mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / spi / spi-sh-msiof.c
blobae086aab57d51edc2c8014160f4abeab365ea9cc
1 /*
2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
36 #include <asm/unaligned.h>
38 struct sh_msiof_chipdata {
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
41 u16 master_flags;
42 u16 min_div;
45 struct sh_msiof_spi_priv {
46 struct spi_master *master;
47 void __iomem *mapbase;
48 struct clk *clk;
49 struct platform_device *pdev;
50 struct sh_msiof_spi_info *info;
51 struct completion done;
52 unsigned int tx_fifo_size;
53 unsigned int rx_fifo_size;
54 unsigned int min_div;
55 void *tx_dma_page;
56 void *rx_dma_page;
57 dma_addr_t tx_dma_addr;
58 dma_addr_t rx_dma_addr;
59 unsigned short unused_ss;
60 bool native_cs_inited;
61 bool native_cs_high;
62 bool slave_aborted;
65 #define MAX_SS 3 /* Maximum number of native chip selects */
67 #define TMDR1 0x00 /* Transmit Mode Register 1 */
68 #define TMDR2 0x04 /* Transmit Mode Register 2 */
69 #define TMDR3 0x08 /* Transmit Mode Register 3 */
70 #define RMDR1 0x10 /* Receive Mode Register 1 */
71 #define RMDR2 0x14 /* Receive Mode Register 2 */
72 #define RMDR3 0x18 /* Receive Mode Register 3 */
73 #define TSCR 0x20 /* Transmit Clock Select Register */
74 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
75 #define CTR 0x28 /* Control Register */
76 #define FCTR 0x30 /* FIFO Control Register */
77 #define STR 0x40 /* Status Register */
78 #define IER 0x44 /* Interrupt Enable Register */
79 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
80 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
81 #define TFDR 0x50 /* Transmit FIFO Data Register */
82 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
83 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
84 #define RFDR 0x60 /* Receive FIFO Data Register */
86 /* TMDR1 and RMDR1 */
87 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
88 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
90 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
91 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
92 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
93 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
95 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
96 #define MDR1_FLD_SHIFT 2
97 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
98 /* TMDR1 */
99 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
100 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
103 /* TMDR2 and RMDR2 */
104 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
105 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
108 /* TSCR and RSCR */
109 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
110 #define SCR_BRPS(i) (((i) - 1) << 8)
111 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
112 #define SCR_BRDV_DIV_2 0x0000
113 #define SCR_BRDV_DIV_4 0x0001
114 #define SCR_BRDV_DIV_8 0x0002
115 #define SCR_BRDV_DIV_16 0x0003
116 #define SCR_BRDV_DIV_32 0x0004
117 #define SCR_BRDV_DIV_1 0x0007
119 /* CTR */
120 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
121 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
122 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
123 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
124 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
125 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
126 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
127 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
128 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
129 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
130 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
131 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
132 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
133 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
134 #define CTR_TXE 0x00000200 /* Transmit Enable */
135 #define CTR_RXE 0x00000100 /* Receive Enable */
137 /* FCTR */
138 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
139 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
140 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
141 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
142 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
143 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
144 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
145 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
146 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
147 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
148 #define FCTR_TFUA_SHIFT 20
149 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
151 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
152 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
153 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
154 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
