1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
44 char stat_string
[ETH_GSTRING_LEN
];
49 #define IGB_STAT(_name, _stat) { \
50 .stat_string = _name, \
51 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 .stat_offset = offsetof(struct igb_adapter, _stat) \
54 static const struct igb_stats igb_gstrings_stats
[] = {
55 IGB_STAT("rx_packets", stats
.gprc
),
56 IGB_STAT("tx_packets", stats
.gptc
),
57 IGB_STAT("rx_bytes", stats
.gorc
),
58 IGB_STAT("tx_bytes", stats
.gotc
),
59 IGB_STAT("rx_broadcast", stats
.bprc
),
60 IGB_STAT("tx_broadcast", stats
.bptc
),
61 IGB_STAT("rx_multicast", stats
.mprc
),
62 IGB_STAT("tx_multicast", stats
.mptc
),
63 IGB_STAT("multicast", stats
.mprc
),
64 IGB_STAT("collisions", stats
.colc
),
65 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
66 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
67 IGB_STAT("rx_missed_errors", stats
.mpc
),
68 IGB_STAT("tx_aborted_errors", stats
.ecol
),
69 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
70 IGB_STAT("tx_window_errors", stats
.latecol
),
71 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
72 IGB_STAT("tx_deferred_ok", stats
.dc
),
73 IGB_STAT("tx_single_coll_ok", stats
.scc
),
74 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
75 IGB_STAT("tx_timeout_count", tx_timeout_count
),
76 IGB_STAT("rx_long_length_errors", stats
.roc
),
77 IGB_STAT("rx_short_length_errors", stats
.ruc
),
78 IGB_STAT("rx_align_errors", stats
.algnerrc
),
79 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
80 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
81 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
82 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
83 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
84 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
85 IGB_STAT("rx_long_byte_count", stats
.gorc
),
86 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
87 IGB_STAT("tx_smbus", stats
.mgptc
),
88 IGB_STAT("rx_smbus", stats
.mgprc
),
89 IGB_STAT("dropped_smbus", stats
.mgpdc
),
90 IGB_STAT("os2bmc_rx_by_bmc", stats
.o2bgptc
),
91 IGB_STAT("os2bmc_tx_by_bmc", stats
.b2ospc
),
92 IGB_STAT("os2bmc_tx_by_host", stats
.o2bspc
),
93 IGB_STAT("os2bmc_rx_by_host", stats
.b2ogprc
),
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 static const struct igb_stats igb_gstrings_net_stats
[] = {
102 IGB_NETDEV_STAT(rx_errors
),
103 IGB_NETDEV_STAT(tx_errors
),
104 IGB_NETDEV_STAT(tx_dropped
),
105 IGB_NETDEV_STAT(rx_length_errors
),
106 IGB_NETDEV_STAT(rx_over_errors
),
107 IGB_NETDEV_STAT(rx_frame_errors
),
108 IGB_NETDEV_STAT(rx_fifo_errors
),
109 IGB_NETDEV_STAT(tx_fifo_errors
),
110 IGB_NETDEV_STAT(tx_heartbeat_errors
)
113 #define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122 #define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
131 "Register test (offline)", "Eeprom test (offline)",
132 "Interrupt test (offline)", "Loopback test (offline)",
133 "Link test (on/offline)"
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
137 static int igb_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
139 struct igb_adapter
*adapter
= netdev_priv(netdev
);
140 struct e1000_hw
*hw
= &adapter
->hw
;
143 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
145 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
146 SUPPORTED_10baseT_Full
|
147 SUPPORTED_100baseT_Half
|
148 SUPPORTED_100baseT_Full
|
149 SUPPORTED_1000baseT_Full
|
152 ecmd
->advertising
= (ADVERTISED_TP
|
155 if (hw
->mac
.autoneg
== 1) {
156 ecmd
->advertising
|= ADVERTISED_Autoneg
;
157 /* the e1000 autoneg seems to match ethtool nicely */
158 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
161 ecmd
->port
= PORT_TP
;
162 ecmd
->phy_address
= hw
->phy
.addr
;
164 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
168 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
173 ecmd
->port
= PORT_FIBRE
;
176 ecmd
->transceiver
= XCVR_INTERNAL
;
178 status
= rd32(E1000_STATUS
);
180 if (status
& E1000_STATUS_LU
) {
182 if ((status
& E1000_STATUS_SPEED_1000
) ||
183 hw
->phy
.media_type
!= e1000_media_type_copper
)
184 ethtool_cmd_speed_set(ecmd
, SPEED_1000
);
185 else if (status
& E1000_STATUS_SPEED_100
)
186 ethtool_cmd_speed_set(ecmd
, SPEED_100
);
188 ethtool_cmd_speed_set(ecmd
, SPEED_10
);
190 if ((status
& E1000_STATUS_FD
) ||
191 hw
->phy
.media_type
!= e1000_media_type_copper
)
192 ecmd
->duplex
= DUPLEX_FULL
;
194 ecmd
->duplex
= DUPLEX_HALF
;
196 ethtool_cmd_speed_set(ecmd
, -1);
200 ecmd
->autoneg
= hw
->mac
.autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
204 static int igb_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
206 struct igb_adapter
*adapter
= netdev_priv(netdev
);
207 struct e1000_hw
*hw
= &adapter
->hw
;
209 /* When SoL/IDER sessions are active, autoneg/speed/duplex
210 * cannot be changed */
211 if (igb_check_reset_block(hw
)) {
212 dev_err(&adapter
->pdev
->dev
, "Cannot change link "
213 "characteristics when SoL/IDER is active.\n");
217 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
220 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
222 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
225 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
226 if (adapter
->fc_autoneg
)
227 hw
->fc
.requested_mode
= e1000_fc_default
;
229 u32 speed
= ethtool_cmd_speed(ecmd
);
230 if (igb_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
231 clear_bit(__IGB_RESETTING
, &adapter
->state
);
237 if (netif_running(adapter
->netdev
)) {
243 clear_bit(__IGB_RESETTING
, &adapter
->state
);
247 static u32
igb_get_link(struct net_device
*netdev
)
249 struct igb_adapter
*adapter
= netdev_priv(netdev
);
250 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
253 * If the link is not reported up to netdev, interrupts are disabled,
254 * and so the physical link state may have changed since we last
255 * looked. Set get_link_status to make sure that the true link
256 * state is interrogated, rather than pulling a cached and possibly
257 * stale link state from the driver.
