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3000 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3003 page
= __rmqueue(zone
, order
, migratetype
);
3004 } while (page
&& check_new_pages(page
, order
));
3005 spin_unlock(&zone
->lock
);
3008 __mod_zone_freepage_state(zone
, -(1 << order
),
3009 get_pcppage_migratetype(page
));
3011 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3012 zone_statistics(preferred_zone
, zone
);
3013 local_irq_restore(flags
);
3016 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3020 local_irq_restore(flags
);
3024 #ifdef CONFIG_FAIL_PAGE_ALLOC
3027 struct fault_attr attr
;
3029 bool ignore_gfp_highmem
;
3030 bool ignore_gfp_reclaim
;
3032 } fail_page_alloc
= {
3033 .attr
= FAULT_ATTR_INITIALIZER
,
3034 .ignore_gfp_reclaim
= true,
3035 .ignore_gfp_highmem
= true,
3039 static int __init
setup_fail_page_alloc(char *str
)
3041 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3043 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3045 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3047 if (order
< fail_page_alloc
.min_order
)
3049 if (gfp_mask
& __GFP_NOFAIL
)
3051 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3053 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3054 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3057 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3062 static int __init
fail_page_alloc_debugfs(void)
3064 umode_t mode
= S_IFREG
| 0600;
3067 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3068 &fail_page_alloc
.attr
);
3070 return PTR_ERR(dir
);
3072 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3073 &fail_page_alloc
.ignore_gfp_reclaim
))
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3076 &fail_page_alloc
.ignore_gfp_highmem
))
3078 if (!debugfs_create_u32("min-order", mode
, dir
,
3079 &fail_page_alloc
.min_order
))
3084 debugfs_remove_recursive(dir
);
3089 late_initcall(fail_page_alloc_debugfs
);
3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3093 #else /* CONFIG_FAIL_PAGE_ALLOC */
3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
3108 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3109 int classzone_idx
, unsigned int alloc_flags
,
3114 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3116 /* free_pages may go negative - that's OK */
3117 free_pages
-= (1 << order
) - 1;
3119 if (alloc_flags
& ALLOC_HIGH
)
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3127 if (likely(!alloc_harder
)) {
3128 free_pages
-= z
->nr_reserved_highatomic
;
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3136 if (alloc_flags
& ALLOC_OOM
)
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags
& ALLOC_CMA
))
3146 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3154 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3157 /* If this is an order-0 request then the watermark is fine */
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o
= order
; o
< MAX_ORDER
; o
++) {
3163 struct free_area
*area
= &z
->free_area
[o
];
3169 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3170 if (!list_empty(&area
->free_list
[mt
]))
3175 if ((alloc_flags
& ALLOC_CMA
) &&
3176 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3181 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3187 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3188 int classzone_idx
, unsigned int alloc_flags
)
3190 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3191 zone_page_state(z
, NR_FREE_PAGES
));
3194 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3195 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3197 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags
& ALLOC_CMA
))
3203 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3213 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3216 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3220 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3221 unsigned long mark
, int classzone_idx
)
3223 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3225 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3226 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3228 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3233 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3235 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3238 #else /* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3243 #endif /* CONFIG_NUMA */
3246 * get_page_from_freelist goes through the zonelist trying to allocate
3249 static struct page
*
3250 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3251 const struct alloc_context
*ac
)
3253 struct zoneref
*z
= ac
->preferred_zoneref
;
3255 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3258 * Scan zonelist, looking for a zone with enough free.
3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3261 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3266 if (cpusets_enabled() &&
3267 (alloc_flags
& ALLOC_CPUSET
) &&
3268 !__cpuset_zone_allowed(zone
, gfp_mask
))
3271 * When allocating a page cache page for writing, we
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
3274 * proportional share of globally allowed dirty pages.
3275 * The dirty limits take into account the node's
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3280 * XXX: For now, allow allocations to potentially
3281 * exceed the per-node dirty limit in the slowpath
3282 * (spread_dirty_pages unset) before going into reclaim,
3283 * which is important when on a NUMA setup the allowed
3284 * nodes are together not big enough to reach the
3285 * global limit. The proper fix for these situations
3286 * will require awareness of nodes in the
3287 * dirty-throttling and the flusher threads.
3289 if (ac
->spread_dirty_pages
) {
3290 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3293 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3294 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3299 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3300 if (!zone_watermark_fast(zone
, order
, mark
,
3301 ac_classzone_idx(ac
), alloc_flags
)) {
3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3309 if (static_branch_unlikely(&deferred_pages
)) {
3310 if (_deferred_grow_zone(zone
, order
))
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3316 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3319 if (node_reclaim_mode
== 0 ||
3320 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3323 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3325 case NODE_RECLAIM_NOSCAN
:
3328 case NODE_RECLAIM_FULL
:
3329 /* scanned but unreclaimable */
3332 /* did we reclaim enough */
3333 if (zone_watermark_ok(zone
, order
, mark
,
3334 ac_classzone_idx(ac
), alloc_flags
))
3342 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3343 gfp_mask
, alloc_flags
, ac
->migratetype
);
3345 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3351 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3352 reserve_highatomic_pageblock(page
, zone
, order
);
3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages
)) {
3359 if (_deferred_grow_zone(zone
, order
))
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3373 static inline bool should_suppress_show_mem(void)
3378 ret
= in_interrupt();
3383 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3385 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3386 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3396 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3397 if (tsk_is_oom_victim(current
) ||
3398 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3399 filter
&= ~SHOW_MEM_FILTER_NODES
;
3400 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3401 filter
&= ~SHOW_MEM_FILTER_NODES
;
3403 show_mem(filter
, nodemask
);
3406 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3408 struct va_format vaf
;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3411 DEFAULT_RATELIMIT_BURST
);
3413 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3416 va_start(args
, fmt
);
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3421 nodemask_pr_args(nodemask
));
3424 cpuset_print_current_mems_allowed();
3427 warn_alloc_show_mem(gfp_mask
, nodemask
);
3430 static inline struct page
*
3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3432 unsigned int alloc_flags
,
3433 const struct alloc_context
*ac
)
3437 page
= get_page_from_freelist(gfp_mask
, order
,
3438 alloc_flags
|ALLOC_CPUSET
, ac
);
3440 * fallback to ignore cpuset restriction if our nodes
3444 page
= get_page_from_freelist(gfp_mask
, order
,
3450 static inline struct page
*
3451 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3452 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3454 struct oom_control oc
= {
3455 .zonelist
= ac
->zonelist
,
3456 .nodemask
= ac
->nodemask
,
3458 .gfp_mask
= gfp_mask
,
3463 *did_some_progress
= 0;
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
3469 if (!mutex_trylock(&oom_lock
)) {
3470 *did_some_progress
= 1;
3471 schedule_timeout_uninterruptible(1);
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
3482 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3483 ~__GFP_DIRECT_RECLAIM
, order
,
3484 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current
->flags
& PF_DUMPCORE
)
3491 /* The OOM killer will not help higher order allocs */
3492 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3500 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3505 if (pm_suspended_storage())
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask
& __GFP_THISNODE
)
3521 /* Exhausted what can be done so it's blame time */
3522 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3523 *did_some_progress
= 1;
3526 * Help non-failing allocations by giving them access to memory
3529 if (gfp_mask
& __GFP_NOFAIL
)
3530 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3531 ALLOC_NO_WATERMARKS
, ac
);
3534 mutex_unlock(&oom_lock
);
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3542 #define MAX_COMPACT_RETRIES 16
3544 #ifdef CONFIG_COMPACTION
3545 /* Try memory compaction for high-order allocations before reclaim */
3546 static struct page
*
3547 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3548 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3549 enum compact_priority prio
, enum compact_result
*compact_result
)
3552 unsigned int noreclaim_flag
;
3557 noreclaim_flag
= memalloc_noreclaim_save();
3558 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3560 memalloc_noreclaim_restore(noreclaim_flag
);
3562 if (*compact_result
<= COMPACT_INACTIVE
)
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3569 count_vm_event(COMPACTSTALL
);
3571 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3574 struct zone
*zone
= page_zone(page
);
3576 zone
->compact_blockskip_flush
= false;
3577 compaction_defer_reset(zone
, order
, true);
3578 count_vm_event(COMPACTSUCCESS
);
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3586 count_vm_event(COMPACTFAIL
);
3594 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3595 enum compact_result compact_result
,
3596 enum compact_priority
*compact_priority
,
3597 int *compaction_retries
)
3599 int max_retries
= MAX_COMPACT_RETRIES
;
3602 int retries
= *compaction_retries
;
3603 enum compact_priority priority
= *compact_priority
;
3608 if (compaction_made_progress(compact_result
))
3609 (*compaction_retries
)++;
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3616 if (compaction_failed(compact_result
))
3617 goto check_priority
;
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3625 if (compaction_withdrawn(compact_result
)) {
3626 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3638 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3640 if (*compaction_retries
<= max_retries
) {
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3650 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3651 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3653 if (*compact_priority
> min_priority
) {
3654 (*compact_priority
)--;
3655 *compaction_retries
= 0;
3659 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3663 static inline struct page
*
3664 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3665 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3666 enum compact_priority prio
, enum compact_result
*compact_result
)
3668 *compact_result
= COMPACT_SKIPPED
;
3673 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3674 enum compact_result compact_result
,
3675 enum compact_priority
*compact_priority
,
3676 int *compaction_retries
)
3681 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3690 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3692 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3693 ac_classzone_idx(ac
), alloc_flags
))
3698 #endif /* CONFIG_COMPACTION */
3700 #ifdef CONFIG_LOCKDEP
3701 static struct lockdep_map __fs_reclaim_map
=
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3704 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3706 gfp_mask
= current_gfp_context(gfp_mask
);
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3712 /* this guy won't enter reclaim */
3713 if (current
->flags
& PF_MEMALLOC
)
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask
& __GFP_FS
))
3720 if (gfp_mask
& __GFP_NOLOCKDEP
)
3726 void __fs_reclaim_acquire(void)
3728 lock_map_acquire(&__fs_reclaim_map
);
3731 void __fs_reclaim_release(void)
3733 lock_map_release(&__fs_reclaim_map
);
3736 void fs_reclaim_acquire(gfp_t gfp_mask
)
3738 if (__need_fs_reclaim(gfp_mask
))
3739 __fs_reclaim_acquire();
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3743 void fs_reclaim_release(gfp_t gfp_mask
)
3745 if (__need_fs_reclaim(gfp_mask
))
3746 __fs_reclaim_release();
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3751 /* Perform direct synchronous page reclaim */
3753 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3754 const struct alloc_context
*ac
)
3756 struct reclaim_state reclaim_state
;
3758 unsigned int noreclaim_flag
;
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
3764 fs_reclaim_acquire(gfp_mask
);
3765 noreclaim_flag
= memalloc_noreclaim_save();
3766 reclaim_state
.reclaimed_slab
= 0;
3767 current
->reclaim_state
= &reclaim_state
;
3769 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3772 current
->reclaim_state
= NULL
;
3773 memalloc_noreclaim_restore(noreclaim_flag
);
3774 fs_reclaim_release(gfp_mask
);
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page
*
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3784 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3785 unsigned long *did_some_progress
)
3787 struct page
*page
= NULL
;
3788 bool drained
= false;
3790 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3791 if (unlikely(!(*did_some_progress
)))
3795 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
3802 if (!page
&& !drained
) {
3803 unreserve_highatomic_pageblock(ac
, false);
3804 drain_all_pages(NULL
);
3812 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3813 const struct alloc_context
*ac
)
3817 pg_data_t
*last_pgdat
= NULL
;
3818 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
3820 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
3822 if (last_pgdat
!= zone
->zone_pgdat
)
3823 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
3824 last_pgdat
= zone
->zone_pgdat
;
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask
)
3831 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3844 if (gfp_mask
& __GFP_ATOMIC
) {
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
3849 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3850 alloc_flags
|= ALLOC_HARDER
;
3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 * comment for __cpuset_node_allowed().
3855 alloc_flags
&= ~ALLOC_CPUSET
;
3856 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3857 alloc_flags
|= ALLOC_HARDER
;
3860 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3861 alloc_flags
|= ALLOC_CMA
;
3866 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3868 if (!tsk_is_oom_victim(tsk
))
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3875 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3887 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3889 if (gfp_mask
& __GFP_MEMALLOC
)
3890 return ALLOC_NO_WATERMARKS
;
3891 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3892 return ALLOC_NO_WATERMARKS
;
3893 if (!in_interrupt()) {
3894 if (current
->flags
& PF_MEMALLOC
)
3895 return ALLOC_NO_WATERMARKS
;
3896 else if (oom_reserves_allowed(current
))
3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3905 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
3916 * Returns true if a retry is viable or false to enter the oom path.
3919 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3920 struct alloc_context
*ac
, int alloc_flags
,
3921 bool did_some_progress
, int *no_progress_loops
)
3927 * Costly allocations might have made a progress but this doesn't mean
3928 * their order will become available due to high fragmentation so
3929 * always increment the no progress counter for them
3931 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3932 *no_progress_loops
= 0;
3934 (*no_progress_loops
)++;
3937 * Make sure we converge to OOM if we cannot make any progress
3938 * several times in the row.
3940 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3941 /* Before OOM, exhaust highatomic_reserve */
3942 return unreserve_highatomic_pageblock(ac
, true);
3946 * Keep reclaiming pages while there is a chance this will lead
3947 * somewhere. If none of the target zones can satisfy our allocation
3948 * request even if all reclaimable pages are considered then we are
3949 * screwed and have to go OOM.