155 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
156 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
157 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
158 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
159 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160 #define FCTR_RFUA_SHIFT 4
161 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
163 /* STR */
164 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
165 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
166 #define STR_TEOF 0x00800000 /* Frame Transmission End */
167 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
168 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
169 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
170 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
171 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
172 #define STR_REOF 0x00000080 /* Frame Reception End */
173 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
174 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
175 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
177 /* IER */
178 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
180 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
181 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
182 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
183 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
184 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
185 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
186 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
187 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
188 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
189 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
190 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
191 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
194 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
196 switch (reg_offs) {
197 case TSCR:
198 case RSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
205 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
208 switch (reg_offs) {
209 case TSCR:
210 case RSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
219 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
222 u32 mask = clr | set;
223 u32 data;
224 int k;
226 data = sh_msiof_read(p, CTR);
227 data &= ~clr;
228 data |= set;
229 sh_msiof_write(p, CTR, data);
231 for (k = 100; k > 0; k--) {
232 if ((sh_msiof_read(p, CTR) & mask) == set)
233 break;
235 udelay(10);
238 return k > 0 ? 0 : -ETIMEDOUT;
241 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
243 struct sh_msiof_spi_priv *p = data;
245 /* just disable the interrupt and wake up */
246 sh_msiof_write(p, IER, 0);
247 complete(&p->done);
249 return IRQ_HANDLED;
252 static struct {
253 unsigned short div;
254 unsigned short brdv;
255 } const sh_msiof_spi_div_table[] = {
256 { 1, SCR_BRDV_DIV_1 },
257 { 2, SCR_BRDV_DIV_2 },
258 { 4, SCR_BRDV_DIV_4 },
259 { 8, SCR_BRDV_DIV_8 },
260 { 16, SCR_BRDV_DIV_16 },
261 { 32, SCR_BRDV_DIV_32 },
264 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 unsigned long parent_rate, u32 spi_hz)
267 unsigned long div = 1024;
268 u32 brps, scr;
269 size_t k;
271 if (!WARN_ON(!spi_hz || !parent_rate))
272 div = DIV_ROUND_UP(parent_rate, spi_hz);
274 div = max_t(unsigned long, div, p->min_div);
276 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
277 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
278 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
280 continue;
281 if (brps <= 32) /* max of brdv is 32 */
282 break;
285 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
287 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
288 sh_msiof_write(p, TSCR, scr);
289 if (!(p->master->flags & SPI_MASTER_MUST_TX))
290 sh_msiof_write(p, RSCR, scr);
293 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
296 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
297 * b'000 : 0
298 * b'001 : 100
299 * b'010 : 200
300 * b'011 (SYNCDL only) : 300
301 * b'101 : 50
302 * b'110 : 150
304 if (dtdl_or_syncdl % 100)
305 return dtdl_or_syncdl / 100 + 5;
306 else
307 return dtdl_or_syncdl / 100;
310 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
312 u32 val;
314 if (!p->info)
315 return 0;
317 /* check if DTDL and SYNCDL is allowed value */
318 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
319 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
320 return 0;
323 /* check if the sum of DTDL and SYNCDL becomes an integer value */
324 if ((p->info->dtdl + p->info->syncdl) % 100) {
325 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
326 return 0;
329 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
330 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
332 return val;
335 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
336 u32 cpol, u32 cpha,
337 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
