rename dev_hw_addr_random and remove redundant second
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / mac.c
blob83f93684dc2f8b581ead181b285a563be838e40f
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 /**
32 * e1000e_get_bus_info_pcie - Get PCIe bus information
33 * @hw: pointer to the HW structure
35 * Determines and stores the system bus information for a particular
36 * network interface. The following bus information is determined and stored:
37 * bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
41 struct e1000_mac_info *mac = &hw->mac;
42 struct e1000_bus_info *bus = &hw->bus;
43 struct e1000_adapter *adapter = hw->adapter;
44 u16 pcie_link_status, cap_offset;
46 cap_offset = adapter->pdev->pcie_cap;
47 if (!cap_offset) {
48 bus->width = e1000_bus_width_unknown;
49 } else {
50 pci_read_config_word(adapter->pdev,
51 cap_offset + PCIE_LINK_STATUS,
52 &pcie_link_status);
53 bus->width = (enum e1000_bus_width)((pcie_link_status &
54 PCIE_LINK_WIDTH_MASK) >>
55 PCIE_LINK_WIDTH_SHIFT);
58 mac->ops.set_lan_id(hw);
60 return 0;
63 /**
64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
66 * @hw: pointer to the HW structure
68 * Determines the LAN function id by reading memory-mapped registers
69 * and swaps the port value if requested.
70 **/
71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
73 struct e1000_bus_info *bus = &hw->bus;
74 u32 reg;
77 * The status register reports the correct function number
78 * for the device regardless of function swap state.
80 reg = er32(STATUS);
81 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84 /**
85 * e1000_set_lan_id_single_port - Set LAN id for a single port device
86 * @hw: pointer to the HW structure
88 * Sets the LAN function id to zero for a single port device.
89 **/
90 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
92 struct e1000_bus_info *bus = &hw->bus;
94 bus->func = 0;
97 /**
98 * e1000_clear_vfta_generic - Clear VLAN filter table
99 * @hw: pointer to the HW structure
101 * Clears the register array which contains the VLAN filter table by
102 * setting all the values to 0.
104 void e1000_clear_vfta_generic(struct e1000_hw *hw)
106 u32 offset;
108 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110 e1e_flush();
115 * e1000_write_vfta_generic - Write value to VLAN filter table
116 * @hw: pointer to the HW structure
117 * @offset: register offset in VLAN filter table
118 * @value: register value written to VLAN filter table
120 * Writes value at the given offset in the register array which stores
121 * the VLAN filter table.
123 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
125 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126 e1e_flush();
130 * e1000e_init_rx_addrs - Initialize receive address's
131 * @hw: pointer to the HW structure
132 * @rar_count: receive address registers
134 * Setup the receive address registers by setting the base receive address
135 * register to the devices MAC address and clearing all the other receive
136 * address registers to 0.
138 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
140 u32 i;
141 u8 mac_addr[ETH_ALEN] = { 0 };
143 /* Setup the receive address */
144 e_dbg("Programming MAC Address into RAR[0]\n");
146 e1000e_rar_set(hw, hw->mac.addr, 0);
148 /* Zero out the other (rar_entry_count - 1) receive addresses */
149 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150 for (i = 1; i < rar_count; i++)
151 e1000e_rar_set(hw, mac_addr, i);
155 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 * @hw: pointer to the HW structure
158 * Checks the nvm for an alternate MAC address. An alternate MAC address
159 * can be setup by pre-boot software and must be treated like a permanent
160 * address and must override the actual permanent MAC address. If an
161 * alternate MAC address is found it is programmed into RAR0, replacing
162 * the permanent address that was installed into RAR0 by the Si on reset.
163 * This function will return SUCCESS unless it encounters an error while
164 * reading the EEPROM.
166 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
168 u32 i;
169 s32 ret_val = 0;
170 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171 u8 alt_mac_addr[ETH_ALEN];
173 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174 if (ret_val)
175 goto out;
177 /* not supported on 82573 */
178 if (hw->mac.type == e1000_82573)
179 goto out;
181 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182 &nvm_alt_mac_addr_offset);
183 if (ret_val) {
184 e_dbg("NVM Read Error\n");
185 goto out;
188 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189 (nvm_alt_mac_addr_offset == 0x0000))
190 /* There is no Alternate MAC Address */
191 goto out;
193 if (hw->bus.func == E1000_FUNC_1)
194 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195 for (i = 0; i < ETH_ALEN; i += 2) {
196 offset = nvm_alt_mac_addr_offset + (i >> 1);
197 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198 if (ret_val) {
199 e_dbg("NVM Read Error\n");
200 goto out;
203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
207 /* if multicast bit is set, the alternate address will not be used */
208 if (is_multicast_ether_addr(alt_mac_addr)) {
209 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210 goto out;
214 * We have a valid alternate MAC address, and we want to treat it the
215 * same as the normal permanent MAC address stored by the HW into the
216 * RAR. Do this by mapping this address into RAR0.
218 e1000e_rar_set(hw, alt_mac_addr, 0);
220 out:
221 return ret_val;
225 * e1000e_rar_set - Set receive address register
226 * @hw: pointer to the HW structure
227 * @addr: pointer to the receive address
228 * @index: receive address array register
230 * Sets the receive address array register at index to the address passed
231 * in by addr.
233 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
235 u32 rar_low, rar_high;
238 * HW expects these in little endian so we reverse the byte order
239 * from network order (big endian) to little endian
241 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
242 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
244 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
246 /* If MAC address zero, no need to set the AV bit */
247 if (rar_low || rar_high)
248 rar_high |= E1000_RAH_AV;
251 * Some bridges will combine consecutive 32-bit writes into
252 * a single burst write, which will malfunction on some parts.