259 if (!netif_carrier_ok(netdev
))
260 mac
->get_link_status
= 1;
262 return igb_has_link(adapter
);
265 static void igb_get_pauseparam(struct net_device
*netdev
,
266 struct ethtool_pauseparam
*pause
)
268 struct igb_adapter
*adapter
= netdev_priv(netdev
);
269 struct e1000_hw
*hw
= &adapter
->hw
;
272 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
274 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
276 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
278 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
284 static int igb_set_pauseparam(struct net_device
*netdev
,
285 struct ethtool_pauseparam
*pause
)
287 struct igb_adapter
*adapter
= netdev_priv(netdev
);
288 struct e1000_hw
*hw
= &adapter
->hw
;
291 adapter
->fc_autoneg
= pause
->autoneg
;
293 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
296 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
297 hw
->fc
.requested_mode
= e1000_fc_default
;
298 if (netif_running(adapter
->netdev
)) {
305 if (pause
->rx_pause
&& pause
->tx_pause
)
306 hw
->fc
.requested_mode
= e1000_fc_full
;
307 else if (pause
->rx_pause
&& !pause
->tx_pause
)
308 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
309 else if (!pause
->rx_pause
&& pause
->tx_pause
)
310 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
311 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
312 hw
->fc
.requested_mode
= e1000_fc_none
;
314 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
316 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
317 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
320 clear_bit(__IGB_RESETTING
, &adapter
->state
);
324 static u32
igb_get_msglevel(struct net_device
*netdev
)
326 struct igb_adapter
*adapter
= netdev_priv(netdev
);
327 return adapter
->msg_enable
;
330 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
332 struct igb_adapter
*adapter
= netdev_priv(netdev
);
333 adapter
->msg_enable
= data
;
336 static int igb_get_regs_len(struct net_device
*netdev
)
338 #define IGB_REGS_LEN 551
339 return IGB_REGS_LEN
* sizeof(u32
);
342 static void igb_get_regs(struct net_device
*netdev
,
343 struct ethtool_regs
*regs
, void *p
)
345 struct igb_adapter
*adapter
= netdev_priv(netdev
);
346 struct e1000_hw
*hw
= &adapter
->hw
;
350 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
352 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
354 /* General Registers */
355 regs_buff
[0] = rd32(E1000_CTRL
);
356 regs_buff
[1] = rd32(E1000_STATUS
);
357 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
358 regs_buff
[3] = rd32(E1000_MDIC
);
359 regs_buff
[4] = rd32(E1000_SCTL
);
360 regs_buff
[5] = rd32(E1000_CONNSW
);
361 regs_buff
[6] = rd32(E1000_VET
);
362 regs_buff
[7] = rd32(E1000_LEDCTL
);
363 regs_buff
[8] = rd32(E1000_PBA
);
364 regs_buff
[9] = rd32(E1000_PBS
);
365 regs_buff
[10] = rd32(E1000_FRTIMER
);
366 regs_buff
[11] = rd32(E1000_TCPTIMER
);
369 regs_buff
[12] = rd32(E1000_EECD
);
372 /* Reading EICS for EICR because they read the
373 * same but EICS does not clear on read */
374 regs_buff
[13] = rd32(E1000_EICS
);
375 regs_buff
[14] = rd32(E1000_EICS
);
376 regs_buff
[15] = rd32(E1000_EIMS
);
377 regs_buff
[16] = rd32(E1000_EIMC
);
378 regs_buff
[17] = rd32(E1000_EIAC
);
379 regs_buff
[18] = rd32(E1000_EIAM
);
380 /* Reading ICS for ICR because they read the
381 * same but ICS does not clear on read */
382 regs_buff
[19] = rd32(E1000_ICS
);
383 regs_buff
[20] = rd32(E1000_ICS
);
384 regs_buff
[21] = rd32(E1000_IMS
);
385 regs_buff
[22] = rd32(E1000_IMC
);
386 regs_buff
[23] = rd32(E1000_IAC
);
387 regs_buff
[24] = rd32(E1000_IAM
);
388 regs_buff
[25] = rd32(E1000_IMIRVP
);
391 regs_buff
[26] = rd32(E1000_FCAL
);
392 regs_buff
[27] = rd32(E1000_FCAH
);
393 regs_buff
[28] = rd32(E1000_FCTTV
);
394 regs_buff
[29] = rd32(E1000_FCRTL
);
395 regs_buff
[30] = rd32(E1000_FCRTH
);
396 regs_buff
[31] = rd32(E1000_FCRTV
);
399 regs_buff
[32] = rd32(E1000_RCTL
);
400 regs_buff
[33] = rd32(E1000_RXCSUM
);
401 regs_buff
[34] = rd32(E1000_RLPML
);
402 regs_buff
[35] = rd32(E1000_RFCTL
);
403 regs_buff
[36] = rd32(E1000_MRQC
);
404 regs_buff
[37] = rd32(E1000_VT_CTL
);
407 regs_buff
[38] = rd32(E1000_TCTL
);
408 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
409 regs_buff
[40] = rd32(E1000_TIPG
);
410 regs_buff
[41] = rd32(E1000_DTXCTL
);
413 regs_buff
[42] = rd32(E1000_WUC
);
414 regs_buff
[43] = rd32(E1000_WUFC
);
415 regs_buff
[44] = rd32(E1000_WUS
);
416 regs_buff
[45] = rd32(E1000_IPAV
);
417 regs_buff
[46] = rd32(E1000_WUPL
);
420 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
421 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
422 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
423 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
424 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
425 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
426 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
429 regs_buff
[54] = adapter
->stats
.crcerrs
;
430 regs_buff
[55] = adapter
->stats
.algnerrc
;
431 regs_buff
[56] = adapter
->stats
.symerrs
;
432 regs_buff
[57] = adapter
->stats
.rxerrc
;
433 regs_buff
[58] = adapter
->stats
.mpc
;
434 regs_buff
[59] = adapter
->stats
.scc
;
435 regs_buff
[60] = adapter
->stats
.ecol
;
436 regs_buff
[61] = adapter
->stats
.mcc
;
437 regs_buff
[62] = adapter
->stats
.latecol
;
438 regs_buff
[63] = adapter
->stats
.colc
;
439 regs_buff
[64] = adapter
->stats
.dc
;
440 regs_buff
[65] = adapter
->stats
.tncrs
;
441 regs_buff
[66] = adapter
->stats
.sec
;
442 regs_buff
[67] = adapter
->stats
.htdpmc
;
443 regs_buff
[68] = adapter
->stats
.rlec
;
444 regs_buff
[69] = adapter
->stats
.xonrxc
;
445 regs_buff
[70] = adapter
->stats
.xontxc
;
446 regs_buff
[71] = adapter
->stats
.xoffrxc
;
447 regs_buff
[72] = adapter
->stats
.xofftxc
;
448 regs_buff
[73] = adapter
->stats
.fcruc
;
449 regs_buff
[74] = adapter
->stats
.prc64
;
450 regs_buff
[75] = adapter
->stats
.prc127
;
451 regs_buff
[76] = adapter
->stats
.prc255
;
452 regs_buff
[77] = adapter
->stats
.prc511
;
453 regs_buff
[78] = adapter
->stats
.prc1023
;
454 regs_buff
[79] = adapter
->stats
.prc1522
;
455 regs_buff
[80] = adapter
->stats
.gprc
;
456 regs_buff
[81] = adapter
->stats
.bprc
;
457 regs_buff
[82] = adapter
->stats
.mprc
;
458 regs_buff
[83] = adapter
->stats
.gptc
;
459 regs_buff
[84] = adapter
->stats
.gorc
;
460 regs_buff
[86] = adapter
->stats
.gotc
;
461 regs_buff
[88] = adapter
->stats
.rnbc
;
462 regs_buff
[89] = adapter
->stats
.ruc
;
463 regs_buff
[90] = adapter
->stats
.rfc
;
464 regs_buff
[91] = adapter
->stats
.roc
;
465 regs_buff
[92] = adapter
->stats
.rjc
;
466 regs_buff
[93] = adapter
->stats
.mgprc
;
467 regs_buff
[94] = adapter
->stats
.mgpdc
;
468 regs_buff
[95] = adapter
->stats
.mgptc
;
469 regs_buff
[96] = adapter
->stats
.tor
;
470 regs_buff
[98] = adapter
->stats
.tot
;
471 regs_buff
[100] = adapter
->stats
.tpr
;
472 regs_buff
[101] = adapter
->stats
.tpt
;
473 regs_buff
[102] = adapter
->stats
.ptc64
;
474 regs_buff
[103] = adapter
->stats
.ptc127
;
475 regs_buff
[104] = adapter
->stats
.ptc255
;
476 regs_buff
[105] = adapter
->stats
.ptc511
;
477 regs_buff
[106] = adapter
->stats
.ptc1023
;
478 regs_buff
[107] = adapter
->stats
.ptc1522
;
479 regs_buff
[108] = adapter
->stats
.mptc
;
480 regs_buff
[109] = adapter
->stats
.bptc
;
481 regs_buff
[110] = adapter
->stats
.tsctc
;
482 regs_buff
[111] = adapter
->stats
.iac
;
483 regs_buff
[112] = adapter
->stats
.rpthc
;
484 regs_buff
[113] = adapter
->stats
.hgptc
;
485 regs_buff
[114] = adapter
->stats
.hgorc
;
486 regs_buff
[116] = adapter
->stats
.hgotc
;
487 regs_buff
[118] = adapter
->stats
.lenerrs
;
488 regs_buff
[119] = adapter
->stats
.scvpc
;
489 regs_buff
[120] = adapter
->stats
.hrmpc
;
491 for (i
= 0; i
< 4; i
++)
492 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
493 for (i
= 0; i
< 4; i
++)
494 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
495 for (i
= 0; i
< 4; i
++)
496 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
497 for (i
= 0; i
< 4; i
++)
498 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
499 for (i
= 0; i
< 4; i
++)
500 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
501 for (i
= 0; i
< 4; i
++)
502 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
503 for (i
= 0; i
< 4; i
++)
504 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
505 for (i
= 0; i
< 4; i
++)
506 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
508 for (i
= 0; i
< 10; i
++)
509 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
510 for (i
= 0; i
< 8; i
++)
511 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
512 for (i
= 0; i
< 8; i
++)
513 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
514 for (i
= 0; i
< 16; i
++)
515 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
516 for (i
= 0; i
< 16; i
++)
517 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
519 for (i
= 0; i
< 4; i
++)
520 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
521 for (i
= 0; i
< 4; i
++)
522 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
523 for (i
= 0; i
< 4; i
++)
524 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
525 for (i
= 0; i
< 4; i
++)
526 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