339 u32 tmp;
340 int edge;
343 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
344 * 0 0 10 10 1 1
345 * 0 1 10 10 0 0
346 * 1 0 11 11 0 0
347 * 1 1 11 11 1 1
349 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
350 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
351 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
352 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
353 if (spi_controller_is_slave(p->master)) {
354 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
355 } else {
356 sh_msiof_write(p, TMDR1,
357 tmp | MDR1_TRMD | TMDR1_PCON |
358 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
360 if (p->master->flags & SPI_MASTER_MUST_TX) {
361 /* These bits are reserved if RX needs TX */
362 tmp &= ~0x0000ffff;
364 sh_msiof_write(p, RMDR1, tmp);
366 tmp = 0;
367 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
368 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
370 edge = cpol ^ !cpha;
372 tmp |= edge << CTR_TEDG_SHIFT;
373 tmp |= edge << CTR_REDG_SHIFT;
374 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
375 sh_msiof_write(p, CTR, tmp);
378 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
379 const void *tx_buf, void *rx_buf,
380 u32 bits, u32 words)
382 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
384 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
385 sh_msiof_write(p, TMDR2, dr2);
386 else
387 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
389 if (rx_buf)
390 sh_msiof_write(p, RMDR2, dr2);
393 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
395 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
398 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
399 const void *tx_buf, int words, int fs)
401 const u8 *buf_8 = tx_buf;
402 int k;
404 for (k = 0; k < words; k++)
405 sh_msiof_write(p, TFDR, buf_8[k] << fs);
408 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
409 const void *tx_buf, int words, int fs)
411 const u16 *buf_16 = tx_buf;
412 int k;
414 for (k = 0; k < words; k++)
415 sh_msiof_write(p, TFDR, buf_16[k] << fs);
418 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
419 const void *tx_buf, int words, int fs)
421 const u16 *buf_16 = tx_buf;
422 int k;
424 for (k = 0; k < words; k++)
425 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
428 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
429 const void *tx_buf, int words, int fs)
431 const u32 *buf_32 = tx_buf;
432 int k;
434 for (k = 0; k < words; k++)
435 sh_msiof_write(p, TFDR, buf_32[k] << fs);
438 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
439 const void *tx_buf, int words, int fs)
441 const u32 *buf_32 = tx_buf;
442 int k;
444 for (k = 0; k < words; k++)
445 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
448 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
449 const void *tx_buf, int words, int fs)
451 const u32 *buf_32 = tx_buf;
452 int k;
454 for (k = 0; k < words; k++)
455 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
458 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
459 const void *tx_buf, int words, int fs)
461 const u32 *buf_32 = tx_buf;
462 int k;
464 for (k = 0; k < words; k++)
465 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
468 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
469 void *rx_buf, int words, int fs)
471 u8 *buf_8 = rx_buf;
472 int k;
474 for (k = 0; k < words; k++)
475 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
478 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
479 void *rx_buf, int words, int fs)
481 u16 *buf_16 = rx_buf;
482 int k;
484 for (k = 0; k < words; k++)
485 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
488 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
489 void *rx_buf, int words, int fs)
491 u16 *buf_16 = rx_buf;
492 int k;
494 for (k = 0; k < words; k++)
495 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
498 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
499 void *rx_buf, int words, int fs)
501 u32 *buf_32 = rx_buf;
502 int k;
504 for (k = 0; k < words; k++)
505 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
508 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
509 void *rx_buf, int words, int fs)
511 u32 *buf_32 = rx_buf;
512 int k;
514 for (k = 0; k < words; k++)
515 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
518 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
519 void *rx_buf, int words, int fs)
521 u32 *buf_32 = rx_buf;
522 int k;
524 for (k = 0; k < words; k++)
525 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
528 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
529 void *rx_buf, int words, int fs)
531 u32 *buf_32 = rx_buf;
532 int k;
534 for (k = 0; k < words; k++)
535 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
538 static int sh_msiof_spi_setup(struct spi_device *spi)