3951 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3953 unsigned long available
;
3954 unsigned long reclaimable
;
3955 unsigned long min_wmark
= min_wmark_pages(zone
);
3958 available
= reclaimable
= zone_reclaimable_pages(zone
);
3959 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3962 * Would the allocation succeed if we reclaimed all
3963 * reclaimable pages?
3965 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3966 ac_classzone_idx(ac
), alloc_flags
, available
);
3967 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3968 available
, min_wmark
, *no_progress_loops
, wmark
);
3971 * If we didn't make any progress and have a lot of
3972 * dirty + writeback pages then we should wait for
3973 * an IO to complete to slow down the reclaim and
3974 * prevent from pre mature OOM
3976 if (!did_some_progress
) {
3977 unsigned long write_pending
;
3979 write_pending
= zone_page_state_snapshot(zone
,
3980 NR_ZONE_WRITE_PENDING
);
3982 if (2 * write_pending
> reclaimable
) {
3983 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3989 * Memory allocation/reclaim might be called from a WQ
3990 * context and the current implementation of the WQ
3991 * concurrency control doesn't recognize that
3992 * a particular WQ is congested if the worker thread is
3993 * looping without ever sleeping. Therefore we have to
3994 * do a short sleep here rather than calling
3997 if (current
->flags
& PF_WQ_WORKER
)
3998 schedule_timeout_uninterruptible(1);
4010 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4023 if (cpusets_enabled() && ac
->nodemask
&&
4024 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4025 ac
->nodemask
= NULL
;
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4036 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4042 static inline struct page
*
4043 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4044 struct alloc_context
*ac
)
4046 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4047 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4048 struct page
*page
= NULL
;
4049 unsigned int alloc_flags
;
4050 unsigned long did_some_progress
;
4051 enum compact_priority compact_priority
;
4052 enum compact_result compact_result
;
4053 int compaction_retries
;
4054 int no_progress_loops
;
4055 unsigned int cpuset_mems_cookie
;
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4064 if (order
>= MAX_ORDER
) {
4065 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4073 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4074 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4075 gfp_mask
&= ~__GFP_ATOMIC
;
4078 compaction_retries
= 0;
4079 no_progress_loops
= 0;
4080 compact_priority
= DEF_COMPACT_PRIORITY
;
4081 cpuset_mems_cookie
= read_mems_allowed_begin();
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4088 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4096 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4097 ac
->high_zoneidx
, ac
->nodemask
);
4098 if (!ac
->preferred_zoneref
->zone
)
4101 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4102 wake_all_kswapds(order
, gfp_mask
, ac
);
4105 * The adjusted alloc_flags might result in immediate success, so try
4108 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4113 * For costly allocations, try direct compaction first, as it's likely
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 if (can_direct_reclaim
&&
4123 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4124 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4125 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4127 INIT_COMPACT_PRIORITY
,
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4136 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4145 if (compact_result
== COMPACT_DEFERRED
)
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
4151 * using async compaction.
4153 compact_priority
= INIT_COMPACT_PRIORITY
;
4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4160 wake_all_kswapds(order
, gfp_mask
, ac
);
4162 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4164 alloc_flags
= reserve_flags
;
4167 * Reset the zonelist iterators if memory policies can be ignored.
4168 * These allocations are high priority and system rather than user
4171 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4172 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4173 ac
->high_zoneidx
, ac
->nodemask
);
4176 /* Attempt with potentially adjusted zonelist and alloc_flags */
4177 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4181 /* Caller is not willing to reclaim, we can't balance anything */
4182 if (!can_direct_reclaim
)
4185 /* Avoid recursion of direct reclaim */
4186 if (current
->flags
& PF_MEMALLOC
)
4189 /* Try direct reclaim and then allocating */
4190 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4191 &did_some_progress
);
4195 /* Try direct compaction and then allocating */
4196 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4197 compact_priority
, &compact_result
);
4201 /* Do not loop if specifically requested */
4202 if (gfp_mask
& __GFP_NORETRY
)
4206 * Do not retry costly high order allocations unless they are
4207 * __GFP_RETRY_MAYFAIL
4209 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4212 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4213 did_some_progress
> 0, &no_progress_loops
))
4217 * It doesn't make any sense to retry for the compaction if the order-0
4218 * reclaim is not able to make any progress because the current
4219 * implementation of the compaction depends on the sufficient amount
4220 * of free memory (see __compaction_suitable)
4222 if (did_some_progress
> 0 &&
4223 should_compact_retry(ac
, order
, alloc_flags
,
4224 compact_result
, &compact_priority
,
4225 &compaction_retries
))
4229 /* Deal with possible cpuset update races before we start OOM killing */
4230 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4233 /* Reclaim has failed us, start killing things */
4234 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4238 /* Avoid allocations with no watermarks from looping endlessly */
4239 if (tsk_is_oom_victim(current
) &&
4240 (alloc_flags
== ALLOC_OOM
||
4241 (gfp_mask
& __GFP_NOMEMALLOC
)))
4244 /* Retry as long as the OOM killer is making progress */
4245 if (did_some_progress
) {
4246 no_progress_loops
= 0;
4251 /* Deal with possible cpuset update races before we fail */
4252 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4256 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4259 if (gfp_mask
& __GFP_NOFAIL
) {
4261 * All existing users of the __GFP_NOFAIL are blockable, so warn
4262 * of any new users that actually require GFP_NOWAIT
4264 if (WARN_ON_ONCE(!can_direct_reclaim
))
4268 * PF_MEMALLOC request from this context is rather bizarre
4269 * because we cannot reclaim anything and only can loop waiting
4270 * for somebody to do a work for us
4272 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4275 * non failing costly orders are a hard requirement which we
4276 * are not prepared for much so let's warn about these users
4277 * so that we can identify them and convert them to something
4280 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4283 * Help non-failing allocations by giving them access to memory
4284 * reserves but do not use ALLOC_NO_WATERMARKS because this
4285 * could deplete whole memory reserves which would just make
4286 * the situation worse
4288 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4296 warn_alloc(gfp_mask
, ac
->nodemask
,
4297 "page allocation failure: order:%u", order
);
4302 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4303 int preferred_nid
, nodemask_t
*nodemask
,
4304 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4305 unsigned int *alloc_flags
)
4307 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4308 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4309 ac
->nodemask
= nodemask
;
4310 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4312 if (cpusets_enabled()) {
4313 *alloc_mask
|= __GFP_HARDWALL
;
4315 ac
->nodemask
= &cpuset_current_mems_allowed
;
4317 *alloc_flags
|= ALLOC_CPUSET
;
4320 fs_reclaim_acquire(gfp_mask
);
4321 fs_reclaim_release(gfp_mask
);
4323 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4325 if (should_fail_alloc_page(gfp_mask
, order
))
4328 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4329 *alloc_flags
|= ALLOC_CMA
;
4334 /* Determine whether to spread dirty pages and what the first usable zone */
4335 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4337 /* Dirty zone balancing only done in the fast path */
4338 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4341 * The preferred zone is used for statistics but crucially it is
4342 * also used as the starting point for the zonelist iterator. It
4343 * may get reset for allocations that ignore memory policies.
4345 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4346 ac
->high_zoneidx
, ac
->nodemask
);
4350 * This is the 'heart' of the zoned buddy allocator.
4353 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4354 nodemask_t
*nodemask
)
4357 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4358 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4359 struct alloc_context ac
= { };
4361 gfp_mask
&= gfp_allowed_mask
;
4362 alloc_mask
= gfp_mask
;
4363 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4366 finalise_ac(gfp_mask
, &ac
);
4368 /* First allocation attempt */
4369 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4374 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4375 * resp. GFP_NOIO which has to be inherited for all allocation requests
4376 * from a particular context which has been marked by
4377 * memalloc_no{fs,io}_{save,restore}.
4379 alloc_mask
= current_gfp_context(gfp_mask
);
4380 ac
.spread_dirty_pages
= false;
4383 * Restore the original nodemask if it was potentially replaced with
4384 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4386 if (unlikely(ac
.nodemask
!= nodemask
))
4387 ac
.nodemask
= nodemask
;
4389 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4392 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4393 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4394 __free_pages(page
, order
);
4398 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4402 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4405 * Common helper functions.
4407 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4412 * __get_free_pages() returns a virtual address, which cannot represent
4415 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4417 page
= alloc_pages(gfp_mask
, order
);
4420 return (unsigned long) page_address(page
);
4422 EXPORT_SYMBOL(__get_free_pages
);
4424 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4426 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4428 EXPORT_SYMBOL(get_zeroed_page
);
4430 void __free_pages(struct page
*page
, unsigned int order
)
4432 if (put_page_testzero(page
)) {
4434 free_unref_page(page
);
4436 __free_pages_ok(page
, order
);
4440 EXPORT_SYMBOL(__free_pages
);
4442 void free_pages(unsigned long addr
, unsigned int order
)
4445 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4446 __free_pages(virt_to_page((void *)addr
), order
);
4450 EXPORT_SYMBOL(free_pages
);
4454 * An arbitrary-length arbitrary-offset area of memory which resides
4455 * within a 0 or higher order page. Multiple fragments within that page
4456 * are individually refcounted, in the page's reference counter.
4458 * The page_frag functions below provide a simple allocation framework for
4459 * page fragments. This is used by the network stack and network device
4460 * drivers to provide a backing region of memory for use as either an
4461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4463 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4466 struct page
*page
= NULL
;
4467 gfp_t gfp
= gfp_mask
;
4469 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4470 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4472 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4473 PAGE_FRAG_CACHE_MAX_ORDER
);
4474 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4476 if (unlikely(!page
))
4477 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4479 nc
->va
= page
? page_address(page
) : NULL
;
4484 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4486 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4488 if (page_ref_sub_and_test(page
, count
)) {
4489 unsigned int order
= compound_order(page
);
4492 free_unref_page(page
);
4494 __free_pages_ok(page
, order
);
4497 EXPORT_SYMBOL(__page_frag_cache_drain
);
4499 void *page_frag_alloc(struct page_frag_cache
*nc
,
4500 unsigned int fragsz
, gfp_t gfp_mask
)
4502 unsigned int size
= PAGE_SIZE
;
4506 if (unlikely(!nc
->va
)) {
4508 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4512 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4513 /* if size can vary use size else just use PAGE_SIZE */
4516 /* Even if we own the page, we do not use atomic_set().
4517 * This would break get_page_unless_zero() users.
4519 page_ref_add(page
, size
- 1);
4521 /* reset page count bias and offset to start of new frag */
4522 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4523 nc
->pagecnt_bias
= size
;
4527 offset
= nc
->offset
- fragsz
;
4528 if (unlikely(offset
< 0)) {
4529 page
= virt_to_page(nc
->va
);
4531 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4534 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4535 /* if size can vary use size else just use PAGE_SIZE */
4538 /* OK, page count is 0, we can safely set it */
4539 set_page_count(page
, size
);
4541 /* reset page count bias and offset to start of new frag */
4542 nc
->pagecnt_bias
= size
;
4543 offset
= size
- fragsz
;
4547 nc
->offset
= offset
;
4549 return nc
->va
+ offset
;
4551 EXPORT_SYMBOL(page_frag_alloc
);
4554 * Frees a page fragment allocated out of either a compound or order 0 page.
4556 void page_frag_free(void *addr
)
4558 struct page
*page
= virt_to_head_page(addr
);
4560 if (unlikely(put_page_testzero(page
)))
4561 __free_pages_ok(page
, compound_order(page
));
4563 EXPORT_SYMBOL(page_frag_free
);
4565 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4569 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4570 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4572 split_page(virt_to_page((void *)addr
), order
);
4573 while (used
< alloc_end
) {
4578 return (void *)addr
;
4582 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4583 * @size: the number of bytes to allocate
4584 * @gfp_mask: GFP flags for the allocation
4586 * This function is similar to alloc_pages(), except that it allocates the
4587 * minimum number of pages to satisfy the request. alloc_pages() can only
4588 * allocate memory in power-of-two pages.
4590 * This function is also limited by MAX_ORDER.
4592 * Memory allocated by this function must be released by free_pages_exact().
4594 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4596 unsigned int order
= get_order(size
);
4599 addr
= __get_free_pages(gfp_mask
, order
);
4600 return make_alloc_exact(addr
, order
, size
);
4602 EXPORT_SYMBOL(alloc_pages_exact
);
4605 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4607 * @nid: the preferred node ID where memory should be allocated
4608 * @size: the number of bytes to allocate
4609 * @gfp_mask: GFP flags for the allocation
4611 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4614 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4616 unsigned int order
= get_order(size
);
4617 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4620 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4624 * free_pages_exact - release memory allocated via alloc_pages_exact()
4625 * @virt: the value returned by alloc_pages_exact.
4626 * @size: size of allocation, same value as passed to alloc_pages_exact().
4628 * Release the memory allocated by a previous call to alloc_pages_exact.
