2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock
);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node
);
78 EXPORT_PER_CPU_SYMBOL(numa_node
);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 int _node_numa_mem_
[MAX_NUMNODES
];
94 * Array of node states.
96 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
97 [N_POSSIBLE
] = NODE_MASK_ALL
,
98 [N_ONLINE
] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY
] = { { [0] = 1UL } },
107 [N_CPU
] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states
);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock
);
115 unsigned long totalram_pages __read_mostly
;
116 unsigned long totalreserve_pages __read_mostly
;
117 unsigned long totalcma_pages __read_mostly
;
119 int percpu_pagelist_fraction
;
120 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page
*page
)
135 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
137 page
->index
= migratetype
;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask
;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex
));
155 if (saved_gfp_mask
) {
156 gfp_allowed_mask
= saved_gfp_mask
;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex
));
164 WARN_ON(saved_gfp_mask
);
165 saved_gfp_mask
= gfp_allowed_mask
;
166 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly
;
181 static void __free_pages_ok(struct page
*page
, unsigned int order
);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 EXPORT_SYMBOL(totalram_pages
);
209 static char * const zone_names
[MAX_NR_ZONES
] = {
210 #ifdef CONFIG_ZONE_DMA
213 #ifdef CONFIG_ZONE_DMA32
217 #ifdef CONFIG_HIGHMEM
221 #ifdef CONFIG_ZONE_DEVICE
226 char * const migratetype_names
[MIGRATE_TYPES
] = {
234 #ifdef CONFIG_MEMORY_ISOLATION
239 compound_page_dtor
* const compound_page_dtors
[] = {
242 #ifdef CONFIG_HUGETLB_PAGE
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
250 int min_free_kbytes
= 1024;
251 int user_min_free_kbytes
= -1;
252 int watermark_scale_factor
= 10;
254 static unsigned long __meminitdata nr_kernel_pages
;
255 static unsigned long __meminitdata nr_all_pages
;
256 static unsigned long __meminitdata dma_reserve
;
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
261 static unsigned long __initdata required_kernelcore
;
262 static unsigned long __initdata required_movablecore
;
263 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
264 static bool mirrored_kernelcore
;
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 EXPORT_SYMBOL(movable_zone
);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
272 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
273 int nr_online_nodes __read_mostly
= 1;
274 EXPORT_SYMBOL(nr_node_ids
);
275 EXPORT_SYMBOL(nr_online_nodes
);
278 int page_group_by_mobility_disabled __read_mostly
;
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
283 pgdat
->first_deferred_pfn
= ULONG_MAX
;
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
289 if (pfn
>= NODE_DATA(early_pfn_to_nid(pfn
))->first_deferred_pfn
)
295 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
297 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
307 static inline bool update_defer_init(pg_data_t
*pgdat
,
308 unsigned long pfn
, unsigned long zone_end
,
309 unsigned long *nr_initialised
)
311 unsigned long max_initialise
;
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end
< pgdat_end_pfn(pgdat
))
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
320 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
321 (pgdat
->node_spanned_pages
>> 8));
324 if ((*nr_initialised
> max_initialise
) &&
325 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
326 pgdat
->first_deferred_pfn
= pfn
;
333 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
337 static inline bool early_page_uninitialised(unsigned long pfn
)
342 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
347 static inline bool update_defer_init(pg_data_t
*pgdat
,
348 unsigned long pfn
, unsigned long zone_end
,
349 unsigned long *nr_initialised
)
356 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
358 if (unlikely(page_group_by_mobility_disabled
&&
359 migratetype
< MIGRATE_PCPTYPES
))
360 migratetype
= MIGRATE_UNMOVABLE
;
362 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
363 PB_migrate
, PB_migrate_end
);
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
371 unsigned long pfn
= page_to_pfn(page
);
372 unsigned long sp
, start_pfn
;
375 seq
= zone_span_seqbegin(zone
);
376 start_pfn
= zone
->zone_start_pfn
;
377 sp
= zone
->spanned_pages
;
378 if (!zone_spans_pfn(zone
, pfn
))
380 } while (zone_span_seqretry(zone
, seq
));
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn
, zone_to_nid(zone
), zone
->name
,
385 start_pfn
, start_pfn
+ sp
);
390 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
392 if (!pfn_valid_within(page_to_pfn(page
)))
394 if (zone
!= page_zone(page
))
400 * Temporary debugging check for pages not lying within a given zone.
402 static int bad_range(struct zone
*zone
, struct page
*page
)
404 if (page_outside_zone_boundaries(zone
, page
))
406 if (!page_is_consistent(zone
, page
))
412 static inline int bad_range(struct zone
*zone
, struct page
*page
)
418 static void bad_page(struct page
*page
, const char *reason
,
419 unsigned long bad_flags
)
421 static unsigned long resume
;
422 static unsigned long nr_shown
;
423 static unsigned long nr_unshown
;
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page
)) {
427 page_mapcount_reset(page
); /* remove PageBuddy */
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
435 if (nr_shown
== 60) {
436 if (time_before(jiffies
, resume
)) {
442 "BUG: Bad page state: %lu messages suppressed\n",
449 resume
= jiffies
+ 60 * HZ
;
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current
->comm
, page_to_pfn(page
));
453 __dump_page(page
, reason
);
454 bad_flags
&= page
->flags
;
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags
, &bad_flags
);
458 dump_page_owner(page
);
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page
); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
469 * Higher-order pages are called "compound pages". They are structured thusly:
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
483 void free_compound_page(struct page
*page
)
485 __free_pages_ok(page
, compound_order(page
));
488 void prep_compound_page(struct page
*page
, unsigned int order
)
491 int nr_pages
= 1 << order
;
493 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
494 set_compound_order(page
, order
);
496 for (i
= 1; i
< nr_pages
; i
++) {
497 struct page
*p
= page
+ i
;
498 set_page_count(p
, 0);
499 p
->mapping
= TAIL_MAPPING
;
500 set_compound_head(p
, page
);
502 atomic_set(compound_mapcount_ptr(page
), -1);
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder
;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
510 bool _debug_guardpage_enabled __read_mostly
;
512 static int __init
early_debug_pagealloc(char *buf
)
517 if (strcmp(buf
, "on") == 0)
518 _debug_pagealloc_enabled
= true;
520 if (strcmp(buf
, "off") == 0)
521 _debug_pagealloc_enabled
= false;
525 early_param("debug_pagealloc", early_debug_pagealloc
);
527 static bool need_debug_guardpage(void)
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
536 static void init_debug_guardpage(void)
538 if (!debug_pagealloc_enabled())
541 _debug_guardpage_enabled
= true;
544 struct page_ext_operations debug_guardpage_ops
= {
545 .need
= need_debug_guardpage
,
546 .init
= init_debug_guardpage
,
549 static int __init
debug_guardpage_minorder_setup(char *buf
)
553 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
557 _debug_guardpage_minorder
= res
;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
563 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
564 unsigned int order
, int migratetype
)
566 struct page_ext
*page_ext
;
568 if (!debug_guardpage_enabled())
571 page_ext
= lookup_page_ext(page
);
572 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
574 INIT_LIST_HEAD(&page
->lru
);
575 set_page_private(page
, order
);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
580 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
581 unsigned int order
, int migratetype
)
583 struct page_ext
*page_ext
;
585 if (!debug_guardpage_enabled())
588 page_ext
= lookup_page_ext(page
);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
591 set_page_private(page
, 0);
592 if (!is_migrate_isolate(migratetype
))
593 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
596 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
597 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
598 unsigned int order
, int migratetype
) {}
599 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
600 unsigned int order
, int migratetype
) {}
603 static inline void set_page_order(struct page
*page
, unsigned int order
)
605 set_page_private(page
, order
);
606 __SetPageBuddy(page
);
609 static inline void rmv_page_order(struct page
*page
)
611 __ClearPageBuddy(page
);
612 set_page_private(page
, 0);
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
628 * For recording page's order, we use page_private(page).
630 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
633 if (!pfn_valid_within(page_to_pfn(buddy
)))
636 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
637 if (page_zone_id(page
) != page_zone_id(buddy
))
640 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
645 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
651 if (page_zone_id(page
) != page_zone_id(buddy
))
654 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
662 * Freeing function for a buddy system allocator.
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
686 static inline void __free_one_page(struct page
*page
,
688 struct zone
*zone
, unsigned int order
,
691 unsigned long page_idx
;
692 unsigned long combined_idx
;
693 unsigned long uninitialized_var(buddy_idx
);
695 unsigned int max_order
;
697 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
699 VM_BUG_ON(!zone_is_initialized(zone
));
700 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
702 VM_BUG_ON(migratetype
== -1);
703 if (likely(!is_migrate_isolate(migratetype
)))
704 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
706 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
708 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
709 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
712 while (order
< max_order
- 1) {
713 buddy_idx
= __find_buddy_index(page_idx
, order
);
714 buddy
= page
+ (buddy_idx
- page_idx
);
715 if (!page_is_buddy(page
, buddy
, order
))
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
721 if (page_is_guard(buddy
)) {
722 clear_page_guard(zone
, buddy
, order
, migratetype
);
724 list_del(&buddy
->lru
);
725 zone
->free_area
[order
].nr_free
--;
726 rmv_page_order(buddy
);
728 combined_idx
= buddy_idx
& page_idx
;
729 page
= page
+ (combined_idx
- page_idx
);
730 page_idx
= combined_idx
;
733 if (max_order
< MAX_ORDER
) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
739 * We don't want to hit this code for the more frequent
742 if (unlikely(has_isolate_pageblock(zone
))) {
745 buddy_idx
= __find_buddy_index(page_idx
, order
);
746 buddy
= page
+ (buddy_idx
- page_idx
);
747 buddy_mt
= get_pageblock_migratetype(buddy
);
749 if (migratetype
!= buddy_mt
750 && (is_migrate_isolate(migratetype
) ||
751 is_migrate_isolate(buddy_mt
)))
755 goto continue_merging
;
759 set_page_order(page
, order
);
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
769 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
770 struct page
*higher_page
, *higher_buddy
;
771 combined_idx
= buddy_idx
& page_idx
;
772 higher_page
= page
+ (combined_idx
- page_idx
);
773 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
774 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
775 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
776 list_add_tail(&page
->lru
,
777 &zone
->free_area
[order
].free_list
[migratetype
]);
782 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
784 zone
->free_area
[order
].nr_free
++;
787 static inline int free_pages_check(struct page
*page
)
789 const char *bad_reason
= NULL
;
790 unsigned long bad_flags
= 0;
792 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
793 bad_reason
= "nonzero mapcount";
794 if (unlikely(page
->mapping
!= NULL
))
795 bad_reason
= "non-NULL mapping";
796 if (unlikely(page_ref_count(page
) != 0))
797 bad_reason
= "nonzero _count";
798 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
799 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
803 if (unlikely(page
->mem_cgroup
))
804 bad_reason
= "page still charged to cgroup";
806 if (unlikely(bad_reason
)) {
807 bad_page(page
, bad_reason
, bad_flags
);
810 page_cpupid_reset_last(page
);
811 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
812 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
827 static void free_pcppages_bulk(struct zone
*zone
, int count
,
828 struct per_cpu_pages
*pcp
)
833 unsigned long nr_scanned
;
835 spin_lock(&zone
->lock
);
836 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
838 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
842 struct list_head
*list
;
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
853 if (++migratetype
== MIGRATE_PCPTYPES
)
855 list
= &pcp
->lists
[migratetype
];
856 } while (list_empty(list
));
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free
== MIGRATE_PCPTYPES
)
860 batch_free
= to_free
;
863 int mt
; /* migratetype of the to-be-freed page */
865 page
= list_last_entry(list
, struct page
, lru
);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page
->lru
);
869 mt
= get_pcppage_migratetype(page
);
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
872 /* Pageblock could have been isolated meanwhile */
873 if (unlikely(has_isolate_pageblock(zone
)))
874 mt
= get_pageblock_migratetype(page
);
876 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
877 trace_mm_page_pcpu_drain(page
, 0, mt
);
878 } while (--to_free
&& --batch_free
&& !list_empty(list
));
880 spin_unlock(&zone
->lock
);
883 static void free_one_page(struct zone
*zone
,
884 struct page
*page
, unsigned long pfn
,
888 unsigned long nr_scanned
;
889 spin_lock(&zone
->lock
);
890 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
892 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
894 if (unlikely(has_isolate_pageblock(zone
) ||
895 is_migrate_isolate(migratetype
))) {
896 migratetype
= get_pfnblock_migratetype(page
, pfn
);
898 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
899 spin_unlock(&zone
->lock
);
902 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
910 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
912 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
916 switch (page
- head_page
) {
918 /* the first tail page: ->mapping is compound_mapcount() */
919 if (unlikely(compound_mapcount(page
))) {
920 bad_page(page
, "nonzero compound_mapcount", 0);
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
931 if (page
->mapping
!= TAIL_MAPPING
) {
932 bad_page(page
, "corrupted mapping in tail page", 0);
937 if (unlikely(!PageTail(page
))) {
938 bad_page(page
, "PageTail not set", 0);
941 if (unlikely(compound_head(page
) != head_page
)) {
942 bad_page(page
, "compound_head not consistent", 0);
947 page
->mapping
= NULL
;
948 clear_compound_head(page
);
952 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
953 unsigned long zone
, int nid
)
955 set_page_links(page
, zone
, nid
, pfn
);
956 init_page_count(page
);
957 page_mapcount_reset(page
);
958 page_cpupid_reset_last(page
);
960 INIT_LIST_HEAD(&page
->lru
);
961 #ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone
))
964 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
968 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
971 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975 static void init_reserved_page(unsigned long pfn
)
980 if (!early_page_uninitialised(pfn
))
983 nid
= early_pfn_to_nid(pfn
);
984 pgdat
= NODE_DATA(nid
);
986 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
987 struct zone
*zone
= &pgdat
->node_zones
[zid
];
989 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
992 __init_single_pfn(pfn
, zid
, nid
);
995 static inline void init_reserved_page(unsigned long pfn
)
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1006 void __meminit
reserve_bootmem_region(unsigned long start
, unsigned long end
)
1008 unsigned long start_pfn
= PFN_DOWN(start
);
1009 unsigned long end_pfn
= PFN_UP(end
);
1011 for (; start_pfn
< end_pfn
; start_pfn
++) {
1012 if (pfn_valid(start_pfn
)) {
1013 struct page
*page
= pfn_to_page(start_pfn
);
1015 init_reserved_page(start_pfn
);
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page
->lru
);
1020 SetPageReserved(page
);
1025 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
1027 bool compound
= PageCompound(page
);
1030 VM_BUG_ON_PAGE(PageTail(page
), page
);
1031 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1033 trace_mm_page_free(page
, order
);
1034 kmemcheck_free_shadow(page
, order
);
1035 kasan_free_pages(page
, order
);
1038 page
->mapping
= NULL
;
1039 bad
+= free_pages_check(page
);
1040 for (i
= 1; i
< (1 << order
); i
++) {
1042 bad
+= free_tail_pages_check(page
, page
+ i
);
1043 bad
+= free_pages_check(page
+ i
);
1048 reset_page_owner(page
, order
);
1050 if (!PageHighMem(page
)) {
1051 debug_check_no_locks_freed(page_address(page
),
1052 PAGE_SIZE
<< order
);
1053 debug_check_no_obj_freed(page_address(page
),
1054 PAGE_SIZE
<< order
);
1056 arch_free_page(page
, order
);
1057 kernel_poison_pages(page
, 1 << order
, 0);
1058 kernel_map_pages(page
, 1 << order
, 0);
1063 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1065 unsigned long flags
;
1067 unsigned long pfn
= page_to_pfn(page
);
1069 if (!free_pages_prepare(page
, order
))
1072 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1073 local_irq_save(flags
);
1074 __count_vm_events(PGFREE
, 1 << order
);
1075 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1076 local_irq_restore(flags
);
1079 static void __init
__free_pages_boot_core(struct page
*page
,
1080 unsigned long pfn
, unsigned int order
)
1082 unsigned int nr_pages
= 1 << order
;
1083 struct page
*p
= page
;
1087 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1089 __ClearPageReserved(p
);
1090 set_page_count(p
, 0);
1092 __ClearPageReserved(p
);
1093 set_page_count(p
, 0);
1095 page_zone(page
)->managed_pages
+= nr_pages
;
1096 set_page_refcounted(page
);
1097 __free_pages(page
, order
);
1100 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1101 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1103 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1105 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1107 static DEFINE_SPINLOCK(early_pfn_lock
);
1110 spin_lock(&early_pfn_lock
);
1111 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1114 spin_unlock(&early_pfn_lock
);
1120 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1121 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1122 struct mminit_pfnnid_cache
*state
)
1126 nid
= __early_pfn_to_nid(pfn
, state
);
1127 if (nid
>= 0 && nid
!= node
)
1132 /* Only safe to use early in boot when initialisation is single-threaded */
1133 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1135 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1140 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1144 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1145 struct mminit_pfnnid_cache
*state
)
1152 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1155 if (early_page_uninitialised(pfn
))
1157 return __free_pages_boot_core(page
, pfn
, order
);
1161 * Check that the whole (or subset of) a pageblock given by the interval of
1162 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1163 * with the migration of free compaction scanner. The scanners then need to
1164 * use only pfn_valid_within() check for arches that allow holes within
1167 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1169 * It's possible on some configurations to have a setup like node0 node1 node0
1170 * i.e. it's possible that all pages within a zones range of pages do not
1171 * belong to a single zone. We assume that a border between node0 and node1
1172 * can occur within a single pageblock, but not a node0 node1 node0
1173 * interleaving within a single pageblock. It is therefore sufficient to check
1174 * the first and last page of a pageblock and avoid checking each individual
1175 * page in a pageblock.
