vmware: fix build error in vmware.c
[linux/fpc-iii.git] / mm / page_alloc.c
blob9bd339eb04c6c84691232bc7e499947fe9d13942
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
77 * Array of node states.
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
90 EXPORT_SYMBOL(node_states);
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
106 void set_gfp_allowed_mask(gfp_t mask)
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
114 gfp_t ret = gfp_allowed_mask;
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
120 #endif /* CONFIG_PM_SLEEP */
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
126 static void __free_pages_ok(struct page *page, unsigned int order);
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
148 #endif
152 EXPORT_SYMBOL(totalram_pages);
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 "DMA32",
160 #endif
161 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 "HighMem",
164 #endif
165 "Movable",
168 int min_free_kbytes = 1024;
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __initdata required_kernelcore;
200 static unsigned long __initdata required_movablecore;
201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
215 int page_group_by_mobility_disabled __read_mostly;
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
227 bool oom_killer_disabled __read_mostly;
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
244 return ret;
247 static int page_is_consistent(struct zone *zone, struct page *page)
249 if (!pfn_valid_within(page_to_pfn(page)))
250 return 0;
251 if (zone != page_zone(page))
252 return 0;
254 return 1;
257 * Temporary debugging check for pages not lying within a given zone.
259 static int bad_range(struct zone *zone, struct page *page)
261 if (page_outside_zone_boundaries(zone, page))
262 return 1;
263 if (!page_is_consistent(zone, page))
264 return 1;
266 return 0;
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
271 return 0;
273 #endif
275 static void bad_page(struct page *page)
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
296 if (nr_unshown) {
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
299 nr_unshown);
300 nr_unshown = 0;
302 nr_shown = 0;
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
308 current->comm, page_to_pfn(page));
309 dump_page(page);
311 dump_stack();
312 out:
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
315 add_taint(TAINT_BAD_PAGE);
319 * Higher-order pages are called "compound pages". They are structured thusly:
321 * The first PAGE_SIZE page is called the "head page".
323 * The remaining PAGE_SIZE pages are called "tail pages".
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
333 static void free_compound_page(struct page *page)
335 __free_pages_ok(page, compound_order(page));
338 void prep_compound_page(struct page *page, unsigned long order)
340 int i;
341 int nr_pages = 1 << order;
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
349 __SetPageTail(p);
350 p->first_page = page;
354 static int destroy_compound_page(struct page *page, unsigned long order)
356 int i;
357 int nr_pages = 1 << order;
358 int bad = 0;
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
362 bad_page(page);
363 bad++;
366 __ClearPageHead(page);
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 bad_page(page);
373 bad++;
375 __ClearPageTail(p);
378 return bad;
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
383 int i;
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
394 static inline void set_page_order(struct page *page, int order)
396 set_page_private(page, order);
397 __SetPageBuddy(page);
400 static inline void rmv_page_order(struct page *page)
402 __ClearPageBuddy(page);
403 set_page_private(page, 0);
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
426 unsigned long buddy_idx = page_idx ^ (1 << order);
428 return page + (buddy_idx - page_idx);
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
434 return (page_idx & ~(1 << order));
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
463 return 0;
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
487 * -- wli
490 static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 struct page *buddy;
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
502 VM_BUG_ON(migratetype == -1);
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
509 while (order < MAX_ORDER-1) {
510 buddy = __page_find_buddy(page, page_idx, order);
511 if (!page_is_buddy(page, buddy, order))
512 break;
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy->lru);
516 zone->free_area[order].nr_free--;
517 rmv_page_order(buddy);
518 combined_idx = __find_combined_index(page_idx, order);
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
523 set_page_order(page, order);
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 zone->free_area[order].nr_free++;
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
555 static inline void free_page_mlock(struct page *page)
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561 static inline int free_pages_check(struct page *page)
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
565 (atomic_read(&page->_count) != 0) |
566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 bad_page(page);
568 return 1;
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
589 int migratetype = 0;
590 int batch_free = 0;
592 spin_lock(&zone->lock);
593 zone->all_unreclaimable = 0;
594 zone->pages_scanned = 0;
596 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
597 while (count) {
598 struct page *page;
599 struct list_head *list;
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
608 do {
609 batch_free++;
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 } while (--count && --batch_free && !list_empty(list));
624 spin_unlock(&zone->lock);
627 static void free_one_page(struct zone *zone, struct page *page, int order,
628 int migratetype)
630 spin_lock(&zone->lock);
631 zone->all_unreclaimable = 0;
632 zone->pages_scanned = 0;
634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
635 __free_one_page(page, zone, order, migratetype);
636 spin_unlock(&zone->lock);
639 static bool free_pages_prepare(struct page *page, unsigned int order)
641 int i;
642 int bad = 0;
644 trace_mm_page_free_direct(page, order);
645 kmemcheck_free_shadow(page, order);
647 for (i = 0; i < (1 << order); i++) {
648 struct page *pg = page + i;
650 if (PageAnon(pg))
651 pg->mapping = NULL;
652 bad += free_pages_check(pg);
654 if (bad)
655 return false;
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
665 return true;
668 static void __free_pages_ok(struct page *page, unsigned int order)
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
673 if (!free_pages_prepare(page, order))
674 return;
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
708 set_page_refcounted(page);
709 __free_pages(page, order);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
726 * -- wli
728 static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
732 unsigned long size = 1 << high;
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page *page)
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
757 return 0;
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762 int i;
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
770 set_page_private(page, 0);
771 set_page_refcounted(page);
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
782 return 0;
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
812 return NULL;
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
873 return pages_moved;
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
894 return move_freepages(zone, start_page, end_page, migratetype);
897 static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
954 migratetype = start_migratetype;
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
966 expand(zone, page, order, current_order, area, migratetype);
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
971 return page;
975 return NULL;
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
985 struct page *page;
987 retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1017 int i;
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1046 #ifdef CONFIG_NUMA
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1057 unsigned long flags;
1058 int to_drain;
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1069 #endif
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1078 static void drain_pages(unsigned int cpu)
1080 unsigned long flags;
1081 struct zone *zone;
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1090 pcp = &pset->pcp;
1091 free_pcppages_bulk(zone, pcp->count, pcp);
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 void drain_local_pages(void *arg)
1102 drain_pages(smp_processor_id());
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 void drain_all_pages(void)
1110 on_each_cpu(drain_local_pages, NULL, 1);
1113 #ifdef CONFIG_HIBERNATION
1115 void mark_free_pages(struct zone *zone)
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
1119 int order, t;
1120 struct list_head *curr;
1122 if (!zone->spanned_pages)
1123 return;
1125 spin_lock_irqsave(&zone->lock, flags);
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 unsigned long i;
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
1142 swsusp_set_page_free(pfn_to_page(pfn + i));
1145 spin_unlock_irqrestore(&zone->lock, flags);
1147 #endif /* CONFIG_PM */
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1153 void free_hot_cold_page(struct page *page, int cold)
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
1158 int migratetype;
1159 int wasMlocked = __TestClearPageMlocked(page);
1161 if (!free_pages_prepare(page, 0))
1162 return;
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1166 local_irq_save(flags);
1167 if (unlikely(wasMlocked))
1168 free_page_mlock(page);
1169 __count_vm_event(PGFREE);
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1183 migratetype = MIGRATE_MOVABLE;
1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 if (cold)
1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 else
1190 list_add(&page->lru, &pcp->lists[migratetype]);
1191 pcp->count++;
1192 if (pcp->count >= pcp->high) {
1193 free_pcppages_bulk(zone, pcp->batch, pcp);
1194 pcp->count -= pcp->batch;
1197 out:
1198 local_irq_restore(flags);
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1209 void split_page(struct page *page, unsigned int order)
1211 int i;
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
1216 #ifdef CONFIG_KMEMCHECK
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1239 int split_free_page(struct page *page)
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1245 BUG_ON(!PageBuddy(page));
1247 zone = page_zone(page);
1248 order = page_order(page);
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 return 1 << order;
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1284 unsigned long flags;
1285 struct page *page;
1286 int cold = !!(gfp_flags & __GFP_COLD);
1288 again:
1289 if (likely(order == 0)) {
1290 struct per_cpu_pages *pcp;
1291 struct list_head *list;
1293 local_irq_save(flags);
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
1296 if (list_empty(list)) {
1297 pcp->count += rmqueue_bulk(zone, 0,
1298 pcp->batch, list,
1299 migratetype, cold);
1300 if (unlikely(list_empty(list)))
1301 goto failed;
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1309 list_del(&page->lru);
1310 pcp->count--;
1311 } else {
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 * __GFP_NOFAIL is not to be used in new code.
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1321 * __GFP_NOFAIL.
1323 WARN_ON_ONCE(order > 1);
1325 spin_lock_irqsave(&zone->lock, flags);
1326 page = __rmqueue(zone, order, migratetype);
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 zone_statistics(preferred_zone, zone);
1335 local_irq_restore(flags);
1337 VM_BUG_ON(bad_range(zone, page));
1338 if (prep_new_page(page, order, gfp_flags))
1339 goto again;
1340 return page;
1342 failed:
1343 local_irq_restore(flags);
1344 return NULL;
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
1367 u32 min_order;
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
1373 struct dentry *min_order_file;
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 } fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
1381 .min_order = 1,
1384 static int __init setup_fail_page_alloc(char *str)
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 static int __init fail_page_alloc_debugfs(void)
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 debugfs_remove(fail_page_alloc.min_order_file);
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 return err;
1442 late_initcall(fail_page_alloc_debugfs);
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450 return 0;
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags)
1462 /* free_pages my go negative - that's OK */
1463 long min = mark;
1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1465 int o;
1467 if (alloc_flags & ALLOC_HIGH)
1468 min -= min / 2;
1469 if (alloc_flags & ALLOC_HARDER)
1470 min -= min / 4;
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return 0;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1481 if (free_pages <= min)
1482 return 0;
1484 return 1;
1487 #ifdef CONFIG_NUMA
1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full. See further
1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1493 * that have to skip over a lot of full or unallowed zones.
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1513 nodemask_t *allowednodes; /* zonelist_cache approximation */
1515 zlc = zonelist->zlcache_ptr;
1516 if (!zlc)
1517 return NULL;
1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521 zlc->last_full_zap = jiffies;
1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525 &cpuset_current_mems_allowed :
1526 &node_states[N_HIGH_MEMORY];
1527 return allowednodes;
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 * 1) Check that the zone isn't thought to be full (doesn't have its
1534 * bit set in the zonelist_cache fullzones BITMAP).
1535 * 2) Check that the zones node (obtained from the zonelist_cache
1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1553 nodemask_t *allowednodes)
1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1556 int i; /* index of *z in zonelist zones */
1557 int n; /* node that zone *z is on */
1559 zlc = zonelist->zlcache_ptr;
1560 if (!zlc)
1561 return 1;
1563 i = z - zonelist->_zonerefs;
1564 n = zlc->z_to_n[i];
1566 /* This zone is worth trying if it is allowed but not full */
1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1578 int i; /* index of *z in zonelist zones */
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return;
1584 i = z - zonelist->_zonerefs;
1586 set_bit(i, zlc->fullzones);
1589 #else /* CONFIG_NUMA */
1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1593 return NULL;
1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1597 nodemask_t *allowednodes)
1599 return 1;
1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1605 #endif /* CONFIG_NUMA */
1608 * get_page_from_freelist goes through the zonelist trying to allocate
1609 * a page.
1611 static struct page *
1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1614 struct zone *preferred_zone, int migratetype)
1616 struct zoneref *z;
1617 struct page *page = NULL;
1618 int classzone_idx;
1619 struct zone *zone;
1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621 int zlc_active = 0; /* set if using zonelist_cache */
1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1624 classzone_idx = zone_idx(preferred_zone);
1625 zonelist_scan:
1627 * Scan zonelist, looking for a zone with enough free.
1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631 high_zoneidx, nodemask) {
1632 if (NUMA_BUILD && zlc_active &&
1633 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1634 continue;
1635 if ((alloc_flags & ALLOC_CPUSET) &&
1636 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1637 goto try_next_zone;
1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1641 unsigned long mark;
1642 int ret;
1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1645 if (zone_watermark_ok(zone, order, mark,
1646 classzone_idx, alloc_flags))
1647 goto try_this_zone;
1649 if (zone_reclaim_mode == 0)
1650 goto this_zone_full;
1652 ret = zone_reclaim(zone, gfp_mask, order);
1653 switch (ret) {
1654 case ZONE_RECLAIM_NOSCAN:
1655 /* did not scan */
1656 goto try_next_zone;
1657 case ZONE_RECLAIM_FULL:
1658 /* scanned but unreclaimable */
1659 goto this_zone_full;
1660 default:
1661 /* did we reclaim enough */
1662 if (!zone_watermark_ok(zone, order, mark,
1663 classzone_idx, alloc_flags))
1664 goto this_zone_full;
1668 try_this_zone:
1669 page = buffered_rmqueue(preferred_zone, zone, order,
1670 gfp_mask, migratetype);
1671 if (page)
1672 break;
1673 this_zone_full:
1674 if (NUMA_BUILD)
1675 zlc_mark_zone_full(zonelist, z);
1676 try_next_zone:
1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1679 * we do zlc_setup after the first zone is tried but only
1680 * if there are multiple nodes make it worthwhile
1682 allowednodes = zlc_setup(zonelist, alloc_flags);
1683 zlc_active = 1;
1684 did_zlc_setup = 1;
1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689 /* Disable zlc cache for second zonelist scan */
1690 zlc_active = 0;
1691 goto zonelist_scan;
1693 return page;
1696 static inline int
1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698 unsigned long pages_reclaimed)
1700 /* Do not loop if specifically requested */
1701 if (gfp_mask & __GFP_NORETRY)
1702 return 0;
1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 * means __GFP_NOFAIL, but that may not be true in other
1707 * implementations.
1709 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710 return 1;
1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 * specified, then we retry until we no longer reclaim any pages
1715 * (above), or we've reclaimed an order of pages at least as
1716 * large as the allocation's order. In both cases, if the
1717 * allocation still fails, we stop retrying.
1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720 return 1;
1723 * Don't let big-order allocations loop unless the caller
1724 * explicitly requests that.
1726 if (gfp_mask & __GFP_NOFAIL)
1727 return 1;
1729 return 0;
1732 static inline struct page *
1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734 struct zonelist *zonelist, enum zone_type high_zoneidx,
1735 nodemask_t *nodemask, struct zone *preferred_zone,
1736 int migratetype)
1738 struct page *page;
1740 /* Acquire the OOM killer lock for the zones in zonelist */
1741 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1742 schedule_timeout_uninterruptible(1);
1743 return NULL;
1747 * Go through the zonelist yet one more time, keep very high watermark
1748 * here, this is only to catch a parallel oom killing, we must fail if
1749 * we're still under heavy pressure.
1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752 order, zonelist, high_zoneidx,
1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1754 preferred_zone, migratetype);
1755 if (page)
1756 goto out;
1758 if (!(gfp_mask & __GFP_NOFAIL)) {
1759 /* The OOM killer will not help higher order allocs */
1760 if (order > PAGE_ALLOC_COSTLY_ORDER)
1761 goto out;
1763 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765 * The caller should handle page allocation failure by itself if
1766 * it specifies __GFP_THISNODE.
