1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
32 * e1000e_get_bus_info_pcie - Get PCIe bus information
33 * @hw: pointer to the HW structure
35 * Determines and stores the system bus information for a particular
36 * network interface. The following bus information is determined and stored:
37 * bus speed, bus width, type (PCIe), and PCIe function.
39 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
41 struct e1000_mac_info
*mac
= &hw
->mac
;
42 struct e1000_bus_info
*bus
= &hw
->bus
;
43 struct e1000_adapter
*adapter
= hw
->adapter
;
44 u16 pcie_link_status
, cap_offset
;
46 cap_offset
= adapter
->pdev
->pcie_cap
;
48 bus
->width
= e1000_bus_width_unknown
;
50 pci_read_config_word(adapter
->pdev
,
51 cap_offset
+ PCIE_LINK_STATUS
,
53 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
54 PCIE_LINK_WIDTH_MASK
) >>
55 PCIE_LINK_WIDTH_SHIFT
);
58 mac
->ops
.set_lan_id(hw
);
64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
66 * @hw: pointer to the HW structure
68 * Determines the LAN function id by reading memory-mapped registers
69 * and swaps the port value if requested.
71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
73 struct e1000_bus_info
*bus
= &hw
->bus
;
77 * The status register reports the correct function number
78 * for the device regardless of function swap state.
81 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
85 * e1000_set_lan_id_single_port - Set LAN id for a single port device
86 * @hw: pointer to the HW structure
88 * Sets the LAN function id to zero for a single port device.
90 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
92 struct e1000_bus_info
*bus
= &hw
->bus
;
98 * e1000_clear_vfta_generic - Clear VLAN filter table
99 * @hw: pointer to the HW structure
101 * Clears the register array which contains the VLAN filter table by
102 * setting all the values to 0.
104 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
108 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
109 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
115 * e1000_write_vfta_generic - Write value to VLAN filter table
116 * @hw: pointer to the HW structure
117 * @offset: register offset in VLAN filter table
118 * @value: register value written to VLAN filter table
120 * Writes value at the given offset in the register array which stores
121 * the VLAN filter table.
123 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
125 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
130 * e1000e_init_rx_addrs - Initialize receive address's
131 * @hw: pointer to the HW structure
132 * @rar_count: receive address registers
134 * Setup the receive address registers by setting the base receive address
135 * register to the devices MAC address and clearing all the other receive
136 * address registers to 0.
138 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
141 u8 mac_addr
[ETH_ALEN
] = { 0 };
143 /* Setup the receive address */
144 e_dbg("Programming MAC Address into RAR[0]\n");
146 e1000e_rar_set(hw
, hw
->mac
.addr
, 0);
148 /* Zero out the other (rar_entry_count - 1) receive addresses */
149 e_dbg("Clearing RAR[1-%u]\n", rar_count
- 1);
150 for (i
= 1; i
< rar_count
; i
++)
151 e1000e_rar_set(hw
, mac_addr
, i
);
155 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 * @hw: pointer to the HW structure
158 * Checks the nvm for an alternate MAC address. An alternate MAC address
159 * can be setup by pre-boot software and must be treated like a permanent
160 * address and must override the actual permanent MAC address. If an
161 * alternate MAC address is found it is programmed into RAR0, replacing
162 * the permanent address that was installed into RAR0 by the Si on reset.
163 * This function will return SUCCESS unless it encounters an error while
164 * reading the EEPROM.
166 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
170 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
171 u8 alt_mac_addr
[ETH_ALEN
];
173 ret_val
= e1000_read_nvm(hw
, NVM_COMPAT
, 1, &nvm_data
);
177 /* not supported on 82573 */
178 if (hw
->mac
.type
== e1000_82573
)
181 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
182 &nvm_alt_mac_addr_offset
);
184 e_dbg("NVM Read Error\n");
188 if ((nvm_alt_mac_addr_offset
== 0xFFFF) ||
189 (nvm_alt_mac_addr_offset
== 0x0000))
190 /* There is no Alternate MAC Address */
193 if (hw
->bus
.func
== E1000_FUNC_1
)
194 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
195 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
196 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
197 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
199 e_dbg("NVM Read Error\n");
203 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
204 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
207 /* if multicast bit is set, the alternate address will not be used */
208 if (is_multicast_ether_addr(alt_mac_addr
)) {
209 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
214 * We have a valid alternate MAC address, and we want to treat it the
215 * same as the normal permanent MAC address stored by the HW into the
216 * RAR. Do this by mapping this address into RAR0.
