2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
36 #include <asm/unaligned.h>
38 struct sh_msiof_chipdata
{
45 struct sh_msiof_spi_priv
{
46 struct spi_master
*master
;
47 void __iomem
*mapbase
;
49 struct platform_device
*pdev
;
50 struct sh_msiof_spi_info
*info
;
51 struct completion done
;
52 unsigned int tx_fifo_size
;
53 unsigned int rx_fifo_size
;
57 dma_addr_t tx_dma_addr
;
58 dma_addr_t rx_dma_addr
;
59 unsigned short unused_ss
;
60 bool native_cs_inited
;
65 #define MAX_SS 3 /* Maximum number of native chip selects */
67 #define TMDR1 0x00 /* Transmit Mode Register 1 */
68 #define TMDR2 0x04 /* Transmit Mode Register 2 */
69 #define TMDR3 0x08 /* Transmit Mode Register 3 */
70 #define RMDR1 0x10 /* Receive Mode Register 1 */
71 #define RMDR2 0x14 /* Receive Mode Register 2 */
72 #define RMDR3 0x18 /* Receive Mode Register 3 */
73 #define TSCR 0x20 /* Transmit Clock Select Register */
74 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
75 #define CTR 0x28 /* Control Register */
76 #define FCTR 0x30 /* FIFO Control Register */
77 #define STR 0x40 /* Status Register */
78 #define IER 0x44 /* Interrupt Enable Register */
79 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
80 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
81 #define TFDR 0x50 /* Transmit FIFO Data Register */
82 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
83 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
84 #define RFDR 0x60 /* Receive FIFO Data Register */
87 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
88 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
90 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
91 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
92 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
93 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
95 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
96 #define MDR1_FLD_SHIFT 2
97 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
99 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
100 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
103 /* TMDR2 and RMDR2 */
104 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
105 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
109 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
110 #define SCR_BRPS(i) (((i) - 1) << 8)
111 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
112 #define SCR_BRDV_DIV_2 0x0000
113 #define SCR_BRDV_DIV_4 0x0001
114 #define SCR_BRDV_DIV_8 0x0002
115 #define SCR_BRDV_DIV_16 0x0003
116 #define SCR_BRDV_DIV_32 0x0004
117 #define SCR_BRDV_DIV_1 0x0007
120 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
121 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
122 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
123 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
124 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
125 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
126 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
127 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
128 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
129 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
130 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
131 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
132 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
133 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
134 #define CTR_TXE 0x00000200 /* Transmit Enable */
135 #define CTR_RXE 0x00000100 /* Receive Enable */
138 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
139 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
140 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
141 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
142 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
143 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
144 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
145 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
146 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
147 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
148 #define FCTR_TFUA_SHIFT 20
149 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
151 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
152 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
153 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
154 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