253 * The flushes avoid this.
255 ew32(RAL(index), rar_low);
256 e1e_flush();
257 ew32(RAH(index), rar_high);
258 e1e_flush();
262 * e1000_hash_mc_addr - Generate a multicast hash value
263 * @hw: pointer to the HW structure
264 * @mc_addr: pointer to a multicast address
266 * Generates a multicast address hash value which is used to determine
267 * the multicast filter table array address and new table value. See
268 * e1000_mta_set_generic()
270 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
272 u32 hash_value, hash_mask;
273 u8 bit_shift = 0;
275 /* Register count multiplied by bits per register */
276 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
279 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
280 * where 0xFF would still fall within the hash mask.
282 while (hash_mask >> bit_shift != 0xFF)
283 bit_shift++;
286 * The portion of the address that is used for the hash table
287 * is determined by the mc_filter_type setting.
288 * The algorithm is such that there is a total of 8 bits of shifting.
289 * The bit_shift for a mc_filter_type of 0 represents the number of
290 * left-shifts where the MSB of mc_addr[5] would still fall within
291 * the hash_mask. Case 0 does this exactly. Since there are a total
292 * of 8 bits of shifting, then mc_addr[4] will shift right the
293 * remaining number of bits. Thus 8 - bit_shift. The rest of the
294 * cases are a variation of this algorithm...essentially raising the
295 * number of bits to shift mc_addr[5] left, while still keeping the
296 * 8-bit shifting total.
298 * For example, given the following Destination MAC Address and an
299 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
300 * we can see that the bit_shift for case 0 is 4. These are the hash
301 * values resulting from each mc_filter_type...
302 * [0] [1] [2] [3] [4] [5]
303 * 01 AA 00 12 34 56
304 * LSB MSB
306 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
307 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
308 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
309 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
311 switch (hw->mac.mc_filter_type) {
312 default:
313 case 0:
314 break;
315 case 1:
316 bit_shift += 1;
317 break;
318 case 2:
319 bit_shift += 2;
320 break;
321 case 3:
322 bit_shift += 4;
323 break;
326 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
327 (((u16)mc_addr[5]) << bit_shift)));
329 return hash_value;
333 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
334 * @hw: pointer to the HW structure
335 * @mc_addr_list: array of multicast addresses to program
336 * @mc_addr_count: number of multicast addresses to program
338 * Updates entire Multicast Table Array.
339 * The caller must have a packed mc_addr_list of multicast addresses.
341 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
342 u8 *mc_addr_list, u32 mc_addr_count)
344 u32 hash_value, hash_bit, hash_reg;
345 int i;
347 /* clear mta_shadow */
348 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
350 /* update mta_shadow from mc_addr_list */
351 for (i = 0; (u32)i < mc_addr_count; i++) {
352 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
354 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
355 hash_bit = hash_value & 0x1F;
357 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
358 mc_addr_list += (ETH_ALEN);
361 /* replace the entire MTA table */
362 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
363 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
364 e1e_flush();
368 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
369 * @hw: pointer to the HW structure
371 * Clears the base hardware counters by reading the counter registers.
373 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
375 er32(CRCERRS);
376 er32(SYMERRS);
377 er32(MPC);
378 er32(SCC);
379 er32(ECOL);
380 er32(MCC);
381 er32(LATECOL);
382 er32(COLC);
383 er32(DC);
384 er32(SEC);
385 er32(RLEC);
386 er32(XONRXC);
387 er32(XONTXC);
388 er32(XOFFRXC);
389 er32(XOFFTXC);
390 er32(FCRUC);
391 er32(GPRC);
392 er32(BPRC);
393 er32(MPRC);
394 er32(GPTC);
395 er32(GORCL);
396 er32(GORCH);
397 er32(GOTCL);
398 er32(GOTCH);
399 er32(RNBC);
400 er32(RUC);
401 er32(RFC);
402 er32(ROC);
403 er32(RJC);
404 er32(TORL);
405 er32(TORH);
406 er32(TOTL);
407 er32(TOTH);
408 er32(TPR);
409 er32(TPT);
410 er32(MPTC);
411 er32(BPTC);
415 * e1000e_check_for_copper_link - Check for link (Copper)
416 * @hw: pointer to the HW structure
418 * Checks to see of the link status of the hardware has changed. If a
419 * change in link status has been detected, then we read the PHY registers
420 * to get the current speed/duplex if link exists.
422 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
424 struct e1000_mac_info *mac = &hw->mac;
425 s32 ret_val;
426 bool link;
429 * We only want to go out to the PHY registers to see if Auto-Neg
430 * has completed and/or if our link status has changed. The
431 * get_link_status flag is set upon receiving a Link Status
432 * Change or Rx Sequence Error interrupt.
434 if (!mac->get_link_status)
435 return 0;
438 * First we want to see if the MII Status Register reports
439 * link. If so, then we want to get the current speed/duplex
440 * of the PHY.
442 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
443 if (ret_val)
444 return ret_val;
446 if (!link)
447 return ret_val; /* No link detected */
449 mac->get_link_status = false;
452 * Check if there was DownShift, must be checked
453 * immediately after link-up
455 e1000e_check_downshift(hw);
458 * If we are forcing speed/duplex, then we simply return since
459 * we have already determined whether we have link or not.
461 if (!mac->autoneg) {
462 ret_val = -E1000_ERR_CONFIG;
463 return ret_val;
467 * Auto-Neg is enabled. Auto Speed Detection takes care
468 * of MAC speed/duplex configuration. So we only need to
469 * configure Collision Distance in the MAC.