1767 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1769 if (gfp_mask & __GFP_THISNODE)
1770 goto out;
1772 /* Exhausted what can be done so it's blamo time */
1773 out_of_memory(zonelist, gfp_mask, order, nodemask);
1775 out:
1776 clear_zonelist_oom(zonelist, gfp_mask);
1777 return page;
1780 #ifdef CONFIG_COMPACTION
1781 /* Try memory compaction for high-order allocations before reclaim */
1782 static struct page *
1783 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1784 struct zonelist *zonelist, enum zone_type high_zoneidx,
1785 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1786 int migratetype, unsigned long *did_some_progress)
1788 struct page *page;
1790 if (!order || compaction_deferred(preferred_zone))
1791 return NULL;
1793 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1794 nodemask);
1795 if (*did_some_progress != COMPACT_SKIPPED) {
1797 /* Page migration frees to the PCP lists but we want merging */
1798 drain_pages(get_cpu());
1799 put_cpu();
1801 page = get_page_from_freelist(gfp_mask, nodemask,
1802 order, zonelist, high_zoneidx,
1803 alloc_flags, preferred_zone,
1804 migratetype);
1805 if (page) {
1806 preferred_zone->compact_considered = 0;
1807 preferred_zone->compact_defer_shift = 0;
1808 count_vm_event(COMPACTSUCCESS);
1809 return page;
1813 * It's bad if compaction run occurs and fails.
1814 * The most likely reason is that pages exist,
1815 * but not enough to satisfy watermarks.
1817 count_vm_event(COMPACTFAIL);
1818 defer_compaction(preferred_zone);
1820 cond_resched();
1823 return NULL;
1825 #else
1826 static inline struct page *
1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828 struct zonelist *zonelist, enum zone_type high_zoneidx,
1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830 int migratetype, unsigned long *did_some_progress)
1832 return NULL;
1834 #endif /* CONFIG_COMPACTION */
1836 /* The really slow allocator path where we enter direct reclaim */
1837 static inline struct page *
1838 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1839 struct zonelist *zonelist, enum zone_type high_zoneidx,
1840 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1841 int migratetype, unsigned long *did_some_progress)
1843 struct page *page = NULL;
1844 struct reclaim_state reclaim_state;
1845 struct task_struct *p = current;
1847 cond_resched();
1849 /* We now go into synchronous reclaim */
1850 cpuset_memory_pressure_bump();
1851 p->flags |= PF_MEMALLOC;
1852 lockdep_set_current_reclaim_state(gfp_mask);
1853 reclaim_state.reclaimed_slab = 0;
1854 p->reclaim_state = &reclaim_state;
1856 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1858 p->reclaim_state = NULL;
1859 lockdep_clear_current_reclaim_state();
1860 p->flags &= ~PF_MEMALLOC;
1862 cond_resched();
1864 if (order != 0)
1865 drain_all_pages();
1867 if (likely(*did_some_progress))
1868 page = get_page_from_freelist(gfp_mask, nodemask, order,
1869 zonelist, high_zoneidx,
1870 alloc_flags, preferred_zone,
1871 migratetype);
1872 return page;
1876 * This is called in the allocator slow-path if the allocation request is of
1877 * sufficient urgency to ignore watermarks and take other desperate measures
1879 static inline struct page *
1880 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1881 struct zonelist *zonelist, enum zone_type high_zoneidx,
1882 nodemask_t *nodemask, struct zone *preferred_zone,
1883 int migratetype)
1885 struct page *page;
1887 do {
1888 page = get_page_from_freelist(gfp_mask, nodemask, order,
1889 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1890 preferred_zone, migratetype);
1892 if (!page && gfp_mask & __GFP_NOFAIL)
1893 congestion_wait(BLK_RW_ASYNC, HZ/50);
1894 } while (!page && (gfp_mask & __GFP_NOFAIL));
1896 return page;
1899 static inline
1900 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1901 enum zone_type high_zoneidx)
1903 struct zoneref *z;
1904 struct zone *zone;
1906 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1907 wakeup_kswapd(zone, order);
1910 static inline int
1911 gfp_to_alloc_flags(gfp_t gfp_mask)
1913 struct task_struct *p = current;
1914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1915 const gfp_t wait = gfp_mask & __GFP_WAIT;
1917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1921 * The caller may dip into page reserves a bit more if the caller
1922 * cannot run direct reclaim, or if the caller has realtime scheduling
1923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1924 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1926 alloc_flags |= (gfp_mask & __GFP_HIGH);
1928 if (!wait) {
1929 alloc_flags |= ALLOC_HARDER;
1931 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1934 alloc_flags &= ~ALLOC_CPUSET;
1935 } else if (unlikely(rt_task(p)) && !in_interrupt())
1936 alloc_flags |= ALLOC_HARDER;
1938 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1939 if (!in_interrupt() &&
1940 ((p->flags & PF_MEMALLOC) ||
1941 unlikely(test_thread_flag(TIF_MEMDIE))))
1942 alloc_flags |= ALLOC_NO_WATERMARKS;
1945 return alloc_flags;
1948 static inline struct page *
1949 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1950 struct zonelist *zonelist, enum zone_type high_zoneidx,
1951 nodemask_t *nodemask, struct zone *preferred_zone,
1952 int migratetype)
1954 const gfp_t wait = gfp_mask & __GFP_WAIT;
1955 struct page *page = NULL;
1956 int alloc_flags;
1957 unsigned long pages_reclaimed = 0;
1958 unsigned long did_some_progress;
1959 struct task_struct *p = current;
1962 * In the slowpath, we sanity check order to avoid ever trying to
1963 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964 * be using allocators in order of preference for an area that is
1965 * too large.
1967 if (order >= MAX_ORDER) {
1968 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1969 return NULL;
1973 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976 * using a larger set of nodes after it has established that the
1977 * allowed per node queues are empty and that nodes are
1978 * over allocated.
1980 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1981 goto nopage;
1983 restart:
1984 wake_all_kswapd(order, zonelist, high_zoneidx);
1987 * OK, we're below the kswapd watermark and have kicked background
1988 * reclaim. Now things get more complex, so set up alloc_flags according
1989 * to how we want to proceed.
1991 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1993 /* This is the last chance, in general, before the goto nopage. */
1994 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1995 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1996 preferred_zone, migratetype);
1997 if (page)
1998 goto got_pg;
2000 rebalance:
2001 /* Allocate without watermarks if the context allows */
2002 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2003 page = __alloc_pages_high_priority(gfp_mask, order,
2004 zonelist, high_zoneidx, nodemask,
2005 preferred_zone, migratetype);
2006 if (page)
2007 goto got_pg;
2010 /* Atomic allocations - we can't balance anything */
2011 if (!wait)
2012 goto nopage;
2014 /* Avoid recursion of direct reclaim */
2015 if (p->flags & PF_MEMALLOC)
2016 goto nopage;
2018 /* Avoid allocations with no watermarks from looping endlessly */
2019 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2020 goto nopage;
2022 /* Try direct compaction */
2023 page = __alloc_pages_direct_compact(gfp_mask, order,
2024 zonelist, high_zoneidx,
2025 nodemask,
2026 alloc_flags, preferred_zone,
2027 migratetype, &did_some_progress);
2028 if (page)
2029 goto got_pg;
2031 /* Try direct reclaim and then allocating */
2032 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2033 zonelist, high_zoneidx,
2034 nodemask,
2035 alloc_flags, preferred_zone,
2036 migratetype, &did_some_progress);
2037 if (page)
2038 goto got_pg;
2041 * If we failed to make any progress reclaiming, then we are
2042 * running out of options and have to consider going OOM
2044 if (!did_some_progress) {
2045 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2046 if (oom_killer_disabled)
2047 goto nopage;
2048 page = __alloc_pages_may_oom(gfp_mask, order,
2049 zonelist, high_zoneidx,
2050 nodemask, preferred_zone,
2051 migratetype);
2052 if (page)
2053 goto got_pg;
2056 * The OOM killer does not trigger for high-order
2057 * ~__GFP_NOFAIL allocations so if no progress is being
2058 * made, there are no other options and retrying is
2059 * unlikely to help.
2061 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2062 !(gfp_mask & __GFP_NOFAIL))
2063 goto nopage;
2065 goto restart;
2069 /* Check if we should retry the allocation */
2070 pages_reclaimed += did_some_progress;
2071 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2072 /* Wait for some write requests to complete then retry */
2073 congestion_wait(BLK_RW_ASYNC, HZ/50);
2074 goto rebalance;
2077 nopage:
2078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2079 printk(KERN_WARNING "%s: page allocation failure."
2080 " order:%d, mode:0x%x\n",
2081 p->comm, order, gfp_mask);
2082 dump_stack();
2083 show_mem();
2085 return page;
2086 got_pg:
2087 if (kmemcheck_enabled)
2088 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2089 return page;
2094 * This is the 'heart' of the zoned buddy allocator.
2096 struct page *
2097 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2098 struct zonelist *zonelist, nodemask_t *nodemask)
2100 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2101 struct zone *preferred_zone;
2102 struct page *page;
2103 int migratetype = allocflags_to_migratetype(gfp_mask);
2105 gfp_mask &= gfp_allowed_mask;
2107 lockdep_trace_alloc(gfp_mask);
2109 might_sleep_if(gfp_mask & __GFP_WAIT);
2111 if (should_fail_alloc_page(gfp_mask, order))
2112 return NULL;
2115 * Check the zones suitable for the gfp_mask contain at least one
2116 * valid zone. It's possible to have an empty zonelist as a result
2117 * of GFP_THISNODE and a memoryless node
2119 if (unlikely(!zonelist->_zonerefs->zone))
2120 return NULL;
2122 get_mems_allowed();
2123 /* The preferred zone is used for statistics later */
2124 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2125 if (!preferred_zone) {
2126 put_mems_allowed();
2127 return NULL;
2130 /* First allocation attempt */
2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2132 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2133 preferred_zone, migratetype);
2134 if (unlikely(!page))
2135 page = __alloc_pages_slowpath(gfp_mask, order,
2136 zonelist, high_zoneidx, nodemask,
2137 preferred_zone, migratetype);
2138 put_mems_allowed();
2140 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2141 return page;
2143 EXPORT_SYMBOL(__alloc_pages_nodemask);
2146 * Common helper functions.
2148 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2150 struct page *page;
2153 * __get_free_pages() returns a 32-bit address, which cannot represent
2154 * a highmem page
2156 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2158 page = alloc_pages(gfp_mask, order);
2159 if (!page)
2160 return 0;
2161 return (unsigned long) page_address(page);
2163 EXPORT_SYMBOL(__get_free_pages);
2165 unsigned long get_zeroed_page(gfp_t gfp_mask)
2167 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2169 EXPORT_SYMBOL(get_zeroed_page);
2171 void __pagevec_free(struct pagevec *pvec)
2173 int i = pagevec_count(pvec);
2175 while (--i >= 0) {
2176 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2177 free_hot_cold_page(pvec->pages[i], pvec->cold);
2181 void __free_pages(struct page *page, unsigned int order)
2183 if (put_page_testzero(page)) {
2184 if (order == 0)
2185 free_hot_cold_page(page, 0);
2186 else
2187 __free_pages_ok(page, order);
2191 EXPORT_SYMBOL(__free_pages);
2193 void free_pages(unsigned long addr, unsigned int order)
2195 if (addr != 0) {
2196 VM_BUG_ON(!virt_addr_valid((void *)addr));
2197 __free_pages(virt_to_page((void *)addr), order);
2201 EXPORT_SYMBOL(free_pages);
2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205 * @size: the number of bytes to allocate
2206 * @gfp_mask: GFP flags for the allocation
2208 * This function is similar to alloc_pages(), except that it allocates the
2209 * minimum number of pages to satisfy the request. alloc_pages() can only
2210 * allocate memory in power-of-two pages.
2212 * This function is also limited by MAX_ORDER.
2214 * Memory allocated by this function must be released by free_pages_exact().
2216 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2218 unsigned int order = get_order(size);
2219 unsigned long addr;
2221 addr = __get_free_pages(gfp_mask, order);
2222 if (addr) {
2223 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2224 unsigned long used = addr + PAGE_ALIGN(size);
2226 split_page(virt_to_page((void *)addr), order);
2227 while (used < alloc_end) {
2228 free_page(used);
2229 used += PAGE_SIZE;
2233 return (void *)addr;
2235 EXPORT_SYMBOL(alloc_pages_exact);
2238 * free_pages_exact - release memory allocated via alloc_pages_exact()
2239 * @virt: the value returned by alloc_pages_exact.
2240 * @size: size of allocation, same value as passed to alloc_pages_exact().
2242 * Release the memory allocated by a previous call to alloc_pages_exact.
2244 void free_pages_exact(void *virt, size_t size)
2246 unsigned long addr = (unsigned long)virt;
2247 unsigned long end = addr + PAGE_ALIGN(size);
2249 while (addr < end) {
2250 free_page(addr);
2251 addr += PAGE_SIZE;
2254 EXPORT_SYMBOL(free_pages_exact);
2256 static unsigned int nr_free_zone_pages(int offset)
2258 struct zoneref *z;
2259 struct zone *zone;
2261 /* Just pick one node, since fallback list is circular */
2262 unsigned int sum = 0;
2264 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2266 for_each_zone_zonelist(zone, z, zonelist, offset) {
2267 unsigned long size = zone->present_pages;
2268 unsigned long high = high_wmark_pages(zone);
2269 if (size > high)
2270 sum += size - high;
2273 return sum;
2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2279 unsigned int nr_free_buffer_pages(void)
2281 return nr_free_zone_pages(gfp_zone(GFP_USER));
2283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2286 * Amount of free RAM allocatable within all zones
2288 unsigned int nr_free_pagecache_pages(void)
2290 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2293 static inline void show_node(struct zone *zone)
2295 if (NUMA_BUILD)
2296 printk("Node %d ", zone_to_nid(zone));
2299 void si_meminfo(struct sysinfo *val)
2301 val->totalram = totalram_pages;
2302 val->sharedram = 0;
2303 val->freeram = global_page_state(NR_FREE_PAGES);
2304 val->bufferram = nr_blockdev_pages();
2305 val->totalhigh = totalhigh_pages;
2306 val->freehigh = nr_free_highpages();
2307 val->mem_unit = PAGE_SIZE;
2310 EXPORT_SYMBOL(si_meminfo);
2312 #ifdef CONFIG_NUMA
2313 void si_meminfo_node(struct sysinfo *val, int nid)
2315 pg_data_t *pgdat = NODE_DATA(nid);
2317 val->totalram = pgdat->node_present_pages;
2318 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2319 #ifdef CONFIG_HIGHMEM
2320 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2321 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2322 NR_FREE_PAGES);
2323 #else
2324 val->totalhigh = 0;
2325 val->freehigh = 0;
2326 #endif
2327 val->mem_unit = PAGE_SIZE;
2329 #endif
2331 #define K(x) ((x) << (PAGE_SHIFT-10))
2334 * Show free area list (used inside shift_scroll-lock stuff)
2335 * We also calculate the percentage fragmentation. We do this by counting the
2336 * memory on each free list with the exception of the first item on the list.
