mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / nvme / host / pci.c
blob295fbec1e5f2d4b88ae1ee3cbc63e61a9da76bc4
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
33 #include "nvme.h"
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 .set = io_queue_depth_set,
61 .get = param_get_int,
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68 struct nvme_dev;
69 struct nvme_queue;
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 struct nvme_dev {
78 struct nvme_queue *queues;
79 struct blk_mq_tag_set tagset;
80 struct blk_mq_tag_set admin_tagset;
81 u32 __iomem *dbs;
82 struct device *dev;
83 struct dma_pool *prp_page_pool;
84 struct dma_pool *prp_small_pool;
85 unsigned online_queues;
86 unsigned max_qid;
87 int q_depth;
88 u32 db_stride;
89 void __iomem *bar;
90 unsigned long bar_mapped_size;
91 struct work_struct remove_work;
92 struct mutex shutdown_lock;
93 bool subsystem;
94 void __iomem *cmb;
95 pci_bus_addr_t cmb_bus_addr;
96 u64 cmb_size;
97 u32 cmbsz;
98 u32 cmbloc;
99 struct nvme_ctrl ctrl;
100 struct completion ioq_wait;
102 /* shadow doorbell buffer support: */
103 u32 *dbbuf_dbs;
104 dma_addr_t dbbuf_dbs_dma_addr;
105 u32 *dbbuf_eis;
106 dma_addr_t dbbuf_eis_dma_addr;
108 /* host memory buffer support: */
109 u64 host_mem_size;
110 u32 nr_host_mem_descs;
111 dma_addr_t host_mem_descs_dma;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 int n = 0, ret;
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
124 return param_set_int(val, kp);
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 return qid * 2 * stride;
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 return (qid * 2 + 1) * stride;
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 return container_of(ctrl, struct nvme_dev, ctrl);
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
146 struct nvme_queue {
147 struct device *q_dmadev;
148 struct nvme_dev *dev;
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
151 struct nvme_command __iomem *sq_cmds_io;
152 volatile struct nvme_completion *cqes;
153 struct blk_mq_tags **tags;
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
156 u32 __iomem *q_db;
157 u16 q_depth;
158 s16 cq_vector;
159 u16 sq_tail;
160 u16 cq_head;
161 u16 qid;
162 u8 cq_phase;
163 u8 cqe_seen;
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
176 struct nvme_iod {
177 struct nvme_request req;
178 struct nvme_queue *nvmeq;
179 bool use_sgl;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
191 * Check we didin't inadvertently grow the command struct
193 static inline void _nvme_check_size(void)
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 return ((num_possible_cpus() + 1) * 8 * stride);
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219 if (dev->dbbuf_dbs)
220 return 0;
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
237 return 0;
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
259 if (!dev->dbbuf_dbs || !qid)
260 return;
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 struct nvme_command c;
272 if (!dev->dbbuf_dbs)
273 return;
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
296 if (dbbuf_db) {
297 u16 old_value;
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
303 wmb();
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
312 return true;
316 * Max size of iod being embedded in the request payload
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
339 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 unsigned int size, unsigned int nseg, bool use_sgl)
345 size_t alloc_size;
347 if (use_sgl)
348 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 else
350 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
352 return alloc_size + sizeof(struct scatterlist) * nseg;
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
357 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 use_sgl);
361 return sizeof(struct nvme_iod) + alloc_size;
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 unsigned int hctx_idx)
367 struct nvme_dev *dev = data;
368 struct nvme_queue *nvmeq = &dev->queues[0];
370 WARN_ON(hctx_idx != 0);
371 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 WARN_ON(nvmeq->tags);
374 hctx->driver_data = nvmeq;
375 nvmeq->tags = &dev->admin_tagset.tags[0];
376 return 0;
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
381 struct nvme_queue *nvmeq = hctx->driver_data;
383 nvmeq->tags = NULL;
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 unsigned int hctx_idx)
389 struct nvme_dev *dev = data;
390 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
392 if (!nvmeq->tags)
393 nvmeq->tags = &dev->tagset.tags[hctx_idx];
395 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 hctx->driver_data = nvmeq;
397 return 0;
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 unsigned int hctx_idx, unsigned int numa_node)
403 struct nvme_dev *dev = set->driver_data;
404 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
408 BUG_ON(!nvmeq);
409 iod->nvmeq = nvmeq;
410 return 0;
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
415 struct nvme_dev *dev = set->driver_data;
417 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev), 0);
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
425 * Safe to use from interrupt context
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 struct nvme_command *cmd)
430 u16 tail = nvmeq->sq_tail;
432 if (nvmeq->sq_cmds_io)
433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 else
435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
437 if (++tail == nvmeq->q_depth)
438 tail = 0;
439 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 nvmeq->dbbuf_sq_ei))
441 writel(tail, nvmeq->q_db);
442 nvmeq->sq_tail = tail;
445 static void **nvme_pci_iod_list(struct request *req)
447 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
451 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
453 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454 int nseg = blk_rq_nr_phys_segments(req);
455 unsigned int avg_seg_size;
457 if (nseg == 0)
458 return false;
460 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
462 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
463 return false;
464 if (!iod->nvmeq->qid)
465 return false;
466 if (!sgl_threshold || avg_seg_size < sgl_threshold)
467 return false;
468 return true;
471 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
473 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
474 int nseg = blk_rq_nr_phys_segments(rq);
475 unsigned int size = blk_rq_payload_bytes(rq);
477 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
479 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
480 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
481 iod->use_sgl);
483 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
484 if (!iod->sg)
485 return BLK_STS_RESOURCE;
486 } else {
487 iod->sg = iod->inline_sg;
490 iod->aborted = 0;
491 iod->npages = -1;
492 iod->nents = 0;
493 iod->length = size;
495 return BLK_STS_OK;
498 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
500 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
502 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
504 int i;
506 if (iod->npages == 0)
507 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
508 dma_addr);
510 for (i = 0; i < iod->npages; i++) {
511 void *addr = nvme_pci_iod_list(req)[i];
513 if (iod->use_sgl) {
514 struct nvme_sgl_desc *sg_list = addr;
516 next_dma_addr =
517 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
518 } else {
519 __le64 *prp_list = addr;
521 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
524 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
525 dma_addr = next_dma_addr;
528 if (iod->sg != iod->inline_sg)
529 kfree(iod->sg);
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 if (be32_to_cpu(pi->ref_tag) == v)
536 pi->ref_tag = cpu_to_be32(p);
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541 if (be32_to_cpu(pi->ref_tag) == p)
542 pi->ref_tag = cpu_to_be32(v);
546 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 * The virtual start sector is the one that was originally submitted by the
549 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
550 * start sector may be different. Remap protection information to match the
551 * physical LBA on writes, and back to the original seed on reads.