155 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
156 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
157 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
158 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
159 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160 #define FCTR_RFUA_SHIFT 4
161 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
164 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
165 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
166 #define STR_TEOF 0x00800000 /* Frame Transmission End */
167 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
168 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
169 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
170 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
171 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
172 #define STR_REOF 0x00000080 /* Frame Reception End */
173 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
174 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
175 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
178 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
180 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
181 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
182 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
183 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
184 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
185 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
186 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
187 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
188 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
189 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
190 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
191 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
194 static u32
sh_msiof_read(struct sh_msiof_spi_priv
*p
, int reg_offs
)
199 return ioread16(p
->mapbase
+ reg_offs
);
201 return ioread32(p
->mapbase
+ reg_offs
);
205 static void sh_msiof_write(struct sh_msiof_spi_priv
*p
, int reg_offs
,
211 iowrite16(value
, p
->mapbase
+ reg_offs
);
214 iowrite32(value
, p
->mapbase
+ reg_offs
);
219 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv
*p
,
222 u32 mask
= clr
| set
;
226 data
= sh_msiof_read(p
, CTR
);
229 sh_msiof_write(p
, CTR
, data
);
231 for (k
= 100; k
> 0; k
--) {
232 if ((sh_msiof_read(p
, CTR
) & mask
) == set
)
238 return k
> 0 ? 0 : -ETIMEDOUT
;
241 static irqreturn_t
sh_msiof_spi_irq(int irq
, void *data
)
243 struct sh_msiof_spi_priv
*p
= data
;
245 /* just disable the interrupt and wake up */
246 sh_msiof_write(p
, IER
, 0);
255 } const sh_msiof_spi_div_table
[] = {
256 { 1, SCR_BRDV_DIV_1
},
257 { 2, SCR_BRDV_DIV_2
},
258 { 4, SCR_BRDV_DIV_4
},
259 { 8, SCR_BRDV_DIV_8
},
260 { 16, SCR_BRDV_DIV_16
},
261 { 32, SCR_BRDV_DIV_32
},
264 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv
*p
,
265 unsigned long parent_rate
, u32 spi_hz
)
267 unsigned long div
= 1024;
271 if (!WARN_ON(!spi_hz
|| !parent_rate
))
272 div
= DIV_ROUND_UP(parent_rate
, spi_hz
);
274 div
= max_t(unsigned long, div
, p
->min_div
);
276 for (k
= 0; k
< ARRAY_SIZE(sh_msiof_spi_div_table
); k
++) {
277 brps
= DIV_ROUND_UP(div
, sh_msiof_spi_div_table
[k
].div
);
278 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (sh_msiof_spi_div_table
[k
].div
== 1 && brps
> 2)
281 if (brps
<= 32) /* max of brdv is 32 */
285 k
= min_t(int, k
, ARRAY_SIZE(sh_msiof_spi_div_table
) - 1);
287 scr
= sh_msiof_spi_div_table
[k
].brdv
| SCR_BRPS(brps
);
288 sh_msiof_write(p
, TSCR
, scr
);
289 if (!(p
->master
->flags
& SPI_MASTER_MUST_TX
))
290 sh_msiof_write(p
, RSCR
, scr
);
293 static u32
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl
)
296 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
300 * b'011 (SYNCDL only) : 300
304 if (dtdl_or_syncdl
% 100)
305 return dtdl_or_syncdl
/ 100 + 5;
307 return dtdl_or_syncdl
/ 100;
310 static u32
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv
*p
)
317 /* check if DTDL and SYNCDL is allowed value */
318 if (p
->info
->dtdl
> 200 || p
->info
->syncdl
> 300) {
319 dev_warn(&p
->pdev
->dev
, "DTDL or SYNCDL is too large\n");
323 /* check if the sum of DTDL and SYNCDL becomes an integer value */
324 if ((p
->info
->dtdl
+ p
->info
->syncdl
) % 100) {
325 dev_warn(&p
->pdev
->dev
, "the sum of DTDL/SYNCDL is not good\n");
329 val
= sh_msiof_get_delay_bit(p
->info
->dtdl
) << MDR1_DTDL_SHIFT
;