527 for (i
= 0; i
< 4; i
++)
528 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
529 for (i
= 0; i
< 4; i
++)
530 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
531 for (i
= 0; i
< 4; i
++)
532 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
533 for (i
= 0; i
< 4; i
++)
534 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
535 for (i
= 0; i
< 4; i
++)
536 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
538 for (i
= 0; i
< 4; i
++)
539 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
540 for (i
= 0; i
< 4; i
++)
541 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
542 for (i
= 0; i
< 32; i
++)
543 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
544 for (i
= 0; i
< 128; i
++)
545 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
546 for (i
= 0; i
< 128; i
++)
547 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
548 for (i
= 0; i
< 4; i
++)
549 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
551 regs_buff
[547] = rd32(E1000_TDFH
);
552 regs_buff
[548] = rd32(E1000_TDFT
);
553 regs_buff
[549] = rd32(E1000_TDFHS
);
554 regs_buff
[550] = rd32(E1000_TDFPC
);
555 regs_buff
[551] = adapter
->stats
.o2bgptc
;
556 regs_buff
[552] = adapter
->stats
.b2ospc
;
557 regs_buff
[553] = adapter
->stats
.o2bspc
;
558 regs_buff
[554] = adapter
->stats
.b2ogprc
;
561 static int igb_get_eeprom_len(struct net_device
*netdev
)
563 struct igb_adapter
*adapter
= netdev_priv(netdev
);
564 return adapter
->hw
.nvm
.word_size
* 2;
567 static int igb_get_eeprom(struct net_device
*netdev
,
568 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
570 struct igb_adapter
*adapter
= netdev_priv(netdev
);
571 struct e1000_hw
*hw
= &adapter
->hw
;
573 int first_word
, last_word
;
577 if (eeprom
->len
== 0)
580 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
582 first_word
= eeprom
->offset
>> 1;
583 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
585 eeprom_buff
= kmalloc(sizeof(u16
) *
586 (last_word
- first_word
+ 1), GFP_KERNEL
);
590 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
591 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
592 last_word
- first_word
+ 1,
595 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
596 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
603 /* Device's eeprom is always little-endian, word addressable */
604 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
605 le16_to_cpus(&eeprom_buff
[i
]);
607 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
614 static int igb_set_eeprom(struct net_device
*netdev
,
615 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
617 struct igb_adapter
*adapter
= netdev_priv(netdev
);
618 struct e1000_hw
*hw
= &adapter
->hw
;
621 int max_len
, first_word
, last_word
, ret_val
= 0;
624 if (eeprom
->len
== 0)
627 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
630 max_len
= hw
->nvm
.word_size
* 2;
632 first_word
= eeprom
->offset
>> 1;
633 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
634 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
638 ptr
= (void *)eeprom_buff
;
640 if (eeprom
->offset
& 1) {
641 /* need read/modify/write of first changed EEPROM word */
642 /* only the second byte of the word is being modified */
643 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
647 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
648 /* need read/modify/write of last changed EEPROM word */
649 /* only the first byte of the word is being modified */
650 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
651 &eeprom_buff
[last_word
- first_word
]);
654 /* Device's eeprom is always little-endian, word addressable */
655 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
656 le16_to_cpus(&eeprom_buff
[i
]);
658 memcpy(ptr
, bytes
, eeprom
->len
);
660 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
661 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
663 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
664 last_word
- first_word
+ 1, eeprom_buff
);
666 /* Update the checksum over the first part of the EEPROM if needed
667 * and flush shadow RAM for 82573 controllers */
668 if ((ret_val
== 0) && ((first_word
<= NVM_CHECKSUM_REG
)))
669 hw
->nvm
.ops
.update(hw
);
675 static void igb_get_drvinfo(struct net_device
*netdev
,
676 struct ethtool_drvinfo
*drvinfo
)
678 struct igb_adapter
*adapter
= netdev_priv(netdev
);
681 strlcpy(drvinfo
->driver
, igb_driver_name
, sizeof(drvinfo
->driver
));
682 strlcpy(drvinfo
->version
, igb_driver_version
, sizeof(drvinfo
->version
));
684 /* EEPROM image version # is reported as firmware version # for
685 * 82575 controllers */
686 adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, 5, 1, &eeprom_data
);
687 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
689 (eeprom_data
& 0xF000) >> 12,
690 (eeprom_data
& 0x0FF0) >> 4,
691 eeprom_data
& 0x000F);
693 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
694 sizeof(drvinfo
->bus_info
));
695 drvinfo
->n_stats
= IGB_STATS_LEN
;
696 drvinfo
->testinfo_len
= IGB_TEST_LEN
;
697 drvinfo
->regdump_len
= igb_get_regs_len(netdev
);
698 drvinfo
->eedump_len
= igb_get_eeprom_len(netdev
);
701 static void igb_get_ringparam(struct net_device
*netdev
,
702 struct ethtool_ringparam
*ring
)
704 struct igb_adapter
*adapter
= netdev_priv(netdev
);
706 ring
->rx_max_pending
= IGB_MAX_RXD
;
707 ring
->tx_max_pending
= IGB_MAX_TXD
;
708 ring
->rx_pending
= adapter
->rx_ring_count
;
709 ring
->tx_pending
= adapter
->tx_ring_count
;
712 static int igb_set_ringparam(struct net_device
*netdev
,
713 struct ethtool_ringparam
*ring
)
715 struct igb_adapter
*adapter
= netdev_priv(netdev
);
716 struct igb_ring
*temp_ring
;
718 u16 new_rx_count
, new_tx_count
;
720 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
723 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
724 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
725 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
727 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
728 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
729 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
731 if ((new_tx_count
== adapter
->tx_ring_count
) &&
732 (new_rx_count
== adapter
->rx_ring_count
)) {
737 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
740 if (!netif_running(adapter
->netdev
)) {
741 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
742 adapter
->tx_ring
[i
]->count
= new_tx_count
;
743 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
744 adapter
->rx_ring
[i
]->count
= new_rx_count
;
745 adapter
->tx_ring_count
= new_tx_count
;
746 adapter
->rx_ring_count
= new_rx_count
;
750 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
751 temp_ring
= vmalloc(adapter
->num_tx_queues
* sizeof(struct igb_ring
));
753 temp_ring
= vmalloc(adapter
->num_rx_queues
* sizeof(struct igb_ring
));
763 * We can't just free everything and then setup again,
764 * because the ISRs in MSI-X mode get passed pointers
765 * to the tx and rx ring structs.
767 if (new_tx_count
!= adapter
->tx_ring_count
) {
768 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
769 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
770 sizeof(struct igb_ring
));
772 temp_ring
[i
].count
= new_tx_count
;
773 err
= igb_setup_tx_resources(&temp_ring
[i
]);
777 igb_free_tx_resources(&temp_ring
[i
]);
783 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
784 igb_free_tx_resources(adapter
->tx_ring
[i
]);
786 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
787 sizeof(struct igb_ring
));
790 adapter
->tx_ring_count
= new_tx_count
;
793 if (new_rx_count
!= adapter
->rx_ring_count
) {
794 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
795 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
796 sizeof(struct igb_ring
));
798 temp_ring
[i
].count
= new_rx_count
;
799 err
= igb_setup_rx_resources(&temp_ring
[i
]);
803 igb_free_rx_resources(&temp_ring
[i
]);
810 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
811 igb_free_rx_resources(adapter
->rx_ring
[i
]);
813 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
814 sizeof(struct igb_ring
));
817 adapter
->rx_ring_count
= new_rx_count
;
823 clear_bit(__IGB_RESETTING
, &adapter
->state
);
827 /* ethtool register test data */
828 struct igb_reg_test
{
837 /* In the hardware, registers are laid out either singly, in arrays
838 * spaced 0x100 bytes apart, or in contiguous tables. We assume
839 * most tests take place on arrays or single registers (handled
840 * as a single-element array) and special-case the tables.
841 * Table tests are always pattern tests.
843 * We also make provision for some required setup steps by specifying
844 * registers to be written without any read-back testing.
847 #define PATTERN_TEST 1
848 #define SET_READ_TEST 2
849 #define WRITE_NO_TEST 3
850 #define TABLE32_TEST 4
851 #define TABLE64_TEST_LO 5
852 #define TABLE64_TEST_HI 6
855 static struct igb_reg_test reg_test_i350
[] = {
856 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
857 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
858 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
859 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