553 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 static void nvme_dif_remap(struct request *req,
556 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558 struct nvme_ns *ns = req->rq_disk->private_data;
559 struct bio_integrity_payload *bip;
560 struct t10_pi_tuple *pi;
561 void *p, *pmap;
562 u32 i, nlb, ts, phys, virt;
564 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565 return;
567 bip = bio_integrity(req->bio);
568 if (!bip)
569 return;
571 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
573 p = pmap;
574 virt = bip_get_seed(bip);
575 phys = nvme_block_nr(ns, blk_rq_pos(req));
576 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577 ts = ns->disk->queue->integrity.tuple_size;
579 for (i = 0; i < nlb; i++, virt++, phys++) {
580 pi = (struct t10_pi_tuple *)p;
581 dif_swap(phys, virt, pi);
582 p += ts;
584 kunmap_atomic(pmap);
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
597 #endif
599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
601 int i;
602 struct scatterlist *sg;
604 for_each_sg(sgl, sg, nents, i) {
605 dma_addr_t phys = sg_phys(sg);
606 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 "dma_address:%pad dma_length:%d\n",
608 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 sg_dma_len(sg));
613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 struct request *req, struct nvme_rw_command *cmnd)
616 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 struct dma_pool *pool;
618 int length = blk_rq_payload_bytes(req);
619 struct scatterlist *sg = iod->sg;
620 int dma_len = sg_dma_len(sg);
621 u64 dma_addr = sg_dma_address(sg);
622 u32 page_size = dev->ctrl.page_size;
623 int offset = dma_addr & (page_size - 1);
624 __le64 *prp_list;
625 void **list = nvme_pci_iod_list(req);
626 dma_addr_t prp_dma;
627 int nprps, i;
629 length -= (page_size - offset);
630 if (length <= 0) {
631 iod->first_dma = 0;
632 goto done;
635 dma_len -= (page_size - offset);
636 if (dma_len) {
637 dma_addr += (page_size - offset);
638 } else {
639 sg = sg_next(sg);
640 dma_addr = sg_dma_address(sg);
641 dma_len = sg_dma_len(sg);
644 if (length <= page_size) {
645 iod->first_dma = dma_addr;
646 goto done;
649 nprps = DIV_ROUND_UP(length, page_size);
650 if (nprps <= (256 / 8)) {
651 pool = dev->prp_small_pool;
652 iod->npages = 0;
653 } else {
654 pool = dev->prp_page_pool;
655 iod->npages = 1;
658 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659 if (!prp_list) {
660 iod->first_dma = dma_addr;
661 iod->npages = -1;
662 return BLK_STS_RESOURCE;
664 list[0] = prp_list;
665 iod->first_dma = prp_dma;
666 i = 0;
667 for (;;) {
668 if (i == page_size >> 3) {
669 __le64 *old_prp_list = prp_list;
670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 if (!prp_list)
672 return BLK_STS_RESOURCE;
673 list[iod->npages++] = prp_list;
674 prp_list[0] = old_prp_list[i - 1];
675 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
676 i = 1;
678 prp_list[i++] = cpu_to_le64(dma_addr);
679 dma_len -= page_size;
680 dma_addr += page_size;
681 length -= page_size;
682 if (length <= 0)
683 break;
684 if (dma_len > 0)
685 continue;
686 if (unlikely(dma_len < 0))
687 goto bad_sgl;
688 sg = sg_next(sg);
689 dma_addr = sg_dma_address(sg);
690 dma_len = sg_dma_len(sg);
693 done:
694 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
695 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
697 return BLK_STS_OK;
699 bad_sgl:
700 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
701 "Invalid SGL for payload:%d nents:%d\n",
702 blk_rq_payload_bytes(req), iod->nents);
703 return BLK_STS_IOERR;
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
707 struct scatterlist *sg)
709 sge->addr = cpu_to_le64(sg_dma_address(sg));
710 sge->length = cpu_to_le32(sg_dma_len(sg));
711 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
715 dma_addr_t dma_addr, int entries)
717 sge->addr = cpu_to_le64(dma_addr);
718 if (entries < SGES_PER_PAGE) {
719 sge->length = cpu_to_le32(entries * sizeof(*sge));
720 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
721 } else {
722 sge->length = cpu_to_le32(PAGE_SIZE);
723 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
727 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
728 struct request *req, struct nvme_rw_command *cmd, int entries)
730 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731 struct dma_pool *pool;
732 struct nvme_sgl_desc *sg_list;
733 struct scatterlist *sg = iod->sg;
734 dma_addr_t sgl_dma;
735 int i = 0;
737 /* setting the transfer type as SGL */
738 cmd->flags = NVME_CMD_SGL_METABUF;
740 if (entries == 1) {
741 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742 return BLK_STS_OK;
745 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746 pool = dev->prp_small_pool;
747 iod->npages = 0;
748 } else {
749 pool = dev->prp_page_pool;
750 iod->npages = 1;
753 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 if (!sg_list) {
755 iod->npages = -1;
756 return BLK_STS_RESOURCE;
759 nvme_pci_iod_list(req)[0] = sg_list;
760 iod->first_dma = sgl_dma;
762 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
764 do {
765 if (i == SGES_PER_PAGE) {
766 struct nvme_sgl_desc *old_sg_desc = sg_list;
767 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 if (!sg_list)
771 return BLK_STS_RESOURCE;
773 i = 0;
774 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775 sg_list[i++] = *link;
776 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
779 nvme_pci_sgl_set_data(&sg_list[i++], sg);
780 sg = sg_next(sg);
781 } while (--entries > 0);
783 return BLK_STS_OK;
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 struct nvme_command *cmnd)
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 struct request_queue *q = req->q;
791 enum dma_data_direction dma_dir = rq_data_dir(req) ?
792 DMA_TO_DEVICE : DMA_FROM_DEVICE;
793 blk_status_t ret = BLK_STS_IOERR;
794 int nr_mapped;
796 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
797 iod->nents = blk_rq_map_sg(q, req, iod->sg);
798 if (!iod->nents)
799 goto out;
801 ret = BLK_STS_RESOURCE;
802 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
803 DMA_ATTR_NO_WARN);
804 if (!nr_mapped)
805 goto out;
807 if (iod->use_sgl)
808 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
809 else
810 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
812 if (ret != BLK_STS_OK)
813 goto out_unmap;
815 ret = BLK_STS_IOERR;
816 if (blk_integrity_rq(req)) {
817 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
818 goto out_unmap;
820 sg_init_table(&iod->meta_sg, 1);
821 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
822 goto out_unmap;
824 if (req_op(req) == REQ_OP_WRITE)
825 nvme_dif_remap(req, nvme_dif_prep);
827 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
828 goto out_unmap;
831 if (blk_integrity_rq(req))
832 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
833 return BLK_STS_OK;
835 out_unmap:
836 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
837 out:
838 return ret;
841 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
843 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844 enum dma_data_direction dma_dir = rq_data_dir(req) ?
845 DMA_TO_DEVICE : DMA_FROM_DEVICE;
847 if (iod->nents) {
848 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
849 if (blk_integrity_rq(req)) {
850 if (req_op(req) == REQ_OP_READ)
851 nvme_dif_remap(req, nvme_dif_complete);
852 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
856 nvme_cleanup_cmd(req);
857 nvme_free_iod(dev, req);
861 * NOTE: ns is NULL when called on the admin queue.
863 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
864 const struct blk_mq_queue_data *bd)
866 struct nvme_ns *ns = hctx->queue->queuedata;
867 struct nvme_queue *nvmeq = hctx->driver_data;
868 struct nvme_dev *dev = nvmeq->dev;
869 struct request *req = bd->rq;
870 struct nvme_command cmnd;
871 blk_status_t ret;
873 ret = nvme_setup_cmd(ns, req, &cmnd);
874 if (ret)
875 return ret;
877 ret = nvme_init_iod(req, dev);
878 if (ret)
879 goto out_free_cmd;
881 if (blk_rq_nr_phys_segments(req)) {
882 ret = nvme_map_data(dev, req, &cmnd);
883 if (ret)
884 goto out_cleanup_iod;
887 blk_mq_start_request(req);
889 spin_lock_irq(&nvmeq->q_lock);
890 if (unlikely(nvmeq->cq_vector < 0)) {
891 ret = BLK_STS_IOERR;
892 spin_unlock_irq(&nvmeq->q_lock);
893 goto out_cleanup_iod;
895 __nvme_submit_cmd(nvmeq, &cmnd);
896 nvme_process_cq(nvmeq);
897 spin_unlock_irq(&nvmeq->q_lock);
898 return BLK_STS_OK;
899 out_cleanup_iod:
900 nvme_free_iod(dev, req);
901 out_free_cmd:
902 nvme_cleanup_cmd(req);
903 return ret;
906 static void nvme_pci_complete_rq(struct request *req)
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 nvme_unmap_data(iod->nvmeq->dev, req);
911 nvme_complete_rq(req);
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
916 u16 phase)
918 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
921 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
923 u16 head = nvmeq->cq_head;
925 if (likely(nvmeq->cq_vector >= 0)) {
926 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 nvmeq->dbbuf_cq_ei))
928 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
932 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
933 struct nvme_completion *cqe)
935 struct request *req;
937 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
938 dev_warn(nvmeq->dev->ctrl.device,
939 "invalid id %d completed on queue %d\n",
940 cqe->command_id, le16_to_cpu(cqe->sq_id));
941 return;
945 * AEN requests are special as they don't time out and can
946 * survive any kind of queue freeze and often don't respond to
947 * aborts. We don't even bother to allocate a struct request
948 * for them but rather special case them here.
