ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blob8a1e61545f4169de491eb00ee6c661ebf0054a30
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
48 #include "buffer_head_io.h"
50 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 struct buffer_head *bh_result, int create)
53 int err = -EIO;
54 int status;
55 struct ocfs2_dinode *fe = NULL;
56 struct buffer_head *bh = NULL;
57 struct buffer_head *buffer_cache_bh = NULL;
58 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 void *kaddr;
61 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 (unsigned long long)iblock, bh_result, create);
64 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 (unsigned long long)iblock);
69 goto bail;
72 status = ocfs2_read_inode_block(inode, &bh);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 le32_to_cpu(fe->i_clusters))) {
81 mlog(ML_ERROR, "block offset is outside the allocated size: "
82 "%llu\n", (unsigned long long)iblock);
83 goto bail;
86 /* We don't use the page cache to create symlink data, so if
87 * need be, copy it over from the buffer cache. */
88 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90 iblock;
91 buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 if (!buffer_cache_bh) {
93 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94 goto bail;
97 /* we haven't locked out transactions, so a commit
98 * could've happened. Since we've got a reference on
99 * the bh, even if it commits while we're doing the
100 * copy, the data is still good. */
101 if (buffer_jbd(buffer_cache_bh)
102 && ocfs2_inode_is_new(inode)) {
103 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104 if (!kaddr) {
105 mlog(ML_ERROR, "couldn't kmap!\n");
106 goto bail;
108 memcpy(kaddr + (bh_result->b_size * iblock),
109 buffer_cache_bh->b_data,
110 bh_result->b_size);
111 kunmap_atomic(kaddr, KM_USER0);
112 set_buffer_uptodate(bh_result);
114 brelse(buffer_cache_bh);
117 map_bh(bh_result, inode->i_sb,
118 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120 err = 0;
122 bail:
123 brelse(bh);
125 mlog_exit(err);
126 return err;
129 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 struct buffer_head *bh_result, int create)
132 int err = 0;
133 unsigned int ext_flags;
134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 u64 p_blkno, count, past_eof;
136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 (unsigned long long)iblock, bh_result, create);
141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 inode, inode->i_ino);
145 if (S_ISLNK(inode->i_mode)) {
146 /* this always does I/O for some reason. */
147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 goto bail;
151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
152 &ext_flags);
153 if (err) {
154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 (unsigned long long)p_blkno);
157 goto bail;
160 if (max_blocks < count)
161 count = max_blocks;
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
169 * If we see this on a sparse file system, then a truncate has
170 * raced us and removed the cluster. In this case, we clear
171 * the buffers dirty and uptodate bits and let the buffer code
172 * ignore it as a hole.
174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 clear_buffer_dirty(bh_result);
176 clear_buffer_uptodate(bh_result);
177 goto bail;
180 /* Treat the unwritten extent as a hole for zeroing purposes. */
181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182 map_bh(bh_result, inode->i_sb, p_blkno);
184 bh_result->b_size = count << inode->i_blkbits;
186 if (!ocfs2_sparse_alloc(osb)) {
187 if (p_blkno == 0) {
188 err = -EIO;
189 mlog(ML_ERROR,
190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 (unsigned long long)iblock,
192 (unsigned long long)p_blkno,
193 (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 dump_stack();
196 goto bail;
199 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
200 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
201 (unsigned long long)past_eof);
203 if (create && (iblock >= past_eof))
204 set_buffer_new(bh_result);
207 bail:
208 if (err < 0)
209 err = -EIO;
211 mlog_exit(err);
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 ret = AOP_TRUNCATED_PAGE;
293 goto out_inode_unlock;
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
304 * XXX sys_readahead() seems to get that wrong?
306 if (start >= i_size_read(inode)) {
307 zero_user(page, 0, PAGE_SIZE);
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
317 unlock = 0;
319 out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
323 out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
383 return err;
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 int ret;
401 mlog_entry("(0x%p)\n", page);
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
405 mlog_exit(ret);
407 return ret;
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 unsigned from, unsigned to)
418 int ret;
420 ret = block_prepare_write(page, from, to, ocfs2_get_block);
422 return ret;
425 /* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
429 int walk_page_buffers( handle_t *handle,
430 struct buffer_head *head,
431 unsigned from,
432 unsigned to,
433 int *partial,
434 int (*fn)( handle_t *handle,
435 struct buffer_head *bh))
437 struct buffer_head *bh;
438 unsigned block_start, block_end;
439 unsigned blocksize = head->b_size;
440 int err, ret = 0;
441 struct buffer_head *next;
443 for ( bh = head, block_start = 0;
444 ret == 0 && (bh != head || !block_start);
445 block_start = block_end, bh = next)
447 next = bh->b_this_page;
448 block_end = block_start + blocksize;
449 if (block_end <= from || block_start >= to) {
450 if (partial && !buffer_uptodate(bh))
451 *partial = 1;
452 continue;
454 err = (*fn)(handle, bh);
455 if (!ret)
456 ret = err;
458 return ret;
461 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
462 struct page *page,
463 unsigned from,
464 unsigned to)
466 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
467 handle_t *handle;
468 int ret = 0;
470 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
471 if (IS_ERR(handle)) {
472 ret = -ENOMEM;
473 mlog_errno(ret);
474 goto out;
477 if (ocfs2_should_order_data(inode)) {
478 ret = ocfs2_jbd2_file_inode(handle, inode);
479 if (ret < 0)
480 mlog_errno(ret);
482 out:
483 if (ret) {
484 if (!IS_ERR(handle))
485 ocfs2_commit_trans(osb, handle);
486 handle = ERR_PTR(ret);
488 return handle;
491 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493 sector_t status;
494 u64 p_blkno = 0;
495 int err = 0;
496 struct inode *inode = mapping->host;
498 mlog_entry("(block = %llu)\n", (unsigned long long)block);
500 /* We don't need to lock journal system files, since they aren't
501 * accessed concurrently from multiple nodes.