218 e1000e_rar_set(hw
, alt_mac_addr
, 0);
225 * e1000e_rar_set - Set receive address register
226 * @hw: pointer to the HW structure
227 * @addr: pointer to the receive address
228 * @index: receive address array register
230 * Sets the receive address array register at index to the address passed
233 void e1000e_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
235 u32 rar_low
, rar_high
;
238 * HW expects these in little endian so we reverse the byte order
239 * from network order (big endian) to little endian
241 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
242 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
244 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
246 /* If MAC address zero, no need to set the AV bit */
247 if (rar_low
|| rar_high
)
248 rar_high
|= E1000_RAH_AV
;
251 * Some bridges will combine consecutive 32-bit writes into
252 * a single burst write, which will malfunction on some parts.
253 * The flushes avoid this.
255 ew32(RAL(index
), rar_low
);
257 ew32(RAH(index
), rar_high
);
262 * e1000_hash_mc_addr - Generate a multicast hash value
263 * @hw: pointer to the HW structure
264 * @mc_addr: pointer to a multicast address
266 * Generates a multicast address hash value which is used to determine
267 * the multicast filter table array address and new table value. See
268 * e1000_mta_set_generic()
270 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
272 u32 hash_value
, hash_mask
;
275 /* Register count multiplied by bits per register */
276 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
279 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
280 * where 0xFF would still fall within the hash mask.
282 while (hash_mask
>> bit_shift
!= 0xFF)
286 * The portion of the address that is used for the hash table
287 * is determined by the mc_filter_type setting.
288 * The algorithm is such that there is a total of 8 bits of shifting.
289 * The bit_shift for a mc_filter_type of 0 represents the number of
290 * left-shifts where the MSB of mc_addr[5] would still fall within
291 * the hash_mask. Case 0 does this exactly. Since there are a total
292 * of 8 bits of shifting, then mc_addr[4] will shift right the
293 * remaining number of bits. Thus 8 - bit_shift. The rest of the
294 * cases are a variation of this algorithm...essentially raising the
295 * number of bits to shift mc_addr[5] left, while still keeping the
296 * 8-bit shifting total.
298 * For example, given the following Destination MAC Address and an
299 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
300 * we can see that the bit_shift for case 0 is 4. These are the hash
301 * values resulting from each mc_filter_type...
302 * [0] [1] [2] [3] [4] [5]
306 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
307 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
308 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
309 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
311 switch (hw
->mac
.mc_filter_type
) {
326 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
327 (((u16
)mc_addr
[5]) << bit_shift
)));
333 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
334 * @hw: pointer to the HW structure
335 * @mc_addr_list: array of multicast addresses to program
336 * @mc_addr_count: number of multicast addresses to program
338 * Updates entire Multicast Table Array.
339 * The caller must have a packed mc_addr_list of multicast addresses.
341 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
342 u8
*mc_addr_list
, u32 mc_addr_count
)
344 u32 hash_value
, hash_bit
, hash_reg
;
347 /* clear mta_shadow */
348 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
350 /* update mta_shadow from mc_addr_list */
351 for (i
= 0; (u32
)i
< mc_addr_count
; i
++) {
352 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
354 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
355 hash_bit
= hash_value
& 0x1F;
357 hw
->mac
.mta_shadow
[hash_reg
] |= (1 << hash_bit
);
358 mc_addr_list
+= (ETH_ALEN
);
361 /* replace the entire MTA table */
362 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
363 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
368 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
369 * @hw: pointer to the HW structure
371 * Clears the base hardware counters by reading the counter registers.
373 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
415 * e1000e_check_for_copper_link - Check for link (Copper)
416 * @hw: pointer to the HW structure
418 * Checks to see of the link status of the hardware has changed. If a
419 * change in link status has been detected, then we read the PHY registers
420 * to get the current speed/duplex if link exists.
422 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
424 struct e1000_mac_info
*mac
= &hw
->mac
;
429 * We only want to go out to the PHY registers to see if Auto-Neg
430 * has completed and/or if our link status has changed. The
431 * get_link_status flag is set upon receiving a Link Status
432 * Change or Rx Sequence Error interrupt.
434 if (!mac
->get_link_status
)
438 * First we want to see if the MII Status Register reports
439 * link. If so, then we want to get the current speed/duplex
442 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
447 return ret_val
; /* No link detected */
449 mac
->get_link_status
= false;
452 * Check if there was DownShift, must be checked
453 * immediately after link-up
455 e1000e_check_downshift(hw
);
458 * If we are forcing speed/duplex, then we simply return since
459 * we have already determined whether we have link or not.
462 ret_val
= -E1000_ERR_CONFIG
;
467 * Auto-Neg is enabled. Auto Speed Detection takes care
468 * of MAC speed/duplex configuration. So we only need to
469 * configure Collision Distance in the MAC.
471 e1000e_config_collision_dist(hw
);
474 * Configure Flow Control now that Auto-Neg has completed.