330 val
|= sh_msiof_get_delay_bit(p
->info
->syncdl
) << MDR1_SYNCDL_SHIFT
;
335 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv
*p
, u32 ss
,
337 u32 tx_hi_z
, u32 lsb_first
, u32 cs_high
)
343 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
349 tmp
= MDR1_SYNCMD_SPI
| 1 << MDR1_FLD_SHIFT
| MDR1_XXSTP
;
350 tmp
|= !cs_high
<< MDR1_SYNCAC_SHIFT
;
351 tmp
|= lsb_first
<< MDR1_BITLSB_SHIFT
;
352 tmp
|= sh_msiof_spi_get_dtdl_and_syncdl(p
);
353 if (spi_controller_is_slave(p
->master
)) {
354 sh_msiof_write(p
, TMDR1
, tmp
| TMDR1_PCON
);
356 sh_msiof_write(p
, TMDR1
,
357 tmp
| MDR1_TRMD
| TMDR1_PCON
|
358 (ss
< MAX_SS
? ss
: 0) << TMDR1_SYNCCH_SHIFT
);
360 if (p
->master
->flags
& SPI_MASTER_MUST_TX
) {
361 /* These bits are reserved if RX needs TX */
364 sh_msiof_write(p
, RMDR1
, tmp
);
367 tmp
|= CTR_TSCKIZ_SCK
| cpol
<< CTR_TSCKIZ_POL_SHIFT
;
368 tmp
|= CTR_RSCKIZ_SCK
| cpol
<< CTR_RSCKIZ_POL_SHIFT
;
372 tmp
|= edge
<< CTR_TEDG_SHIFT
;
373 tmp
|= edge
<< CTR_REDG_SHIFT
;
374 tmp
|= tx_hi_z
? CTR_TXDIZ_HIZ
: CTR_TXDIZ_LOW
;
375 sh_msiof_write(p
, CTR
, tmp
);
378 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv
*p
,
379 const void *tx_buf
, void *rx_buf
,
382 u32 dr2
= MDR2_BITLEN1(bits
) | MDR2_WDLEN1(words
);
384 if (tx_buf
|| (p
->master
->flags
& SPI_MASTER_MUST_TX
))
385 sh_msiof_write(p
, TMDR2
, dr2
);
387 sh_msiof_write(p
, TMDR2
, dr2
| MDR2_GRPMASK1
);
390 sh_msiof_write(p
, RMDR2
, dr2
);
393 static void sh_msiof_reset_str(struct sh_msiof_spi_priv
*p
)
395 sh_msiof_write(p
, STR
, sh_msiof_read(p
, STR
));
398 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv
*p
,
399 const void *tx_buf
, int words
, int fs
)
401 const u8
*buf_8
= tx_buf
;
404 for (k
= 0; k
< words
; k
++)
405 sh_msiof_write(p
, TFDR
, buf_8
[k
] << fs
);
408 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv
*p
,
409 const void *tx_buf
, int words
, int fs
)
411 const u16
*buf_16
= tx_buf
;
414 for (k
= 0; k
< words
; k
++)
415 sh_msiof_write(p
, TFDR
, buf_16
[k
] << fs
);
418 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv
*p
,
419 const void *tx_buf
, int words
, int fs
)
421 const u16
*buf_16
= tx_buf
;
424 for (k
= 0; k
< words
; k
++)
425 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_16
[k
]) << fs
);
428 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv
*p
,
429 const void *tx_buf
, int words
, int fs
)
431 const u32
*buf_32
= tx_buf
;
434 for (k
= 0; k
< words
; k
++)
435 sh_msiof_write(p
, TFDR
, buf_32
[k
] << fs
);
438 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv
*p
,
439 const void *tx_buf
, int words
, int fs
)
441 const u32
*buf_32
= tx_buf
;
444 for (k
= 0; k
< words
; k
++)
445 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_32
[k
]) << fs
);
448 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv
*p
,
449 const void *tx_buf
, int words
, int fs
)
451 const u32
*buf_32
= tx_buf
;
454 for (k
= 0; k
< words
; k
++)
455 sh_msiof_write(p
, TFDR
, swab32(buf_32
[k
] << fs
));
458 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv
*p
,
459 const void *tx_buf
, int words
, int fs
)
461 const u32
*buf_32
= tx_buf
;
464 for (k
= 0; k
< words
; k
++)
465 sh_msiof_write(p
, TFDR
, swab32(get_unaligned(&buf_32
[k
]) << fs
));
468 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv
*p
,
469 void *rx_buf
, int words
, int fs
)
474 for (k
= 0; k
< words
; k
++)
475 buf_8
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
478 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv
*p
,
479 void *rx_buf
, int words
, int fs
)
481 u16
*buf_16
= rx_buf
;
484 for (k
= 0; k
< words
; k
++)
485 buf_16
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
488 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv
*p
,
489 void *rx_buf
, int words
, int fs
)
491 u16
*buf_16
= rx_buf
;
494 for (k
= 0; k
< words
; k
++)
495 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_16
[k
]);
498 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv
*p
,
499 void *rx_buf
, int words
, int fs
)
501 u32
*buf_32
= rx_buf
;
504 for (k
= 0; k
< words
; k
++)
505 buf_32
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
508 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv
*p
,
509 void *rx_buf
, int words
, int fs
)
511 u32
*buf_32
= rx_buf
;
514 for (k
= 0; k
< words
; k
++)
515 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_32
[k
]);
518 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv
*p
,