471 e1000e_config_collision_dist(hw);
474 * Configure Flow Control now that Auto-Neg has completed.
475 * First, we need to restore the desired flow control
476 * settings because we may have had to re-autoneg with a
477 * different link partner.
479 ret_val = e1000e_config_fc_after_link_up(hw);
480 if (ret_val)
481 e_dbg("Error configuring flow control\n");
483 return ret_val;
487 * e1000e_check_for_fiber_link - Check for link (Fiber)
488 * @hw: pointer to the HW structure
490 * Checks for link up on the hardware. If link is not up and we have
491 * a signal, then we need to force link up.
493 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
495 struct e1000_mac_info *mac = &hw->mac;
496 u32 rxcw;
497 u32 ctrl;
498 u32 status;
499 s32 ret_val;
501 ctrl = er32(CTRL);
502 status = er32(STATUS);
503 rxcw = er32(RXCW);
506 * If we don't have link (auto-negotiation failed or link partner
507 * cannot auto-negotiate), the cable is plugged in (we have signal),
508 * and our link partner is not trying to auto-negotiate with us (we
509 * are receiving idles or data), we need to force link up. We also
510 * need to give auto-negotiation time to complete, in case the cable
511 * was just plugged in. The autoneg_failed flag does this.
513 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
514 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
515 !(rxcw & E1000_RXCW_C)) {
516 if (!mac->autoneg_failed) {
517 mac->autoneg_failed = true;
518 return 0;
520 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
522 /* Disable auto-negotiation in the TXCW register */
523 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
525 /* Force link-up and also force full-duplex. */
526 ctrl = er32(CTRL);
527 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
528 ew32(CTRL, ctrl);
530 /* Configure Flow Control after forcing link up. */
531 ret_val = e1000e_config_fc_after_link_up(hw);
532 if (ret_val) {
533 e_dbg("Error configuring flow control\n");
534 return ret_val;
536 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
538 * If we are forcing link and we are receiving /C/ ordered
539 * sets, re-enable auto-negotiation in the TXCW register
540 * and disable forced link in the Device Control register
541 * in an attempt to auto-negotiate with our link partner.
543 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
544 ew32(TXCW, mac->txcw);
545 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
547 mac->serdes_has_link = true;
550 return 0;
554 * e1000e_check_for_serdes_link - Check for link (Serdes)
555 * @hw: pointer to the HW structure
557 * Checks for link up on the hardware. If link is not up and we have
558 * a signal, then we need to force link up.
560 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
562 struct e1000_mac_info *mac = &hw->mac;
563 u32 rxcw;
564 u32 ctrl;
565 u32 status;
566 s32 ret_val;
568 ctrl = er32(CTRL);
569 status = er32(STATUS);
570 rxcw = er32(RXCW);
573 * If we don't have link (auto-negotiation failed or link partner
574 * cannot auto-negotiate), and our link partner is not trying to
575 * auto-negotiate with us (we are receiving idles or data),
576 * we need to force link up. We also need to give auto-negotiation
577 * time to complete.
579 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
580 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
581 if (!mac->autoneg_failed) {
582 mac->autoneg_failed = true;
583 return 0;
585 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
587 /* Disable auto-negotiation in the TXCW register */
588 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
590 /* Force link-up and also force full-duplex. */
591 ctrl = er32(CTRL);
592 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
593 ew32(CTRL, ctrl);
595 /* Configure Flow Control after forcing link up. */
596 ret_val = e1000e_config_fc_after_link_up(hw);
597 if (ret_val) {
598 e_dbg("Error configuring flow control\n");
599 return ret_val;
601 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
603 * If we are forcing link and we are receiving /C/ ordered
604 * sets, re-enable auto-negotiation in the TXCW register
605 * and disable forced link in the Device Control register
606 * in an attempt to auto-negotiate with our link partner.
608 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
609 ew32(TXCW, mac->txcw);
610 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
612 mac->serdes_has_link = true;
613 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
615 * If we force link for non-auto-negotiation switch, check
616 * link status based on MAC synchronization for internal
617 * serdes media type.
619 /* SYNCH bit and IV bit are sticky. */
620 udelay(10);
621 rxcw = er32(RXCW);
622 if (rxcw & E1000_RXCW_SYNCH) {
623 if (!(rxcw & E1000_RXCW_IV)) {
624 mac->serdes_has_link = true;
625 e_dbg("SERDES: Link up - forced.\n");
627 } else {
628 mac->serdes_has_link = false;
629 e_dbg("SERDES: Link down - force failed.\n");
633 if (E1000_TXCW_ANE & er32(TXCW)) {
634 status = er32(STATUS);
635 if (status & E1000_STATUS_LU) {
636 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
637 udelay(10);
638 rxcw = er32(RXCW);
639 if (rxcw & E1000_RXCW_SYNCH) {
640 if (!(rxcw & E1000_RXCW_IV)) {
641 mac->serdes_has_link = true;
642 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
643 } else {
644 mac->serdes_has_link = false;
645 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
647 } else {
648 mac->serdes_has_link = false;
649 e_dbg("SERDES: Link down - no sync.\n");
651 } else {
652 mac->serdes_has_link = false;
653 e_dbg("SERDES: Link down - autoneg failed\n");
657 return 0;
661 * e1000_set_default_fc_generic - Set flow control default values
662 * @hw: pointer to the HW structure
664 * Read the EEPROM for the default values for flow control and store the
665 * values.
667 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
669 s32 ret_val;
670 u16 nvm_data;
673 * Read and store word 0x0F of the EEPROM. This word contains bits
674 * that determine the hardware's default PAUSE (flow control) mode,
675 * a bit that determines whether the HW defaults to enabling or
676 * disabling auto-negotiation, and the direction of the
677 * SW defined pins. If there is no SW over-ride of the flow
678 * control setting, then the variable hw->fc will
679 * be initialized based on a value in the EEPROM.