540 struct device_node *np = spi->master->dev.of_node;
541 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
542 u32 clr, set, tmp;
544 if (!np) {
546 * Use spi->controller_data for CS (same strategy as spi_gpio),
547 * if any. otherwise let HW control CS
549 spi->cs_gpio = (uintptr_t)spi->controller_data;
552 if (gpio_is_valid(spi->cs_gpio)) {
553 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
554 return 0;
557 if (spi_controller_is_slave(p->master))
558 return 0;
560 if (p->native_cs_inited &&
561 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
562 return 0;
564 /* Configure native chip select mode/polarity early */
565 clr = MDR1_SYNCMD_MASK;
566 set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
567 if (spi->mode & SPI_CS_HIGH)
568 clr |= BIT(MDR1_SYNCAC_SHIFT);
569 else
570 set |= BIT(MDR1_SYNCAC_SHIFT);
571 pm_runtime_get_sync(&p->pdev->dev);
572 tmp = sh_msiof_read(p, TMDR1) & ~clr;
573 sh_msiof_write(p, TMDR1, tmp | set);
574 pm_runtime_put(&p->pdev->dev);
575 p->native_cs_high = spi->mode & SPI_CS_HIGH;
576 p->native_cs_inited = true;
577 return 0;
580 static int sh_msiof_prepare_message(struct spi_master *master,
581 struct spi_message *msg)
583 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
584 const struct spi_device *spi = msg->spi;
585 u32 ss, cs_high;
587 /* Configure pins before asserting CS */
588 if (gpio_is_valid(spi->cs_gpio)) {
589 ss = p->unused_ss;
590 cs_high = p->native_cs_high;
591 } else {
592 ss = spi->chip_select;
593 cs_high = !!(spi->mode & SPI_CS_HIGH);
595 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
596 !!(spi->mode & SPI_CPHA),
597 !!(spi->mode & SPI_3WIRE),
598 !!(spi->mode & SPI_LSB_FIRST), cs_high);
599 return 0;
602 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
604 bool slave = spi_controller_is_slave(p->master);
605 int ret = 0;
607 /* setup clock and rx/tx signals */
608 if (!slave)
609 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
610 if (rx_buf && !ret)
611 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
612 if (!ret)
613 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
615 /* start by setting frame bit */
616 if (!ret && !slave)
617 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
619 return ret;
622 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
624 bool slave = spi_controller_is_slave(p->master);
625 int ret = 0;
627 /* shut down frame, rx/tx and clock signals */
628 if (!slave)
629 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
630 if (!ret)
631 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
632 if (rx_buf && !ret)
633 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
634 if (!ret && !slave)
635 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
637 return ret;
640 static int sh_msiof_slave_abort(struct spi_master *master)
642 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
644 p->slave_aborted = true;
645 complete(&p->done);
646 return 0;
649 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
651 if (spi_controller_is_slave(p->master)) {
652 if (wait_for_completion_interruptible(&p->done) ||
653 p->slave_aborted) {
654 dev_dbg(&p->pdev->dev, "interrupted\n");
655 return -EINTR;
657 } else {
658 if (!wait_for_completion_timeout(&p->done, HZ)) {
659 dev_err(&p->pdev->dev, "timeout\n");
660 return -ETIMEDOUT;
664 return 0;
667 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
668 void (*tx_fifo)(struct sh_msiof_spi_priv *,
669 const void *, int, int),
670 void (*rx_fifo)(struct sh_msiof_spi_priv *,
671 void *, int, int),
672 const void *tx_buf, void *rx_buf,
673 int words, int bits)
675 int fifo_shift;
676 int ret;
678 /* limit maximum word transfer to rx/tx fifo size */
679 if (tx_buf)
680 words = min_t(int, words, p->tx_fifo_size);
681 if (rx_buf)
682 words = min_t(int, words, p->rx_fifo_size);
684 /* the fifo contents need shifting */
685 fifo_shift = 32 - bits;
687 /* default FIFO watermarks for PIO */
688 sh_msiof_write(p, FCTR, 0);
690 /* setup msiof transfer mode registers */
691 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
692 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
694 /* write tx fifo */
695 if (tx_buf)
696 tx_fifo(p, tx_buf, words, fifo_shift);
698 reinit_completion(&p->done);
699 p->slave_aborted = false;
701 ret = sh_msiof_spi_start(p, rx_buf);
702 if (ret) {
703 dev_err(&p->pdev->dev, "failed to start hardware\n");
704 goto stop_ier;
707 /* wait for tx fifo to be emptied / rx fifo to be filled */
708 ret = sh_msiof_wait_for_completion(p);
709 if (ret)
710 goto stop_reset;
712 /* read rx fifo */
713 if (rx_buf)
714 rx_fifo(p, rx_buf, words, fifo_shift);
716 /* clear status bits */
717 sh_msiof_reset_str(p);
719 ret = sh_msiof_spi_stop(p, rx_buf);
720 if (ret) {
721 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
722 return ret;
725 return words;
727 stop_reset:
728 sh_msiof_reset_str(p);
729 sh_msiof_spi_stop(p, rx_buf);