4630 void free_pages_exact(void *virt
, size_t size
)
4632 unsigned long addr
= (unsigned long)virt
;
4633 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4635 while (addr
< end
) {
4640 EXPORT_SYMBOL(free_pages_exact
);
4643 * nr_free_zone_pages - count number of pages beyond high watermark
4644 * @offset: The zone index of the highest zone
4646 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4647 * high watermark within all zones at or below a given zone index. For each
4648 * zone, the number of pages is calculated as:
4650 * nr_free_zone_pages = managed_pages - high_pages
4652 static unsigned long nr_free_zone_pages(int offset
)
4657 /* Just pick one node, since fallback list is circular */
4658 unsigned long sum
= 0;
4660 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4662 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4663 unsigned long size
= zone
->managed_pages
;
4664 unsigned long high
= high_wmark_pages(zone
);
4673 * nr_free_buffer_pages - count number of pages beyond high watermark
4675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4676 * watermark within ZONE_DMA and ZONE_NORMAL.
4678 unsigned long nr_free_buffer_pages(void)
4680 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4685 * nr_free_pagecache_pages - count number of pages beyond high watermark
4687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4688 * high watermark within all zones.
4690 unsigned long nr_free_pagecache_pages(void)
4692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4695 static inline void show_node(struct zone
*zone
)
4697 if (IS_ENABLED(CONFIG_NUMA
))
4698 printk("Node %d ", zone_to_nid(zone
));
4701 long si_mem_available(void)
4704 unsigned long pagecache
;
4705 unsigned long wmark_low
= 0;
4706 unsigned long pages
[NR_LRU_LISTS
];
4710 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4711 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4714 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4717 * Estimate the amount of memory available for userspace allocations,
4718 * without causing swapping.
4720 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4723 * Not all the page cache can be freed, otherwise the system will
4724 * start swapping. Assume at least half of the page cache, or the
4725 * low watermark worth of cache, needs to stay.
4727 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4728 pagecache
-= min(pagecache
/ 2, wmark_low
);
4729 available
+= pagecache
;
4732 * Part of the reclaimable slab consists of items that are in use,
4733 * and cannot be freed. Cap this estimate at the low watermark.
4735 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4736 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4740 * Part of the kernel memory, which can be released under memory
4743 available
+= global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES
) >>
4750 EXPORT_SYMBOL_GPL(si_mem_available
);
4752 void si_meminfo(struct sysinfo
*val
)
4754 val
->totalram
= totalram_pages
;
4755 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4756 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4757 val
->bufferram
= nr_blockdev_pages();
4758 val
->totalhigh
= totalhigh_pages
;
4759 val
->freehigh
= nr_free_highpages();
4760 val
->mem_unit
= PAGE_SIZE
;
4763 EXPORT_SYMBOL(si_meminfo
);
4766 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4768 int zone_type
; /* needs to be signed */
4769 unsigned long managed_pages
= 0;
4770 unsigned long managed_highpages
= 0;
4771 unsigned long free_highpages
= 0;
4772 pg_data_t
*pgdat
= NODE_DATA(nid
);
4774 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4775 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4776 val
->totalram
= managed_pages
;
4777 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4778 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4779 #ifdef CONFIG_HIGHMEM
4780 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4781 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4783 if (is_highmem(zone
)) {
4784 managed_highpages
+= zone
->managed_pages
;
4785 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4788 val
->totalhigh
= managed_highpages
;
4789 val
->freehigh
= free_highpages
;
4791 val
->totalhigh
= managed_highpages
;
4792 val
->freehigh
= free_highpages
;
4794 val
->mem_unit
= PAGE_SIZE
;
4799 * Determine whether the node should be displayed or not, depending on whether
4800 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4802 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4804 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4808 * no node mask - aka implicit memory numa policy. Do not bother with
4809 * the synchronization - read_mems_allowed_begin - because we do not
4810 * have to be precise here.
4813 nodemask
= &cpuset_current_mems_allowed
;
4815 return !node_isset(nid
, *nodemask
);
4818 #define K(x) ((x) << (PAGE_SHIFT-10))
4820 static void show_migration_types(unsigned char type
)
4822 static const char types
[MIGRATE_TYPES
] = {
4823 [MIGRATE_UNMOVABLE
] = 'U',
4824 [MIGRATE_MOVABLE
] = 'M',
4825 [MIGRATE_RECLAIMABLE
] = 'E',
4826 [MIGRATE_HIGHATOMIC
] = 'H',
4828 [MIGRATE_CMA
] = 'C',
4830 #ifdef CONFIG_MEMORY_ISOLATION
4831 [MIGRATE_ISOLATE
] = 'I',
4834 char tmp
[MIGRATE_TYPES
+ 1];
4838 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4839 if (type
& (1 << i
))
4844 printk(KERN_CONT
"(%s) ", tmp
);
4848 * Show free area list (used inside shift_scroll-lock stuff)
4849 * We also calculate the percentage fragmentation. We do this by counting the
4850 * memory on each free list with the exception of the first item on the list.
4853 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4856 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4858 unsigned long free_pcp
= 0;
4863 for_each_populated_zone(zone
) {
4864 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4867 for_each_online_cpu(cpu
)
4868 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4871 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4872 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4873 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4874 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4875 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4876 " free:%lu free_pcp:%lu free_cma:%lu\n",
4877 global_node_page_state(NR_ACTIVE_ANON
),
4878 global_node_page_state(NR_INACTIVE_ANON
),
4879 global_node_page_state(NR_ISOLATED_ANON
),
4880 global_node_page_state(NR_ACTIVE_FILE
),
4881 global_node_page_state(NR_INACTIVE_FILE
),
4882 global_node_page_state(NR_ISOLATED_FILE
),
4883 global_node_page_state(NR_UNEVICTABLE
),
4884 global_node_page_state(NR_FILE_DIRTY
),
4885 global_node_page_state(NR_WRITEBACK
),
4886 global_node_page_state(NR_UNSTABLE_NFS
),
4887 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4888 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4889 global_node_page_state(NR_FILE_MAPPED
),
4890 global_node_page_state(NR_SHMEM
),
4891 global_zone_page_state(NR_PAGETABLE
),
4892 global_zone_page_state(NR_BOUNCE
),
4893 global_zone_page_state(NR_FREE_PAGES
),
4895 global_zone_page_state(NR_FREE_CMA_PAGES
));
4897 for_each_online_pgdat(pgdat
) {
4898 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4902 " active_anon:%lukB"
4903 " inactive_anon:%lukB"
4904 " active_file:%lukB"
4905 " inactive_file:%lukB"
4906 " unevictable:%lukB"
4907 " isolated(anon):%lukB"
4908 " isolated(file):%lukB"
4913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4915 " shmem_pmdmapped: %lukB"
4918 " writeback_tmp:%lukB"
4920 " all_unreclaimable? %s"
4923 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4924 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4925 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4926 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4927 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4928 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4929 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4930 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4931 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4932 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4933 K(node_page_state(pgdat
, NR_SHMEM
)),
4934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4935 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4936 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4938 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4940 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4941 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4942 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4946 for_each_populated_zone(zone
) {
4949 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4953 for_each_online_cpu(cpu
)
4954 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4963 " active_anon:%lukB"
4964 " inactive_anon:%lukB"
4965 " active_file:%lukB"
4966 " inactive_file:%lukB"
4967 " unevictable:%lukB"
4968 " writepending:%lukB"
4972 " kernel_stack:%lukB"
4980 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4981 K(min_wmark_pages(zone
)),
4982 K(low_wmark_pages(zone
)),
4983 K(high_wmark_pages(zone
)),
4984 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4985 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4986 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4987 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4988 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4989 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4990 K(zone
->present_pages
),
4991 K(zone
->managed_pages
),
4992 K(zone_page_state(zone
, NR_MLOCK
)),
4993 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4994 K(zone_page_state(zone
, NR_PAGETABLE
)),
4995 K(zone_page_state(zone
, NR_BOUNCE
)),
4997 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4998 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4999 printk("lowmem_reserve[]:");
5000 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5001 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5002 printk(KERN_CONT
"\n");
5005 for_each_populated_zone(zone
) {
5007 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5008 unsigned char types
[MAX_ORDER
];
5010 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5013 printk(KERN_CONT
"%s: ", zone
->name
);
5015 spin_lock_irqsave(&zone
->lock
, flags
);
5016 for (order
= 0; order
< MAX_ORDER
; order
++) {
5017 struct free_area
*area
= &zone
->free_area
[order
];
5020 nr
[order
] = area
->nr_free
;
5021 total
+= nr
[order
] << order
;
5024 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5025 if (!list_empty(&area
->free_list
[type
]))
5026 types
[order
] |= 1 << type
;
5029 spin_unlock_irqrestore(&zone
->lock
, flags
);
5030 for (order
= 0; order
< MAX_ORDER
; order
++) {
5031 printk(KERN_CONT
"%lu*%lukB ",
5032 nr
[order
], K(1UL) << order
);
5034 show_migration_types(types
[order
]);
5036 printk(KERN_CONT
"= %lukB\n", K(total
));
5039 hugetlb_show_meminfo();
5041 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5043 show_swap_cache_info();
5046 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5048 zoneref
->zone
= zone
;
5049 zoneref
->zone_idx
= zone_idx(zone
);
5053 * Builds allocation fallback zone lists.
5055 * Add all populated zones of a node to the zonelist.
5057 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5060 enum zone_type zone_type
= MAX_NR_ZONES
;
5065 zone
= pgdat
->node_zones
+ zone_type
;
5066 if (managed_zone(zone
)) {
5067 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5068 check_highest_zone(zone_type
);
5070 } while (zone_type
);
5077 static int __parse_numa_zonelist_order(char *s
)
5080 * We used to support different zonlists modes but they turned
5081 * out to be just not useful. Let's keep the warning in place
5082 * if somebody still use the cmd line parameter so that we do
5083 * not fail it silently
5085 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5086 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5092 static __init
int setup_numa_zonelist_order(char *s
)
5097 return __parse_numa_zonelist_order(s
);
5099 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5101 char numa_zonelist_order
[] = "Node";
5104 * sysctl handler for numa_zonelist_order
5106 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5107 void __user
*buffer
, size_t *length
,
5114 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5115 str
= memdup_user_nul(buffer
, 16);
5117 return PTR_ERR(str
);
5119 ret
= __parse_numa_zonelist_order(str
);
5125 #define MAX_NODE_LOAD (nr_online_nodes)
5126 static int node_load
[MAX_NUMNODES
];
5129 * find_next_best_node - find the next node that should appear in a given node's fallback list
5130 * @node: node whose fallback list we're appending
5131 * @used_node_mask: nodemask_t of already used nodes
5133 * We use a number of factors to determine which is the next node that should
5134 * appear on a given node's fallback list. The node should not have appeared
5135 * already in @node's fallback list, and it should be the next closest node
5136 * according to the distance array (which contains arbitrary distance values
5137 * from each node to each node in the system), and should also prefer nodes
5138 * with no CPUs, since presumably they'll have very little allocation pressure
5139 * on them otherwise.
5140 * It returns -1 if no node is found.
5142 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5145 int min_val
= INT_MAX
;
5146 int best_node
= NUMA_NO_NODE
;
5147 const struct cpumask
*tmp
= cpumask_of_node(0);
5149 /* Use the local node if we haven't already */
5150 if (!node_isset(node
, *used_node_mask
)) {
5151 node_set(node
, *used_node_mask
);
5155 for_each_node_state(n
, N_MEMORY
) {
5157 /* Don't want a node to appear more than once */
5158 if (node_isset(n
, *used_node_mask
))
5161 /* Use the distance array to find the distance */
5162 val
= node_distance(node
, n
);
5164 /* Penalize nodes under us ("prefer the next node") */
5167 /* Give preference to headless and unused nodes */
5168 tmp
= cpumask_of_node(n
);
5169 if (!cpumask_empty(tmp
))
5170 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5172 /* Slight preference for less loaded node */
5173 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5174 val
+= node_load
[n
];
5176 if (val
< min_val
) {
5183 node_set(best_node
, *used_node_mask
);
5190 * Build zonelists ordered by node and zones within node.
5191 * This results in maximum locality--normal zone overflows into local
5192 * DMA zone, if any--but risks exhausting DMA zone.
5194 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5197 struct zoneref
*zonerefs
;
5200 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5202 for (i
= 0; i
< nr_nodes
; i
++) {
5205 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5207 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5208 zonerefs
+= nr_zones
;
5210 zonerefs
->zone
= NULL
;
5211 zonerefs
->zone_idx
= 0;
5215 * Build gfp_thisnode zonelists
5217 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5219 struct zoneref
*zonerefs
;
5222 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5223 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5224 zonerefs
+= nr_zones
;
5225 zonerefs
->zone
= NULL
;
5226 zonerefs
->zone_idx
= 0;
5230 * Build zonelists ordered by zone and nodes within zones.
5231 * This results in conserving DMA zone[s] until all Normal memory is
5232 * exhausted, but results in overflowing to remote node while memory
5233 * may still exist in local DMA zone.
5236 static void build_zonelists(pg_data_t
*pgdat
)
5238 static int node_order
[MAX_NUMNODES
];
5239 int node
, load
, nr_nodes
= 0;
5240 nodemask_t used_mask
;
5241 int local_node
, prev_node
;
5243 /* NUMA-aware ordering of nodes */
5244 local_node
= pgdat
->node_id
;
5245 load
= nr_online_nodes
;
5246 prev_node
= local_node
;
5247 nodes_clear(used_mask
);
5249 memset(node_order
, 0, sizeof(node_order
));
5250 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5252 * We don't want to pressure a particular node.
5253 * So adding penalty to the first node in same
5254 * distance group to make it round-robin.
