2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock
);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node
);
83 EXPORT_PER_CPU_SYMBOL(numa_node
);
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
93 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
95 int _node_numa_mem_
[MAX_NUMNODES
];
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex
);
100 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy
;
104 EXPORT_SYMBOL(latent_entropy
);
108 * Array of node states.
110 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
111 [N_POSSIBLE
] = NODE_MASK_ALL
,
112 [N_ONLINE
] = { { [0] = 1UL } },
114 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
118 [N_MEMORY
] = { { [0] = 1UL } },
119 [N_CPU
] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states
);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock
);
127 unsigned long totalram_pages __read_mostly
;
128 unsigned long totalreserve_pages __read_mostly
;
129 unsigned long totalcma_pages __read_mostly
;
131 int percpu_pagelist_fraction
;
132 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page
*page
)
147 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
149 page
->index
= migratetype
;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
162 static gfp_t saved_gfp_mask
;
164 void pm_restore_gfp_mask(void)
166 WARN_ON(!mutex_is_locked(&pm_mutex
));
167 if (saved_gfp_mask
) {
168 gfp_allowed_mask
= saved_gfp_mask
;
173 void pm_restrict_gfp_mask(void)
175 WARN_ON(!mutex_is_locked(&pm_mutex
));
176 WARN_ON(saved_gfp_mask
);
177 saved_gfp_mask
= gfp_allowed_mask
;
178 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
181 bool pm_suspended_storage(void)
183 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
187 #endif /* CONFIG_PM_SLEEP */
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly
;
193 static void __free_pages_ok(struct page
*page
, unsigned int order
);
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
206 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
207 #ifdef CONFIG_ZONE_DMA
210 #ifdef CONFIG_ZONE_DMA32
213 #ifdef CONFIG_HIGHMEM
219 EXPORT_SYMBOL(totalram_pages
);
221 static char * const zone_names
[MAX_NR_ZONES
] = {
222 #ifdef CONFIG_ZONE_DMA
225 #ifdef CONFIG_ZONE_DMA32
229 #ifdef CONFIG_HIGHMEM
233 #ifdef CONFIG_ZONE_DEVICE
238 char * const migratetype_names
[MIGRATE_TYPES
] = {
246 #ifdef CONFIG_MEMORY_ISOLATION
251 compound_page_dtor
* const compound_page_dtors
[] = {
254 #ifdef CONFIG_HUGETLB_PAGE
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
262 int min_free_kbytes
= 1024;
263 int user_min_free_kbytes
= -1;
264 int watermark_scale_factor
= 10;
266 static unsigned long __meminitdata nr_kernel_pages
;
267 static unsigned long __meminitdata nr_all_pages
;
268 static unsigned long __meminitdata dma_reserve
;
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
273 static unsigned long __initdata required_kernelcore
;
274 static unsigned long __initdata required_movablecore
;
275 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
276 static bool mirrored_kernelcore
;
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 EXPORT_SYMBOL(movable_zone
);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
285 int nr_online_nodes __read_mostly
= 1;
286 EXPORT_SYMBOL(nr_node_ids
);
287 EXPORT_SYMBOL(nr_online_nodes
);
290 int page_group_by_mobility_disabled __read_mostly
;
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
295 unsigned long max_initialise
;
296 unsigned long reserved_lowmem
;
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
302 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
303 (pgdat
->node_spanned_pages
>> 8));
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
310 reserved_lowmem
= memblock_reserved_memory_within(pgdat
->node_start_pfn
,
311 pgdat
->node_start_pfn
+ max_initialise
);
312 max_initialise
+= reserved_lowmem
;
314 pgdat
->static_init_size
= min(max_initialise
, pgdat
->node_spanned_pages
);
315 pgdat
->first_deferred_pfn
= ULONG_MAX
;
318 /* Returns true if the struct page for the pfn is uninitialised */
319 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
321 int nid
= early_pfn_to_nid(pfn
);
323 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
333 static inline bool update_defer_init(pg_data_t
*pgdat
,
334 unsigned long pfn
, unsigned long zone_end
,
335 unsigned long *nr_initialised
)
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end
< pgdat_end_pfn(pgdat
))
341 if ((*nr_initialised
> pgdat
->static_init_size
) &&
342 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
343 pgdat
->first_deferred_pfn
= pfn
;
350 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