1177 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1178 unsigned long end_pfn
, struct zone
*zone
)
1180 struct page
*start_page
;
1181 struct page
*end_page
;
1183 /* end_pfn is one past the range we are checking */
1186 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1189 start_page
= pfn_to_page(start_pfn
);
1191 if (page_zone(start_page
) != zone
)
1194 end_page
= pfn_to_page(end_pfn
);
1196 /* This gives a shorter code than deriving page_zone(end_page) */
1197 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1203 void set_zone_contiguous(struct zone
*zone
)
1205 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1206 unsigned long block_end_pfn
;
1208 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1209 for (; block_start_pfn
< zone_end_pfn(zone
);
1210 block_start_pfn
= block_end_pfn
,
1211 block_end_pfn
+= pageblock_nr_pages
) {
1213 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1215 if (!__pageblock_pfn_to_page(block_start_pfn
,
1216 block_end_pfn
, zone
))
1220 /* We confirm that there is no hole */
1221 zone
->contiguous
= true;
1224 void clear_zone_contiguous(struct zone
*zone
)
1226 zone
->contiguous
= false;
1229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230 static void __init
deferred_free_range(struct page
*page
,
1231 unsigned long pfn
, int nr_pages
)
1238 /* Free a large naturally-aligned chunk if possible */
1239 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1240 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1241 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1242 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1246 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1247 __free_pages_boot_core(page
, pfn
, 0);
1250 /* Completion tracking for deferred_init_memmap() threads */
1251 static atomic_t pgdat_init_n_undone __initdata
;
1252 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1254 static inline void __init
pgdat_init_report_one_done(void)
1256 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1257 complete(&pgdat_init_all_done_comp
);
1260 /* Initialise remaining memory on a node */
1261 static int __init
deferred_init_memmap(void *data
)
1263 pg_data_t
*pgdat
= data
;
1264 int nid
= pgdat
->node_id
;
1265 struct mminit_pfnnid_cache nid_init_state
= { };
1266 unsigned long start
= jiffies
;
1267 unsigned long nr_pages
= 0;
1268 unsigned long walk_start
, walk_end
;
1271 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1272 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1274 if (first_init_pfn
== ULONG_MAX
) {
1275 pgdat_init_report_one_done();
1279 /* Bind memory initialisation thread to a local node if possible */
1280 if (!cpumask_empty(cpumask
))
1281 set_cpus_allowed_ptr(current
, cpumask
);
1283 /* Sanity check boundaries */
1284 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1285 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1286 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1288 /* Only the highest zone is deferred so find it */
1289 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1290 zone
= pgdat
->node_zones
+ zid
;
1291 if (first_init_pfn
< zone_end_pfn(zone
))
1295 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1296 unsigned long pfn
, end_pfn
;
1297 struct page
*page
= NULL
;
1298 struct page
*free_base_page
= NULL
;
1299 unsigned long free_base_pfn
= 0;
1302 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1303 pfn
= first_init_pfn
;
1304 if (pfn
< walk_start
)
1306 if (pfn
< zone
->zone_start_pfn
)
1307 pfn
= zone
->zone_start_pfn
;
1309 for (; pfn
< end_pfn
; pfn
++) {
1310 if (!pfn_valid_within(pfn
))
1314 * Ensure pfn_valid is checked every
1315 * MAX_ORDER_NR_PAGES for memory holes
1317 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1318 if (!pfn_valid(pfn
)) {
1324 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1329 /* Minimise pfn page lookups and scheduler checks */
1330 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1333 nr_pages
+= nr_to_free
;
1334 deferred_free_range(free_base_page
,
1335 free_base_pfn
, nr_to_free
);
1336 free_base_page
= NULL
;
1337 free_base_pfn
= nr_to_free
= 0;
1339 page
= pfn_to_page(pfn
);
1344 VM_BUG_ON(page_zone(page
) != zone
);
1348 __init_single_page(page
, pfn
, zid
, nid
);
1349 if (!free_base_page
) {
1350 free_base_page
= page
;
1351 free_base_pfn
= pfn
;
1356 /* Where possible, batch up pages for a single free */
1359 /* Free the current block of pages to allocator */
1360 nr_pages
+= nr_to_free
;
1361 deferred_free_range(free_base_page
, free_base_pfn
,
1363 free_base_page
= NULL
;
1364 free_base_pfn
= nr_to_free
= 0;
1367 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1370 /* Sanity check that the next zone really is unpopulated */
1371 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1373 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1374 jiffies_to_msecs(jiffies
- start
));
1376 pgdat_init_report_one_done();
1379 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1381 void __init
page_alloc_init_late(void)
1385 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1388 /* There will be num_node_state(N_MEMORY) threads */
1389 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1390 for_each_node_state(nid
, N_MEMORY
) {
1391 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1394 /* Block until all are initialised */
1395 wait_for_completion(&pgdat_init_all_done_comp
);
1397 /* Reinit limits that are based on free pages after the kernel is up */
1398 files_maxfiles_init();
1401 for_each_populated_zone(zone
)
1402 set_zone_contiguous(zone
);
1406 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1407 void __init
init_cma_reserved_pageblock(struct page
*page
)
1409 unsigned i
= pageblock_nr_pages
;
1410 struct page
*p
= page
;
1413 __ClearPageReserved(p
);
1414 set_page_count(p
, 0);
1417 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1419 if (pageblock_order
>= MAX_ORDER
) {
1420 i
= pageblock_nr_pages
;
1423 set_page_refcounted(p
);
1424 __free_pages(p
, MAX_ORDER
- 1);
1425 p
+= MAX_ORDER_NR_PAGES
;
1426 } while (i
-= MAX_ORDER_NR_PAGES
);
1428 set_page_refcounted(page
);
1429 __free_pages(page
, pageblock_order
);
1432 adjust_managed_page_count(page
, pageblock_nr_pages
);
1437 * The order of subdivision here is critical for the IO subsystem.
1438 * Please do not alter this order without good reasons and regression
1439 * testing. Specifically, as large blocks of memory are subdivided,
1440 * the order in which smaller blocks are delivered depends on the order
1441 * they're subdivided in this function. This is the primary factor
1442 * influencing the order in which pages are delivered to the IO
1443 * subsystem according to empirical testing, and this is also justified
1444 * by considering the behavior of a buddy system containing a single
1445 * large block of memory acted on by a series of small allocations.
1446 * This behavior is a critical factor in sglist merging's success.
1450 static inline void expand(struct zone
*zone
, struct page
*page
,
1451 int low
, int high
, struct free_area
*area
,
1454 unsigned long size
= 1 << high
;
1456 while (high
> low
) {
1460 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1462 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1463 debug_guardpage_enabled() &&
1464 high
< debug_guardpage_minorder()) {
1466 * Mark as guard pages (or page), that will allow to
1467 * merge back to allocator when buddy will be freed.
1468 * Corresponding page table entries will not be touched,
1469 * pages will stay not present in virtual address space
1471 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1474 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1476 set_page_order(&page
[size
], high
);
1481 * This page is about to be returned from the page allocator
1483 static inline int check_new_page(struct page
*page
)
1485 const char *bad_reason
= NULL
;
1486 unsigned long bad_flags
= 0;
1488 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1489 bad_reason
= "nonzero mapcount";
1490 if (unlikely(page
->mapping
!= NULL
))
1491 bad_reason
= "non-NULL mapping";
1492 if (unlikely(page_ref_count(page
) != 0))
1493 bad_reason
= "nonzero _count";
1494 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1495 bad_reason
= "HWPoisoned (hardware-corrupted)";
1496 bad_flags
= __PG_HWPOISON
;
1498 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1499 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1500 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1503 if (unlikely(page
->mem_cgroup
))
1504 bad_reason
= "page still charged to cgroup";
1506 if (unlikely(bad_reason
)) {
1507 bad_page(page
, bad_reason
, bad_flags
);
1513 static inline bool free_pages_prezeroed(bool poisoned
)
1515 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1516 page_poisoning_enabled() && poisoned
;
1519 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1523 bool poisoned
= true;
1525 for (i
= 0; i
< (1 << order
); i
++) {
1526 struct page
*p
= page
+ i
;
1527 if (unlikely(check_new_page(p
)))
1530 poisoned
&= page_is_poisoned(p
);
1533 set_page_private(page
, 0);
1534 set_page_refcounted(page
);
1536 arch_alloc_page(page
, order
);
1537 kernel_map_pages(page
, 1 << order
, 1);
1538 kernel_poison_pages(page
, 1 << order
, 1);
1539 kasan_alloc_pages(page
, order
);
1541 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1542 for (i
= 0; i
< (1 << order
); i
++)
1543 clear_highpage(page
+ i
);
1545 if (order
&& (gfp_flags
& __GFP_COMP
))
1546 prep_compound_page(page
, order
);
1548 set_page_owner(page
, order
, gfp_flags
);
1551 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552 * allocate the page. The expectation is that the caller is taking
1553 * steps that will free more memory. The caller should avoid the page
1554 * being used for !PFMEMALLOC purposes.
1556 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1557 set_page_pfmemalloc(page
);
1559 clear_page_pfmemalloc(page
);
1565 * Go through the free lists for the given migratetype and remove
1566 * the smallest available page from the freelists
1569 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1572 unsigned int current_order
;
1573 struct free_area
*area
;
1576 /* Find a page of the appropriate size in the preferred list */
1577 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1578 area
= &(zone
->free_area
[current_order
]);
1579 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1583 list_del(&page
->lru
);
1584 rmv_page_order(page
);
1586 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1587 set_pcppage_migratetype(page
, migratetype
);
1596 * This array describes the order lists are fallen back to when
1597 * the free lists for the desirable migrate type are depleted
1599 static int fallbacks
[MIGRATE_TYPES
][4] = {
1600 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1601 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1602 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1604 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1606 #ifdef CONFIG_MEMORY_ISOLATION
1607 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1612 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1615 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1618 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1619 unsigned int order
) { return NULL
; }
1623 * Move the free pages in a range to the free lists of the requested type.
1624 * Note that start_page and end_pages are not aligned on a pageblock
1625 * boundary. If alignment is required, use move_freepages_block()
1627 int move_freepages(struct zone
*zone
,
1628 struct page
*start_page
, struct page
*end_page
,
1633 int pages_moved
= 0;
1635 #ifndef CONFIG_HOLES_IN_ZONE
1637 * page_zone is not safe to call in this context when
1638 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1639 * anyway as we check zone boundaries in move_freepages_block().
1640 * Remove at a later date when no bug reports exist related to
1641 * grouping pages by mobility
1643 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1646 for (page
= start_page
; page
<= end_page
;) {
1647 /* Make sure we are not inadvertently changing nodes */
1648 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1650 if (!pfn_valid_within(page_to_pfn(page
))) {
1655 if (!PageBuddy(page
)) {
1660 order
= page_order(page
);
1661 list_move(&page
->lru
,
1662 &zone
->free_area
[order
].free_list
[migratetype
]);
1664 pages_moved
+= 1 << order
;
1670 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1673 unsigned long start_pfn
, end_pfn
;
1674 struct page
*start_page
, *end_page
;
1676 start_pfn
= page_to_pfn(page
);
1677 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1678 start_page
= pfn_to_page(start_pfn
);
1679 end_page
= start_page
+ pageblock_nr_pages
- 1;
1680 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1682 /* Do not cross zone boundaries */
1683 if (!zone_spans_pfn(zone
, start_pfn
))
1685 if (!zone_spans_pfn(zone
, end_pfn
))
1688 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1691 static void change_pageblock_range(struct page
*pageblock_page
,
1692 int start_order
, int migratetype
)
1694 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1696 while (nr_pageblocks
--) {
1697 set_pageblock_migratetype(pageblock_page
, migratetype
);
1698 pageblock_page
+= pageblock_nr_pages
;
1703 * When we are falling back to another migratetype during allocation, try to
1704 * steal extra free pages from the same pageblocks to satisfy further
1705 * allocations, instead of polluting multiple pageblocks.
1707 * If we are stealing a relatively large buddy page, it is likely there will
1708 * be more free pages in the pageblock, so try to steal them all. For
1709 * reclaimable and unmovable allocations, we steal regardless of page size,
1710 * as fragmentation caused by those allocations polluting movable pageblocks
1711 * is worse than movable allocations stealing from unmovable and reclaimable
1714 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1717 * Leaving this order check is intended, although there is
1718 * relaxed order check in next check. The reason is that
1719 * we can actually steal whole pageblock if this condition met,
1720 * but, below check doesn't guarantee it and that is just heuristic
1721 * so could be changed anytime.
1723 if (order
>= pageblock_order
)
1726 if (order
>= pageblock_order
/ 2 ||
1727 start_mt
== MIGRATE_RECLAIMABLE
||
1728 start_mt
== MIGRATE_UNMOVABLE
||
1729 page_group_by_mobility_disabled
)
1736 * This function implements actual steal behaviour. If order is large enough,
1737 * we can steal whole pageblock. If not, we first move freepages in this
1738 * pageblock and check whether half of pages are moved or not. If half of
1739 * pages are moved, we can change migratetype of pageblock and permanently
1740 * use it's pages as requested migratetype in the future.
1742 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1745 unsigned int current_order
= page_order(page
);
1748 /* Take ownership for orders >= pageblock_order */
1749 if (current_order
>= pageblock_order
) {
1750 change_pageblock_range(page
, current_order
, start_type
);
1754 pages
= move_freepages_block(zone
, page
, start_type
);
1756 /* Claim the whole block if over half of it is free */
1757 if (pages
>= (1 << (pageblock_order
-1)) ||
1758 page_group_by_mobility_disabled
)
1759 set_pageblock_migratetype(page
, start_type
);
1763 * Check whether there is a suitable fallback freepage with requested order.
1764 * If only_stealable is true, this function returns fallback_mt only if
1765 * we can steal other freepages all together. This would help to reduce
1766 * fragmentation due to mixed migratetype pages in one pageblock.
1768 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1769 int migratetype
, bool only_stealable
, bool *can_steal
)
1774 if (area
->nr_free
== 0)
1779 fallback_mt
= fallbacks
[migratetype
][i
];
1780 if (fallback_mt
== MIGRATE_TYPES
)
1783 if (list_empty(&area
->free_list
[fallback_mt
]))
1786 if (can_steal_fallback(order
, migratetype
))
1789 if (!only_stealable
)
1800 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1801 * there are no empty page blocks that contain a page with a suitable order
1803 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
1804 unsigned int alloc_order
)
1807 unsigned long max_managed
, flags
;
1810 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1811 * Check is race-prone but harmless.
1813 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
1814 if (zone
->nr_reserved_highatomic
>= max_managed
)
1817 spin_lock_irqsave(&zone
->lock
, flags
);
1819 /* Recheck the nr_reserved_highatomic limit under the lock */
1820 if (zone
->nr_reserved_highatomic
>= max_managed
)
1824 mt
= get_pageblock_migratetype(page
);
1825 if (mt
!= MIGRATE_HIGHATOMIC
&&
1826 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
1827 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
1828 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
1829 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
1833 spin_unlock_irqrestore(&zone
->lock
, flags
);
1837 * Used when an allocation is about to fail under memory pressure. This
1838 * potentially hurts the reliability of high-order allocations when under
1839 * intense memory pressure but failed atomic allocations should be easier
1840 * to recover from than an OOM.
1842 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
1844 struct zonelist
*zonelist
= ac
->zonelist
;
1845 unsigned long flags
;
1851 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
1853 /* Preserve at least one pageblock */
1854 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
1857 spin_lock_irqsave(&zone
->lock
, flags
);
1858 for (order
= 0; order
< MAX_ORDER
; order
++) {
1859 struct free_area
*area
= &(zone
->free_area
[order
]);
1861 page
= list_first_entry_or_null(
1862 &area
->free_list
[MIGRATE_HIGHATOMIC
],
1868 * It should never happen but changes to locking could
1869 * inadvertently allow a per-cpu drain to add pages
1870 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1871 * and watch for underflows.
1873 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
1874 zone
->nr_reserved_highatomic
);
1877 * Convert to ac->migratetype and avoid the normal
1878 * pageblock stealing heuristics. Minimally, the caller
1879 * is doing the work and needs the pages. More
1880 * importantly, if the block was always converted to
1881 * MIGRATE_UNMOVABLE or another type then the number
1882 * of pageblocks that cannot be completely freed
1885 set_pageblock_migratetype(page
, ac
->migratetype
);
1886 move_freepages_block(zone
, page
, ac
->migratetype
);
1887 spin_unlock_irqrestore(&zone
->lock
, flags
);
1890 spin_unlock_irqrestore(&zone
->lock
, flags
);
1894 /* Remove an element from the buddy allocator from the fallback list */
1895 static inline struct page
*
1896 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1898 struct free_area
*area
;
1899 unsigned int current_order
;
1904 /* Find the largest possible block of pages in the other list */
1905 for (current_order
= MAX_ORDER
-1;
1906 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1908 area
= &(zone
->free_area
[current_order
]);
1909 fallback_mt
= find_suitable_fallback(area
, current_order
,
1910 start_migratetype
, false, &can_steal
);
1911 if (fallback_mt
== -1)
1914 page
= list_first_entry(&area
->free_list
[fallback_mt
],
1917 steal_suitable_fallback(zone
, page
, start_migratetype
);
1919 /* Remove the page from the freelists */
1921 list_del(&page
->lru
);
1922 rmv_page_order(page
);
1924 expand(zone
, page
, order
, current_order
, area
,
1927 * The pcppage_migratetype may differ from pageblock's
1928 * migratetype depending on the decisions in
1929 * find_suitable_fallback(). This is OK as long as it does not
1930 * differ for MIGRATE_CMA pageblocks. Those can be used as
1931 * fallback only via special __rmqueue_cma_fallback() function
1933 set_pcppage_migratetype(page
, start_migratetype
);
1935 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1936 start_migratetype
, fallback_mt
);
1945 * Do the hard work of removing an element from the buddy allocator.
1946 * Call me with the zone->lock already held.
1948 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1953 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1954 if (unlikely(!page
)) {
1955 if (migratetype
== MIGRATE_MOVABLE
)
1956 page
= __rmqueue_cma_fallback(zone
, order
);
1959 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1962 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1967 * Obtain a specified number of elements from the buddy allocator, all under
1968 * a single hold of the lock, for efficiency. Add them to the supplied list.
1969 * Returns the number of new pages which were placed at *list.
1971 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1972 unsigned long count
, struct list_head
*list
,
1973 int migratetype
, bool cold
)
1977 spin_lock(&zone
->lock
);
1978 for (i
= 0; i
< count
; ++i
) {
1979 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1980 if (unlikely(page
== NULL
))
1984 * Split buddy pages returned by expand() are received here
1985 * in physical page order. The page is added to the callers and
1986 * list and the list head then moves forward. From the callers
1987 * perspective, the linked list is ordered by page number in
1988 * some conditions. This is useful for IO devices that can
1989 * merge IO requests if the physical pages are ordered
1993 list_add(&page
->lru
, list
);
1995 list_add_tail(&page
->lru
, list
);
1997 if (is_migrate_cma(get_pcppage_migratetype(page
)))
1998 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2001 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2002 spin_unlock(&zone
->lock
);
2008 * Called from the vmstat counter updater to drain pagesets of this
2009 * currently executing processor on remote nodes after they have
2012 * Note that this function must be called with the thread pinned to
2013 * a single processor.
2015 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2017 unsigned long flags
;
2018 int to_drain
, batch
;
2020 local_irq_save(flags
);
2021 batch
= READ_ONCE(pcp
->batch
);
2022 to_drain
= min(pcp
->count
, batch
);
2024 free_pcppages_bulk(zone
, to_drain
, pcp
);
2025 pcp
->count
-= to_drain
;
2027 local_irq_restore(flags
);
2032 * Drain pcplists of the indicated processor and zone.
2034 * The processor must either be the current processor and the
2035 * thread pinned to the current processor or a processor that
2038 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2040 unsigned long flags
;
2041 struct per_cpu_pageset
*pset
;
2042 struct per_cpu_pages
*pcp
;
2044 local_irq_save(flags
);
2045 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2049 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2052 local_irq_restore(flags
);
2056 * Drain pcplists of all zones on the indicated processor.
2058 * The processor must either be the current processor and the
2059 * thread pinned to the current processor or a processor that
2062 static void drain_pages(unsigned int cpu
)
2066 for_each_populated_zone(zone
) {
2067 drain_pages_zone(cpu
, zone
);
2072 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2074 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2075 * the single zone's pages.
2077 void drain_local_pages(struct zone
*zone
)
2079 int cpu
= smp_processor_id();
2082 drain_pages_zone(cpu
, zone
);
2088 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2090 * When zone parameter is non-NULL, spill just the single zone's pages.
2092 * Note that this code is protected against sending an IPI to an offline
2093 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2094 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2095 * nothing keeps CPUs from showing up after we populated the cpumask and
2096 * before the call to on_each_cpu_mask().