5256 if (node_distance(local_node
, node
) !=
5257 node_distance(local_node
, prev_node
))
5258 node_load
[node
] = load
;
5260 node_order
[nr_nodes
++] = node
;
5265 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5266 build_thisnode_zonelists(pgdat
);
5269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5271 * Return node id of node used for "local" allocations.
5272 * I.e., first node id of first zone in arg node's generic zonelist.
5273 * Used for initializing percpu 'numa_mem', which is used primarily
5274 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5276 int local_memory_node(int node
)
5280 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5281 gfp_zone(GFP_KERNEL
),
5283 return z
->zone
->node
;
5287 static void setup_min_unmapped_ratio(void);
5288 static void setup_min_slab_ratio(void);
5289 #else /* CONFIG_NUMA */
5291 static void build_zonelists(pg_data_t
*pgdat
)
5293 int node
, local_node
;
5294 struct zoneref
*zonerefs
;
5297 local_node
= pgdat
->node_id
;
5299 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5300 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5301 zonerefs
+= nr_zones
;
5304 * Now we build the zonelist so that it contains the zones
5305 * of all the other nodes.
5306 * We don't want to pressure a particular node, so when
5307 * building the zones for node N, we make sure that the
5308 * zones coming right after the local ones are those from
5309 * node N+1 (modulo N)
5311 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5312 if (!node_online(node
))
5314 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5315 zonerefs
+= nr_zones
;
5317 for (node
= 0; node
< local_node
; node
++) {
5318 if (!node_online(node
))
5320 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5321 zonerefs
+= nr_zones
;
5324 zonerefs
->zone
= NULL
;
5325 zonerefs
->zone_idx
= 0;
5328 #endif /* CONFIG_NUMA */
5331 * Boot pageset table. One per cpu which is going to be used for all
5332 * zones and all nodes. The parameters will be set in such a way
5333 * that an item put on a list will immediately be handed over to
5334 * the buddy list. This is safe since pageset manipulation is done
5335 * with interrupts disabled.
5337 * The boot_pagesets must be kept even after bootup is complete for
5338 * unused processors and/or zones. They do play a role for bootstrapping
5339 * hotplugged processors.
5341 * zoneinfo_show() and maybe other functions do
5342 * not check if the processor is online before following the pageset pointer.
5343 * Other parts of the kernel may not check if the zone is available.
5345 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5346 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5347 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5349 static void __build_all_zonelists(void *data
)
5352 int __maybe_unused cpu
;
5353 pg_data_t
*self
= data
;
5354 static DEFINE_SPINLOCK(lock
);
5359 memset(node_load
, 0, sizeof(node_load
));
5363 * This node is hotadded and no memory is yet present. So just
5364 * building zonelists is fine - no need to touch other nodes.
5366 if (self
&& !node_online(self
->node_id
)) {
5367 build_zonelists(self
);
5369 for_each_online_node(nid
) {
5370 pg_data_t
*pgdat
= NODE_DATA(nid
);
5372 build_zonelists(pgdat
);
5375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5377 * We now know the "local memory node" for each node--
5378 * i.e., the node of the first zone in the generic zonelist.
5379 * Set up numa_mem percpu variable for on-line cpus. During
5380 * boot, only the boot cpu should be on-line; we'll init the
5381 * secondary cpus' numa_mem as they come on-line. During
5382 * node/memory hotplug, we'll fixup all on-line cpus.
5384 for_each_online_cpu(cpu
)
5385 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5392 static noinline
void __init
5393 build_all_zonelists_init(void)
5397 __build_all_zonelists(NULL
);
5400 * Initialize the boot_pagesets that are going to be used
5401 * for bootstrapping processors. The real pagesets for
5402 * each zone will be allocated later when the per cpu
5403 * allocator is available.
5405 * boot_pagesets are used also for bootstrapping offline
5406 * cpus if the system is already booted because the pagesets
5407 * are needed to initialize allocators on a specific cpu too.
5408 * F.e. the percpu allocator needs the page allocator which
5409 * needs the percpu allocator in order to allocate its pagesets
5410 * (a chicken-egg dilemma).
5412 for_each_possible_cpu(cpu
)
5413 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5415 mminit_verify_zonelist();
5416 cpuset_init_current_mems_allowed();
5420 * unless system_state == SYSTEM_BOOTING.
5422 * __ref due to call of __init annotated helper build_all_zonelists_init
5423 * [protected by SYSTEM_BOOTING].
5425 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5427 if (system_state
== SYSTEM_BOOTING
) {
5428 build_all_zonelists_init();
5430 __build_all_zonelists(pgdat
);
5431 /* cpuset refresh routine should be here */
5433 vm_total_pages
= nr_free_pagecache_pages();
5435 * Disable grouping by mobility if the number of pages in the
5436 * system is too low to allow the mechanism to work. It would be
5437 * more accurate, but expensive to check per-zone. This check is
5438 * made on memory-hotadd so a system can start with mobility
5439 * disabled and enable it later
5441 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5442 page_group_by_mobility_disabled
= 1;
5444 page_group_by_mobility_disabled
= 0;
5446 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5448 page_group_by_mobility_disabled
? "off" : "on",
5451 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5456 * Initially all pages are reserved - free ones are freed
5457 * up by free_all_bootmem() once the early boot process is
5458 * done. Non-atomic initialization, single-pass.
5460 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5461 unsigned long start_pfn
, enum memmap_context context
,
5462 struct vmem_altmap
*altmap
)
5464 unsigned long end_pfn
= start_pfn
+ size
;
5465 pg_data_t
*pgdat
= NODE_DATA(nid
);
5467 unsigned long nr_initialised
= 0;
5469 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5470 struct memblock_region
*r
= NULL
, *tmp
;
5473 if (highest_memmap_pfn
< end_pfn
- 1)
5474 highest_memmap_pfn
= end_pfn
- 1;
5477 * Honor reservation requested by the driver for this ZONE_DEVICE
5480 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5481 start_pfn
+= altmap
->reserve
;
5483 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5485 * There can be holes in boot-time mem_map[]s handed to this
5486 * function. They do not exist on hotplugged memory.
5488 if (context
!= MEMMAP_EARLY
)
5491 if (!early_pfn_valid(pfn
))
5493 if (!early_pfn_in_nid(pfn
, nid
))
5495 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5500 * Check given memblock attribute by firmware which can affect
5501 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5502 * mirrored, it's an overlapped memmap init. skip it.
5504 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5505 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5506 for_each_memblock(memory
, tmp
)
5507 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5511 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5512 memblock_is_mirror(r
)) {
5513 /* already initialized as NORMAL */
5514 pfn
= memblock_region_memory_end_pfn(r
);
5521 page
= pfn_to_page(pfn
);
5522 __init_single_page(page
, pfn
, zone
, nid
);
5523 if (context
== MEMMAP_HOTPLUG
)
5524 SetPageReserved(page
);
5527 * Mark the block movable so that blocks are reserved for
5528 * movable at startup. This will force kernel allocations
5529 * to reserve their blocks rather than leaking throughout
5530 * the address space during boot when many long-lived
5531 * kernel allocations are made.
5533 * bitmap is created for zone's valid pfn range. but memmap
5534 * can be created for invalid pages (for alignment)
5535 * check here not to call set_pageblock_migratetype() against
5538 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5539 * because this is done early in sparse_add_one_section
5541 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5542 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5548 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5550 unsigned int order
, t
;
5551 for_each_migratetype_order(order
, t
) {
5552 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5553 zone
->free_area
[order
].nr_free
= 0;
5557 #ifndef __HAVE_ARCH_MEMMAP_INIT
5558 #define memmap_init(size, nid, zone, start_pfn) \
5559 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5562 static int zone_batchsize(struct zone
*zone
)
5568 * The per-cpu-pages pools are set to around 1000th of the
5569 * size of the zone. But no more than 1/2 of a meg.
5571 * OK, so we don't know how big the cache is. So guess.
5573 batch
= zone
->managed_pages
/ 1024;
5574 if (batch
* PAGE_SIZE
> 512 * 1024)
5575 batch
= (512 * 1024) / PAGE_SIZE
;
5576 batch
/= 4; /* We effectively *= 4 below */
5581 * Clamp the batch to a 2^n - 1 value. Having a power
5582 * of 2 value was found to be more likely to have
5583 * suboptimal cache aliasing properties in some cases.
5585 * For example if 2 tasks are alternately allocating
5586 * batches of pages, one task can end up with a lot
5587 * of pages of one half of the possible page colors
5588 * and the other with pages of the other colors.
5590 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5595 /* The deferral and batching of frees should be suppressed under NOMMU
5598 * The problem is that NOMMU needs to be able to allocate large chunks
5599 * of contiguous memory as there's no hardware page translation to
5600 * assemble apparent contiguous memory from discontiguous pages.
5602 * Queueing large contiguous runs of pages for batching, however,
5603 * causes the pages to actually be freed in smaller chunks. As there
5604 * can be a significant delay between the individual batches being
5605 * recycled, this leads to the once large chunks of space being
5606 * fragmented and becoming unavailable for high-order allocations.
5613 * pcp->high and pcp->batch values are related and dependent on one another:
5614 * ->batch must never be higher then ->high.
5615 * The following function updates them in a safe manner without read side
5618 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5619 * those fields changing asynchronously (acording the the above rule).
5621 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5622 * outside of boot time (or some other assurance that no concurrent updaters
5625 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5626 unsigned long batch
)
5628 /* start with a fail safe value for batch */
5632 /* Update high, then batch, in order */
5639 /* a companion to pageset_set_high() */
5640 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5642 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5645 static void pageset_init(struct per_cpu_pageset
*p
)
5647 struct per_cpu_pages
*pcp
;
5650 memset(p
, 0, sizeof(*p
));
5654 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5655 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5658 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5661 pageset_set_batch(p
, batch
);
5665 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5666 * to the value high for the pageset p.
5668 static void pageset_set_high(struct per_cpu_pageset
*p
,
5671 unsigned long batch
= max(1UL, high
/ 4);
5672 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5673 batch
= PAGE_SHIFT
* 8;
5675 pageset_update(&p
->pcp
, high
, batch
);
5678 static void pageset_set_high_and_batch(struct zone
*zone
,
5679 struct per_cpu_pageset
*pcp
)
5681 if (percpu_pagelist_fraction
)
5682 pageset_set_high(pcp
,
5683 (zone
->managed_pages
/
5684 percpu_pagelist_fraction
));
5686 pageset_set_batch(pcp
, zone_batchsize(zone
));
5689 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5691 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5694 pageset_set_high_and_batch(zone
, pcp
);
5697 void __meminit
setup_zone_pageset(struct zone
*zone
)
5700 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5701 for_each_possible_cpu(cpu
)
5702 zone_pageset_init(zone
, cpu
);
5706 * Allocate per cpu pagesets and initialize them.
5707 * Before this call only boot pagesets were available.
5709 void __init
setup_per_cpu_pageset(void)
5711 struct pglist_data
*pgdat
;
5714 for_each_populated_zone(zone
)
5715 setup_zone_pageset(zone
);
5717 for_each_online_pgdat(pgdat
)
5718 pgdat
->per_cpu_nodestats
=
5719 alloc_percpu(struct per_cpu_nodestat
);
5722 static __meminit
void zone_pcp_init(struct zone
*zone
)
5725 * per cpu subsystem is not up at this point. The following code
5726 * relies on the ability of the linker to provide the
5727 * offset of a (static) per cpu variable into the per cpu area.
5729 zone
->pageset
= &boot_pageset
;
5731 if (populated_zone(zone
))
5732 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5733 zone
->name
, zone
->present_pages
,
5734 zone_batchsize(zone
));
5737 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5738 unsigned long zone_start_pfn
,
5741 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5743 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5745 zone
->zone_start_pfn
= zone_start_pfn
;
5747 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5748 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5750 (unsigned long)zone_idx(zone
),
5751 zone_start_pfn
, (zone_start_pfn
+ size
));
5753 zone_init_free_lists(zone
);
5754 zone
->initialized
= 1;
5757 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5758 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5763 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5764 struct mminit_pfnnid_cache
*state
)
5766 unsigned long start_pfn
, end_pfn
;
5769 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5770 return state
->last_nid
;
5772 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5774 state
->last_start
= start_pfn
;
5775 state
->last_end
= end_pfn
;
5776 state
->last_nid
= nid
;
5781 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5784 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5785 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5786 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5788 * If an architecture guarantees that all ranges registered contain no holes
5789 * and may be freed, this this function may be used instead of calling
5790 * memblock_free_early_nid() manually.
5792 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5794 unsigned long start_pfn
, end_pfn
;
5797 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5798 start_pfn
= min(start_pfn
, max_low_pfn
);
5799 end_pfn
= min(end_pfn
, max_low_pfn
);
5801 if (start_pfn
< end_pfn
)
5802 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5803 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5809 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5810 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5812 * If an architecture guarantees that all ranges registered contain no holes and may
5813 * be freed, this function may be used instead of calling memory_present() manually.
