Merge branch 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-riic.c
blob4eccc0f69861f8ac487fdc363b44408ea2420ab6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas RIIC driver
5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
6 * Copyright (C) 2013 Renesas Solutions Corp.
7 */
9 /*
10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
11 * some kind of state machine.
13 * 1) The main xfer routine kicks off a transmission by putting the start bit
14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
15 * since we need to send the slave address + RW bit in every case.
17 * 2) TIE sends slave address + RW bit and selects how to continue.
19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
20 * are done, we switch over to the transmission done interrupt (TEIE) and mark
21 * the message as completed (includes sending STOP) there.
23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
24 * needed to start clocking, then we keep receiving until we are done. Note
25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
27 * message to create the final NACK as sketched in the datasheet. This caused
28 * some subtle races (when byte n was processed and byte n+1 was already
29 * waiting), though, and I started with the safe approach.
31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
32 * via NAKIE.
34 * Also check the comments in the interrupt routines for some gory details.
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/err.h>
40 #include <linux/i2c.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/pm_runtime.h>
48 #define RIIC_ICCR1 0x00
49 #define RIIC_ICCR2 0x04
50 #define RIIC_ICMR1 0x08
51 #define RIIC_ICMR3 0x10
52 #define RIIC_ICSER 0x18
53 #define RIIC_ICIER 0x1c
54 #define RIIC_ICSR2 0x24
55 #define RIIC_ICBRL 0x34
56 #define RIIC_ICBRH 0x38
57 #define RIIC_ICDRT 0x3c
58 #define RIIC_ICDRR 0x40
60 #define ICCR1_ICE 0x80
61 #define ICCR1_IICRST 0x40
62 #define ICCR1_SOWP 0x10
64 #define ICCR2_BBSY 0x80
65 #define ICCR2_SP 0x08
66 #define ICCR2_RS 0x04
67 #define ICCR2_ST 0x02
69 #define ICMR1_CKS_MASK 0x70
70 #define ICMR1_BCWP 0x08
71 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
73 #define ICMR3_RDRFS 0x20
74 #define ICMR3_ACKWP 0x10
75 #define ICMR3_ACKBT 0x08
77 #define ICIER_TIE 0x80
78 #define ICIER_TEIE 0x40
79 #define ICIER_RIE 0x20
80 #define ICIER_NAKIE 0x10
81 #define ICIER_SPIE 0x08
83 #define ICSR2_NACKF 0x10
85 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
87 #define RIIC_INIT_MSG -1
89 struct riic_dev {
90 void __iomem *base;
91 u8 *buf;
92 struct i2c_msg *msg;
93 int bytes_left;
94 int err;
95 int is_last;
96 struct completion msg_done;
97 struct i2c_adapter adapter;
98 struct clk *clk;
101 struct riic_irq_desc {
102 int res_num;
103 irq_handler_t isr;
104 char *name;
107 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
109 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
112 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
114 struct riic_dev *riic = i2c_get_adapdata(adap);
115 unsigned long time_left;
116 int i;
117 u8 start_bit;
119 pm_runtime_get_sync(adap->dev.parent);
121 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
122 riic->err = -EBUSY;
123 goto out;
126 reinit_completion(&riic->msg_done);
127 riic->err = 0;
129 writeb(0, riic->base + RIIC_ICSR2);
131 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
132 riic->bytes_left = RIIC_INIT_MSG;
133 riic->buf = msgs[i].buf;
134 riic->msg = &msgs[i];
135 riic->is_last = (i == num - 1);
137 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
139 writeb(start_bit, riic->base + RIIC_ICCR2);
141 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
142 if (time_left == 0)
143 riic->err = -ETIMEDOUT;
145 if (riic->err)
146 break;
148 start_bit = ICCR2_RS;
151 out:
152 pm_runtime_put(adap->dev.parent);
154 return riic->err ?: num;
157 static irqreturn_t riic_tdre_isr(int irq, void *data)
159 struct riic_dev *riic = data;
160 u8 val;
162 if (!riic->bytes_left)
163 return IRQ_NONE;
165 if (riic->bytes_left == RIIC_INIT_MSG) {
166 if (riic->msg->flags & I2C_M_RD)
167 /* On read, switch over to receive interrupt */
168 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
169 else
170 /* On write, initialize length */
171 riic->bytes_left = riic->msg->len;
173 val = i2c_8bit_addr_from_msg(riic->msg);
174 } else {
175 val = *riic->buf;
176 riic->buf++;
177 riic->bytes_left--;
181 * Switch to transmission ended interrupt when done. Do check here
182 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
183 * 0 length then)
185 if (riic->bytes_left == 0)
186 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
189 * This acks the TIE interrupt. We get another TIE immediately if our
190 * value could be moved to the shadow shift register right away. So
191 * this must be after updates to ICIER (where we want to disable TIE)!