519 void *rx_buf
, int words
, int fs
)
521 u32
*buf_32
= rx_buf
;
524 for (k
= 0; k
< words
; k
++)
525 buf_32
[k
] = swab32(sh_msiof_read(p
, RFDR
) >> fs
);
528 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv
*p
,
529 void *rx_buf
, int words
, int fs
)
531 u32
*buf_32
= rx_buf
;
534 for (k
= 0; k
< words
; k
++)
535 put_unaligned(swab32(sh_msiof_read(p
, RFDR
) >> fs
), &buf_32
[k
]);
538 static int sh_msiof_spi_setup(struct spi_device
*spi
)
540 struct device_node
*np
= spi
->master
->dev
.of_node
;
541 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(spi
->master
);
546 * Use spi->controller_data for CS (same strategy as spi_gpio),
547 * if any. otherwise let HW control CS
549 spi
->cs_gpio
= (uintptr_t)spi
->controller_data
;
552 if (gpio_is_valid(spi
->cs_gpio
)) {
553 gpio_direction_output(spi
->cs_gpio
, !(spi
->mode
& SPI_CS_HIGH
));
557 if (spi_controller_is_slave(p
->master
))
560 if (p
->native_cs_inited
&&
561 (p
->native_cs_high
== !!(spi
->mode
& SPI_CS_HIGH
)))
564 /* Configure native chip select mode/polarity early */
565 clr
= MDR1_SYNCMD_MASK
;
566 set
= MDR1_TRMD
| TMDR1_PCON
| MDR1_SYNCMD_SPI
;
567 if (spi
->mode
& SPI_CS_HIGH
)
568 clr
|= BIT(MDR1_SYNCAC_SHIFT
);
570 set
|= BIT(MDR1_SYNCAC_SHIFT
);
571 pm_runtime_get_sync(&p
->pdev
->dev
);
572 tmp
= sh_msiof_read(p
, TMDR1
) & ~clr
;
573 sh_msiof_write(p
, TMDR1
, tmp
| set
);
574 pm_runtime_put(&p
->pdev
->dev
);
575 p
->native_cs_high
= spi
->mode
& SPI_CS_HIGH
;
576 p
->native_cs_inited
= true;
580 static int sh_msiof_prepare_message(struct spi_master
*master
,
581 struct spi_message
*msg
)
583 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
584 const struct spi_device
*spi
= msg
->spi
;
587 /* Configure pins before asserting CS */
588 if (gpio_is_valid(spi
->cs_gpio
)) {
590 cs_high
= p
->native_cs_high
;
592 ss
= spi
->chip_select
;
593 cs_high
= !!(spi
->mode
& SPI_CS_HIGH
);
595 sh_msiof_spi_set_pin_regs(p
, ss
, !!(spi
->mode
& SPI_CPOL
),
596 !!(spi
->mode
& SPI_CPHA
),
597 !!(spi
->mode
& SPI_3WIRE
),
598 !!(spi
->mode
& SPI_LSB_FIRST
), cs_high
);
602 static int sh_msiof_spi_start(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
604 bool slave
= spi_controller_is_slave(p
->master
);
607 /* setup clock and rx/tx signals */
609 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TSCKE
);
611 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_RXE
);
613 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TXE
);
615 /* start by setting frame bit */
617 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TFSE
);
622 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
624 bool slave
= spi_controller_is_slave(p
->master
);
627 /* shut down frame, rx/tx and clock signals */
629 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TFSE
, 0);
631 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TXE
, 0);
633 ret
= sh_msiof_modify_ctr_wait(p
, CTR_RXE
, 0);
635 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TSCKE
, 0);
640 static int sh_msiof_slave_abort(struct spi_master
*master
)
642 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
644 p
->slave_aborted
= true;
649 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv
*p
)
651 if (spi_controller_is_slave(p
->master
)) {
652 if (wait_for_completion_interruptible(&p
->done
) ||
654 dev_dbg(&p
->pdev
->dev
, "interrupted\n");
658 if (!wait_for_completion_timeout(&p
->done
, HZ
)) {
659 dev_err(&p
->pdev
->dev
, "timeout\n");
667 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv
*p
,
668 void (*tx_fifo
)(struct sh_msiof_spi_priv
*,
669 const void *, int, int),
670 void (*rx_fifo
)(struct sh_msiof_spi_priv
*,
672 const void *tx_buf
, void *rx_buf
,
678 /* limit maximum word transfer to rx/tx fifo size */
680 words
= min_t(int, words
, p
->tx_fifo_size
);
682 words
= min_t(int, words
, p
->rx_fifo_size
);
684 /* the fifo contents need shifting */
685 fifo_shift
= 32 - bits
;
687 /* default FIFO watermarks for PIO */
688 sh_msiof_write(p
, FCTR
, 0);
690 /* setup msiof transfer mode registers */
691 sh_msiof_spi_set_mode_regs(p
, tx_buf
, rx_buf
, bits
, words
);
692 sh_msiof_write(p
, IER
, IER_TEOFE
| IER_REOFE
);
696 tx_fifo(p
, tx_buf
, words
, fifo_shift
);
698 reinit_completion(&p
->done
);
699 p
->slave_aborted
= false;
701 ret
= sh_msiof_spi_start(p
, rx_buf
);
703 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
707 /* wait for tx fifo to be emptied / rx fifo to be filled */