2338 void show_free_areas(void)
2340 int cpu;
2341 struct zone *zone;
2343 for_each_populated_zone(zone) {
2344 show_node(zone);
2345 printk("%s per-cpu:\n", zone->name);
2347 for_each_online_cpu(cpu) {
2348 struct per_cpu_pageset *pageset;
2350 pageset = per_cpu_ptr(zone->pageset, cpu);
2352 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353 cpu, pageset->pcp.high,
2354 pageset->pcp.batch, pageset->pcp.count);
2358 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2360 " unevictable:%lu"
2361 " dirty:%lu writeback:%lu unstable:%lu\n"
2362 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2364 global_page_state(NR_ACTIVE_ANON),
2365 global_page_state(NR_INACTIVE_ANON),
2366 global_page_state(NR_ISOLATED_ANON),
2367 global_page_state(NR_ACTIVE_FILE),
2368 global_page_state(NR_INACTIVE_FILE),
2369 global_page_state(NR_ISOLATED_FILE),
2370 global_page_state(NR_UNEVICTABLE),
2371 global_page_state(NR_FILE_DIRTY),
2372 global_page_state(NR_WRITEBACK),
2373 global_page_state(NR_UNSTABLE_NFS),
2374 global_page_state(NR_FREE_PAGES),
2375 global_page_state(NR_SLAB_RECLAIMABLE),
2376 global_page_state(NR_SLAB_UNRECLAIMABLE),
2377 global_page_state(NR_FILE_MAPPED),
2378 global_page_state(NR_SHMEM),
2379 global_page_state(NR_PAGETABLE),
2380 global_page_state(NR_BOUNCE));
2382 for_each_populated_zone(zone) {
2383 int i;
2385 show_node(zone);
2386 printk("%s"
2387 " free:%lukB"
2388 " min:%lukB"
2389 " low:%lukB"
2390 " high:%lukB"
2391 " active_anon:%lukB"
2392 " inactive_anon:%lukB"
2393 " active_file:%lukB"
2394 " inactive_file:%lukB"
2395 " unevictable:%lukB"
2396 " isolated(anon):%lukB"
2397 " isolated(file):%lukB"
2398 " present:%lukB"
2399 " mlocked:%lukB"
2400 " dirty:%lukB"
2401 " writeback:%lukB"
2402 " mapped:%lukB"
2403 " shmem:%lukB"
2404 " slab_reclaimable:%lukB"
2405 " slab_unreclaimable:%lukB"
2406 " kernel_stack:%lukB"
2407 " pagetables:%lukB"
2408 " unstable:%lukB"
2409 " bounce:%lukB"
2410 " writeback_tmp:%lukB"
2411 " pages_scanned:%lu"
2412 " all_unreclaimable? %s"
2413 "\n",
2414 zone->name,
2415 K(zone_page_state(zone, NR_FREE_PAGES)),
2416 K(min_wmark_pages(zone)),
2417 K(low_wmark_pages(zone)),
2418 K(high_wmark_pages(zone)),
2419 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2420 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2421 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2422 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2423 K(zone_page_state(zone, NR_UNEVICTABLE)),
2424 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2425 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2426 K(zone->present_pages),
2427 K(zone_page_state(zone, NR_MLOCK)),
2428 K(zone_page_state(zone, NR_FILE_DIRTY)),
2429 K(zone_page_state(zone, NR_WRITEBACK)),
2430 K(zone_page_state(zone, NR_FILE_MAPPED)),
2431 K(zone_page_state(zone, NR_SHMEM)),
2432 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2433 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2434 zone_page_state(zone, NR_KERNEL_STACK) *
2435 THREAD_SIZE / 1024,
2436 K(zone_page_state(zone, NR_PAGETABLE)),
2437 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2438 K(zone_page_state(zone, NR_BOUNCE)),
2439 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2440 zone->pages_scanned,
2441 (zone->all_unreclaimable ? "yes" : "no")
2443 printk("lowmem_reserve[]:");
2444 for (i = 0; i < MAX_NR_ZONES; i++)
2445 printk(" %lu", zone->lowmem_reserve[i]);
2446 printk("\n");
2449 for_each_populated_zone(zone) {
2450 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2452 show_node(zone);
2453 printk("%s: ", zone->name);
2455 spin_lock_irqsave(&zone->lock, flags);
2456 for (order = 0; order < MAX_ORDER; order++) {
2457 nr[order] = zone->free_area[order].nr_free;
2458 total += nr[order] << order;
2460 spin_unlock_irqrestore(&zone->lock, flags);
2461 for (order = 0; order < MAX_ORDER; order++)
2462 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2463 printk("= %lukB\n", K(total));
2466 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2468 show_swap_cache_info();
2471 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2473 zoneref->zone = zone;
2474 zoneref->zone_idx = zone_idx(zone);
2478 * Builds allocation fallback zone lists.
2480 * Add all populated zones of a node to the zonelist.
2482 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2483 int nr_zones, enum zone_type zone_type)
2485 struct zone *zone;
2487 BUG_ON(zone_type >= MAX_NR_ZONES);
2488 zone_type++;
2490 do {
2491 zone_type--;
2492 zone = pgdat->node_zones + zone_type;
2493 if (populated_zone(zone)) {
2494 zoneref_set_zone(zone,
2495 &zonelist->_zonerefs[nr_zones++]);
2496 check_highest_zone(zone_type);
2499 } while (zone_type);
2500 return nr_zones;
2505 * zonelist_order:
2506 * 0 = automatic detection of better ordering.
2507 * 1 = order by ([node] distance, -zonetype)
2508 * 2 = order by (-zonetype, [node] distance)
2510 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511 * the same zonelist. So only NUMA can configure this param.
2513 #define ZONELIST_ORDER_DEFAULT 0
2514 #define ZONELIST_ORDER_NODE 1
2515 #define ZONELIST_ORDER_ZONE 2
2517 /* zonelist order in the kernel.
2518 * set_zonelist_order() will set this to NODE or ZONE.
2520 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2521 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2524 #ifdef CONFIG_NUMA
2525 /* The value user specified ....changed by config */
2526 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527 /* string for sysctl */
2528 #define NUMA_ZONELIST_ORDER_LEN 16
2529 char numa_zonelist_order[16] = "default";
2532 * interface for configure zonelist ordering.
2533 * command line option "numa_zonelist_order"
2534 * = "[dD]efault - default, automatic configuration.
2535 * = "[nN]ode - order by node locality, then by zone within node
2536 * = "[zZ]one - order by zone, then by locality within zone
2539 static int __parse_numa_zonelist_order(char *s)
2541 if (*s == 'd' || *s == 'D') {
2542 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2543 } else if (*s == 'n' || *s == 'N') {
2544 user_zonelist_order = ZONELIST_ORDER_NODE;
2545 } else if (*s == 'z' || *s == 'Z') {
2546 user_zonelist_order = ZONELIST_ORDER_ZONE;
2547 } else {
2548 printk(KERN_WARNING
2549 "Ignoring invalid numa_zonelist_order value: "
2550 "%s\n", s);
2551 return -EINVAL;
2553 return 0;
2556 static __init int setup_numa_zonelist_order(char *s)
2558 if (s)
2559 return __parse_numa_zonelist_order(s);
2560 return 0;
2562 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2565 * sysctl handler for numa_zonelist_order
2567 int numa_zonelist_order_handler(ctl_table *table, int write,
2568 void __user *buffer, size_t *length,
2569 loff_t *ppos)
2571 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2572 int ret;
2573 static DEFINE_MUTEX(zl_order_mutex);
2575 mutex_lock(&zl_order_mutex);
2576 if (write)
2577 strcpy(saved_string, (char*)table->data);
2578 ret = proc_dostring(table, write, buffer, length, ppos);
2579 if (ret)
2580 goto out;
2581 if (write) {
2582 int oldval = user_zonelist_order;
2583 if (__parse_numa_zonelist_order((char*)table->data)) {
2585 * bogus value. restore saved string
2587 strncpy((char*)table->data, saved_string,
2588 NUMA_ZONELIST_ORDER_LEN);
2589 user_zonelist_order = oldval;
2590 } else if (oldval != user_zonelist_order) {
2591 mutex_lock(&zonelists_mutex);
2592 build_all_zonelists(NULL);
2593 mutex_unlock(&zonelists_mutex);
2596 out:
2597 mutex_unlock(&zl_order_mutex);
2598 return ret;
2602 #define MAX_NODE_LOAD (nr_online_nodes)
2603 static int node_load[MAX_NUMNODES];
2606 * find_next_best_node - find the next node that should appear in a given node's fallback list
2607 * @node: node whose fallback list we're appending
2608 * @used_node_mask: nodemask_t of already used nodes
2610 * We use a number of factors to determine which is the next node that should
2611 * appear on a given node's fallback list. The node should not have appeared
2612 * already in @node's fallback list, and it should be the next closest node
2613 * according to the distance array (which contains arbitrary distance values
2614 * from each node to each node in the system), and should also prefer nodes
2615 * with no CPUs, since presumably they'll have very little allocation pressure
2616 * on them otherwise.
2617 * It returns -1 if no node is found.
2619 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2621 int n, val;
2622 int min_val = INT_MAX;
2623 int best_node = -1;
2624 const struct cpumask *tmp = cpumask_of_node(0);
2626 /* Use the local node if we haven't already */
2627 if (!node_isset(node, *used_node_mask)) {
2628 node_set(node, *used_node_mask);
2629 return node;
2632 for_each_node_state(n, N_HIGH_MEMORY) {
2634 /* Don't want a node to appear more than once */
2635 if (node_isset(n, *used_node_mask))
2636 continue;
2638 /* Use the distance array to find the distance */
2639 val = node_distance(node, n);
2641 /* Penalize nodes under us ("prefer the next node") */
2642 val += (n < node);
2644 /* Give preference to headless and unused nodes */
2645 tmp = cpumask_of_node(n);
2646 if (!cpumask_empty(tmp))
2647 val += PENALTY_FOR_NODE_WITH_CPUS;
2649 /* Slight preference for less loaded node */
2650 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2651 val += node_load[n];
2653 if (val < min_val) {
2654 min_val = val;
2655 best_node = n;
2659 if (best_node >= 0)
2660 node_set(best_node, *used_node_mask);
2662 return best_node;
2667 * Build zonelists ordered by node and zones within node.
2668 * This results in maximum locality--normal zone overflows into local
2669 * DMA zone, if any--but risks exhausting DMA zone.
2671 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2673 int j;
2674 struct zonelist *zonelist;
2676 zonelist = &pgdat->node_zonelists[0];
2677 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2679 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2680 MAX_NR_ZONES - 1);
2681 zonelist->_zonerefs[j].zone = NULL;
2682 zonelist->_zonerefs[j].zone_idx = 0;
2686 * Build gfp_thisnode zonelists
2688 static void build_thisnode_zonelists(pg_data_t *pgdat)
2690 int j;
2691 struct zonelist *zonelist;
2693 zonelist = &pgdat->node_zonelists[1];
2694 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2695 zonelist->_zonerefs[j].zone = NULL;
2696 zonelist->_zonerefs[j].zone_idx = 0;
2700 * Build zonelists ordered by zone and nodes within zones.
2701 * This results in conserving DMA zone[s] until all Normal memory is
2702 * exhausted, but results in overflowing to remote node while memory
2703 * may still exist in local DMA zone.
2705 static int node_order[MAX_NUMNODES];
2707 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2709 int pos, j, node;
2710 int zone_type; /* needs to be signed */
2711 struct zone *z;
2712 struct zonelist *zonelist;
2714 zonelist = &pgdat->node_zonelists[0];
2715 pos = 0;
2716 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2717 for (j = 0; j < nr_nodes; j++) {
2718 node = node_order[j];
2719 z = &NODE_DATA(node)->node_zones[zone_type];
2720 if (populated_zone(z)) {
2721 zoneref_set_zone(z,
2722 &zonelist->_zonerefs[pos++]);
2723 check_highest_zone(zone_type);
2727 zonelist->_zonerefs[pos].zone = NULL;
2728 zonelist->_zonerefs[pos].zone_idx = 0;
2731 static int default_zonelist_order(void)
2733 int nid, zone_type;
2734 unsigned long low_kmem_size,total_size;
2735 struct zone *z;
2736 int average_size;
2738 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2739 * If they are really small and used heavily, the system can fall
2740 * into OOM very easily.
2741 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2743 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2744 low_kmem_size = 0;
2745 total_size = 0;
2746 for_each_online_node(nid) {
2747 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2748 z = &NODE_DATA(nid)->node_zones[zone_type];
2749 if (populated_zone(z)) {
2750 if (zone_type < ZONE_NORMAL)
2751 low_kmem_size += z->present_pages;
2752 total_size += z->present_pages;
2753 } else if (zone_type == ZONE_NORMAL) {
2755 * If any node has only lowmem, then node order
2756 * is preferred to allow kernel allocations
2757 * locally; otherwise, they can easily infringe
2758 * on other nodes when there is an abundance of
2759 * lowmem available to allocate from.
2761 return ZONELIST_ORDER_NODE;
2765 if (!low_kmem_size || /* there are no DMA area. */
2766 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2767 return ZONELIST_ORDER_NODE;
2769 * look into each node's config.
2770 * If there is a node whose DMA/DMA32 memory is very big area on
2771 * local memory, NODE_ORDER may be suitable.
2773 average_size = total_size /
2774 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2775 for_each_online_node(nid) {
2776 low_kmem_size = 0;
2777 total_size = 0;
2778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2779 z = &NODE_DATA(nid)->node_zones[zone_type];
2780 if (populated_zone(z)) {
2781 if (zone_type < ZONE_NORMAL)
2782 low_kmem_size += z->present_pages;
2783 total_size += z->present_pages;
2786 if (low_kmem_size &&
2787 total_size > average_size && /* ignore small node */
2788 low_kmem_size > total_size * 70/100)
2789 return ZONELIST_ORDER_NODE;
2791 return ZONELIST_ORDER_ZONE;
2794 static void set_zonelist_order(void)
2796 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2797 current_zonelist_order = default_zonelist_order();
2798 else
2799 current_zonelist_order = user_zonelist_order;
2802 static void build_zonelists(pg_data_t *pgdat)
2804 int j, node, load;
2805 enum zone_type i;
2806 nodemask_t used_mask;
2807 int local_node, prev_node;
2808 struct zonelist *zonelist;
2809 int order = current_zonelist_order;
2811 /* initialize zonelists */
2812 for (i = 0; i < MAX_ZONELISTS; i++) {
2813 zonelist = pgdat->node_zonelists + i;
2814 zonelist->_zonerefs[0].zone = NULL;
2815 zonelist->_zonerefs[0].zone_idx = 0;
2818 /* NUMA-aware ordering of nodes */
2819 local_node = pgdat->node_id;
2820 load = nr_online_nodes;
2821 prev_node = local_node;
2822 nodes_clear(used_mask);
2824 memset(node_order, 0, sizeof(node_order));
2825 j = 0;
2827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2828 int distance = node_distance(local_node, node);
2831 * If another node is sufficiently far away then it is better
2832 * to reclaim pages in a zone before going off node.