193 writeb(val, riic->base + RIIC_ICDRT);
195 return IRQ_HANDLED;
198 static irqreturn_t riic_tend_isr(int irq, void *data)
200 struct riic_dev *riic = data;
202 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
203 /* We got a NACKIE */
204 readb(riic->base + RIIC_ICDRR); /* dummy read */
205 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2);
206 riic->err = -ENXIO;
207 } else if (riic->bytes_left) {
208 return IRQ_NONE;
211 if (riic->is_last || riic->err) {
212 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
213 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
214 } else {
215 /* Transfer is complete, but do not send STOP */
216 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
217 complete(&riic->msg_done);
220 return IRQ_HANDLED;
223 static irqreturn_t riic_rdrf_isr(int irq, void *data)
225 struct riic_dev *riic = data;
227 if (!riic->bytes_left)
228 return IRQ_NONE;
230 if (riic->bytes_left == RIIC_INIT_MSG) {
231 riic->bytes_left = riic->msg->len;
232 readb(riic->base + RIIC_ICDRR); /* dummy read */
233 return IRQ_HANDLED;
236 if (riic->bytes_left == 1) {
237 /* STOP must come before we set ACKBT! */
238 if (riic->is_last) {
239 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
240 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
243 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
245 } else {
246 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
249 /* Reading acks the RIE interrupt */
250 *riic->buf = readb(riic->base + RIIC_ICDRR);
251 riic->buf++;
252 riic->bytes_left--;
254 return IRQ_HANDLED;
257 static irqreturn_t riic_stop_isr(int irq, void *data)
259 struct riic_dev *riic = data;
261 /* read back registers to confirm writes have fully propagated */
262 writeb(0, riic->base + RIIC_ICSR2);
263 readb(riic->base + RIIC_ICSR2);
264 writeb(0, riic->base + RIIC_ICIER);
265 readb(riic->base + RIIC_ICIER);
267 complete(&riic->msg_done);
269 return IRQ_HANDLED;
272 static u32 riic_func(struct i2c_adapter *adap)
274 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
277 static const struct i2c_algorithm riic_algo = {
278 .master_xfer = riic_xfer,
279 .functionality = riic_func,
282 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
284 int ret = 0;
285 unsigned long rate;
286 int total_ticks, cks, brl, brh;
288 pm_runtime_get_sync(riic->adapter.dev.parent);
290 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) {
291 dev_err(&riic->adapter.dev,
292 "unsupported bus speed (%dHz). %d max\n",
293 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ);
294 ret = -EINVAL;
295 goto out;
298 rate = clk_get_rate(riic->clk);
301 * Assume the default register settings:
302 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
303 * FER.NFE = 1 (noise circuit enabled)
304 * MR3.NF = 0 (1 cycle of noise filtered out)
306 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
307 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
311 * Determine reference clock rate. We must be able to get the desired
312 * frequency with only 62 clock ticks max (31 high, 31 low).
313 * Aim for a duty of 60% LOW, 40% HIGH.
315 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz);
317 for (cks = 0; cks < 7; cks++) {
319 * 60% low time must be less than BRL + 2 + 1
320 * BRL max register value is 0x1F.