730 stop_ier:
731 sh_msiof_write(p, IER, 0);
732 return ret;
735 static void sh_msiof_dma_complete(void *arg)
737 struct sh_msiof_spi_priv *p = arg;
739 sh_msiof_write(p, IER, 0);
740 complete(&p->done);
743 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
744 void *rx, unsigned int len)
746 u32 ier_bits = 0;
747 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
748 dma_cookie_t cookie;
749 int ret;
751 /* First prepare and submit the DMA request(s), as this may fail */
752 if (rx) {
753 ier_bits |= IER_RDREQE | IER_RDMAE;
754 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
755 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
756 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
757 if (!desc_rx)
758 return -EAGAIN;
760 desc_rx->callback = sh_msiof_dma_complete;
761 desc_rx->callback_param = p;
762 cookie = dmaengine_submit(desc_rx);
763 if (dma_submit_error(cookie))
764 return cookie;
767 if (tx) {
768 ier_bits |= IER_TDREQE | IER_TDMAE;
769 dma_sync_single_for_device(p->master->dma_tx->device->dev,
770 p->tx_dma_addr, len, DMA_TO_DEVICE);
771 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
772 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
773 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
774 if (!desc_tx) {
775 ret = -EAGAIN;
776 goto no_dma_tx;
779 if (rx) {
780 /* No callback */
781 desc_tx->callback = NULL;
782 } else {
783 desc_tx->callback = sh_msiof_dma_complete;
784 desc_tx->callback_param = p;
786 cookie = dmaengine_submit(desc_tx);
787 if (dma_submit_error(cookie)) {
788 ret = cookie;
789 goto no_dma_tx;
793 /* 1 stage FIFO watermarks for DMA */
794 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796 /* setup msiof transfer mode registers (32-bit words) */
797 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799 sh_msiof_write(p, IER, ier_bits);
801 reinit_completion(&p->done);
802 p->slave_aborted = false;
804 /* Now start DMA */
805 if (rx)
806 dma_async_issue_pending(p->master->dma_rx);
807 if (tx)
808 dma_async_issue_pending(p->master->dma_tx);
810 ret = sh_msiof_spi_start(p, rx);
811 if (ret) {
812 dev_err(&p->pdev->dev, "failed to start hardware\n");
813 goto stop_dma;
816 /* wait for tx/rx DMA completion */
817 ret = sh_msiof_wait_for_completion(p);
818 if (ret)
819 goto stop_reset;
821 if (!rx) {
822 reinit_completion(&p->done);
823 sh_msiof_write(p, IER, IER_TEOFE);
825 /* wait for tx fifo to be emptied */
826 ret = sh_msiof_wait_for_completion(p);
827 if (ret)
828 goto stop_reset;
831 /* clear status bits */
832 sh_msiof_reset_str(p);
834 ret = sh_msiof_spi_stop(p, rx);
835 if (ret) {
836 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
837 return ret;
840 if (rx)
841 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
842 p->rx_dma_addr, len,
843 DMA_FROM_DEVICE);
845 return 0;
847 stop_reset:
848 sh_msiof_reset_str(p);
849 sh_msiof_spi_stop(p, rx);
850 stop_dma:
851 if (tx)
852 dmaengine_terminate_all(p->master->dma_tx);
853 no_dma_tx:
854 if (rx)
855 dmaengine_terminate_all(p->master->dma_rx);
856 sh_msiof_write(p, IER, 0);
857 return ret;
860 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
862 /* src or dst can be unaligned, but not both */
863 if ((unsigned long)src & 3) {
864 while (words--) {
865 *dst++ = swab32(get_unaligned(src));
866 src++;
868 } else if ((unsigned long)dst & 3) {
869 while (words--) {
870 put_unaligned(swab32(*src++), dst);
871 dst++;
873 } else {
874 while (words--)
875 *dst++ = swab32(*src++);
879 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
881 /* src or dst can be unaligned, but not both */
882 if ((unsigned long)src & 3) {
883 while (words--) {
884 *dst++ = swahw32(get_unaligned(src));
885 src++;
887 } else if ((unsigned long)dst & 3) {
888 while (words--) {
889 put_unaligned(swahw32(*src++), dst);
890 dst++;
892 } else {
893 while (words--)
894 *dst++ = swahw32(*src++);
898 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
900 memcpy(dst, src, words * 4);
903 static int sh_msiof_transfer_one(struct spi_master *master,
904 struct spi_device *spi,
905 struct spi_transfer *t)
907 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
908 void (*copy32)(u32 *, const u32 *, unsigned int);
909 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
910 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
911 const void *tx_buf = t->tx_buf;
912 void *rx_buf = t->rx_buf;
913 unsigned int len = t->len;
914 unsigned int bits = t->bits_per_word;
915 unsigned int bytes_per_word;
916 unsigned int words;
917 int n;
918 bool swab;
919 int ret;
921 /* setup clocks (clock already enabled in chipselect()) */
922 if (!spi_controller_is_slave(p->master))
923 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
925 while (master->dma_tx && len > 15) {
927 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
928 * words, with byte resp. word swapping.