950 if (unlikely(nvmeq->qid == 0 &&
951 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
952 nvme_complete_async_event(&nvmeq->dev->ctrl,
953 cqe->status, &cqe->result);
954 return;
957 nvmeq->cqe_seen = 1;
958 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
959 nvme_end_request(req, cqe->status, cqe->result);
962 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
963 struct nvme_completion *cqe)
965 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
966 *cqe = nvmeq->cqes[nvmeq->cq_head];
968 if (++nvmeq->cq_head == nvmeq->q_depth) {
969 nvmeq->cq_head = 0;
970 nvmeq->cq_phase = !nvmeq->cq_phase;
972 return true;
974 return false;
977 static void nvme_process_cq(struct nvme_queue *nvmeq)
979 struct nvme_completion cqe;
980 int consumed = 0;
982 while (nvme_read_cqe(nvmeq, &cqe)) {
983 nvme_handle_cqe(nvmeq, &cqe);
984 consumed++;
987 if (consumed)
988 nvme_ring_cq_doorbell(nvmeq);
991 static irqreturn_t nvme_irq(int irq, void *data)
993 irqreturn_t result;
994 struct nvme_queue *nvmeq = data;
995 spin_lock(&nvmeq->q_lock);
996 nvme_process_cq(nvmeq);
997 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
998 nvmeq->cqe_seen = 0;
999 spin_unlock(&nvmeq->q_lock);
1000 return result;
1003 static irqreturn_t nvme_irq_check(int irq, void *data)
1005 struct nvme_queue *nvmeq = data;
1006 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1007 return IRQ_WAKE_THREAD;
1008 return IRQ_NONE;
1011 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1013 struct nvme_completion cqe;
1014 int found = 0, consumed = 0;
1016 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1017 return 0;
1019 spin_lock_irq(&nvmeq->q_lock);
1020 while (nvme_read_cqe(nvmeq, &cqe)) {
1021 nvme_handle_cqe(nvmeq, &cqe);
1022 consumed++;
1024 if (tag == cqe.command_id) {
1025 found = 1;
1026 break;
1030 if (consumed)
1031 nvme_ring_cq_doorbell(nvmeq);
1032 spin_unlock_irq(&nvmeq->q_lock);
1034 return found;
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1039 struct nvme_queue *nvmeq = hctx->driver_data;
1041 return __nvme_poll(nvmeq, tag);
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1046 struct nvme_dev *dev = to_nvme_dev(ctrl);
1047 struct nvme_queue *nvmeq = &dev->queues[0];
1048 struct nvme_command c;
1050 memset(&c, 0, sizeof(c));
1051 c.common.opcode = nvme_admin_async_event;
1052 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1054 spin_lock_irq(&nvmeq->q_lock);
1055 __nvme_submit_cmd(nvmeq, &c);
1056 spin_unlock_irq(&nvmeq->q_lock);
1059 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1061 struct nvme_command c;
1063 memset(&c, 0, sizeof(c));
1064 c.delete_queue.opcode = opcode;
1065 c.delete_queue.qid = cpu_to_le16(id);
1067 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1071 struct nvme_queue *nvmeq)
1073 struct nvme_command c;
1074 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1077 * Note: we (ab)use the fact that the prp fields survive if no data
1078 * is attached to the request.
1080 memset(&c, 0, sizeof(c));
1081 c.create_cq.opcode = nvme_admin_create_cq;
1082 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1083 c.create_cq.cqid = cpu_to_le16(qid);
1084 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1085 c.create_cq.cq_flags = cpu_to_le16(flags);
1086 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1088 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1091 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1092 struct nvme_queue *nvmeq)
1094 struct nvme_command c;
1095 int flags = NVME_QUEUE_PHYS_CONTIG;
1098 * Note: we (ab)use the fact that the prp fields survive if no data
1099 * is attached to the request.
1101 memset(&c, 0, sizeof(c));
1102 c.create_sq.opcode = nvme_admin_create_sq;
1103 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1104 c.create_sq.sqid = cpu_to_le16(qid);
1105 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106 c.create_sq.sq_flags = cpu_to_le16(flags);
1107 c.create_sq.cqid = cpu_to_le16(qid);
1109 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1112 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1114 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1117 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1119 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1122 static void abort_endio(struct request *req, blk_status_t error)
1124 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1125 struct nvme_queue *nvmeq = iod->nvmeq;
1127 dev_warn(nvmeq->dev->ctrl.device,
1128 "Abort status: 0x%x", nvme_req(req)->status);
1129 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1130 blk_mq_free_request(req);
1133 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1136 /* If true, indicates loss of adapter communication, possibly by a
1137 * NVMe Subsystem reset.
1139 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1141 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142 switch (dev->ctrl.state) {
1143 case NVME_CTRL_RESETTING:
1144 case NVME_CTRL_CONNECTING:
1145 return false;
1146 default:
1147 break;
1150 /* We shouldn't reset unless the controller is on fatal error state
1151 * _or_ if we lost the communication with it.
1153 if (!(csts & NVME_CSTS_CFS) && !nssro)
1154 return false;
1156 return true;
1159 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1161 /* Read a config register to help see what died. */
1162 u16 pci_status;
1163 int result;
1165 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1166 &pci_status);
1167 if (result == PCIBIOS_SUCCESSFUL)
1168 dev_warn(dev->ctrl.device,
1169 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1170 csts, pci_status);
1171 else
1172 dev_warn(dev->ctrl.device,
1173 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1174 csts, result);
1177 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1179 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1180 struct nvme_queue *nvmeq = iod->nvmeq;
1181 struct nvme_dev *dev = nvmeq->dev;
1182 struct request *abort_req;
1183 struct nvme_command cmd;
1184 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1186 /* If PCI error recovery process is happening, we cannot reset or
1187 * the recovery mechanism will surely fail.
1189 mb();
1190 if (pci_channel_offline(to_pci_dev(dev->dev)))
1191 return BLK_EH_RESET_TIMER;
1194 * Reset immediately if the controller is failed
1196 if (nvme_should_reset(dev, csts)) {
1197 nvme_warn_reset(dev, csts);
1198 nvme_dev_disable(dev, false);
1199 nvme_reset_ctrl(&dev->ctrl);
1200 return BLK_EH_HANDLED;
1204 * Did we miss an interrupt?
1206 if (__nvme_poll(nvmeq, req->tag)) {
1207 dev_warn(dev->ctrl.device,
1208 "I/O %d QID %d timeout, completion polled\n",
1209 req->tag, nvmeq->qid);
1210 return BLK_EH_HANDLED;
1214 * Shutdown immediately if controller times out while starting. The
1215 * reset work will see the pci device disabled when it gets the forced
1216 * cancellation error. All outstanding requests are completed on
1217 * shutdown, so we return BLK_EH_HANDLED.
1219 switch (dev->ctrl.state) {
1220 case NVME_CTRL_CONNECTING:
1221 case NVME_CTRL_RESETTING:
1222 dev_warn(dev->ctrl.device,
1223 "I/O %d QID %d timeout, disable controller\n",
1224 req->tag, nvmeq->qid);
1225 nvme_dev_disable(dev, false);
1226 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1227 return BLK_EH_HANDLED;
1228 default:
1229 break;
1233 * Shutdown the controller immediately and schedule a reset if the
1234 * command was already aborted once before and still hasn't been
1235 * returned to the driver, or if this is the admin queue.