5815 void __init
sparse_memory_present_with_active_regions(int nid
)
5817 unsigned long start_pfn
, end_pfn
;
5820 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5821 memory_present(this_nid
, start_pfn
, end_pfn
);
5825 * get_pfn_range_for_nid - Return the start and end page frames for a node
5826 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5827 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5828 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5830 * It returns the start and end page frame of a node based on information
5831 * provided by memblock_set_node(). If called for a node
5832 * with no available memory, a warning is printed and the start and end
5835 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5836 unsigned long *start_pfn
, unsigned long *end_pfn
)
5838 unsigned long this_start_pfn
, this_end_pfn
;
5844 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5845 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5846 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5849 if (*start_pfn
== -1UL)
5854 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5855 * assumption is made that zones within a node are ordered in monotonic
5856 * increasing memory addresses so that the "highest" populated zone is used
5858 static void __init
find_usable_zone_for_movable(void)
5861 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5862 if (zone_index
== ZONE_MOVABLE
)
5865 if (arch_zone_highest_possible_pfn
[zone_index
] >
5866 arch_zone_lowest_possible_pfn
[zone_index
])
5870 VM_BUG_ON(zone_index
== -1);
5871 movable_zone
= zone_index
;
5875 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5876 * because it is sized independent of architecture. Unlike the other zones,
5877 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5878 * in each node depending on the size of each node and how evenly kernelcore
5879 * is distributed. This helper function adjusts the zone ranges
5880 * provided by the architecture for a given node by using the end of the
5881 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5882 * zones within a node are in order of monotonic increases memory addresses
5884 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5885 unsigned long zone_type
,
5886 unsigned long node_start_pfn
,
5887 unsigned long node_end_pfn
,
5888 unsigned long *zone_start_pfn
,
5889 unsigned long *zone_end_pfn
)
5891 /* Only adjust if ZONE_MOVABLE is on this node */
5892 if (zone_movable_pfn
[nid
]) {
5893 /* Size ZONE_MOVABLE */
5894 if (zone_type
== ZONE_MOVABLE
) {
5895 *zone_start_pfn
= zone_movable_pfn
[nid
];
5896 *zone_end_pfn
= min(node_end_pfn
,
5897 arch_zone_highest_possible_pfn
[movable_zone
]);
5899 /* Adjust for ZONE_MOVABLE starting within this range */
5900 } else if (!mirrored_kernelcore
&&
5901 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5902 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5903 *zone_end_pfn
= zone_movable_pfn
[nid
];
5905 /* Check if this whole range is within ZONE_MOVABLE */
5906 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5907 *zone_start_pfn
= *zone_end_pfn
;
5912 * Return the number of pages a zone spans in a node, including holes
5913 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5915 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5916 unsigned long zone_type
,
5917 unsigned long node_start_pfn
,
5918 unsigned long node_end_pfn
,
5919 unsigned long *zone_start_pfn
,
5920 unsigned long *zone_end_pfn
,
5921 unsigned long *ignored
)
5923 /* When hotadd a new node from cpu_up(), the node should be empty */
5924 if (!node_start_pfn
&& !node_end_pfn
)
5927 /* Get the start and end of the zone */
5928 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5929 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5930 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5931 node_start_pfn
, node_end_pfn
,
5932 zone_start_pfn
, zone_end_pfn
);
5934 /* Check that this node has pages within the zone's required range */
5935 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5938 /* Move the zone boundaries inside the node if necessary */
5939 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5940 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5942 /* Return the spanned pages */
5943 return *zone_end_pfn
- *zone_start_pfn
;
5947 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5948 * then all holes in the requested range will be accounted for.
5950 unsigned long __meminit
__absent_pages_in_range(int nid
,
5951 unsigned long range_start_pfn
,
5952 unsigned long range_end_pfn
)
5954 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5955 unsigned long start_pfn
, end_pfn
;
5958 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5959 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5960 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5961 nr_absent
-= end_pfn
- start_pfn
;
5967 * absent_pages_in_range - Return number of page frames in holes within a range
5968 * @start_pfn: The start PFN to start searching for holes
5969 * @end_pfn: The end PFN to stop searching for holes
5971 * It returns the number of pages frames in memory holes within a range.
5973 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5974 unsigned long end_pfn
)
5976 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5979 /* Return the number of page frames in holes in a zone on a node */
5980 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5981 unsigned long zone_type
,
5982 unsigned long node_start_pfn
,
5983 unsigned long node_end_pfn
,
5984 unsigned long *ignored
)
5986 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5987 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5988 unsigned long zone_start_pfn
, zone_end_pfn
;
5989 unsigned long nr_absent
;
5991 /* When hotadd a new node from cpu_up(), the node should be empty */
5992 if (!node_start_pfn
&& !node_end_pfn
)
5995 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5996 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5998 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5999 node_start_pfn
, node_end_pfn
,
6000 &zone_start_pfn
, &zone_end_pfn
);
6001 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6004 * ZONE_MOVABLE handling.
6005 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6008 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6009 unsigned long start_pfn
, end_pfn
;
6010 struct memblock_region
*r
;
6012 for_each_memblock(memory
, r
) {
6013 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6014 zone_start_pfn
, zone_end_pfn
);
6015 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6016 zone_start_pfn
, zone_end_pfn
);
6018 if (zone_type
== ZONE_MOVABLE
&&
6019 memblock_is_mirror(r
))
6020 nr_absent
+= end_pfn
- start_pfn
;
6022 if (zone_type
== ZONE_NORMAL
&&
6023 !memblock_is_mirror(r
))
6024 nr_absent
+= end_pfn
- start_pfn
;
6031 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6032 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6033 unsigned long zone_type
,
6034 unsigned long node_start_pfn
,
6035 unsigned long node_end_pfn
,
6036 unsigned long *zone_start_pfn
,
6037 unsigned long *zone_end_pfn
,
6038 unsigned long *zones_size
)
6042 *zone_start_pfn
= node_start_pfn
;
6043 for (zone
= 0; zone
< zone_type
; zone
++)
6044 *zone_start_pfn
+= zones_size
[zone
];
6046 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6048 return zones_size
[zone_type
];
6051 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6052 unsigned long zone_type
,
6053 unsigned long node_start_pfn
,
6054 unsigned long node_end_pfn
,
6055 unsigned long *zholes_size
)
6060 return zholes_size
[zone_type
];
6063 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6065 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
6066 unsigned long node_start_pfn
,
6067 unsigned long node_end_pfn
,
6068 unsigned long *zones_size
,
6069 unsigned long *zholes_size
)
6071 unsigned long realtotalpages
= 0, totalpages
= 0;
6074 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6075 struct zone
*zone
= pgdat
->node_zones
+ i
;
6076 unsigned long zone_start_pfn
, zone_end_pfn
;
6077 unsigned long size
, real_size
;
6079 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6085 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6086 node_start_pfn
, node_end_pfn
,
6089 zone
->zone_start_pfn
= zone_start_pfn
;
6091 zone
->zone_start_pfn
= 0;
6092 zone
->spanned_pages
= size
;
6093 zone
->present_pages
= real_size
;
6096 realtotalpages
+= real_size
;
6099 pgdat
->node_spanned_pages
= totalpages
;
6100 pgdat
->node_present_pages
= realtotalpages
;
6101 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6105 #ifndef CONFIG_SPARSEMEM
6107 * Calculate the size of the zone->blockflags rounded to an unsigned long
6108 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6109 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6110 * round what is now in bits to nearest long in bits, then return it in
6113 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6115 unsigned long usemapsize
;
6117 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6118 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6119 usemapsize
= usemapsize
>> pageblock_order
;
6120 usemapsize
*= NR_PAGEBLOCK_BITS
;
6121 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6123 return usemapsize
/ 8;
6126 static void __init
setup_usemap(struct pglist_data
*pgdat
,
6128 unsigned long zone_start_pfn
,
6129 unsigned long zonesize
)
6131 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6132 zone
->pageblock_flags
= NULL
;
6134 zone
->pageblock_flags
=
6135 memblock_virt_alloc_node_nopanic(usemapsize
,
6139 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6140 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6141 #endif /* CONFIG_SPARSEMEM */
6143 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6145 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6146 void __paginginit
set_pageblock_order(void)
6150 /* Check that pageblock_nr_pages has not already been setup */
6151 if (pageblock_order
)
6154 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6155 order
= HUGETLB_PAGE_ORDER
;
6157 order
= MAX_ORDER
- 1;
6160 * Assume the largest contiguous order of interest is a huge page.
6161 * This value may be variable depending on boot parameters on IA64 and
6164 pageblock_order
= order
;
6166 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6169 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6170 * is unused as pageblock_order is set at compile-time. See
6171 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6174 void __paginginit
set_pageblock_order(void)
6178 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6180 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6181 unsigned long present_pages
)
6183 unsigned long pages
= spanned_pages
;
6186 * Provide a more accurate estimation if there are holes within
6187 * the zone and SPARSEMEM is in use. If there are holes within the
6188 * zone, each populated memory region may cost us one or two extra
6189 * memmap pages due to alignment because memmap pages for each
6190 * populated regions may not be naturally aligned on page boundary.
6191 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6193 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6194 IS_ENABLED(CONFIG_SPARSEMEM
))
6195 pages
= present_pages
;
6197 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6201 * Set up the zone data structures:
6202 * - mark all pages reserved
6203 * - mark all memory queues empty
6204 * - clear the memory bitmaps
6206 * NOTE: pgdat should get zeroed by caller.
6208 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6211 int nid
= pgdat
->node_id
;
6213 pgdat_resize_init(pgdat
);
6214 #ifdef CONFIG_NUMA_BALANCING
6215 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6216 pgdat
->numabalancing_migrate_nr_pages
= 0;
6217 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 spin_lock_init(&pgdat
->split_queue_lock
);
6221 INIT_LIST_HEAD(&pgdat
->split_queue
);
6222 pgdat
->split_queue_len
= 0;
6224 init_waitqueue_head(&pgdat
->kswapd_wait
);
6225 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6226 #ifdef CONFIG_COMPACTION
6227 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6229 pgdat_page_ext_init(pgdat
);
6230 spin_lock_init(&pgdat
->lru_lock
);
6231 lruvec_init(node_lruvec(pgdat
));
6233 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6235 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6236 struct zone
*zone
= pgdat
->node_zones
+ j
;
6237 unsigned long size
, freesize
, memmap_pages
;
6238 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6240 size
= zone
->spanned_pages
;
6241 freesize
= zone
->present_pages
;
6244 * Adjust freesize so that it accounts for how much memory
6245 * is used by this zone for memmap. This affects the watermark
6246 * and per-cpu initialisations
6248 memmap_pages
= calc_memmap_size(size
, freesize
);
6249 if (!is_highmem_idx(j
)) {
6250 if (freesize
>= memmap_pages
) {
6251 freesize
-= memmap_pages
;
6254 " %s zone: %lu pages used for memmap\n",
6255 zone_names
[j
], memmap_pages
);
6257 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6258 zone_names
[j
], memmap_pages
, freesize
);
6261 /* Account for reserved pages */
6262 if (j
== 0 && freesize
> dma_reserve
) {
6263 freesize
-= dma_reserve
;
6264 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6265 zone_names
[0], dma_reserve
);
6268 if (!is_highmem_idx(j
))
6269 nr_kernel_pages
+= freesize
;
6270 /* Charge for highmem memmap if there are enough kernel pages */
6271 else if (nr_kernel_pages
> memmap_pages
* 2)
6272 nr_kernel_pages
-= memmap_pages
;
6273 nr_all_pages
+= freesize
;
6276 * Set an approximate value for lowmem here, it will be adjusted
6277 * when the bootmem allocator frees pages into the buddy system.
6278 * And all highmem pages will be managed by the buddy system.
6280 zone
->managed_pages
= freesize
;
6284 zone
->name
= zone_names
[j
];
6285 zone
->zone_pgdat
= pgdat
;
6286 spin_lock_init(&zone
->lock
);
6287 zone_seqlock_init(zone
);
6288 zone_pcp_init(zone
);
6293 set_pageblock_order();
6294 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6295 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6296 memmap_init(size
, nid
, j
, zone_start_pfn
);
6300 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6301 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6303 unsigned long __maybe_unused start
= 0;
6304 unsigned long __maybe_unused offset
= 0;
6306 /* Skip empty nodes */
6307 if (!pgdat
->node_spanned_pages
)
6310 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6311 offset
= pgdat
->node_start_pfn
- start
;
6312 /* ia64 gets its own node_mem_map, before this, without bootmem */
6313 if (!pgdat
->node_mem_map
) {
6314 unsigned long size
, end
;
6318 * The zone's endpoints aren't required to be MAX_ORDER
6319 * aligned but the node_mem_map endpoints must be in order
6320 * for the buddy allocator to function correctly.
6322 end
= pgdat_end_pfn(pgdat
);
6323 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6324 size
= (end
- start
) * sizeof(struct page
);
6325 map
= memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
6326 pgdat
->node_mem_map
= map
+ offset
;
6328 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6329 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6330 (unsigned long)pgdat
->node_mem_map
);
6331 #ifndef CONFIG_NEED_MULTIPLE_NODES
6333 * With no DISCONTIG, the global mem_map is just set as node 0's
6335 if (pgdat
== NODE_DATA(0)) {
6336 mem_map
= NODE_DATA(0)->node_mem_map
;
6337 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6338 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6340 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6345 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6346 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6348 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6349 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6351 pg_data_t
*pgdat
= NODE_DATA(nid
);
6352 unsigned long start_pfn
= 0;
6353 unsigned long end_pfn
= 0;
6355 /* pg_data_t should be reset to zero when it's allocated */
6356 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6358 pgdat
->node_id
= nid
;
6359 pgdat
->node_start_pfn
= node_start_pfn
;
6360 pgdat
->per_cpu_nodestats
= NULL
;
6361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6362 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6363 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6364 (u64
)start_pfn
<< PAGE_SHIFT
,
6365 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6367 start_pfn
= node_start_pfn
;
6369 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6370 zones_size
, zholes_size
);
6372 alloc_node_mem_map(pgdat
);
6374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6376 * We start only with one section of pages, more pages are added as
6377 * needed until the rest of deferred pages are initialized.