475 * First, we need to restore the desired flow control
476 * settings because we may have had to re-autoneg with a
477 * different link partner.
479 ret_val
= e1000e_config_fc_after_link_up(hw
);
481 e_dbg("Error configuring flow control\n");
487 * e1000e_check_for_fiber_link - Check for link (Fiber)
488 * @hw: pointer to the HW structure
490 * Checks for link up on the hardware. If link is not up and we have
491 * a signal, then we need to force link up.
493 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
495 struct e1000_mac_info
*mac
= &hw
->mac
;
502 status
= er32(STATUS
);
506 * If we don't have link (auto-negotiation failed or link partner
507 * cannot auto-negotiate), the cable is plugged in (we have signal),
508 * and our link partner is not trying to auto-negotiate with us (we
509 * are receiving idles or data), we need to force link up. We also
510 * need to give auto-negotiation time to complete, in case the cable
511 * was just plugged in. The autoneg_failed flag does this.
513 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
514 if ((ctrl
& E1000_CTRL_SWDPIN1
) && !(status
& E1000_STATUS_LU
) &&
515 !(rxcw
& E1000_RXCW_C
)) {
516 if (!mac
->autoneg_failed
) {
517 mac
->autoneg_failed
= true;
520 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
522 /* Disable auto-negotiation in the TXCW register */
523 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
525 /* Force link-up and also force full-duplex. */
527 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
530 /* Configure Flow Control after forcing link up. */
531 ret_val
= e1000e_config_fc_after_link_up(hw
);
533 e_dbg("Error configuring flow control\n");
536 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
538 * If we are forcing link and we are receiving /C/ ordered
539 * sets, re-enable auto-negotiation in the TXCW register
540 * and disable forced link in the Device Control register
541 * in an attempt to auto-negotiate with our link partner.
543 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
544 ew32(TXCW
, mac
->txcw
);
545 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
547 mac
->serdes_has_link
= true;
554 * e1000e_check_for_serdes_link - Check for link (Serdes)
555 * @hw: pointer to the HW structure
557 * Checks for link up on the hardware. If link is not up and we have
558 * a signal, then we need to force link up.
560 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
562 struct e1000_mac_info
*mac
= &hw
->mac
;
569 status
= er32(STATUS
);
573 * If we don't have link (auto-negotiation failed or link partner
574 * cannot auto-negotiate), and our link partner is not trying to
575 * auto-negotiate with us (we are receiving idles or data),
576 * we need to force link up. We also need to give auto-negotiation
579 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
580 if (!(status
& E1000_STATUS_LU
) && !(rxcw
& E1000_RXCW_C
)) {
581 if (!mac
->autoneg_failed
) {
582 mac
->autoneg_failed
= true;
585 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
587 /* Disable auto-negotiation in the TXCW register */
588 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
590 /* Force link-up and also force full-duplex. */
592 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
595 /* Configure Flow Control after forcing link up. */
596 ret_val
= e1000e_config_fc_after_link_up(hw
);
598 e_dbg("Error configuring flow control\n");
601 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
603 * If we are forcing link and we are receiving /C/ ordered
604 * sets, re-enable auto-negotiation in the TXCW register
605 * and disable forced link in the Device Control register
606 * in an attempt to auto-negotiate with our link partner.
608 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
609 ew32(TXCW
, mac
->txcw
);
610 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
612 mac
->serdes_has_link
= true;
613 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
615 * If we force link for non-auto-negotiation switch, check
616 * link status based on MAC synchronization for internal
619 /* SYNCH bit and IV bit are sticky. */
622 if (rxcw
& E1000_RXCW_SYNCH
) {
623 if (!(rxcw
& E1000_RXCW_IV
)) {
624 mac
->serdes_has_link
= true;
625 e_dbg("SERDES: Link up - forced.\n");
628 mac
->serdes_has_link
= false;
629 e_dbg("SERDES: Link down - force failed.\n");
633 if (E1000_TXCW_ANE
& er32(TXCW
)) {
634 status
= er32(STATUS
);
635 if (status
& E1000_STATUS_LU
) {
636 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
639 if (rxcw
& E1000_RXCW_SYNCH
) {
640 if (!(rxcw
& E1000_RXCW_IV
)) {
641 mac
->serdes_has_link
= true;
642 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
644 mac
->serdes_has_link
= false;
645 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
648 mac
->serdes_has_link
= false;
649 e_dbg("SERDES: Link down - no sync.\n");
652 mac
->serdes_has_link
= false;
653 e_dbg("SERDES: Link down - autoneg failed\n");
661 * e1000_set_default_fc_generic - Set flow control default values
662 * @hw: pointer to the HW structure
664 * Read the EEPROM for the default values for flow control and store the
667 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
673 * Read and store word 0x0F of the EEPROM. This word contains bits
674 * that determine the hardware's default PAUSE (flow control) mode,
675 * a bit that determines whether the HW defaults to enabling or
676 * disabling auto-negotiation, and the direction of the
677 * SW defined pins. If there is no SW over-ride of the flow
678 * control setting, then the variable hw->fc will
679 * be initialized based on a value in the EEPROM.