2834 if (distance > RECLAIM_DISTANCE)
2835 zone_reclaim_mode = 1;
2838 * We don't want to pressure a particular node.
2839 * So adding penalty to the first node in same
2840 * distance group to make it round-robin.
2842 if (distance != node_distance(local_node, prev_node))
2843 node_load[node] = load;
2845 prev_node = node;
2846 load--;
2847 if (order == ZONELIST_ORDER_NODE)
2848 build_zonelists_in_node_order(pgdat, node);
2849 else
2850 node_order[j++] = node; /* remember order */
2853 if (order == ZONELIST_ORDER_ZONE) {
2854 /* calculate node order -- i.e., DMA last! */
2855 build_zonelists_in_zone_order(pgdat, j);
2858 build_thisnode_zonelists(pgdat);
2861 /* Construct the zonelist performance cache - see further mmzone.h */
2862 static void build_zonelist_cache(pg_data_t *pgdat)
2864 struct zonelist *zonelist;
2865 struct zonelist_cache *zlc;
2866 struct zoneref *z;
2868 zonelist = &pgdat->node_zonelists[0];
2869 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2870 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2871 for (z = zonelist->_zonerefs; z->zone; z++)
2872 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2875 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2877 * Return node id of node used for "local" allocations.
2878 * I.e., first node id of first zone in arg node's generic zonelist.
2879 * Used for initializing percpu 'numa_mem', which is used primarily
2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2882 int local_memory_node(int node)
2884 struct zone *zone;
2886 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2887 gfp_zone(GFP_KERNEL),
2888 NULL,
2889 &zone);
2890 return zone->node;
2892 #endif
2894 #else /* CONFIG_NUMA */
2896 static void set_zonelist_order(void)
2898 current_zonelist_order = ZONELIST_ORDER_ZONE;
2901 static void build_zonelists(pg_data_t *pgdat)
2903 int node, local_node;
2904 enum zone_type j;
2905 struct zonelist *zonelist;
2907 local_node = pgdat->node_id;
2909 zonelist = &pgdat->node_zonelists[0];
2910 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2913 * Now we build the zonelist so that it contains the zones
2914 * of all the other nodes.
2915 * We don't want to pressure a particular node, so when
2916 * building the zones for node N, we make sure that the
2917 * zones coming right after the local ones are those from
2918 * node N+1 (modulo N)
2920 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2921 if (!node_online(node))
2922 continue;
2923 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2924 MAX_NR_ZONES - 1);
2926 for (node = 0; node < local_node; node++) {
2927 if (!node_online(node))
2928 continue;
2929 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2930 MAX_NR_ZONES - 1);
2933 zonelist->_zonerefs[j].zone = NULL;
2934 zonelist->_zonerefs[j].zone_idx = 0;
2937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2938 static void build_zonelist_cache(pg_data_t *pgdat)
2940 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2943 #endif /* CONFIG_NUMA */
2946 * Boot pageset table. One per cpu which is going to be used for all
2947 * zones and all nodes. The parameters will be set in such a way
2948 * that an item put on a list will immediately be handed over to
2949 * the buddy list. This is safe since pageset manipulation is done
2950 * with interrupts disabled.
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2962 static void setup_zone_pageset(struct zone *zone);
2965 * Global mutex to protect against size modification of zonelists
2966 * as well as to serialize pageset setup for the new populated zone.
2968 DEFINE_MUTEX(zonelists_mutex);
2970 /* return values int ....just for stop_machine() */
2971 static __init_refok int __build_all_zonelists(void *data)
2973 int nid;
2974 int cpu;
2976 #ifdef CONFIG_NUMA
2977 memset(node_load, 0, sizeof(node_load));
2978 #endif
2979 for_each_online_node(nid) {
2980 pg_data_t *pgdat = NODE_DATA(nid);
2982 build_zonelists(pgdat);
2983 build_zonelist_cache(pgdat);
2986 #ifdef CONFIG_MEMORY_HOTPLUG
2987 /* Setup real pagesets for the new zone */
2988 if (data) {
2989 struct zone *zone = data;
2990 setup_zone_pageset(zone);
2992 #endif
2995 * Initialize the boot_pagesets that are going to be used
2996 * for bootstrapping processors. The real pagesets for
2997 * each zone will be allocated later when the per cpu
2998 * allocator is available.
3000 * boot_pagesets are used also for bootstrapping offline
3001 * cpus if the system is already booted because the pagesets
3002 * are needed to initialize allocators on a specific cpu too.
3003 * F.e. the percpu allocator needs the page allocator which
3004 * needs the percpu allocator in order to allocate its pagesets
3005 * (a chicken-egg dilemma).
3007 for_each_possible_cpu(cpu) {
3008 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3010 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3012 * We now know the "local memory node" for each node--
3013 * i.e., the node of the first zone in the generic zonelist.
3014 * Set up numa_mem percpu variable for on-line cpus. During
3015 * boot, only the boot cpu should be on-line; we'll init the
3016 * secondary cpus' numa_mem as they come on-line. During
3017 * node/memory hotplug, we'll fixup all on-line cpus.
3019 if (cpu_online(cpu))
3020 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3021 #endif
3024 return 0;
3028 * Called with zonelists_mutex held always
3029 * unless system_state == SYSTEM_BOOTING.
3031 void build_all_zonelists(void *data)
3033 set_zonelist_order();
3035 if (system_state == SYSTEM_BOOTING) {
3036 __build_all_zonelists(NULL);
3037 mminit_verify_zonelist();
3038 cpuset_init_current_mems_allowed();
3039 } else {
3040 /* we have to stop all cpus to guarantee there is no user
3041 of zonelist */
3042 stop_machine(__build_all_zonelists, data, NULL);
3043 /* cpuset refresh routine should be here */
3045 vm_total_pages = nr_free_pagecache_pages();
3047 * Disable grouping by mobility if the number of pages in the
3048 * system is too low to allow the mechanism to work. It would be
3049 * more accurate, but expensive to check per-zone. This check is
3050 * made on memory-hotadd so a system can start with mobility
3051 * disabled and enable it later
3053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3054 page_group_by_mobility_disabled = 1;
3055 else
3056 page_group_by_mobility_disabled = 0;
3058 printk("Built %i zonelists in %s order, mobility grouping %s. "
3059 "Total pages: %ld\n",
3060 nr_online_nodes,
3061 zonelist_order_name[current_zonelist_order],
3062 page_group_by_mobility_disabled ? "off" : "on",
3063 vm_total_pages);
3064 #ifdef CONFIG_NUMA
3065 printk("Policy zone: %s\n", zone_names[policy_zone]);
3066 #endif
3070 * Helper functions to size the waitqueue hash table.
3071 * Essentially these want to choose hash table sizes sufficiently
3072 * large so that collisions trying to wait on pages are rare.
3073 * But in fact, the number of active page waitqueues on typical
3074 * systems is ridiculously low, less than 200. So this is even
3075 * conservative, even though it seems large.
3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078 * waitqueues, i.e. the size of the waitq table given the number of pages.
3080 #define PAGES_PER_WAITQUEUE 256
3082 #ifndef CONFIG_MEMORY_HOTPLUG
3083 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3085 unsigned long size = 1;
3087 pages /= PAGES_PER_WAITQUEUE;
3089 while (size < pages)
3090 size <<= 1;
3093 * Once we have dozens or even hundreds of threads sleeping
3094 * on IO we've got bigger problems than wait queue collision.
3095 * Limit the size of the wait table to a reasonable size.
3097 size = min(size, 4096UL);
3099 return max(size, 4UL);
3101 #else
3103 * A zone's size might be changed by hot-add, so it is not possible to determine
3104 * a suitable size for its wait_table. So we use the maximum size now.
3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3108 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113 * or more by the traditional way. (See above). It equals:
3115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3116 * ia64(16K page size) : = ( 8G + 4M)byte.
3117 * powerpc (64K page size) : = (32G +16M)byte.
3119 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3121 return 4096UL;
3123 #endif
3126 * This is an integer logarithm so that shifts can be used later
3127 * to extract the more random high bits from the multiplicative
3128 * hash function before the remainder is taken.
3130 static inline unsigned long wait_table_bits(unsigned long size)
3132 return ffz(~size);
3135 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3141 * higher will lead to a bigger reserve which will get freed as contiguous
3142 * blocks as reclaim kicks in
3144 static void setup_zone_migrate_reserve(struct zone *zone)
3146 unsigned long start_pfn, pfn, end_pfn;
3147 struct page *page;
3148 unsigned long block_migratetype;
3149 int reserve;
3151 /* Get the start pfn, end pfn and the number of blocks to reserve */
3152 start_pfn = zone->zone_start_pfn;
3153 end_pfn = start_pfn + zone->spanned_pages;
3154 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3155 pageblock_order;
3158 * Reserve blocks are generally in place to help high-order atomic
3159 * allocations that are short-lived. A min_free_kbytes value that
3160 * would result in more than 2 reserve blocks for atomic allocations
3161 * is assumed to be in place to help anti-fragmentation for the
3162 * future allocation of hugepages at runtime.
3164 reserve = min(2, reserve);
3166 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3167 if (!pfn_valid(pfn))
3168 continue;
3169 page = pfn_to_page(pfn);
3171 /* Watch out for overlapping nodes */
3172 if (page_to_nid(page) != zone_to_nid(zone))
3173 continue;
3175 /* Blocks with reserved pages will never free, skip them. */
3176 if (PageReserved(page))
3177 continue;
3179 block_migratetype = get_pageblock_migratetype(page);
3181 /* If this block is reserved, account for it */
3182 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3183 reserve--;
3184 continue;
3187 /* Suitable for reserving if this block is movable */
3188 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3189 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3190 move_freepages_block(zone, page, MIGRATE_RESERVE);
3191 reserve--;
3192 continue;
3196 * If the reserve is met and this is a previous reserved block,
3197 * take it back
3199 if (block_migratetype == MIGRATE_RESERVE) {
3200 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3201 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3207 * Initially all pages are reserved - free ones are freed
3208 * up by free_all_bootmem() once the early boot process is
3209 * done. Non-atomic initialization, single-pass.
3211 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3212 unsigned long start_pfn, enum memmap_context context)
3214 struct page *page;
3215 unsigned long end_pfn = start_pfn + size;
3216 unsigned long pfn;
3217 struct zone *z;
3219 if (highest_memmap_pfn < end_pfn - 1)
3220 highest_memmap_pfn = end_pfn - 1;
3222 z = &NODE_DATA(nid)->node_zones[zone];
3223 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3225 * There can be holes in boot-time mem_map[]s
3226 * handed to this function. They do not
3227 * exist on hotplugged memory.
3229 if (context == MEMMAP_EARLY) {
3230 if (!early_pfn_valid(pfn))
3231 continue;
3232 if (!early_pfn_in_nid(pfn, nid))
3233 continue;
3235 page = pfn_to_page(pfn);
3236 set_page_links(page, zone, nid, pfn);
3237 mminit_verify_page_links(page, zone, nid, pfn);
3238 init_page_count(page);
3239 reset_page_mapcount(page);
3240 SetPageReserved(page);
3242 * Mark the block movable so that blocks are reserved for
3243 * movable at startup. This will force kernel allocations
3244 * to reserve their blocks rather than leaking throughout
3245 * the address space during boot when many long-lived
3246 * kernel allocations are made. Later some blocks near
3247 * the start are marked MIGRATE_RESERVE by
3248 * setup_zone_migrate_reserve()
3250 * bitmap is created for zone's valid pfn range. but memmap
3251 * can be created for invalid pages (for alignment)
3252 * check here not to call set_pageblock_migratetype() against
3253 * pfn out of zone.
3255 if ((z->zone_start_pfn <= pfn)
3256 && (pfn < z->zone_start_pfn + z->spanned_pages)
3257 && !(pfn & (pageblock_nr_pages - 1)))
3258 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3260 INIT_LIST_HEAD(&page->lru);
3261 #ifdef WANT_PAGE_VIRTUAL
3262 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263 if (!is_highmem_idx(zone))
3264 set_page_address(page, __va(pfn << PAGE_SHIFT));
3265 #endif
3269 static void __meminit zone_init_free_lists(struct zone *zone)
3271 int order, t;
3272 for_each_migratetype_order(order, t) {
3273 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3274 zone->free_area[order].nr_free = 0;
3278 #ifndef __HAVE_ARCH_MEMMAP_INIT
3279 #define memmap_init(size, nid, zone, start_pfn) \
3280 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3281 #endif
3283 static int zone_batchsize(struct zone *zone)
3285 #ifdef CONFIG_MMU
3286 int batch;
3289 * The per-cpu-pages pools are set to around 1000th of the
3290 * size of the zone. But no more than 1/2 of a meg.
3292 * OK, so we don't know how big the cache is. So guess.
3294 batch = zone->present_pages / 1024;
3295 if (batch * PAGE_SIZE > 512 * 1024)
3296 batch = (512 * 1024) / PAGE_SIZE;
3297 batch /= 4; /* We effectively *= 4 below */
3298 if (batch < 1)
3299 batch = 1;
3302 * Clamp the batch to a 2^n - 1 value. Having a power
3303 * of 2 value was found to be more likely to have
3304 * suboptimal cache aliasing properties in some cases.
3306 * For example if 2 tasks are alternately allocating
3307 * batches of pages, one task can end up with a lot
3308 * of pages of one half of the possible page colors
3309 * and the other with pages of the other colors.
3311 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3313 return batch;
3315 #else
3316 /* The deferral and batching of frees should be suppressed under NOMMU
3317 * conditions.
3319 * The problem is that NOMMU needs to be able to allocate large chunks
3320 * of contiguous memory as there's no hardware page translation to
3321 * assemble apparent contiguous memory from discontiguous pages.
3323 * Queueing large contiguous runs of pages for batching, however,
3324 * causes the pages to actually be freed in smaller chunks. As there
3325 * can be a significant delay between the individual batches being
3326 * recycled, this leads to the once large chunks of space being
3327 * fragmented and becoming unavailable for high-order allocations.
3329 return 0;
3330 #endif
3333 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3335 struct per_cpu_pages *pcp;
3336 int migratetype;
3338 memset(p, 0, sizeof(*p));
3340 pcp = &p->pcp;
3341 pcp->count = 0;
3342 pcp->high = 6 * batch;
3343 pcp->batch = max(1UL, 1 * batch);
3344 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3345 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350 * to the value high for the pageset p.
3353 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3354 unsigned long high)
3356 struct per_cpu_pages *pcp;
3358 pcp = &p->pcp;
3359 pcp->high = high;
3360 pcp->batch = max(1UL, high/4);
3361 if ((high/4) > (PAGE_SHIFT * 8))
3362 pcp->batch = PAGE_SHIFT * 8;
3365 static __meminit void setup_zone_pageset(struct zone *zone)
3367 int cpu;
3369 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3371 for_each_possible_cpu(cpu) {
3372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3374 setup_pageset(pcp, zone_batchsize(zone));
3376 if (percpu_pagelist_fraction)
3377 setup_pagelist_highmark(pcp,
3378 (zone->present_pages /
3379 percpu_pagelist_fraction));
3384 * Allocate per cpu pagesets and initialize them.