6379 pgdat
->static_init_pgcnt
= min_t(unsigned long, PAGES_PER_SECTION
,
6380 pgdat
->node_spanned_pages
);
6381 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6383 free_area_init_core(pgdat
);
6386 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6388 * Only struct pages that are backed by physical memory are zeroed and
6389 * initialized by going through __init_single_page(). But, there are some
6390 * struct pages which are reserved in memblock allocator and their fields
6391 * may be accessed (for example page_to_pfn() on some configuration accesses
6392 * flags). We must explicitly zero those struct pages.
6394 void __paginginit
zero_resv_unavail(void)
6396 phys_addr_t start
, end
;
6401 * Loop through ranges that are reserved, but do not have reported
6402 * physical memory backing.
6405 for_each_resv_unavail_range(i
, &start
, &end
) {
6406 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6407 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
)))
6409 mm_zero_struct_page(pfn_to_page(pfn
));
6415 * Struct pages that do not have backing memory. This could be because
6416 * firmware is using some of this memory, or for some other reasons.
6417 * Once memblock is changed so such behaviour is not allowed: i.e.
6418 * list of "reserved" memory must be a subset of list of "memory", then
6419 * this code can be removed.
6422 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6424 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6428 #if MAX_NUMNODES > 1
6430 * Figure out the number of possible node ids.
6432 void __init
setup_nr_node_ids(void)
6434 unsigned int highest
;
6436 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6437 nr_node_ids
= highest
+ 1;
6442 * node_map_pfn_alignment - determine the maximum internode alignment
6444 * This function should be called after node map is populated and sorted.
6445 * It calculates the maximum power of two alignment which can distinguish
6448 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6449 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6450 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6451 * shifted, 1GiB is enough and this function will indicate so.
6453 * This is used to test whether pfn -> nid mapping of the chosen memory
6454 * model has fine enough granularity to avoid incorrect mapping for the
6455 * populated node map.
6457 * Returns the determined alignment in pfn's. 0 if there is no alignment
6458 * requirement (single node).
6460 unsigned long __init
node_map_pfn_alignment(void)
6462 unsigned long accl_mask
= 0, last_end
= 0;
6463 unsigned long start
, end
, mask
;
6467 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6468 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6475 * Start with a mask granular enough to pin-point to the
6476 * start pfn and tick off bits one-by-one until it becomes
6477 * too coarse to separate the current node from the last.
6479 mask
= ~((1 << __ffs(start
)) - 1);
6480 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6483 /* accumulate all internode masks */
6487 /* convert mask to number of pages */
6488 return ~accl_mask
+ 1;
6491 /* Find the lowest pfn for a node */
6492 static unsigned long __init
find_min_pfn_for_node(int nid
)
6494 unsigned long min_pfn
= ULONG_MAX
;
6495 unsigned long start_pfn
;
6498 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6499 min_pfn
= min(min_pfn
, start_pfn
);
6501 if (min_pfn
== ULONG_MAX
) {
6502 pr_warn("Could not find start_pfn for node %d\n", nid
);
6510 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6512 * It returns the minimum PFN based on information provided via
6513 * memblock_set_node().
6515 unsigned long __init
find_min_pfn_with_active_regions(void)
6517 return find_min_pfn_for_node(MAX_NUMNODES
);
6521 * early_calculate_totalpages()
6522 * Sum pages in active regions for movable zone.
6523 * Populate N_MEMORY for calculating usable_nodes.
6525 static unsigned long __init
early_calculate_totalpages(void)
6527 unsigned long totalpages
= 0;
6528 unsigned long start_pfn
, end_pfn
;
6531 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6532 unsigned long pages
= end_pfn
- start_pfn
;
6534 totalpages
+= pages
;
6536 node_set_state(nid
, N_MEMORY
);
6542 * Find the PFN the Movable zone begins in each node. Kernel memory
6543 * is spread evenly between nodes as long as the nodes have enough
6544 * memory. When they don't, some nodes will have more kernelcore than
6547 static void __init
find_zone_movable_pfns_for_nodes(void)
6550 unsigned long usable_startpfn
;
6551 unsigned long kernelcore_node
, kernelcore_remaining
;
6552 /* save the state before borrow the nodemask */
6553 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6554 unsigned long totalpages
= early_calculate_totalpages();
6555 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6556 struct memblock_region
*r
;
6558 /* Need to find movable_zone earlier when movable_node is specified. */
6559 find_usable_zone_for_movable();
6562 * If movable_node is specified, ignore kernelcore and movablecore
6565 if (movable_node_is_enabled()) {
6566 for_each_memblock(memory
, r
) {
6567 if (!memblock_is_hotpluggable(r
))
6572 usable_startpfn
= PFN_DOWN(r
->base
);
6573 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6574 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6582 * If kernelcore=mirror is specified, ignore movablecore option
6584 if (mirrored_kernelcore
) {
6585 bool mem_below_4gb_not_mirrored
= false;
6587 for_each_memblock(memory
, r
) {
6588 if (memblock_is_mirror(r
))
6593 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6595 if (usable_startpfn
< 0x100000) {
6596 mem_below_4gb_not_mirrored
= true;
6600 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6601 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6605 if (mem_below_4gb_not_mirrored
)
6606 pr_warn("This configuration results in unmirrored kernel memory.");
6612 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6613 * amount of necessary memory.
6615 if (required_kernelcore_percent
)
6616 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
6618 if (required_movablecore_percent
)
6619 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
6623 * If movablecore= was specified, calculate what size of
6624 * kernelcore that corresponds so that memory usable for
6625 * any allocation type is evenly spread. If both kernelcore
6626 * and movablecore are specified, then the value of kernelcore
6627 * will be used for required_kernelcore if it's greater than
6628 * what movablecore would have allowed.
6630 if (required_movablecore
) {
6631 unsigned long corepages
;
6634 * Round-up so that ZONE_MOVABLE is at least as large as what
6635 * was requested by the user
6637 required_movablecore
=
6638 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6639 required_movablecore
= min(totalpages
, required_movablecore
);
6640 corepages
= totalpages
- required_movablecore
;
6642 required_kernelcore
= max(required_kernelcore
, corepages
);
6646 * If kernelcore was not specified or kernelcore size is larger
6647 * than totalpages, there is no ZONE_MOVABLE.
6649 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6652 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6653 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6656 /* Spread kernelcore memory as evenly as possible throughout nodes */
6657 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6658 for_each_node_state(nid
, N_MEMORY
) {
6659 unsigned long start_pfn
, end_pfn
;
6662 * Recalculate kernelcore_node if the division per node
6663 * now exceeds what is necessary to satisfy the requested
6664 * amount of memory for the kernel
6666 if (required_kernelcore
< kernelcore_node
)
6667 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6670 * As the map is walked, we track how much memory is usable
6671 * by the kernel using kernelcore_remaining. When it is
6672 * 0, the rest of the node is usable by ZONE_MOVABLE
6674 kernelcore_remaining
= kernelcore_node
;
6676 /* Go through each range of PFNs within this node */
6677 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6678 unsigned long size_pages
;
6680 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6681 if (start_pfn
>= end_pfn
)
6684 /* Account for what is only usable for kernelcore */
6685 if (start_pfn
< usable_startpfn
) {
6686 unsigned long kernel_pages
;
6687 kernel_pages
= min(end_pfn
, usable_startpfn
)
6690 kernelcore_remaining
-= min(kernel_pages
,
6691 kernelcore_remaining
);
6692 required_kernelcore
-= min(kernel_pages
,
6693 required_kernelcore
);
6695 /* Continue if range is now fully accounted */
6696 if (end_pfn
<= usable_startpfn
) {
6699 * Push zone_movable_pfn to the end so
6700 * that if we have to rebalance
6701 * kernelcore across nodes, we will
6702 * not double account here
6704 zone_movable_pfn
[nid
] = end_pfn
;
6707 start_pfn
= usable_startpfn
;
6711 * The usable PFN range for ZONE_MOVABLE is from
6712 * start_pfn->end_pfn. Calculate size_pages as the
6713 * number of pages used as kernelcore
6715 size_pages
= end_pfn
- start_pfn
;
6716 if (size_pages
> kernelcore_remaining
)
6717 size_pages
= kernelcore_remaining
;
6718 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6721 * Some kernelcore has been met, update counts and
6722 * break if the kernelcore for this node has been
6725 required_kernelcore
-= min(required_kernelcore
,
6727 kernelcore_remaining
-= size_pages
;
6728 if (!kernelcore_remaining
)
6734 * If there is still required_kernelcore, we do another pass with one
6735 * less node in the count. This will push zone_movable_pfn[nid] further
6736 * along on the nodes that still have memory until kernelcore is
6740 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6744 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6745 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6746 zone_movable_pfn
[nid
] =
6747 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6750 /* restore the node_state */
6751 node_states
[N_MEMORY
] = saved_node_state
;
6754 /* Any regular or high memory on that node ? */
6755 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6757 enum zone_type zone_type
;
6759 if (N_MEMORY
== N_NORMAL_MEMORY
)
6762 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6763 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6764 if (populated_zone(zone
)) {
6765 node_set_state(nid
, N_HIGH_MEMORY
);
6766 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6767 zone_type
<= ZONE_NORMAL
)
6768 node_set_state(nid
, N_NORMAL_MEMORY
);
6775 * free_area_init_nodes - Initialise all pg_data_t and zone data
6776 * @max_zone_pfn: an array of max PFNs for each zone
6778 * This will call free_area_init_node() for each active node in the system.
6779 * Using the page ranges provided by memblock_set_node(), the size of each
6780 * zone in each node and their holes is calculated. If the maximum PFN
6781 * between two adjacent zones match, it is assumed that the zone is empty.
6782 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6783 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6784 * starts where the previous one ended. For example, ZONE_DMA32 starts
6785 * at arch_max_dma_pfn.
6787 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6789 unsigned long start_pfn
, end_pfn
;
6792 /* Record where the zone boundaries are */
6793 memset(arch_zone_lowest_possible_pfn
, 0,
6794 sizeof(arch_zone_lowest_possible_pfn
));
6795 memset(arch_zone_highest_possible_pfn
, 0,
6796 sizeof(arch_zone_highest_possible_pfn
));
6798 start_pfn
= find_min_pfn_with_active_regions();
6800 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6801 if (i
== ZONE_MOVABLE
)
6804 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6805 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6806 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6808 start_pfn
= end_pfn
;
6811 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6812 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6813 find_zone_movable_pfns_for_nodes();
6815 /* Print out the zone ranges */
6816 pr_info("Zone ranges:\n");
6817 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6818 if (i
== ZONE_MOVABLE
)
6820 pr_info(" %-8s ", zone_names
[i
]);
6821 if (arch_zone_lowest_possible_pfn
[i
] ==
6822 arch_zone_highest_possible_pfn
[i
])
6825 pr_cont("[mem %#018Lx-%#018Lx]\n",
6826 (u64
)arch_zone_lowest_possible_pfn
[i
]
6828 ((u64
)arch_zone_highest_possible_pfn
[i
]
6829 << PAGE_SHIFT
) - 1);
6832 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6833 pr_info("Movable zone start for each node\n");
6834 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6835 if (zone_movable_pfn
[i
])
6836 pr_info(" Node %d: %#018Lx\n", i
,
6837 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6840 /* Print out the early node map */
6841 pr_info("Early memory node ranges\n");
6842 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6843 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6844 (u64
)start_pfn
<< PAGE_SHIFT
,
6845 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6847 /* Initialise every node */
6848 mminit_verify_pageflags_layout();
6849 setup_nr_node_ids();
6850 zero_resv_unavail();
6851 for_each_online_node(nid
) {
6852 pg_data_t
*pgdat
= NODE_DATA(nid
);
6853 free_area_init_node(nid
, NULL
,
6854 find_min_pfn_for_node(nid
), NULL
);
6856 /* Any memory on that node */
6857 if (pgdat
->node_present_pages
)
6858 node_set_state(nid
, N_MEMORY
);
6859 check_for_memory(pgdat
, nid
);
6863 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
6864 unsigned long *percent
)
6866 unsigned long long coremem
;
6872 /* Value may be a percentage of total memory, otherwise bytes */
6873 coremem
= simple_strtoull(p
, &endptr
, 0);
6874 if (*endptr
== '%') {
6875 /* Paranoid check for percent values greater than 100 */
6876 WARN_ON(coremem
> 100);
6880 coremem
= memparse(p
, &p
);
6881 /* Paranoid check that UL is enough for the coremem value */
6882 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6884 *core
= coremem
>> PAGE_SHIFT
;
6891 * kernelcore=size sets the amount of memory for use for allocations that
6892 * cannot be reclaimed or migrated.
6894 static int __init
cmdline_parse_kernelcore(char *p
)
6896 /* parse kernelcore=mirror */
6897 if (parse_option_str(p
, "mirror")) {
6898 mirrored_kernelcore
= true;
6902 return cmdline_parse_core(p
, &required_kernelcore
,
6903 &required_kernelcore_percent
);
6907 * movablecore=size sets the amount of memory for use for allocations that
6908 * can be reclaimed or migrated.