681 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
683 if (ret_val) {
684 e_dbg("NVM Read Error\n");
685 return ret_val;
688 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
689 hw->fc.requested_mode = e1000_fc_none;
690 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
691 hw->fc.requested_mode = e1000_fc_tx_pause;
692 else
693 hw->fc.requested_mode = e1000_fc_full;
695 return 0;
699 * e1000e_setup_link - Setup flow control and link settings
700 * @hw: pointer to the HW structure
702 * Determines which flow control settings to use, then configures flow
703 * control. Calls the appropriate media-specific link configuration
704 * function. Assuming the adapter has a valid link partner, a valid link
705 * should be established. Assumes the hardware has previously been reset
706 * and the transmitter and receiver are not enabled.
708 s32 e1000e_setup_link(struct e1000_hw *hw)
710 struct e1000_mac_info *mac = &hw->mac;
711 s32 ret_val;
714 * In the case of the phy reset being blocked, we already have a link.
715 * We do not need to set it up again.
717 if (e1000_check_reset_block(hw))
718 return 0;
721 * If requested flow control is set to default, set flow control
722 * based on the EEPROM flow control settings.
724 if (hw->fc.requested_mode == e1000_fc_default) {
725 ret_val = e1000_set_default_fc_generic(hw);
726 if (ret_val)
727 return ret_val;
731 * Save off the requested flow control mode for use later. Depending
732 * on the link partner's capabilities, we may or may not use this mode.
734 hw->fc.current_mode = hw->fc.requested_mode;
736 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
738 /* Call the necessary media_type subroutine to configure the link. */
739 ret_val = mac->ops.setup_physical_interface(hw);
740 if (ret_val)
741 return ret_val;
744 * Initialize the flow control address, type, and PAUSE timer
745 * registers to their default values. This is done even if flow
746 * control is disabled, because it does not hurt anything to
747 * initialize these registers.
749 e_dbg("Initializing the Flow Control address, type and timer regs\n");
750 ew32(FCT, FLOW_CONTROL_TYPE);
751 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
752 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
754 ew32(FCTTV, hw->fc.pause_time);
756 return e1000e_set_fc_watermarks(hw);
760 * e1000_commit_fc_settings_generic - Configure flow control
761 * @hw: pointer to the HW structure
763 * Write the flow control settings to the Transmit Config Word Register (TXCW)
764 * base on the flow control settings in e1000_mac_info.
766 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
768 struct e1000_mac_info *mac = &hw->mac;
769 u32 txcw;
772 * Check for a software override of the flow control settings, and
773 * setup the device accordingly. If auto-negotiation is enabled, then
774 * software will have to set the "PAUSE" bits to the correct value in
775 * the Transmit Config Word Register (TXCW) and re-start auto-
776 * negotiation. However, if auto-negotiation is disabled, then
777 * software will have to manually configure the two flow control enable
778 * bits in the CTRL register.
780 * The possible values of the "fc" parameter are:
781 * 0: Flow control is completely disabled
782 * 1: Rx flow control is enabled (we can receive pause frames,
783 * but not send pause frames).
784 * 2: Tx flow control is enabled (we can send pause frames but we
785 * do not support receiving pause frames).
786 * 3: Both Rx and Tx flow control (symmetric) are enabled.
788 switch (hw->fc.current_mode) {
789 case e1000_fc_none:
790 /* Flow control completely disabled by a software over-ride. */
791 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
792 break;
793 case e1000_fc_rx_pause:
795 * Rx Flow control is enabled and Tx Flow control is disabled
796 * by a software over-ride. Since there really isn't a way to
797 * advertise that we are capable of Rx Pause ONLY, we will
798 * advertise that we support both symmetric and asymmetric Rx
799 * PAUSE. Later, we will disable the adapter's ability to send
800 * PAUSE frames.
802 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
803 break;
804 case e1000_fc_tx_pause:
806 * Tx Flow control is enabled, and Rx Flow control is disabled,
807 * by a software over-ride.
809 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
810 break;
811 case e1000_fc_full:
813 * Flow control (both Rx and Tx) is enabled by a software
814 * over-ride.
816 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
817 break;
818 default:
819 e_dbg("Flow control param set incorrectly\n");
820 return -E1000_ERR_CONFIG;
821 break;
824 ew32(TXCW, txcw);
825 mac->txcw = txcw;
827 return 0;
831 * e1000_poll_fiber_serdes_link_generic - Poll for link up
832 * @hw: pointer to the HW structure
834 * Polls for link up by reading the status register, if link fails to come
835 * up with auto-negotiation, then the link is forced if a signal is detected.
837 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
839 struct e1000_mac_info *mac = &hw->mac;
840 u32 i, status;
841 s32 ret_val;
844 * If we have a signal (the cable is plugged in, or assumed true for
845 * serdes media) then poll for a "Link-Up" indication in the Device
846 * Status Register. Time-out if a link isn't seen in 500 milliseconds
847 * seconds (Auto-negotiation should complete in less than 500
848 * milliseconds even if the other end is doing it in SW).
850 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
851 usleep_range(10000, 20000);
852 status = er32(STATUS);
853 if (status & E1000_STATUS_LU)
854 break;
856 if (i == FIBER_LINK_UP_LIMIT) {
857 e_dbg("Never got a valid link from auto-neg!!!\n");
858 mac->autoneg_failed = true;
860 * AutoNeg failed to achieve a link, so we'll call
861 * mac->check_for_link. This routine will force the
862 * link up if we detect a signal. This will allow us to
863 * communicate with non-autonegotiating link partners.