3385 * Before this call only boot pagesets were available.
3387 void __init setup_per_cpu_pageset(void)
3389 struct zone *zone;
3391 for_each_populated_zone(zone)
3392 setup_zone_pageset(zone);
3395 static noinline __init_refok
3396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3398 int i;
3399 struct pglist_data *pgdat = zone->zone_pgdat;
3400 size_t alloc_size;
3403 * The per-page waitqueue mechanism uses hashed waitqueues
3404 * per zone.
3406 zone->wait_table_hash_nr_entries =
3407 wait_table_hash_nr_entries(zone_size_pages);
3408 zone->wait_table_bits =
3409 wait_table_bits(zone->wait_table_hash_nr_entries);
3410 alloc_size = zone->wait_table_hash_nr_entries
3411 * sizeof(wait_queue_head_t);
3413 if (!slab_is_available()) {
3414 zone->wait_table = (wait_queue_head_t *)
3415 alloc_bootmem_node(pgdat, alloc_size);
3416 } else {
3418 * This case means that a zone whose size was 0 gets new memory
3419 * via memory hot-add.
3420 * But it may be the case that a new node was hot-added. In
3421 * this case vmalloc() will not be able to use this new node's
3422 * memory - this wait_table must be initialized to use this new
3423 * node itself as well.
3424 * To use this new node's memory, further consideration will be
3425 * necessary.
3427 zone->wait_table = vmalloc(alloc_size);
3429 if (!zone->wait_table)
3430 return -ENOMEM;
3432 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3433 init_waitqueue_head(zone->wait_table + i);
3435 return 0;
3438 static int __zone_pcp_update(void *data)
3440 struct zone *zone = data;
3441 int cpu;
3442 unsigned long batch = zone_batchsize(zone), flags;
3444 for_each_possible_cpu(cpu) {
3445 struct per_cpu_pageset *pset;
3446 struct per_cpu_pages *pcp;
3448 pset = per_cpu_ptr(zone->pageset, cpu);
3449 pcp = &pset->pcp;
3451 local_irq_save(flags);
3452 free_pcppages_bulk(zone, pcp->count, pcp);
3453 setup_pageset(pset, batch);
3454 local_irq_restore(flags);
3456 return 0;
3459 void zone_pcp_update(struct zone *zone)
3461 stop_machine(__zone_pcp_update, zone, NULL);
3464 static __meminit void zone_pcp_init(struct zone *zone)
3467 * per cpu subsystem is not up at this point. The following code
3468 * relies on the ability of the linker to provide the
3469 * offset of a (static) per cpu variable into the per cpu area.
3471 zone->pageset = &boot_pageset;
3473 if (zone->present_pages)
3474 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3475 zone->name, zone->present_pages,
3476 zone_batchsize(zone));
3479 __meminit int init_currently_empty_zone(struct zone *zone,
3480 unsigned long zone_start_pfn,
3481 unsigned long size,
3482 enum memmap_context context)
3484 struct pglist_data *pgdat = zone->zone_pgdat;
3485 int ret;
3486 ret = zone_wait_table_init(zone, size);
3487 if (ret)
3488 return ret;
3489 pgdat->nr_zones = zone_idx(zone) + 1;
3491 zone->zone_start_pfn = zone_start_pfn;
3493 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3494 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3495 pgdat->node_id,
3496 (unsigned long)zone_idx(zone),
3497 zone_start_pfn, (zone_start_pfn + size));
3499 zone_init_free_lists(zone);
3501 return 0;
3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3506 * Basic iterator support. Return the first range of PFNs for a node
3507 * Note: nid == MAX_NUMNODES returns first region regardless of node
3509 static int __meminit first_active_region_index_in_nid(int nid)
3511 int i;
3513 for (i = 0; i < nr_nodemap_entries; i++)
3514 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3515 return i;
3517 return -1;
3521 * Basic iterator support. Return the next active range of PFNs for a node
3522 * Note: nid == MAX_NUMNODES returns next region regardless of node
3524 static int __meminit next_active_region_index_in_nid(int index, int nid)
3526 for (index = index + 1; index < nr_nodemap_entries; index++)
3527 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3528 return index;
3530 return -1;
3533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536 * Architectures may implement their own version but if add_active_range()
3537 * was used and there are no special requirements, this is a convenient
3538 * alternative
3540 int __meminit __early_pfn_to_nid(unsigned long pfn)
3542 int i;
3544 for (i = 0; i < nr_nodemap_entries; i++) {
3545 unsigned long start_pfn = early_node_map[i].start_pfn;
3546 unsigned long end_pfn = early_node_map[i].end_pfn;
3548 if (start_pfn <= pfn && pfn < end_pfn)
3549 return early_node_map[i].nid;
3551 /* This is a memory hole */
3552 return -1;
3554 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3556 int __meminit early_pfn_to_nid(unsigned long pfn)
3558 int nid;
3560 nid = __early_pfn_to_nid(pfn);
3561 if (nid >= 0)
3562 return nid;
3563 /* just returns 0 */
3564 return 0;
3567 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3570 int nid;
3572 nid = __early_pfn_to_nid(pfn);
3573 if (nid >= 0 && nid != node)
3574 return false;
3575 return true;
3577 #endif
3579 /* Basic iterator support to walk early_node_map[] */
3580 #define for_each_active_range_index_in_nid(i, nid) \
3581 for (i = first_active_region_index_in_nid(nid); i != -1; \
3582 i = next_active_region_index_in_nid(i, nid))
3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3589 * If an architecture guarantees that all ranges registered with
3590 * add_active_ranges() contain no holes and may be freed, this
3591 * this function may be used instead of calling free_bootmem() manually.
3593 void __init free_bootmem_with_active_regions(int nid,
3594 unsigned long max_low_pfn)
3596 int i;
3598 for_each_active_range_index_in_nid(i, nid) {
3599 unsigned long size_pages = 0;
3600 unsigned long end_pfn = early_node_map[i].end_pfn;
3602 if (early_node_map[i].start_pfn >= max_low_pfn)
3603 continue;
3605 if (end_pfn > max_low_pfn)
3606 end_pfn = max_low_pfn;
3608 size_pages = end_pfn - early_node_map[i].start_pfn;
3609 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3610 PFN_PHYS(early_node_map[i].start_pfn),
3611 size_pages << PAGE_SHIFT);
3615 int __init add_from_early_node_map(struct range *range, int az,
3616 int nr_range, int nid)
3618 int i;
3619 u64 start, end;
3621 /* need to go over early_node_map to find out good range for node */
3622 for_each_active_range_index_in_nid(i, nid) {
3623 start = early_node_map[i].start_pfn;
3624 end = early_node_map[i].end_pfn;
3625 nr_range = add_range(range, az, nr_range, start, end);
3627 return nr_range;
3630 #ifdef CONFIG_NO_BOOTMEM
3631 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3632 u64 goal, u64 limit)
3634 int i;
3635 void *ptr;
3637 if (limit > get_max_mapped())
3638 limit = get_max_mapped();
3640 /* need to go over early_node_map to find out good range for node */
3641 for_each_active_range_index_in_nid(i, nid) {
3642 u64 addr;
3643 u64 ei_start, ei_last;
3645 ei_last = early_node_map[i].end_pfn;
3646 ei_last <<= PAGE_SHIFT;
3647 ei_start = early_node_map[i].start_pfn;
3648 ei_start <<= PAGE_SHIFT;
3649 addr = find_early_area(ei_start, ei_last,
3650 goal, limit, size, align);
3652 if (addr == -1ULL)
3653 continue;
3655 #if 0
3656 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3657 nid,
3658 ei_start, ei_last, goal, limit, size,
3659 align, addr);
3660 #endif
3662 ptr = phys_to_virt(addr);
3663 memset(ptr, 0, size);
3664 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3666 * The min_count is set to 0 so that bootmem allocated blocks
3667 * are never reported as leaks.
3669 kmemleak_alloc(ptr, size, 0, 0);
3670 return ptr;
3673 return NULL;
3675 #endif
3678 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3680 int i;
3681 int ret;
3683 for_each_active_range_index_in_nid(i, nid) {
3684 ret = work_fn(early_node_map[i].start_pfn,
3685 early_node_map[i].end_pfn, data);
3686 if (ret)
3687 break;
3691 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3692 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3694 * If an architecture guarantees that all ranges registered with
3695 * add_active_ranges() contain no holes and may be freed, this
3696 * function may be used instead of calling memory_present() manually.
3698 void __init sparse_memory_present_with_active_regions(int nid)
3700 int i;
3702 for_each_active_range_index_in_nid(i, nid)
3703 memory_present(early_node_map[i].nid,
3704 early_node_map[i].start_pfn,
3705 early_node_map[i].end_pfn);
3709 * get_pfn_range_for_nid - Return the start and end page frames for a node
3710 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3711 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3712 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3714 * It returns the start and end page frame of a node based on information
3715 * provided by an arch calling add_active_range(). If called for a node
3716 * with no available memory, a warning is printed and the start and end
3717 * PFNs will be 0.
3719 void __meminit get_pfn_range_for_nid(unsigned int nid,
3720 unsigned long *start_pfn, unsigned long *end_pfn)
3722 int i;
3723 *start_pfn = -1UL;
3724 *end_pfn = 0;
3726 for_each_active_range_index_in_nid(i, nid) {
3727 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3728 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3731 if (*start_pfn == -1UL)
3732 *start_pfn = 0;
3736 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3737 * assumption is made that zones within a node are ordered in monotonic
3738 * increasing memory addresses so that the "highest" populated zone is used
3740 static void __init find_usable_zone_for_movable(void)
3742 int zone_index;
3743 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3744 if (zone_index == ZONE_MOVABLE)
3745 continue;
3747 if (arch_zone_highest_possible_pfn[zone_index] >
3748 arch_zone_lowest_possible_pfn[zone_index])
3749 break;
3752 VM_BUG_ON(zone_index == -1);
3753 movable_zone = zone_index;
3757 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3758 * because it is sized independant of architecture. Unlike the other zones,
3759 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3760 * in each node depending on the size of each node and how evenly kernelcore
3761 * is distributed. This helper function adjusts the zone ranges
3762 * provided by the architecture for a given node by using the end of the
3763 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3764 * zones within a node are in order of monotonic increases memory addresses
3766 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3767 unsigned long zone_type,
3768 unsigned long node_start_pfn,
3769 unsigned long node_end_pfn,
3770 unsigned long *zone_start_pfn,
3771 unsigned long *zone_end_pfn)
3773 /* Only adjust if ZONE_MOVABLE is on this node */
3774 if (zone_movable_pfn[nid]) {
3775 /* Size ZONE_MOVABLE */
3776 if (zone_type == ZONE_MOVABLE) {
3777 *zone_start_pfn = zone_movable_pfn[nid];
3778 *zone_end_pfn = min(node_end_pfn,
3779 arch_zone_highest_possible_pfn[movable_zone]);
3781 /* Adjust for ZONE_MOVABLE starting within this range */
3782 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3783 *zone_end_pfn > zone_movable_pfn[nid]) {
3784 *zone_end_pfn = zone_movable_pfn[nid];
3786 /* Check if this whole range is within ZONE_MOVABLE */
3787 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3788 *zone_start_pfn = *zone_end_pfn;
3793 * Return the number of pages a zone spans in a node, including holes
3794 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3796 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3797 unsigned long zone_type,
3798 unsigned long *ignored)
3800 unsigned long node_start_pfn, node_end_pfn;
3801 unsigned long zone_start_pfn, zone_end_pfn;
3803 /* Get the start and end of the node and zone */
3804 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3805 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3806 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3807 adjust_zone_range_for_zone_movable(nid, zone_type,
3808 node_start_pfn, node_end_pfn,
3809 &zone_start_pfn, &zone_end_pfn);
3811 /* Check that this node has pages within the zone's required range */
3812 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3813 return 0;
3815 /* Move the zone boundaries inside the node if necessary */
3816 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3817 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3819 /* Return the spanned pages */
3820 return zone_end_pfn - zone_start_pfn;
3824 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3825 * then all holes in the requested range will be accounted for.
3827 unsigned long __meminit __absent_pages_in_range(int nid,
3828 unsigned long range_start_pfn,
3829 unsigned long range_end_pfn)
3831 int i = 0;
3832 unsigned long prev_end_pfn = 0, hole_pages = 0;
3833 unsigned long start_pfn;
3835 /* Find the end_pfn of the first active range of pfns in the node */
3836 i = first_active_region_index_in_nid(nid);
3837 if (i == -1)
3838 return 0;
3840 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3842 /* Account for ranges before physical memory on this node */
3843 if (early_node_map[i].start_pfn > range_start_pfn)
3844 hole_pages = prev_end_pfn - range_start_pfn;
3846 /* Find all holes for the zone within the node */
3847 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3849 /* No need to continue if prev_end_pfn is outside the zone */
3850 if (prev_end_pfn >= range_end_pfn)
3851 break;
3853 /* Make sure the end of the zone is not within the hole */
3854 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3855 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3857 /* Update the hole size cound and move on */
3858 if (start_pfn > range_start_pfn) {
3859 BUG_ON(prev_end_pfn > start_pfn);
3860 hole_pages += start_pfn - prev_end_pfn;
3862 prev_end_pfn = early_node_map[i].end_pfn;
3865 /* Account for ranges past physical memory on this node */
3866 if (range_end_pfn > prev_end_pfn)
3867 hole_pages += range_end_pfn -
3868 max(range_start_pfn, prev_end_pfn);
3870 return hole_pages;
3874 * absent_pages_in_range - Return number of page frames in holes within a range
3875 * @start_pfn: The start PFN to start searching for holes
3876 * @end_pfn: The end PFN to stop searching for holes
3878 * It returns the number of pages frames in memory holes within a range.
3880 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3881 unsigned long end_pfn)
3883 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3886 /* Return the number of page frames in holes in a zone on a node */
3887 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3888 unsigned long zone_type,
3889 unsigned long *ignored)
3891 unsigned long node_start_pfn, node_end_pfn;
3892 unsigned long zone_start_pfn, zone_end_pfn;
3894 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3895 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3896 node_start_pfn);
3897 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3898 node_end_pfn);
3900 adjust_zone_range_for_zone_movable(nid, zone_type,
3901 node_start_pfn, node_end_pfn,
3902 &zone_start_pfn, &zone_end_pfn);
3903 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3906 #else
3907 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3908 unsigned long zone_type,
3909 unsigned long *zones_size)
3911 return zones_size[zone_type];
3914 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3915 unsigned long zone_type,
3916 unsigned long *zholes_size)
3918 if (!zholes_size)
3919 return 0;
3921 return zholes_size[zone_type];
3924 #endif
3926 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3927 unsigned long *zones_size, unsigned long *zholes_size)
3929 unsigned long realtotalpages, totalpages = 0;
3930 enum zone_type i;
3932 for (i = 0; i < MAX_NR_ZONES; i++)
3933 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3934 zones_size);
3935 pgdat->node_spanned_pages = totalpages;
3937 realtotalpages = totalpages;
3938 for (i = 0; i < MAX_NR_ZONES; i++)
3939 realtotalpages -=
3940 zone_absent_pages_in_node(pgdat->node_id, i,
3941 zholes_size);
3942 pgdat->node_present_pages = realtotalpages;
3943 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3944 realtotalpages);
3947 #ifndef CONFIG_SPARSEMEM
3949 * Calculate the size of the zone->blockflags rounded to an unsigned long
3950 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3951 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3952 * round what is now in bits to nearest long in bits, then return it in
3953 * bytes.
