Merge branch 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / spi / spi-fsi.c
blob37a3e0f8e7526a484e7ce2182b90abfef97b4222
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
13 #define FSI_ENGID_SPI 0x23
14 #define FSI_MBOX_ROOT_CTRL_8 0x2860
16 #define FSI2SPI_DATA0 0x00
17 #define FSI2SPI_DATA1 0x04
18 #define FSI2SPI_CMD 0x08
19 #define FSI2SPI_CMD_WRITE BIT(31)
20 #define FSI2SPI_RESET 0x18
21 #define FSI2SPI_STATUS 0x1c
22 #define FSI2SPI_STATUS_ANY_ERROR BIT(31)
23 #define FSI2SPI_IRQ 0x20
25 #define SPI_FSI_BASE 0x70000
26 #define SPI_FSI_INIT_TIMEOUT_MS 1000
27 #define SPI_FSI_MAX_TRANSFER_SIZE 2048
29 #define SPI_FSI_ERROR 0x0
30 #define SPI_FSI_COUNTER_CFG 0x1
31 #define SPI_FSI_COUNTER_CFG_LOOPS(x) (((u64)(x) & 0xffULL) << 32)
32 #define SPI_FSI_CFG1 0x2
33 #define SPI_FSI_CLOCK_CFG 0x3
34 #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32)
35 #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33))
36 #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38))
37 #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39))
38 #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42))
39 #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44)
40 #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51)
41 #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52)
42 #define SPI_FSI_MMAP 0x4
43 #define SPI_FSI_DATA_TX 0x5
44 #define SPI_FSI_DATA_RX 0x6
45 #define SPI_FSI_SEQUENCE 0x7
46 #define SPI_FSI_SEQUENCE_STOP 0x00
47 #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf))
48 #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf))
49 #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf))
50 #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0
51 #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf))
52 #define SPI_FSI_STATUS 0x8
53 #define SPI_FSI_STATUS_ERROR \
54 (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
55 #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48)
56 #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48)
57 #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57)
58 #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58)
59 #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59)
60 #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61)
61 #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62)
62 #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63)
63 #define SPI_FSI_STATUS_ANY_ERROR \
64 (SPI_FSI_STATUS_ERROR | SPI_FSI_STATUS_TDR_UNDERRUN | \
65 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
66 SPI_FSI_STATUS_RDR_OVERRUN)
67 #define SPI_FSI_PORT_CTRL 0x9
69 struct fsi_spi {
70 struct device *dev; /* SPI controller device */
71 struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
72 u32 base;
75 struct fsi_spi_sequence {
76 int bit;
77 u64 data;
80 static int fsi_spi_check_status(struct fsi_spi *ctx)
82 int rc;
83 u32 sts;
84 __be32 sts_be;
86 rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
87 sizeof(sts_be));
88 if (rc)
89 return rc;
91 sts = be32_to_cpu(sts_be);
92 if (sts & FSI2SPI_STATUS_ANY_ERROR) {
93 dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
94 return -EIO;
97 return 0;
100 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
102 int rc;
103 __be32 cmd_be;
104 __be32 data_be;
105 u32 cmd = offset + ctx->base;
107 *value = 0ULL;
109 if (cmd & FSI2SPI_CMD_WRITE)
110 return -EINVAL;
112 cmd_be = cpu_to_be32(cmd);
113 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
114 if (rc)
115 return rc;
117 rc = fsi_spi_check_status(ctx);
118 if (rc)
119 return rc;
121 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
122 sizeof(data_be));
123 if (rc)
124 return rc;
126 *value |= (u64)be32_to_cpu(data_be) << 32;
128 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
129 sizeof(data_be));
130 if (rc)
131 return rc;
133 *value |= (u64)be32_to_cpu(data_be);
134 dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
136 return 0;
139 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
141 int rc;
142 __be32 cmd_be;
143 __be32 data_be;
144 u32 cmd = offset + ctx->base;
146 if (cmd & FSI2SPI_CMD_WRITE)
147 return -EINVAL;
149 dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
151 data_be = cpu_to_be32(upper_32_bits(value));
152 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
153 sizeof(data_be));
154 if (rc)
155 return rc;
157 data_be = cpu_to_be32(lower_32_bits(value));
158 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
159 sizeof(data_be));
160 if (rc)
161 return rc;
163 cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
164 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
165 if (rc)
166 return rc;
168 return fsi_spi_check_status(ctx);
171 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
173 int i;
174 int num_bytes = min(len, 8);
176 for (i = 0; i < num_bytes; ++i)
177 rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
179 return num_bytes;
182 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
184 int i;
185 int num_bytes = min(len, 8);
186 u8 *out_bytes = (u8 *)out;
188 /* Unused bytes of the tx data should be 0. */
189 *out = 0ULL;
191 for (i = 0; i < num_bytes; ++i)
192 out_bytes[8 - (i + 1)] = tx[i];
194 return num_bytes;
197 static int fsi_spi_reset(struct fsi_spi *ctx)
199 int rc;
201 dev_dbg(ctx->dev, "Resetting SPI controller.\n");
203 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
204 SPI_FSI_CLOCK_CFG_RESET1);
205 if (rc)
206 return rc;
208 return fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
209 SPI_FSI_CLOCK_CFG_RESET2);
212 static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
215 * Add the next byte of instruction to the 8-byte sequence register.