708 ret
= sh_msiof_wait_for_completion(p
);
714 rx_fifo(p
, rx_buf
, words
, fifo_shift
);
716 /* clear status bits */
717 sh_msiof_reset_str(p
);
719 ret
= sh_msiof_spi_stop(p
, rx_buf
);
721 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
728 sh_msiof_reset_str(p
);
729 sh_msiof_spi_stop(p
, rx_buf
);
731 sh_msiof_write(p
, IER
, 0);
735 static void sh_msiof_dma_complete(void *arg
)
737 struct sh_msiof_spi_priv
*p
= arg
;
739 sh_msiof_write(p
, IER
, 0);
743 static int sh_msiof_dma_once(struct sh_msiof_spi_priv
*p
, const void *tx
,
744 void *rx
, unsigned int len
)
747 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
751 /* First prepare and submit the DMA request(s), as this may fail */
753 ier_bits
|= IER_RDREQE
| IER_RDMAE
;
754 desc_rx
= dmaengine_prep_slave_single(p
->master
->dma_rx
,
755 p
->rx_dma_addr
, len
, DMA_DEV_TO_MEM
,
756 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
760 desc_rx
->callback
= sh_msiof_dma_complete
;
761 desc_rx
->callback_param
= p
;
762 cookie
= dmaengine_submit(desc_rx
);
763 if (dma_submit_error(cookie
))
768 ier_bits
|= IER_TDREQE
| IER_TDMAE
;
769 dma_sync_single_for_device(p
->master
->dma_tx
->device
->dev
,
770 p
->tx_dma_addr
, len
, DMA_TO_DEVICE
);
771 desc_tx
= dmaengine_prep_slave_single(p
->master
->dma_tx
,
772 p
->tx_dma_addr
, len
, DMA_MEM_TO_DEV
,
773 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
781 desc_tx
->callback
= NULL
;
783 desc_tx
->callback
= sh_msiof_dma_complete
;
784 desc_tx
->callback_param
= p
;
786 cookie
= dmaengine_submit(desc_tx
);
787 if (dma_submit_error(cookie
)) {
793 /* 1 stage FIFO watermarks for DMA */
794 sh_msiof_write(p
, FCTR
, FCTR_TFWM_1
| FCTR_RFWM_1
);
796 /* setup msiof transfer mode registers (32-bit words) */
797 sh_msiof_spi_set_mode_regs(p
, tx
, rx
, 32, len
/ 4);
799 sh_msiof_write(p
, IER
, ier_bits
);
801 reinit_completion(&p
->done
);
802 p
->slave_aborted
= false;
806 dma_async_issue_pending(p
->master
->dma_rx
);
808 dma_async_issue_pending(p
->master
->dma_tx
);
810 ret
= sh_msiof_spi_start(p
, rx
);
812 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
816 /* wait for tx/rx DMA completion */
817 ret
= sh_msiof_wait_for_completion(p
);
822 reinit_completion(&p
->done
);
823 sh_msiof_write(p
, IER
, IER_TEOFE
);
825 /* wait for tx fifo to be emptied */
826 ret
= sh_msiof_wait_for_completion(p
);
831 /* clear status bits */
832 sh_msiof_reset_str(p
);
834 ret
= sh_msiof_spi_stop(p
, rx
);
836 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
841 dma_sync_single_for_cpu(p
->master
->dma_rx
->device
->dev
,
848 sh_msiof_reset_str(p
);
849 sh_msiof_spi_stop(p
, rx
);
852 dmaengine_terminate_all(p
->master
->dma_tx
);
855 dmaengine_terminate_all(p
->master
->dma_rx
);
856 sh_msiof_write(p
, IER
, 0);
860 static void copy_bswap32(u32
*dst
, const u32
*src
, unsigned int words
)
862 /* src or dst can be unaligned, but not both */
863 if ((unsigned long)src
& 3) {
865 *dst
++ = swab32(get_unaligned(src
));
868 } else if ((unsigned long)dst
& 3) {
870 put_unaligned(swab32(*src
++), dst
);
875 *dst
++ = swab32(*src
++);
879 static void copy_wswap32(u32
*dst
, const u32
*src
, unsigned int words
)
881 /* src or dst can be unaligned, but not both */
882 if ((unsigned long)src
& 3) {
884 *dst
++ = swahw32(get_unaligned(src
));
887 } else if ((unsigned long)dst
& 3) {
889 put_unaligned(swahw32(*src
++), dst
);
894 *dst
++ = swahw32(*src
++);
898 static void copy_plain32(u32
*dst
, const u32
*src
, unsigned int words
)
900 memcpy(dst
, src
, words
* 4);
903 static int sh_msiof_transfer_one(struct spi_master
*master
,
904 struct spi_device
*spi
,
905 struct spi_transfer
*t
)
907 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
908 void (*copy32
)(u32
*, const u32
*, unsigned int);
909 void (*tx_fifo
)(struct sh_msiof_spi_priv
*, const void *, int, int);
910 void (*rx_fifo
)(struct sh_msiof_spi_priv
*, void *, int, int);
911 const void *tx_buf
= t
->tx_buf
;
912 void *rx_buf
= t
->rx_buf
;
913 unsigned int len
= t
->len
;
914 unsigned int bits
= t
->bits_per_word
;
915 unsigned int bytes_per_word
;
921 /* setup clocks (clock already enabled in chipselect()) */
922 if (!spi_controller_is_slave(p
->master
))
923 sh_msiof_spi_set_clk_regs(p
, clk_get_rate(p
->clk
), t
->speed_hz
);
925 while (master
->dma_tx
&& len
> 15) {
927 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
928 * words, with byte resp. word swapping.