3955 static unsigned long __init usemap_size(unsigned long zonesize)
3957 unsigned long usemapsize;
3959 usemapsize = roundup(zonesize, pageblock_nr_pages);
3960 usemapsize = usemapsize >> pageblock_order;
3961 usemapsize *= NR_PAGEBLOCK_BITS;
3962 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3964 return usemapsize / 8;
3967 static void __init setup_usemap(struct pglist_data *pgdat,
3968 struct zone *zone, unsigned long zonesize)
3970 unsigned long usemapsize = usemap_size(zonesize);
3971 zone->pageblock_flags = NULL;
3972 if (usemapsize)
3973 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3975 #else
3976 static void inline setup_usemap(struct pglist_data *pgdat,
3977 struct zone *zone, unsigned long zonesize) {}
3978 #endif /* CONFIG_SPARSEMEM */
3980 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3982 /* Return a sensible default order for the pageblock size. */
3983 static inline int pageblock_default_order(void)
3985 if (HPAGE_SHIFT > PAGE_SHIFT)
3986 return HUGETLB_PAGE_ORDER;
3988 return MAX_ORDER-1;
3991 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3992 static inline void __init set_pageblock_order(unsigned int order)
3994 /* Check that pageblock_nr_pages has not already been setup */
3995 if (pageblock_order)
3996 return;
3999 * Assume the largest contiguous order of interest is a huge page.
4000 * This value may be variable depending on boot parameters on IA64
4002 pageblock_order = order;
4004 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4007 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4008 * and pageblock_default_order() are unused as pageblock_order is set
4009 * at compile-time. See include/linux/pageblock-flags.h for the values of
4010 * pageblock_order based on the kernel config
4012 static inline int pageblock_default_order(unsigned int order)
4014 return MAX_ORDER-1;
4016 #define set_pageblock_order(x) do {} while (0)
4018 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4021 * Set up the zone data structures:
4022 * - mark all pages reserved
4023 * - mark all memory queues empty
4024 * - clear the memory bitmaps
4026 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4027 unsigned long *zones_size, unsigned long *zholes_size)
4029 enum zone_type j;
4030 int nid = pgdat->node_id;
4031 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4032 int ret;
4034 pgdat_resize_init(pgdat);
4035 pgdat->nr_zones = 0;
4036 init_waitqueue_head(&pgdat->kswapd_wait);
4037 pgdat->kswapd_max_order = 0;
4038 pgdat_page_cgroup_init(pgdat);
4040 for (j = 0; j < MAX_NR_ZONES; j++) {
4041 struct zone *zone = pgdat->node_zones + j;
4042 unsigned long size, realsize, memmap_pages;
4043 enum lru_list l;
4045 size = zone_spanned_pages_in_node(nid, j, zones_size);
4046 realsize = size - zone_absent_pages_in_node(nid, j,
4047 zholes_size);
4050 * Adjust realsize so that it accounts for how much memory
4051 * is used by this zone for memmap. This affects the watermark
4052 * and per-cpu initialisations
4054 memmap_pages =
4055 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4056 if (realsize >= memmap_pages) {
4057 realsize -= memmap_pages;
4058 if (memmap_pages)
4059 printk(KERN_DEBUG
4060 " %s zone: %lu pages used for memmap\n",
4061 zone_names[j], memmap_pages);
4062 } else
4063 printk(KERN_WARNING
4064 " %s zone: %lu pages exceeds realsize %lu\n",
4065 zone_names[j], memmap_pages, realsize);
4067 /* Account for reserved pages */
4068 if (j == 0 && realsize > dma_reserve) {
4069 realsize -= dma_reserve;
4070 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4071 zone_names[0], dma_reserve);
4074 if (!is_highmem_idx(j))
4075 nr_kernel_pages += realsize;
4076 nr_all_pages += realsize;
4078 zone->spanned_pages = size;
4079 zone->present_pages = realsize;
4080 #ifdef CONFIG_NUMA
4081 zone->node = nid;
4082 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4083 / 100;
4084 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4085 #endif
4086 zone->name = zone_names[j];
4087 spin_lock_init(&zone->lock);
4088 spin_lock_init(&zone->lru_lock);
4089 zone_seqlock_init(zone);
4090 zone->zone_pgdat = pgdat;
4092 zone->prev_priority = DEF_PRIORITY;
4094 zone_pcp_init(zone);
4095 for_each_lru(l) {
4096 INIT_LIST_HEAD(&zone->lru[l].list);
4097 zone->reclaim_stat.nr_saved_scan[l] = 0;
4099 zone->reclaim_stat.recent_rotated[0] = 0;
4100 zone->reclaim_stat.recent_rotated[1] = 0;
4101 zone->reclaim_stat.recent_scanned[0] = 0;
4102 zone->reclaim_stat.recent_scanned[1] = 0;
4103 zap_zone_vm_stats(zone);
4104 zone->flags = 0;
4105 if (!size)
4106 continue;
4108 set_pageblock_order(pageblock_default_order());
4109 setup_usemap(pgdat, zone, size);
4110 ret = init_currently_empty_zone(zone, zone_start_pfn,
4111 size, MEMMAP_EARLY);
4112 BUG_ON(ret);
4113 memmap_init(size, nid, j, zone_start_pfn);
4114 zone_start_pfn += size;
4118 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4120 /* Skip empty nodes */
4121 if (!pgdat->node_spanned_pages)
4122 return;
4124 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4125 /* ia64 gets its own node_mem_map, before this, without bootmem */
4126 if (!pgdat->node_mem_map) {
4127 unsigned long size, start, end;
4128 struct page *map;
4131 * The zone's endpoints aren't required to be MAX_ORDER
4132 * aligned but the node_mem_map endpoints must be in order
4133 * for the buddy allocator to function correctly.
4135 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4136 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4137 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4138 size = (end - start) * sizeof(struct page);
4139 map = alloc_remap(pgdat->node_id, size);
4140 if (!map)
4141 map = alloc_bootmem_node(pgdat, size);
4142 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4144 #ifndef CONFIG_NEED_MULTIPLE_NODES
4146 * With no DISCONTIG, the global mem_map is just set as node 0's
4148 if (pgdat == NODE_DATA(0)) {
4149 mem_map = NODE_DATA(0)->node_mem_map;
4150 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4151 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4152 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4153 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4155 #endif
4156 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4159 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4160 unsigned long node_start_pfn, unsigned long *zholes_size)
4162 pg_data_t *pgdat = NODE_DATA(nid);
4164 pgdat->node_id = nid;
4165 pgdat->node_start_pfn = node_start_pfn;
4166 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4168 alloc_node_mem_map(pgdat);
4169 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4170 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4171 nid, (unsigned long)pgdat,
4172 (unsigned long)pgdat->node_mem_map);
4173 #endif
4175 free_area_init_core(pgdat, zones_size, zholes_size);
4178 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4180 #if MAX_NUMNODES > 1
4182 * Figure out the number of possible node ids.
4184 static void __init setup_nr_node_ids(void)
4186 unsigned int node;
4187 unsigned int highest = 0;
4189 for_each_node_mask(node, node_possible_map)
4190 highest = node;
4191 nr_node_ids = highest + 1;
4193 #else
4194 static inline void setup_nr_node_ids(void)
4197 #endif
4200 * add_active_range - Register a range of PFNs backed by physical memory
4201 * @nid: The node ID the range resides on
4202 * @start_pfn: The start PFN of the available physical memory
4203 * @end_pfn: The end PFN of the available physical memory
4205 * These ranges are stored in an early_node_map[] and later used by
4206 * free_area_init_nodes() to calculate zone sizes and holes. If the
4207 * range spans a memory hole, it is up to the architecture to ensure
4208 * the memory is not freed by the bootmem allocator. If possible
4209 * the range being registered will be merged with existing ranges.
4211 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4212 unsigned long end_pfn)
4214 int i;
4216 mminit_dprintk(MMINIT_TRACE, "memory_register",
4217 "Entering add_active_range(%d, %#lx, %#lx) "
4218 "%d entries of %d used\n",
4219 nid, start_pfn, end_pfn,
4220 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4222 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4224 /* Merge with existing active regions if possible */
4225 for (i = 0; i < nr_nodemap_entries; i++) {
4226 if (early_node_map[i].nid != nid)
4227 continue;
4229 /* Skip if an existing region covers this new one */
4230 if (start_pfn >= early_node_map[i].start_pfn &&
4231 end_pfn <= early_node_map[i].end_pfn)
4232 return;
4234 /* Merge forward if suitable */
4235 if (start_pfn <= early_node_map[i].end_pfn &&
4236 end_pfn > early_node_map[i].end_pfn) {
4237 early_node_map[i].end_pfn = end_pfn;
4238 return;
4241 /* Merge backward if suitable */
4242 if (start_pfn < early_node_map[i].start_pfn &&
4243 end_pfn >= early_node_map[i].start_pfn) {
4244 early_node_map[i].start_pfn = start_pfn;
4245 return;
4249 /* Check that early_node_map is large enough */
4250 if (i >= MAX_ACTIVE_REGIONS) {
4251 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4252 MAX_ACTIVE_REGIONS);
4253 return;
4256 early_node_map[i].nid = nid;
4257 early_node_map[i].start_pfn = start_pfn;
4258 early_node_map[i].end_pfn = end_pfn;
4259 nr_nodemap_entries = i + 1;
4263 * remove_active_range - Shrink an existing registered range of PFNs
4264 * @nid: The node id the range is on that should be shrunk
4265 * @start_pfn: The new PFN of the range
4266 * @end_pfn: The new PFN of the range
4268 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4269 * The map is kept near the end physical page range that has already been
4270 * registered. This function allows an arch to shrink an existing registered
4271 * range.
4273 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4274 unsigned long end_pfn)
4276 int i, j;
4277 int removed = 0;
4279 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4280 nid, start_pfn, end_pfn);
4282 /* Find the old active region end and shrink */
4283 for_each_active_range_index_in_nid(i, nid) {
4284 if (early_node_map[i].start_pfn >= start_pfn &&
4285 early_node_map[i].end_pfn <= end_pfn) {
4286 /* clear it */
4287 early_node_map[i].start_pfn = 0;
4288 early_node_map[i].end_pfn = 0;
4289 removed = 1;
4290 continue;
4292 if (early_node_map[i].start_pfn < start_pfn &&
4293 early_node_map[i].end_pfn > start_pfn) {
4294 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4295 early_node_map[i].end_pfn = start_pfn;
4296 if (temp_end_pfn > end_pfn)
4297 add_active_range(nid, end_pfn, temp_end_pfn);
4298 continue;
4300 if (early_node_map[i].start_pfn >= start_pfn &&
4301 early_node_map[i].end_pfn > end_pfn &&
4302 early_node_map[i].start_pfn < end_pfn) {
4303 early_node_map[i].start_pfn = end_pfn;
4304 continue;
4308 if (!removed)
4309 return;
4311 /* remove the blank ones */
4312 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4313 if (early_node_map[i].nid != nid)
4314 continue;
4315 if (early_node_map[i].end_pfn)
4316 continue;
4317 /* we found it, get rid of it */
4318 for (j = i; j < nr_nodemap_entries - 1; j++)
4319 memcpy(&early_node_map[j], &early_node_map[j+1],
4320 sizeof(early_node_map[j]));
4321 j = nr_nodemap_entries - 1;
4322 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4323 nr_nodemap_entries--;
4328 * remove_all_active_ranges - Remove all currently registered regions
4330 * During discovery, it may be found that a table like SRAT is invalid
4331 * and an alternative discovery method must be used. This function removes
4332 * all currently registered regions.
4334 void __init remove_all_active_ranges(void)
4336 memset(early_node_map, 0, sizeof(early_node_map));
4337 nr_nodemap_entries = 0;
4340 /* Compare two active node_active_regions */
4341 static int __init cmp_node_active_region(const void *a, const void *b)
4343 struct node_active_region *arange = (struct node_active_region *)a;
4344 struct node_active_region *brange = (struct node_active_region *)b;
4346 /* Done this way to avoid overflows */
4347 if (arange->start_pfn > brange->start_pfn)
4348 return 1;
4349 if (arange->start_pfn < brange->start_pfn)
4350 return -1;
4352 return 0;
4355 /* sort the node_map by start_pfn */
4356 void __init sort_node_map(void)
4358 sort(early_node_map, (size_t)nr_nodemap_entries,
4359 sizeof(struct node_active_region),
4360 cmp_node_active_region, NULL);
4363 /* Find the lowest pfn for a node */
4364 static unsigned long __init find_min_pfn_for_node(int nid)
4366 int i;
4367 unsigned long min_pfn = ULONG_MAX;
4369 /* Assuming a sorted map, the first range found has the starting pfn */
4370 for_each_active_range_index_in_nid(i, nid)
4371 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4373 if (min_pfn == ULONG_MAX) {
4374 printk(KERN_WARNING
4375 "Could not find start_pfn for node %d\n", nid);
4376 return 0;
4379 return min_pfn;
4383 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4385 * It returns the minimum PFN based on information provided via
4386 * add_active_range().
4388 unsigned long __init find_min_pfn_with_active_regions(void)
4390 return find_min_pfn_for_node(MAX_NUMNODES);
4394 * early_calculate_totalpages()
4395 * Sum pages in active regions for movable zone.
4396 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4398 static unsigned long __init early_calculate_totalpages(void)
4400 int i;
4401 unsigned long totalpages = 0;
4403 for (i = 0; i < nr_nodemap_entries; i++) {
4404 unsigned long pages = early_node_map[i].end_pfn -
4405 early_node_map[i].start_pfn;
4406 totalpages += pages;
4407 if (pages)
4408 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4410 return totalpages;
4414 * Find the PFN the Movable zone begins in each node. Kernel memory
4415 * is spread evenly between nodes as long as the nodes have enough
4416 * memory. When they don't, some nodes will have more kernelcore than
4417 * others
4419 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4421 int i, nid;
4422 unsigned long usable_startpfn;
4423 unsigned long kernelcore_node, kernelcore_remaining;
4424 /* save the state before borrow the nodemask */
4425 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4426 unsigned long totalpages = early_calculate_totalpages();
4427 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4430 * If movablecore was specified, calculate what size of
4431 * kernelcore that corresponds so that memory usable for
4432 * any allocation type is evenly spread. If both kernelcore
4433 * and movablecore are specified, then the value of kernelcore
4434 * will be used for required_kernelcore if it's greater than
4435 * what movablecore would have allowed.