6910 static int __init
cmdline_parse_movablecore(char *p
)
6912 return cmdline_parse_core(p
, &required_movablecore
,
6913 &required_movablecore_percent
);
6916 early_param("kernelcore", cmdline_parse_kernelcore
);
6917 early_param("movablecore", cmdline_parse_movablecore
);
6919 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6921 void adjust_managed_page_count(struct page
*page
, long count
)
6923 spin_lock(&managed_page_count_lock
);
6924 page_zone(page
)->managed_pages
+= count
;
6925 totalram_pages
+= count
;
6926 #ifdef CONFIG_HIGHMEM
6927 if (PageHighMem(page
))
6928 totalhigh_pages
+= count
;
6930 spin_unlock(&managed_page_count_lock
);
6932 EXPORT_SYMBOL(adjust_managed_page_count
);
6934 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6937 unsigned long pages
= 0;
6939 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6940 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6941 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6942 struct page
*page
= virt_to_page(pos
);
6943 void *direct_map_addr
;
6946 * 'direct_map_addr' might be different from 'pos'
6947 * because some architectures' virt_to_page()
6948 * work with aliases. Getting the direct map
6949 * address ensures that we get a _writeable_
6950 * alias for the memset().
6952 direct_map_addr
= page_address(page
);
6953 if ((unsigned int)poison
<= 0xFF)
6954 memset(direct_map_addr
, poison
, PAGE_SIZE
);
6956 free_reserved_page(page
);
6960 pr_info("Freeing %s memory: %ldK\n",
6961 s
, pages
<< (PAGE_SHIFT
- 10));
6965 EXPORT_SYMBOL(free_reserved_area
);
6967 #ifdef CONFIG_HIGHMEM
6968 void free_highmem_page(struct page
*page
)
6970 __free_reserved_page(page
);
6972 page_zone(page
)->managed_pages
++;
6978 void __init
mem_init_print_info(const char *str
)
6980 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6981 unsigned long init_code_size
, init_data_size
;
6983 physpages
= get_num_physpages();
6984 codesize
= _etext
- _stext
;
6985 datasize
= _edata
- _sdata
;
6986 rosize
= __end_rodata
- __start_rodata
;
6987 bss_size
= __bss_stop
- __bss_start
;
6988 init_data_size
= __init_end
- __init_begin
;
6989 init_code_size
= _einittext
- _sinittext
;
6992 * Detect special cases and adjust section sizes accordingly:
6993 * 1) .init.* may be embedded into .data sections
6994 * 2) .init.text.* may be out of [__init_begin, __init_end],
6995 * please refer to arch/tile/kernel/vmlinux.lds.S.
6996 * 3) .rodata.* may be embedded into .text or .data sections.
6998 #define adj_init_size(start, end, size, pos, adj) \
7000 if (start <= pos && pos < end && size > adj) \
7004 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7005 _sinittext
, init_code_size
);
7006 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7007 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7008 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7009 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7011 #undef adj_init_size
7013 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7014 #ifdef CONFIG_HIGHMEM
7018 nr_free_pages() << (PAGE_SHIFT
- 10),
7019 physpages
<< (PAGE_SHIFT
- 10),
7020 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7021 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7022 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
7023 totalcma_pages
<< (PAGE_SHIFT
- 10),
7024 #ifdef CONFIG_HIGHMEM
7025 totalhigh_pages
<< (PAGE_SHIFT
- 10),
7027 str
? ", " : "", str
? str
: "");
7031 * set_dma_reserve - set the specified number of pages reserved in the first zone
7032 * @new_dma_reserve: The number of pages to mark reserved
7034 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7035 * In the DMA zone, a significant percentage may be consumed by kernel image
7036 * and other unfreeable allocations which can skew the watermarks badly. This
7037 * function may optionally be used to account for unfreeable pages in the
7038 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7039 * smaller per-cpu batchsize.
7041 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7043 dma_reserve
= new_dma_reserve
;
7046 void __init
free_area_init(unsigned long *zones_size
)
7048 zero_resv_unavail();
7049 free_area_init_node(0, zones_size
,
7050 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7053 static int page_alloc_cpu_dead(unsigned int cpu
)
7056 lru_add_drain_cpu(cpu
);
7060 * Spill the event counters of the dead processor
7061 * into the current processors event counters.
7062 * This artificially elevates the count of the current
7065 vm_events_fold_cpu(cpu
);
7068 * Zero the differential counters of the dead processor
7069 * so that the vm statistics are consistent.
7071 * This is only okay since the processor is dead and cannot
7072 * race with what we are doing.
7074 cpu_vm_stats_fold(cpu
);
7078 void __init
page_alloc_init(void)
7082 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7083 "mm/page_alloc:dead", NULL
,
7084 page_alloc_cpu_dead
);
7089 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7090 * or min_free_kbytes changes.
7092 static void calculate_totalreserve_pages(void)
7094 struct pglist_data
*pgdat
;
7095 unsigned long reserve_pages
= 0;
7096 enum zone_type i
, j
;
7098 for_each_online_pgdat(pgdat
) {
7100 pgdat
->totalreserve_pages
= 0;
7102 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7103 struct zone
*zone
= pgdat
->node_zones
+ i
;
7106 /* Find valid and maximum lowmem_reserve in the zone */
7107 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7108 if (zone
->lowmem_reserve
[j
] > max
)
7109 max
= zone
->lowmem_reserve
[j
];
7112 /* we treat the high watermark as reserved pages. */
7113 max
+= high_wmark_pages(zone
);
7115 if (max
> zone
->managed_pages
)
7116 max
= zone
->managed_pages
;
7118 pgdat
->totalreserve_pages
+= max
;
7120 reserve_pages
+= max
;
7123 totalreserve_pages
= reserve_pages
;
7127 * setup_per_zone_lowmem_reserve - called whenever
7128 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7129 * has a correct pages reserved value, so an adequate number of
7130 * pages are left in the zone after a successful __alloc_pages().
7132 static void setup_per_zone_lowmem_reserve(void)
7134 struct pglist_data
*pgdat
;
7135 enum zone_type j
, idx
;
7137 for_each_online_pgdat(pgdat
) {
7138 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7139 struct zone
*zone
= pgdat
->node_zones
+ j
;
7140 unsigned long managed_pages
= zone
->managed_pages
;
7142 zone
->lowmem_reserve
[j
] = 0;
7146 struct zone
*lower_zone
;
7149 lower_zone
= pgdat
->node_zones
+ idx
;
7151 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7152 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7153 lower_zone
->lowmem_reserve
[j
] = 0;
7155 lower_zone
->lowmem_reserve
[j
] =
7156 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7158 managed_pages
+= lower_zone
->managed_pages
;
7163 /* update totalreserve_pages */
7164 calculate_totalreserve_pages();
7167 static void __setup_per_zone_wmarks(void)
7169 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7170 unsigned long lowmem_pages
= 0;
7172 unsigned long flags
;
7174 /* Calculate total number of !ZONE_HIGHMEM pages */
7175 for_each_zone(zone
) {
7176 if (!is_highmem(zone
))
7177 lowmem_pages
+= zone
->managed_pages
;
7180 for_each_zone(zone
) {
7183 spin_lock_irqsave(&zone
->lock
, flags
);
7184 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7185 do_div(tmp
, lowmem_pages
);
7186 if (is_highmem(zone
)) {
7188 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7189 * need highmem pages, so cap pages_min to a small
7192 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7193 * deltas control asynch page reclaim, and so should
7194 * not be capped for highmem.
7196 unsigned long min_pages
;
7198 min_pages
= zone
->managed_pages
/ 1024;
7199 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7200 zone
->watermark
[WMARK_MIN
] = min_pages
;
7203 * If it's a lowmem zone, reserve a number of pages
7204 * proportionate to the zone's size.
7206 zone
->watermark
[WMARK_MIN
] = tmp
;
7210 * Set the kswapd watermarks distance according to the
7211 * scale factor in proportion to available memory, but
7212 * ensure a minimum size on small systems.
7214 tmp
= max_t(u64
, tmp
>> 2,
7215 mult_frac(zone
->managed_pages
,
7216 watermark_scale_factor
, 10000));
7218 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7219 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7221 spin_unlock_irqrestore(&zone
->lock
, flags
);
7224 /* update totalreserve_pages */
7225 calculate_totalreserve_pages();
7229 * setup_per_zone_wmarks - called when min_free_kbytes changes
7230 * or when memory is hot-{added|removed}
7232 * Ensures that the watermark[min,low,high] values for each zone are set
7233 * correctly with respect to min_free_kbytes.
7235 void setup_per_zone_wmarks(void)
7237 static DEFINE_SPINLOCK(lock
);
7240 __setup_per_zone_wmarks();
7245 * Initialise min_free_kbytes.
7247 * For small machines we want it small (128k min). For large machines
7248 * we want it large (64MB max). But it is not linear, because network
7249 * bandwidth does not increase linearly with machine size. We use
7251 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7252 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7268 int __meminit
init_per_zone_wmark_min(void)
7270 unsigned long lowmem_kbytes
;
7271 int new_min_free_kbytes
;
7273 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7274 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7276 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7277 min_free_kbytes
= new_min_free_kbytes
;
7278 if (min_free_kbytes
< 128)
7279 min_free_kbytes
= 128;
7280 if (min_free_kbytes
> 65536)
7281 min_free_kbytes
= 65536;
7283 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7284 new_min_free_kbytes
, user_min_free_kbytes
);
7286 setup_per_zone_wmarks();
7287 refresh_zone_stat_thresholds();
7288 setup_per_zone_lowmem_reserve();
7291 setup_min_unmapped_ratio();
7292 setup_min_slab_ratio();
7297 core_initcall(init_per_zone_wmark_min
)
7300 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7301 * that we can call two helper functions whenever min_free_kbytes
7304 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7305 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7309 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7314 user_min_free_kbytes
= min_free_kbytes
;
7315 setup_per_zone_wmarks();
7320 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7321 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7325 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7330 setup_per_zone_wmarks();
7336 static void setup_min_unmapped_ratio(void)
7341 for_each_online_pgdat(pgdat
)
7342 pgdat
->min_unmapped_pages
= 0;
7345 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7346 sysctl_min_unmapped_ratio
) / 100;
7350 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7351 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7355 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7359 setup_min_unmapped_ratio();
7364 static void setup_min_slab_ratio(void)
7369 for_each_online_pgdat(pgdat
)
7370 pgdat
->min_slab_pages
= 0;
7373 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7374 sysctl_min_slab_ratio
) / 100;
7377 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7378 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7382 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7386 setup_min_slab_ratio();
7393 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7394 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7395 * whenever sysctl_lowmem_reserve_ratio changes.
7397 * The reserve ratio obviously has absolutely no relation with the
7398 * minimum watermarks. The lowmem reserve ratio can only make sense
7399 * if in function of the boot time zone sizes.
7401 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7402 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7404 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7405 setup_per_zone_lowmem_reserve();
7410 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7411 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7412 * pagelist can have before it gets flushed back to buddy allocator.
7414 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7415 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7418 int old_percpu_pagelist_fraction
;
7421 mutex_lock(&pcp_batch_high_lock
);
7422 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7424 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7425 if (!write
|| ret
< 0)
7428 /* Sanity checking to avoid pcp imbalance */
7429 if (percpu_pagelist_fraction
&&
7430 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7431 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7437 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7440 for_each_populated_zone(zone
) {
7443 for_each_possible_cpu(cpu
)
7444 pageset_set_high_and_batch(zone
,
7445 per_cpu_ptr(zone
->pageset
, cpu
));
7448 mutex_unlock(&pcp_batch_high_lock
);
7453 int hashdist
= HASHDIST_DEFAULT
;
7455 static int __init
set_hashdist(char *str
)
7459 hashdist
= simple_strtoul(str
, &str
, 0);
7462 __setup("hashdist=", set_hashdist
);
7465 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7467 * Returns the number of pages that arch has reserved but
7468 * is not known to alloc_large_system_hash().
7470 static unsigned long __init
arch_reserved_kernel_pages(void)
7477 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7478 * machines. As memory size is increased the scale is also increased but at
7479 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7480 * quadruples the scale is increased by one, which means the size of hash table
7481 * only doubles, instead of quadrupling as well.
7482 * Because 32-bit systems cannot have large physical memory, where this scaling
7483 * makes sense, it is disabled on such platforms.