933 l
= min(len
, p
->tx_fifo_size
* 4);
935 l
= min(len
, p
->rx_fifo_size
* 4);
940 copy32
= copy_bswap32
;
941 } else if (bits
<= 16) {
944 copy32
= copy_wswap32
;
946 copy32
= copy_plain32
;
950 copy32(p
->tx_dma_page
, tx_buf
, l
/ 4);
952 ret
= sh_msiof_dma_once(p
, tx_buf
, rx_buf
, l
);
953 if (ret
== -EAGAIN
) {
954 dev_warn_once(&p
->pdev
->dev
,
955 "DMA not available, falling back to PIO\n");
962 copy32(rx_buf
, p
->rx_dma_page
, l
/ 4);
973 if (bits
<= 8 && len
> 15 && !(len
& 3)) {
980 /* setup bytes per word and fifo read/write functions */
983 tx_fifo
= sh_msiof_spi_write_fifo_8
;
984 rx_fifo
= sh_msiof_spi_read_fifo_8
;
985 } else if (bits
<= 16) {
987 if ((unsigned long)tx_buf
& 0x01)
988 tx_fifo
= sh_msiof_spi_write_fifo_16u
;
990 tx_fifo
= sh_msiof_spi_write_fifo_16
;
992 if ((unsigned long)rx_buf
& 0x01)
993 rx_fifo
= sh_msiof_spi_read_fifo_16u
;
995 rx_fifo
= sh_msiof_spi_read_fifo_16
;
998 if ((unsigned long)tx_buf
& 0x03)
999 tx_fifo
= sh_msiof_spi_write_fifo_s32u
;
1001 tx_fifo
= sh_msiof_spi_write_fifo_s32
;
1003 if ((unsigned long)rx_buf
& 0x03)
1004 rx_fifo
= sh_msiof_spi_read_fifo_s32u
;
1006 rx_fifo
= sh_msiof_spi_read_fifo_s32
;
1009 if ((unsigned long)tx_buf
& 0x03)
1010 tx_fifo
= sh_msiof_spi_write_fifo_32u
;
1012 tx_fifo
= sh_msiof_spi_write_fifo_32
;
1014 if ((unsigned long)rx_buf
& 0x03)
1015 rx_fifo
= sh_msiof_spi_read_fifo_32u
;
1017 rx_fifo
= sh_msiof_spi_read_fifo_32
;
1020 /* transfer in fifo sized chunks */
1021 words
= len
/ bytes_per_word
;
1024 n
= sh_msiof_spi_txrx_once(p
, tx_fifo
, rx_fifo
, tx_buf
, rx_buf
,
1030 tx_buf
+= n
* bytes_per_word
;
1032 rx_buf
+= n
* bytes_per_word
;
1039 static const struct sh_msiof_chipdata sh_data
= {
1046 static const struct sh_msiof_chipdata rcar_gen2_data
= {
1049 .master_flags
= SPI_MASTER_MUST_TX
,
1053 static const struct sh_msiof_chipdata rcar_gen3_data
= {
1056 .master_flags
= SPI_MASTER_MUST_TX
,
1060 static const struct of_device_id sh_msiof_match
[] = {
1061 { .compatible
= "renesas,sh-mobile-msiof", .data
= &sh_data
},
1062 { .compatible
= "renesas,msiof-r8a7743", .data
= &rcar_gen2_data
},
1063 { .compatible
= "renesas,msiof-r8a7745", .data
= &rcar_gen2_data
},
1064 { .compatible
= "renesas,msiof-r8a7790", .data
= &rcar_gen2_data
},
1065 { .compatible
= "renesas,msiof-r8a7791", .data
= &rcar_gen2_data
},
1066 { .compatible
= "renesas,msiof-r8a7792", .data
= &rcar_gen2_data
},
1067 { .compatible
= "renesas,msiof-r8a7793", .data
= &rcar_gen2_data
},
1068 { .compatible
= "renesas,msiof-r8a7794", .data
= &rcar_gen2_data
},
1069 { .compatible
= "renesas,rcar-gen2-msiof", .data
= &rcar_gen2_data
},
1070 { .compatible
= "renesas,msiof-r8a7796", .data
= &rcar_gen3_data
},
1071 { .compatible
= "renesas,rcar-gen3-msiof", .data
= &rcar_gen3_data
},
1072 { .compatible
= "renesas,sh-msiof", .data
= &sh_data
}, /* Deprecated */
1075 MODULE_DEVICE_TABLE(of
, sh_msiof_match
);
1078 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1080 struct sh_msiof_spi_info
*info
;
1081 struct device_node
*np
= dev
->of_node
;
1084 info
= devm_kzalloc(dev
, sizeof(struct sh_msiof_spi_info
), GFP_KERNEL
);
1088 info
->mode
= of_property_read_bool(np
, "spi-slave") ? MSIOF_SPI_SLAVE
1091 /* Parse the MSIOF properties */
1092 if (info
->mode
== MSIOF_SPI_MASTER
)
1093 of_property_read_u32(np
, "num-cs", &num_cs
);
1094 of_property_read_u32(np
, "renesas,tx-fifo-size",
1095 &info
->tx_fifo_override
);
1096 of_property_read_u32(np
, "renesas,rx-fifo-size",
1097 &info
->rx_fifo_override
);
1098 of_property_read_u32(np
, "renesas,dtdl", &info
->dtdl
);
1099 of_property_read_u32(np
, "renesas,syncdl", &info
->syncdl
);
1101 info
->num_chipselect
= num_cs
;
1106 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1112 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv
*p
)
1114 struct device
*dev
= &p
->pdev
->dev
;