681 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
684 e_dbg("NVM Read Error\n");
688 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
689 hw
->fc
.requested_mode
= e1000_fc_none
;
690 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == NVM_WORD0F_ASM_DIR
)
691 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
693 hw
->fc
.requested_mode
= e1000_fc_full
;
699 * e1000e_setup_link - Setup flow control and link settings
700 * @hw: pointer to the HW structure
702 * Determines which flow control settings to use, then configures flow
703 * control. Calls the appropriate media-specific link configuration
704 * function. Assuming the adapter has a valid link partner, a valid link
705 * should be established. Assumes the hardware has previously been reset
706 * and the transmitter and receiver are not enabled.
708 s32
e1000e_setup_link(struct e1000_hw
*hw
)
710 struct e1000_mac_info
*mac
= &hw
->mac
;
714 * In the case of the phy reset being blocked, we already have a link.
715 * We do not need to set it up again.
717 if (e1000_check_reset_block(hw
))
721 * If requested flow control is set to default, set flow control
722 * based on the EEPROM flow control settings.
724 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
725 ret_val
= e1000_set_default_fc_generic(hw
);
731 * Save off the requested flow control mode for use later. Depending
732 * on the link partner's capabilities, we may or may not use this mode.
734 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
736 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
738 /* Call the necessary media_type subroutine to configure the link. */
739 ret_val
= mac
->ops
.setup_physical_interface(hw
);
744 * Initialize the flow control address, type, and PAUSE timer
745 * registers to their default values. This is done even if flow
746 * control is disabled, because it does not hurt anything to
747 * initialize these registers.
749 e_dbg("Initializing the Flow Control address, type and timer regs\n");
750 ew32(FCT
, FLOW_CONTROL_TYPE
);
751 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
752 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
754 ew32(FCTTV
, hw
->fc
.pause_time
);
756 return e1000e_set_fc_watermarks(hw
);
760 * e1000_commit_fc_settings_generic - Configure flow control
761 * @hw: pointer to the HW structure
763 * Write the flow control settings to the Transmit Config Word Register (TXCW)
764 * base on the flow control settings in e1000_mac_info.
766 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
768 struct e1000_mac_info
*mac
= &hw
->mac
;
772 * Check for a software override of the flow control settings, and
773 * setup the device accordingly. If auto-negotiation is enabled, then
774 * software will have to set the "PAUSE" bits to the correct value in
775 * the Transmit Config Word Register (TXCW) and re-start auto-
776 * negotiation. However, if auto-negotiation is disabled, then
777 * software will have to manually configure the two flow control enable
778 * bits in the CTRL register.
780 * The possible values of the "fc" parameter are:
781 * 0: Flow control is completely disabled
782 * 1: Rx flow control is enabled (we can receive pause frames,
783 * but not send pause frames).
784 * 2: Tx flow control is enabled (we can send pause frames but we
785 * do not support receiving pause frames).
786 * 3: Both Rx and Tx flow control (symmetric) are enabled.
788 switch (hw
->fc
.current_mode
) {
790 /* Flow control completely disabled by a software over-ride. */
791 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
793 case e1000_fc_rx_pause
:
795 * Rx Flow control is enabled and Tx Flow control is disabled
796 * by a software over-ride. Since there really isn't a way to
797 * advertise that we are capable of Rx Pause ONLY, we will
798 * advertise that we support both symmetric and asymmetric Rx
799 * PAUSE. Later, we will disable the adapter's ability to send
802 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
804 case e1000_fc_tx_pause
:
806 * Tx Flow control is enabled, and Rx Flow control is disabled,
807 * by a software over-ride.
809 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
813 * Flow control (both Rx and Tx) is enabled by a software
816 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
819 e_dbg("Flow control param set incorrectly\n");
820 return -E1000_ERR_CONFIG
;
831 * e1000_poll_fiber_serdes_link_generic - Poll for link up
832 * @hw: pointer to the HW structure
834 * Polls for link up by reading the status register, if link fails to come
835 * up with auto-negotiation, then the link is forced if a signal is detected.
837 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
839 struct e1000_mac_info
*mac
= &hw
->mac
;
844 * If we have a signal (the cable is plugged in, or assumed true for
845 * serdes media) then poll for a "Link-Up" indication in the Device
846 * Status Register. Time-out if a link isn't seen in 500 milliseconds
847 * seconds (Auto-negotiation should complete in less than 500
848 * milliseconds even if the other end is doing it in SW).