503 if (!INODE_JOURNAL(inode)) {
504 err = ocfs2_inode_lock(inode, NULL, 0);
505 if (err) {
506 if (err != -ENOENT)
507 mlog_errno(err);
508 goto bail;
510 down_read(&OCFS2_I(inode)->ip_alloc_sem);
513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
514 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
515 NULL);
517 if (!INODE_JOURNAL(inode)) {
518 up_read(&OCFS2_I(inode)->ip_alloc_sem);
519 ocfs2_inode_unlock(inode, 0);
522 if (err) {
523 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
524 (unsigned long long)block);
525 mlog_errno(err);
526 goto bail;
529 bail:
530 status = err ? 0 : p_blkno;
532 mlog_exit((int)status);
534 return status;
538 * TODO: Make this into a generic get_blocks function.
540 * From do_direct_io in direct-io.c:
541 * "So what we do is to permit the ->get_blocks function to populate
542 * bh.b_size with the size of IO which is permitted at this offset and
543 * this i_blkbits."
545 * This function is called directly from get_more_blocks in direct-io.c.
547 * called like this: dio->get_blocks(dio->inode, fs_startblk,
548 * fs_count, map_bh, dio->rw == WRITE);
550 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
551 struct buffer_head *bh_result, int create)
553 int ret;
554 u64 p_blkno, inode_blocks, contig_blocks;
555 unsigned int ext_flags;
556 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
557 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559 /* This function won't even be called if the request isn't all
560 * nicely aligned and of the right size, so there's no need
561 * for us to check any of that. */
563 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
566 * Any write past EOF is not allowed because we'd be extending.
568 if (create && (iblock + max_blocks) > inode_blocks) {
569 ret = -EIO;
570 goto bail;
573 /* This figures out the size of the next contiguous block, and
574 * our logical offset */
575 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
576 &contig_blocks, &ext_flags);
577 if (ret) {
578 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
579 (unsigned long long)iblock);
580 ret = -EIO;
581 goto bail;
584 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
585 ocfs2_error(inode->i_sb,
586 "Inode %llu has a hole at block %llu\n",
587 (unsigned long long)OCFS2_I(inode)->ip_blkno,
588 (unsigned long long)iblock);
589 ret = -EROFS;
590 goto bail;
594 * get_more_blocks() expects us to describe a hole by clearing
595 * the mapped bit on bh_result().
597 * Consider an unwritten extent as a hole.
599 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
600 map_bh(bh_result, inode->i_sb, p_blkno);
601 else {
603 * ocfs2_prepare_inode_for_write() should have caught
604 * the case where we'd be filling a hole and triggered
605 * a buffered write instead.
607 if (create) {
608 ret = -EIO;
609 mlog_errno(ret);
610 goto bail;
613 clear_buffer_mapped(bh_result);
616 /* make sure we don't map more than max_blocks blocks here as
617 that's all the kernel will handle at this point. */
618 if (max_blocks < contig_blocks)
619 contig_blocks = max_blocks;
620 bh_result->b_size = contig_blocks << blocksize_bits;
621 bail:
622 return ret;
626 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
627 * particularly interested in the aio/dio case. Like the core uses
628 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
629 * truncation on another.
631 static void ocfs2_dio_end_io(struct kiocb *iocb,
632 loff_t offset,
633 ssize_t bytes,
634 void *private)
636 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
637 int level;
639 /* this io's submitter should not have unlocked this before we could */
640 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
642 ocfs2_iocb_clear_rw_locked(iocb);
644 level = ocfs2_iocb_rw_locked_level(iocb);
645 if (!level)
646 up_read(&inode->i_alloc_sem);
647 ocfs2_rw_unlock(inode, level);
651 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
652 * from ext3. PageChecked() bits have been removed as OCFS2 does not
653 * do journalled data.
655 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
657 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
659 jbd2_journal_invalidatepage(journal, page, offset);
662 static int ocfs2_releasepage(struct page *page, gfp_t wait)
664 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
666 if (!page_has_buffers(page))
667 return 0;
668 return jbd2_journal_try_to_free_buffers(journal, page, wait);
671 static ssize_t ocfs2_direct_IO(int rw,
672 struct kiocb *iocb,
673 const struct iovec *iov,
674 loff_t offset,
675 unsigned long nr_segs)
677 struct file *file = iocb->ki_filp;
678 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
679 int ret;
681 mlog_entry_void();
684 * Fallback to buffered I/O if we see an inode without
685 * extents.