860 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
861 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
862 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
863 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
864 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
866 /* RDH is read-only for i350, only test RDT. */
867 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
868 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
869 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
870 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
871 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
872 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
873 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
874 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
875 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
876 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
877 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
878 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
879 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
880 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
881 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
882 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
883 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
884 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
885 0xFFFFFFFF, 0xFFFFFFFF },
886 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
887 0xC3FFFFFF, 0xFFFFFFFF },
888 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
889 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
891 0xC3FFFFFF, 0xFFFFFFFF },
892 { E1000_MTA
, 0, 128, TABLE32_TEST
,
893 0xFFFFFFFF, 0xFFFFFFFF },
898 static struct igb_reg_test reg_test_82580
[] = {
899 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
900 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
901 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
902 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
904 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
905 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
906 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
907 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
908 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
909 /* RDH is read-only for 82580, only test RDT. */
910 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
911 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
912 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
913 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
914 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
915 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
916 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
917 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
918 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
919 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
921 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
922 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
923 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
924 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
925 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
926 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
927 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
928 0xFFFFFFFF, 0xFFFFFFFF },
929 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
930 0x83FFFFFF, 0xFFFFFFFF },
931 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
932 0xFFFFFFFF, 0xFFFFFFFF },
933 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
934 0x83FFFFFF, 0xFFFFFFFF },
935 { E1000_MTA
, 0, 128, TABLE32_TEST
,
936 0xFFFFFFFF, 0xFFFFFFFF },
941 static struct igb_reg_test reg_test_82576
[] = {
942 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
943 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
944 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
945 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
946 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
947 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
948 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
949 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
950 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
951 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
952 /* Enable all RX queues before testing. */
953 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
954 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
955 /* RDH is read-only for 82576, only test RDT. */
956 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
957 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
958 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
959 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
960 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
961 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
962 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
963 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
964 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
965 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
966 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
967 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
968 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
969 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
970 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
971 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
972 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
973 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
974 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
975 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
976 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
977 { E1000_MTA
, 0, 128,TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
981 /* 82575 register test */
982 static struct igb_reg_test reg_test_82575
[] = {
983 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
984 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
985 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
986 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
987 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
988 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
989 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
990 /* Enable all four RX queues before testing. */
991 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
992 /* RDH is read-only for 82575, only test RDT. */
993 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
994 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
995 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
996 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
997 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
998 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
999 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1000 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1001 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1002 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1003 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1004 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1005 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1006 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1007 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1008 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1012 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1013 int reg
, u32 mask
, u32 write
)
1015 struct e1000_hw
*hw
= &adapter
->hw
;
1017 static const u32 _test
[] =
1018 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1019 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1020 wr32(reg
, (_test
[pat
] & write
));
1021 val
= rd32(reg
) & mask
;
1022 if (val
!= (_test
[pat
] & write
& mask
)) {
1023 dev_err(&adapter
->pdev
->dev
, "pattern test reg %04X "
1024 "failed: got 0x%08X expected 0x%08X\n",
1025 reg
, val
, (_test
[pat
] & write
& mask
));
1034 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1035 int reg
, u32 mask
, u32 write
)
1037 struct e1000_hw
*hw
= &adapter
->hw
;
1039 wr32(reg
, write
& mask
);
1041 if ((write
& mask
) != (val
& mask
)) {
1042 dev_err(&adapter
->pdev
->dev
, "set/check reg %04X test failed:"
1043 " got 0x%08X expected 0x%08X\n", reg
,
1044 (val
& mask
), (write
& mask
));
1052 #define REG_PATTERN_TEST(reg, mask, write) \
1054 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1058 #define REG_SET_AND_CHECK(reg, mask, write) \
1060 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1064 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1066 struct e1000_hw
*hw
= &adapter
->hw
;
1067 struct igb_reg_test
*test
;
1068 u32 value
, before
, after
;
1071 switch (adapter
->hw
.mac
.type
) {
1073 test
= reg_test_i350
;
1074 toggle
= 0x7FEFF3FF;
1077 test
= reg_test_82580
;
1078 toggle
= 0x7FEFF3FF;
1081 test
= reg_test_82576
;
1082 toggle
= 0x7FFFF3FF;
1085 test
= reg_test_82575
;
1086 toggle
= 0x7FFFF3FF;
1090 /* Because the status register is such a special case,
1091 * we handle it separately from the rest of the register
1092 * tests. Some bits are read-only, some toggle, and some
1093 * are writable on newer MACs.