354 static inline bool early_page_uninitialised(unsigned long pfn
)
359 static inline bool update_defer_init(pg_data_t
*pgdat
,
360 unsigned long pfn
, unsigned long zone_end
,
361 unsigned long *nr_initialised
)
367 /* Return a pointer to the bitmap storing bits affecting a block of pages */
368 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
371 #ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn
)->pageblock_flags
;
374 return page_zone(page
)->pageblock_flags
;
375 #endif /* CONFIG_SPARSEMEM */
378 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
380 #ifdef CONFIG_SPARSEMEM
381 pfn
&= (PAGES_PER_SECTION
-1);
382 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
384 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
385 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
386 #endif /* CONFIG_SPARSEMEM */
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
396 * Return: pageblock_bits flags
398 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
400 unsigned long end_bitidx
,
403 unsigned long *bitmap
;
404 unsigned long bitidx
, word_bitidx
;
407 bitmap
= get_pageblock_bitmap(page
, pfn
);
408 bitidx
= pfn_to_bitidx(page
, pfn
);
409 word_bitidx
= bitidx
/ BITS_PER_LONG
;
410 bitidx
&= (BITS_PER_LONG
-1);
412 word
= bitmap
[word_bitidx
];
413 bitidx
+= end_bitidx
;
414 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
417 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
418 unsigned long end_bitidx
,
421 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
424 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
426 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
437 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
439 unsigned long end_bitidx
,
442 unsigned long *bitmap
;
443 unsigned long bitidx
, word_bitidx
;
444 unsigned long old_word
, word
;
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
448 bitmap
= get_pageblock_bitmap(page
, pfn
);
449 bitidx
= pfn_to_bitidx(page
, pfn
);
450 word_bitidx
= bitidx
/ BITS_PER_LONG
;
451 bitidx
&= (BITS_PER_LONG
-1);
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
455 bitidx
+= end_bitidx
;
456 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
457 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
459 word
= READ_ONCE(bitmap
[word_bitidx
]);
461 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
462 if (word
== old_word
)
468 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
470 if (unlikely(page_group_by_mobility_disabled
&&
471 migratetype
< MIGRATE_PCPTYPES
))
472 migratetype
= MIGRATE_UNMOVABLE
;
474 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
475 PB_migrate
, PB_migrate_end
);
478 #ifdef CONFIG_DEBUG_VM
479 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
483 unsigned long pfn
= page_to_pfn(page
);
484 unsigned long sp
, start_pfn
;
487 seq
= zone_span_seqbegin(zone
);
488 start_pfn
= zone
->zone_start_pfn
;
489 sp
= zone
->spanned_pages
;
490 if (!zone_spans_pfn(zone
, pfn
))
492 } while (zone_span_seqretry(zone
, seq
));
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn
, zone_to_nid(zone
), zone
->name
,
497 start_pfn
, start_pfn
+ sp
);
502 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
504 if (!pfn_valid_within(page_to_pfn(page
)))
506 if (zone
!= page_zone(page
))
512 * Temporary debugging check for pages not lying within a given zone.
514 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
516 if (page_outside_zone_boundaries(zone
, page
))
518 if (!page_is_consistent(zone
, page
))
524 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
530 static void bad_page(struct page
*page
, const char *reason
,
531 unsigned long bad_flags
)
533 static unsigned long resume
;
534 static unsigned long nr_shown
;
535 static unsigned long nr_unshown
;
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
541 if (nr_shown
== 60) {
542 if (time_before(jiffies
, resume
)) {
548 "BUG: Bad page state: %lu messages suppressed\n",
555 resume
= jiffies
+ 60 * HZ
;
557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
558 current
->comm
, page_to_pfn(page
));
559 __dump_page(page
, reason
);
560 bad_flags
&= page
->flags
;
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags
, &bad_flags
);
564 dump_page_owner(page
);
569 /* Leave bad fields for debug, except PageBuddy could make trouble */
570 page_mapcount_reset(page
); /* remove PageBuddy */
571 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
575 * Higher-order pages are called "compound pages". They are structured thusly:
577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
585 * The first tail page's ->compound_order holds the order of allocation.