216 * Then decrement the counter so that the next instruction will go in
217 * the right place. Return the number of "slots" left in the sequence
218 * register.
220 seq->data |= (u64)val << seq->bit;
221 seq->bit -= 8;
223 return ((64 - seq->bit) / 8) - 2;
226 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
228 seq->bit = 56;
229 seq->data = 0ULL;
232 static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
233 struct fsi_spi_sequence *seq,
234 struct spi_transfer *transfer)
236 int loops;
237 int idx;
238 int rc;
239 u8 len = min(transfer->len, 8U);
240 u8 rem = transfer->len % len;
242 loops = transfer->len / len;
244 if (transfer->tx_buf) {
245 idx = fsi_spi_sequence_add(seq,
246 SPI_FSI_SEQUENCE_SHIFT_OUT(len));
247 if (rem)
248 rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
249 } else if (transfer->rx_buf) {
250 idx = fsi_spi_sequence_add(seq,
251 SPI_FSI_SEQUENCE_SHIFT_IN(len));
252 if (rem)
253 rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
254 } else {
255 return -EINVAL;
258 if (loops > 1) {
259 fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
261 if (rem)
262 fsi_spi_sequence_add(seq, rem);
264 rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG,
265 SPI_FSI_COUNTER_CFG_LOOPS(loops - 1));
266 if (rc)
267 return rc;
270 return 0;
273 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
274 struct spi_transfer *transfer)
276 int rc = 0;
277 u64 status = 0ULL;
279 if (transfer->tx_buf) {
280 int nb;
281 int sent = 0;
282 u64 out = 0ULL;
283 const u8 *tx = transfer->tx_buf;
285 while (transfer->len > sent) {
286 nb = fsi_spi_data_out(&out, &tx[sent],
287 (int)transfer->len - sent);
289 rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
290 if (rc)
291 return rc;
293 do {
294 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
295 &status);
296 if (rc)
297 return rc;
299 if (status & SPI_FSI_STATUS_ANY_ERROR) {
300 rc = fsi_spi_reset(ctx);
301 if (rc)
302 return rc;
304 return -EREMOTEIO;
306 } while (status & SPI_FSI_STATUS_TDR_FULL);
308 sent += nb;
310 } else if (transfer->rx_buf) {
311 int recv = 0;
312 u64 in = 0ULL;
313 u8 *rx = transfer->rx_buf;
315 while (transfer->len > recv) {
316 do {
317 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
318 &status);
319 if (rc)
320 return rc;
322 if (status & SPI_FSI_STATUS_ANY_ERROR) {
323 rc = fsi_spi_reset(ctx);
324 if (rc)
325 return rc;
327 return -EREMOTEIO;
329 } while (!(status & SPI_FSI_STATUS_RDR_FULL));
331 rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
332 if (rc)
333 return rc;
335 recv += fsi_spi_data_in(in, &rx[recv],
336 (int)transfer->len - recv);
340 return 0;
343 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
345 int rc;
346 bool reset = false;
347 unsigned long end;
348 u64 seq_state;
349 u64 clock_cfg = 0ULL;
350 u64 status = 0ULL;
351 u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
352 SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
353 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 4);
355 end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
356 do {
357 if (time_after(jiffies, end))
358 return -ETIMEDOUT;
360 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
361 if (rc)
362 return rc;
364 seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
366 if (status & (SPI_FSI_STATUS_ANY_ERROR |
367 SPI_FSI_STATUS_TDR_FULL |
368 SPI_FSI_STATUS_RDR_FULL)) {
369 if (reset)
370 return -EIO;
372 rc = fsi_spi_reset(ctx);
373 if (rc)
374 return rc;
376 reset = true;
377 continue;
379 } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
381 rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
382 if (rc)
383 return rc;
385 if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
386 SPI_FSI_CLOCK_CFG_ECC_DISABLE |
387 SPI_FSI_CLOCK_CFG_MODE |
388 SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
389 SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