930 unsigned int l = 0;
932 if (tx_buf)
933 l = min(len, p->tx_fifo_size * 4);
934 if (rx_buf)
935 l = min(len, p->rx_fifo_size * 4);
937 if (bits <= 8) {
938 if (l & 3)
939 break;
940 copy32 = copy_bswap32;
941 } else if (bits <= 16) {
942 if (l & 3)
943 break;
944 copy32 = copy_wswap32;
945 } else {
946 copy32 = copy_plain32;
949 if (tx_buf)
950 copy32(p->tx_dma_page, tx_buf, l / 4);
952 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
953 if (ret == -EAGAIN) {
954 dev_warn_once(&p->pdev->dev,
955 "DMA not available, falling back to PIO\n");
956 break;
958 if (ret)
959 return ret;
961 if (rx_buf) {
962 copy32(rx_buf, p->rx_dma_page, l / 4);
963 rx_buf += l;
965 if (tx_buf)
966 tx_buf += l;
968 len -= l;
969 if (!len)
970 return 0;
973 if (bits <= 8 && len > 15 && !(len & 3)) {
974 bits = 32;
975 swab = true;
976 } else {
977 swab = false;
980 /* setup bytes per word and fifo read/write functions */
981 if (bits <= 8) {
982 bytes_per_word = 1;
983 tx_fifo = sh_msiof_spi_write_fifo_8;
984 rx_fifo = sh_msiof_spi_read_fifo_8;
985 } else if (bits <= 16) {
986 bytes_per_word = 2;
987 if ((unsigned long)tx_buf & 0x01)
988 tx_fifo = sh_msiof_spi_write_fifo_16u;
989 else
990 tx_fifo = sh_msiof_spi_write_fifo_16;
992 if ((unsigned long)rx_buf & 0x01)
993 rx_fifo = sh_msiof_spi_read_fifo_16u;
994 else
995 rx_fifo = sh_msiof_spi_read_fifo_16;
996 } else if (swab) {
997 bytes_per_word = 4;
998 if ((unsigned long)tx_buf & 0x03)
999 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1000 else
1001 tx_fifo = sh_msiof_spi_write_fifo_s32;
1003 if ((unsigned long)rx_buf & 0x03)
1004 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1005 else
1006 rx_fifo = sh_msiof_spi_read_fifo_s32;
1007 } else {
1008 bytes_per_word = 4;
1009 if ((unsigned long)tx_buf & 0x03)
1010 tx_fifo = sh_msiof_spi_write_fifo_32u;
1011 else
1012 tx_fifo = sh_msiof_spi_write_fifo_32;
1014 if ((unsigned long)rx_buf & 0x03)
1015 rx_fifo = sh_msiof_spi_read_fifo_32u;
1016 else
1017 rx_fifo = sh_msiof_spi_read_fifo_32;
1020 /* transfer in fifo sized chunks */
1021 words = len / bytes_per_word;
1023 while (words > 0) {
1024 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1025 words, bits);
1026 if (n < 0)
1027 return n;
1029 if (tx_buf)
1030 tx_buf += n * bytes_per_word;
1031 if (rx_buf)
1032 rx_buf += n * bytes_per_word;
1033 words -= n;
1036 return 0;
1039 static const struct sh_msiof_chipdata sh_data = {
1040 .tx_fifo_size = 64,
1041 .rx_fifo_size = 64,
1042 .master_flags = 0,
1043 .min_div = 1,
1046 static const struct sh_msiof_chipdata rcar_gen2_data = {
1047 .tx_fifo_size = 64,
1048 .rx_fifo_size = 64,
1049 .master_flags = SPI_MASTER_MUST_TX,
1050 .min_div = 1,
1053 static const struct sh_msiof_chipdata rcar_gen3_data = {
1054 .tx_fifo_size = 64,
1055 .rx_fifo_size = 64,
1056 .master_flags = SPI_MASTER_MUST_TX,
1057 .min_div = 2,
1060 static const struct of_device_id sh_msiof_match[] = {
1061 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1062 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1063 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1064 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1065 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1066 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1067 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1068 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1069 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1070 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1071 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1072 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1075 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1077 #ifdef CONFIG_OF
1078 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1080 struct sh_msiof_spi_info *info;
1081 struct device_node *np = dev->of_node;
1082 u32 num_cs = 1;
1084 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1085 if (!info)
1086 return NULL;
1088 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1089 : MSIOF_SPI_MASTER;
1091 /* Parse the MSIOF properties */
1092 if (info->mode == MSIOF_SPI_MASTER)
1093 of_property_read_u32(np, "num-cs", &num_cs);
1094 of_property_read_u32(np, "renesas,tx-fifo-size",
1095 &info->tx_fifo_override);
1096 of_property_read_u32(np, "renesas,rx-fifo-size",
1097 &info->rx_fifo_override);
1098 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1099 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1101 info->num_chipselect = num_cs;