850 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
851 usleep_range(10000, 20000);
852 status
= er32(STATUS
);
853 if (status
& E1000_STATUS_LU
)
856 if (i
== FIBER_LINK_UP_LIMIT
) {
857 e_dbg("Never got a valid link from auto-neg!!!\n");
858 mac
->autoneg_failed
= true;
860 * AutoNeg failed to achieve a link, so we'll call
861 * mac->check_for_link. This routine will force the
862 * link up if we detect a signal. This will allow us to
863 * communicate with non-autonegotiating link partners.
865 ret_val
= mac
->ops
.check_for_link(hw
);
867 e_dbg("Error while checking for link\n");
870 mac
->autoneg_failed
= false;
872 mac
->autoneg_failed
= false;
873 e_dbg("Valid Link Found\n");
880 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
881 * @hw: pointer to the HW structure
883 * Configures collision distance and flow control for fiber and serdes
884 * links. Upon successful setup, poll for link.
886 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
893 /* Take the link out of reset */
894 ctrl
&= ~E1000_CTRL_LRST
;
896 e1000e_config_collision_dist(hw
);
898 ret_val
= e1000_commit_fc_settings_generic(hw
);
903 * Since auto-negotiation is enabled, take the link out of reset (the
904 * link will be in reset, because we previously reset the chip). This
905 * will restart auto-negotiation. If auto-negotiation is successful
906 * then the link-up status bit will be set and the flow control enable
907 * bits (RFCE and TFCE) will be set according to their negotiated value.
909 e_dbg("Auto-negotiation enabled\n");
913 usleep_range(1000, 2000);
916 * For these adapters, the SW definable pin 1 is set when the optics
917 * detect a signal. If we have a signal, then poll for a "Link-Up"
920 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
921 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
922 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
924 e_dbg("No signal detected\n");
931 * e1000e_config_collision_dist - Configure collision distance
932 * @hw: pointer to the HW structure
934 * Configures the collision distance to the default value and is used
935 * during link setup. Currently no func pointer exists and all
936 * implementations are handled in the generic version of this function.
938 void e1000e_config_collision_dist(struct e1000_hw
*hw
)
944 tctl
&= ~E1000_TCTL_COLD
;
945 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
952 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
953 * @hw: pointer to the HW structure
955 * Sets the flow control high/low threshold (watermark) registers. If
956 * flow control XON frame transmission is enabled, then set XON frame
957 * transmission as well.
959 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
961 u32 fcrtl
= 0, fcrth
= 0;
964 * Set the flow control receive threshold registers. Normally,
965 * these registers will be set to a default threshold that may be
966 * adjusted later by the driver's runtime code. However, if the
967 * ability to transmit pause frames is not enabled, then these
968 * registers will be set to 0.
970 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
972 * We need to set up the Receive Threshold high and low water
973 * marks as well as (optionally) enabling the transmission of
976 fcrtl
= hw
->fc
.low_water
;
977 fcrtl
|= E1000_FCRTL_XONE
;
978 fcrth
= hw
->fc
.high_water
;
987 * e1000e_force_mac_fc - Force the MAC's flow control settings
988 * @hw: pointer to the HW structure
990 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
991 * device control register to reflect the adapter settings. TFCE and RFCE
992 * need to be explicitly set by software when a copper PHY is used because
993 * autonegotiation is managed by the PHY rather than the MAC. Software must
994 * also configure these bits when link is forced on a fiber connection.
996 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
1003 * Because we didn't get link via the internal auto-negotiation
1004 * mechanism (we either forced link or we got link via PHY
1005 * auto-neg), we have to manually enable/disable transmit an
1006 * receive flow control.
1008 * The "Case" statement below enables/disable flow control
1009 * according to the "hw->fc.current_mode" parameter.
1011 * The possible values of the "fc" parameter are:
1012 * 0: Flow control is completely disabled
1013 * 1: Rx flow control is enabled (we can receive pause
1014 * frames but not send pause frames).
1015 * 2: Tx flow control is enabled (we can send pause frames
1016 * frames but we do not receive pause frames).
1017 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1018 * other: No other values should be possible at this point.