1095 before
= rd32(E1000_STATUS
);
1096 value
= (rd32(E1000_STATUS
) & toggle
);
1097 wr32(E1000_STATUS
, toggle
);
1098 after
= rd32(E1000_STATUS
) & toggle
;
1099 if (value
!= after
) {
1100 dev_err(&adapter
->pdev
->dev
, "failed STATUS register test "
1101 "got: 0x%08X expected: 0x%08X\n", after
, value
);
1105 /* restore previous status */
1106 wr32(E1000_STATUS
, before
);
1108 /* Perform the remainder of the register test, looping through
1109 * the test table until we either fail or reach the null entry.
1112 for (i
= 0; i
< test
->array_len
; i
++) {
1113 switch (test
->test_type
) {
1115 REG_PATTERN_TEST(test
->reg
+
1116 (i
* test
->reg_offset
),
1121 REG_SET_AND_CHECK(test
->reg
+
1122 (i
* test
->reg_offset
),
1128 (adapter
->hw
.hw_addr
+ test
->reg
)
1129 + (i
* test
->reg_offset
));
1132 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1136 case TABLE64_TEST_LO
:
1137 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1141 case TABLE64_TEST_HI
:
1142 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1155 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1162 /* Read and add up the contents of the EEPROM */
1163 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
1164 if ((adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, i
, 1, &temp
)) < 0) {
1171 /* If Checksum is not Correct return error else test passed */
1172 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
1178 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1180 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1181 struct e1000_hw
*hw
= &adapter
->hw
;
1183 adapter
->test_icr
|= rd32(E1000_ICR
);
1188 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1190 struct e1000_hw
*hw
= &adapter
->hw
;
1191 struct net_device
*netdev
= adapter
->netdev
;
1192 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1193 u32 irq
= adapter
->pdev
->irq
;
1197 /* Hook up test interrupt handler just for this test */
1198 if (adapter
->msix_entries
) {
1199 if (request_irq(adapter
->msix_entries
[0].vector
,
1200 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1204 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1206 if (request_irq(irq
,
1207 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1211 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1212 netdev
->name
, adapter
)) {
1214 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1215 netdev
->name
, adapter
)) {
1219 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1220 (shared_int
? "shared" : "unshared"));
1222 /* Disable all the interrupts */
1223 wr32(E1000_IMC
, ~0);
1227 /* Define all writable bits for ICS */
1228 switch (hw
->mac
.type
) {
1230 ics_mask
= 0x37F47EDD;
1233 ics_mask
= 0x77D4FBFD;
1236 ics_mask
= 0x77DCFED5;
1239 ics_mask
= 0x77DCFED5;
1242 ics_mask
= 0x7FFFFFFF;
1246 /* Test each interrupt */
1247 for (; i
< 31; i
++) {
1248 /* Interrupt to test */
1251 if (!(mask
& ics_mask
))
1255 /* Disable the interrupt to be reported in
1256 * the cause register and then force the same
1257 * interrupt and see if one gets posted. If
1258 * an interrupt was posted to the bus, the
1261 adapter
->test_icr
= 0;
1263 /* Flush any pending interrupts */
1264 wr32(E1000_ICR
, ~0);
1266 wr32(E1000_IMC
, mask
);
1267 wr32(E1000_ICS
, mask
);
1271 if (adapter
->test_icr
& mask
) {
1277 /* Enable the interrupt to be reported in
1278 * the cause register and then force the same
1279 * interrupt and see if one gets posted. If
1280 * an interrupt was not posted to the bus, the
1283 adapter
->test_icr
= 0;
1285 /* Flush any pending interrupts */
1286 wr32(E1000_ICR
, ~0);
1288 wr32(E1000_IMS
, mask
);
1289 wr32(E1000_ICS
, mask
);
1293 if (!(adapter
->test_icr
& mask
)) {
1299 /* Disable the other interrupts to be reported in
1300 * the cause register and then force the other
1301 * interrupts and see if any get posted. If
1302 * an interrupt was posted to the bus, the
1305 adapter
->test_icr
= 0;
1307 /* Flush any pending interrupts */
1308 wr32(E1000_ICR
, ~0);
1310 wr32(E1000_IMC
, ~mask
);
1311 wr32(E1000_ICS
, ~mask
);
1315 if (adapter
->test_icr
& mask
) {
1322 /* Disable all the interrupts */
1323 wr32(E1000_IMC
, ~0);
1327 /* Unhook test interrupt handler */
1328 if (adapter
->msix_entries
)
1329 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1331 free_irq(irq
, adapter
);
1336 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1338 igb_free_tx_resources(&adapter
->test_tx_ring
);
1339 igb_free_rx_resources(&adapter
->test_rx_ring
);
1342 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1344 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1345 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1346 struct e1000_hw
*hw
= &adapter
->hw
;
1349 /* Setup Tx descriptor ring and Tx buffers */
1350 tx_ring
->count
= IGB_DEFAULT_TXD
;
1351 tx_ring
->dev
= &adapter
->pdev
->dev
;
1352 tx_ring
->netdev
= adapter
->netdev
;
1353 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1355 if (igb_setup_tx_resources(tx_ring
)) {
1360 igb_setup_tctl(adapter
);
1361 igb_configure_tx_ring(adapter
, tx_ring
);
1363 /* Setup Rx descriptor ring and Rx buffers */
1364 rx_ring
->count
= IGB_DEFAULT_RXD
;
1365 rx_ring
->dev
= &adapter
->pdev
->dev
;
1366 rx_ring
->netdev
= adapter
->netdev
;
1367 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1369 if (igb_setup_rx_resources(rx_ring
)) {
1374 /* set the default queue to queue 0 of PF */
1375 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1377 /* enable receive ring */
1378 igb_setup_rctl(adapter
);
1379 igb_configure_rx_ring(adapter
, rx_ring
);
1381 igb_alloc_rx_buffers(rx_ring
, igb_desc_unused(rx_ring
));
1386 igb_free_desc_rings(adapter
);
1390 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1392 struct e1000_hw
*hw
= &adapter
->hw
;
1394 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1395 igb_write_phy_reg(hw
, 29, 0x001F);
1396 igb_write_phy_reg(hw
, 30, 0x8FFC);
1397 igb_write_phy_reg(hw
, 29, 0x001A);
1398 igb_write_phy_reg(hw
, 30, 0x8FF0);
1401 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1403 struct e1000_hw
*hw
= &adapter
->hw
;
1406 hw
->mac
.autoneg
= false;
1408 if (hw
->phy
.type
== e1000_phy_m88
) {
1409 /* Auto-MDI/MDIX Off */
1410 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1411 /* reset to update Auto-MDI/MDIX */
1412 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1414 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1415 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1416 /* enable MII loopback */
1417 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1420 ctrl_reg
= rd32(E1000_CTRL
);
1422 /* force 1000, set loopback */
1423 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1425 /* Now set up the MAC to the same speed/duplex as the PHY. */
1426 ctrl_reg
= rd32(E1000_CTRL
);
1427 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1428 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1429 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1430 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1431 E1000_CTRL_FD