865 ret_val = mac->ops.check_for_link(hw);
866 if (ret_val) {
867 e_dbg("Error while checking for link\n");
868 return ret_val;
870 mac->autoneg_failed = false;
871 } else {
872 mac->autoneg_failed = false;
873 e_dbg("Valid Link Found\n");
876 return 0;
880 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
881 * @hw: pointer to the HW structure
883 * Configures collision distance and flow control for fiber and serdes
884 * links. Upon successful setup, poll for link.
886 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
888 u32 ctrl;
889 s32 ret_val;
891 ctrl = er32(CTRL);
893 /* Take the link out of reset */
894 ctrl &= ~E1000_CTRL_LRST;
896 e1000e_config_collision_dist(hw);
898 ret_val = e1000_commit_fc_settings_generic(hw);
899 if (ret_val)
900 return ret_val;
903 * Since auto-negotiation is enabled, take the link out of reset (the
904 * link will be in reset, because we previously reset the chip). This
905 * will restart auto-negotiation. If auto-negotiation is successful
906 * then the link-up status bit will be set and the flow control enable
907 * bits (RFCE and TFCE) will be set according to their negotiated value.
909 e_dbg("Auto-negotiation enabled\n");
911 ew32(CTRL, ctrl);
912 e1e_flush();
913 usleep_range(1000, 2000);
916 * For these adapters, the SW definable pin 1 is set when the optics
917 * detect a signal. If we have a signal, then poll for a "Link-Up"
918 * indication.
920 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
921 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
922 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
923 } else {
924 e_dbg("No signal detected\n");
927 return 0;
931 * e1000e_config_collision_dist - Configure collision distance
932 * @hw: pointer to the HW structure
934 * Configures the collision distance to the default value and is used
935 * during link setup. Currently no func pointer exists and all
936 * implementations are handled in the generic version of this function.
938 void e1000e_config_collision_dist(struct e1000_hw *hw)
940 u32 tctl;
942 tctl = er32(TCTL);
944 tctl &= ~E1000_TCTL_COLD;
945 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
947 ew32(TCTL, tctl);
948 e1e_flush();
952 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
953 * @hw: pointer to the HW structure
955 * Sets the flow control high/low threshold (watermark) registers. If
956 * flow control XON frame transmission is enabled, then set XON frame
957 * transmission as well.
959 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
961 u32 fcrtl = 0, fcrth = 0;
964 * Set the flow control receive threshold registers. Normally,
965 * these registers will be set to a default threshold that may be
966 * adjusted later by the driver's runtime code. However, if the
967 * ability to transmit pause frames is not enabled, then these
968 * registers will be set to 0.
970 if (hw->fc.current_mode & e1000_fc_tx_pause) {
972 * We need to set up the Receive Threshold high and low water
973 * marks as well as (optionally) enabling the transmission of
974 * XON frames.
976 fcrtl = hw->fc.low_water;
977 fcrtl |= E1000_FCRTL_XONE;
978 fcrth = hw->fc.high_water;
980 ew32(FCRTL, fcrtl);
981 ew32(FCRTH, fcrth);
983 return 0;
987 * e1000e_force_mac_fc - Force the MAC's flow control settings
988 * @hw: pointer to the HW structure
990 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
991 * device control register to reflect the adapter settings. TFCE and RFCE
992 * need to be explicitly set by software when a copper PHY is used because
993 * autonegotiation is managed by the PHY rather than the MAC. Software must
994 * also configure these bits when link is forced on a fiber connection.
996 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
998 u32 ctrl;
1000 ctrl = er32(CTRL);
1003 * Because we didn't get link via the internal auto-negotiation
1004 * mechanism (we either forced link or we got link via PHY
1005 * auto-neg), we have to manually enable/disable transmit an
1006 * receive flow control.
1008 * The "Case" statement below enables/disable flow control
1009 * according to the "hw->fc.current_mode" parameter.
1011 * The possible values of the "fc" parameter are:
1012 * 0: Flow control is completely disabled
1013 * 1: Rx flow control is enabled (we can receive pause
1014 * frames but not send pause frames).
1015 * 2: Tx flow control is enabled (we can send pause frames
1016 * frames but we do not receive pause frames).
1017 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1018 * other: No other values should be possible at this point.
1020 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1022 switch (hw->fc.current_mode) {
1023 case e1000_fc_none:
1024 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1025 break;
1026 case e1000_fc_rx_pause:
1027 ctrl &= (~E1000_CTRL_TFCE);
1028 ctrl |= E1000_CTRL_RFCE;
1029 break;
1030 case e1000_fc_tx_pause:
1031 ctrl &= (~E1000_CTRL_RFCE);
1032 ctrl |= E1000_CTRL_TFCE;
1033 break;
1034 case e1000_fc_full:
1035 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1036 break;
1037 default:
1038 e_dbg("Flow control param set incorrectly\n");
1039 return -E1000_ERR_CONFIG;
1042 ew32(CTRL, ctrl);
1044 return 0;
1048 * e1000e_config_fc_after_link_up - Configures flow control after link
1049 * @hw: pointer to the HW structure
1051 * Checks the status of auto-negotiation after link up to ensure that the
1052 * speed and duplex were not forced. If the link needed to be forced, then
1053 * flow control needs to be forced also. If auto-negotiation is enabled
1054 * and did not fail, then we configure flow control based on our link
1055 * partner.
1057 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1059 struct e1000_mac_info *mac = &hw->mac;
1060 s32 ret_val = 0;
1061 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1062 u16 speed, duplex;
1065 * Check for the case where we have fiber media and auto-neg failed
1066 * so we had to force link. In this case, we need to force the
1067 * configuration of the MAC to match the "fc" parameter.