586 * This usage means that zero-order pages may not be compound.
589 void free_compound_page(struct page
*page
)
591 __free_pages_ok(page
, compound_order(page
));
594 void prep_compound_page(struct page
*page
, unsigned int order
)
597 int nr_pages
= 1 << order
;
599 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
600 set_compound_order(page
, order
);
602 for (i
= 1; i
< nr_pages
; i
++) {
603 struct page
*p
= page
+ i
;
604 set_page_count(p
, 0);
605 p
->mapping
= TAIL_MAPPING
;
606 set_compound_head(p
, page
);
608 atomic_set(compound_mapcount_ptr(page
), -1);
611 #ifdef CONFIG_DEBUG_PAGEALLOC
612 unsigned int _debug_guardpage_minorder
;
613 bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
615 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
616 bool _debug_guardpage_enabled __read_mostly
;
618 static int __init
early_debug_pagealloc(char *buf
)
622 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
624 early_param("debug_pagealloc", early_debug_pagealloc
);
626 static bool need_debug_guardpage(void)
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
632 if (!debug_guardpage_minorder())
638 static void init_debug_guardpage(void)
640 if (!debug_pagealloc_enabled())
643 if (!debug_guardpage_minorder())
646 _debug_guardpage_enabled
= true;
649 struct page_ext_operations debug_guardpage_ops
= {
650 .need
= need_debug_guardpage
,
651 .init
= init_debug_guardpage
,
654 static int __init
debug_guardpage_minorder_setup(char *buf
)
658 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
659 pr_err("Bad debug_guardpage_minorder value\n");
662 _debug_guardpage_minorder
= res
;
663 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
668 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
669 unsigned int order
, int migratetype
)
671 struct page_ext
*page_ext
;
673 if (!debug_guardpage_enabled())
676 if (order
>= debug_guardpage_minorder())
679 page_ext
= lookup_page_ext(page
);
680 if (unlikely(!page_ext
))
683 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
685 INIT_LIST_HEAD(&page
->lru
);
686 set_page_private(page
, order
);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
693 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
694 unsigned int order
, int migratetype
)
696 struct page_ext
*page_ext
;
698 if (!debug_guardpage_enabled())
701 page_ext
= lookup_page_ext(page
);
702 if (unlikely(!page_ext
))
705 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
707 set_page_private(page
, 0);
708 if (!is_migrate_isolate(migratetype
))
709 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
712 struct page_ext_operations debug_guardpage_ops
;
713 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
714 unsigned int order
, int migratetype
) { return false; }
715 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
716 unsigned int order
, int migratetype
) {}
719 static inline void set_page_order(struct page
*page
, unsigned int order
)
721 set_page_private(page
, order
);
722 __SetPageBuddy(page
);
725 static inline void rmv_page_order(struct page
*page
)
727 __ClearPageBuddy(page
);
728 set_page_private(page
, 0);
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
734 * (a) the buddy is not in a hole (check before calling!) &&
735 * (b) the buddy is in the buddy system &&
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
744 * For recording page's order, we use page_private(page).
746 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
749 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
750 if (page_zone_id(page
) != page_zone_id(buddy
))
753 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
758 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
764 if (page_zone_id(page
) != page_zone_id(buddy
))
767 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
775 * Freeing function for a buddy system allocator.