2098 void drain_all_pages(struct zone
*zone
)
2103 * Allocate in the BSS so we wont require allocation in
2104 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2106 static cpumask_t cpus_with_pcps
;
2109 * We don't care about racing with CPU hotplug event
2110 * as offline notification will cause the notified
2111 * cpu to drain that CPU pcps and on_each_cpu_mask
2112 * disables preemption as part of its processing
2114 for_each_online_cpu(cpu
) {
2115 struct per_cpu_pageset
*pcp
;
2117 bool has_pcps
= false;
2120 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2124 for_each_populated_zone(z
) {
2125 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2126 if (pcp
->pcp
.count
) {
2134 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2136 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2138 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2142 #ifdef CONFIG_HIBERNATION
2144 void mark_free_pages(struct zone
*zone
)
2146 unsigned long pfn
, max_zone_pfn
;
2147 unsigned long flags
;
2148 unsigned int order
, t
;
2151 if (zone_is_empty(zone
))
2154 spin_lock_irqsave(&zone
->lock
, flags
);
2156 max_zone_pfn
= zone_end_pfn(zone
);
2157 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2158 if (pfn_valid(pfn
)) {
2159 page
= pfn_to_page(pfn
);
2160 if (!swsusp_page_is_forbidden(page
))
2161 swsusp_unset_page_free(page
);
2164 for_each_migratetype_order(order
, t
) {
2165 list_for_each_entry(page
,
2166 &zone
->free_area
[order
].free_list
[t
], lru
) {
2169 pfn
= page_to_pfn(page
);
2170 for (i
= 0; i
< (1UL << order
); i
++)
2171 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2174 spin_unlock_irqrestore(&zone
->lock
, flags
);
2176 #endif /* CONFIG_PM */
2179 * Free a 0-order page
2180 * cold == true ? free a cold page : free a hot page
2182 void free_hot_cold_page(struct page
*page
, bool cold
)
2184 struct zone
*zone
= page_zone(page
);
2185 struct per_cpu_pages
*pcp
;
2186 unsigned long flags
;
2187 unsigned long pfn
= page_to_pfn(page
);
2190 if (!free_pages_prepare(page
, 0))
2193 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2194 set_pcppage_migratetype(page
, migratetype
);
2195 local_irq_save(flags
);
2196 __count_vm_event(PGFREE
);
2199 * We only track unmovable, reclaimable and movable on pcp lists.
2200 * Free ISOLATE pages back to the allocator because they are being
2201 * offlined but treat RESERVE as movable pages so we can get those
2202 * areas back if necessary. Otherwise, we may have to free
2203 * excessively into the page allocator
2205 if (migratetype
>= MIGRATE_PCPTYPES
) {
2206 if (unlikely(is_migrate_isolate(migratetype
))) {
2207 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2210 migratetype
= MIGRATE_MOVABLE
;
2213 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2215 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2217 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2219 if (pcp
->count
>= pcp
->high
) {
2220 unsigned long batch
= READ_ONCE(pcp
->batch
);
2221 free_pcppages_bulk(zone
, batch
, pcp
);
2222 pcp
->count
-= batch
;
2226 local_irq_restore(flags
);
2230 * Free a list of 0-order pages
2232 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2234 struct page
*page
, *next
;
2236 list_for_each_entry_safe(page
, next
, list
, lru
) {
2237 trace_mm_page_free_batched(page
, cold
);
2238 free_hot_cold_page(page
, cold
);
2243 * split_page takes a non-compound higher-order page, and splits it into
2244 * n (1<<order) sub-pages: page[0..n]
2245 * Each sub-page must be freed individually.
2247 * Note: this is probably too low level an operation for use in drivers.
2248 * Please consult with lkml before using this in your driver.
2250 void split_page(struct page
*page
, unsigned int order
)
2255 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2256 VM_BUG_ON_PAGE(!page_count(page
), page
);
2258 #ifdef CONFIG_KMEMCHECK
2260 * Split shadow pages too, because free(page[0]) would
2261 * otherwise free the whole shadow.
2263 if (kmemcheck_page_is_tracked(page
))
2264 split_page(virt_to_page(page
[0].shadow
), order
);
2267 gfp_mask
= get_page_owner_gfp(page
);
2268 set_page_owner(page
, 0, gfp_mask
);
2269 for (i
= 1; i
< (1 << order
); i
++) {
2270 set_page_refcounted(page
+ i
);
2271 set_page_owner(page
+ i
, 0, gfp_mask
);
2274 EXPORT_SYMBOL_GPL(split_page
);
2276 int __isolate_free_page(struct page
*page
, unsigned int order
)
2278 unsigned long watermark
;
2282 BUG_ON(!PageBuddy(page
));
2284 zone
= page_zone(page
);
2285 mt
= get_pageblock_migratetype(page
);
2287 if (!is_migrate_isolate(mt
)) {
2288 /* Obey watermarks as if the page was being allocated */
2289 watermark
= low_wmark_pages(zone
) + (1 << order
);
2290 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2293 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2296 /* Remove page from free list */
2297 list_del(&page
->lru
);
2298 zone
->free_area
[order
].nr_free
--;
2299 rmv_page_order(page
);
2301 set_page_owner(page
, order
, __GFP_MOVABLE
);
2303 /* Set the pageblock if the isolated page is at least a pageblock */
2304 if (order
>= pageblock_order
- 1) {
2305 struct page
*endpage
= page
+ (1 << order
) - 1;
2306 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2307 int mt
= get_pageblock_migratetype(page
);
2308 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2309 set_pageblock_migratetype(page
,
2315 return 1UL << order
;
2319 * Similar to split_page except the page is already free. As this is only
2320 * being used for migration, the migratetype of the block also changes.
2321 * As this is called with interrupts disabled, the caller is responsible
2322 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2325 * Note: this is probably too low level an operation for use in drivers.
2326 * Please consult with lkml before using this in your driver.
2328 int split_free_page(struct page
*page
)
2333 order
= page_order(page
);
2335 nr_pages
= __isolate_free_page(page
, order
);
2339 /* Split into individual pages */
2340 set_page_refcounted(page
);
2341 split_page(page
, order
);
2346 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2349 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2350 struct zone
*zone
, unsigned int order
,
2351 gfp_t gfp_flags
, int alloc_flags
, int migratetype
)
2353 unsigned long flags
;
2355 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2357 if (likely(order
== 0)) {
2358 struct per_cpu_pages
*pcp
;
2359 struct list_head
*list
;
2361 local_irq_save(flags
);
2362 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2363 list
= &pcp
->lists
[migratetype
];
2364 if (list_empty(list
)) {
2365 pcp
->count
+= rmqueue_bulk(zone
, 0,
2368 if (unlikely(list_empty(list
)))
2373 page
= list_last_entry(list
, struct page
, lru
);
2375 page
= list_first_entry(list
, struct page
, lru
);
2377 list_del(&page
->lru
);
2381 * We most definitely don't want callers attempting to
2382 * allocate greater than order-1 page units with __GFP_NOFAIL.
2384 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2385 spin_lock_irqsave(&zone
->lock
, flags
);
2388 if (alloc_flags
& ALLOC_HARDER
) {
2389 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2391 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2394 page
= __rmqueue(zone
, order
, migratetype
);
2395 spin_unlock(&zone
->lock
);
2398 __mod_zone_freepage_state(zone
, -(1 << order
),
2399 get_pcppage_migratetype(page
));
2402 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2403 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2404 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2405 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2407 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2408 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2409 local_irq_restore(flags
);
2411 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2415 local_irq_restore(flags
);
2419 #ifdef CONFIG_FAIL_PAGE_ALLOC
2422 struct fault_attr attr
;
2424 bool ignore_gfp_highmem
;
2425 bool ignore_gfp_reclaim
;
2427 } fail_page_alloc
= {
2428 .attr
= FAULT_ATTR_INITIALIZER
,
2429 .ignore_gfp_reclaim
= true,
2430 .ignore_gfp_highmem
= true,
2434 static int __init
setup_fail_page_alloc(char *str
)
2436 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2438 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2440 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2442 if (order
< fail_page_alloc
.min_order
)
2444 if (gfp_mask
& __GFP_NOFAIL
)
2446 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2448 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2449 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2452 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2455 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2457 static int __init
fail_page_alloc_debugfs(void)
2459 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2462 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2463 &fail_page_alloc
.attr
);
2465 return PTR_ERR(dir
);
2467 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2468 &fail_page_alloc
.ignore_gfp_reclaim
))
2470 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2471 &fail_page_alloc
.ignore_gfp_highmem
))
2473 if (!debugfs_create_u32("min-order", mode
, dir
,
2474 &fail_page_alloc
.min_order
))
2479 debugfs_remove_recursive(dir
);
2484 late_initcall(fail_page_alloc_debugfs
);
2486 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2488 #else /* CONFIG_FAIL_PAGE_ALLOC */
2490 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2495 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2498 * Return true if free base pages are above 'mark'. For high-order checks it
2499 * will return true of the order-0 watermark is reached and there is at least
2500 * one free page of a suitable size. Checking now avoids taking the zone lock
2501 * to check in the allocation paths if no pages are free.
2503 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2504 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2509 const int alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2511 /* free_pages may go negative - that's OK */
2512 free_pages
-= (1 << order
) - 1;
2514 if (alloc_flags
& ALLOC_HIGH
)
2518 * If the caller does not have rights to ALLOC_HARDER then subtract
2519 * the high-atomic reserves. This will over-estimate the size of the
2520 * atomic reserve but it avoids a search.
2522 if (likely(!alloc_harder
))
2523 free_pages
-= z
->nr_reserved_highatomic
;
2528 /* If allocation can't use CMA areas don't use free CMA pages */
2529 if (!(alloc_flags
& ALLOC_CMA
))
2530 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2534 * Check watermarks for an order-0 allocation request. If these
2535 * are not met, then a high-order request also cannot go ahead
2536 * even if a suitable page happened to be free.
2538 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2541 /* If this is an order-0 request then the watermark is fine */
2545 /* For a high-order request, check at least one suitable page is free */
2546 for (o
= order
; o
< MAX_ORDER
; o
++) {
2547 struct free_area
*area
= &z
->free_area
[o
];
2556 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2557 if (!list_empty(&area
->free_list
[mt
]))
2562 if ((alloc_flags
& ALLOC_CMA
) &&
2563 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2571 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2572 int classzone_idx
, int alloc_flags
)
2574 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2575 zone_page_state(z
, NR_FREE_PAGES
));
2578 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2579 unsigned long mark
, int classzone_idx
)
2581 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2583 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2584 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2586 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2591 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2593 return local_zone
->node
== zone
->node
;
2596 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2598 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2601 #else /* CONFIG_NUMA */
2602 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2607 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2611 #endif /* CONFIG_NUMA */
2613 static void reset_alloc_batches(struct zone
*preferred_zone
)
2615 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2618 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2619 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2620 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2621 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2622 } while (zone
++ != preferred_zone
);
2626 * get_page_from_freelist goes through the zonelist trying to allocate
2629 static struct page
*
2630 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2631 const struct alloc_context
*ac
)
2633 struct zonelist
*zonelist
= ac
->zonelist
;
2635 struct page
*page
= NULL
;
2637 int nr_fair_skipped
= 0;
2638 bool zonelist_rescan
;
2641 zonelist_rescan
= false;
2644 * Scan zonelist, looking for a zone with enough free.
2645 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2647 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2651 if (cpusets_enabled() &&
2652 (alloc_flags
& ALLOC_CPUSET
) &&
2653 !cpuset_zone_allowed(zone
, gfp_mask
))
2656 * Distribute pages in proportion to the individual
2657 * zone size to ensure fair page aging. The zone a
2658 * page was allocated in should have no effect on the
2659 * time the page has in memory before being reclaimed.
2661 if (alloc_flags
& ALLOC_FAIR
) {
2662 if (!zone_local(ac
->preferred_zone
, zone
))
2664 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2670 * When allocating a page cache page for writing, we
2671 * want to get it from a zone that is within its dirty
2672 * limit, such that no single zone holds more than its
2673 * proportional share of globally allowed dirty pages.
2674 * The dirty limits take into account the zone's
2675 * lowmem reserves and high watermark so that kswapd
2676 * should be able to balance it without having to
2677 * write pages from its LRU list.
2679 * This may look like it could increase pressure on
2680 * lower zones by failing allocations in higher zones
2681 * before they are full. But the pages that do spill
2682 * over are limited as the lower zones are protected
2683 * by this very same mechanism. It should not become
2684 * a practical burden to them.
2686 * XXX: For now, allow allocations to potentially
2687 * exceed the per-zone dirty limit in the slowpath
2688 * (spread_dirty_pages unset) before going into reclaim,
2689 * which is important when on a NUMA setup the allowed
2690 * zones are together not big enough to reach the
2691 * global limit. The proper fix for these situations
2692 * will require awareness of zones in the
2693 * dirty-throttling and the flusher threads.
2695 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2698 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2699 if (!zone_watermark_ok(zone
, order
, mark
,
2700 ac
->classzone_idx
, alloc_flags
)) {
2703 /* Checked here to keep the fast path fast */
2704 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2705 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2708 if (zone_reclaim_mode
== 0 ||
2709 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2712 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2714 case ZONE_RECLAIM_NOSCAN
:
2717 case ZONE_RECLAIM_FULL
:
2718 /* scanned but unreclaimable */
2721 /* did we reclaim enough */
2722 if (zone_watermark_ok(zone
, order
, mark
,
2723 ac
->classzone_idx
, alloc_flags
))
2731 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2732 gfp_mask
, alloc_flags
, ac
->migratetype
);
2734 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2738 * If this is a high-order atomic allocation then check
2739 * if the pageblock should be reserved for the future
2741 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2742 reserve_highatomic_pageblock(page
, zone
, order
);
2749 * The first pass makes sure allocations are spread fairly within the
2750 * local node. However, the local node might have free pages left
2751 * after the fairness batches are exhausted, and remote zones haven't
2752 * even been considered yet. Try once more without fairness, and
2753 * include remote zones now, before entering the slowpath and waking
2754 * kswapd: prefer spilling to a remote zone over swapping locally.
2756 if (alloc_flags
& ALLOC_FAIR
) {
2757 alloc_flags
&= ~ALLOC_FAIR
;
2758 if (nr_fair_skipped
) {
2759 zonelist_rescan
= true;
2760 reset_alloc_batches(ac
->preferred_zone
);
2762 if (nr_online_nodes
> 1)
2763 zonelist_rescan
= true;
2766 if (zonelist_rescan
)
2773 * Large machines with many possible nodes should not always dump per-node
2774 * meminfo in irq context.
2776 static inline bool should_suppress_show_mem(void)
2781 ret
= in_interrupt();
2786 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2787 DEFAULT_RATELIMIT_INTERVAL
,
2788 DEFAULT_RATELIMIT_BURST
);
2790 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
2792 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2794 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2795 debug_guardpage_minorder() > 0)
2799 * This documents exceptions given to allocations in certain
2800 * contexts that are allowed to allocate outside current's set
2803 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2804 if (test_thread_flag(TIF_MEMDIE
) ||
2805 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2806 filter
&= ~SHOW_MEM_FILTER_NODES
;
2807 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
2808 filter
&= ~SHOW_MEM_FILTER_NODES
;
2811 struct va_format vaf
;
2814 va_start(args
, fmt
);
2819 pr_warn("%pV", &vaf
);
2824 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2825 current
->comm
, order
, gfp_mask
, &gfp_mask
);
2827 if (!should_suppress_show_mem())
2831 static inline struct page
*
2832 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2833 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2835 struct oom_control oc
= {
2836 .zonelist
= ac
->zonelist
,
2837 .nodemask
= ac
->nodemask
,
2838 .gfp_mask
= gfp_mask
,
2843 *did_some_progress
= 0;
2846 * Acquire the oom lock. If that fails, somebody else is
2847 * making progress for us.
2849 if (!mutex_trylock(&oom_lock
)) {
2850 *did_some_progress
= 1;
2851 schedule_timeout_uninterruptible(1);
2856 * Go through the zonelist yet one more time, keep very high watermark
2857 * here, this is only to catch a parallel oom killing, we must fail if
2858 * we're still under heavy pressure.
2860 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2861 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2865 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2866 /* Coredumps can quickly deplete all memory reserves */
2867 if (current
->flags
& PF_DUMPCORE
)
2869 /* The OOM killer will not help higher order allocs */
2870 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2872 /* The OOM killer does not needlessly kill tasks for lowmem */
2873 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2875 /* The OOM killer does not compensate for IO-less reclaim */
2876 if (!(gfp_mask
& __GFP_FS
)) {
2878 * XXX: Page reclaim didn't yield anything,
2879 * and the OOM killer can't be invoked, but
2880 * keep looping as per tradition.
2882 * But do not keep looping if oom_killer_disable()
2883 * was already called, for the system is trying to
2884 * enter a quiescent state during suspend.
2886 *did_some_progress
= !oom_killer_disabled
;
2889 if (pm_suspended_storage())
2891 /* The OOM killer may not free memory on a specific node */
2892 if (gfp_mask
& __GFP_THISNODE
)
2895 /* Exhausted what can be done so it's blamo time */
2896 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
2897 *did_some_progress
= 1;
2899 if (gfp_mask
& __GFP_NOFAIL
) {
2900 page
= get_page_from_freelist(gfp_mask
, order
,
2901 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
2903 * fallback to ignore cpuset restriction if our nodes
2907 page
= get_page_from_freelist(gfp_mask
, order
,
2908 ALLOC_NO_WATERMARKS
, ac
);
2912 mutex_unlock(&oom_lock
);
2916 #ifdef CONFIG_COMPACTION
2917 /* Try memory compaction for high-order allocations before reclaim */
2918 static struct page
*
2919 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2920 int alloc_flags
, const struct alloc_context
*ac
,
2921 enum migrate_mode mode
, int *contended_compaction
,
2922 bool *deferred_compaction
)
2924 unsigned long compact_result
;
2930 current
->flags
|= PF_MEMALLOC
;
2931 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2932 mode
, contended_compaction
);
2933 current
->flags
&= ~PF_MEMALLOC
;
2935 switch (compact_result
) {
2936 case COMPACT_DEFERRED
:
2937 *deferred_compaction
= true;
2939 case COMPACT_SKIPPED
:
2946 * At least in one zone compaction wasn't deferred or skipped, so let's
2947 * count a compaction stall
2949 count_vm_event(COMPACTSTALL
);
2951 page
= get_page_from_freelist(gfp_mask
, order
,
2952 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2955 struct zone
*zone
= page_zone(page
);
2957 zone
->compact_blockskip_flush
= false;
2958 compaction_defer_reset(zone
, order
, true);
2959 count_vm_event(COMPACTSUCCESS
);
2964 * It's bad if compaction run occurs and fails. The most likely reason
2965 * is that pages exist, but not enough to satisfy watermarks.
2967 count_vm_event(COMPACTFAIL
);
2974 static inline struct page
*
2975 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2976 int alloc_flags
, const struct alloc_context
*ac
,
2977 enum migrate_mode mode
, int *contended_compaction
,
2978 bool *deferred_compaction
)
2982 #endif /* CONFIG_COMPACTION */
2984 /* Perform direct synchronous page reclaim */
2986 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2987 const struct alloc_context
*ac
)
2989 struct reclaim_state reclaim_state
;
2994 /* We now go into synchronous reclaim */
2995 cpuset_memory_pressure_bump();
2996 current
->flags
|= PF_MEMALLOC
;
2997 lockdep_set_current_reclaim_state(gfp_mask
);
2998 reclaim_state
.reclaimed_slab
= 0;
2999 current
->reclaim_state
= &reclaim_state
;
3001 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3004 current
->reclaim_state
= NULL
;
3005 lockdep_clear_current_reclaim_state();
3006 current
->flags
&= ~PF_MEMALLOC
;
3013 /* The really slow allocator path where we enter direct reclaim */
3014 static inline struct page
*
3015 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3016 int alloc_flags
, const struct alloc_context
*ac
,
3017 unsigned long *did_some_progress
)
3019 struct page
*page
= NULL
;
3020 bool drained
= false;
3022 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3023 if (unlikely(!(*did_some_progress
)))
3027 page
= get_page_from_freelist(gfp_mask
, order
,
3028 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3031 * If an allocation failed after direct reclaim, it could be because
3032 * pages are pinned on the per-cpu lists or in high alloc reserves.