1069 if (mac->autoneg_failed) {
1070 if (hw->phy.media_type == e1000_media_type_fiber ||
1071 hw->phy.media_type == e1000_media_type_internal_serdes)
1072 ret_val = e1000e_force_mac_fc(hw);
1073 } else {
1074 if (hw->phy.media_type == e1000_media_type_copper)
1075 ret_val = e1000e_force_mac_fc(hw);
1078 if (ret_val) {
1079 e_dbg("Error forcing flow control settings\n");
1080 return ret_val;
1084 * Check for the case where we have copper media and auto-neg is
1085 * enabled. In this case, we need to check and see if Auto-Neg
1086 * has completed, and if so, how the PHY and link partner has
1087 * flow control configured.
1089 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1091 * Read the MII Status Register and check to see if AutoNeg
1092 * has completed. We read this twice because this reg has
1093 * some "sticky" (latched) bits.
1095 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1096 if (ret_val)
1097 return ret_val;
1098 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1099 if (ret_val)
1100 return ret_val;
1102 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1103 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1104 return ret_val;
1108 * The AutoNeg process has completed, so we now need to
1109 * read both the Auto Negotiation Advertisement
1110 * Register (Address 4) and the Auto_Negotiation Base
1111 * Page Ability Register (Address 5) to determine how
1112 * flow control was negotiated.
1114 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1115 if (ret_val)
1116 return ret_val;
1117 ret_val =
1118 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1119 if (ret_val)
1120 return ret_val;
1123 * Two bits in the Auto Negotiation Advertisement Register
1124 * (Address 4) and two bits in the Auto Negotiation Base
1125 * Page Ability Register (Address 5) determine flow control
1126 * for both the PHY and the link partner. The following
1127 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1128 * 1999, describes these PAUSE resolution bits and how flow
1129 * control is determined based upon these settings.
1130 * NOTE: DC = Don't Care
1132 * LOCAL DEVICE | LINK PARTNER
1133 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1134 *-------|---------|-------|---------|--------------------
1135 * 0 | 0 | DC | DC | e1000_fc_none
1136 * 0 | 1 | 0 | DC | e1000_fc_none
1137 * 0 | 1 | 1 | 0 | e1000_fc_none
1138 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1139 * 1 | 0 | 0 | DC | e1000_fc_none
1140 * 1 | DC | 1 | DC | e1000_fc_full
1141 * 1 | 1 | 0 | 0 | e1000_fc_none
1142 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1144 * Are both PAUSE bits set to 1? If so, this implies
1145 * Symmetric Flow Control is enabled at both ends. The
1146 * ASM_DIR bits are irrelevant per the spec.
1148 * For Symmetric Flow Control:
1150 * LOCAL DEVICE | LINK PARTNER
1151 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1152 *-------|---------|-------|---------|--------------------
1153 * 1 | DC | 1 | DC | E1000_fc_full
1156 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1157 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1159 * Now we need to check if the user selected Rx ONLY
1160 * of pause frames. In this case, we had to advertise
1161 * FULL flow control because we could not advertise Rx
1162 * ONLY. Hence, we must now check to see if we need to
1163 * turn OFF the TRANSMISSION of PAUSE frames.
1165 if (hw->fc.requested_mode == e1000_fc_full) {
1166 hw->fc.current_mode = e1000_fc_full;
1167 e_dbg("Flow Control = FULL.\n");
1168 } else {
1169 hw->fc.current_mode = e1000_fc_rx_pause;
1170 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1174 * For receiving PAUSE frames ONLY.
1176 * LOCAL DEVICE | LINK PARTNER
1177 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1178 *-------|---------|-------|---------|--------------------
1179 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1181 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1182 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1183 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1184 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1185 hw->fc.current_mode = e1000_fc_tx_pause;
1186 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1189 * For transmitting PAUSE frames ONLY.
1191 * LOCAL DEVICE | LINK PARTNER
1192 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1193 *-------|---------|-------|---------|--------------------
1194 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1196 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1197 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1198 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1199 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1200 hw->fc.current_mode = e1000_fc_rx_pause;
1201 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1202 } else {
1204 * Per the IEEE spec, at this point flow control
1205 * should be disabled.
1207 hw->fc.current_mode = e1000_fc_none;
1208 e_dbg("Flow Control = NONE.\n");
1212 * Now we need to do one last check... If we auto-
1213 * negotiated to HALF DUPLEX, flow control should not be
1214 * enabled per IEEE 802.3 spec.
1216 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1217 if (ret_val) {
1218 e_dbg("Error getting link speed and duplex\n");
1219 return ret_val;
1222 if (duplex == HALF_DUPLEX)
1223 hw->fc.current_mode = e1000_fc_none;
1226 * Now we call a subroutine to actually force the MAC
1227 * controller to use the correct flow control settings.
1229 ret_val = e1000e_force_mac_fc(hw);
1230 if (ret_val) {
1231 e_dbg("Error forcing flow control settings\n");
1232 return ret_val;
1236 return 0;
1240 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1241 * @hw: pointer to the HW structure
1242 * @speed: stores the current speed
1243 * @duplex: stores the current duplex
1245 * Read the status register for the current speed/duplex and store the current
1246 * speed and duplex for copper connections.