1020 e_dbg("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
1022 switch (hw
->fc
.current_mode
) {
1024 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
1026 case e1000_fc_rx_pause
:
1027 ctrl
&= (~E1000_CTRL_TFCE
);
1028 ctrl
|= E1000_CTRL_RFCE
;
1030 case e1000_fc_tx_pause
:
1031 ctrl
&= (~E1000_CTRL_RFCE
);
1032 ctrl
|= E1000_CTRL_TFCE
;
1035 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
1038 e_dbg("Flow control param set incorrectly\n");
1039 return -E1000_ERR_CONFIG
;
1048 * e1000e_config_fc_after_link_up - Configures flow control after link
1049 * @hw: pointer to the HW structure
1051 * Checks the status of auto-negotiation after link up to ensure that the
1052 * speed and duplex were not forced. If the link needed to be forced, then
1053 * flow control needs to be forced also. If auto-negotiation is enabled
1054 * and did not fail, then we configure flow control based on our link
1057 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
1059 struct e1000_mac_info
*mac
= &hw
->mac
;
1061 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1065 * Check for the case where we have fiber media and auto-neg failed
1066 * so we had to force link. In this case, we need to force the
1067 * configuration of the MAC to match the "fc" parameter.
1069 if (mac
->autoneg_failed
) {
1070 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1071 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1072 ret_val
= e1000e_force_mac_fc(hw
);
1074 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1075 ret_val
= e1000e_force_mac_fc(hw
);
1079 e_dbg("Error forcing flow control settings\n");
1084 * Check for the case where we have copper media and auto-neg is
1085 * enabled. In this case, we need to check and see if Auto-Neg
1086 * has completed, and if so, how the PHY and link partner has
1087 * flow control configured.
1089 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1091 * Read the MII Status Register and check to see if AutoNeg
1092 * has completed. We read this twice because this reg has
1093 * some "sticky" (latched) bits.
1095 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1098 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1102 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1103 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1108 * The AutoNeg process has completed, so we now need to
1109 * read both the Auto Negotiation Advertisement
1110 * Register (Address 4) and the Auto_Negotiation Base
1111 * Page Ability Register (Address 5) to determine how
1112 * flow control was negotiated.
1114 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_nway_adv_reg
);
1118 e1e_rphy(hw
, PHY_LP_ABILITY
, &mii_nway_lp_ability_reg
);
1123 * Two bits in the Auto Negotiation Advertisement Register
1124 * (Address 4) and two bits in the Auto Negotiation Base
1125 * Page Ability Register (Address 5) determine flow control
1126 * for both the PHY and the link partner. The following
1127 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1128 * 1999, describes these PAUSE resolution bits and how flow
1129 * control is determined based upon these settings.
1130 * NOTE: DC = Don't Care
1132 * LOCAL DEVICE | LINK PARTNER
1133 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1134 *-------|---------|-------|---------|--------------------
1135 * 0 | 0 | DC | DC | e1000_fc_none
1136 * 0 | 1 | 0 | DC | e1000_fc_none
1137 * 0 | 1 | 1 | 0 | e1000_fc_none
1138 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1139 * 1 | 0 | 0 | DC | e1000_fc_none
1140 * 1 | DC | 1 | DC | e1000_fc_full
1141 * 1 | 1 | 0 | 0 | e1000_fc_none
1142 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1144 * Are both PAUSE bits set to 1? If so, this implies
1145 * Symmetric Flow Control is enabled at both ends. The
1146 * ASM_DIR bits are irrelevant per the spec.
1148 * For Symmetric Flow Control:
1150 * LOCAL DEVICE | LINK PARTNER
1151 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1152 *-------|---------|-------|---------|--------------------
1153 * 1 | DC | 1 | DC | E1000_fc_full
1156 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1157 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1159 * Now we need to check if the user selected Rx ONLY
1160 * of pause frames. In this case, we had to advertise
1161 * FULL flow control because we could not advertise Rx
1162 * ONLY. Hence, we must now check to see if we need to
1163 * turn OFF the TRANSMISSION of PAUSE frames.
1165 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1166 hw
->fc
.current_mode
= e1000_fc_full
;
1167 e_dbg("Flow Control = FULL.\n");
1169 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1170 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1174 * For receiving PAUSE frames ONLY.
1176 * LOCAL DEVICE | LINK PARTNER
1177 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1178 *-------|---------|-------|---------|--------------------
1179 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1181 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1182 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1183 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1184 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1185 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1186 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1189 * For transmitting PAUSE frames ONLY.
1191 * LOCAL DEVICE | LINK PARTNER
1192 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1193 *-------|---------|-------|---------|--------------------
1194 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1196 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1197 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1198 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1199 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1200 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1201 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1204 * Per the IEEE spec, at this point flow control
1205 * should be disabled.
1207 hw
->fc
.current_mode
= e1000_fc_none
;
1208 e_dbg("Flow Control = NONE.\n");
1212 * Now we need to do one last check... If we auto-
1213 * negotiated to HALF DUPLEX, flow control should not be
1214 * enabled per IEEE 802.3 spec.