3033 * Shrink them them and try again
3035 if (!page
&& !drained
) {
3036 unreserve_highatomic_pageblock(ac
);
3037 drain_all_pages(NULL
);
3045 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3050 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3051 ac
->high_zoneidx
, ac
->nodemask
)
3052 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
3056 gfp_to_alloc_flags(gfp_t gfp_mask
)
3058 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3060 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3061 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3064 * The caller may dip into page reserves a bit more if the caller
3065 * cannot run direct reclaim, or if the caller has realtime scheduling
3066 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3067 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3069 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3071 if (gfp_mask
& __GFP_ATOMIC
) {
3073 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3074 * if it can't schedule.
3076 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3077 alloc_flags
|= ALLOC_HARDER
;
3079 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3080 * comment for __cpuset_node_allowed().
3082 alloc_flags
&= ~ALLOC_CPUSET
;
3083 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3084 alloc_flags
|= ALLOC_HARDER
;
3086 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
3087 if (gfp_mask
& __GFP_MEMALLOC
)
3088 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3089 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3090 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3091 else if (!in_interrupt() &&
3092 ((current
->flags
& PF_MEMALLOC
) ||
3093 unlikely(test_thread_flag(TIF_MEMDIE
))))
3094 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3097 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3098 alloc_flags
|= ALLOC_CMA
;
3103 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3105 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
3108 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
3110 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
3113 static inline struct page
*
3114 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3115 struct alloc_context
*ac
)
3117 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3118 struct page
*page
= NULL
;
3120 unsigned long pages_reclaimed
= 0;
3121 unsigned long did_some_progress
;
3122 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
3123 bool deferred_compaction
= false;
3124 int contended_compaction
= COMPACT_CONTENDED_NONE
;
3127 * In the slowpath, we sanity check order to avoid ever trying to
3128 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3129 * be using allocators in order of preference for an area that is
3132 if (order
>= MAX_ORDER
) {
3133 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3138 * We also sanity check to catch abuse of atomic reserves being used by
3139 * callers that are not in atomic context.
3141 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3142 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3143 gfp_mask
&= ~__GFP_ATOMIC
;
3146 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3147 wake_all_kswapds(order
, ac
);
3150 * OK, we're below the kswapd watermark and have kicked background
3151 * reclaim. Now things get more complex, so set up alloc_flags according
3152 * to how we want to proceed.
3154 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3157 * Find the true preferred zone if the allocation is unconstrained by
3160 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3161 struct zoneref
*preferred_zoneref
;
3162 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3163 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3164 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3167 /* This is the last chance, in general, before the goto nopage. */
3168 page
= get_page_from_freelist(gfp_mask
, order
,
3169 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3173 /* Allocate without watermarks if the context allows */
3174 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3176 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3177 * the allocation is high priority and these type of
3178 * allocations are system rather than user orientated
3180 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3181 page
= get_page_from_freelist(gfp_mask
, order
,
3182 ALLOC_NO_WATERMARKS
, ac
);
3187 /* Caller is not willing to reclaim, we can't balance anything */
3188 if (!can_direct_reclaim
) {
3190 * All existing users of the __GFP_NOFAIL are blockable, so warn
3191 * of any new users that actually allow this type of allocation
3194 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3198 /* Avoid recursion of direct reclaim */
3199 if (current
->flags
& PF_MEMALLOC
) {
3201 * __GFP_NOFAIL request from this context is rather bizarre
3202 * because we cannot reclaim anything and only can loop waiting
3203 * for somebody to do a work for us.
3205 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3212 /* Avoid allocations with no watermarks from looping endlessly */
3213 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3217 * Try direct compaction. The first pass is asynchronous. Subsequent
3218 * attempts after direct reclaim are synchronous
3220 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3222 &contended_compaction
,
3223 &deferred_compaction
);
3227 /* Checks for THP-specific high-order allocations */
3228 if (is_thp_gfp_mask(gfp_mask
)) {
3230 * If compaction is deferred for high-order allocations, it is
3231 * because sync compaction recently failed. If this is the case
3232 * and the caller requested a THP allocation, we do not want
3233 * to heavily disrupt the system, so we fail the allocation
3234 * instead of entering direct reclaim.
3236 if (deferred_compaction
)
3240 * In all zones where compaction was attempted (and not
3241 * deferred or skipped), lock contention has been detected.
3242 * For THP allocation we do not want to disrupt the others
3243 * so we fallback to base pages instead.
3245 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3249 * If compaction was aborted due to need_resched(), we do not
3250 * want to further increase allocation latency, unless it is
3251 * khugepaged trying to collapse.
3253 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3254 && !(current
->flags
& PF_KTHREAD
))
3259 * It can become very expensive to allocate transparent hugepages at
3260 * fault, so use asynchronous memory compaction for THP unless it is
3261 * khugepaged trying to collapse.
3263 if (!is_thp_gfp_mask(gfp_mask
) || (current
->flags
& PF_KTHREAD
))
3264 migration_mode
= MIGRATE_SYNC_LIGHT
;
3266 /* Try direct reclaim and then allocating */
3267 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3268 &did_some_progress
);
3272 /* Do not loop if specifically requested */
3273 if (gfp_mask
& __GFP_NORETRY
)
3276 /* Keep reclaiming pages as long as there is reasonable progress */
3277 pages_reclaimed
+= did_some_progress
;
3278 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3279 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3280 /* Wait for some write requests to complete then retry */
3281 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3285 /* Reclaim has failed us, start killing things */
3286 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3290 /* Retry as long as the OOM killer is making progress */
3291 if (did_some_progress
)
3296 * High-order allocations do not necessarily loop after
3297 * direct reclaim and reclaim/compaction depends on compaction
3298 * being called after reclaim so call directly if necessary
3300 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3302 &contended_compaction
,
3303 &deferred_compaction
);
3307 warn_alloc_failed(gfp_mask
, order
, NULL
);
3313 * This is the 'heart' of the zoned buddy allocator.
3316 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3317 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3319 struct zoneref
*preferred_zoneref
;
3320 struct page
*page
= NULL
;
3321 unsigned int cpuset_mems_cookie
;
3322 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3323 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3324 struct alloc_context ac
= {
3325 .high_zoneidx
= gfp_zone(gfp_mask
),
3326 .nodemask
= nodemask
,
3327 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3330 gfp_mask
&= gfp_allowed_mask
;
3332 lockdep_trace_alloc(gfp_mask
);
3334 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3336 if (should_fail_alloc_page(gfp_mask
, order
))
3340 * Check the zones suitable for the gfp_mask contain at least one
3341 * valid zone. It's possible to have an empty zonelist as a result
3342 * of __GFP_THISNODE and a memoryless node
3344 if (unlikely(!zonelist
->_zonerefs
->zone
))
3347 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3348 alloc_flags
|= ALLOC_CMA
;
3351 cpuset_mems_cookie
= read_mems_allowed_begin();
3353 /* We set it here, as __alloc_pages_slowpath might have changed it */
3354 ac
.zonelist
= zonelist
;
3356 /* Dirty zone balancing only done in the fast path */
3357 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3359 /* The preferred zone is used for statistics later */
3360 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3361 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3362 &ac
.preferred_zone
);
3363 if (!ac
.preferred_zone
)
3365 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3367 /* First allocation attempt */
3368 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3369 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3370 if (unlikely(!page
)) {
3372 * Runtime PM, block IO and its error handling path
3373 * can deadlock because I/O on the device might not
3376 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3377 ac
.spread_dirty_pages
= false;
3379 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3382 if (kmemcheck_enabled
&& page
)
3383 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3385 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3389 * When updating a task's mems_allowed, it is possible to race with
3390 * parallel threads in such a way that an allocation can fail while
3391 * the mask is being updated. If a page allocation is about to fail,
3392 * check if the cpuset changed during allocation and if so, retry.
3394 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3399 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3402 * Common helper functions.
3404 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3409 * __get_free_pages() returns a 32-bit address, which cannot represent
3412 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3414 page
= alloc_pages(gfp_mask
, order
);
3417 return (unsigned long) page_address(page
);
3419 EXPORT_SYMBOL(__get_free_pages
);
3421 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3423 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3425 EXPORT_SYMBOL(get_zeroed_page
);
3427 void __free_pages(struct page
*page
, unsigned int order
)
3429 if (put_page_testzero(page
)) {
3431 free_hot_cold_page(page
, false);
3433 __free_pages_ok(page
, order
);
3437 EXPORT_SYMBOL(__free_pages
);
3439 void free_pages(unsigned long addr
, unsigned int order
)
3442 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3443 __free_pages(virt_to_page((void *)addr
), order
);
3447 EXPORT_SYMBOL(free_pages
);
3451 * An arbitrary-length arbitrary-offset area of memory which resides
3452 * within a 0 or higher order page. Multiple fragments within that page
3453 * are individually refcounted, in the page's reference counter.
3455 * The page_frag functions below provide a simple allocation framework for
3456 * page fragments. This is used by the network stack and network device
3457 * drivers to provide a backing region of memory for use as either an
3458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3460 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3463 struct page
*page
= NULL
;
3464 gfp_t gfp
= gfp_mask
;
3466 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3467 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3469 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3470 PAGE_FRAG_CACHE_MAX_ORDER
);
3471 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3473 if (unlikely(!page
))
3474 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3476 nc
->va
= page
? page_address(page
) : NULL
;
3481 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3482 unsigned int fragsz
, gfp_t gfp_mask
)
3484 unsigned int size
= PAGE_SIZE
;
3488 if (unlikely(!nc
->va
)) {
3490 page
= __page_frag_refill(nc
, gfp_mask
);
3494 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3495 /* if size can vary use size else just use PAGE_SIZE */
3498 /* Even if we own the page, we do not use atomic_set().
3499 * This would break get_page_unless_zero() users.
3501 page_ref_add(page
, size
- 1);
3503 /* reset page count bias and offset to start of new frag */
3504 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3505 nc
->pagecnt_bias
= size
;
3509 offset
= nc
->offset
- fragsz
;
3510 if (unlikely(offset
< 0)) {
3511 page
= virt_to_page(nc
->va
);
3513 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3516 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3517 /* if size can vary use size else just use PAGE_SIZE */
3520 /* OK, page count is 0, we can safely set it */
3521 set_page_count(page
, size
);
3523 /* reset page count bias and offset to start of new frag */
3524 nc
->pagecnt_bias
= size
;
3525 offset
= size
- fragsz
;
3529 nc
->offset
= offset
;
3531 return nc
->va
+ offset
;
3533 EXPORT_SYMBOL(__alloc_page_frag
);
3536 * Frees a page fragment allocated out of either a compound or order 0 page.
3538 void __free_page_frag(void *addr
)
3540 struct page
*page
= virt_to_head_page(addr
);
3542 if (unlikely(put_page_testzero(page
)))
3543 __free_pages_ok(page
, compound_order(page
));
3545 EXPORT_SYMBOL(__free_page_frag
);
3548 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3549 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3550 * equivalent to alloc_pages.
3552 * It should be used when the caller would like to use kmalloc, but since the
3553 * allocation is large, it has to fall back to the page allocator.
3555 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3559 page
= alloc_pages(gfp_mask
, order
);
3560 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3561 __free_pages(page
, order
);
3567 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3571 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3572 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3573 __free_pages(page
, order
);
3580 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3583 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3585 memcg_kmem_uncharge(page
, order
);
3586 __free_pages(page
, order
);
3589 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3592 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3593 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3597 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
3601 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3602 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3604 split_page(virt_to_page((void *)addr
), order
);
3605 while (used
< alloc_end
) {
3610 return (void *)addr
;
3614 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3615 * @size: the number of bytes to allocate
3616 * @gfp_mask: GFP flags for the allocation
3618 * This function is similar to alloc_pages(), except that it allocates the
3619 * minimum number of pages to satisfy the request. alloc_pages() can only
3620 * allocate memory in power-of-two pages.
3622 * This function is also limited by MAX_ORDER.
3624 * Memory allocated by this function must be released by free_pages_exact().
3626 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3628 unsigned int order
= get_order(size
);
3631 addr
= __get_free_pages(gfp_mask
, order
);
3632 return make_alloc_exact(addr
, order
, size
);
3634 EXPORT_SYMBOL(alloc_pages_exact
);
3637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3639 * @nid: the preferred node ID where memory should be allocated
3640 * @size: the number of bytes to allocate
3641 * @gfp_mask: GFP flags for the allocation
3643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3646 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3648 unsigned int order
= get_order(size
);
3649 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3652 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3656 * free_pages_exact - release memory allocated via alloc_pages_exact()
3657 * @virt: the value returned by alloc_pages_exact.
3658 * @size: size of allocation, same value as passed to alloc_pages_exact().
3660 * Release the memory allocated by a previous call to alloc_pages_exact.
3662 void free_pages_exact(void *virt
, size_t size
)
3664 unsigned long addr
= (unsigned long)virt
;
3665 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3667 while (addr
< end
) {
3672 EXPORT_SYMBOL(free_pages_exact
);
3675 * nr_free_zone_pages - count number of pages beyond high watermark
3676 * @offset: The zone index of the highest zone
3678 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3679 * high watermark within all zones at or below a given zone index. For each
3680 * zone, the number of pages is calculated as:
3681 * managed_pages - high_pages
3683 static unsigned long nr_free_zone_pages(int offset
)
3688 /* Just pick one node, since fallback list is circular */
3689 unsigned long sum
= 0;
3691 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3693 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3694 unsigned long size
= zone
->managed_pages
;
3695 unsigned long high
= high_wmark_pages(zone
);
3704 * nr_free_buffer_pages - count number of pages beyond high watermark
3706 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3707 * watermark within ZONE_DMA and ZONE_NORMAL.
3709 unsigned long nr_free_buffer_pages(void)
3711 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3716 * nr_free_pagecache_pages - count number of pages beyond high watermark
3718 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3719 * high watermark within all zones.
3721 unsigned long nr_free_pagecache_pages(void)
3723 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3726 static inline void show_node(struct zone
*zone
)
3728 if (IS_ENABLED(CONFIG_NUMA
))
3729 printk("Node %d ", zone_to_nid(zone
));
3732 long si_mem_available(void)
3735 unsigned long pagecache
;
3736 unsigned long wmark_low
= 0;
3737 unsigned long pages
[NR_LRU_LISTS
];
3741 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
3742 pages
[lru
] = global_page_state(NR_LRU_BASE
+ lru
);
3745 wmark_low
+= zone
->watermark
[WMARK_LOW
];
3748 * Estimate the amount of memory available for userspace allocations,
3749 * without causing swapping.
3751 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
3754 * Not all the page cache can be freed, otherwise the system will
3755 * start swapping. Assume at least half of the page cache, or the
3756 * low watermark worth of cache, needs to stay.
3758 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
3759 pagecache
-= min(pagecache
/ 2, wmark_low
);
3760 available
+= pagecache
;
3763 * Part of the reclaimable slab consists of items that are in use,
3764 * and cannot be freed. Cap this estimate at the low watermark.
3766 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
3767 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
3773 EXPORT_SYMBOL_GPL(si_mem_available
);
3775 void si_meminfo(struct sysinfo
*val
)
3777 val
->totalram
= totalram_pages
;
3778 val
->sharedram
= global_page_state(NR_SHMEM
);
3779 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3780 val
->bufferram
= nr_blockdev_pages();
3781 val
->totalhigh
= totalhigh_pages
;
3782 val
->freehigh
= nr_free_highpages();
3783 val
->mem_unit
= PAGE_SIZE
;
3786 EXPORT_SYMBOL(si_meminfo
);
3789 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3791 int zone_type
; /* needs to be signed */
3792 unsigned long managed_pages
= 0;
3793 pg_data_t
*pgdat
= NODE_DATA(nid
);
3795 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3796 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3797 val
->totalram
= managed_pages
;
3798 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3799 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3800 #ifdef CONFIG_HIGHMEM
3801 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3802 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3808 val
->mem_unit
= PAGE_SIZE
;
3813 * Determine whether the node should be displayed or not, depending on whether
3814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3816 bool skip_free_areas_node(unsigned int flags
, int nid
)
3819 unsigned int cpuset_mems_cookie
;
3821 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3825 cpuset_mems_cookie
= read_mems_allowed_begin();
3826 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3827 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3832 #define K(x) ((x) << (PAGE_SHIFT-10))
3834 static void show_migration_types(unsigned char type
)
3836 static const char types
[MIGRATE_TYPES
] = {
3837 [MIGRATE_UNMOVABLE
] = 'U',
3838 [MIGRATE_MOVABLE
] = 'M',
3839 [MIGRATE_RECLAIMABLE
] = 'E',
3840 [MIGRATE_HIGHATOMIC
] = 'H',
3842 [MIGRATE_CMA
] = 'C',
3844 #ifdef CONFIG_MEMORY_ISOLATION
3845 [MIGRATE_ISOLATE
] = 'I',
3848 char tmp
[MIGRATE_TYPES
+ 1];
3852 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3853 if (type
& (1 << i
))
3858 printk("(%s) ", tmp
);
3862 * Show free area list (used inside shift_scroll-lock stuff)
3863 * We also calculate the percentage fragmentation. We do this by counting the
3864 * memory on each free list with the exception of the first item on the list.