1237 if (!nvmeq->qid || iod->aborted) {
1238 dev_warn(dev->ctrl.device,
1239 "I/O %d QID %d timeout, reset controller\n",
1240 req->tag, nvmeq->qid);
1241 nvme_dev_disable(dev, false);
1242 nvme_reset_ctrl(&dev->ctrl);
1245 * Mark the request as handled, since the inline shutdown
1246 * forces all outstanding requests to complete.
1248 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1249 return BLK_EH_HANDLED;
1252 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1253 atomic_inc(&dev->ctrl.abort_limit);
1254 return BLK_EH_RESET_TIMER;
1256 iod->aborted = 1;
1258 memset(&cmd, 0, sizeof(cmd));
1259 cmd.abort.opcode = nvme_admin_abort_cmd;
1260 cmd.abort.cid = req->tag;
1261 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1263 dev_warn(nvmeq->dev->ctrl.device,
1264 "I/O %d QID %d timeout, aborting\n",
1265 req->tag, nvmeq->qid);
1267 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1268 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1269 if (IS_ERR(abort_req)) {
1270 atomic_inc(&dev->ctrl.abort_limit);
1271 return BLK_EH_RESET_TIMER;
1274 abort_req->timeout = ADMIN_TIMEOUT;
1275 abort_req->end_io_data = NULL;
1276 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1279 * The aborted req will be completed on receiving the abort req.
1280 * We enable the timer again. If hit twice, it'll cause a device reset,
1281 * as the device then is in a faulty state.
1283 return BLK_EH_RESET_TIMER;
1286 static void nvme_free_queue(struct nvme_queue *nvmeq)
1288 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1289 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1290 if (nvmeq->sq_cmds)
1291 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1292 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1295 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1297 int i;
1299 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1300 dev->ctrl.queue_count--;
1301 nvme_free_queue(&dev->queues[i]);
1306 * nvme_suspend_queue - put queue into suspended state
1307 * @nvmeq - queue to suspend
1309 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1311 int vector;
1313 spin_lock_irq(&nvmeq->q_lock);
1314 if (nvmeq->cq_vector == -1) {
1315 spin_unlock_irq(&nvmeq->q_lock);
1316 return 1;
1318 vector = nvmeq->cq_vector;
1319 nvmeq->dev->online_queues--;
1320 nvmeq->cq_vector = -1;
1321 spin_unlock_irq(&nvmeq->q_lock);
1323 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1324 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1326 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1328 return 0;
1331 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1333 struct nvme_queue *nvmeq = &dev->queues[0];
1335 if (shutdown)
1336 nvme_shutdown_ctrl(&dev->ctrl);
1337 else
1338 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1340 spin_lock_irq(&nvmeq->q_lock);
1341 nvme_process_cq(nvmeq);
1342 spin_unlock_irq(&nvmeq->q_lock);
1345 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1346 int entry_size)
1348 int q_depth = dev->q_depth;
1349 unsigned q_size_aligned = roundup(q_depth * entry_size,
1350 dev->ctrl.page_size);
1352 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1353 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1354 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1355 q_depth = div_u64(mem_per_q, entry_size);
1358 * Ensure the reduced q_depth is above some threshold where it
1359 * would be better to map queues in system memory with the
1360 * original depth
1362 if (q_depth < 64)
1363 return -ENOMEM;
1366 return q_depth;
1369 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1370 int qid, int depth)
1372 /* CMB SQEs will be mapped before creation */
1373 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1374 return 0;
1376 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1377 &nvmeq->sq_dma_addr, GFP_KERNEL);
1378 if (!nvmeq->sq_cmds)
1379 return -ENOMEM;
1380 return 0;
1383 static int nvme_alloc_queue(struct nvme_dev *dev, int qid,
1384 int depth, int node)
1386 struct nvme_queue *nvmeq = &dev->queues[qid];
1388 if (dev->ctrl.queue_count > qid)
1389 return 0;
1391 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1392 &nvmeq->cq_dma_addr, GFP_KERNEL);
1393 if (!nvmeq->cqes)
1394 goto free_nvmeq;
1396 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1397 goto free_cqdma;
1399 nvmeq->q_dmadev = dev->dev;
1400 nvmeq->dev = dev;
1401 spin_lock_init(&nvmeq->q_lock);
1402 nvmeq->cq_head = 0;
1403 nvmeq->cq_phase = 1;
1404 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1405 nvmeq->q_depth = depth;
1406 nvmeq->qid = qid;
1407 nvmeq->cq_vector = -1;
1408 dev->ctrl.queue_count++;
1410 return 0;
1412 free_cqdma:
1413 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1414 nvmeq->cq_dma_addr);
1415 free_nvmeq:
1416 return -ENOMEM;
1419 static int queue_request_irq(struct nvme_queue *nvmeq)
1421 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1422 int nr = nvmeq->dev->ctrl.instance;
1424 if (use_threaded_interrupts) {
1425 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1426 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1427 } else {
1428 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1429 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1433 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1435 struct nvme_dev *dev = nvmeq->dev;
1437 spin_lock_irq(&nvmeq->q_lock);
1438 nvmeq->sq_tail = 0;
1439 nvmeq->cq_head = 0;
1440 nvmeq->cq_phase = 1;
1441 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1442 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1443 nvme_dbbuf_init(dev, nvmeq, qid);
1444 dev->online_queues++;
1445 spin_unlock_irq(&nvmeq->q_lock);
1448 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1450 struct nvme_dev *dev = nvmeq->dev;
1451 int result;
1453 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1454 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1455 dev->ctrl.page_size);
1456 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1457 nvmeq->sq_cmds_io = dev->cmb + offset;
1460 nvmeq->cq_vector = qid - 1;
1461 result = adapter_alloc_cq(dev, qid, nvmeq);
1462 if (result < 0)
1463 goto release_vector;
1465 result = adapter_alloc_sq(dev, qid, nvmeq);
1466 if (result < 0)
1467 goto release_cq;
1469 nvme_init_queue(nvmeq, qid);
1470 result = queue_request_irq(nvmeq);
1471 if (result < 0)
1472 goto release_sq;
1474 return result;
1476 release_sq:
1477 dev->online_queues--;
1478 adapter_delete_sq(dev, qid);
1479 release_cq:
1480 adapter_delete_cq(dev, qid);
1481 release_vector:
1482 nvmeq->cq_vector = -1;
1483 return result;
1486 static const struct blk_mq_ops nvme_mq_admin_ops = {
1487 .queue_rq = nvme_queue_rq,
1488 .complete = nvme_pci_complete_rq,
1489 .init_hctx = nvme_admin_init_hctx,
1490 .exit_hctx = nvme_admin_exit_hctx,
1491 .init_request = nvme_init_request,
1492 .timeout = nvme_timeout,
1495 static const struct blk_mq_ops nvme_mq_ops = {
1496 .queue_rq = nvme_queue_rq,
1497 .complete = nvme_pci_complete_rq,
1498 .init_hctx = nvme_init_hctx,
1499 .init_request = nvme_init_request,
1500 .map_queues = nvme_pci_map_queues,
1501 .timeout = nvme_timeout,
1502 .poll = nvme_poll,
1505 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1507 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1509 * If the controller was reset during removal, it's possible
1510 * user requests may be waiting on a stopped queue. Start the
1511 * queue to flush these to completion.