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
799 static inline void __free_one_page(struct page
*page
,
801 struct zone
*zone
, unsigned int order
,
804 unsigned long combined_pfn
;
805 unsigned long uninitialized_var(buddy_pfn
);
807 unsigned int max_order
;
809 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
811 VM_BUG_ON(!zone_is_initialized(zone
));
812 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
814 VM_BUG_ON(migratetype
== -1);
815 if (likely(!is_migrate_isolate(migratetype
)))
816 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
818 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
819 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
822 while (order
< max_order
- 1) {
823 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
824 buddy
= page
+ (buddy_pfn
- pfn
);
826 if (!pfn_valid_within(buddy_pfn
))
828 if (!page_is_buddy(page
, buddy
, order
))
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
834 if (page_is_guard(buddy
)) {
835 clear_page_guard(zone
, buddy
, order
, migratetype
);
837 list_del(&buddy
->lru
);
838 zone
->free_area
[order
].nr_free
--;
839 rmv_page_order(buddy
);
841 combined_pfn
= buddy_pfn
& pfn
;
842 page
= page
+ (combined_pfn
- pfn
);
846 if (max_order
< MAX_ORDER
) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
852 * We don't want to hit this code for the more frequent
855 if (unlikely(has_isolate_pageblock(zone
))) {
858 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
859 buddy
= page
+ (buddy_pfn
- pfn
);
860 buddy_mt
= get_pageblock_migratetype(buddy
);
862 if (migratetype
!= buddy_mt
863 && (is_migrate_isolate(migratetype
) ||
864 is_migrate_isolate(buddy_mt
)))
868 goto continue_merging
;
872 set_page_order(page
, order
);
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
882 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
883 struct page
*higher_page
, *higher_buddy
;
884 combined_pfn
= buddy_pfn
& pfn
;
885 higher_page
= page
+ (combined_pfn
- pfn
);
886 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
887 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
888 if (pfn_valid_within(buddy_pfn
) &&
889 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
890 list_add_tail(&page
->lru
,
891 &zone
->free_area
[order
].free_list
[migratetype
]);
896 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
898 zone
->free_area
[order
].nr_free
++;
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
906 static inline bool page_expected_state(struct page
*page
,
907 unsigned long check_flags
)
909 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
912 if (unlikely((unsigned long)page
->mapping
|
913 page_ref_count(page
) |
915 (unsigned long)page
->mem_cgroup
|
917 (page
->flags
& check_flags
)))
923 static void free_pages_check_bad(struct page
*page
)
925 const char *bad_reason
;
926 unsigned long bad_flags
;
931 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
932 bad_reason
= "nonzero mapcount";
933 if (unlikely(page
->mapping
!= NULL
))
934 bad_reason
= "non-NULL mapping";
935 if (unlikely(page_ref_count(page
) != 0))
936 bad_reason
= "nonzero _refcount";
937 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
938 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
942 if (unlikely(page
->mem_cgroup
))
943 bad_reason
= "page still charged to cgroup";
945 bad_page(page
, bad_reason
, bad_flags
);
948 static inline int free_pages_check(struct page
*page
)
950 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page
);
958 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
968 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
972 switch (page
- head_page
) {
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page
))) {
976 bad_page(page
, "nonzero compound_mapcount", 0);
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
987 if (page
->mapping
!= TAIL_MAPPING
) {
988 bad_page(page
, "corrupted mapping in tail page", 0);
993 if (unlikely(!PageTail(page
))) {
994 bad_page(page
, "PageTail not set", 0);
997 if (unlikely(compound_head(page
) != head_page
)) {
998 bad_page(page
, "compound_head not consistent", 0);
1003 page
->mapping
= NULL
;
1004 clear_compound_head(page
);
1008 static __always_inline
bool free_pages_prepare(struct page
*page
,
1009 unsigned int order
, bool check_free
)
1013 VM_BUG_ON_PAGE(PageTail(page
), page
);
1015 trace_mm_page_free(page
, order
);
1016 kmemcheck_free_shadow(page
, order
);
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1022 if (unlikely(order