3867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3870 void show_free_areas(unsigned int filter
)
3872 unsigned long free_pcp
= 0;
3876 for_each_populated_zone(zone
) {
3877 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3880 for_each_online_cpu(cpu
)
3881 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3884 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3885 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3886 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3887 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3888 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3889 " free:%lu free_pcp:%lu free_cma:%lu\n",
3890 global_page_state(NR_ACTIVE_ANON
),
3891 global_page_state(NR_INACTIVE_ANON
),
3892 global_page_state(NR_ISOLATED_ANON
),
3893 global_page_state(NR_ACTIVE_FILE
),
3894 global_page_state(NR_INACTIVE_FILE
),
3895 global_page_state(NR_ISOLATED_FILE
),
3896 global_page_state(NR_UNEVICTABLE
),
3897 global_page_state(NR_FILE_DIRTY
),
3898 global_page_state(NR_WRITEBACK
),
3899 global_page_state(NR_UNSTABLE_NFS
),
3900 global_page_state(NR_SLAB_RECLAIMABLE
),
3901 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3902 global_page_state(NR_FILE_MAPPED
),
3903 global_page_state(NR_SHMEM
),
3904 global_page_state(NR_PAGETABLE
),
3905 global_page_state(NR_BOUNCE
),
3906 global_page_state(NR_FREE_PAGES
),
3908 global_page_state(NR_FREE_CMA_PAGES
));
3910 for_each_populated_zone(zone
) {
3913 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3917 for_each_online_cpu(cpu
)
3918 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3926 " active_anon:%lukB"
3927 " inactive_anon:%lukB"
3928 " active_file:%lukB"
3929 " inactive_file:%lukB"
3930 " unevictable:%lukB"
3931 " isolated(anon):%lukB"
3932 " isolated(file):%lukB"
3940 " slab_reclaimable:%lukB"
3941 " slab_unreclaimable:%lukB"
3942 " kernel_stack:%lukB"
3949 " writeback_tmp:%lukB"
3950 " pages_scanned:%lu"
3951 " all_unreclaimable? %s"
3954 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3955 K(min_wmark_pages(zone
)),
3956 K(low_wmark_pages(zone
)),
3957 K(high_wmark_pages(zone
)),
3958 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3959 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3960 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3961 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3962 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3963 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3964 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3965 K(zone
->present_pages
),
3966 K(zone
->managed_pages
),
3967 K(zone_page_state(zone
, NR_MLOCK
)),
3968 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3969 K(zone_page_state(zone
, NR_WRITEBACK
)),
3970 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3971 K(zone_page_state(zone
, NR_SHMEM
)),
3972 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3973 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3974 zone_page_state(zone
, NR_KERNEL_STACK
) *
3976 K(zone_page_state(zone
, NR_PAGETABLE
)),
3977 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3978 K(zone_page_state(zone
, NR_BOUNCE
)),
3980 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3981 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3982 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3983 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3984 (!zone_reclaimable(zone
) ? "yes" : "no")
3986 printk("lowmem_reserve[]:");
3987 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3988 printk(" %ld", zone
->lowmem_reserve
[i
]);
3992 for_each_populated_zone(zone
) {
3994 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
3995 unsigned char types
[MAX_ORDER
];
3997 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4000 printk("%s: ", zone
->name
);
4002 spin_lock_irqsave(&zone
->lock
, flags
);
4003 for (order
= 0; order
< MAX_ORDER
; order
++) {
4004 struct free_area
*area
= &zone
->free_area
[order
];
4007 nr
[order
] = area
->nr_free
;
4008 total
+= nr
[order
] << order
;
4011 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4012 if (!list_empty(&area
->free_list
[type
]))
4013 types
[order
] |= 1 << type
;
4016 spin_unlock_irqrestore(&zone
->lock
, flags
);
4017 for (order
= 0; order
< MAX_ORDER
; order
++) {
4018 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
4020 show_migration_types(types
[order
]);
4022 printk("= %lukB\n", K(total
));
4025 hugetlb_show_meminfo();
4027 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
4029 show_swap_cache_info();
4032 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4034 zoneref
->zone
= zone
;
4035 zoneref
->zone_idx
= zone_idx(zone
);
4039 * Builds allocation fallback zone lists.
4041 * Add all populated zones of a node to the zonelist.
4043 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4047 enum zone_type zone_type
= MAX_NR_ZONES
;
4051 zone
= pgdat
->node_zones
+ zone_type
;
4052 if (populated_zone(zone
)) {
4053 zoneref_set_zone(zone
,
4054 &zonelist
->_zonerefs
[nr_zones
++]);
4055 check_highest_zone(zone_type
);
4057 } while (zone_type
);
4065 * 0 = automatic detection of better ordering.
4066 * 1 = order by ([node] distance, -zonetype)
4067 * 2 = order by (-zonetype, [node] distance)
4069 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4070 * the same zonelist. So only NUMA can configure this param.
4072 #define ZONELIST_ORDER_DEFAULT 0
4073 #define ZONELIST_ORDER_NODE 1
4074 #define ZONELIST_ORDER_ZONE 2
4076 /* zonelist order in the kernel.
4077 * set_zonelist_order() will set this to NODE or ZONE.
4079 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4080 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4084 /* The value user specified ....changed by config */
4085 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4086 /* string for sysctl */
4087 #define NUMA_ZONELIST_ORDER_LEN 16
4088 char numa_zonelist_order
[16] = "default";
4091 * interface for configure zonelist ordering.
4092 * command line option "numa_zonelist_order"
4093 * = "[dD]efault - default, automatic configuration.
4094 * = "[nN]ode - order by node locality, then by zone within node
4095 * = "[zZ]one - order by zone, then by locality within zone
4098 static int __parse_numa_zonelist_order(char *s
)
4100 if (*s
== 'd' || *s
== 'D') {
4101 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4102 } else if (*s
== 'n' || *s
== 'N') {
4103 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4104 } else if (*s
== 'z' || *s
== 'Z') {
4105 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4107 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4113 static __init
int setup_numa_zonelist_order(char *s
)
4120 ret
= __parse_numa_zonelist_order(s
);
4122 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4126 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4129 * sysctl handler for numa_zonelist_order
4131 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4132 void __user
*buffer
, size_t *length
,
4135 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4137 static DEFINE_MUTEX(zl_order_mutex
);
4139 mutex_lock(&zl_order_mutex
);
4141 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4145 strcpy(saved_string
, (char *)table
->data
);
4147 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4151 int oldval
= user_zonelist_order
;
4153 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4156 * bogus value. restore saved string
4158 strncpy((char *)table
->data
, saved_string
,
4159 NUMA_ZONELIST_ORDER_LEN
);
4160 user_zonelist_order
= oldval
;
4161 } else if (oldval
!= user_zonelist_order
) {
4162 mutex_lock(&zonelists_mutex
);
4163 build_all_zonelists(NULL
, NULL
);
4164 mutex_unlock(&zonelists_mutex
);
4168 mutex_unlock(&zl_order_mutex
);
4173 #define MAX_NODE_LOAD (nr_online_nodes)
4174 static int node_load
[MAX_NUMNODES
];
4177 * find_next_best_node - find the next node that should appear in a given node's fallback list
4178 * @node: node whose fallback list we're appending
4179 * @used_node_mask: nodemask_t of already used nodes
4181 * We use a number of factors to determine which is the next node that should
4182 * appear on a given node's fallback list. The node should not have appeared
4183 * already in @node's fallback list, and it should be the next closest node
4184 * according to the distance array (which contains arbitrary distance values
4185 * from each node to each node in the system), and should also prefer nodes
4186 * with no CPUs, since presumably they'll have very little allocation pressure
4187 * on them otherwise.
4188 * It returns -1 if no node is found.
4190 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4193 int min_val
= INT_MAX
;
4194 int best_node
= NUMA_NO_NODE
;
4195 const struct cpumask
*tmp
= cpumask_of_node(0);
4197 /* Use the local node if we haven't already */
4198 if (!node_isset(node
, *used_node_mask
)) {
4199 node_set(node
, *used_node_mask
);
4203 for_each_node_state(n
, N_MEMORY
) {
4205 /* Don't want a node to appear more than once */
4206 if (node_isset(n
, *used_node_mask
))
4209 /* Use the distance array to find the distance */
4210 val
= node_distance(node
, n
);
4212 /* Penalize nodes under us ("prefer the next node") */
4215 /* Give preference to headless and unused nodes */
4216 tmp
= cpumask_of_node(n
);
4217 if (!cpumask_empty(tmp
))
4218 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4220 /* Slight preference for less loaded node */
4221 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4222 val
+= node_load
[n
];
4224 if (val
< min_val
) {
4231 node_set(best_node
, *used_node_mask
);
4238 * Build zonelists ordered by node and zones within node.
4239 * This results in maximum locality--normal zone overflows into local
4240 * DMA zone, if any--but risks exhausting DMA zone.
4242 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4245 struct zonelist
*zonelist
;
4247 zonelist
= &pgdat
->node_zonelists
[0];
4248 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4250 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4251 zonelist
->_zonerefs
[j
].zone
= NULL
;
4252 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4256 * Build gfp_thisnode zonelists
4258 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4261 struct zonelist
*zonelist
;
4263 zonelist
= &pgdat
->node_zonelists
[1];
4264 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4265 zonelist
->_zonerefs
[j
].zone
= NULL
;
4266 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4270 * Build zonelists ordered by zone and nodes within zones.
4271 * This results in conserving DMA zone[s] until all Normal memory is
4272 * exhausted, but results in overflowing to remote node while memory
4273 * may still exist in local DMA zone.
4275 static int node_order
[MAX_NUMNODES
];
4277 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4280 int zone_type
; /* needs to be signed */
4282 struct zonelist
*zonelist
;
4284 zonelist
= &pgdat
->node_zonelists
[0];
4286 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4287 for (j
= 0; j
< nr_nodes
; j
++) {
4288 node
= node_order
[j
];
4289 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4290 if (populated_zone(z
)) {
4292 &zonelist
->_zonerefs
[pos
++]);
4293 check_highest_zone(zone_type
);
4297 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4298 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4301 #if defined(CONFIG_64BIT)
4303 * Devices that require DMA32/DMA are relatively rare and do not justify a
4304 * penalty to every machine in case the specialised case applies. Default
4305 * to Node-ordering on 64-bit NUMA machines
4307 static int default_zonelist_order(void)
4309 return ZONELIST_ORDER_NODE
;
4313 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4314 * by the kernel. If processes running on node 0 deplete the low memory zone
4315 * then reclaim will occur more frequency increasing stalls and potentially
4316 * be easier to OOM if a large percentage of the zone is under writeback or
4317 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4318 * Hence, default to zone ordering on 32-bit.
4320 static int default_zonelist_order(void)
4322 return ZONELIST_ORDER_ZONE
;
4324 #endif /* CONFIG_64BIT */
4326 static void set_zonelist_order(void)
4328 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4329 current_zonelist_order
= default_zonelist_order();
4331 current_zonelist_order
= user_zonelist_order
;
4334 static void build_zonelists(pg_data_t
*pgdat
)
4337 nodemask_t used_mask
;
4338 int local_node
, prev_node
;
4339 struct zonelist
*zonelist
;
4340 unsigned int order
= current_zonelist_order
;
4342 /* initialize zonelists */
4343 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4344 zonelist
= pgdat
->node_zonelists
+ i
;
4345 zonelist
->_zonerefs
[0].zone
= NULL
;
4346 zonelist
->_zonerefs
[0].zone_idx
= 0;
4349 /* NUMA-aware ordering of nodes */
4350 local_node
= pgdat
->node_id
;
4351 load
= nr_online_nodes
;
4352 prev_node
= local_node
;
4353 nodes_clear(used_mask
);
4355 memset(node_order
, 0, sizeof(node_order
));
4358 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4360 * We don't want to pressure a particular node.
4361 * So adding penalty to the first node in same
4362 * distance group to make it round-robin.
4364 if (node_distance(local_node
, node
) !=
4365 node_distance(local_node
, prev_node
))
4366 node_load
[node
] = load
;
4370 if (order
== ZONELIST_ORDER_NODE
)
4371 build_zonelists_in_node_order(pgdat
, node
);
4373 node_order
[i
++] = node
; /* remember order */
4376 if (order
== ZONELIST_ORDER_ZONE
) {
4377 /* calculate node order -- i.e., DMA last! */
4378 build_zonelists_in_zone_order(pgdat
, i
);
4381 build_thisnode_zonelists(pgdat
);
4384 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4386 * Return node id of node used for "local" allocations.
4387 * I.e., first node id of first zone in arg node's generic zonelist.
4388 * Used for initializing percpu 'numa_mem', which is used primarily
4389 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4391 int local_memory_node(int node
)
4395 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4396 gfp_zone(GFP_KERNEL
),
4403 #else /* CONFIG_NUMA */
4405 static void set_zonelist_order(void)
4407 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4410 static void build_zonelists(pg_data_t
*pgdat
)
4412 int node
, local_node
;
4414 struct zonelist
*zonelist
;
4416 local_node
= pgdat
->node_id
;
4418 zonelist
= &pgdat
->node_zonelists
[0];
4419 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4422 * Now we build the zonelist so that it contains the zones
4423 * of all the other nodes.
4424 * We don't want to pressure a particular node, so when
4425 * building the zones for node N, we make sure that the
4426 * zones coming right after the local ones are those from
4427 * node N+1 (modulo N)
4429 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4430 if (!node_online(node
))
4432 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4434 for (node
= 0; node
< local_node
; node
++) {
4435 if (!node_online(node
))
4437 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4440 zonelist
->_zonerefs
[j
].zone
= NULL
;
4441 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4444 #endif /* CONFIG_NUMA */
4447 * Boot pageset table. One per cpu which is going to be used for all
4448 * zones and all nodes. The parameters will be set in such a way
4449 * that an item put on a list will immediately be handed over to
4450 * the buddy list. This is safe since pageset manipulation is done
4451 * with interrupts disabled.
4453 * The boot_pagesets must be kept even after bootup is complete for
4454 * unused processors and/or zones. They do play a role for bootstrapping
4455 * hotplugged processors.
4457 * zoneinfo_show() and maybe other functions do
4458 * not check if the processor is online before following the pageset pointer.
4459 * Other parts of the kernel may not check if the zone is available.
4461 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4462 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4463 static void setup_zone_pageset(struct zone
*zone
);
4466 * Global mutex to protect against size modification of zonelists
4467 * as well as to serialize pageset setup for the new populated zone.
4469 DEFINE_MUTEX(zonelists_mutex
);
4471 /* return values int ....just for stop_machine() */
4472 static int __build_all_zonelists(void *data
)
4476 pg_data_t
*self
= data
;
4479 memset(node_load
, 0, sizeof(node_load
));
4482 if (self
&& !node_online(self
->node_id
)) {
4483 build_zonelists(self
);
4486 for_each_online_node(nid
) {
4487 pg_data_t
*pgdat
= NODE_DATA(nid
);
4489 build_zonelists(pgdat
);
4493 * Initialize the boot_pagesets that are going to be used
4494 * for bootstrapping processors. The real pagesets for
4495 * each zone will be allocated later when the per cpu
4496 * allocator is available.
4498 * boot_pagesets are used also for bootstrapping offline
4499 * cpus if the system is already booted because the pagesets
4500 * are needed to initialize allocators on a specific cpu too.
4501 * F.e. the percpu allocator needs the page allocator which
4502 * needs the percpu allocator in order to allocate its pagesets
4503 * (a chicken-egg dilemma).
4505 for_each_possible_cpu(cpu
) {
4506 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4508 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4510 * We now know the "local memory node" for each node--
4511 * i.e., the node of the first zone in the generic zonelist.
4512 * Set up numa_mem percpu variable for on-line cpus. During
4513 * boot, only the boot cpu should be on-line; we'll init the
4514 * secondary cpus' numa_mem as they come on-line. During
4515 * node/memory hotplug, we'll fixup all on-line cpus.
4517 if (cpu_online(cpu
))
4518 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4525 static noinline
void __init
4526 build_all_zonelists_init(void)
4528 __build_all_zonelists(NULL
);
4529 mminit_verify_zonelist();
4530 cpuset_init_current_mems_allowed();
4534 * Called with zonelists_mutex held always
4535 * unless system_state == SYSTEM_BOOTING.
4537 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4538 * [we're only called with non-NULL zone through __meminit paths] and
4539 * (2) call of __init annotated helper build_all_zonelists_init
4540 * [protected by SYSTEM_BOOTING].
4542 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4544 set_zonelist_order();
4546 if (system_state
== SYSTEM_BOOTING
) {
4547 build_all_zonelists_init();
4549 #ifdef CONFIG_MEMORY_HOTPLUG
4551 setup_zone_pageset(zone
);
4553 /* we have to stop all cpus to guarantee there is no user
4555 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4556 /* cpuset refresh routine should be here */
4558 vm_total_pages
= nr_free_pagecache_pages();
4560 * Disable grouping by mobility if the number of pages in the
4561 * system is too low to allow the mechanism to work. It would be
4562 * more accurate, but expensive to check per-zone. This check is
4563 * made on memory-hotadd so a system can start with mobility
4564 * disabled and enable it later
4566 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4567 page_group_by_mobility_disabled
= 1;
4569 page_group_by_mobility_disabled
= 0;
4571 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4573 zonelist_order_name
[current_zonelist_order
],
4574 page_group_by_mobility_disabled
? "off" : "on",
4577 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4582 * Helper functions to size the waitqueue hash table.
4583 * Essentially these want to choose hash table sizes sufficiently
4584 * large so that collisions trying to wait on pages are rare.
4585 * But in fact, the number of active page waitqueues on typical
4586 * systems is ridiculously low, less than 200. So this is even
4587 * conservative, even though it seems large.
4589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4590 * waitqueues, i.e. the size of the waitq table given the number of pages.
4592 #define PAGES_PER_WAITQUEUE 256
4594 #ifndef CONFIG_MEMORY_HOTPLUG
4595 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4597 unsigned long size
= 1;
4599 pages
/= PAGES_PER_WAITQUEUE
;
4601 while (size
< pages
)
4605 * Once we have dozens or even hundreds of threads sleeping
4606 * on IO we've got bigger problems than wait queue collision.
4607 * Limit the size of the wait table to a reasonable size.
4609 size
= min(size
, 4096UL);
4611 return max(size
, 4UL);
4615 * A zone's size might be changed by hot-add, so it is not possible to determine
4616 * a suitable size for its wait_table. So we use the maximum size now.
4618 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4620 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4621 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4622 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4624 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4625 * or more by the traditional way. (See above). It equals:
4627 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4628 * ia64(16K page size) : = ( 8G + 4M)byte.
4629 * powerpc (64K page size) : = (32G +16M)byte.
4631 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4638 * This is an integer logarithm so that shifts can be used later
4639 * to extract the more random high bits from the multiplicative
4640 * hash function before the remainder is taken.
4642 static inline unsigned long wait_table_bits(unsigned long size
)
4648 * Initially all pages are reserved - free ones are freed
4649 * up by free_all_bootmem() once the early boot process is
4650 * done. Non-atomic initialization, single-pass.
4652 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4653 unsigned long start_pfn
, enum memmap_context context
)
4655 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
4656 unsigned long end_pfn
= start_pfn
+ size
;
4657 pg_data_t
*pgdat
= NODE_DATA(nid
);
4659 unsigned long nr_initialised
= 0;
4660 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4661 struct memblock_region
*r
= NULL
, *tmp
;
4664 if (highest_memmap_pfn
< end_pfn
- 1)
4665 highest_memmap_pfn
= end_pfn
- 1;
4668 * Honor reservation requested by the driver for this ZONE_DEVICE
4671 if (altmap
&& start_pfn
== altmap
->base_pfn
)
4672 start_pfn
+= altmap
->reserve
;
4674 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4676 * There can be holes in boot-time mem_map[]s handed to this
4677 * function. They do not exist on hotplugged memory.
4679 if (context
!= MEMMAP_EARLY
)
4682 if (!early_pfn_valid(pfn
))
4684 if (!early_pfn_in_nid(pfn
, nid
))
4686 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
4689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4691 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4692 * from zone_movable_pfn[nid] to end of each node should be
4693 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4695 if (!mirrored_kernelcore
&& zone_movable_pfn
[nid
])
4696 if (zone
== ZONE_NORMAL
&& pfn
>= zone_movable_pfn
[nid
])
4700 * Check given memblock attribute by firmware which can affect
4701 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4702 * mirrored, it's an overlapped memmap init. skip it.
4704 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
4705 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
4706 for_each_memblock(memory
, tmp
)
4707 if (pfn
< memblock_region_memory_end_pfn(tmp
))
4711 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
4712 memblock_is_mirror(r
)) {
4713 /* already initialized as NORMAL */
4714 pfn
= memblock_region_memory_end_pfn(r
);
4722 * Mark the block movable so that blocks are reserved for
4723 * movable at startup. This will force kernel allocations
4724 * to reserve their blocks rather than leaking throughout
4725 * the address space during boot when many long-lived
4726 * kernel allocations are made.
4728 * bitmap is created for zone's valid pfn range. but memmap
4729 * can be created for invalid pages (for alignment)
4730 * check here not to call set_pageblock_migratetype() against
4733 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4734 struct page
*page
= pfn_to_page(pfn
);
4736 __init_single_page(page
, pfn
, zone
, nid
);
4737 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4739 __init_single_pfn(pfn
, zone
, nid
);
4744 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4746 unsigned int order
, t
;
4747 for_each_migratetype_order(order
, t
) {
4748 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4749 zone
->free_area
[order
].nr_free
= 0;
4753 #ifndef __HAVE_ARCH_MEMMAP_INIT
4754 #define memmap_init(size, nid, zone, start_pfn) \
4755 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4758 static int zone_batchsize(struct zone
*zone
)
4764 * The per-cpu-pages pools are set to around 1000th of the
4765 * size of the zone. But no more than 1/2 of a meg.