1115 unsigned int used_ss_mask
= 0;
1116 unsigned int cs_gpios
= 0;
1117 unsigned int num_cs
, i
;
1120 ret
= gpiod_count(dev
, "cs");
1124 num_cs
= max_t(unsigned int, ret
, p
->master
->num_chipselect
);
1125 for (i
= 0; i
< num_cs
; i
++) {
1126 struct gpio_desc
*gpiod
;
1128 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1129 if (!IS_ERR(gpiod
)) {
1134 if (PTR_ERR(gpiod
) != -ENOENT
)
1135 return PTR_ERR(gpiod
);
1138 dev_err(dev
, "Invalid native chip select %d\n", i
);
1141 used_ss_mask
|= BIT(i
);
1143 p
->unused_ss
= ffz(used_ss_mask
);
1144 if (cs_gpios
&& p
->unused_ss
>= MAX_SS
) {
1145 dev_err(dev
, "No unused native chip select available\n");
1151 static struct dma_chan
*sh_msiof_request_dma_chan(struct device
*dev
,
1152 enum dma_transfer_direction dir
, unsigned int id
, dma_addr_t port_addr
)
1154 dma_cap_mask_t mask
;
1155 struct dma_chan
*chan
;
1156 struct dma_slave_config cfg
;
1160 dma_cap_set(DMA_SLAVE
, mask
);
1162 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1163 (void *)(unsigned long)id
, dev
,
1164 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1166 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1170 memset(&cfg
, 0, sizeof(cfg
));
1171 cfg
.direction
= dir
;
1172 if (dir
== DMA_MEM_TO_DEV
) {
1173 cfg
.dst_addr
= port_addr
;
1174 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1176 cfg
.src_addr
= port_addr
;
1177 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1180 ret
= dmaengine_slave_config(chan
, &cfg
);
1182 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1183 dma_release_channel(chan
);
1190 static int sh_msiof_request_dma(struct sh_msiof_spi_priv
*p
)
1192 struct platform_device
*pdev
= p
->pdev
;
1193 struct device
*dev
= &pdev
->dev
;
1194 const struct sh_msiof_spi_info
*info
= dev_get_platdata(dev
);
1195 unsigned int dma_tx_id
, dma_rx_id
;
1196 const struct resource
*res
;
1197 struct spi_master
*master
;
1198 struct device
*tx_dev
, *rx_dev
;
1201 /* In the OF case we will get the slave IDs from the DT */
1204 } else if (info
&& info
->dma_tx_id
&& info
->dma_rx_id
) {
1205 dma_tx_id
= info
->dma_tx_id
;
1206 dma_rx_id
= info
->dma_rx_id
;
1208 /* The driver assumes no error */
1212 /* The DMA engine uses the second register set, if present */
1213 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1215 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1218 master
->dma_tx
= sh_msiof_request_dma_chan(dev
, DMA_MEM_TO_DEV
,
1221 if (!master
->dma_tx
)
1224 master
->dma_rx
= sh_msiof_request_dma_chan(dev
, DMA_DEV_TO_MEM
,
1227 if (!master
->dma_rx
)
1230 p
->tx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1231 if (!p
->tx_dma_page
)
1234 p
->rx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1235 if (!p
->rx_dma_page
)
1238 tx_dev
= master
->dma_tx
->device
->dev
;
1239 p
->tx_dma_addr
= dma_map_single(tx_dev
, p
->tx_dma_page
, PAGE_SIZE
,
1241 if (dma_mapping_error(tx_dev
, p
->tx_dma_addr
))
1244 rx_dev
= master
->dma_rx
->device
->dev
;
1245 p
->rx_dma_addr
= dma_map_single(rx_dev
, p
->rx_dma_page
, PAGE_SIZE
,
1247 if (dma_mapping_error(rx_dev
, p
->rx_dma_addr
))
1250 dev_info(dev
, "DMA available");
1254 dma_unmap_single(tx_dev
, p
->tx_dma_addr
, PAGE_SIZE
, DMA_TO_DEVICE
);
1256 free_page((unsigned long)p
->rx_dma_page
);
1258 free_page((unsigned long)p
->tx_dma_page
);
1260 dma_release_channel(master
->dma_rx
);
1262 dma_release_channel(master
->dma_tx
);
1263 master
->dma_tx
= NULL
;
1267 static void sh_msiof_release_dma(struct sh_msiof_spi_priv
*p
)
1269 struct spi_master
*master
= p
->master
;
1271 if (!master
->dma_tx
)
1274 dma_unmap_single(master
->dma_rx
->device
->dev
, p
->rx_dma_addr
,
1275 PAGE_SIZE
, DMA_FROM_DEVICE
);
1276 dma_unmap_single(master
->dma_tx
->device
->dev
, p
->tx_dma_addr
,
1277 PAGE_SIZE
, DMA_TO_DEVICE
);
1278 free_page((unsigned long)p