687 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
688 return 0;
690 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
691 inode->i_sb->s_bdev, iov, offset,
692 nr_segs,
693 ocfs2_direct_IO_get_blocks,
694 ocfs2_dio_end_io);
696 mlog_exit(ret);
697 return ret;
700 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
701 u32 cpos,
702 unsigned int *start,
703 unsigned int *end)
705 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
707 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
708 unsigned int cpp;
710 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
712 cluster_start = cpos % cpp;
713 cluster_start = cluster_start << osb->s_clustersize_bits;
715 cluster_end = cluster_start + osb->s_clustersize;
718 BUG_ON(cluster_start > PAGE_SIZE);
719 BUG_ON(cluster_end > PAGE_SIZE);
721 if (start)
722 *start = cluster_start;
723 if (end)
724 *end = cluster_end;
728 * 'from' and 'to' are the region in the page to avoid zeroing.
730 * If pagesize > clustersize, this function will avoid zeroing outside
731 * of the cluster boundary.
733 * from == to == 0 is code for "zero the entire cluster region"
735 static void ocfs2_clear_page_regions(struct page *page,
736 struct ocfs2_super *osb, u32 cpos,
737 unsigned from, unsigned to)
739 void *kaddr;
740 unsigned int cluster_start, cluster_end;
742 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
744 kaddr = kmap_atomic(page, KM_USER0);
746 if (from || to) {
747 if (from > cluster_start)
748 memset(kaddr + cluster_start, 0, from - cluster_start);
749 if (to < cluster_end)
750 memset(kaddr + to, 0, cluster_end - to);
751 } else {
752 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
755 kunmap_atomic(kaddr, KM_USER0);
759 * Nonsparse file systems fully allocate before we get to the write
760 * code. This prevents ocfs2_write() from tagging the write as an
761 * allocating one, which means ocfs2_map_page_blocks() might try to
762 * read-in the blocks at the tail of our file. Avoid reading them by
763 * testing i_size against each block offset.
765 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
766 unsigned int block_start)
768 u64 offset = page_offset(page) + block_start;
770 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
771 return 1;
773 if (i_size_read(inode) > offset)
774 return 1;
776 return 0;
780 * Some of this taken from block_prepare_write(). We already have our
781 * mapping by now though, and the entire write will be allocating or
782 * it won't, so not much need to use BH_New.
784 * This will also skip zeroing, which is handled externally.
786 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
787 struct inode *inode, unsigned int from,
788 unsigned int to, int new)
790 int ret = 0;
791 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
792 unsigned int block_end, block_start;
793 unsigned int bsize = 1 << inode->i_blkbits;
795 if (!page_has_buffers(page))
796 create_empty_buffers(page, bsize, 0);
798 head = page_buffers(page);
799 for (bh = head, block_start = 0; bh != head || !block_start;
800 bh = bh->b_this_page, block_start += bsize) {
801 block_end = block_start + bsize;
803 clear_buffer_new(bh);
806 * Ignore blocks outside of our i/o range -
807 * they may belong to unallocated clusters.
809 if (block_start >= to || block_end <= from) {
810 if (PageUptodate(page))
811 set_buffer_uptodate(bh);
812 continue;
816 * For an allocating write with cluster size >= page
817 * size, we always write the entire page.
819 if (new)
820 set_buffer_new(bh);
822 if (!buffer_mapped(bh)) {
823 map_bh(bh, inode->i_sb, *p_blkno);
824 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
827 if (PageUptodate(page)) {
828 if (!buffer_uptodate(bh))
829 set_buffer_uptodate(bh);
830 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
831 !buffer_new(bh) &&
832 ocfs2_should_read_blk(inode, page, block_start) &&
833 (block_start < from || block_end > to)) {
834 ll_rw_block(READ, 1, &bh);
835 *wait_bh++=bh;
838 *p_blkno = *p_blkno + 1;
842 * If we issued read requests - let them complete.
844 while(wait_bh > wait) {
845 wait_on_buffer(*--wait_bh);
846 if (!buffer_uptodate(*wait_bh))
847 ret = -EIO;
850 if (ret == 0 || !new)
851 return ret;
854 * If we get -EIO above, zero out any newly allocated blocks
855 * to avoid exposing stale data.
857 bh = head;
858 block_start = 0;
859 do {
860 block_end = block_start + bsize;
861 if (block_end <= from)
862 goto next_bh;
863 if (block_start >= to)
864 break;
866 zero_user(page, block_start, bh->b_size);
867 set_buffer_uptodate(bh);
868 mark_buffer_dirty(bh);
870 next_bh:
871 block_start = block_end;
872 bh = bh->b_this_page;
873 } while (bh != head);
875 return ret;
878 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
879 #define OCFS2_MAX_CTXT_PAGES 1
880 #else
881 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
882 #endif
884 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
887 * Describe the state of a single cluster to be written to.
889 struct ocfs2_write_cluster_desc {
890 u32 c_cpos;
891 u32 c_phys;
893 * Give this a unique field because c_phys eventually gets
894 * filled.
896 unsigned c_new;
897 unsigned c_unwritten;
898 unsigned c_needs_zero;
901 struct ocfs2_write_ctxt {
902 /* Logical cluster position / len of write */
903 u32 w_cpos;
904 u32 w_clen;
906 /* First cluster allocated in a nonsparse extend */
907 u32 w_first_new_cpos;
909 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
912 * This is true if page_size > cluster_size.
914 * It triggers a set of special cases during write which might
915 * have to deal with allocating writes to partial pages.