390 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
391 wanted_clock_cfg);
393 return rc;
396 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
397 struct spi_message *mesg)
399 int rc = 0;
400 u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
401 struct spi_transfer *transfer;
402 struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
404 list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
405 struct fsi_spi_sequence seq;
406 struct spi_transfer *next = NULL;
408 /* Sequencer must do shift out (tx) first. */
409 if (!transfer->tx_buf ||
410 transfer->len > SPI_FSI_MAX_TRANSFER_SIZE) {
411 rc = -EINVAL;
412 goto error;
415 dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
417 rc = fsi_spi_transfer_init(ctx);
418 if (rc < 0)
419 goto error;
421 fsi_spi_sequence_init(&seq);
422 fsi_spi_sequence_add(&seq, seq_slave);
424 rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
425 if (rc)
426 goto error;
428 if (!list_is_last(&transfer->transfer_list,
429 &mesg->transfers)) {
430 next = list_next_entry(transfer, transfer_list);
432 /* Sequencer can only do shift in (rx) after tx. */
433 if (next->rx_buf) {
434 if (next->len > SPI_FSI_MAX_TRANSFER_SIZE) {
435 rc = -EINVAL;
436 goto error;
439 dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
440 next->len);
442 rc = fsi_spi_sequence_transfer(ctx, &seq,
443 next);
444 if (rc)
445 goto error;
446 } else {
447 next = NULL;
451 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
453 rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
454 if (rc)
455 goto error;
457 rc = fsi_spi_transfer_data(ctx, transfer);
458 if (rc)
459 goto error;
461 if (next) {
462 rc = fsi_spi_transfer_data(ctx, next);
463 if (rc)
464 goto error;
466 transfer = next;
470 error:
471 mesg->status = rc;
472 spi_finalize_current_message(ctlr);
474 return rc;
477 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
479 return SPI_FSI_MAX_TRANSFER_SIZE;
482 static int fsi_spi_probe(struct device *dev)
484 int rc;
485 u32 root_ctrl_8;
486 struct device_node *np;
487 int num_controllers_registered = 0;
488 struct fsi_device *fsi = to_fsi_dev(dev);
491 * Check the SPI mux before attempting to probe. If the mux isn't set
492 * then the SPI controllers can't access their slave devices.
494 rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8,
495 sizeof(root_ctrl_8));
496 if (rc)
497 return rc;
499 if (!root_ctrl_8) {
500 dev_dbg(dev, "SPI mux not set, aborting probe.\n");
501 return -ENODEV;
504 for_each_available_child_of_node(dev->of_node, np) {
505 u32 base;
506 struct fsi_spi *ctx;
507 struct spi_controller *ctlr;
509 if (of_property_read_u32(np, "reg", &base))
510 continue;
512 ctlr = spi_alloc_master(dev, sizeof(*ctx));
513 if (!ctlr)
514 break;
516 ctlr->dev.of_node = np;
517 ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
518 ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
519 ctlr->max_transfer_size = fsi_spi_max_transfer_size;
520 ctlr->transfer_one_message = fsi_spi_transfer_one_message;
522 ctx = spi_controller_get_devdata(ctlr);
523 ctx->dev = &ctlr->dev;
524 ctx->fsi = fsi;
525 ctx->base = base + SPI_FSI_BASE;
527 rc = devm_spi_register_controller(dev, ctlr);
528 if (rc)
529 spi_controller_put(ctlr);
530 else
531 num_controllers_registered++;
534 if (!num_controllers_registered)
535 return -ENODEV;
537 return 0;
540 static const struct fsi_device_id fsi_spi_ids[] = {
541 { FSI_ENGID_SPI, FSI_VERSION_ANY },
544 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
546 static struct fsi_driver fsi_spi_driver = {
547 .id_table = fsi_spi_ids,
548 .drv = {
549 .name = "spi-fsi",
550 .bus = &fsi_bus_type,
551 .probe = fsi_spi_probe,
554 module_fsi_driver(fsi_spi_driver);
556 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
557 MODULE_DESCRIPTION("FSI attached SPI controller");
558 MODULE_LICENSE("GPL");