4767 * OK, so we don't know how big the cache is. So guess.
4769 batch
= zone
->managed_pages
/ 1024;
4770 if (batch
* PAGE_SIZE
> 512 * 1024)
4771 batch
= (512 * 1024) / PAGE_SIZE
;
4772 batch
/= 4; /* We effectively *= 4 below */
4777 * Clamp the batch to a 2^n - 1 value. Having a power
4778 * of 2 value was found to be more likely to have
4779 * suboptimal cache aliasing properties in some cases.
4781 * For example if 2 tasks are alternately allocating
4782 * batches of pages, one task can end up with a lot
4783 * of pages of one half of the possible page colors
4784 * and the other with pages of the other colors.
4786 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4791 /* The deferral and batching of frees should be suppressed under NOMMU
4794 * The problem is that NOMMU needs to be able to allocate large chunks
4795 * of contiguous memory as there's no hardware page translation to
4796 * assemble apparent contiguous memory from discontiguous pages.
4798 * Queueing large contiguous runs of pages for batching, however,
4799 * causes the pages to actually be freed in smaller chunks. As there
4800 * can be a significant delay between the individual batches being
4801 * recycled, this leads to the once large chunks of space being
4802 * fragmented and becoming unavailable for high-order allocations.
4809 * pcp->high and pcp->batch values are related and dependent on one another:
4810 * ->batch must never be higher then ->high.
4811 * The following function updates them in a safe manner without read side
4814 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4815 * those fields changing asynchronously (acording the the above rule).
4817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4818 * outside of boot time (or some other assurance that no concurrent updaters
4821 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4822 unsigned long batch
)
4824 /* start with a fail safe value for batch */
4828 /* Update high, then batch, in order */
4835 /* a companion to pageset_set_high() */
4836 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4838 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4841 static void pageset_init(struct per_cpu_pageset
*p
)
4843 struct per_cpu_pages
*pcp
;
4846 memset(p
, 0, sizeof(*p
));
4850 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4851 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4854 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4857 pageset_set_batch(p
, batch
);
4861 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4862 * to the value high for the pageset p.
4864 static void pageset_set_high(struct per_cpu_pageset
*p
,
4867 unsigned long batch
= max(1UL, high
/ 4);
4868 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4869 batch
= PAGE_SHIFT
* 8;
4871 pageset_update(&p
->pcp
, high
, batch
);
4874 static void pageset_set_high_and_batch(struct zone
*zone
,
4875 struct per_cpu_pageset
*pcp
)
4877 if (percpu_pagelist_fraction
)
4878 pageset_set_high(pcp
,
4879 (zone
->managed_pages
/
4880 percpu_pagelist_fraction
));
4882 pageset_set_batch(pcp
, zone_batchsize(zone
));
4885 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4887 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4890 pageset_set_high_and_batch(zone
, pcp
);
4893 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4896 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4897 for_each_possible_cpu(cpu
)
4898 zone_pageset_init(zone
, cpu
);
4902 * Allocate per cpu pagesets and initialize them.
4903 * Before this call only boot pagesets were available.
4905 void __init
setup_per_cpu_pageset(void)
4909 for_each_populated_zone(zone
)
4910 setup_zone_pageset(zone
);
4913 static noinline __init_refok
4914 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4920 * The per-page waitqueue mechanism uses hashed waitqueues
4923 zone
->wait_table_hash_nr_entries
=
4924 wait_table_hash_nr_entries(zone_size_pages
);
4925 zone
->wait_table_bits
=
4926 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4927 alloc_size
= zone
->wait_table_hash_nr_entries
4928 * sizeof(wait_queue_head_t
);
4930 if (!slab_is_available()) {
4931 zone
->wait_table
= (wait_queue_head_t
*)
4932 memblock_virt_alloc_node_nopanic(
4933 alloc_size
, zone
->zone_pgdat
->node_id
);
4936 * This case means that a zone whose size was 0 gets new memory
4937 * via memory hot-add.
4938 * But it may be the case that a new node was hot-added. In
4939 * this case vmalloc() will not be able to use this new node's
4940 * memory - this wait_table must be initialized to use this new
4941 * node itself as well.
4942 * To use this new node's memory, further consideration will be
4945 zone
->wait_table
= vmalloc(alloc_size
);
4947 if (!zone
->wait_table
)
4950 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4951 init_waitqueue_head(zone
->wait_table
+ i
);
4956 static __meminit
void zone_pcp_init(struct zone
*zone
)
4959 * per cpu subsystem is not up at this point. The following code
4960 * relies on the ability of the linker to provide the
4961 * offset of a (static) per cpu variable into the per cpu area.
4963 zone
->pageset
= &boot_pageset
;
4965 if (populated_zone(zone
))
4966 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4967 zone
->name
, zone
->present_pages
,
4968 zone_batchsize(zone
));
4971 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4972 unsigned long zone_start_pfn
,
4975 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4977 ret
= zone_wait_table_init(zone
, size
);
4980 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4982 zone
->zone_start_pfn
= zone_start_pfn
;
4984 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4985 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4987 (unsigned long)zone_idx(zone
),
4988 zone_start_pfn
, (zone_start_pfn
+ size
));
4990 zone_init_free_lists(zone
);
4995 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4999 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5001 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5002 struct mminit_pfnnid_cache
*state
)
5004 unsigned long start_pfn
, end_pfn
;
5007 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5008 return state
->last_nid
;
5010 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5012 state
->last_start
= start_pfn
;
5013 state
->last_end
= end_pfn
;
5014 state
->last_nid
= nid
;
5019 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5022 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5023 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5024 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5026 * If an architecture guarantees that all ranges registered contain no holes
5027 * and may be freed, this this function may be used instead of calling
5028 * memblock_free_early_nid() manually.
5030 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5032 unsigned long start_pfn
, end_pfn
;
5035 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5036 start_pfn
= min(start_pfn
, max_low_pfn
);
5037 end_pfn
= min(end_pfn
, max_low_pfn
);
5039 if (start_pfn
< end_pfn
)
5040 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5041 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5047 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5048 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5050 * If an architecture guarantees that all ranges registered contain no holes and may
5051 * be freed, this function may be used instead of calling memory_present() manually.
5053 void __init
sparse_memory_present_with_active_regions(int nid
)
5055 unsigned long start_pfn
, end_pfn
;
5058 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5059 memory_present(this_nid
, start_pfn
, end_pfn
);
5063 * get_pfn_range_for_nid - Return the start and end page frames for a node
5064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5068 * It returns the start and end page frame of a node based on information
5069 * provided by memblock_set_node(). If called for a node
5070 * with no available memory, a warning is printed and the start and end
5073 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5074 unsigned long *start_pfn
, unsigned long *end_pfn
)
5076 unsigned long this_start_pfn
, this_end_pfn
;
5082 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5083 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5084 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5087 if (*start_pfn
== -1UL)
5092 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5093 * assumption is made that zones within a node are ordered in monotonic
5094 * increasing memory addresses so that the "highest" populated zone is used
5096 static void __init
find_usable_zone_for_movable(void)
5099 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5100 if (zone_index
== ZONE_MOVABLE
)
5103 if (arch_zone_highest_possible_pfn
[zone_index
] >
5104 arch_zone_lowest_possible_pfn
[zone_index
])
5108 VM_BUG_ON(zone_index
== -1);
5109 movable_zone
= zone_index
;
5113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5114 * because it is sized independent of architecture. Unlike the other zones,
5115 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5116 * in each node depending on the size of each node and how evenly kernelcore
5117 * is distributed. This helper function adjusts the zone ranges
5118 * provided by the architecture for a given node by using the end of the
5119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5120 * zones within a node are in order of monotonic increases memory addresses
5122 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5123 unsigned long zone_type
,
5124 unsigned long node_start_pfn
,
5125 unsigned long node_end_pfn
,
5126 unsigned long *zone_start_pfn
,
5127 unsigned long *zone_end_pfn
)
5129 /* Only adjust if ZONE_MOVABLE is on this node */
5130 if (zone_movable_pfn
[nid
]) {
5131 /* Size ZONE_MOVABLE */
5132 if (zone_type
== ZONE_MOVABLE
) {
5133 *zone_start_pfn
= zone_movable_pfn
[nid
];
5134 *zone_end_pfn
= min(node_end_pfn
,
5135 arch_zone_highest_possible_pfn
[movable_zone
]);
5137 /* Check if this whole range is within ZONE_MOVABLE */
5138 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5139 *zone_start_pfn
= *zone_end_pfn
;
5144 * Return the number of pages a zone spans in a node, including holes
5145 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5147 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5148 unsigned long zone_type
,
5149 unsigned long node_start_pfn
,
5150 unsigned long node_end_pfn
,
5151 unsigned long *zone_start_pfn
,
5152 unsigned long *zone_end_pfn
,
5153 unsigned long *ignored
)
5155 /* When hotadd a new node from cpu_up(), the node should be empty */
5156 if (!node_start_pfn
&& !node_end_pfn
)
5159 /* Get the start and end of the zone */
5160 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5161 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5162 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5163 node_start_pfn
, node_end_pfn
,
5164 zone_start_pfn
, zone_end_pfn
);
5166 /* Check that this node has pages within the zone's required range */
5167 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5170 /* Move the zone boundaries inside the node if necessary */
5171 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5172 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5174 /* Return the spanned pages */
5175 return *zone_end_pfn
- *zone_start_pfn
;
5179 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5180 * then all holes in the requested range will be accounted for.
5182 unsigned long __meminit
__absent_pages_in_range(int nid
,
5183 unsigned long range_start_pfn
,
5184 unsigned long range_end_pfn
)
5186 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5187 unsigned long start_pfn
, end_pfn
;
5190 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5191 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5192 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5193 nr_absent
-= end_pfn
- start_pfn
;
5199 * absent_pages_in_range - Return number of page frames in holes within a range
5200 * @start_pfn: The start PFN to start searching for holes
5201 * @end_pfn: The end PFN to stop searching for holes
5203 * It returns the number of pages frames in memory holes within a range.
5205 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5206 unsigned long end_pfn
)
5208 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5211 /* Return the number of page frames in holes in a zone on a node */
5212 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5213 unsigned long zone_type
,
5214 unsigned long node_start_pfn
,
5215 unsigned long node_end_pfn
,
5216 unsigned long *ignored
)
5218 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5219 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5220 unsigned long zone_start_pfn
, zone_end_pfn
;
5221 unsigned long nr_absent
;
5223 /* When hotadd a new node from cpu_up(), the node should be empty */
5224 if (!node_start_pfn
&& !node_end_pfn
)
5227 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5228 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5230 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5231 node_start_pfn
, node_end_pfn
,
5232 &zone_start_pfn
, &zone_end_pfn
);
5233 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5236 * ZONE_MOVABLE handling.
5237 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5240 if (zone_movable_pfn
[nid
]) {
5241 if (mirrored_kernelcore
) {
5242 unsigned long start_pfn
, end_pfn
;
5243 struct memblock_region
*r
;
5245 for_each_memblock(memory
, r
) {
5246 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5247 zone_start_pfn
, zone_end_pfn
);
5248 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5249 zone_start_pfn
, zone_end_pfn
);
5251 if (zone_type
== ZONE_MOVABLE
&&
5252 memblock_is_mirror(r
))
5253 nr_absent
+= end_pfn
- start_pfn
;
5255 if (zone_type
== ZONE_NORMAL
&&
5256 !memblock_is_mirror(r
))
5257 nr_absent
+= end_pfn
- start_pfn
;
5260 if (zone_type
== ZONE_NORMAL
)
5261 nr_absent
+= node_end_pfn
- zone_movable_pfn
[nid
];
5268 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5269 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5270 unsigned long zone_type
,
5271 unsigned long node_start_pfn
,
5272 unsigned long node_end_pfn
,
5273 unsigned long *zone_start_pfn
,
5274 unsigned long *zone_end_pfn
,
5275 unsigned long *zones_size
)
5279 *zone_start_pfn
= node_start_pfn
;
5280 for (zone
= 0; zone
< zone_type
; zone
++)
5281 *zone_start_pfn
+= zones_size
[zone
];
5283 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5285 return zones_size
[zone_type
];
5288 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5289 unsigned long zone_type
,
5290 unsigned long node_start_pfn
,
5291 unsigned long node_end_pfn
,
5292 unsigned long *zholes_size
)
5297 return zholes_size
[zone_type
];
5300 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5302 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5303 unsigned long node_start_pfn
,
5304 unsigned long node_end_pfn
,
5305 unsigned long *zones_size
,
5306 unsigned long *zholes_size
)
5308 unsigned long realtotalpages
= 0, totalpages
= 0;
5311 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5312 struct zone
*zone
= pgdat
->node_zones
+ i
;
5313 unsigned long zone_start_pfn
, zone_end_pfn
;
5314 unsigned long size
, real_size
;
5316 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5322 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5323 node_start_pfn
, node_end_pfn
,
5326 zone
->zone_start_pfn
= zone_start_pfn
;
5328 zone
->zone_start_pfn
= 0;
5329 zone
->spanned_pages
= size
;
5330 zone
->present_pages
= real_size
;
5333 realtotalpages
+= real_size
;
5336 pgdat
->node_spanned_pages
= totalpages
;
5337 pgdat
->node_present_pages
= realtotalpages
;
5338 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5342 #ifndef CONFIG_SPARSEMEM
5344 * Calculate the size of the zone->blockflags rounded to an unsigned long
5345 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5346 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5347 * round what is now in bits to nearest long in bits, then return it in
5350 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5352 unsigned long usemapsize
;
5354 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5355 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5356 usemapsize
= usemapsize
>> pageblock_order
;
5357 usemapsize
*= NR_PAGEBLOCK_BITS
;
5358 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5360 return usemapsize
/ 8;
5363 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5365 unsigned long zone_start_pfn
,
5366 unsigned long zonesize
)
5368 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5369 zone
->pageblock_flags
= NULL
;
5371 zone
->pageblock_flags
=
5372 memblock_virt_alloc_node_nopanic(usemapsize
,
5376 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5377 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5378 #endif /* CONFIG_SPARSEMEM */
5380 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5382 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5383 void __paginginit
set_pageblock_order(void)
5387 /* Check that pageblock_nr_pages has not already been setup */
5388 if (pageblock_order
)
5391 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5392 order
= HUGETLB_PAGE_ORDER
;
5394 order
= MAX_ORDER
- 1;
5397 * Assume the largest contiguous order of interest is a huge page.
5398 * This value may be variable depending on boot parameters on IA64 and
5401 pageblock_order
= order
;
5403 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5407 * is unused as pageblock_order is set at compile-time. See
5408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5411 void __paginginit
set_pageblock_order(void)
5415 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5417 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5418 unsigned long present_pages
)
5420 unsigned long pages
= spanned_pages
;
5423 * Provide a more accurate estimation if there are holes within
5424 * the zone and SPARSEMEM is in use. If there are holes within the
5425 * zone, each populated memory region may cost us one or two extra
5426 * memmap pages due to alignment because memmap pages for each
5427 * populated regions may not naturally algined on page boundary.
5428 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5430 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5431 IS_ENABLED(CONFIG_SPARSEMEM
))
5432 pages
= present_pages
;
5434 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5438 * Set up the zone data structures:
5439 * - mark all pages reserved
5440 * - mark all memory queues empty
5441 * - clear the memory bitmaps
5443 * NOTE: pgdat should get zeroed by caller.
5445 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5448 int nid
= pgdat
->node_id
;
5451 pgdat_resize_init(pgdat
);
5452 #ifdef CONFIG_NUMA_BALANCING
5453 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5454 pgdat
->numabalancing_migrate_nr_pages
= 0;
5455 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458 spin_lock_init(&pgdat
->split_queue_lock
);
5459 INIT_LIST_HEAD(&pgdat
->split_queue
);
5460 pgdat
->split_queue_len
= 0;
5462 init_waitqueue_head(&pgdat
->kswapd_wait
);
5463 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5464 #ifdef CONFIG_COMPACTION
5465 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5467 pgdat_page_ext_init(pgdat
);
5469 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5470 struct zone
*zone
= pgdat
->node_zones
+ j
;
5471 unsigned long size
, realsize
, freesize
, memmap_pages
;
5472 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5474 size
= zone
->spanned_pages
;
5475 realsize
= freesize
= zone
->present_pages
;
5478 * Adjust freesize so that it accounts for how much memory
5479 * is used by this zone for memmap. This affects the watermark
5480 * and per-cpu initialisations
5482 memmap_pages
= calc_memmap_size(size
, realsize
);
5483 if (!is_highmem_idx(j
)) {
5484 if (freesize
>= memmap_pages
) {
5485 freesize
-= memmap_pages
;
5488 " %s zone: %lu pages used for memmap\n",
5489 zone_names
[j
], memmap_pages
);
5491 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5492 zone_names
[j
], memmap_pages
, freesize
);
5495 /* Account for reserved pages */
5496 if (j
== 0 && freesize
> dma_reserve
) {
5497 freesize
-= dma_reserve
;
5498 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5499 zone_names
[0], dma_reserve
);
5502 if (!is_highmem_idx(j
))
5503 nr_kernel_pages
+= freesize
;
5504 /* Charge for highmem memmap if there are enough kernel pages */
5505 else if (nr_kernel_pages
> memmap_pages
* 2)
5506 nr_kernel_pages
-= memmap_pages
;
5507 nr_all_pages
+= freesize
;
5510 * Set an approximate value for lowmem here, it will be adjusted
5511 * when the bootmem allocator frees pages into the buddy system.
5512 * And all highmem pages will be managed by the buddy system.
5514 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5517 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5519 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5521 zone
->name
= zone_names
[j
];
5522 spin_lock_init(&zone
->lock
);
5523 spin_lock_init(&zone
->lru_lock
);
5524 zone_seqlock_init(zone
);
5525 zone
->zone_pgdat
= pgdat
;
5526 zone_pcp_init(zone
);
5528 /* For bootup, initialized properly in watermark setup */
5529 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5531 lruvec_init(&zone
->lruvec
);
5535 set_pageblock_order();
5536 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5537 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5539 memmap_init(size
, nid
, j
, zone_start_pfn
);
5543 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5545 unsigned long __maybe_unused start
= 0;
5546 unsigned long __maybe_unused offset
= 0;
5548 /* Skip empty nodes */
5549 if (!pgdat
->node_spanned_pages
)
5552 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5553 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5554 offset
= pgdat
->node_start_pfn
- start
;
5555 /* ia64 gets its own node_mem_map, before this, without bootmem */
5556 if (!pgdat
->node_mem_map
) {
5557 unsigned long size
, end
;
5561 * The zone's endpoints aren't required to be MAX_ORDER
5562 * aligned but the node_mem_map endpoints must be in order
5563 * for the buddy allocator to function correctly.