917 unsigned int w_large_pages;
920 * Pages involved in this write.
922 * w_target_page is the page being written to by the user.
924 * w_pages is an array of pages which always contains
925 * w_target_page, and in the case of an allocating write with
926 * page_size < cluster size, it will contain zero'd and mapped
927 * pages adjacent to w_target_page which need to be written
928 * out in so that future reads from that region will get
929 * zero's.
931 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
932 unsigned int w_num_pages;
933 struct page *w_target_page;
936 * ocfs2_write_end() uses this to know what the real range to
937 * write in the target should be.
939 unsigned int w_target_from;
940 unsigned int w_target_to;
943 * We could use journal_current_handle() but this is cleaner,
944 * IMHO -Mark
946 handle_t *w_handle;
948 struct buffer_head *w_di_bh;
950 struct ocfs2_cached_dealloc_ctxt w_dealloc;
953 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
955 int i;
957 for(i = 0; i < num_pages; i++) {
958 if (pages[i]) {
959 unlock_page(pages[i]);
960 mark_page_accessed(pages[i]);
961 page_cache_release(pages[i]);
966 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
968 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
970 brelse(wc->w_di_bh);
971 kfree(wc);
974 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 struct ocfs2_super *osb, loff_t pos,
976 unsigned len, struct buffer_head *di_bh)
978 u32 cend;
979 struct ocfs2_write_ctxt *wc;
981 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982 if (!wc)
983 return -ENOMEM;
985 wc->w_cpos = pos >> osb->s_clustersize_bits;
986 wc->w_first_new_cpos = UINT_MAX;
987 cend = (pos + len - 1) >> osb->s_clustersize_bits;
988 wc->w_clen = cend - wc->w_cpos + 1;
989 get_bh(di_bh);
990 wc->w_di_bh = di_bh;
992 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
993 wc->w_large_pages = 1;
994 else
995 wc->w_large_pages = 0;
997 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
999 *wcp = wc;
1001 return 0;
1005 * If a page has any new buffers, zero them out here, and mark them uptodate
1006 * and dirty so they'll be written out (in order to prevent uninitialised
1007 * block data from leaking). And clear the new bit.
1009 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1011 unsigned int block_start, block_end;
1012 struct buffer_head *head, *bh;
1014 BUG_ON(!PageLocked(page));
1015 if (!page_has_buffers(page))
1016 return;
1018 bh = head = page_buffers(page);
1019 block_start = 0;
1020 do {
1021 block_end = block_start + bh->b_size;
1023 if (buffer_new(bh)) {
1024 if (block_end > from && block_start < to) {
1025 if (!PageUptodate(page)) {
1026 unsigned start, end;
1028 start = max(from, block_start);
1029 end = min(to, block_end);
1031 zero_user_segment(page, start, end);
1032 set_buffer_uptodate(bh);
1035 clear_buffer_new(bh);
1036 mark_buffer_dirty(bh);
1040 block_start = block_end;
1041 bh = bh->b_this_page;
1042 } while (bh != head);
1046 * Only called when we have a failure during allocating write to write
1047 * zero's to the newly allocated region.
1049 static void ocfs2_write_failure(struct inode *inode,
1050 struct ocfs2_write_ctxt *wc,
1051 loff_t user_pos, unsigned user_len)
1053 int i;
1054 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1055 to = user_pos + user_len;
1056 struct page *tmppage;
1058 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1060 for(i = 0; i < wc->w_num_pages; i++) {
1061 tmppage = wc->w_pages[i];
1063 if (page_has_buffers(tmppage)) {
1064 if (ocfs2_should_order_data(inode))
1065 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1067 block_commit_write(tmppage, from, to);
1072 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1073 struct ocfs2_write_ctxt *wc,
1074 struct page *page, u32 cpos,
1075 loff_t user_pos, unsigned user_len,
1076 int new)
1078 int ret;
1079 unsigned int map_from = 0, map_to = 0;
1080 unsigned int cluster_start, cluster_end;
1081 unsigned int user_data_from = 0, user_data_to = 0;
1083 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1084 &cluster_start, &cluster_end);
1086 if (page == wc->w_target_page) {
1087 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1088 map_to = map_from + user_len;
1090 if (new)
1091 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1092 cluster_start, cluster_end,
1093 new);
1094 else
1095 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1096 map_from, map_to, new);
1097 if (ret) {
1098 mlog_errno(ret);
1099 goto out;
1102 user_data_from = map_from;
1103 user_data_to = map_to;
1104 if (new) {
1105 map_from = cluster_start;
1106 map_to = cluster_end;
1108 } else {
1110 * If we haven't allocated the new page yet, we
1111 * shouldn't be writing it out without copying user
1112 * data. This is likely a math error from the caller.
1114 BUG_ON(!new);
1116 map_from = cluster_start;
1117 map_to = cluster_end;
1119 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1120 cluster_start, cluster_end, new);
1121 if (ret) {
1122 mlog_errno(ret);
1123 goto out;
1128 * Parts of newly allocated pages need to be zero'd.
1130 * Above, we have also rewritten 'to' and 'from' - as far as
1131 * the rest of the function is concerned, the entire cluster
1132 * range inside of a page needs to be written.
1134 * We can skip this if the page is up to date - it's already
1135 * been zero'd from being read in as a hole.