| /* Force Duplex to FULL */
1432 E1000_CTRL_SLU
); /* Set link up enable bit */
1434 if (hw
->phy
.type
== e1000_phy_m88
)
1435 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1437 wr32(E1000_CTRL
, ctrl_reg
);
1439 /* Disable the receiver on the PHY so when a cable is plugged in, the
1440 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1442 if (hw
->phy
.type
== e1000_phy_m88
)
1443 igb_phy_disable_receiver(adapter
);
1450 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1452 return igb_integrated_phy_loopback(adapter
);
1455 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1457 struct e1000_hw
*hw
= &adapter
->hw
;
1460 reg
= rd32(E1000_CTRL_EXT
);
1462 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1463 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1464 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1465 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1466 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1467 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
)) {
1469 /* Enable DH89xxCC MPHY for near end loopback */
1470 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1471 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1472 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1473 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1475 reg
= rd32(E1000_MPHY_DATA
);
1476 reg
|= E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1477 wr32(E1000_MPHY_DATA
, reg
);
1480 reg
= rd32(E1000_RCTL
);
1481 reg
|= E1000_RCTL_LBM_TCVR
;
1482 wr32(E1000_RCTL
, reg
);
1484 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1486 reg
= rd32(E1000_CTRL
);
1487 reg
&= ~(E1000_CTRL_RFCE
|
1490 reg
|= E1000_CTRL_SLU
|
1492 wr32(E1000_CTRL
, reg
);
1494 /* Unset switch control to serdes energy detect */
1495 reg
= rd32(E1000_CONNSW
);
1496 reg
&= ~E1000_CONNSW_ENRGSRC
;
1497 wr32(E1000_CONNSW
, reg
);
1499 /* Set PCS register for forced speed */
1500 reg
= rd32(E1000_PCS_LCTL
);
1501 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1502 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1503 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1504 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1505 E1000_PCS_LCTL_FSD
| /* Force Speed */
1506 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1507 wr32(E1000_PCS_LCTL
, reg
);
1512 return igb_set_phy_loopback(adapter
);
1515 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1517 struct e1000_hw
*hw
= &adapter
->hw
;
1521 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1522 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1523 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1524 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
)) {
1527 /* Disable near end loopback on DH89xxCC */
1528 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1529 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1530 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1531 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1533 reg
= rd32(E1000_MPHY_DATA
);
1534 reg
&= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1535 wr32(E1000_MPHY_DATA
, reg
);
1538 rctl
= rd32(E1000_RCTL
);
1539 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1540 wr32(E1000_RCTL
, rctl
);
1542 hw
->mac
.autoneg
= true;
1543 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1544 if (phy_reg
& MII_CR_LOOPBACK
) {
1545 phy_reg
&= ~MII_CR_LOOPBACK
;
1546 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1547 igb_phy_sw_reset(hw
);
1551 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1552 unsigned int frame_size
)
1554 memset(skb
->data
, 0xFF, frame_size
);
1556 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1557 memset(&skb
->data
[frame_size
+ 10], 0xBE, 1);
1558 memset(&skb
->data
[frame_size
+ 12], 0xAF, 1);
1561 static int igb_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1564 if (*(skb
->data
+ 3) == 0xFF) {
1565 if ((*(skb
->data
+ frame_size
+ 10) == 0xBE) &&
1566 (*(skb
->data
+ frame_size
+ 12) == 0xAF)) {
1573 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1574 struct igb_ring
*tx_ring
,
1577 union e1000_adv_rx_desc
*rx_desc
;
1578 struct igb_rx_buffer
*rx_buffer_info
;
1579 struct igb_tx_buffer
*tx_buffer_info
;
1580 u16 rx_ntc
, tx_ntc
, count
= 0;
1582 /* initialize next to clean and descriptor values */
1583 rx_ntc
= rx_ring
->next_to_clean
;
1584 tx_ntc
= tx_ring
->next_to_clean
;
1585 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1587 while (igb_test_staterr(rx_desc
, E1000_RXD_STAT_DD
)) {
1588 /* check rx buffer */
1589 rx_buffer_info
= &rx_ring
->rx_buffer_info
[rx_ntc
];
1591 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1592 dma_unmap_single(rx_ring
->dev
,
1593 rx_buffer_info
->dma
,
1596 rx_buffer_info
->dma
= 0;
1598 /* verify contents of skb */
1599 if (!igb_check_lbtest_frame(rx_buffer_info
->skb
, size
))
1602 /* unmap buffer on tx side */
1603 tx_buffer_info
= &tx_ring
->tx_buffer_info
[tx_ntc
];
1604 igb_unmap_and_free_tx_resource(tx_ring
, tx_buffer_info
);
1606 /* increment rx/tx next to clean counters */
1608 if (rx_ntc
== rx_ring
->count
)
1611 if (tx_ntc
== tx_ring
->count
)
1614 /* fetch next descriptor */
1615 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1618 /* re-map buffers to ring, store next to clean values */
1619 igb_alloc_rx_buffers(rx_ring
, count
);
1620 rx_ring
->next_to_clean
= rx_ntc
;
1621 tx_ring
->next_to_clean
= tx_ntc
;
1626 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1628 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1629 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1630 u16 i
, j
, lc
, good_cnt
;
1632 unsigned int size
= IGB_RX_HDR_LEN
;
1633 netdev_tx_t tx_ret_val
;
1634 struct sk_buff
*skb
;
1636 /* allocate test skb */
1637 skb
= alloc_skb(size
, GFP_KERNEL
);
1641 /* place data into test skb */
1642 igb_create_lbtest_frame(skb
, size
);
1646 * Calculate the loop count based on the largest descriptor ring
1647 * The idea is to wrap the largest ring a number of times using 64
1648 * send/receive pairs during each loop
1651 if (rx_ring
->count
<= tx_ring
->count
)
1652 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1654 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1656 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1657 /* reset count of good packets */
1660 /* place 64 packets on the transmit queue*/
1661 for (i
= 0; i
< 64; i
++) {
1663 tx_ret_val
= igb_xmit_frame_ring(skb
, tx_ring
);
1664 if (tx_ret_val
== NETDEV_TX_OK
)
1668 if (good_cnt
!= 64) {
1673 /* allow 200 milliseconds for packets to go from tx to rx */
1676 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1677 if (good_cnt
!= 64) {
1681 } /* end loop count loop */
1683 /* free the original skb */
1689 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1691 /* PHY loopback cannot be performed if SoL/IDER
1692 * sessions are active */