->rx_dma_page
);
1279 free_page((unsigned long)p
->tx_dma_page
);
1280 dma_release_channel(master
->dma_rx
);
1281 dma_release_channel(master
->dma_tx
);
1284 static int sh_msiof_spi_probe(struct platform_device
*pdev
)
1287 struct spi_master
*master
;
1288 const struct sh_msiof_chipdata
*chipdata
;
1289 struct sh_msiof_spi_info
*info
;
1290 struct sh_msiof_spi_priv
*p
;
1294 chipdata
= of_device_get_match_data(&pdev
->dev
);
1296 info
= sh_msiof_spi_parse_dt(&pdev
->dev
);
1298 chipdata
= (const void *)pdev
->id_entry
->driver_data
;
1299 info
= dev_get_platdata(&pdev
->dev
);
1303 dev_err(&pdev
->dev
, "failed to obtain device info\n");
1307 if (info
->mode
== MSIOF_SPI_SLAVE
)
1308 master
= spi_alloc_slave(&pdev
->dev
,
1309 sizeof(struct sh_msiof_spi_priv
));
1311 master
= spi_alloc_master(&pdev
->dev
,
1312 sizeof(struct sh_msiof_spi_priv
));
1316 p
= spi_master_get_devdata(master
);
1318 platform_set_drvdata(pdev
, p
);
1321 p
->min_div
= chipdata
->min_div
;
1323 init_completion(&p
->done
);
1325 p
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1326 if (IS_ERR(p
->clk
)) {
1327 dev_err(&pdev
->dev
, "cannot get clock\n");
1328 ret
= PTR_ERR(p
->clk
);
1332 i
= platform_get_irq(pdev
, 0);
1334 dev_err(&pdev
->dev
, "cannot get platform IRQ\n");
1339 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1340 p
->mapbase
= devm_ioremap_resource(&pdev
->dev
, r
);
1341 if (IS_ERR(p
->mapbase
)) {
1342 ret
= PTR_ERR(p
->mapbase
);
1346 ret
= devm_request_irq(&pdev
->dev
, i
, sh_msiof_spi_irq
, 0,
1347 dev_name(&pdev
->dev
), p
);
1349 dev_err(&pdev
->dev
, "unable to request irq\n");
1354 pm_runtime_enable(&pdev
->dev
);
1356 /* Platform data may override FIFO sizes */
1357 p
->tx_fifo_size
= chipdata
->tx_fifo_size
;
1358 p
->rx_fifo_size
= chipdata
->rx_fifo_size
;
1359 if (p
->info
->tx_fifo_override
)
1360 p
->tx_fifo_size
= p
->info
->tx_fifo_override
;
1361 if (p
->info
->rx_fifo_override
)
1362 p
->rx_fifo_size
= p
->info
->rx_fifo_override
;
1364 /* Setup GPIO chip selects */
1365 master
->num_chipselect
= p
->info
->num_chipselect
;
1366 ret
= sh_msiof_get_cs_gpios(p
);
1370 /* init master code */
1371 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1372 master
->mode_bits
|= SPI_LSB_FIRST
| SPI_3WIRE
;
1373 master
->flags
= chipdata
->master_flags
;
1374 master
->bus_num
= pdev
->id
;
1375 master
->dev
.of_node
= pdev
->dev
.of_node
;
1376 master
->setup
= sh_msiof_spi_setup
;
1377 master
->prepare_message
= sh_msiof_prepare_message
;
1378 master
->slave_abort
= sh_msiof_slave_abort
;
1379 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 32);
1380 master
->auto_runtime_pm
= true;
1381 master
->transfer_one
= sh_msiof_transfer_one
;
1383 ret
= sh_msiof_request_dma(p
);
1385 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1387 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1389 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1396 sh_msiof_release_dma(p
);
1397 pm_runtime_disable(&pdev
->dev
);
1399 spi_master_put(master
);
1403 static int sh_msiof_spi_remove(struct platform_device
*pdev
)
1405 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1407 sh_msiof_release_dma(p
);
1408 pm_runtime_disable(&pdev
->dev
);
1412 static const struct platform_device_id spi_driver_ids
[] = {
1413 { "spi_sh_msiof", (kernel_ulong_t
)&sh_data
},
1416 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1418 static struct platform_driver sh_msiof_spi_drv
= {
1419 .probe
= sh_msiof_spi_probe
,
1420 .remove
= sh_msiof_spi_remove
,
1421 .id_table
= spi_driver_ids
,
1423 .name
= "spi_sh_msiof",
1424 .of_match_table
= of_match_ptr(sh_msiof_match
),
1427 module_platform_driver(sh_msiof_spi_drv
);
1429 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1430 MODULE_AUTHOR("Magnus Damm");
1431 MODULE_LICENSE("GPL v2");
1432 MODULE_ALIAS("platform:spi_sh_msiof");