1103 return info;
1105 #else
1106 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108 return NULL;
1110 #endif
1112 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1114 struct device *dev = &p->pdev->dev;
1115 unsigned int used_ss_mask = 0;
1116 unsigned int cs_gpios = 0;
1117 unsigned int num_cs, i;
1118 int ret;
1120 ret = gpiod_count(dev, "cs");
1121 if (ret <= 0)
1122 return 0;
1124 num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1125 for (i = 0; i < num_cs; i++) {
1126 struct gpio_desc *gpiod;
1128 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1129 if (!IS_ERR(gpiod)) {
1130 cs_gpios++;
1131 continue;
1134 if (PTR_ERR(gpiod) != -ENOENT)
1135 return PTR_ERR(gpiod);
1137 if (i >= MAX_SS) {
1138 dev_err(dev, "Invalid native chip select %d\n", i);
1139 return -EINVAL;
1141 used_ss_mask |= BIT(i);
1143 p->unused_ss = ffz(used_ss_mask);
1144 if (cs_gpios && p->unused_ss >= MAX_SS) {
1145 dev_err(dev, "No unused native chip select available\n");
1146 return -EINVAL;
1148 return 0;
1151 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1152 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1154 dma_cap_mask_t mask;
1155 struct dma_chan *chan;
1156 struct dma_slave_config cfg;
1157 int ret;
1159 dma_cap_zero(mask);
1160 dma_cap_set(DMA_SLAVE, mask);
1162 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1163 (void *)(unsigned long)id, dev,
1164 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1165 if (!chan) {
1166 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1167 return NULL;
1170 memset(&cfg, 0, sizeof(cfg));
1171 cfg.direction = dir;
1172 if (dir == DMA_MEM_TO_DEV) {
1173 cfg.dst_addr = port_addr;
1174 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1175 } else {
1176 cfg.src_addr = port_addr;
1177 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1180 ret = dmaengine_slave_config(chan, &cfg);
1181 if (ret) {
1182 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1183 dma_release_channel(chan);
1184 return NULL;
1187 return chan;
1190 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1192 struct platform_device *pdev = p->pdev;
1193 struct device *dev = &pdev->dev;
1194 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1195 unsigned int dma_tx_id, dma_rx_id;
1196 const struct resource *res;
1197 struct spi_master *master;
1198 struct device *tx_dev, *rx_dev;
1200 if (dev->of_node) {
1201 /* In the OF case we will get the slave IDs from the DT */
1202 dma_tx_id = 0;
1203 dma_rx_id = 0;
1204 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1205 dma_tx_id = info->dma_tx_id;
1206 dma_rx_id = info->dma_rx_id;
1207 } else {
1208 /* The driver assumes no error */
1209 return 0;
1212 /* The DMA engine uses the second register set, if present */
1213 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1214 if (!res)
1215 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217 master = p->master;
1218 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1219 dma_tx_id,
1220 res->start + TFDR);
1221 if (!master->dma_tx)
1222 return -ENODEV;
1224 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1225 dma_rx_id,
1226 res->start + RFDR);
1227 if (!master->dma_rx)
1228 goto free_tx_chan;
1230 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1231 if (!p->tx_dma_page)
1232 goto free_rx_chan;
1234 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1235 if (!p->rx_dma_page)
1236 goto free_tx_page;
1238 tx_dev = master->dma_tx->device->dev;
1239 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1240 DMA_TO_DEVICE);
1241 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1242 goto free_rx_page;
1244 rx_dev = master->dma_rx->device->dev;
1245 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1246 DMA_FROM_DEVICE);
1247 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1248 goto unmap_tx_page;
1250 dev_info(dev, "DMA available");
1251 return 0;
1253 unmap_tx_page:
1254 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1255 free_rx_page:
1256 free_page((unsigned long)p->rx_dma_page);
1257 free_tx_page:
1258 free_page((unsigned long)p->tx_dma_page);
1259 free_rx_chan:
1260 dma_release_channel(master->dma_rx);
1261 free_tx_chan:
1262 dma_release_channel(master->dma_tx);
1263 master->dma_tx = NULL;
1264 return -ENODEV;
1267 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1269 struct spi_master *master = p->master;
1271 if (!master->dma_tx)