1693 if (igb_check_reset_block(&adapter
->hw
)) {
1694 dev_err(&adapter
->pdev
->dev
,
1695 "Cannot do PHY loopback test "
1696 "when SoL/IDER is active.\n");
1700 *data
= igb_setup_desc_rings(adapter
);
1703 *data
= igb_setup_loopback_test(adapter
);
1706 *data
= igb_run_loopback_test(adapter
);
1707 igb_loopback_cleanup(adapter
);
1710 igb_free_desc_rings(adapter
);
1715 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1717 struct e1000_hw
*hw
= &adapter
->hw
;
1719 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1721 hw
->mac
.serdes_has_link
= false;
1723 /* On some blade server designs, link establishment
1724 * could take as long as 2-3 minutes */
1726 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1727 if (hw
->mac
.serdes_has_link
)
1730 } while (i
++ < 3750);
1734 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1735 if (hw
->mac
.autoneg
)
1738 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
1744 static void igb_diag_test(struct net_device
*netdev
,
1745 struct ethtool_test
*eth_test
, u64
*data
)
1747 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1748 u16 autoneg_advertised
;
1749 u8 forced_speed_duplex
, autoneg
;
1750 bool if_running
= netif_running(netdev
);
1752 set_bit(__IGB_TESTING
, &adapter
->state
);
1753 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1756 /* save speed, duplex, autoneg settings */
1757 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1758 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1759 autoneg
= adapter
->hw
.mac
.autoneg
;
1761 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
1763 /* power up link for link test */
1764 igb_power_up_link(adapter
);
1766 /* Link test performed before hardware reset so autoneg doesn't
1767 * interfere with test result */
1768 if (igb_link_test(adapter
, &data
[4]))
1769 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1772 /* indicate we're in test mode */
1777 if (igb_reg_test(adapter
, &data
[0]))
1778 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1781 if (igb_eeprom_test(adapter
, &data
[1]))
1782 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1785 if (igb_intr_test(adapter
, &data
[2]))
1786 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1789 /* power up link for loopback test */
1790 igb_power_up_link(adapter
);
1791 if (igb_loopback_test(adapter
, &data
[3]))
1792 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1794 /* restore speed, duplex, autoneg settings */
1795 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1796 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1797 adapter
->hw
.mac
.autoneg
= autoneg
;
1799 /* force this routine to wait until autoneg complete/timeout */
1800 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
1802 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
1804 clear_bit(__IGB_TESTING
, &adapter
->state
);
1808 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
1810 /* PHY is powered down when interface is down */
1811 if (if_running
&& igb_link_test(adapter
, &data
[4]))
1812 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1816 /* Online tests aren't run; pass by default */
1822 clear_bit(__IGB_TESTING
, &adapter
->state
);
1824 msleep_interruptible(4 * 1000);
1827 static int igb_wol_exclusion(struct igb_adapter
*adapter
,
1828 struct ethtool_wolinfo
*wol
)
1830 struct e1000_hw
*hw
= &adapter
->hw
;
1831 int retval
= 1; /* fail by default */
1833 switch (hw
->device_id
) {
1834 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1835 /* WoL not supported */
1838 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1839 case E1000_DEV_ID_82576_FIBER
:
1840 case E1000_DEV_ID_82576_SERDES
:
1841 /* Wake events not supported on port B */
1842 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
) {
1846 /* return success for non excluded adapter ports */
1849 case E1000_DEV_ID_82576_QUAD_COPPER
:
1850 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
1851 /* quad port adapters only support WoL on port A */
1852 if (!(adapter
->flags
& IGB_FLAG_QUAD_PORT_A
)) {
1856 /* return success for non excluded adapter ports */
1860 /* dual port cards only support WoL on port A from now on
1861 * unless it was enabled in the eeprom for port B
1862 * so exclude FUNC_1 ports from having WoL enabled */
1863 if ((rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) &&
1864 !adapter
->eeprom_wol
) {
1875 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1877 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1879 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1880 WAKE_BCAST
| WAKE_MAGIC
|
1884 /* this function will set ->supported = 0 and return 1 if wol is not
1885 * supported by this hardware */
1886 if (igb_wol_exclusion(adapter
, wol
) ||
1887 !device_can_wakeup(&adapter
->pdev
->dev
))
1890 /* apply any specific unsupported masks here */
1891 switch (adapter
->hw
.device_id
) {
1896 if (adapter
->wol
& E1000_WUFC_EX
)
1897 wol
->wolopts
|= WAKE_UCAST
;
1898 if (adapter
->wol
& E1000_WUFC_MC
)
1899 wol
->wolopts
|= WAKE_MCAST
;
1900 if (adapter
->wol
& E1000_WUFC_BC
)
1901 wol
->wolopts
|= WAKE_BCAST
;
1902 if (adapter
->wol
& E1000_WUFC_MAG
)
1903 wol
->wolopts
|= WAKE_MAGIC
;
1904 if (adapter
->wol
& E1000_WUFC_LNKC
)
1905 wol
->wolopts
|= WAKE_PHY
;
1908 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1910 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1912 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
))
1915 if (igb_wol_exclusion(adapter
, wol
) ||
1916 !device_can_wakeup(&adapter
->pdev
->dev
))
1917 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1919 /* these settings will always override what we currently have */
1922 if (wol
->wolopts
& WAKE_UCAST
)
1923 adapter
->wol
|= E1000_WUFC_EX
;
1924 if (wol
->wolopts
& WAKE_MCAST
)
1925 adapter
->wol
|= E1000_WUFC_MC
;
1926 if (wol
->wolopts
& WAKE_BCAST
)
1927 adapter
->wol
|= E1000_WUFC_BC
;
1928 if (wol
->wolopts
& WAKE_MAGIC
)
1929 adapter
->wol
|= E1000_WUFC_MAG
;
1930 if (wol
->wolopts
& WAKE_PHY
)
1931 adapter
->wol
|= E1000_WUFC_LNKC
;
1932 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1937 /* bit defines for adapter->led_status */
1938 #define IGB_LED_ON 0
1940 static int igb_set_phys_id(struct net_device
*netdev
,
1941 enum ethtool_phys_id_state state
)
1943 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1944 struct e1000_hw
*hw
= &adapter
->hw
;
1947 case ETHTOOL_ID_ACTIVE
:
1953 case ETHTOOL_ID_OFF
:
1956 case ETHTOOL_ID_INACTIVE
:
1958 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
1959 igb_cleanup_led(hw
);
1966 static int igb_set_coalesce(struct net_device
*netdev
,
1967 struct ethtool_coalesce
*ec
)
1969 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1972 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1973 ((ec
->rx_coalesce_usecs
> 3) &&
1974 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1975 (ec
->rx_coalesce_usecs
== 2))
1978 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1979 ((ec
->tx_coalesce_usecs