1137 if (new && !PageUptodate(page))
1138 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1139 cpos, user_data_from, user_data_to);
1141 flush_dcache_page(page);
1143 out:
1144 return ret;
1148 * This function will only grab one clusters worth of pages.
1150 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1151 struct ocfs2_write_ctxt *wc,
1152 u32 cpos, loff_t user_pos, int new,
1153 struct page *mmap_page)
1155 int ret = 0, i;
1156 unsigned long start, target_index, index;
1157 struct inode *inode = mapping->host;
1159 target_index = user_pos >> PAGE_CACHE_SHIFT;
1162 * Figure out how many pages we'll be manipulating here. For
1163 * non allocating write, we just change the one
1164 * page. Otherwise, we'll need a whole clusters worth.
1166 if (new) {
1167 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1168 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1169 } else {
1170 wc->w_num_pages = 1;
1171 start = target_index;
1174 for(i = 0; i < wc->w_num_pages; i++) {
1175 index = start + i;
1177 if (index == target_index && mmap_page) {
1179 * ocfs2_pagemkwrite() is a little different
1180 * and wants us to directly use the page
1181 * passed in.
1183 lock_page(mmap_page);
1185 if (mmap_page->mapping != mapping) {
1186 unlock_page(mmap_page);
1188 * Sanity check - the locking in
1189 * ocfs2_pagemkwrite() should ensure
1190 * that this code doesn't trigger.
1192 ret = -EINVAL;
1193 mlog_errno(ret);
1194 goto out;
1197 page_cache_get(mmap_page);
1198 wc->w_pages[i] = mmap_page;
1199 } else {
1200 wc->w_pages[i] = find_or_create_page(mapping, index,
1201 GFP_NOFS);
1202 if (!wc->w_pages[i]) {
1203 ret = -ENOMEM;
1204 mlog_errno(ret);
1205 goto out;
1209 if (index == target_index)
1210 wc->w_target_page = wc->w_pages[i];
1212 out:
1213 return ret;
1217 * Prepare a single cluster for write one cluster into the file.
1219 static int ocfs2_write_cluster(struct address_space *mapping,
1220 u32 phys, unsigned int unwritten,
1221 unsigned int should_zero,
1222 struct ocfs2_alloc_context *data_ac,
1223 struct ocfs2_alloc_context *meta_ac,
1224 struct ocfs2_write_ctxt *wc, u32 cpos,
1225 loff_t user_pos, unsigned user_len)
1227 int ret, i, new;
1228 u64 v_blkno, p_blkno;
1229 struct inode *inode = mapping->host;
1230 struct ocfs2_extent_tree et;
1232 new = phys == 0 ? 1 : 0;
1233 if (new) {
1234 u32 tmp_pos;
1237 * This is safe to call with the page locks - it won't take
1238 * any additional semaphores or cluster locks.
1240 tmp_pos = cpos;
1241 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242 &tmp_pos, 1, 0, wc->w_di_bh,
1243 wc->w_handle, data_ac,
1244 meta_ac, NULL);
1246 * This shouldn't happen because we must have already
1247 * calculated the correct meta data allocation required. The
1248 * internal tree allocation code should know how to increase
1249 * transaction credits itself.
1251 * If need be, we could handle -EAGAIN for a
1252 * RESTART_TRANS here.
1254 mlog_bug_on_msg(ret == -EAGAIN,
1255 "Inode %llu: EAGAIN return during allocation.\n",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1257 if (ret < 0) {
1258 mlog_errno(ret);
1259 goto out;
1261 } else if (unwritten) {
1262 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1263 ret = ocfs2_mark_extent_written(inode, &et,
1264 wc->w_handle, cpos, 1, phys,
1265 meta_ac, &wc->w_dealloc);
1266 if (ret < 0) {
1267 mlog_errno(ret);
1268 goto out;
1272 if (should_zero)
1273 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1274 else
1275 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1278 * The only reason this should fail is due to an inability to
1279 * find the extent added.
1281 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282 NULL);
1283 if (ret < 0) {
1284 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285 "at logical block %llu",
1286 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287 (unsigned long long)v_blkno);
1288 goto out;
1291 BUG_ON(p_blkno == 0);
1293 for(i = 0; i < wc->w_num_pages; i++) {
1294 int tmpret;
1296 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297 wc->w_pages[i], cpos,
1298 user_pos, user_len,
1299 should_zero);
1300 if (tmpret) {
1301 mlog_errno(tmpret);
1302 if (ret == 0)
1303 ret = tmpret;
1308 * We only have cleanup to do in case of allocating write.
1310 if (ret && new)
1311 ocfs2_write_failure(inode, wc, user_pos, user_len);
1313 out:
1315 return ret;
1318 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319 struct ocfs2_alloc_context *data_ac,
1320 struct ocfs2_alloc_context *meta_ac,
1321 struct ocfs2_write_ctxt *wc,
1322 loff_t pos, unsigned len)
1324 int ret, i;
1325 loff_t cluster_off;
1326 unsigned int local_len = len;
1327 struct ocfs2_write_cluster_desc *desc;
1328 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1330 for (i = 0; i < wc->w_clen; i++) {
1331 desc = &wc->w_desc[i];
1334 * We have to make sure that the total write passed in
1335 * doesn't extend past a single cluster.