1513 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1514 blk_cleanup_queue(dev->ctrl.admin_q);
1515 blk_mq_free_tag_set(&dev->admin_tagset);
1519 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1521 if (!dev->ctrl.admin_q) {
1522 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1523 dev->admin_tagset.nr_hw_queues = 1;
1525 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1526 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1527 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1528 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1529 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1530 dev->admin_tagset.driver_data = dev;
1532 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1533 return -ENOMEM;
1534 dev->ctrl.admin_tagset = &dev->admin_tagset;
1536 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1537 if (IS_ERR(dev->ctrl.admin_q)) {
1538 blk_mq_free_tag_set(&dev->admin_tagset);
1539 return -ENOMEM;
1541 if (!blk_get_queue(dev->ctrl.admin_q)) {
1542 nvme_dev_remove_admin(dev);
1543 dev->ctrl.admin_q = NULL;
1544 return -ENODEV;
1546 } else
1547 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1549 return 0;
1552 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1554 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1557 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1559 struct pci_dev *pdev = to_pci_dev(dev->dev);
1561 if (size <= dev->bar_mapped_size)
1562 return 0;
1563 if (size > pci_resource_len(pdev, 0))
1564 return -ENOMEM;
1565 if (dev->bar)
1566 iounmap(dev->bar);
1567 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1568 if (!dev->bar) {
1569 dev->bar_mapped_size = 0;
1570 return -ENOMEM;
1572 dev->bar_mapped_size = size;
1573 dev->dbs = dev->bar + NVME_REG_DBS;
1575 return 0;
1578 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1580 int result;
1581 u32 aqa;
1582 struct nvme_queue *nvmeq;
1584 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1585 if (result < 0)
1586 return result;
1588 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1589 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1591 if (dev->subsystem &&
1592 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1593 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1595 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1596 if (result < 0)
1597 return result;
1599 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1600 dev_to_node(dev->dev));
1601 if (result)
1602 return result;
1604 nvmeq = &dev->queues[0];
1605 aqa = nvmeq->q_depth - 1;
1606 aqa |= aqa << 16;
1608 writel(aqa, dev->bar + NVME_REG_AQA);
1609 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1610 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1612 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1613 if (result)
1614 return result;
1616 nvmeq->cq_vector = 0;
1617 nvme_init_queue(nvmeq, 0);
1618 result = queue_request_irq(nvmeq);
1619 if (result) {
1620 nvmeq->cq_vector = -1;
1621 return result;
1624 return result;
1627 static int nvme_create_io_queues(struct nvme_dev *dev)
1629 unsigned i, max;
1630 int ret = 0;
1632 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1633 /* vector == qid - 1, match nvme_create_queue */
1634 if (nvme_alloc_queue(dev, i, dev->q_depth,
1635 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1636 ret = -ENOMEM;
1637 break;
1641 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1642 for (i = dev->online_queues; i <= max; i++) {
1643 ret = nvme_create_queue(&dev->queues[i], i);
1644 if (ret)
1645 break;
1649 * Ignore failing Create SQ/CQ commands, we can continue with less
1650 * than the desired amount of queues, and even a controller without
1651 * I/O queues can still be used to issue admin commands. This might
1652 * be useful to upgrade a buggy firmware for example.
1654 return ret >= 0 ? 0 : ret;
1657 static ssize_t nvme_cmb_show(struct device *dev,
1658 struct device_attribute *attr,
1659 char *buf)
1661 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1663 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1664 ndev->cmbloc, ndev->cmbsz);
1666 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1668 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1670 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1672 return 1ULL << (12 + 4 * szu);
1675 static u32 nvme_cmb_size(struct nvme_dev *dev)
1677 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1680 static void nvme_map_cmb(struct nvme_dev *dev)
1682 u64 size, offset;
1683 resource_size_t bar_size;
1684 struct pci_dev *pdev = to_pci_dev(dev->dev);
1685 int bar;
1687 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1688 if (!dev->cmbsz)
1689 return;
1690 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1692 if (!use_cmb_sqes)
1693 return;
1695 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1696 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1697 bar = NVME_CMB_BIR(dev->cmbloc);
1698 bar_size = pci_resource_len(pdev, bar);
1700 if (offset > bar_size)
1701 return;
1704 * Controllers may support a CMB size larger than their BAR,
1705 * for example, due to being behind a bridge. Reduce the CMB to
1706 * the reported size of the BAR
1708 if (size > bar_size - offset)
1709 size = bar_size - offset;
1711 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1712 if (!dev->cmb)
1713 return;
1714 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1715 dev->cmb_size = size;
1717 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1718 &dev_attr_cmb.attr, NULL))
1719 dev_warn(dev->ctrl.device,
1720 "failed to add sysfs attribute for CMB\n");
1723 static inline void nvme_release_cmb(struct nvme_dev *dev)
1725 if (dev->cmb) {
1726 iounmap(dev->cmb);
1727 dev->cmb = NULL;
1728 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1729 &dev_attr_cmb.attr, NULL);
1730 dev->cmbsz = 0;
1734 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1736 u64 dma_addr = dev->host_mem_descs_dma;
1737 struct nvme_command c;
1738 int ret;
1740 memset(&c, 0, sizeof(c));
1741 c.features.opcode = nvme_admin_set_features;
1742 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1743 c.features.dword11 = cpu_to_le32(bits);
1744 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1745 ilog2(dev->ctrl.page_size));
1746 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1747 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1748 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1750 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1751 if (ret) {
1752 dev_warn(dev->ctrl.device,
1753 "failed to set host mem (err %d, flags %#x).\n",
1754 ret, bits);
1756 return ret;
1759 static void nvme_free_host_mem(struct nvme_dev *dev)
1761 int i;
1763 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1764 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1765 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1767 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1768 le64_to_cpu(desc->addr));
1771 kfree(dev->host_mem_desc_bufs);
1772 dev->host_mem_desc_bufs = NULL;
1773 dma_free_coherent(dev->dev,
1774 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1775 dev->host_mem_descs, dev->host_mem_descs_dma);
1776 dev->host_mem_descs = NULL;
1777 dev->nr_host_mem_descs = 0;
1780 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1781 u32 chunk_size)
1783 struct nvme_host_mem_buf_desc *descs;
1784 u32 max_entries, len;
1785 dma_addr_t descs_dma;
1786 int i = 0;
1787 void **bufs;
1788 u64 size, tmp;
1790 tmp = (preferred + chunk_size - 1);
1791 do_div(tmp, chunk_size);
1792 max_entries = tmp;
1794 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1795 max_entries = dev->ctrl.hmmaxd;
1797 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1798 &descs_dma, GFP_KERNEL);
1799 if (!descs)
1800 goto out;
1802 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1803 if (!bufs)
1804 goto out_free_descs;
1806 for (size = 0; size < preferred && i < max_entries; size += len) {
1807 dma_addr_t dma_addr;
1809 len = min_t(u64, chunk_size, preferred - size);
1810 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1811 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1812 if (!bufs[i])
1813 break;
1815 descs[i].addr = cpu_to_le64(dma_addr);
1816 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1817 i++;
1820 if (!size)
1821 goto out_free_bufs;
1823 dev->nr_host_mem_descs = i;
1824 dev->host_mem_size = size;
1825 dev->host_mem_descs = descs;
1826 dev->host_mem_descs_dma = descs_dma;
1827 dev->host_mem_desc_bufs = bufs;
1828 return 0;
1830 out_free_bufs:
1831 while (--i >= 0) {
1832 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1834 dma_free_coherent(dev->dev, size, bufs[i],
1835 le64_to_cpu(descs[i].addr));
1838 kfree(bufs);
1839 out_free_descs:
1840 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1841 descs_dma);
1842 out:
1843 dev->host_mem_descs = NULL;
1844 return -ENOMEM;
1847 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1849 u32 chunk_size;
1851 /* start big and work our way down */
1852 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1853 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1854 chunk_size /= 2) {
1855 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1856 if (!min || dev->host_mem_size >= min)
1857 return 0;
1858 nvme_free_host_mem(dev);
1862 return -ENOMEM;
1865 static int nvme_setup_host_mem(struct nvme_dev *dev)
1867 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1868 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1869 u64 min = (u64)dev->ctrl.hmmin * 4096;
1870 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1871 int ret;
1873 preferred = min(preferred, max);
1874 if (min > max) {
1875 dev_warn(dev->ctrl.device,
1876 "min host memory (%lld MiB) above limit (%d MiB).\n",
1877 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1878 nvme_free_host_mem(dev);
1879 return 0;
1883 * If we already have a buffer allocated check if we can reuse it.