)) {
1023 bool compound
= PageCompound(page
);
1026 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1029 ClearPageDoubleMap(page
);
1030 for (i
= 1; i
< (1 << order
); i
++) {
1032 bad
+= free_tail_pages_check(page
, page
+ i
);
1033 if (unlikely(free_pages_check(page
+ i
))) {
1037 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1040 if (PageMappingFlags(page
))
1041 page
->mapping
= NULL
;
1042 if (memcg_kmem_enabled() && PageKmemcg(page
))
1043 memcg_kmem_uncharge(page
, order
);
1045 bad
+= free_pages_check(page
);
1049 page_cpupid_reset_last(page
);
1050 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1051 reset_page_owner(page
, order
);
1053 if (!PageHighMem(page
)) {
1054 debug_check_no_locks_freed(page_address(page
),
1055 PAGE_SIZE
<< order
);
1056 debug_check_no_obj_freed(page_address(page
),
1057 PAGE_SIZE
<< order
);
1059 arch_free_page(page
, order
);
1060 kernel_poison_pages(page
, 1 << order
, 0);
1061 kernel_map_pages(page
, 1 << order
, 0);
1062 kasan_free_pages(page
, order
);
1067 #ifdef CONFIG_DEBUG_VM
1068 static inline bool free_pcp_prepare(struct page
*page
)
1070 return free_pages_prepare(page
, 0, true);
1073 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1078 static bool free_pcp_prepare(struct page
*page
)
1080 return free_pages_prepare(page
, 0, false);
1083 static bool bulkfree_pcp_prepare(struct page
*page
)
1085 return free_pages_check(page
);
1087 #endif /* CONFIG_DEBUG_VM */
1090 * Frees a number of pages from the PCP lists
1091 * Assumes all pages on list are in same zone, and of same order.
1092 * count is the number of pages to free.
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1100 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1101 struct per_cpu_pages
*pcp
)
1103 int migratetype
= 0;
1105 bool isolated_pageblocks
;
1107 spin_lock(&zone
->lock
);
1108 isolated_pageblocks
= has_isolate_pageblock(zone
);
1112 struct list_head
*list
;
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1123 if (++migratetype
== MIGRATE_PCPTYPES
)
1125 list
= &pcp
->lists
[migratetype
];
1126 } while (list_empty(list
));
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free
== MIGRATE_PCPTYPES
)
1133 int mt
; /* migratetype of the to-be-freed page */
1135 page
= list_last_entry(list
, struct page
, lru
);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page
->lru
);
1139 mt
= get_pcppage_migratetype(page
);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks
))
1144 mt
= get_pageblock_migratetype(page
);
1146 if (bulkfree_pcp_prepare(page
))
1149 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1150 trace_mm_page_pcpu_drain(page
, 0, mt
);
1151 } while (--count
&& --batch_free
&& !list_empty(list
));
1153 spin_unlock(&zone
->lock
);
1156 static void free_one_page(struct zone
*zone
,
1157 struct page
*page
, unsigned long pfn
,
1161 spin_lock(&zone
->lock
);
1162 if (unlikely(has_isolate_pageblock(zone
) ||
1163 is_migrate_isolate(migratetype
))) {
1164 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1166 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1167 spin_unlock(&zone
->lock
);
1170 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1171 unsigned long zone
, int nid
)
1173 set_page_links(page
, zone
, nid
, pfn
);
1174 init_page_count(page
);
1175 page_mapcount_reset(page
);
1176 page_cpupid_reset_last(page
);
1178 INIT_LIST_HEAD(&page
->lru
);
1179 #ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone
))
1182 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1186 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1189 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193 static void __meminit
init_reserved_page(unsigned long pfn
)
1198 if (!early_page_uninitialised(pfn
))
1201 nid
= early_pfn_to_nid(pfn
);
1202 pgdat
= NODE_DATA(nid
);
1204 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1205 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1207 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1210 __init_single_pfn(pfn
, zid
, nid
);
1213 static inline void init_reserved_page(unsigned long pfn
)
1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1224 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1226 unsigned long start_pfn
= PFN_DOWN(start
);
1227 unsigned long end_pfn
= PFN_UP(end
);
1229 for (; start_pfn
< end_pfn
; start_pfn
++) {
1230 if (pfn_valid(start_pfn
)) {
1231 struct page
*page
= pfn_to_page(start_pfn
);