1337 local_len = len;
1338 cluster_off = pos & (osb->s_clustersize - 1);
1339 if ((cluster_off + local_len) > osb->s_clustersize)
1340 local_len = osb->s_clustersize - cluster_off;
1342 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343 desc->c_unwritten,
1344 desc->c_needs_zero,
1345 data_ac, meta_ac,
1346 wc, desc->c_cpos, pos, local_len);
1347 if (ret) {
1348 mlog_errno(ret);
1349 goto out;
1352 len -= local_len;
1353 pos += local_len;
1356 ret = 0;
1357 out:
1358 return ret;
1362 * ocfs2_write_end() wants to know which parts of the target page it
1363 * should complete the write on. It's easiest to compute them ahead of
1364 * time when a more complete view of the write is available.
1366 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1367 struct ocfs2_write_ctxt *wc,
1368 loff_t pos, unsigned len, int alloc)
1370 struct ocfs2_write_cluster_desc *desc;
1372 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1373 wc->w_target_to = wc->w_target_from + len;
1375 if (alloc == 0)
1376 return;
1379 * Allocating write - we may have different boundaries based
1380 * on page size and cluster size.
1382 * NOTE: We can no longer compute one value from the other as
1383 * the actual write length and user provided length may be
1384 * different.
1387 if (wc->w_large_pages) {
1389 * We only care about the 1st and last cluster within
1390 * our range and whether they should be zero'd or not. Either
1391 * value may be extended out to the start/end of a
1392 * newly allocated cluster.
1394 desc = &wc->w_desc[0];
1395 if (desc->c_needs_zero)
1396 ocfs2_figure_cluster_boundaries(osb,
1397 desc->c_cpos,
1398 &wc->w_target_from,
1399 NULL);
1401 desc = &wc->w_desc[wc->w_clen - 1];
1402 if (desc->c_needs_zero)
1403 ocfs2_figure_cluster_boundaries(osb,
1404 desc->c_cpos,
1405 NULL,
1406 &wc->w_target_to);
1407 } else {
1408 wc->w_target_from = 0;
1409 wc->w_target_to = PAGE_CACHE_SIZE;
1414 * Populate each single-cluster write descriptor in the write context
1415 * with information about the i/o to be done.
1417 * Returns the number of clusters that will have to be allocated, as
1418 * well as a worst case estimate of the number of extent records that
1419 * would have to be created during a write to an unwritten region.
1421 static int ocfs2_populate_write_desc(struct inode *inode,
1422 struct ocfs2_write_ctxt *wc,
1423 unsigned int *clusters_to_alloc,
1424 unsigned int *extents_to_split)
1426 int ret;
1427 struct ocfs2_write_cluster_desc *desc;
1428 unsigned int num_clusters = 0;
1429 unsigned int ext_flags = 0;
1430 u32 phys = 0;
1431 int i;
1433 *clusters_to_alloc = 0;
1434 *extents_to_split = 0;
1436 for (i = 0; i < wc->w_clen; i++) {
1437 desc = &wc->w_desc[i];
1438 desc->c_cpos = wc->w_cpos + i;
1440 if (num_clusters == 0) {
1442 * Need to look up the next extent record.
1444 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1445 &num_clusters, &ext_flags);
1446 if (ret) {
1447 mlog_errno(ret);
1448 goto out;
1452 * Assume worst case - that we're writing in
1453 * the middle of the extent.
1455 * We can assume that the write proceeds from
1456 * left to right, in which case the extent
1457 * insert code is smart enough to coalesce the
1458 * next splits into the previous records created.
1460 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1461 *extents_to_split = *extents_to_split + 2;
1462 } else if (phys) {
1464 * Only increment phys if it doesn't describe
1465 * a hole.
1467 phys++;
1471 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1472 * file that got extended. w_first_new_cpos tells us
1473 * where the newly allocated clusters are so we can
1474 * zero them.
1476 if (desc->c_cpos >= wc->w_first_new_cpos) {
1477 BUG_ON(phys == 0);
1478 desc->c_needs_zero = 1;
1481 desc->c_phys = phys;
1482 if (phys == 0) {
1483 desc->c_new = 1;
1484 desc->c_needs_zero = 1;
1485 *clusters_to_alloc = *clusters_to_alloc + 1;
1488 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1489 desc->c_unwritten = 1;
1490 desc->c_needs_zero = 1;
1493 num_clusters--;
1496 ret = 0;
1497 out:
1498 return ret;
1501 static int ocfs2_write_begin_inline(struct address_space *mapping,
1502 struct inode *inode,
1503 struct ocfs2_write_ctxt *wc)
1505 int ret;
1506 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1507 struct page *page;
1508 handle_t *handle;
1509 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1511 page = find_or_create_page(mapping, 0, GFP_NOFS);
1512 if (!page) {
1513 ret = -ENOMEM;
1514 mlog_errno(ret);
1515 goto out;
1518 * If we don't set w_num_pages then this page won't get unlocked
1519 * and freed on cleanup of the write context.