4437 if (required_movablecore) {
4438 unsigned long corepages;
4441 * Round-up so that ZONE_MOVABLE is at least as large as what
4442 * was requested by the user
4444 required_movablecore =
4445 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4446 corepages = totalpages - required_movablecore;
4448 required_kernelcore = max(required_kernelcore, corepages);
4451 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4452 if (!required_kernelcore)
4453 goto out;
4455 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4456 find_usable_zone_for_movable();
4457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4459 restart:
4460 /* Spread kernelcore memory as evenly as possible throughout nodes */
4461 kernelcore_node = required_kernelcore / usable_nodes;
4462 for_each_node_state(nid, N_HIGH_MEMORY) {
4464 * Recalculate kernelcore_node if the division per node
4465 * now exceeds what is necessary to satisfy the requested
4466 * amount of memory for the kernel
4468 if (required_kernelcore < kernelcore_node)
4469 kernelcore_node = required_kernelcore / usable_nodes;
4472 * As the map is walked, we track how much memory is usable
4473 * by the kernel using kernelcore_remaining. When it is
4474 * 0, the rest of the node is usable by ZONE_MOVABLE
4476 kernelcore_remaining = kernelcore_node;
4478 /* Go through each range of PFNs within this node */
4479 for_each_active_range_index_in_nid(i, nid) {
4480 unsigned long start_pfn, end_pfn;
4481 unsigned long size_pages;
4483 start_pfn = max(early_node_map[i].start_pfn,
4484 zone_movable_pfn[nid]);
4485 end_pfn = early_node_map[i].end_pfn;
4486 if (start_pfn >= end_pfn)
4487 continue;
4489 /* Account for what is only usable for kernelcore */
4490 if (start_pfn < usable_startpfn) {
4491 unsigned long kernel_pages;
4492 kernel_pages = min(end_pfn, usable_startpfn)
4493 - start_pfn;
4495 kernelcore_remaining -= min(kernel_pages,
4496 kernelcore_remaining);
4497 required_kernelcore -= min(kernel_pages,
4498 required_kernelcore);
4500 /* Continue if range is now fully accounted */
4501 if (end_pfn <= usable_startpfn) {
4504 * Push zone_movable_pfn to the end so
4505 * that if we have to rebalance
4506 * kernelcore across nodes, we will
4507 * not double account here
4509 zone_movable_pfn[nid] = end_pfn;
4510 continue;
4512 start_pfn = usable_startpfn;
4516 * The usable PFN range for ZONE_MOVABLE is from
4517 * start_pfn->end_pfn. Calculate size_pages as the
4518 * number of pages used as kernelcore
4520 size_pages = end_pfn - start_pfn;
4521 if (size_pages > kernelcore_remaining)
4522 size_pages = kernelcore_remaining;
4523 zone_movable_pfn[nid] = start_pfn + size_pages;
4526 * Some kernelcore has been met, update counts and
4527 * break if the kernelcore for this node has been
4528 * satisified
4530 required_kernelcore -= min(required_kernelcore,
4531 size_pages);
4532 kernelcore_remaining -= size_pages;
4533 if (!kernelcore_remaining)
4534 break;
4539 * If there is still required_kernelcore, we do another pass with one
4540 * less node in the count. This will push zone_movable_pfn[nid] further
4541 * along on the nodes that still have memory until kernelcore is
4542 * satisified
4544 usable_nodes--;
4545 if (usable_nodes && required_kernelcore > usable_nodes)
4546 goto restart;
4548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4549 for (nid = 0; nid < MAX_NUMNODES; nid++)
4550 zone_movable_pfn[nid] =
4551 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4553 out:
4554 /* restore the node_state */
4555 node_states[N_HIGH_MEMORY] = saved_node_state;
4558 /* Any regular memory on that node ? */
4559 static void check_for_regular_memory(pg_data_t *pgdat)
4561 #ifdef CONFIG_HIGHMEM
4562 enum zone_type zone_type;
4564 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4565 struct zone *zone = &pgdat->node_zones[zone_type];
4566 if (zone->present_pages)
4567 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4569 #endif
4573 * free_area_init_nodes - Initialise all pg_data_t and zone data
4574 * @max_zone_pfn: an array of max PFNs for each zone
4576 * This will call free_area_init_node() for each active node in the system.
4577 * Using the page ranges provided by add_active_range(), the size of each
4578 * zone in each node and their holes is calculated. If the maximum PFN
4579 * between two adjacent zones match, it is assumed that the zone is empty.
4580 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4581 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4582 * starts where the previous one ended. For example, ZONE_DMA32 starts
4583 * at arch_max_dma_pfn.
4585 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4587 unsigned long nid;
4588 int i;
4590 /* Sort early_node_map as initialisation assumes it is sorted */
4591 sort_node_map();
4593 /* Record where the zone boundaries are */
4594 memset(arch_zone_lowest_possible_pfn, 0,
4595 sizeof(arch_zone_lowest_possible_pfn));
4596 memset(arch_zone_highest_possible_pfn, 0,
4597 sizeof(arch_zone_highest_possible_pfn));
4598 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4599 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4600 for (i = 1; i < MAX_NR_ZONES; i++) {
4601 if (i == ZONE_MOVABLE)
4602 continue;
4603 arch_zone_lowest_possible_pfn[i] =
4604 arch_zone_highest_possible_pfn[i-1];
4605 arch_zone_highest_possible_pfn[i] =
4606 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4608 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4609 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4611 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4612 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4613 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4615 /* Print out the zone ranges */
4616 printk("Zone PFN ranges:\n");
4617 for (i = 0; i < MAX_NR_ZONES; i++) {
4618 if (i == ZONE_MOVABLE)
4619 continue;
4620 printk(" %-8s ", zone_names[i]);
4621 if (arch_zone_lowest_possible_pfn[i] ==
4622 arch_zone_highest_possible_pfn[i])
4623 printk("empty\n");
4624 else
4625 printk("%0#10lx -> %0#10lx\n",
4626 arch_zone_lowest_possible_pfn[i],
4627 arch_zone_highest_possible_pfn[i]);
4630 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4631 printk("Movable zone start PFN for each node\n");
4632 for (i = 0; i < MAX_NUMNODES; i++) {
4633 if (zone_movable_pfn[i])
4634 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4637 /* Print out the early_node_map[] */
4638 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4639 for (i = 0; i < nr_nodemap_entries; i++)
4640 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4641 early_node_map[i].start_pfn,
4642 early_node_map[i].end_pfn);
4644 /* Initialise every node */
4645 mminit_verify_pageflags_layout();
4646 setup_nr_node_ids();
4647 for_each_online_node(nid) {
4648 pg_data_t *pgdat = NODE_DATA(nid);
4649 free_area_init_node(nid, NULL,
4650 find_min_pfn_for_node(nid), NULL);
4652 /* Any memory on that node */
4653 if (pgdat->node_present_pages)
4654 node_set_state(nid, N_HIGH_MEMORY);
4655 check_for_regular_memory(pgdat);
4659 static int __init cmdline_parse_core(char *p, unsigned long *core)
4661 unsigned long long coremem;
4662 if (!p)
4663 return -EINVAL;
4665 coremem = memparse(p, &p);
4666 *core = coremem >> PAGE_SHIFT;
4668 /* Paranoid check that UL is enough for the coremem value */
4669 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4671 return 0;
4675 * kernelcore=size sets the amount of memory for use for allocations that
4676 * cannot be reclaimed or migrated.
4678 static int __init cmdline_parse_kernelcore(char *p)
4680 return cmdline_parse_core(p, &required_kernelcore);
4684 * movablecore=size sets the amount of memory for use for allocations that
4685 * can be reclaimed or migrated.
4687 static int __init cmdline_parse_movablecore(char *p)
4689 return cmdline_parse_core(p, &required_movablecore);
4692 early_param("kernelcore", cmdline_parse_kernelcore);
4693 early_param("movablecore", cmdline_parse_movablecore);
4695 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4698 * set_dma_reserve - set the specified number of pages reserved in the first zone
4699 * @new_dma_reserve: The number of pages to mark reserved
4701 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4702 * In the DMA zone, a significant percentage may be consumed by kernel image
4703 * and other unfreeable allocations which can skew the watermarks badly. This
4704 * function may optionally be used to account for unfreeable pages in the
4705 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4706 * smaller per-cpu batchsize.
4708 void __init set_dma_reserve(unsigned long new_dma_reserve)
4710 dma_reserve = new_dma_reserve;
4713 #ifndef CONFIG_NEED_MULTIPLE_NODES
4714 struct pglist_data __refdata contig_page_data = {
4715 #ifndef CONFIG_NO_BOOTMEM
4716 .bdata = &bootmem_node_data[0]
4717 #endif
4719 EXPORT_SYMBOL(contig_page_data);
4720 #endif
4722 void __init free_area_init(unsigned long *zones_size)
4724 free_area_init_node(0, zones_size,
4725 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4728 static int page_alloc_cpu_notify(struct notifier_block *self,
4729 unsigned long action, void *hcpu)
4731 int cpu = (unsigned long)hcpu;
4733 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4734 drain_pages(cpu);
4737 * Spill the event counters of the dead processor
4738 * into the current processors event counters.
4739 * This artificially elevates the count of the current
4740 * processor.
4742 vm_events_fold_cpu(cpu);
4745 * Zero the differential counters of the dead processor
4746 * so that the vm statistics are consistent.
4748 * This is only okay since the processor is dead and cannot
4749 * race with what we are doing.
4751 refresh_cpu_vm_stats(cpu);
4753 return NOTIFY_OK;
4756 void __init page_alloc_init(void)
4758 hotcpu_notifier(page_alloc_cpu_notify, 0);
4762 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4763 * or min_free_kbytes changes.
4765 static void calculate_totalreserve_pages(void)
4767 struct pglist_data *pgdat;
4768 unsigned long reserve_pages = 0;
4769 enum zone_type i, j;
4771 for_each_online_pgdat(pgdat) {
4772 for (i = 0; i < MAX_NR_ZONES; i++) {
4773 struct zone *zone = pgdat->node_zones + i;
4774 unsigned long max = 0;
4776 /* Find valid and maximum lowmem_reserve in the zone */
4777 for (j = i; j < MAX_NR_ZONES; j++) {
4778 if (zone->lowmem_reserve[j] > max)
4779 max = zone->lowmem_reserve[j];
4782 /* we treat the high watermark as reserved pages. */
4783 max += high_wmark_pages(zone);
4785 if (max > zone->present_pages)
4786 max = zone->present_pages;
4787 reserve_pages += max;
4790 totalreserve_pages = reserve_pages;
4794 * setup_per_zone_lowmem_reserve - called whenever
4795 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4796 * has a correct pages reserved value, so an adequate number of
4797 * pages are left in the zone after a successful __alloc_pages().
4799 static void setup_per_zone_lowmem_reserve(void)
4801 struct pglist_data *pgdat;
4802 enum zone_type j, idx;
4804 for_each_online_pgdat(pgdat) {
4805 for (j = 0; j < MAX_NR_ZONES; j++) {
4806 struct zone *zone = pgdat->node_zones + j;
4807 unsigned long present_pages = zone->present_pages;
4809 zone->lowmem_reserve[j] = 0;
4811 idx = j;
4812 while (idx) {
4813 struct zone *lower_zone;
4815 idx--;
4817 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4818 sysctl_lowmem_reserve_ratio[idx] = 1;
4820 lower_zone = pgdat->node_zones + idx;
4821 lower_zone->lowmem_reserve[j] = present_pages /
4822 sysctl_lowmem_reserve_ratio[idx];
4823 present_pages += lower_zone->present_pages;
4828 /* update totalreserve_pages */
4829 calculate_totalreserve_pages();
4833 * setup_per_zone_wmarks - called when min_free_kbytes changes
4834 * or when memory is hot-{added|removed}
4836 * Ensures that the watermark[min,low,high] values for each zone are set
4837 * correctly with respect to min_free_kbytes.
4839 void setup_per_zone_wmarks(void)
4841 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4842 unsigned long lowmem_pages = 0;
4843 struct zone *zone;
4844 unsigned long flags;
4846 /* Calculate total number of !ZONE_HIGHMEM pages */
4847 for_each_zone(zone) {
4848 if (!is_highmem(zone))
4849 lowmem_pages += zone->present_pages;
4852 for_each_zone(zone) {
4853 u64 tmp;
4855 spin_lock_irqsave(&zone->lock, flags);
4856 tmp = (u64)pages_min * zone->present_pages;
4857 do_div(tmp, lowmem_pages);
4858 if (is_highmem(zone)) {
4860 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4861 * need highmem pages, so cap pages_min to a small
4862 * value here.
4864 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4865 * deltas controls asynch page reclaim, and so should
4866 * not be capped for highmem.
4868 int min_pages;
4870 min_pages = zone->present_pages / 1024;
4871 if (min_pages < SWAP_CLUSTER_MAX)
4872 min_pages = SWAP_CLUSTER_MAX;
4873 if (min_pages > 128)
4874 min_pages = 128;
4875 zone->watermark[WMARK_MIN] = min_pages;
4876 } else {
4878 * If it's a lowmem zone, reserve a number of pages
4879 * proportionate to the zone's size.
4881 zone->watermark[WMARK_MIN] = tmp;
4884 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4885 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4886 setup_zone_migrate_reserve(zone);
4887 spin_unlock_irqrestore(&zone->lock, flags);
4890 /* update totalreserve_pages */
4891 calculate_totalreserve_pages();
4895 * The inactive anon list should be small enough that the VM never has to
4896 * do too much work, but large enough that each inactive page has a chance
4897 * to be referenced again before it is swapped out.
4899 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4900 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4901 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4902 * the anonymous pages are kept on the inactive list.
4904 * total target max
4905 * memory ratio inactive anon
4906 * -------------------------------------
4907 * 10MB 1 5MB
4908 * 100MB 1 50MB
4909 * 1GB 3 250MB
4910 * 10GB 10 0.9GB
4911 * 100GB 31 3GB
4912 * 1TB 101 10GB
4913 * 10TB 320 32GB
4915 void calculate_zone_inactive_ratio(struct zone *zone)
4917 unsigned int gb, ratio;
4919 /* Zone size in gigabytes */
4920 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4921 if (gb)
4922 ratio = int_sqrt(10 * gb);
4923 else
4924 ratio = 1;
4926 zone->inactive_ratio = ratio;
4929 static void __init setup_per_zone_inactive_ratio(void)
4931 struct zone *zone;
4933 for_each_zone(zone)
4934 calculate_zone_inactive_ratio(zone);
4938 * Initialise min_free_kbytes.
4940 * For small machines we want it small (128k min). For large machines
4941 * we want it large (64MB max). But it is not linear, because network
4942 * bandwidth does not increase linearly with machine size. We use
4944 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4945 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4947 * which yields
4949 * 16MB: 512k
4950 * 32MB: 724k
4951 * 64MB: 1024k
4952 * 128MB: 1448k
4953 * 256MB: 2048k
4954 * 512MB: 2896k
4955 * 1024MB: 4096k
4956 * 2048MB: 5792k
4957 * 4096MB: 8192k
4958 * 8192MB: 11584k
4959 * 16384MB: 16384k
4961 static int __init init_per_zone_wmark_min(void)
4963 unsigned long lowmem_kbytes;
4965 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4967 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4968 if (min_free_kbytes < 128)
4969 min_free_kbytes = 128;
4970 if (min_free_kbytes > 65536)
4971 min_free_kbytes = 65536;
4972 setup_per_zone_wmarks();
4973 setup_per_zone_lowmem_reserve();
4974 setup_per_zone_inactive_ratio();
4975 return 0;
4977 module_init(init_per_zone_wmark_min)
4980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4981 * that we can call two helper functions whenever min_free_kbytes
4982 * changes.