1233 init_reserved_page(start_pfn
);
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page
->lru
);
1238 SetPageReserved(page
);
1243 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1245 unsigned long flags
;
1247 unsigned long pfn
= page_to_pfn(page
);
1249 if (!free_pages_prepare(page
, order
, true))
1252 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1253 local_irq_save(flags
);
1254 __count_vm_events(PGFREE
, 1 << order
);
1255 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1256 local_irq_restore(flags
);
1259 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1261 unsigned int nr_pages
= 1 << order
;
1262 struct page
*p
= page
;
1266 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1268 __ClearPageReserved(p
);
1269 set_page_count(p
, 0);
1271 __ClearPageReserved(p
);
1272 set_page_count(p
, 0);
1274 page_zone(page
)->managed_pages
+= nr_pages
;
1275 set_page_refcounted(page
);
1276 __free_pages(page
, order
);
1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1284 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1286 static DEFINE_SPINLOCK(early_pfn_lock
);
1289 spin_lock(&early_pfn_lock
);
1290 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1292 nid
= first_online_node
;
1293 spin_unlock(&early_pfn_lock
);
1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300 static inline bool __meminit __maybe_unused
1301 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1302 struct mminit_pfnnid_cache
*state
)
1306 nid
= __early_pfn_to_nid(pfn
, state
);
1307 if (nid
>= 0 && nid
!= node
)
1312 /* Only safe to use early in boot when initialisation is single-threaded */
1313 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1315 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1320 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1324 static inline bool __meminit __maybe_unused
1325 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1326 struct mminit_pfnnid_cache
*state
)
1333 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1336 if (early_page_uninitialised(pfn
))
1338 return __free_pages_boot_core(page
, order
);
1342 * Check that the whole (or subset of) a pageblock given by the interval of
1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344 * with the migration of free compaction scanner. The scanners then need to
1345 * use only pfn_valid_within() check for arches that allow holes within
1348 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1350 * It's possible on some configurations to have a setup like node0 node1 node0
1351 * i.e. it's possible that all pages within a zones range of pages do not
1352 * belong to a single zone. We assume that a border between node0 and node1
1353 * can occur within a single pageblock, but not a node0 node1 node0
1354 * interleaving within a single pageblock. It is therefore sufficient to check
1355 * the first and last page of a pageblock and avoid checking each individual
1356 * page in a pageblock.
1358 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1359 unsigned long end_pfn
, struct zone
*zone
)
1361 struct page
*start_page
;
1362 struct page
*end_page
;
1364 /* end_pfn is one past the range we are checking */
1367 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1370 start_page
= pfn_to_online_page(start_pfn
);
1374 if (page_zone(start_page
) != zone
)
1377 end_page
= pfn_to_page(end_pfn
);
1379 /* This gives a shorter code than deriving page_zone(end_page) */
1380 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1386 void set_zone_contiguous(struct zone
*zone
)
1388 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1389 unsigned long block_end_pfn
;
1391 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1392 for (; block_start_pfn
< zone_end_pfn(zone
);
1393 block_start_pfn
= block_end_pfn
,
1394 block_end_pfn
+= pageblock_nr_pages
) {
1396 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1398 if (!__pageblock_pfn_to_page(block_start_pfn
,
1399 block_end_pfn
, zone
))
1403 /* We confirm that there is no hole */
1404 zone
->contiguous
= true;
1407 void clear_zone_contiguous(struct zone
*zone
)
1409 zone
->contiguous
= false;
1412 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1413 static void __init
deferred_free_range(struct page
*page
,
1414 unsigned long pfn
, int nr_pages
)
1421 /* Free a large naturally-aligned chunk if possible */
1422 if (nr_pages
== pageblock_nr_pages
&&
1423 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1424 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1425 __free_pages_boot_core(page