5565 end
= pgdat_end_pfn(pgdat
);
5566 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5567 size
= (end
- start
) * sizeof(struct page
);
5568 map
= alloc_remap(pgdat
->node_id
, size
);
5570 map
= memblock_virt_alloc_node_nopanic(size
,
5572 pgdat
->node_mem_map
= map
+ offset
;
5574 #ifndef CONFIG_NEED_MULTIPLE_NODES
5576 * With no DISCONTIG, the global mem_map is just set as node 0's
5578 if (pgdat
== NODE_DATA(0)) {
5579 mem_map
= NODE_DATA(0)->node_mem_map
;
5580 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5581 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5583 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5586 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5589 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5590 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5592 pg_data_t
*pgdat
= NODE_DATA(nid
);
5593 unsigned long start_pfn
= 0;
5594 unsigned long end_pfn
= 0;
5596 /* pg_data_t should be reset to zero when it's allocated */
5597 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5599 reset_deferred_meminit(pgdat
);
5600 pgdat
->node_id
= nid
;
5601 pgdat
->node_start_pfn
= node_start_pfn
;
5602 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5603 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5604 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5605 (u64
)start_pfn
<< PAGE_SHIFT
,
5606 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5608 start_pfn
= node_start_pfn
;
5610 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5611 zones_size
, zholes_size
);
5613 alloc_node_mem_map(pgdat
);
5614 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5615 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5616 nid
, (unsigned long)pgdat
,
5617 (unsigned long)pgdat
->node_mem_map
);
5620 free_area_init_core(pgdat
);
5623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5625 #if MAX_NUMNODES > 1
5627 * Figure out the number of possible node ids.
5629 void __init
setup_nr_node_ids(void)
5631 unsigned int highest
;
5633 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5634 nr_node_ids
= highest
+ 1;
5639 * node_map_pfn_alignment - determine the maximum internode alignment
5641 * This function should be called after node map is populated and sorted.
5642 * It calculates the maximum power of two alignment which can distinguish
5645 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5646 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5647 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5648 * shifted, 1GiB is enough and this function will indicate so.
5650 * This is used to test whether pfn -> nid mapping of the chosen memory
5651 * model has fine enough granularity to avoid incorrect mapping for the
5652 * populated node map.
5654 * Returns the determined alignment in pfn's. 0 if there is no alignment
5655 * requirement (single node).
5657 unsigned long __init
node_map_pfn_alignment(void)
5659 unsigned long accl_mask
= 0, last_end
= 0;
5660 unsigned long start
, end
, mask
;
5664 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5665 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5672 * Start with a mask granular enough to pin-point to the
5673 * start pfn and tick off bits one-by-one until it becomes
5674 * too coarse to separate the current node from the last.
5676 mask
= ~((1 << __ffs(start
)) - 1);
5677 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5680 /* accumulate all internode masks */
5684 /* convert mask to number of pages */
5685 return ~accl_mask
+ 1;
5688 /* Find the lowest pfn for a node */
5689 static unsigned long __init
find_min_pfn_for_node(int nid
)
5691 unsigned long min_pfn
= ULONG_MAX
;
5692 unsigned long start_pfn
;
5695 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5696 min_pfn
= min(min_pfn
, start_pfn
);
5698 if (min_pfn
== ULONG_MAX
) {
5699 pr_warn("Could not find start_pfn for node %d\n", nid
);
5707 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5709 * It returns the minimum PFN based on information provided via
5710 * memblock_set_node().
5712 unsigned long __init
find_min_pfn_with_active_regions(void)
5714 return find_min_pfn_for_node(MAX_NUMNODES
);
5718 * early_calculate_totalpages()
5719 * Sum pages in active regions for movable zone.
5720 * Populate N_MEMORY for calculating usable_nodes.
5722 static unsigned long __init
early_calculate_totalpages(void)
5724 unsigned long totalpages
= 0;
5725 unsigned long start_pfn
, end_pfn
;
5728 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5729 unsigned long pages
= end_pfn
- start_pfn
;
5731 totalpages
+= pages
;
5733 node_set_state(nid
, N_MEMORY
);
5739 * Find the PFN the Movable zone begins in each node. Kernel memory
5740 * is spread evenly between nodes as long as the nodes have enough
5741 * memory. When they don't, some nodes will have more kernelcore than
5744 static void __init
find_zone_movable_pfns_for_nodes(void)
5747 unsigned long usable_startpfn
;
5748 unsigned long kernelcore_node
, kernelcore_remaining
;
5749 /* save the state before borrow the nodemask */
5750 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5751 unsigned long totalpages
= early_calculate_totalpages();
5752 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5753 struct memblock_region
*r
;
5755 /* Need to find movable_zone earlier when movable_node is specified. */
5756 find_usable_zone_for_movable();
5759 * If movable_node is specified, ignore kernelcore and movablecore
5762 if (movable_node_is_enabled()) {
5763 for_each_memblock(memory
, r
) {
5764 if (!memblock_is_hotpluggable(r
))
5769 usable_startpfn
= PFN_DOWN(r
->base
);
5770 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5771 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5779 * If kernelcore=mirror is specified, ignore movablecore option
5781 if (mirrored_kernelcore
) {
5782 bool mem_below_4gb_not_mirrored
= false;
5784 for_each_memblock(memory
, r
) {
5785 if (memblock_is_mirror(r
))
5790 usable_startpfn
= memblock_region_memory_base_pfn(r
);
5792 if (usable_startpfn
< 0x100000) {
5793 mem_below_4gb_not_mirrored
= true;
5797 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5798 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5802 if (mem_below_4gb_not_mirrored
)
5803 pr_warn("This configuration results in unmirrored kernel memory.");
5809 * If movablecore=nn[KMG] was specified, calculate what size of
5810 * kernelcore that corresponds so that memory usable for
5811 * any allocation type is evenly spread. If both kernelcore
5812 * and movablecore are specified, then the value of kernelcore
5813 * will be used for required_kernelcore if it's greater than
5814 * what movablecore would have allowed.
5816 if (required_movablecore
) {
5817 unsigned long corepages
;
5820 * Round-up so that ZONE_MOVABLE is at least as large as what
5821 * was requested by the user
5823 required_movablecore
=
5824 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5825 required_movablecore
= min(totalpages
, required_movablecore
);
5826 corepages
= totalpages
- required_movablecore
;
5828 required_kernelcore
= max(required_kernelcore
, corepages
);
5832 * If kernelcore was not specified or kernelcore size is larger
5833 * than totalpages, there is no ZONE_MOVABLE.
5835 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
5838 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5839 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5842 /* Spread kernelcore memory as evenly as possible throughout nodes */
5843 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5844 for_each_node_state(nid
, N_MEMORY
) {
5845 unsigned long start_pfn
, end_pfn
;
5848 * Recalculate kernelcore_node if the division per node
5849 * now exceeds what is necessary to satisfy the requested
5850 * amount of memory for the kernel
5852 if (required_kernelcore
< kernelcore_node
)
5853 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5856 * As the map is walked, we track how much memory is usable
5857 * by the kernel using kernelcore_remaining. When it is
5858 * 0, the rest of the node is usable by ZONE_MOVABLE
5860 kernelcore_remaining
= kernelcore_node
;
5862 /* Go through each range of PFNs within this node */
5863 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5864 unsigned long size_pages
;
5866 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5867 if (start_pfn
>= end_pfn
)
5870 /* Account for what is only usable for kernelcore */
5871 if (start_pfn
< usable_startpfn
) {
5872 unsigned long kernel_pages
;
5873 kernel_pages
= min(end_pfn
, usable_startpfn
)
5876 kernelcore_remaining
-= min(kernel_pages
,
5877 kernelcore_remaining
);
5878 required_kernelcore
-= min(kernel_pages
,
5879 required_kernelcore
);
5881 /* Continue if range is now fully accounted */
5882 if (end_pfn
<= usable_startpfn
) {
5885 * Push zone_movable_pfn to the end so
5886 * that if we have to rebalance
5887 * kernelcore across nodes, we will
5888 * not double account here
5890 zone_movable_pfn
[nid
] = end_pfn
;
5893 start_pfn
= usable_startpfn
;
5897 * The usable PFN range for ZONE_MOVABLE is from
5898 * start_pfn->end_pfn. Calculate size_pages as the
5899 * number of pages used as kernelcore
5901 size_pages
= end_pfn
- start_pfn
;
5902 if (size_pages
> kernelcore_remaining
)
5903 size_pages
= kernelcore_remaining
;
5904 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5907 * Some kernelcore has been met, update counts and
5908 * break if the kernelcore for this node has been
5911 required_kernelcore
-= min(required_kernelcore
,
5913 kernelcore_remaining
-= size_pages
;
5914 if (!kernelcore_remaining
)
5920 * If there is still required_kernelcore, we do another pass with one
5921 * less node in the count. This will push zone_movable_pfn[nid] further
5922 * along on the nodes that still have memory until kernelcore is
5926 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5930 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5931 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5932 zone_movable_pfn
[nid
] =
5933 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5936 /* restore the node_state */
5937 node_states
[N_MEMORY
] = saved_node_state
;
5940 /* Any regular or high memory on that node ? */
5941 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5943 enum zone_type zone_type
;
5945 if (N_MEMORY
== N_NORMAL_MEMORY
)
5948 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5949 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5950 if (populated_zone(zone
)) {
5951 node_set_state(nid
, N_HIGH_MEMORY
);
5952 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5953 zone_type
<= ZONE_NORMAL
)
5954 node_set_state(nid
, N_NORMAL_MEMORY
);
5961 * free_area_init_nodes - Initialise all pg_data_t and zone data
5962 * @max_zone_pfn: an array of max PFNs for each zone
5964 * This will call free_area_init_node() for each active node in the system.
5965 * Using the page ranges provided by memblock_set_node(), the size of each
5966 * zone in each node and their holes is calculated. If the maximum PFN
5967 * between two adjacent zones match, it is assumed that the zone is empty.
5968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5970 * starts where the previous one ended. For example, ZONE_DMA32 starts
5971 * at arch_max_dma_pfn.
5973 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5975 unsigned long start_pfn
, end_pfn
;
5978 /* Record where the zone boundaries are */
5979 memset(arch_zone_lowest_possible_pfn
, 0,
5980 sizeof(arch_zone_lowest_possible_pfn
));
5981 memset(arch_zone_highest_possible_pfn
, 0,
5982 sizeof(arch_zone_highest_possible_pfn
));
5983 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5984 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5985 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5986 if (i
== ZONE_MOVABLE
)
5988 arch_zone_lowest_possible_pfn
[i
] =
5989 arch_zone_highest_possible_pfn
[i
-1];
5990 arch_zone_highest_possible_pfn
[i
] =
5991 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5993 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5994 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5996 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5997 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5998 find_zone_movable_pfns_for_nodes();
6000 /* Print out the zone ranges */
6001 pr_info("Zone ranges:\n");
6002 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6003 if (i
== ZONE_MOVABLE
)
6005 pr_info(" %-8s ", zone_names
[i
]);
6006 if (arch_zone_lowest_possible_pfn
[i
] ==
6007 arch_zone_highest_possible_pfn
[i
])
6010 pr_cont("[mem %#018Lx-%#018Lx]\n",
6011 (u64
)arch_zone_lowest_possible_pfn
[i
]
6013 ((u64
)arch_zone_highest_possible_pfn
[i
]
6014 << PAGE_SHIFT
) - 1);
6017 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6018 pr_info("Movable zone start for each node\n");
6019 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6020 if (zone_movable_pfn
[i
])
6021 pr_info(" Node %d: %#018Lx\n", i
,
6022 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6025 /* Print out the early node map */
6026 pr_info("Early memory node ranges\n");
6027 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6028 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6029 (u64
)start_pfn
<< PAGE_SHIFT
,
6030 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6032 /* Initialise every node */
6033 mminit_verify_pageflags_layout();
6034 setup_nr_node_ids();
6035 for_each_online_node(nid
) {
6036 pg_data_t
*pgdat
= NODE_DATA(nid
);
6037 free_area_init_node(nid
, NULL
,
6038 find_min_pfn_for_node(nid
), NULL
);
6040 /* Any memory on that node */
6041 if (pgdat
->node_present_pages
)
6042 node_set_state(nid
, N_MEMORY
);
6043 check_for_memory(pgdat
, nid
);
6047 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6049 unsigned long long coremem
;
6053 coremem
= memparse(p
, &p
);
6054 *core
= coremem
>> PAGE_SHIFT
;
6056 /* Paranoid check that UL is enough for the coremem value */
6057 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6063 * kernelcore=size sets the amount of memory for use for allocations that
6064 * cannot be reclaimed or migrated.
6066 static int __init
cmdline_parse_kernelcore(char *p
)
6068 /* parse kernelcore=mirror */
6069 if (parse_option_str(p
, "mirror")) {
6070 mirrored_kernelcore
= true;
6074 return cmdline_parse_core(p
, &required_kernelcore
);
6078 * movablecore=size sets the amount of memory for use for allocations that
6079 * can be reclaimed or migrated.
6081 static int __init
cmdline_parse_movablecore(char *p
)
6083 return cmdline_parse_core(p
, &required_movablecore
);
6086 early_param("kernelcore", cmdline_parse_kernelcore
);
6087 early_param("movablecore", cmdline_parse_movablecore
);
6089 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6091 void adjust_managed_page_count(struct page
*page
, long count
)
6093 spin_lock(&managed_page_count_lock
);
6094 page_zone(page
)->managed_pages
+= count
;
6095 totalram_pages
+= count
;
6096 #ifdef CONFIG_HIGHMEM
6097 if (PageHighMem(page
))
6098 totalhigh_pages
+= count
;
6100 spin_unlock(&managed_page_count_lock
);
6102 EXPORT_SYMBOL(adjust_managed_page_count
);
6104 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6107 unsigned long pages
= 0;
6109 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6110 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6111 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6112 if ((unsigned int)poison
<= 0xFF)
6113 memset(pos
, poison
, PAGE_SIZE
);
6114 free_reserved_page(virt_to_page(pos
));
6118 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6119 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
6123 EXPORT_SYMBOL(free_reserved_area
);
6125 #ifdef CONFIG_HIGHMEM
6126 void free_highmem_page(struct page
*page
)
6128 __free_reserved_page(page
);
6130 page_zone(page
)->managed_pages
++;
6136 void __init
mem_init_print_info(const char *str
)
6138 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6139 unsigned long init_code_size
, init_data_size
;
6141 physpages
= get_num_physpages();
6142 codesize
= _etext
- _stext
;
6143 datasize
= _edata
- _sdata
;
6144 rosize
= __end_rodata
- __start_rodata
;
6145 bss_size
= __bss_stop
- __bss_start
;
6146 init_data_size
= __init_end
- __init_begin
;
6147 init_code_size
= _einittext
- _sinittext
;
6150 * Detect special cases and adjust section sizes accordingly:
6151 * 1) .init.* may be embedded into .data sections
6152 * 2) .init.text.* may be out of [__init_begin, __init_end],
6153 * please refer to arch/tile/kernel/vmlinux.lds.S.
6154 * 3) .rodata.* may be embedded into .text or .data sections.
6156 #define adj_init_size(start, end, size, pos, adj) \
6158 if (start <= pos && pos < end && size > adj) \
6162 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6163 _sinittext
, init_code_size
);
6164 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6165 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6166 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6167 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6169 #undef adj_init_size
6171 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6172 #ifdef CONFIG_HIGHMEM
6176 nr_free_pages() << (PAGE_SHIFT
- 10),
6177 physpages
<< (PAGE_SHIFT
- 10),
6178 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6179 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6180 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6181 totalcma_pages
<< (PAGE_SHIFT
- 10),
6182 #ifdef CONFIG_HIGHMEM
6183 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6185 str
? ", " : "", str
? str
: "");
6189 * set_dma_reserve - set the specified number of pages reserved in the first zone
6190 * @new_dma_reserve: The number of pages to mark reserved
6192 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6193 * In the DMA zone, a significant percentage may be consumed by kernel image
6194 * and other unfreeable allocations which can skew the watermarks badly. This
6195 * function may optionally be used to account for unfreeable pages in the
6196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6197 * smaller per-cpu batchsize.
6199 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6201 dma_reserve
= new_dma_reserve
;
6204 void __init
free_area_init(unsigned long *zones_size
)
6206 free_area_init_node(0, zones_size
,
6207 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6210 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6211 unsigned long action
, void *hcpu
)
6213 int cpu
= (unsigned long)hcpu
;
6215 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6216 lru_add_drain_cpu(cpu
);
6220 * Spill the event counters of the dead processor
6221 * into the current processors event counters.
6222 * This artificially elevates the count of the current
6225 vm_events_fold_cpu(cpu
);
6228 * Zero the differential counters of the dead processor
6229 * so that the vm statistics are consistent.
6231 * This is only okay since the processor is dead and cannot
6232 * race with what we are doing.
6234 cpu_vm_stats_fold(cpu
);
6239 void __init
page_alloc_init(void)
6241 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6246 * or min_free_kbytes changes.
6248 static void calculate_totalreserve_pages(void)
6250 struct pglist_data
*pgdat
;
6251 unsigned long reserve_pages
= 0;
6252 enum zone_type i
, j
;
6254 for_each_online_pgdat(pgdat
) {
6255 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6256 struct zone
*zone
= pgdat
->node_zones
+ i
;
6259 /* Find valid and maximum lowmem_reserve in the zone */
6260 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6261 if (zone
->lowmem_reserve
[j
] > max
)
6262 max
= zone
->lowmem_reserve
[j
];
6265 /* we treat the high watermark as reserved pages. */
6266 max
+= high_wmark_pages(zone
);
6268 if (max
> zone
->managed_pages
)
6269 max
= zone
->managed_pages
;
6271 zone
->totalreserve_pages
= max
;
6273 reserve_pages
+= max
;
6276 totalreserve_pages
= reserve_pages
;
6280 * setup_per_zone_lowmem_reserve - called whenever
6281 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6282 * has a correct pages reserved value, so an adequate number of
6283 * pages are left in the zone after a successful __alloc_pages().
6285 static void setup_per_zone_lowmem_reserve(void)
6287 struct pglist_data
*pgdat
;
6288 enum zone_type j
, idx
;
6290 for_each_online_pgdat(pgdat
) {
6291 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6292 struct zone
*zone
= pgdat
->node_zones
+ j
;
6293 unsigned long managed_pages
= zone
->managed_pages
;
6295 zone
->lowmem_reserve
[j
] = 0;
6299 struct zone
*lower_zone
;
6303 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6304 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6306 lower_zone
= pgdat
->node_zones
+ idx
;
6307 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6308 sysctl_lowmem_reserve_ratio
[idx
];
6309 managed_pages
+= lower_zone
->managed_pages
;
6314 /* update totalreserve_pages */
6315 calculate_totalreserve_pages();
6318 static void __setup_per_zone_wmarks(void)
6320 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6321 unsigned long lowmem_pages
= 0;
6323 unsigned long flags
;
6325 /* Calculate total number of !ZONE_HIGHMEM pages */
6326 for_each_zone(zone
) {
6327 if (!is_highmem(zone
))
6328 lowmem_pages
+= zone
->managed_pages
;
6331 for_each_zone(zone
) {
6334 spin_lock_irqsave(&zone
->lock
, flags
);
6335 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6336 do_div(tmp
, lowmem_pages
);
6337 if (is_highmem(zone
)) {
6339 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6340 * need highmem pages, so cap pages_min to a small
6343 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6344 * deltas control asynch page reclaim, and so should
6345 * not be capped for highmem.
6347 unsigned long min_pages
;
6349 min_pages
= zone
->managed_pages
/ 1024;
6350 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6351 zone
->watermark
[WMARK_MIN
] = min_pages
;
6354 * If it's a lowmem zone, reserve a number of pages
6355 * proportionate to the zone's size.
6357 zone
->watermark
[WMARK_MIN
] = tmp
;
6361 * Set the kswapd watermarks distance according to the
6362 * scale factor in proportion to available memory, but
6363 * ensure a minimum size on small systems.