4984 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4985 void __user *buffer, size_t *length, loff_t *ppos)
4987 proc_dointvec(table, write, buffer, length, ppos);
4988 if (write)
4989 setup_per_zone_wmarks();
4990 return 0;
4993 #ifdef CONFIG_NUMA
4994 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4995 void __user *buffer, size_t *length, loff_t *ppos)
4997 struct zone *zone;
4998 int rc;
5000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5001 if (rc)
5002 return rc;
5004 for_each_zone(zone)
5005 zone->min_unmapped_pages = (zone->present_pages *
5006 sysctl_min_unmapped_ratio) / 100;
5007 return 0;
5010 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5011 void __user *buffer, size_t *length, loff_t *ppos)
5013 struct zone *zone;
5014 int rc;
5016 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5017 if (rc)
5018 return rc;
5020 for_each_zone(zone)
5021 zone->min_slab_pages = (zone->present_pages *
5022 sysctl_min_slab_ratio) / 100;
5023 return 0;
5025 #endif
5028 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5029 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5030 * whenever sysctl_lowmem_reserve_ratio changes.
5032 * The reserve ratio obviously has absolutely no relation with the
5033 * minimum watermarks. The lowmem reserve ratio can only make sense
5034 * if in function of the boot time zone sizes.
5036 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5037 void __user *buffer, size_t *length, loff_t *ppos)
5039 proc_dointvec_minmax(table, write, buffer, length, ppos);
5040 setup_per_zone_lowmem_reserve();
5041 return 0;
5045 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5046 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5047 * can have before it gets flushed back to buddy allocator.
5050 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5051 void __user *buffer, size_t *length, loff_t *ppos)
5053 struct zone *zone;
5054 unsigned int cpu;
5055 int ret;
5057 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5058 if (!write || (ret == -EINVAL))
5059 return ret;
5060 for_each_populated_zone(zone) {
5061 for_each_possible_cpu(cpu) {
5062 unsigned long high;
5063 high = zone->present_pages / percpu_pagelist_fraction;
5064 setup_pagelist_highmark(
5065 per_cpu_ptr(zone->pageset, cpu), high);
5068 return 0;
5071 int hashdist = HASHDIST_DEFAULT;
5073 #ifdef CONFIG_NUMA
5074 static int __init set_hashdist(char *str)
5076 if (!str)
5077 return 0;
5078 hashdist = simple_strtoul(str, &str, 0);
5079 return 1;
5081 __setup("hashdist=", set_hashdist);
5082 #endif
5085 * allocate a large system hash table from bootmem
5086 * - it is assumed that the hash table must contain an exact power-of-2
5087 * quantity of entries
5088 * - limit is the number of hash buckets, not the total allocation size
5090 void *__init alloc_large_system_hash(const char *tablename,
5091 unsigned long bucketsize,
5092 unsigned long numentries,
5093 int scale,
5094 int flags,
5095 unsigned int *_hash_shift,
5096 unsigned int *_hash_mask,
5097 unsigned long limit)
5099 unsigned long long max = limit;
5100 unsigned long log2qty, size;
5101 void *table = NULL;
5103 /* allow the kernel cmdline to have a say */
5104 if (!numentries) {
5105 /* round applicable memory size up to nearest megabyte */
5106 numentries = nr_kernel_pages;
5107 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5108 numentries >>= 20 - PAGE_SHIFT;
5109 numentries <<= 20 - PAGE_SHIFT;
5111 /* limit to 1 bucket per 2^scale bytes of low memory */
5112 if (scale > PAGE_SHIFT)
5113 numentries >>= (scale - PAGE_SHIFT);
5114 else
5115 numentries <<= (PAGE_SHIFT - scale);
5117 /* Make sure we've got at least a 0-order allocation.. */
5118 if (unlikely(flags & HASH_SMALL)) {
5119 /* Makes no sense without HASH_EARLY */
5120 WARN_ON(!(flags & HASH_EARLY));
5121 if (!(numentries >> *_hash_shift)) {
5122 numentries = 1UL << *_hash_shift;
5123 BUG_ON(!numentries);
5125 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5126 numentries = PAGE_SIZE / bucketsize;
5128 numentries = roundup_pow_of_two(numentries);
5130 /* limit allocation size to 1/16 total memory by default */
5131 if (max == 0) {
5132 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5133 do_div(max, bucketsize);
5136 if (numentries > max)
5137 numentries = max;
5139 log2qty = ilog2(numentries);
5141 do {
5142 size = bucketsize << log2qty;
5143 if (flags & HASH_EARLY)
5144 table = alloc_bootmem_nopanic(size);
5145 else if (hashdist)
5146 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5147 else {
5149 * If bucketsize is not a power-of-two, we may free
5150 * some pages at the end of hash table which
5151 * alloc_pages_exact() automatically does
5153 if (get_order(size) < MAX_ORDER) {
5154 table = alloc_pages_exact(size, GFP_ATOMIC);
5155 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5158 } while (!table && size > PAGE_SIZE && --log2qty);
5160 if (!table)
5161 panic("Failed to allocate %s hash table\n", tablename);
5163 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5164 tablename,
5165 (1U << log2qty),
5166 ilog2(size) - PAGE_SHIFT,
5167 size);
5169 if (_hash_shift)
5170 *_hash_shift = log2qty;
5171 if (_hash_mask)
5172 *_hash_mask = (1 << log2qty) - 1;
5174 return table;
5177 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5178 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5179 unsigned long pfn)
5181 #ifdef CONFIG_SPARSEMEM
5182 return __pfn_to_section(pfn)->pageblock_flags;
5183 #else
5184 return zone->pageblock_flags;
5185 #endif /* CONFIG_SPARSEMEM */
5188 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5190 #ifdef CONFIG_SPARSEMEM
5191 pfn &= (PAGES_PER_SECTION-1);
5192 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5193 #else
5194 pfn = pfn - zone->zone_start_pfn;
5195 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5196 #endif /* CONFIG_SPARSEMEM */
5200 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5201 * @page: The page within the block of interest
5202 * @start_bitidx: The first bit of interest to retrieve
5203 * @end_bitidx: The last bit of interest
5204 * returns pageblock_bits flags
5206 unsigned long get_pageblock_flags_group(struct page *page,
5207 int start_bitidx, int end_bitidx)
5209 struct zone *zone;
5210 unsigned long *bitmap;
5211 unsigned long pfn, bitidx;
5212 unsigned long flags = 0;
5213 unsigned long value = 1;
5215 zone = page_zone(page);
5216 pfn = page_to_pfn(page);
5217 bitmap = get_pageblock_bitmap(zone, pfn);
5218 bitidx = pfn_to_bitidx(zone, pfn);
5220 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5221 if (test_bit(bitidx + start_bitidx, bitmap))
5222 flags |= value;
5224 return flags;
5228 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5229 * @page: The page within the block of interest
5230 * @start_bitidx: The first bit of interest
5231 * @end_bitidx: The last bit of interest
5232 * @flags: The flags to set
5234 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5235 int start_bitidx, int end_bitidx)
5237 struct zone *zone;
5238 unsigned long *bitmap;
5239 unsigned long pfn, bitidx;
5240 unsigned long value = 1;
5242 zone = page_zone(page);
5243 pfn = page_to_pfn(page);
5244 bitmap = get_pageblock_bitmap(zone, pfn);
5245 bitidx = pfn_to_bitidx(zone, pfn);
5246 VM_BUG_ON(pfn < zone->zone_start_pfn);
5247 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5249 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5250 if (flags & value)
5251 __set_bit(bitidx + start_bitidx, bitmap);
5252 else
5253 __clear_bit(bitidx + start_bitidx, bitmap);
5257 * This is designed as sub function...plz see page_isolation.c also.
5258 * set/clear page block's type to be ISOLATE.
5259 * page allocater never alloc memory from ISOLATE block.
5262 int set_migratetype_isolate(struct page *page)
5264 struct zone *zone;
5265 struct page *curr_page;
5266 unsigned long flags, pfn, iter;
5267 unsigned long immobile = 0;
5268 struct memory_isolate_notify arg;
5269 int notifier_ret;
5270 int ret = -EBUSY;
5271 int zone_idx;
5273 zone = page_zone(page);
5274 zone_idx = zone_idx(zone);
5276 spin_lock_irqsave(&zone->lock, flags);
5277 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5278 zone_idx == ZONE_MOVABLE) {
5279 ret = 0;
5280 goto out;
5283 pfn = page_to_pfn(page);
5284 arg.start_pfn = pfn;
5285 arg.nr_pages = pageblock_nr_pages;
5286 arg.pages_found = 0;
5289 * It may be possible to isolate a pageblock even if the
5290 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5291 * notifier chain is used by balloon drivers to return the
5292 * number of pages in a range that are held by the balloon
5293 * driver to shrink memory. If all the pages are accounted for
5294 * by balloons, are free, or on the LRU, isolation can continue.
5295 * Later, for example, when memory hotplug notifier runs, these
5296 * pages reported as "can be isolated" should be isolated(freed)
5297 * by the balloon driver through the memory notifier chain.
5299 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5300 notifier_ret = notifier_to_errno(notifier_ret);
5301 if (notifier_ret || !arg.pages_found)
5302 goto out;
5304 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5305 if (!pfn_valid_within(pfn))
5306 continue;
5308 curr_page = pfn_to_page(iter);
5309 if (!page_count(curr_page) || PageLRU(curr_page))
5310 continue;
5312 immobile++;
5315 if (arg.pages_found == immobile)
5316 ret = 0;
5318 out:
5319 if (!ret) {
5320 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5321 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5324 spin_unlock_irqrestore(&zone->lock, flags);
5325 if (!ret)
5326 drain_all_pages();
5327 return ret;
5330 void unset_migratetype_isolate(struct page *page)
5332 struct zone *zone;
5333 unsigned long flags;
5334 zone = page_zone(page);
5335 spin_lock_irqsave(&zone->lock, flags);
5336 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5337 goto out;
5338 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5339 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5340 out:
5341 spin_unlock_irqrestore(&zone->lock, flags);
5344 #ifdef CONFIG_MEMORY_HOTREMOVE
5346 * All pages in the range must be isolated before calling this.
5348 void
5349 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5351 struct page *page;
5352 struct zone *zone;
5353 int order, i;
5354 unsigned long pfn;
5355 unsigned long flags;
5356 /* find the first valid pfn */
5357 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5358 if (pfn_valid(pfn))
5359 break;
5360 if (pfn == end_pfn)
5361 return;
5362 zone = page_zone(pfn_to_page(pfn));
5363 spin_lock_irqsave(&zone->lock, flags);
5364 pfn = start_pfn;
5365 while (pfn < end_pfn) {
5366 if (!pfn_valid(pfn)) {
5367 pfn++;
5368 continue;
5370 page = pfn_to_page(pfn);
5371 BUG_ON(page_count(page));
5372 BUG_ON(!PageBuddy(page));
5373 order = page_order(page);
5374 #ifdef CONFIG_DEBUG_VM
5375 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5376 pfn, 1 << order, end_pfn);
5377 #endif
5378 list_del(&page->lru);
5379 rmv_page_order(page);
5380 zone->free_area[order].nr_free--;
5381 __mod_zone_page_state(zone, NR_FREE_PAGES,
5382 - (1UL << order));
5383 for (i = 0; i < (1 << order); i++)
5384 SetPageReserved((page+i));
5385 pfn += (1 << order);
5387 spin_unlock_irqrestore(&zone->lock, flags);
5389 #endif
5391 #ifdef CONFIG_MEMORY_FAILURE
5392 bool is_free_buddy_page(struct page *page)
5394 struct zone *zone = page_zone(page);
5395 unsigned long pfn = page_to_pfn(page);
5396 unsigned long flags;
5397 int order;
5399 spin_lock_irqsave(&zone->lock, flags);
5400 for (order = 0; order < MAX_ORDER; order++) {
5401 struct page *page_head = page - (pfn & ((1 << order) - 1));
5403 if (PageBuddy(page_head) && page_order(page_head) >= order)
5404 break;
5406 spin_unlock_irqrestore(&zone->lock, flags);
5408 return order < MAX_ORDER;
5410 #endif
5412 static struct trace_print_flags pageflag_names[] = {
5413 {1UL << PG_locked, "locked" },
5414 {1UL << PG_error, "error" },
5415 {1UL << PG_referenced, "referenced" },
5416 {1UL << PG_uptodate, "uptodate" },
5417 {1UL << PG_dirty, "dirty" },
5418 {1UL << PG_lru, "lru" },
5419 {1UL << PG_active, "active" },
5420 {1UL << PG_slab, "slab" },
5421 {1UL << PG_owner_priv_1, "owner_priv_1" },
5422 {1UL << PG_arch_1, "arch_1" },
5423 {1UL << PG_reserved, "reserved" },
5424 {1UL << PG_private, "private" },
5425 {1UL << PG_private_2, "private_2" },
5426 {1UL << PG_writeback, "writeback" },
5427 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5428 {1UL << PG_head, "head" },
5429 {1UL << PG_tail, "tail" },
5430 #else
5431 {1UL << PG_compound, "compound" },
5432 #endif
5433 {1UL << PG_swapcache, "swapcache" },
5434 {1UL << PG_mappedtodisk, "mappedtodisk" },
5435 {1UL << PG_reclaim, "reclaim" },
5436 {1UL << PG_buddy, "buddy" },
5437 {1UL << PG_swapbacked, "swapbacked" },
5438 {1UL << PG_unevictable, "unevictable" },
5439 #ifdef CONFIG_MMU
5440 {1UL << PG_mlocked, "mlocked" },
5441 #endif
5442 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5443 {1UL << PG_uncached, "uncached" },
5444 #endif
5445 #ifdef CONFIG_MEMORY_FAILURE
5446 {1UL << PG_hwpoison, "hwpoison" },
5447 #endif
5448 {-1UL, NULL },
5451 static void dump_page_flags(unsigned long flags)
5453 const char *delim = "";
5454 unsigned long mask;
5455 int i;
5457 printk(KERN_ALERT "page flags: %#lx(", flags);
5459 /* remove zone id */
5460 flags &= (1UL << NR_PAGEFLAGS) - 1;
5462 for (i = 0; pageflag_names[i].name && flags; i++) {
5464 mask = pageflag_names[i].mask;
5465 if ((flags & mask) != mask)
5466 continue;
5468 flags &= ~mask;
5469 printk("%s%s", delim, pageflag_names[i].name);
5470 delim = "|";
5473 /* check for left over flags */
5474 if (flags)
5475 printk("%s%#lx", delim, flags);
5477 printk(")\n");
5480 void dump_page(struct page *page)
5482 printk(KERN_ALERT
5483 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5484 page, page_count(page), page_mapcount(page),
5485 page->mapping, page->index);
5486 dump_page_flags(page->flags);