1521 wc->w_pages[0] = wc->w_target_page = page;
1522 wc->w_num_pages = 1;
1524 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1525 if (IS_ERR(handle)) {
1526 ret = PTR_ERR(handle);
1527 mlog_errno(ret);
1528 goto out;
1531 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1532 OCFS2_JOURNAL_ACCESS_WRITE);
1533 if (ret) {
1534 ocfs2_commit_trans(osb, handle);
1536 mlog_errno(ret);
1537 goto out;
1540 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1541 ocfs2_set_inode_data_inline(inode, di);
1543 if (!PageUptodate(page)) {
1544 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1545 if (ret) {
1546 ocfs2_commit_trans(osb, handle);
1548 goto out;
1552 wc->w_handle = handle;
1553 out:
1554 return ret;
1557 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1559 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1561 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1562 return 1;
1563 return 0;
1566 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1567 struct inode *inode, loff_t pos,
1568 unsigned len, struct page *mmap_page,
1569 struct ocfs2_write_ctxt *wc)
1571 int ret, written = 0;
1572 loff_t end = pos + len;
1573 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1574 struct ocfs2_dinode *di = NULL;
1576 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1577 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1578 oi->ip_dyn_features);
1581 * Handle inodes which already have inline data 1st.
1583 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584 if (mmap_page == NULL &&
1585 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586 goto do_inline_write;
1589 * The write won't fit - we have to give this inode an
1590 * inline extent list now.
1592 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593 if (ret)
1594 mlog_errno(ret);
1595 goto out;
1599 * Check whether the inode can accept inline data.
1601 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602 return 0;
1605 * Check whether the write can fit.
1607 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1608 if (mmap_page ||
1609 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1610 return 0;
1612 do_inline_write:
1613 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 if (ret) {
1615 mlog_errno(ret);
1616 goto out;
1620 * This signals to the caller that the data can be written
1621 * inline.
1623 written = 1;
1624 out:
1625 return written ? written : ret;
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638 unsigned len,
1639 struct ocfs2_write_ctxt *wc)
1641 int ret;
1642 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 loff_t newsize = pos + len;
1645 if (ocfs2_sparse_alloc(osb))
1646 return 0;
1648 if (newsize <= i_size_read(inode))
1649 return 0;
1651 ret = ocfs2_extend_no_holes(inode, newsize, pos);
1652 if (ret)
1653 mlog_errno(ret);
1655 wc->w_first_new_cpos =
1656 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1658 return ret;
1661 int ocfs2_write_begin_nolock(struct address_space *mapping,
1662 loff_t pos, unsigned len, unsigned flags,
1663 struct page **pagep, void **fsdata,
1664 struct buffer_head *di_bh, struct page *mmap_page)
1666 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1667 unsigned int clusters_to_alloc, extents_to_split;
1668 struct ocfs2_write_ctxt *wc;
1669 struct inode *inode = mapping->host;
1670 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1671 struct ocfs2_dinode *di;
1672 struct ocfs2_alloc_context *data_ac = NULL;
1673 struct ocfs2_alloc_context *meta_ac = NULL;
1674 handle_t *handle;
1675 struct ocfs2_extent_tree et;
1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1678 if (ret) {
1679 mlog_errno(ret);
1680 return ret;
1683 if (ocfs2_supports_inline_data(osb)) {
1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 mmap_page, wc);
1686 if (ret == 1) {
1687 ret = 0;
1688 goto success;
1690 if (ret < 0) {
1691 mlog_errno(ret);
1692 goto out;
1696 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1697 if (ret) {
1698 mlog_errno(ret);
1699 goto out;
1702 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1703 &extents_to_split);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1709 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1712 * We set w_target_from, w_target_to here so that
1713 * ocfs2_write_end() knows which range in the target page to
1714 * write out. An allocation requires that we write the entire
1715 * cluster range.
1717 if (clusters_to_alloc || extents_to_split) {
1719 * XXX: We are stretching the limits of
1720 * ocfs2_lock_allocators(). It greatly over-estimates
1721 * the work to be done.
1723 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1724 " clusters_to_add = %u, extents_to_split = %u\n",
1725 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1727 clusters_to_alloc, extents_to_split);
1729 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1730 ret = ocfs2_lock_allocators(inode, &et,
1731 clusters_to_alloc, extents_to_split,
1732 &data_ac, &meta_ac);
1733 if (ret) {
1734 mlog_errno(ret);
1735 goto out;
1738 credits = ocfs2_calc_extend_credits(inode->i_sb,
1739 &di->id2.i_list,
1740 clusters_to_alloc);
1745 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746 * and non-sparse clusters we just extended. For non-sparse writes,
1747 * we know zeros will only be needed in the first and/or last cluster.
1749 if (clusters_to_alloc || extents_to_split ||
1750 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1751 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1752 cluster_of_pages = 1;
1753 else
1754 cluster_of_pages = 0;
1756 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1758 handle = ocfs2_start_trans(osb, credits);
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1761 mlog_errno(ret);
1762 goto out;
1765 wc->w_handle = handle;
1767 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1768 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1769 ret = -EDQUOT;
1770 goto out_commit;
1773 * We don't want this to fail in ocfs2_write_end(), so do it
1774 * here.
1776 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1777 OCFS2_JOURNAL_ACCESS_WRITE);
1778 if (ret) {
1779 mlog_errno(ret);
1780 goto out_quota;
1784 * Fill our page array first. That way we've grabbed enough so
1785 * that we can zero and flush if we error after adding the
1786 * extent.