1885 if (dev->host_mem_descs) {
1886 if (dev->host_mem_size >= min)
1887 enable_bits |= NVME_HOST_MEM_RETURN;
1888 else
1889 nvme_free_host_mem(dev);
1892 if (!dev->host_mem_descs) {
1893 if (nvme_alloc_host_mem(dev, min, preferred)) {
1894 dev_warn(dev->ctrl.device,
1895 "failed to allocate host memory buffer.\n");
1896 return 0; /* controller must work without HMB */
1899 dev_info(dev->ctrl.device,
1900 "allocated %lld MiB host memory buffer.\n",
1901 dev->host_mem_size >> ilog2(SZ_1M));
1904 ret = nvme_set_host_mem(dev, enable_bits);
1905 if (ret)
1906 nvme_free_host_mem(dev);
1907 return ret;
1910 static int nvme_setup_io_queues(struct nvme_dev *dev)
1912 struct nvme_queue *adminq = &dev->queues[0];
1913 struct pci_dev *pdev = to_pci_dev(dev->dev);
1914 int result, nr_io_queues;
1915 unsigned long size;
1917 nr_io_queues = num_possible_cpus();
1918 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1919 if (result < 0)
1920 return result;
1922 if (nr_io_queues == 0)
1923 return 0;
1925 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1926 result = nvme_cmb_qdepth(dev, nr_io_queues,
1927 sizeof(struct nvme_command));
1928 if (result > 0)
1929 dev->q_depth = result;
1930 else
1931 nvme_release_cmb(dev);
1934 do {
1935 size = db_bar_size(dev, nr_io_queues);
1936 result = nvme_remap_bar(dev, size);
1937 if (!result)
1938 break;
1939 if (!--nr_io_queues)
1940 return -ENOMEM;
1941 } while (1);
1942 adminq->q_db = dev->dbs;
1944 /* Deregister the admin queue's interrupt */
1945 pci_free_irq(pdev, 0, adminq);
1948 * If we enable msix early due to not intx, disable it again before
1949 * setting up the full range we need.
1951 pci_free_irq_vectors(pdev);
1952 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1953 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1954 if (nr_io_queues <= 0)
1955 return -EIO;
1956 dev->max_qid = nr_io_queues;
1959 * Should investigate if there's a performance win from allocating
1960 * more queues than interrupt vectors; it might allow the submission
1961 * path to scale better, even if the receive path is limited by the
1962 * number of interrupts.
1965 result = queue_request_irq(adminq);
1966 if (result) {
1967 adminq->cq_vector = -1;
1968 return result;
1970 return nvme_create_io_queues(dev);
1973 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1975 struct nvme_queue *nvmeq = req->end_io_data;
1977 blk_mq_free_request(req);
1978 complete(&nvmeq->dev->ioq_wait);
1981 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1983 struct nvme_queue *nvmeq = req->end_io_data;
1985 if (!error) {
1986 unsigned long flags;
1989 * We might be called with the AQ q_lock held
1990 * and the I/O queue q_lock should always
1991 * nest inside the AQ one.
1993 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1994 SINGLE_DEPTH_NESTING);
1995 nvme_process_cq(nvmeq);
1996 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1999 nvme_del_queue_end(req, error);
2002 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2004 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2005 struct request *req;
2006 struct nvme_command cmd;
2008 memset(&cmd, 0, sizeof(cmd));
2009 cmd.delete_queue.opcode = opcode;
2010 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2012 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2013 if (IS_ERR(req))
2014 return PTR_ERR(req);
2016 req->timeout = ADMIN_TIMEOUT;
2017 req->end_io_data = nvmeq;
2019 blk_execute_rq_nowait(q, NULL, req, false,
2020 opcode == nvme_admin_delete_cq ?
2021 nvme_del_cq_end : nvme_del_queue_end);
2022 return 0;
2025 static void nvme_disable_io_queues(struct nvme_dev *dev)
2027 int pass, queues = dev->online_queues - 1;
2028 unsigned long timeout;
2029 u8 opcode = nvme_admin_delete_sq;
2031 for (pass = 0; pass < 2; pass++) {
2032 int sent = 0, i = queues;
2034 reinit_completion(&dev->ioq_wait);
2035 retry:
2036 timeout = ADMIN_TIMEOUT;
2037 for (; i > 0; i--, sent++)
2038 if (nvme_delete_queue(&dev->queues[i], opcode))
2039 break;
2041 while (sent--) {
2042 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2043 if (timeout == 0)
2044 return;
2045 if (i)
2046 goto retry;
2048 opcode = nvme_admin_delete_cq;
2053 * return error value only when tagset allocation failed
2055 static int nvme_dev_add(struct nvme_dev *dev)
2057 int ret;
2059 if (!dev->ctrl.tagset) {
2060 dev->tagset.ops = &nvme_mq_ops;
2061 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2062 dev->tagset.timeout = NVME_IO_TIMEOUT;
2063 dev->tagset.numa_node = dev_to_node(dev->dev);
2064 dev->tagset.queue_depth =
2065 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2066 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2067 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2068 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2069 nvme_pci_cmd_size(dev, true));
2071 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2072 dev->tagset.driver_data = dev;
2074 ret = blk_mq_alloc_tag_set(&dev->tagset);
2075 if (ret) {
2076 dev_warn(dev->ctrl.device,
2077 "IO queues tagset allocation failed %d\n", ret);
2078 return ret;
2080 dev->ctrl.tagset = &dev->tagset;
2082 nvme_dbbuf_set(dev);
2083 } else {
2084 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2086 /* Free previously allocated queues that are no longer usable */
2087 nvme_free_queues(dev, dev->online_queues);
2090 return 0;
2093 static int nvme_pci_enable(struct nvme_dev *dev)
2095 int result = -ENOMEM;
2096 struct pci_dev *pdev = to_pci_dev(dev->dev);
2098 if (pci_enable_device_mem(pdev))
2099 return result;
2101 pci_set_master(pdev);
2103 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2104 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2105 goto disable;
2107 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2108 result = -ENODEV;
2109 goto disable;
2113 * Some devices and/or platforms don't advertise or work with INTx
2114 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2115 * adjust this later.
2117 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2118 if (result < 0)
2119 return result;
2121 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2123 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2124 io_queue_depth);
2125 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2126 dev->dbs = dev->bar + 4096;
2129 * Temporary fix for the Apple controller found in the MacBook8,1 and
2130 * some MacBook7,1 to avoid controller resets and data loss.
2132 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2133 dev->q_depth = 2;
2134 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2135 "set queue depth=%u to work around controller resets\n",
2136 dev->q_depth);
2137 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2138 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2139 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2140 dev->q_depth = 64;
2141 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2142 "set queue depth=%u\n", dev->q_depth);
2145 nvme_map_cmb(dev);
2147 pci_enable_pcie_error_reporting(pdev);
2148 pci_save_state(pdev);
2149 return 0;
2151 disable:
2152 pci_disable_device(pdev);
2153 return result;
2156 static void nvme_dev_unmap(struct nvme_dev *dev)
2158 if (dev->bar)
2159 iounmap(dev->bar);
2160 pci_release_mem_regions(to_pci_dev(dev->dev));
2163 static void nvme_pci_disable(struct nvme_dev *dev)
2165 struct pci_dev *pdev = to_pci_dev(dev->dev);
2167 nvme_release_cmb(dev);
2168 pci_free_irq_vectors(pdev);
2170 if (pci_is_enabled(pdev)) {
2171 pci_disable_pcie_error_reporting(pdev);
2172 pci_disable_device(pdev);
2176 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2178 int i;
2179 bool dead = true;
2180 struct pci_dev *pdev = to_pci_dev(dev->dev);
2182 mutex_lock(&dev->shutdown_lock);
2183 if (pci_is_enabled(pdev)) {
2184 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2186 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2187 dev->ctrl.state == NVME_CTRL_RESETTING)
2188 nvme_start_freeze(&dev->ctrl);
2189 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2190 pdev->error_state != pci_channel_io_normal);
2194 * Give the controller a chance to complete all entered requests if
2195 * doing a safe shutdown.