6365 tmp
= max_t(u64
, tmp
>> 2,
6366 mult_frac(zone
->managed_pages
,
6367 watermark_scale_factor
, 10000));
6369 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6370 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6372 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6373 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6374 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6376 spin_unlock_irqrestore(&zone
->lock
, flags
);
6379 /* update totalreserve_pages */
6380 calculate_totalreserve_pages();
6384 * setup_per_zone_wmarks - called when min_free_kbytes changes
6385 * or when memory is hot-{added|removed}
6387 * Ensures that the watermark[min,low,high] values for each zone are set
6388 * correctly with respect to min_free_kbytes.
6390 void setup_per_zone_wmarks(void)
6392 mutex_lock(&zonelists_mutex
);
6393 __setup_per_zone_wmarks();
6394 mutex_unlock(&zonelists_mutex
);
6398 * The inactive anon list should be small enough that the VM never has to
6399 * do too much work, but large enough that each inactive page has a chance
6400 * to be referenced again before it is swapped out.
6402 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6403 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6404 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6405 * the anonymous pages are kept on the inactive list.
6408 * memory ratio inactive anon
6409 * -------------------------------------
6418 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6420 unsigned int gb
, ratio
;
6422 /* Zone size in gigabytes */
6423 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6425 ratio
= int_sqrt(10 * gb
);
6429 zone
->inactive_ratio
= ratio
;
6432 static void __meminit
setup_per_zone_inactive_ratio(void)
6437 calculate_zone_inactive_ratio(zone
);
6441 * Initialise min_free_kbytes.
6443 * For small machines we want it small (128k min). For large machines
6444 * we want it large (64MB max). But it is not linear, because network
6445 * bandwidth does not increase linearly with machine size. We use
6447 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6448 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6464 int __meminit
init_per_zone_wmark_min(void)
6466 unsigned long lowmem_kbytes
;
6467 int new_min_free_kbytes
;
6469 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6470 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6472 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6473 min_free_kbytes
= new_min_free_kbytes
;
6474 if (min_free_kbytes
< 128)
6475 min_free_kbytes
= 128;
6476 if (min_free_kbytes
> 65536)
6477 min_free_kbytes
= 65536;
6479 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6480 new_min_free_kbytes
, user_min_free_kbytes
);
6482 setup_per_zone_wmarks();
6483 refresh_zone_stat_thresholds();
6484 setup_per_zone_lowmem_reserve();
6485 setup_per_zone_inactive_ratio();
6488 core_initcall(init_per_zone_wmark_min
)
6491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6492 * that we can call two helper functions whenever min_free_kbytes
6495 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6496 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6500 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6505 user_min_free_kbytes
= min_free_kbytes
;
6506 setup_per_zone_wmarks();
6511 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6512 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6516 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6521 setup_per_zone_wmarks();
6527 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6528 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6533 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6538 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6539 sysctl_min_unmapped_ratio
) / 100;
6543 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6544 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6549 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6554 zone
->min_slab_pages
= (zone
->managed_pages
*
6555 sysctl_min_slab_ratio
) / 100;
6561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6562 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6563 * whenever sysctl_lowmem_reserve_ratio changes.
6565 * The reserve ratio obviously has absolutely no relation with the
6566 * minimum watermarks. The lowmem reserve ratio can only make sense
6567 * if in function of the boot time zone sizes.
6569 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6570 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6572 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6573 setup_per_zone_lowmem_reserve();
6578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6579 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6580 * pagelist can have before it gets flushed back to buddy allocator.
6582 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6583 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6586 int old_percpu_pagelist_fraction
;
6589 mutex_lock(&pcp_batch_high_lock
);
6590 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6592 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6593 if (!write
|| ret
< 0)
6596 /* Sanity checking to avoid pcp imbalance */
6597 if (percpu_pagelist_fraction
&&
6598 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6599 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6605 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6608 for_each_populated_zone(zone
) {
6611 for_each_possible_cpu(cpu
)
6612 pageset_set_high_and_batch(zone
,
6613 per_cpu_ptr(zone
->pageset
, cpu
));
6616 mutex_unlock(&pcp_batch_high_lock
);
6621 int hashdist
= HASHDIST_DEFAULT
;
6623 static int __init
set_hashdist(char *str
)
6627 hashdist
= simple_strtoul(str
, &str
, 0);
6630 __setup("hashdist=", set_hashdist
);
6634 * allocate a large system hash table from bootmem
6635 * - it is assumed that the hash table must contain an exact power-of-2
6636 * quantity of entries
6637 * - limit is the number of hash buckets, not the total allocation size
6639 void *__init
alloc_large_system_hash(const char *tablename
,
6640 unsigned long bucketsize
,
6641 unsigned long numentries
,
6644 unsigned int *_hash_shift
,
6645 unsigned int *_hash_mask
,
6646 unsigned long low_limit
,
6647 unsigned long high_limit
)
6649 unsigned long long max
= high_limit
;
6650 unsigned long log2qty
, size
;
6653 /* allow the kernel cmdline to have a say */
6655 /* round applicable memory size up to nearest megabyte */
6656 numentries
= nr_kernel_pages
;
6658 /* It isn't necessary when PAGE_SIZE >= 1MB */
6659 if (PAGE_SHIFT
< 20)
6660 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6662 /* limit to 1 bucket per 2^scale bytes of low memory */
6663 if (scale
> PAGE_SHIFT
)
6664 numentries
>>= (scale
- PAGE_SHIFT
);
6666 numentries
<<= (PAGE_SHIFT
- scale
);
6668 /* Make sure we've got at least a 0-order allocation.. */
6669 if (unlikely(flags
& HASH_SMALL
)) {
6670 /* Makes no sense without HASH_EARLY */
6671 WARN_ON(!(flags
& HASH_EARLY
));
6672 if (!(numentries
>> *_hash_shift
)) {
6673 numentries
= 1UL << *_hash_shift
;
6674 BUG_ON(!numentries
);
6676 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6677 numentries
= PAGE_SIZE
/ bucketsize
;
6679 numentries
= roundup_pow_of_two(numentries
);
6681 /* limit allocation size to 1/16 total memory by default */
6683 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6684 do_div(max
, bucketsize
);
6686 max
= min(max
, 0x80000000ULL
);
6688 if (numentries
< low_limit
)
6689 numentries
= low_limit
;
6690 if (numentries
> max
)
6693 log2qty
= ilog2(numentries
);
6696 size
= bucketsize
<< log2qty
;
6697 if (flags
& HASH_EARLY
)
6698 table
= memblock_virt_alloc_nopanic(size
, 0);
6700 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6703 * If bucketsize is not a power-of-two, we may free
6704 * some pages at the end of hash table which
6705 * alloc_pages_exact() automatically does
6707 if (get_order(size
) < MAX_ORDER
) {
6708 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6709 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6712 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6715 panic("Failed to allocate %s hash table\n", tablename
);
6717 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6718 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
6721 *_hash_shift
= log2qty
;
6723 *_hash_mask
= (1 << log2qty
) - 1;
6728 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6729 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6732 #ifdef CONFIG_SPARSEMEM
6733 return __pfn_to_section(pfn
)->pageblock_flags
;
6735 return zone
->pageblock_flags
;
6736 #endif /* CONFIG_SPARSEMEM */
6739 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6741 #ifdef CONFIG_SPARSEMEM
6742 pfn
&= (PAGES_PER_SECTION
-1);
6743 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6745 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6746 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6747 #endif /* CONFIG_SPARSEMEM */
6751 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6752 * @page: The page within the block of interest
6753 * @pfn: The target page frame number
6754 * @end_bitidx: The last bit of interest to retrieve
6755 * @mask: mask of bits that the caller is interested in
6757 * Return: pageblock_bits flags
6759 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6760 unsigned long end_bitidx
,
6764 unsigned long *bitmap
;
6765 unsigned long bitidx
, word_bitidx
;
6768 zone
= page_zone(page
);
6769 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6770 bitidx
= pfn_to_bitidx(zone
, pfn
);
6771 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6772 bitidx
&= (BITS_PER_LONG
-1);
6774 word
= bitmap
[word_bitidx
];
6775 bitidx
+= end_bitidx
;
6776 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6780 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6781 * @page: The page within the block of interest
6782 * @flags: The flags to set
6783 * @pfn: The target page frame number
6784 * @end_bitidx: The last bit of interest
6785 * @mask: mask of bits that the caller is interested in
6787 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6789 unsigned long end_bitidx
,
6793 unsigned long *bitmap
;
6794 unsigned long bitidx
, word_bitidx
;
6795 unsigned long old_word
, word
;
6797 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6799 zone
= page_zone(page
);
6800 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6801 bitidx
= pfn_to_bitidx(zone
, pfn
);
6802 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6803 bitidx
&= (BITS_PER_LONG
-1);
6805 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6807 bitidx
+= end_bitidx
;
6808 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6809 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6811 word
= READ_ONCE(bitmap
[word_bitidx
]);
6813 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6814 if (word
== old_word
)
6821 * This function checks whether pageblock includes unmovable pages or not.
6822 * If @count is not zero, it is okay to include less @count unmovable pages
6824 * PageLRU check without isolation or lru_lock could race so that
6825 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6826 * expect this function should be exact.
6828 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6829 bool skip_hwpoisoned_pages
)
6831 unsigned long pfn
, iter
, found
;
6835 * For avoiding noise data, lru_add_drain_all() should be called
6836 * If ZONE_MOVABLE, the zone never contains unmovable pages
6838 if (zone_idx(zone
) == ZONE_MOVABLE
)
6840 mt
= get_pageblock_migratetype(page
);
6841 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6844 pfn
= page_to_pfn(page
);
6845 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6846 unsigned long check
= pfn
+ iter
;
6848 if (!pfn_valid_within(check
))
6851 page
= pfn_to_page(check
);
6854 * Hugepages are not in LRU lists, but they're movable.
6855 * We need not scan over tail pages bacause we don't
6856 * handle each tail page individually in migration.
6858 if (PageHuge(page
)) {
6859 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6864 * We can't use page_count without pin a page
6865 * because another CPU can free compound page.
6866 * This check already skips compound tails of THP
6867 * because their page->_count is zero at all time.
6869 if (!page_ref_count(page
)) {
6870 if (PageBuddy(page
))
6871 iter
+= (1 << page_order(page
)) - 1;
6876 * The HWPoisoned page may be not in buddy system, and
6877 * page_count() is not 0.
6879 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6885 * If there are RECLAIMABLE pages, we need to check
6886 * it. But now, memory offline itself doesn't call
6887 * shrink_node_slabs() and it still to be fixed.
6890 * If the page is not RAM, page_count()should be 0.
6891 * we don't need more check. This is an _used_ not-movable page.
6893 * The problematic thing here is PG_reserved pages. PG_reserved
6894 * is set to both of a memory hole page and a _used_ kernel
6903 bool is_pageblock_removable_nolock(struct page
*page
)
6909 * We have to be careful here because we are iterating over memory
6910 * sections which are not zone aware so we might end up outside of
6911 * the zone but still within the section.
6912 * We have to take care about the node as well. If the node is offline
6913 * its NODE_DATA will be NULL - see page_zone.
6915 if (!node_online(page_to_nid(page
)))
6918 zone
= page_zone(page
);
6919 pfn
= page_to_pfn(page
);
6920 if (!zone_spans_pfn(zone
, pfn
))
6923 return !has_unmovable_pages(zone
, page
, 0, true);
6926 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6928 static unsigned long pfn_max_align_down(unsigned long pfn
)
6930 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6931 pageblock_nr_pages
) - 1);
6934 static unsigned long pfn_max_align_up(unsigned long pfn
)
6936 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6937 pageblock_nr_pages
));
6940 /* [start, end) must belong to a single zone. */
6941 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6942 unsigned long start
, unsigned long end
)
6944 /* This function is based on compact_zone() from compaction.c. */
6945 unsigned long nr_reclaimed
;
6946 unsigned long pfn
= start
;
6947 unsigned int tries
= 0;
6952 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6953 if (fatal_signal_pending(current
)) {
6958 if (list_empty(&cc
->migratepages
)) {
6959 cc
->nr_migratepages
= 0;
6960 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6966 } else if (++tries
== 5) {
6967 ret
= ret
< 0 ? ret
: -EBUSY
;
6971 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6973 cc
->nr_migratepages
-= nr_reclaimed
;
6975 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6976 NULL
, 0, cc
->mode
, MR_CMA
);
6979 putback_movable_pages(&cc
->migratepages
);
6986 * alloc_contig_range() -- tries to allocate given range of pages
6987 * @start: start PFN to allocate
6988 * @end: one-past-the-last PFN to allocate
6989 * @migratetype: migratetype of the underlaying pageblocks (either
6990 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6991 * in range must have the same migratetype and it must
6992 * be either of the two.
6994 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6995 * aligned, however it's the caller's responsibility to guarantee that
6996 * we are the only thread that changes migrate type of pageblocks the
6999 * The PFN range must belong to a single zone.
7001 * Returns zero on success or negative error code. On success all
7002 * pages which PFN is in [start, end) are allocated for the caller and
7003 * need to be freed with free_contig_range().
7005 int alloc_contig_range(unsigned long start
, unsigned long end
,
7006 unsigned migratetype
)
7008 unsigned long outer_start
, outer_end
;
7012 struct compact_control cc
= {
7013 .nr_migratepages
= 0,
7015 .zone
= page_zone(pfn_to_page(start
)),
7016 .mode
= MIGRATE_SYNC
,
7017 .ignore_skip_hint
= true,
7019 INIT_LIST_HEAD(&cc
.migratepages
);
7022 * What we do here is we mark all pageblocks in range as
7023 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7024 * have different sizes, and due to the way page allocator
7025 * work, we align the range to biggest of the two pages so
7026 * that page allocator won't try to merge buddies from
7027 * different pageblocks and change MIGRATE_ISOLATE to some
7028 * other migration type.
7030 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7031 * migrate the pages from an unaligned range (ie. pages that
7032 * we are interested in). This will put all the pages in
7033 * range back to page allocator as MIGRATE_ISOLATE.
7035 * When this is done, we take the pages in range from page
7036 * allocator removing them from the buddy system. This way
7037 * page allocator will never consider using them.
7039 * This lets us mark the pageblocks back as
7040 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7041 * aligned range but not in the unaligned, original range are
7042 * put back to page allocator so that buddy can use them.
7045 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7046 pfn_max_align_up(end
), migratetype
,
7052 * In case of -EBUSY, we'd like to know which page causes problem.
7053 * So, just fall through. We will check it in test_pages_isolated().
7055 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7056 if (ret
&& ret
!= -EBUSY
)
7060 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7061 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7062 * more, all pages in [start, end) are free in page allocator.
7063 * What we are going to do is to allocate all pages from
7064 * [start, end) (that is remove them from page allocator).
7066 * The only problem is that pages at the beginning and at the
7067 * end of interesting range may be not aligned with pages that
7068 * page allocator holds, ie. they can be part of higher order
7069 * pages. Because of this, we reserve the bigger range and
7070 * once this is done free the pages we are not interested in.
7072 * We don't have to hold zone->lock here because the pages are
7073 * isolated thus they won't get removed from buddy.
7076 lru_add_drain_all();
7077 drain_all_pages(cc
.zone
);
7080 outer_start
= start
;
7081 while (!PageBuddy(pfn_to_page(outer_start
))) {
7082 if (++order
>= MAX_ORDER
) {
7083 outer_start
= start
;
7086 outer_start
&= ~0UL << order
;
7089 if (outer_start
!= start
) {
7090 order
= page_order(pfn_to_page(outer_start
));
7093 * outer_start page could be small order buddy page and
7094 * it doesn't include start page. Adjust outer_start
7095 * in this case to report failed page properly
7096 * on tracepoint in test_pages_isolated()
7098 if (outer_start
+ (1UL << order
) <= start
)
7099 outer_start
= start
;
7102 /* Make sure the range is really isolated. */
7103 if (test_pages_isolated(outer_start
, end
, false)) {
7104 pr_info("%s: [%lx, %lx) PFNs busy\n",
7105 __func__
, outer_start
, end
);
7110 /* Grab isolated pages from freelists. */
7111 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7117 /* Free head and tail (if any) */
7118 if (start
!= outer_start
)
7119 free_contig_range(outer_start
, start
- outer_start
);
7120 if (end
!= outer_end
)
7121 free_contig_range(end
, outer_end
- end
);
7124 undo_isolate_page_range(pfn_max_align_down(start
),
7125 pfn_max_align_up(end
), migratetype
);
7129 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7131 unsigned int count
= 0;
7133 for (; nr_pages
--; pfn
++) {
7134 struct page
*page
= pfn_to_page(pfn
);
7136 count
+= page_count(page
) != 1;
7139 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7143 #ifdef CONFIG_MEMORY_HOTPLUG
7145 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7146 * page high values need to be recalulated.
7148 void __meminit
zone_pcp_update(struct zone
*zone
)
7151 mutex_lock(&pcp_batch_high_lock
);
7152 for_each_possible_cpu(cpu
)
7153 pageset_set_high_and_batch(zone
,
7154 per_cpu_ptr(zone
->pageset
, cpu
));
7155 mutex_unlock(&pcp_batch_high_lock
);
7159 void zone_pcp_reset(struct zone
*zone
)
7161 unsigned long flags
;
7163 struct per_cpu_pageset
*pset
;
7165 /* avoid races with drain_pages() */
7166 local_irq_save(flags
);
7167 if (zone
->pageset
!= &boot_pageset
) {
7168 for_each_online_cpu(cpu
) {
7169 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7170 drain_zonestat(zone
, pset
);
7172 free_percpu(zone
->pageset
);
7173 zone
->pageset
= &boot_pageset
;
7175 local_irq_restore(flags
);
7178 #ifdef CONFIG_MEMORY_HOTREMOVE
7180 * All pages in the range must be isolated before calling this.
7183 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7187 unsigned int order
, i
;
7189 unsigned long flags
;
7190 /* find the first valid pfn */
7191 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7196 zone
= page_zone(pfn_to_page(pfn
));
7197 spin_lock_irqsave(&zone
->lock
, flags
);
7199 while (pfn
< end_pfn
) {
7200 if (!pfn_valid(pfn
)) {
7204 page
= pfn_to_page(pfn
);
7206 * The HWPoisoned page may be not in buddy system, and
7207 * page_count() is not 0.
7209 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7211 SetPageReserved(page
);
7215 BUG_ON(page_count(page
));
7216 BUG_ON(!PageBuddy(page
));
7217 order
= page_order(page
);
7218 #ifdef CONFIG_DEBUG_VM
7219 pr_info("remove from free list %lx %d %lx\n",
7220 pfn
, 1 << order
, end_pfn
);
7222 list_del(&page
->lru
);
7223 rmv_page_order(page
);
7224 zone
->free_area
[order
].nr_free
--;
7225 for (i
= 0; i
< (1 << order
); i
++)
7226 SetPageReserved((page
+i
));
7227 pfn
+= (1 << order
);
7229 spin_unlock_irqrestore(&zone
->lock
, flags
);
7233 bool is_free_buddy_page(struct page
*page
)
7235 struct zone
*zone
= page_zone(page
);
7236 unsigned long pfn
= page_to_pfn(page
);
7237 unsigned long flags
;
7240 spin_lock_irqsave(&zone
->lock
, flags
);
7241 for (order
= 0; order
< MAX_ORDER
; order
++) {
7242 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7244 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7247 spin_unlock_irqrestore(&zone
->lock
, flags
);
7249 return order
< MAX_ORDER
;