1248 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1249 u16 *duplex)
1251 u32 status;
1253 status = er32(STATUS);
1254 if (status & E1000_STATUS_SPEED_1000)
1255 *speed = SPEED_1000;
1256 else if (status & E1000_STATUS_SPEED_100)
1257 *speed = SPEED_100;
1258 else
1259 *speed = SPEED_10;
1261 if (status & E1000_STATUS_FD)
1262 *duplex = FULL_DUPLEX;
1263 else
1264 *duplex = HALF_DUPLEX;
1266 e_dbg("%u Mbps, %s Duplex\n",
1267 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1268 *duplex == FULL_DUPLEX ? "Full" : "Half");
1270 return 0;
1274 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1275 * @hw: pointer to the HW structure
1276 * @speed: stores the current speed
1277 * @duplex: stores the current duplex
1279 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1280 * for fiber/serdes links.
1282 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1283 u16 *duplex)
1285 *speed = SPEED_1000;
1286 *duplex = FULL_DUPLEX;
1288 return 0;
1292 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1293 * @hw: pointer to the HW structure
1295 * Acquire the HW semaphore to access the PHY or NVM
1297 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1299 u32 swsm;
1300 s32 timeout = hw->nvm.word_size + 1;
1301 s32 i = 0;
1303 /* Get the SW semaphore */
1304 while (i < timeout) {
1305 swsm = er32(SWSM);
1306 if (!(swsm & E1000_SWSM_SMBI))
1307 break;
1309 udelay(50);
1310 i++;
1313 if (i == timeout) {
1314 e_dbg("Driver can't access device - SMBI bit is set.\n");
1315 return -E1000_ERR_NVM;
1318 /* Get the FW semaphore. */
1319 for (i = 0; i < timeout; i++) {
1320 swsm = er32(SWSM);
1321 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1323 /* Semaphore acquired if bit latched */
1324 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1325 break;
1327 udelay(50);
1330 if (i == timeout) {
1331 /* Release semaphores */
1332 e1000e_put_hw_semaphore(hw);
1333 e_dbg("Driver can't access the NVM\n");
1334 return -E1000_ERR_NVM;
1337 return 0;
1341 * e1000e_put_hw_semaphore - Release hardware semaphore
1342 * @hw: pointer to the HW structure
1344 * Release hardware semaphore used to access the PHY or NVM
1346 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1348 u32 swsm;
1350 swsm = er32(SWSM);
1351 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1352 ew32(SWSM, swsm);
1356 * e1000e_get_auto_rd_done - Check for auto read completion
1357 * @hw: pointer to the HW structure
1359 * Check EEPROM for Auto Read done bit.
1361 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1363 s32 i = 0;
1365 while (i < AUTO_READ_DONE_TIMEOUT) {
1366 if (er32(EECD) & E1000_EECD_AUTO_RD)
1367 break;
1368 usleep_range(1000, 2000);
1369 i++;
1372 if (i == AUTO_READ_DONE_TIMEOUT) {
1373 e_dbg("Auto read by HW from NVM has not completed.\n");
1374 return -E1000_ERR_RESET;
1377 return 0;
1381 * e1000e_valid_led_default - Verify a valid default LED config
1382 * @hw: pointer to the HW structure
1383 * @data: pointer to the NVM (EEPROM)
1385 * Read the EEPROM for the current default LED configuration. If the
1386 * LED configuration is not valid, set to a valid LED configuration.
1388 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1390 s32 ret_val;
1392 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1393 if (ret_val) {
1394 e_dbg("NVM Read Error\n");
1395 return ret_val;
1398 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1399 *data = ID_LED_DEFAULT;
1401 return 0;
1405 * e1000e_id_led_init -
1406 * @hw: pointer to the HW structure
1409 s32 e1000e_id_led_init(struct e1000_hw *hw)
1411 struct e1000_mac_info *mac = &hw->mac;
1412 s32 ret_val;
1413 const u32 ledctl_mask = 0x000000FF;
1414 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1415 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1416 u16 data, i, temp;
1417 const u16 led_mask = 0x0F;
1419 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1420 if (ret_val)
1421 return ret_val;
1423 mac->ledctl_default = er32(LEDCTL);
1424 mac->ledctl_mode1 = mac->ledctl_default;
1425 mac->ledctl_mode2 = mac->ledctl_default;
1427 for (i = 0; i < 4; i++) {
1428 temp = (data >> (i << 2)) & led_mask;
1429 switch (temp) {
1430 case ID_LED_ON1_DEF2:
1431 case ID_LED_ON1_ON2:
1432 case ID_LED_ON1_OFF2:
1433 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1434 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1435 break;
1436 case ID_LED_OFF1_DEF2:
1437 case ID_LED_OFF1_ON2:
1438 case ID_LED_OFF1_OFF2:
1439 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1440 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1441 break;
1442 default:
1443 /* Do nothing */
1444 break;
1446 switch (temp) {
1447 case ID_LED_DEF1_ON2:
1448 case ID_LED_ON1_ON2:
1449 case ID_LED_OFF1_ON2:
1450 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1451 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1452 break;
1453 case ID_LED_DEF1_OFF2:
1454 case ID_LED_ON1_OFF2:
1455 case ID_LED_OFF1_OFF2:
1456 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1457 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1458 break;
1459 default:
1460 /* Do nothing */
1461 break;
1465 return 0;
1469 * e1000e_setup_led_generic - Configures SW controllable LED
1470 * @hw: pointer to the HW structure
1472 * This prepares the SW controllable LED for use and saves the current state
1473 * of the LED so it can be later restored.