2197 if (!dead) {
2198 if (shutdown)
2199 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2202 nvme_stop_queues(&dev->ctrl);
2204 if (!dead) {
2206 * If the controller is still alive tell it to stop using the
2207 * host memory buffer. In theory the shutdown / reset should
2208 * make sure that it doesn't access the host memoery anymore,
2209 * but I'd rather be safe than sorry..
2211 if (dev->host_mem_descs)
2212 nvme_set_host_mem(dev, 0);
2213 nvme_disable_io_queues(dev);
2214 nvme_disable_admin_queue(dev, shutdown);
2216 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2217 nvme_suspend_queue(&dev->queues[i]);
2219 nvme_pci_disable(dev);
2221 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2222 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2225 * The driver will not be starting up queues again if shutting down so
2226 * must flush all entered requests to their failed completion to avoid
2227 * deadlocking blk-mq hot-cpu notifier.
2229 if (shutdown)
2230 nvme_start_queues(&dev->ctrl);
2231 mutex_unlock(&dev->shutdown_lock);
2234 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2236 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2237 PAGE_SIZE, PAGE_SIZE, 0);
2238 if (!dev->prp_page_pool)
2239 return -ENOMEM;
2241 /* Optimisation for I/Os between 4k and 128k */
2242 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2243 256, 256, 0);
2244 if (!dev->prp_small_pool) {
2245 dma_pool_destroy(dev->prp_page_pool);
2246 return -ENOMEM;
2248 return 0;
2251 static void nvme_release_prp_pools(struct nvme_dev *dev)
2253 dma_pool_destroy(dev->prp_page_pool);
2254 dma_pool_destroy(dev->prp_small_pool);
2257 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2259 struct nvme_dev *dev = to_nvme_dev(ctrl);
2261 nvme_dbbuf_dma_free(dev);
2262 put_device(dev->dev);
2263 if (dev->tagset.tags)
2264 blk_mq_free_tag_set(&dev->tagset);
2265 if (dev->ctrl.admin_q)
2266 blk_put_queue(dev->ctrl.admin_q);
2267 kfree(dev->queues);
2268 free_opal_dev(dev->ctrl.opal_dev);
2269 kfree(dev);
2272 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2274 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2276 nvme_get_ctrl(&dev->ctrl);
2277 nvme_dev_disable(dev, false);
2278 if (!queue_work(nvme_wq, &dev->remove_work))
2279 nvme_put_ctrl(&dev->ctrl);
2282 static void nvme_reset_work(struct work_struct *work)
2284 struct nvme_dev *dev =
2285 container_of(work, struct nvme_dev, ctrl.reset_work);
2286 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2287 int result = -ENODEV;
2288 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2290 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2291 goto out;
2294 * If we're called to reset a live controller first shut it down before
2295 * moving on.
2297 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2298 nvme_dev_disable(dev, false);
2301 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2302 * initializing procedure here.
2304 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2305 dev_warn(dev->ctrl.device,
2306 "failed to mark controller CONNECTING\n");
2307 goto out;
2310 result = nvme_pci_enable(dev);
2311 if (result)
2312 goto out;
2314 result = nvme_pci_configure_admin_queue(dev);
2315 if (result)
2316 goto out;
2318 result = nvme_alloc_admin_tags(dev);
2319 if (result)
2320 goto out;
2322 result = nvme_init_identify(&dev->ctrl);
2323 if (result)
2324 goto out;
2326 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2327 if (!dev->ctrl.opal_dev)
2328 dev->ctrl.opal_dev =
2329 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2330 else if (was_suspend)
2331 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2332 } else {
2333 free_opal_dev(dev->ctrl.opal_dev);
2334 dev->ctrl.opal_dev = NULL;
2337 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2338 result = nvme_dbbuf_dma_alloc(dev);
2339 if (result)
2340 dev_warn(dev->dev,
2341 "unable to allocate dma for dbbuf\n");
2344 if (dev->ctrl.hmpre) {
2345 result = nvme_setup_host_mem(dev);
2346 if (result < 0)
2347 goto out;
2350 result = nvme_setup_io_queues(dev);
2351 if (result)
2352 goto out;
2355 * Keep the controller around but remove all namespaces if we don't have
2356 * any working I/O queue.
2358 if (dev->online_queues < 2) {
2359 dev_warn(dev->ctrl.device, "IO queues not created\n");
2360 nvme_kill_queues(&dev->ctrl);
2361 nvme_remove_namespaces(&dev->ctrl);
2362 new_state = NVME_CTRL_ADMIN_ONLY;
2363 } else {
2364 nvme_start_queues(&dev->ctrl);
2365 nvme_wait_freeze(&dev->ctrl);
2366 /* hit this only when allocate tagset fails */
2367 if (nvme_dev_add(dev))
2368 new_state = NVME_CTRL_ADMIN_ONLY;
2369 nvme_unfreeze(&dev->ctrl);
2373 * If only admin queue live, keep it to do further investigation or
2374 * recovery.
2376 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2377 dev_warn(dev->ctrl.device,
2378 "failed to mark controller state %d\n", new_state);
2379 goto out;
2382 nvme_start_ctrl(&dev->ctrl);
2383 return;
2385 out:
2386 nvme_remove_dead_ctrl(dev, result);
2389 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2391 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2392 struct pci_dev *pdev = to_pci_dev(dev->dev);
2394 nvme_kill_queues(&dev->ctrl);
2395 if (pci_get_drvdata(pdev))
2396 device_release_driver(&pdev->dev);
2397 nvme_put_ctrl(&dev->ctrl);
2400 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2402 *val = readl(to_nvme_dev(ctrl)->bar + off);
2403 return 0;
2406 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2408 writel(val, to_nvme_dev(ctrl)->bar + off);
2409 return 0;
2412 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2414 *val = readq(to_nvme_dev(ctrl)->bar + off);
2415 return 0;
2418 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2420 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2422 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2425 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2426 .name = "pcie",
2427 .module = THIS_MODULE,
2428 .flags = NVME_F_METADATA_SUPPORTED,
2429 .reg_read32 = nvme_pci_reg_read32,
2430 .reg_write32 = nvme_pci_reg_write32,
2431 .reg_read64 = nvme_pci_reg_read64,
2432 .free_ctrl = nvme_pci_free_ctrl,
2433 .submit_async_event = nvme_pci_submit_async_event,
2434 .get_address = nvme_pci_get_address,
2437 static int nvme_dev_map(struct nvme_dev *dev)
2439 struct pci_dev *pdev = to_pci_dev(dev->dev);
2441 if (pci_request_mem_regions(pdev, "nvme"))
2442 return -ENODEV;
2444 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2445 goto release;
2447 return 0;
2448 release:
2449 pci_release_mem_regions(pdev);
2450 return -ENODEV;
2453 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2455 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2457 * Several Samsung devices seem to drop off the PCIe bus
2458 * randomly when APST is on and uses the deepest sleep state.
2459 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2460 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2461 * 950 PRO 256GB", but it seems to be restricted to two Dell
2462 * laptops.