1216 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1218 e_dbg("Error getting link speed and duplex\n");
1222 if (duplex
== HALF_DUPLEX
)
1223 hw
->fc
.current_mode
= e1000_fc_none
;
1226 * Now we call a subroutine to actually force the MAC
1227 * controller to use the correct flow control settings.
1229 ret_val
= e1000e_force_mac_fc(hw
);
1231 e_dbg("Error forcing flow control settings\n");
1240 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1241 * @hw: pointer to the HW structure
1242 * @speed: stores the current speed
1243 * @duplex: stores the current duplex
1245 * Read the status register for the current speed/duplex and store the current
1246 * speed and duplex for copper connections.
1248 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
1253 status
= er32(STATUS
);
1254 if (status
& E1000_STATUS_SPEED_1000
)
1255 *speed
= SPEED_1000
;
1256 else if (status
& E1000_STATUS_SPEED_100
)
1261 if (status
& E1000_STATUS_FD
)
1262 *duplex
= FULL_DUPLEX
;
1264 *duplex
= HALF_DUPLEX
;
1266 e_dbg("%u Mbps, %s Duplex\n",
1267 *speed
== SPEED_1000
? 1000 : *speed
== SPEED_100
? 100 : 10,
1268 *duplex
== FULL_DUPLEX
? "Full" : "Half");
1274 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1275 * @hw: pointer to the HW structure
1276 * @speed: stores the current speed
1277 * @duplex: stores the current duplex
1279 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1280 * for fiber/serdes links.
1282 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw
*hw
, u16
*speed
,
1285 *speed
= SPEED_1000
;
1286 *duplex
= FULL_DUPLEX
;
1292 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1293 * @hw: pointer to the HW structure
1295 * Acquire the HW semaphore to access the PHY or NVM
1297 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1300 s32 timeout
= hw
->nvm
.word_size
+ 1;
1303 /* Get the SW semaphore */
1304 while (i
< timeout
) {
1306 if (!(swsm
& E1000_SWSM_SMBI
))
1314 e_dbg("Driver can't access device - SMBI bit is set.\n");
1315 return -E1000_ERR_NVM
;
1318 /* Get the FW semaphore. */
1319 for (i
= 0; i
< timeout
; i
++) {
1321 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1323 /* Semaphore acquired if bit latched */
1324 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1331 /* Release semaphores */
1332 e1000e_put_hw_semaphore(hw
);
1333 e_dbg("Driver can't access the NVM\n");
1334 return -E1000_ERR_NVM
;
1341 * e1000e_put_hw_semaphore - Release hardware semaphore
1342 * @hw: pointer to the HW structure
1344 * Release hardware semaphore used to access the PHY or NVM
1346 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1351 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1356 * e1000e_get_auto_rd_done - Check for auto read completion
1357 * @hw: pointer to the HW structure
1359 * Check EEPROM for Auto Read done bit.
1361 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1365 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1366 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1368 usleep_range(1000, 2000);
1372 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1373 e_dbg("Auto read by HW from NVM has not completed.\n");
1374 return -E1000_ERR_RESET
;
1381 * e1000e_valid_led_default - Verify a valid default LED config
1382 * @hw: pointer to the HW structure
1383 * @data: pointer to the NVM (EEPROM)
1385 * Read the EEPROM for the current default LED configuration. If the
1386 * LED configuration is not valid, set to a valid LED configuration.
1388 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1392 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1394 e_dbg("NVM Read Error\n");
1398 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1399 *data
= ID_LED_DEFAULT
;
1405 * e1000e_id_led_init -
1406 * @hw: pointer to the HW structure
1409 s32
e1000e_id_led_init(struct e1000_hw
*hw
)
1411 struct e1000_mac_info
*mac
= &hw
->mac
;
1413 const u32 ledctl_mask
= 0x000000FF;
1414 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1415 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1417 const u16 led_mask
= 0x0F;
1419 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1423 mac
->ledctl_default
= er32(LEDCTL
);
1424 mac
->ledctl_mode1
= mac
->ledctl_default
;
1425 mac
->ledctl_mode2
= mac
->ledctl_default
;
1427 for (i
= 0; i
< 4; i
++) {
1428 temp
= (data
>> (i
<< 2)) & led_mask
;
1430 case ID_LED_ON1_DEF2
:
1431 case ID_LED_ON1_ON2
:
1432 case ID_LED_ON1_OFF2
:
1433 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1434 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1436 case ID_LED_OFF1_DEF2
:
1437 case ID_LED_OFF1_ON2
:
1438 case ID_LED_OFF1_OFF2
:
1439 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1440 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1447 case ID_LED_DEF1_ON2
:
1448 case ID_LED_ON1_ON2
:
1449 case ID_LED_OFF1_ON2
:
1450 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1451 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1453 case ID_LED_DEF1_OFF2
:
1454 case ID_LED_ON1_OFF2
:
1455 case ID_LED_OFF1_OFF2
:
1456 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1457 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1469 * e1000e_setup_led_generic - Configures SW controllable LED
1470 * @hw: pointer to the HW structure
1472 * This prepares the SW controllable LED for use and saves the current state
1473 * of the LED so it can be later restored.