1788 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1789 cluster_of_pages, mmap_page);
1790 if (ret) {
1791 mlog_errno(ret);
1792 goto out_quota;
1795 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1796 len);
1797 if (ret) {
1798 mlog_errno(ret);
1799 goto out_quota;
1802 if (data_ac)
1803 ocfs2_free_alloc_context(data_ac);
1804 if (meta_ac)
1805 ocfs2_free_alloc_context(meta_ac);
1807 success:
1808 *pagep = wc->w_target_page;
1809 *fsdata = wc;
1810 return 0;
1811 out_quota:
1812 if (clusters_to_alloc)
1813 vfs_dq_free_space(inode,
1814 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1815 out_commit:
1816 ocfs2_commit_trans(osb, handle);
1818 out:
1819 ocfs2_free_write_ctxt(wc);
1821 if (data_ac)
1822 ocfs2_free_alloc_context(data_ac);
1823 if (meta_ac)
1824 ocfs2_free_alloc_context(meta_ac);
1825 return ret;
1828 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1829 loff_t pos, unsigned len, unsigned flags,
1830 struct page **pagep, void **fsdata)
1832 int ret;
1833 struct buffer_head *di_bh = NULL;
1834 struct inode *inode = mapping->host;
1836 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1837 if (ret) {
1838 mlog_errno(ret);
1839 return ret;
1843 * Take alloc sem here to prevent concurrent lookups. That way
1844 * the mapping, zeroing and tree manipulation within
1845 * ocfs2_write() will be safe against ->readpage(). This
1846 * should also serve to lock out allocation from a shared
1847 * writeable region.
1849 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1851 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1852 fsdata, di_bh, NULL);
1853 if (ret) {
1854 mlog_errno(ret);
1855 goto out_fail;
1858 brelse(di_bh);
1860 return 0;
1862 out_fail:
1863 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1865 brelse(di_bh);
1866 ocfs2_inode_unlock(inode, 1);
1868 return ret;
1871 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1872 unsigned len, unsigned *copied,
1873 struct ocfs2_dinode *di,
1874 struct ocfs2_write_ctxt *wc)
1876 void *kaddr;
1878 if (unlikely(*copied < len)) {
1879 if (!PageUptodate(wc->w_target_page)) {
1880 *copied = 0;
1881 return;
1885 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1886 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1887 kunmap_atomic(kaddr, KM_USER0);
1889 mlog(0, "Data written to inode at offset %llu. "
1890 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1891 (unsigned long long)pos, *copied,
1892 le16_to_cpu(di->id2.i_data.id_count),
1893 le16_to_cpu(di->i_dyn_features));
1896 int ocfs2_write_end_nolock(struct address_space *mapping,
1897 loff_t pos, unsigned len, unsigned copied,
1898 struct page *page, void *fsdata)
1900 int i;
1901 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1902 struct inode *inode = mapping->host;
1903 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1904 struct ocfs2_write_ctxt *wc = fsdata;
1905 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1906 handle_t *handle = wc->w_handle;
1907 struct page *tmppage;
1909 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1910 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1911 goto out_write_size;
1914 if (unlikely(copied < len)) {
1915 if (!PageUptodate(wc->w_target_page))
1916 copied = 0;
1918 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1919 start+len);
1921 flush_dcache_page(wc->w_target_page);
1923 for(i = 0; i < wc->w_num_pages; i++) {
1924 tmppage = wc->w_pages[i];
1926 if (tmppage == wc->w_target_page) {
1927 from = wc->w_target_from;
1928 to = wc->w_target_to;
1930 BUG_ON(from > PAGE_CACHE_SIZE ||
1931 to > PAGE_CACHE_SIZE ||
1932 to < from);
1933 } else {
1935 * Pages adjacent to the target (if any) imply
1936 * a hole-filling write in which case we want
1937 * to flush their entire range.
1939 from = 0;
1940 to = PAGE_CACHE_SIZE;
1943 if (page_has_buffers(tmppage)) {
1944 if (ocfs2_should_order_data(inode))
1945 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1946 block_commit_write(tmppage, from, to);
1950 out_write_size:
1951 pos += copied;
1952 if (pos > inode->i_size) {
1953 i_size_write(inode, pos);
1954 mark_inode_dirty(inode);
1956 inode->i_blocks = ocfs2_inode_sector_count(inode);
1957 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1958 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1959 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1960 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1961 ocfs2_journal_dirty(handle, wc->w_di_bh);
1963 ocfs2_commit_trans(osb, handle);
1965 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1967 ocfs2_free_write_ctxt(wc);
1969 return copied;
1972 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
1976 int ret;
1977 struct inode *inode = mapping->host;
1979 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1981 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1982 ocfs2_inode_unlock(inode, 1);
1984 return ret;
1987 const struct address_space_operations ocfs2_aops = {
1988 .readpage = ocfs2_readpage,
1989 .readpages = ocfs2_readpages,
1990 .writepage = ocfs2_writepage,
1991 .write_begin = ocfs2_write_begin,
1992 .write_end = ocfs2_write_end,
1993 .bmap = ocfs2_bmap,
1994 .sync_page = block_sync_page,
1995 .direct_IO = ocfs2_direct_IO,
1996 .invalidatepage = ocfs2_invalidatepage,
1997 .releasepage = ocfs2_releasepage,
1998 .migratepage = buffer_migrate_page,
1999 .is_partially_uptodate = block_is_partially_uptodate,