1475 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1477 u32 ledctl;
1479 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1480 return -E1000_ERR_CONFIG;
1482 if (hw->phy.media_type == e1000_media_type_fiber) {
1483 ledctl = er32(LEDCTL);
1484 hw->mac.ledctl_default = ledctl;
1485 /* Turn off LED0 */
1486 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1487 E1000_LEDCTL_LED0_MODE_MASK);
1488 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1489 E1000_LEDCTL_LED0_MODE_SHIFT);
1490 ew32(LEDCTL, ledctl);
1491 } else if (hw->phy.media_type == e1000_media_type_copper) {
1492 ew32(LEDCTL, hw->mac.ledctl_mode1);
1495 return 0;
1499 * e1000e_cleanup_led_generic - Set LED config to default operation
1500 * @hw: pointer to the HW structure
1502 * Remove the current LED configuration and set the LED configuration
1503 * to the default value, saved from the EEPROM.
1505 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1507 ew32(LEDCTL, hw->mac.ledctl_default);
1508 return 0;
1512 * e1000e_blink_led_generic - Blink LED
1513 * @hw: pointer to the HW structure
1515 * Blink the LEDs which are set to be on.
1517 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1519 u32 ledctl_blink = 0;
1520 u32 i;
1522 if (hw->phy.media_type == e1000_media_type_fiber) {
1523 /* always blink LED0 for PCI-E fiber */
1524 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1525 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1526 } else {
1528 * set the blink bit for each LED that's "on" (0x0E)
1529 * in ledctl_mode2
1531 ledctl_blink = hw->mac.ledctl_mode2;
1532 for (i = 0; i < 4; i++)
1533 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1534 E1000_LEDCTL_MODE_LED_ON)
1535 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1536 (i * 8));
1539 ew32(LEDCTL, ledctl_blink);
1541 return 0;
1545 * e1000e_led_on_generic - Turn LED on
1546 * @hw: pointer to the HW structure
1548 * Turn LED on.
1550 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1552 u32 ctrl;
1554 switch (hw->phy.media_type) {
1555 case e1000_media_type_fiber:
1556 ctrl = er32(CTRL);
1557 ctrl &= ~E1000_CTRL_SWDPIN0;
1558 ctrl |= E1000_CTRL_SWDPIO0;
1559 ew32(CTRL, ctrl);
1560 break;
1561 case e1000_media_type_copper:
1562 ew32(LEDCTL, hw->mac.ledctl_mode2);
1563 break;
1564 default:
1565 break;
1568 return 0;
1572 * e1000e_led_off_generic - Turn LED off
1573 * @hw: pointer to the HW structure
1575 * Turn LED off.
1577 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1579 u32 ctrl;
1581 switch (hw->phy.media_type) {
1582 case e1000_media_type_fiber:
1583 ctrl = er32(CTRL);
1584 ctrl |= E1000_CTRL_SWDPIN0;
1585 ctrl |= E1000_CTRL_SWDPIO0;
1586 ew32(CTRL, ctrl);
1587 break;
1588 case e1000_media_type_copper:
1589 ew32(LEDCTL, hw->mac.ledctl_mode1);
1590 break;
1591 default:
1592 break;
1595 return 0;
1599 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1600 * @hw: pointer to the HW structure
1601 * @no_snoop: bitmap of snoop events
1603 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1605 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1607 u32 gcr;
1609 if (no_snoop) {
1610 gcr = er32(GCR);
1611 gcr &= ~(PCIE_NO_SNOOP_ALL);
1612 gcr |= no_snoop;
1613 ew32(GCR, gcr);
1618 * e1000e_disable_pcie_master - Disables PCI-express master access
1619 * @hw: pointer to the HW structure
1621 * Returns 0 if successful, else returns -10
1622 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1623 * the master requests to be disabled.
1625 * Disables PCI-Express master access and verifies there are no pending
1626 * requests.
1628 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1630 u32 ctrl;
1631 s32 timeout = MASTER_DISABLE_TIMEOUT;
1633 ctrl = er32(CTRL);
1634 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1635 ew32(CTRL, ctrl);
1637 while (timeout) {
1638 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1639 break;
1640 udelay(100);
1641 timeout--;
1644 if (!timeout) {
1645 e_dbg("Master requests are pending.\n");
1646 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1649 return 0;
1653 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1654 * @hw: pointer to the HW structure
1656 * Reset the Adaptive Interframe Spacing throttle to default values.
1658 void e1000e_reset_adaptive(struct e1000_hw *hw)
1660 struct e1000_mac_info *mac = &hw->mac;
1662 if (!mac->adaptive_ifs) {
1663 e_dbg("Not in Adaptive IFS mode!\n");
1664 return;
1667 mac->current_ifs_val = 0;
1668 mac->ifs_min_val = IFS_MIN;
1669 mac->ifs_max_val = IFS_MAX;
1670 mac->ifs_step_size = IFS_STEP;
1671 mac->ifs_ratio = IFS_RATIO;
1673 mac->in_ifs_mode = false;
1674 ew32(AIT, 0);
1678 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1679 * @hw: pointer to the HW structure
1681 * Update the Adaptive Interframe Spacing Throttle value based on the
1682 * time between transmitted packets and time between collisions.
1684 void e1000e_update_adaptive(struct e1000_hw *hw)
1686 struct e1000_mac_info *mac = &hw->mac;
1688 if (!mac->adaptive_ifs) {
1689 e_dbg("Not in Adaptive IFS mode!\n");
1690 return;
1693 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1694 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1695 mac->in_ifs_mode = true;
1696 if (mac->current_ifs_val < mac->ifs_max_val) {
1697 if (!mac->current_ifs_val)
1698 mac->current_ifs_val = mac->ifs_min_val;
1699 else
1700 mac->current_ifs_val +=
1701 mac->ifs_step_size;
1702 ew32(AIT, mac->current_ifs_val);
1705 } else {
1706 if (mac->in_ifs_mode &&
1707 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1708 mac->current_ifs_val = 0;
1709 mac->in_ifs_mode = false;
1710 ew32(AIT, 0);