1272 return;
1274 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1275 PAGE_SIZE, DMA_FROM_DEVICE);
1276 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1277 PAGE_SIZE, DMA_TO_DEVICE);
1278 free_page((unsigned long)p->rx_dma_page);
1279 free_page((unsigned long)p->tx_dma_page);
1280 dma_release_channel(master->dma_rx);
1281 dma_release_channel(master->dma_tx);
1284 static int sh_msiof_spi_probe(struct platform_device *pdev)
1286 struct resource *r;
1287 struct spi_master *master;
1288 const struct sh_msiof_chipdata *chipdata;
1289 struct sh_msiof_spi_info *info;
1290 struct sh_msiof_spi_priv *p;
1291 int i;
1292 int ret;
1294 chipdata = of_device_get_match_data(&pdev->dev);
1295 if (chipdata) {
1296 info = sh_msiof_spi_parse_dt(&pdev->dev);
1297 } else {
1298 chipdata = (const void *)pdev->id_entry->driver_data;
1299 info = dev_get_platdata(&pdev->dev);
1302 if (!info) {
1303 dev_err(&pdev->dev, "failed to obtain device info\n");
1304 return -ENXIO;
1307 if (info->mode == MSIOF_SPI_SLAVE)
1308 master = spi_alloc_slave(&pdev->dev,
1309 sizeof(struct sh_msiof_spi_priv));
1310 else
1311 master = spi_alloc_master(&pdev->dev,
1312 sizeof(struct sh_msiof_spi_priv));
1313 if (master == NULL)
1314 return -ENOMEM;
1316 p = spi_master_get_devdata(master);
1318 platform_set_drvdata(pdev, p);
1319 p->master = master;
1320 p->info = info;
1321 p->min_div = chipdata->min_div;
1323 init_completion(&p->done);
1325 p->clk = devm_clk_get(&pdev->dev, NULL);
1326 if (IS_ERR(p->clk)) {
1327 dev_err(&pdev->dev, "cannot get clock\n");
1328 ret = PTR_ERR(p->clk);
1329 goto err1;
1332 i = platform_get_irq(pdev, 0);
1333 if (i < 0) {
1334 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1335 ret = -ENOENT;
1336 goto err1;
1339 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1341 if (IS_ERR(p->mapbase)) {
1342 ret = PTR_ERR(p->mapbase);
1343 goto err1;
1346 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1347 dev_name(&pdev->dev), p);
1348 if (ret) {
1349 dev_err(&pdev->dev, "unable to request irq\n");
1350 goto err1;
1353 p->pdev = pdev;
1354 pm_runtime_enable(&pdev->dev);
1356 /* Platform data may override FIFO sizes */
1357 p->tx_fifo_size = chipdata->tx_fifo_size;
1358 p->rx_fifo_size = chipdata->rx_fifo_size;
1359 if (p->info->tx_fifo_override)
1360 p->tx_fifo_size = p->info->tx_fifo_override;
1361 if (p->info->rx_fifo_override)
1362 p->rx_fifo_size = p->info->rx_fifo_override;
1364 /* Setup GPIO chip selects */
1365 master->num_chipselect = p->info->num_chipselect;
1366 ret = sh_msiof_get_cs_gpios(p);
1367 if (ret)
1368 goto err1;
1370 /* init master code */
1371 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1372 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1373 master->flags = chipdata->master_flags;
1374 master->bus_num = pdev->id;
1375 master->dev.of_node = pdev->dev.of_node;
1376 master->setup = sh_msiof_spi_setup;
1377 master->prepare_message = sh_msiof_prepare_message;
1378 master->slave_abort = sh_msiof_slave_abort;
1379 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1380 master->auto_runtime_pm = true;
1381 master->transfer_one = sh_msiof_transfer_one;
1383 ret = sh_msiof_request_dma(p);
1384 if (ret < 0)
1385 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1387 ret = devm_spi_register_master(&pdev->dev, master);
1388 if (ret < 0) {
1389 dev_err(&pdev->dev, "spi_register_master error.\n");
1390 goto err2;
1393 return 0;
1395 err2:
1396 sh_msiof_release_dma(p);
1397 pm_runtime_disable(&pdev->dev);
1398 err1:
1399 spi_master_put(master);
1400 return ret;
1403 static int sh_msiof_spi_remove(struct platform_device *pdev)
1405 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1407 sh_msiof_release_dma(p);
1408 pm_runtime_disable(&pdev->dev);
1409 return 0;
1412 static const struct platform_device_id spi_driver_ids[] = {
1413 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1416 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418 static struct platform_driver sh_msiof_spi_drv = {
1419 .probe = sh_msiof_spi_probe,
1420 .remove = sh_msiof_spi_remove,
1421 .id_table = spi_driver_ids,
1422 .driver = {
1423 .name = "spi_sh_msiof",
1424 .of_match_table = of_match_ptr(sh_msiof_match),
1427 module_platform_driver(sh_msiof_spi_drv);
1429 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1430 MODULE_AUTHOR("Magnus Damm");
1431 MODULE_LICENSE("GPL v2");
1432 MODULE_ALIAS("platform:spi_sh_msiof");