7485 #if __BITS_PER_LONG > 32
7486 #define ADAPT_SCALE_BASE (64ul << 30)
7487 #define ADAPT_SCALE_SHIFT 2
7488 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7492 * allocate a large system hash table from bootmem
7493 * - it is assumed that the hash table must contain an exact power-of-2
7494 * quantity of entries
7495 * - limit is the number of hash buckets, not the total allocation size
7497 void *__init
alloc_large_system_hash(const char *tablename
,
7498 unsigned long bucketsize
,
7499 unsigned long numentries
,
7502 unsigned int *_hash_shift
,
7503 unsigned int *_hash_mask
,
7504 unsigned long low_limit
,
7505 unsigned long high_limit
)
7507 unsigned long long max
= high_limit
;
7508 unsigned long log2qty
, size
;
7512 /* allow the kernel cmdline to have a say */
7514 /* round applicable memory size up to nearest megabyte */
7515 numentries
= nr_kernel_pages
;
7516 numentries
-= arch_reserved_kernel_pages();
7518 /* It isn't necessary when PAGE_SIZE >= 1MB */
7519 if (PAGE_SHIFT
< 20)
7520 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7522 #if __BITS_PER_LONG > 32
7524 unsigned long adapt
;
7526 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7527 adapt
<<= ADAPT_SCALE_SHIFT
)
7532 /* limit to 1 bucket per 2^scale bytes of low memory */
7533 if (scale
> PAGE_SHIFT
)
7534 numentries
>>= (scale
- PAGE_SHIFT
);
7536 numentries
<<= (PAGE_SHIFT
- scale
);
7538 /* Make sure we've got at least a 0-order allocation.. */
7539 if (unlikely(flags
& HASH_SMALL
)) {
7540 /* Makes no sense without HASH_EARLY */
7541 WARN_ON(!(flags
& HASH_EARLY
));
7542 if (!(numentries
>> *_hash_shift
)) {
7543 numentries
= 1UL << *_hash_shift
;
7544 BUG_ON(!numentries
);
7546 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7547 numentries
= PAGE_SIZE
/ bucketsize
;
7549 numentries
= roundup_pow_of_two(numentries
);
7551 /* limit allocation size to 1/16 total memory by default */
7553 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7554 do_div(max
, bucketsize
);
7556 max
= min(max
, 0x80000000ULL
);
7558 if (numentries
< low_limit
)
7559 numentries
= low_limit
;
7560 if (numentries
> max
)
7563 log2qty
= ilog2(numentries
);
7565 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7567 size
= bucketsize
<< log2qty
;
7568 if (flags
& HASH_EARLY
) {
7569 if (flags
& HASH_ZERO
)
7570 table
= memblock_virt_alloc_nopanic(size
, 0);
7572 table
= memblock_virt_alloc_raw(size
, 0);
7573 } else if (hashdist
) {
7574 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7577 * If bucketsize is not a power-of-two, we may free
7578 * some pages at the end of hash table which
7579 * alloc_pages_exact() automatically does
7581 if (get_order(size
) < MAX_ORDER
) {
7582 table
= alloc_pages_exact(size
, gfp_flags
);
7583 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7586 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7589 panic("Failed to allocate %s hash table\n", tablename
);
7591 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7592 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7595 *_hash_shift
= log2qty
;
7597 *_hash_mask
= (1 << log2qty
) - 1;
7603 * This function checks whether pageblock includes unmovable pages or not.
7604 * If @count is not zero, it is okay to include less @count unmovable pages
7606 * PageLRU check without isolation or lru_lock could race so that
7607 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7608 * check without lock_page also may miss some movable non-lru pages at
7609 * race condition. So you can't expect this function should be exact.
7611 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7613 bool skip_hwpoisoned_pages
)
7615 unsigned long pfn
, iter
, found
;
7618 * TODO we could make this much more efficient by not checking every
7619 * page in the range if we know all of them are in MOVABLE_ZONE and
7620 * that the movable zone guarantees that pages are migratable but
7621 * the later is not the case right now unfortunatelly. E.g. movablecore
7622 * can still lead to having bootmem allocations in zone_movable.
7626 * CMA allocations (alloc_contig_range) really need to mark isolate
7627 * CMA pageblocks even when they are not movable in fact so consider
7628 * them movable here.
7630 if (is_migrate_cma(migratetype
) &&
7631 is_migrate_cma(get_pageblock_migratetype(page
)))
7634 pfn
= page_to_pfn(page
);
7635 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7636 unsigned long check
= pfn
+ iter
;
7638 if (!pfn_valid_within(check
))
7641 page
= pfn_to_page(check
);
7643 if (PageReserved(page
))
7647 * Hugepages are not in LRU lists, but they're movable.
7648 * We need not scan over tail pages bacause we don't
7649 * handle each tail page individually in migration.
7651 if (PageHuge(page
)) {
7653 if (!hugepage_migration_supported(page_hstate(page
)))
7656 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7661 * We can't use page_count without pin a page
7662 * because another CPU can free compound page.
7663 * This check already skips compound tails of THP
7664 * because their page->_refcount is zero at all time.
7666 if (!page_ref_count(page
)) {
7667 if (PageBuddy(page
))
7668 iter
+= (1 << page_order(page
)) - 1;
7673 * The HWPoisoned page may be not in buddy system, and
7674 * page_count() is not 0.
7676 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7679 if (__PageMovable(page
))
7685 * If there are RECLAIMABLE pages, we need to check
7686 * it. But now, memory offline itself doesn't call
7687 * shrink_node_slabs() and it still to be fixed.
7690 * If the page is not RAM, page_count()should be 0.
7691 * we don't need more check. This is an _used_ not-movable page.
7693 * The problematic thing here is PG_reserved pages. PG_reserved
7694 * is set to both of a memory hole page and a _used_ kernel
7702 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
7706 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7708 static unsigned long pfn_max_align_down(unsigned long pfn
)
7710 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7711 pageblock_nr_pages
) - 1);
7714 static unsigned long pfn_max_align_up(unsigned long pfn
)
7716 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7717 pageblock_nr_pages
));
7720 /* [start, end) must belong to a single zone. */
7721 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7722 unsigned long start
, unsigned long end
)
7724 /* This function is based on compact_zone() from compaction.c. */
7725 unsigned long nr_reclaimed
;
7726 unsigned long pfn
= start
;
7727 unsigned int tries
= 0;
7732 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7733 if (fatal_signal_pending(current
)) {
7738 if (list_empty(&cc
->migratepages
)) {
7739 cc
->nr_migratepages
= 0;
7740 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7746 } else if (++tries
== 5) {
7747 ret
= ret
< 0 ? ret
: -EBUSY
;
7751 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7753 cc
->nr_migratepages
-= nr_reclaimed
;
7755 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7756 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
7759 putback_movable_pages(&cc
->migratepages
);
7766 * alloc_contig_range() -- tries to allocate given range of pages
7767 * @start: start PFN to allocate
7768 * @end: one-past-the-last PFN to allocate
7769 * @migratetype: migratetype of the underlaying pageblocks (either
7770 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7771 * in range must have the same migratetype and it must
7772 * be either of the two.
7773 * @gfp_mask: GFP mask to use during compaction
7775 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7776 * aligned. The PFN range must belong to a single zone.
7778 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7779 * pageblocks in the range. Once isolated, the pageblocks should not
7780 * be modified by others.
7782 * Returns zero on success or negative error code. On success all
7783 * pages which PFN is in [start, end) are allocated for the caller and
7784 * need to be freed with free_contig_range().
7786 int alloc_contig_range(unsigned long start
, unsigned long end
,
7787 unsigned migratetype
, gfp_t gfp_mask
)
7789 unsigned long outer_start
, outer_end
;
7793 struct compact_control cc
= {
7794 .nr_migratepages
= 0,
7796 .zone
= page_zone(pfn_to_page(start
)),
7797 .mode
= MIGRATE_SYNC
,
7798 .ignore_skip_hint
= true,
7799 .no_set_skip_hint
= true,
7800 .gfp_mask
= current_gfp_context(gfp_mask
),
7802 INIT_LIST_HEAD(&cc
.migratepages
);
7805 * What we do here is we mark all pageblocks in range as
7806 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7807 * have different sizes, and due to the way page allocator
7808 * work, we align the range to biggest of the two pages so
7809 * that page allocator won't try to merge buddies from
7810 * different pageblocks and change MIGRATE_ISOLATE to some
7811 * other migration type.
7813 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7814 * migrate the pages from an unaligned range (ie. pages that
7815 * we are interested in). This will put all the pages in
7816 * range back to page allocator as MIGRATE_ISOLATE.
7818 * When this is done, we take the pages in range from page
7819 * allocator removing them from the buddy system. This way
7820 * page allocator will never consider using them.
7822 * This lets us mark the pageblocks back as
7823 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7824 * aligned range but not in the unaligned, original range are
7825 * put back to page allocator so that buddy can use them.
7828 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7829 pfn_max_align_up(end
), migratetype
,
7835 * In case of -EBUSY, we'd like to know which page causes problem.
7836 * So, just fall through. test_pages_isolated() has a tracepoint
7837 * which will report the busy page.
7839 * It is possible that busy pages could become available before
7840 * the call to test_pages_isolated, and the range will actually be
7841 * allocated. So, if we fall through be sure to clear ret so that
7842 * -EBUSY is not accidentally used or returned to caller.
7844 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7845 if (ret
&& ret
!= -EBUSY
)
7850 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7851 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7852 * more, all pages in [start, end) are free in page allocator.
7853 * What we are going to do is to allocate all pages from
7854 * [start, end) (that is remove them from page allocator).
7856 * The only problem is that pages at the beginning and at the
7857 * end of interesting range may be not aligned with pages that
7858 * page allocator holds, ie. they can be part of higher order
7859 * pages. Because of this, we reserve the bigger range and
7860 * once this is done free the pages we are not interested in.
7862 * We don't have to hold zone->lock here because the pages are
7863 * isolated thus they won't get removed from buddy.
7866 lru_add_drain_all();
7867 drain_all_pages(cc
.zone
);
7870 outer_start
= start
;
7871 while (!PageBuddy(pfn_to_page(outer_start
))) {
7872 if (++order
>= MAX_ORDER
) {
7873 outer_start
= start
;
7876 outer_start
&= ~0UL << order
;
7879 if (outer_start
!= start
) {
7880 order
= page_order(pfn_to_page(outer_start
));
7883 * outer_start page could be small order buddy page and
7884 * it doesn't include start page. Adjust outer_start
7885 * in this case to report failed page properly
7886 * on tracepoint in test_pages_isolated()
7888 if (outer_start
+ (1UL << order
) <= start
)
7889 outer_start
= start
;
7892 /* Make sure the range is really isolated. */
7893 if (test_pages_isolated(outer_start
, end
, false)) {
7894 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7895 __func__
, outer_start
, end
);
7900 /* Grab isolated pages from freelists. */
7901 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7907 /* Free head and tail (if any) */
7908 if (start
!= outer_start
)
7909 free_contig_range(outer_start
, start
- outer_start
);
7910 if (end
!= outer_end
)
7911 free_contig_range(end
, outer_end
- end
);
7914 undo_isolate_page_range(pfn_max_align_down(start
),
7915 pfn_max_align_up(end
), migratetype
);
7919 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7921 unsigned int count
= 0;
7923 for (; nr_pages
--; pfn
++) {
7924 struct page
*page
= pfn_to_page(pfn
);
7926 count
+= page_count(page
) != 1;
7929 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7933 #ifdef CONFIG_MEMORY_HOTPLUG
7935 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7936 * page high values need to be recalulated.
7938 void __meminit
zone_pcp_update(struct zone
*zone
)
7941 mutex_lock(&pcp_batch_high_lock
);
7942 for_each_possible_cpu(cpu
)
7943 pageset_set_high_and_batch(zone
,
7944 per_cpu_ptr(zone
->pageset
, cpu
));
7945 mutex_unlock(&pcp_batch_high_lock
);
7949 void zone_pcp_reset(struct zone
*zone
)
7951 unsigned long flags
;
7953 struct per_cpu_pageset
*pset
;
7955 /* avoid races with drain_pages() */
7956 local_irq_save(flags
);
7957 if (zone
->pageset
!= &boot_pageset
) {
7958 for_each_online_cpu(cpu
) {
7959 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7960 drain_zonestat(zone
, pset
);
7962 free_percpu(zone
->pageset
);
7963 zone
->pageset
= &boot_pageset
;
7965 local_irq_restore(flags
);
7968 #ifdef CONFIG_MEMORY_HOTREMOVE
7970 * All pages in the range must be in a single zone and isolated
7971 * before calling this.
7974 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7978 unsigned int order
, i
;
7980 unsigned long flags
;
7981 /* find the first valid pfn */
7982 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7987 offline_mem_sections(pfn
, end_pfn
);
7988 zone
= page_zone(pfn_to_page(pfn
));
7989 spin_lock_irqsave(&zone
->lock
, flags
);
7991 while (pfn
< end_pfn
) {
7992 if (!pfn_valid(pfn
)) {
7996 page
= pfn_to_page(pfn
);
7998 * The HWPoisoned page may be not in buddy system, and
7999 * page_count() is not 0.
8001 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8003 SetPageReserved(page
);
8007 BUG_ON(page_count(page
));
8008 BUG_ON(!PageBuddy(page
));
8009 order
= page_order(page
);
8010 #ifdef CONFIG_DEBUG_VM
8011 pr_info("remove from free list %lx %d %lx\n",
8012 pfn
, 1 << order
, end_pfn
);
8014 list_del(&page
->lru
);
8015 rmv_page_order(page
);
8016 zone
->free_area
[order
].nr_free
--;
8017 for (i
= 0; i
< (1 << order
); i
++)
8018 SetPageReserved((page
+i
));
8019 pfn
+= (1 << order
);
8021 spin_unlock_irqrestore(&zone
->lock
, flags
);
8025 bool is_free_buddy_page(struct page
*page
)
8027 struct zone
*zone
= page_zone(page
);
8028 unsigned long pfn
= page_to_pfn(page
);
8029 unsigned long flags
;
8032 spin_lock_irqsave(&zone
->lock
, flags
);
8033 for (order
= 0; order
< MAX_ORDER
; order
++) {
8034 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8036 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8039 spin_unlock_irqrestore(&zone
->lock
, flags
);
8041 return order
< MAX_ORDER
;