2464 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2465 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2466 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2467 return NVME_QUIRK_NO_DEEPEST_PS;
2468 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2470 * Samsung SSD 960 EVO drops off the PCIe bus after system
2471 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2472 * within few minutes after bootup on a Coffee Lake board -
2473 * ASUS PRIME Z370-A
2475 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2476 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2477 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2478 return NVME_QUIRK_NO_APST;
2481 return 0;
2484 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2486 int node, result = -ENOMEM;
2487 struct nvme_dev *dev;
2488 unsigned long quirks = id->driver_data;
2490 node = dev_to_node(&pdev->dev);
2491 if (node == NUMA_NO_NODE)
2492 set_dev_node(&pdev->dev, first_memory_node);
2494 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2495 if (!dev)
2496 return -ENOMEM;
2498 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2499 sizeof(struct nvme_queue), GFP_KERNEL, node);
2500 if (!dev->queues)
2501 goto free;
2503 dev->dev = get_device(&pdev->dev);
2504 pci_set_drvdata(pdev, dev);
2506 result = nvme_dev_map(dev);
2507 if (result)
2508 goto put_pci;
2510 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2511 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2512 mutex_init(&dev->shutdown_lock);
2513 init_completion(&dev->ioq_wait);
2515 result = nvme_setup_prp_pools(dev);
2516 if (result)
2517 goto unmap;
2519 quirks |= check_vendor_combination_bug(pdev);
2521 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2522 quirks);
2523 if (result)
2524 goto release_pools;
2526 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2528 nvme_reset_ctrl(&dev->ctrl);
2530 return 0;
2532 release_pools:
2533 nvme_release_prp_pools(dev);
2534 unmap:
2535 nvme_dev_unmap(dev);
2536 put_pci:
2537 put_device(dev->dev);
2538 free:
2539 kfree(dev->queues);
2540 kfree(dev);
2541 return result;
2544 static void nvme_reset_prepare(struct pci_dev *pdev)
2546 struct nvme_dev *dev = pci_get_drvdata(pdev);
2547 nvme_dev_disable(dev, false);
2550 static void nvme_reset_done(struct pci_dev *pdev)
2552 struct nvme_dev *dev = pci_get_drvdata(pdev);
2553 nvme_reset_ctrl_sync(&dev->ctrl);
2556 static void nvme_shutdown(struct pci_dev *pdev)
2558 struct nvme_dev *dev = pci_get_drvdata(pdev);
2559 nvme_dev_disable(dev, true);
2563 * The driver's remove may be called on a device in a partially initialized
2564 * state. This function must not have any dependencies on the device state in
2565 * order to proceed.
2567 static void nvme_remove(struct pci_dev *pdev)
2569 struct nvme_dev *dev = pci_get_drvdata(pdev);
2571 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2573 cancel_work_sync(&dev->ctrl.reset_work);
2574 pci_set_drvdata(pdev, NULL);
2576 if (!pci_device_is_present(pdev)) {
2577 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2578 nvme_dev_disable(dev, false);
2581 flush_work(&dev->ctrl.reset_work);
2582 nvme_stop_ctrl(&dev->ctrl);
2583 nvme_remove_namespaces(&dev->ctrl);
2584 nvme_dev_disable(dev, true);
2585 nvme_free_host_mem(dev);
2586 nvme_dev_remove_admin(dev);
2587 nvme_free_queues(dev, 0);
2588 nvme_uninit_ctrl(&dev->ctrl);
2589 nvme_release_prp_pools(dev);
2590 nvme_dev_unmap(dev);
2591 nvme_put_ctrl(&dev->ctrl);
2594 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2596 int ret = 0;
2598 if (numvfs == 0) {
2599 if (pci_vfs_assigned(pdev)) {
2600 dev_warn(&pdev->dev,
2601 "Cannot disable SR-IOV VFs while assigned\n");
2602 return -EPERM;
2604 pci_disable_sriov(pdev);
2605 return 0;
2608 ret = pci_enable_sriov(pdev, numvfs);
2609 return ret ? ret : numvfs;
2612 #ifdef CONFIG_PM_SLEEP
2613 static int nvme_suspend(struct device *dev)
2615 struct pci_dev *pdev = to_pci_dev(dev);
2616 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2618 nvme_dev_disable(ndev, true);
2619 return 0;
2622 static int nvme_resume(struct device *dev)
2624 struct pci_dev *pdev = to_pci_dev(dev);
2625 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2627 nvme_reset_ctrl(&ndev->ctrl);
2628 return 0;
2630 #endif
2632 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2634 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2635 pci_channel_state_t state)
2637 struct nvme_dev *dev = pci_get_drvdata(pdev);
2640 * A frozen channel requires a reset. When detected, this method will
2641 * shutdown the controller to quiesce. The controller will be restarted
2642 * after the slot reset through driver's slot_reset callback.
2644 switch (state) {
2645 case pci_channel_io_normal:
2646 return PCI_ERS_RESULT_CAN_RECOVER;
2647 case pci_channel_io_frozen:
2648 dev_warn(dev->ctrl.device,
2649 "frozen state error detected, reset controller\n");
2650 nvme_dev_disable(dev, false);
2651 return PCI_ERS_RESULT_NEED_RESET;
2652 case pci_channel_io_perm_failure:
2653 dev_warn(dev->ctrl.device,
2654 "failure state error detected, request disconnect\n");
2655 return PCI_ERS_RESULT_DISCONNECT;
2657 return PCI_ERS_RESULT_NEED_RESET;
2660 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2662 struct nvme_dev *dev = pci_get_drvdata(pdev);
2664 dev_info(dev->ctrl.device, "restart after slot reset\n");
2665 pci_restore_state(pdev);
2666 nvme_reset_ctrl(&dev->ctrl);
2667 return PCI_ERS_RESULT_RECOVERED;
2670 static void nvme_error_resume(struct pci_dev *pdev)
2672 pci_cleanup_aer_uncorrect_error_status(pdev);
2675 static const struct pci_error_handlers nvme_err_handler = {
2676 .error_detected = nvme_error_detected,
2677 .slot_reset = nvme_slot_reset,
2678 .resume = nvme_error_resume,
2679 .reset_prepare = nvme_reset_prepare,
2680 .reset_done = nvme_reset_done,
2683 static const struct pci_device_id nvme_id_table[] = {
2684 { PCI_VDEVICE(INTEL, 0x0953),
2685 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2686 NVME_QUIRK_DEALLOCATE_ZEROES, },
2687 { PCI_VDEVICE(INTEL, 0x0a53),
2688 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2689 NVME_QUIRK_DEALLOCATE_ZEROES, },
2690 { PCI_VDEVICE(INTEL, 0x0a54),
2691 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2692 NVME_QUIRK_DEALLOCATE_ZEROES, },
2693 { PCI_VDEVICE(INTEL, 0x0a55),
2694 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2695 NVME_QUIRK_DEALLOCATE_ZEROES, },
2696 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2697 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2698 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2699 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2700 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2701 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2702 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2703 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2704 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2705 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2706 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2707 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2708 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2709 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2710 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2711 .driver_data = NVME_QUIRK_LIGHTNVM, },
2712 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2713 .driver_data = NVME_QUIRK_LIGHTNVM, },
2714 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2715 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2716 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2717 { 0, }
2719 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2721 static struct pci_driver nvme_driver = {
2722 .name = "nvme",
2723 .id_table = nvme_id_table,
2724 .probe = nvme_probe,
2725 .remove = nvme_remove,
2726 .shutdown = nvme_shutdown,
2727 .driver = {
2728 .pm = &nvme_dev_pm_ops,
2730 .sriov_configure = nvme_pci_sriov_configure,
2731 .err_handler = &nvme_err_handler,
2734 static int __init nvme_init(void)
2736 return pci_register_driver(&nvme_driver);
2739 static void __exit nvme_exit(void)
2741 pci_unregister_driver(&nvme_driver);
2742 flush_workqueue(nvme_wq);
2743 _nvme_check_size();
2746 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2747 MODULE_LICENSE("GPL");
2748 MODULE_VERSION("1.0");
2749 module_init(nvme_init);
2750 module_exit(nvme_exit);