322 brl = ((total_ticks * 6) / 10);
323 if (brl <= (0x1F + 3))
324 break;
326 total_ticks /= 2;
327 rate /= 2;
330 if (brl > (0x1F + 3)) {
331 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
332 (unsigned long)t->bus_freq_hz);
333 ret = -EINVAL;
334 goto out;
337 brh = total_ticks - brl;
339 /* Remove automatic clock ticks for sync circuit and NF */
340 if (cks == 0) {
341 brl -= 4;
342 brh -= 4;
343 } else {
344 brl -= 3;
345 brh -= 3;
349 * Remove clock ticks for rise and fall times. Convert ns to clock
350 * ticks.
352 brl -= t->scl_fall_ns / (1000000000 / rate);
353 brh -= t->scl_rise_ns / (1000000000 / rate);
355 /* Adjust for min register values for when SCLE=1 and NFE=1 */
356 if (brl < 1)
357 brl = 1;
358 if (brh < 1)
359 brh = 1;
361 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
362 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
363 t->scl_fall_ns / (1000000000 / rate),
364 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
366 /* Changing the order of accessing IICRST and ICE may break things! */
367 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
368 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
370 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
371 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
372 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
374 writeb(0, riic->base + RIIC_ICSER);
375 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
377 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
379 out:
380 pm_runtime_put(riic->adapter.dev.parent);
381 return ret;
384 static struct riic_irq_desc riic_irqs[] = {
385 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
386 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
387 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
388 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
389 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
392 static int riic_i2c_probe(struct platform_device *pdev)
394 struct riic_dev *riic;
395 struct i2c_adapter *adap;
396 struct resource *res;
397 struct i2c_timings i2c_t;
398 int i, ret;
400 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
401 if (!riic)
402 return -ENOMEM;
404 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
405 riic->base = devm_ioremap_resource(&pdev->dev, res);
406 if (IS_ERR(riic->base))
407 return PTR_ERR(riic->base);
409 riic->clk = devm_clk_get(&pdev->dev, NULL);
410 if (IS_ERR(riic->clk)) {
411 dev_err(&pdev->dev, "missing controller clock");
412 return PTR_ERR(riic->clk);
415 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
416 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
417 if (!res)
418 return -ENODEV;
420 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
421 0, riic_irqs[i].name, riic);
422 if (ret) {
423 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
424 return ret;
428 adap = &riic->adapter;
429 i2c_set_adapdata(adap, riic);
430 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
431 adap->owner = THIS_MODULE;
432 adap->algo = &riic_algo;
433 adap->dev.parent = &pdev->dev;
434 adap->dev.of_node = pdev->dev.of_node;
436 init_completion(&riic->msg_done);
438 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
440 pm_runtime_enable(&pdev->dev);
442 ret = riic_init_hw(riic, &i2c_t);
443 if (ret)
444 goto out;
446 ret = i2c_add_adapter(adap);
447 if (ret)
448 goto out;
450 platform_set_drvdata(pdev, riic);
452 dev_info(&pdev->dev, "registered with %dHz bus speed\n",
453 i2c_t.bus_freq_hz);
454 return 0;
456 out:
457 pm_runtime_disable(&pdev->dev);
458 return ret;
461 static int riic_i2c_remove(struct platform_device *pdev)
463 struct riic_dev *riic = platform_get_drvdata(pdev);
465 pm_runtime_get_sync(&pdev->dev);
466 writeb(0, riic->base + RIIC_ICIER);
467 pm_runtime_put(&pdev->dev);
468 i2c_del_adapter(&riic->adapter);
469 pm_runtime_disable(&pdev->dev);
471 return 0;
474 static const struct of_device_id riic_i2c_dt_ids[] = {
475 { .compatible = "renesas,riic-rz" },
476 { /* Sentinel */ },
479 static struct platform_driver riic_i2c_driver = {
480 .probe = riic_i2c_probe,
481 .remove = riic_i2c_remove,
482 .driver = {
483 .name = "i2c-riic",
484 .of_match_table = riic_i2c_dt_ids,
488 module_platform_driver(riic_i2c_driver);
490 MODULE_DESCRIPTION("Renesas RIIC adapter");
491 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
492 MODULE_LICENSE("GPL v2");
493 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);