1475 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1479 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
)
1480 return -E1000_ERR_CONFIG
;
1482 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1483 ledctl
= er32(LEDCTL
);
1484 hw
->mac
.ledctl_default
= ledctl
;
1486 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
| E1000_LEDCTL_LED0_BLINK
|
1487 E1000_LEDCTL_LED0_MODE_MASK
);
1488 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1489 E1000_LEDCTL_LED0_MODE_SHIFT
);
1490 ew32(LEDCTL
, ledctl
);
1491 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1492 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1499 * e1000e_cleanup_led_generic - Set LED config to default operation
1500 * @hw: pointer to the HW structure
1502 * Remove the current LED configuration and set the LED configuration
1503 * to the default value, saved from the EEPROM.
1505 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1507 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1512 * e1000e_blink_led_generic - Blink LED
1513 * @hw: pointer to the HW structure
1515 * Blink the LEDs which are set to be on.
1517 s32
e1000e_blink_led_generic(struct e1000_hw
*hw
)
1519 u32 ledctl_blink
= 0;
1522 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1523 /* always blink LED0 for PCI-E fiber */
1524 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1525 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1528 * set the blink bit for each LED that's "on" (0x0E)
1531 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1532 for (i
= 0; i
< 4; i
++)
1533 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1534 E1000_LEDCTL_MODE_LED_ON
)
1535 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1539 ew32(LEDCTL
, ledctl_blink
);
1545 * e1000e_led_on_generic - Turn LED on
1546 * @hw: pointer to the HW structure
1550 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1554 switch (hw
->phy
.media_type
) {
1555 case e1000_media_type_fiber
:
1557 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1558 ctrl
|= E1000_CTRL_SWDPIO0
;
1561 case e1000_media_type_copper
:
1562 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1572 * e1000e_led_off_generic - Turn LED off
1573 * @hw: pointer to the HW structure
1577 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1581 switch (hw
->phy
.media_type
) {
1582 case e1000_media_type_fiber
:
1584 ctrl
|= E1000_CTRL_SWDPIN0
;
1585 ctrl
|= E1000_CTRL_SWDPIO0
;
1588 case e1000_media_type_copper
:
1589 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1599 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1600 * @hw: pointer to the HW structure
1601 * @no_snoop: bitmap of snoop events
1603 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1605 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1611 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1618 * e1000e_disable_pcie_master - Disables PCI-express master access
1619 * @hw: pointer to the HW structure
1621 * Returns 0 if successful, else returns -10
1622 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1623 * the master requests to be disabled.
1625 * Disables PCI-Express master access and verifies there are no pending
1628 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1631 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1634 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1638 if (!(er32(STATUS
) & E1000_STATUS_GIO_MASTER_ENABLE
))
1645 e_dbg("Master requests are pending.\n");
1646 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1653 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1654 * @hw: pointer to the HW structure
1656 * Reset the Adaptive Interframe Spacing throttle to default values.
1658 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1660 struct e1000_mac_info
*mac
= &hw
->mac
;
1662 if (!mac
->adaptive_ifs
) {
1663 e_dbg("Not in Adaptive IFS mode!\n");
1667 mac
->current_ifs_val
= 0;
1668 mac
->ifs_min_val
= IFS_MIN
;
1669 mac
->ifs_max_val
= IFS_MAX
;
1670 mac
->ifs_step_size
= IFS_STEP
;
1671 mac
->ifs_ratio
= IFS_RATIO
;
1673 mac
->in_ifs_mode
= false;
1678 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1679 * @hw: pointer to the HW structure
1681 * Update the Adaptive Interframe Spacing Throttle value based on the
1682 * time between transmitted packets and time between collisions.
1684 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1686 struct e1000_mac_info
*mac
= &hw
->mac
;
1688 if (!mac
->adaptive_ifs
) {
1689 e_dbg("Not in Adaptive IFS mode!\n");
1693 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1694 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1695 mac
->in_ifs_mode
= true;
1696 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1697 if (!mac
->current_ifs_val
)
1698 mac
->current_ifs_val
= mac
->ifs_min_val
;
1700 mac
->current_ifs_val
+=
1702 ew32(AIT
, mac
->current_ifs_val
);
1706 if (mac
->in_ifs_mode
&&
1707 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1708 mac
->current_ifs_val
= 0;
1709 mac
->in_ifs_mode
= false;