> 3) &&
1980 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1981 (ec
->tx_coalesce_usecs
== 2))
1984 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
1987 /* If ITR is disabled, disable DMAC */
1988 if (ec
->rx_coalesce_usecs
== 0) {
1989 if (adapter
->flags
& IGB_FLAG_DMAC
)
1990 adapter
->flags
&= ~IGB_FLAG_DMAC
;
1993 /* convert to rate of irq's per second */
1994 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
1995 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
1997 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
1999 /* convert to rate of irq's per second */
2000 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2001 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2002 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2003 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2005 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2007 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2008 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2009 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
2010 if (q_vector
->rx
.ring
)
2011 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2013 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2014 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2015 q_vector
->itr_val
= IGB_START_ITR
;
2016 q_vector
->set_itr
= 1;
2022 static int igb_get_coalesce(struct net_device
*netdev
,
2023 struct ethtool_coalesce
*ec
)
2025 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2027 if (adapter
->rx_itr_setting
<= 3)
2028 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2030 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2032 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2033 if (adapter
->tx_itr_setting
<= 3)
2034 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2036 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2042 static int igb_nway_reset(struct net_device
*netdev
)
2044 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2045 if (netif_running(netdev
))
2046 igb_reinit_locked(adapter
);
2050 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2054 return IGB_STATS_LEN
;
2056 return IGB_TEST_LEN
;
2062 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2063 struct ethtool_stats
*stats
, u64
*data
)
2065 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2066 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2068 struct igb_ring
*ring
;
2072 spin_lock(&adapter
->stats64_lock
);
2073 igb_update_stats(adapter
, net_stats
);
2075 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2076 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2077 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2078 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2080 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2081 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2082 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2083 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2085 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2088 ring
= adapter
->tx_ring
[j
];
2090 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp
);
2091 data
[i
] = ring
->tx_stats
.packets
;
2092 data
[i
+1] = ring
->tx_stats
.bytes
;
2093 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2094 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp
, start
));
2096 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp2
);
2097 restart2
= ring
->tx_stats
.restart_queue2
;
2098 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp2
, start
));
2099 data
[i
+2] += restart2
;
2101 i
+= IGB_TX_QUEUE_STATS_LEN
;
2103 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2104 ring
= adapter
->rx_ring
[j
];
2106 start
= u64_stats_fetch_begin_bh(&ring
->rx_syncp
);
2107 data
[i
] = ring
->rx_stats
.packets
;
2108 data
[i
+1] = ring
->rx_stats
.bytes
;
2109 data
[i
+2] = ring
->rx_stats
.drops
;
2110 data
[i
+3] = ring
->rx_stats
.csum_err
;
2111 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2112 } while (u64_stats_fetch_retry_bh(&ring
->rx_syncp
, start
));
2113 i
+= IGB_RX_QUEUE_STATS_LEN
;
2115 spin_unlock(&adapter
->stats64_lock
);
2118 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2120 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2124 switch (stringset
) {
2126 memcpy(data
, *igb_gstrings_test
,
2127 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2130 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2131 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2133 p
+= ETH_GSTRING_LEN
;
2135 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2136 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2138 p
+= ETH_GSTRING_LEN
;
2140 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2141 sprintf(p
, "tx_queue_%u_packets", i
);
2142 p
+= ETH_GSTRING_LEN
;
2143 sprintf(p
, "tx_queue_%u_bytes", i
);
2144 p
+= ETH_GSTRING_LEN
;
2145 sprintf(p
, "tx_queue_%u_restart", i
);
2146 p
+= ETH_GSTRING_LEN
;
2148 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2149 sprintf(p
, "rx_queue_%u_packets", i
);
2150 p
+= ETH_GSTRING_LEN
;
2151 sprintf(p
, "rx_queue_%u_bytes", i
);
2152 p
+= ETH_GSTRING_LEN
;
2153 sprintf(p
, "rx_queue_%u_drops", i
);
2154 p
+= ETH_GSTRING_LEN
;
2155 sprintf(p
, "rx_queue_%u_csum_err", i
);
2156 p
+= ETH_GSTRING_LEN
;
2157 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2158 p
+= ETH_GSTRING_LEN
;
2160 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2165 static int igb_ethtool_begin(struct net_device
*netdev
)
2167 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2168 pm_runtime_get_sync(&adapter
->pdev
->dev
);
2172 static void igb_ethtool_complete(struct net_device
*netdev
)
2174 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2175 pm_runtime_put(&adapter
->pdev
->dev
);
2178 static const struct ethtool_ops igb_ethtool_ops
= {
2179 .get_settings
= igb_get_settings
,
2180 .set_settings
= igb_set_settings
,
2181 .get_drvinfo
= igb_get_drvinfo
,
2182 .get_regs_len
= igb_get_regs_len
,
2183 .get_regs
= igb_get_regs
,
2184 .get_wol
= igb_get_wol
,
2185 .set_wol
= igb_set_wol
,
2186 .get_msglevel
= igb_get_msglevel
,
2187 .set_msglevel
= igb_set_msglevel
,
2188 .nway_reset
= igb_nway_reset
,
2189 .get_link
= igb_get_link
,
2190 .get_eeprom_len
= igb_get_eeprom_len
,
2191 .get_eeprom
= igb_get_eeprom
,
2192 .set_eeprom
= igb_set_eeprom
,
2193 .get_ringparam
= igb_get_ringparam
,
2194 .set_ringparam
= igb_set_ringparam
,
2195 .get_pauseparam
= igb_get_pauseparam
,
2196 .set_pauseparam
= igb_set_pauseparam
,
2197 .self_test
= igb_diag_test
,
2198 .get_strings
= igb_get_strings
,
2199 .set_phys_id
= igb_set_phys_id
,
2200 .get_sset_count
= igb_get_sset_count
,
2201 .get_ethtool_stats
= igb_get_ethtool_stats
,
2202 .get_coalesce
= igb_get_coalesce
,
2203 .set_coalesce
= igb_set_coalesce
,
2204 .begin
= igb_ethtool_begin
,
2205 .complete
= igb_ethtool_complete
,
2208 void igb_set_ethtool_ops(struct net_device
*netdev
)
2210 SET_ETHTOOL_OPS(netdev
, &igb_ethtool_ops
);