, pageblock_order
);
1429 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1430 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1431 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1432 __free_pages_boot_core(page
, 0);
1436 /* Completion tracking for deferred_init_memmap() threads */
1437 static atomic_t pgdat_init_n_undone __initdata
;
1438 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1440 static inline void __init
pgdat_init_report_one_done(void)
1442 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1443 complete(&pgdat_init_all_done_comp
);
1446 /* Initialise remaining memory on a node */
1447 static int __init
deferred_init_memmap(void *data
)
1449 pg_data_t
*pgdat
= data
;
1450 int nid
= pgdat
->node_id
;
1451 struct mminit_pfnnid_cache nid_init_state
= { };
1452 unsigned long start
= jiffies
;
1453 unsigned long nr_pages
= 0;
1454 unsigned long walk_start
, walk_end
;
1457 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1458 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1460 if (first_init_pfn
== ULONG_MAX
) {
1461 pgdat_init_report_one_done();
1465 /* Bind memory initialisation thread to a local node if possible */
1466 if (!cpumask_empty(cpumask
))
1467 set_cpus_allowed_ptr(current
, cpumask
);
1469 /* Sanity check boundaries */
1470 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1471 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1472 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1474 /* Only the highest zone is deferred so find it */
1475 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1476 zone
= pgdat
->node_zones
+ zid
;
1477 if (first_init_pfn
< zone_end_pfn(zone
))
1481 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1482 unsigned long pfn
, end_pfn
;
1483 struct page
*page
= NULL
;
1484 struct page
*free_base_page
= NULL
;
1485 unsigned long free_base_pfn
= 0;
1488 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1489 pfn
= first_init_pfn
;
1490 if (pfn
< walk_start
)
1492 if (pfn
< zone
->zone_start_pfn
)
1493 pfn
= zone
->zone_start_pfn
;
1495 for (; pfn
< end_pfn
; pfn
++) {
1496 if (!pfn_valid_within(pfn
))
1500 * Ensure pfn_valid is checked every
1501 * pageblock_nr_pages for memory holes
1503 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1504 if (!pfn_valid(pfn
)) {
1510 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1515 /* Minimise pfn page lookups and scheduler checks */
1516 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1519 nr_pages
+= nr_to_free
;
1520 deferred_free_range(free_base_page
,
1521 free_base_pfn
, nr_to_free
);
1522 free_base_page
= NULL
;
1523 free_base_pfn
= nr_to_free
= 0;
1525 page
= pfn_to_page(pfn
);
1530 VM_BUG_ON(page_zone(page
) != zone
);
1534 __init_single_page(page
, pfn
, zid
, nid
);
1535 if (!free_base_page
) {
1536 free_base_page
= page
;
1537 free_base_pfn
= pfn
;
1542 /* Where possible, batch up pages for a single free */
1545 /* Free the current block of pages to allocator */
1546 nr_pages
+= nr_to_free
;
1547 deferred_free_range(free_base_page
, free_base_pfn
,
1549 free_base_page
= NULL
;
1550 free_base_pfn
= nr_to_free
= 0;
1552 /* Free the last block of pages to allocator */
1553 nr_pages
+= nr_to_free
;
1554 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1556 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1559 /* Sanity check that the next zone really is unpopulated */
1560 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1562 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1563 jiffies_to_msecs(jiffies
- start
));
1565 pgdat_init_report_one_done();
1568 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1570 void __init
page_alloc_init_late(void)
1574 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 /* There will be num_node_state(N_MEMORY) threads */
1578 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1579 for_each_node_state(nid
, N_MEMORY
) {
1580 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1583 /* Block until all are initialised */
1584 wait_for_completion(&pgdat_init_all_done_comp
);
1586 /* Reinit limits that are based on free pages after the kernel is up */
1587 files_maxfiles_init();
1589 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1590 /* Discard memblock private memory */
1594 for_each_populated_zone(zone
)
1595 set_zone_contiguous(zone
);
1599 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1600 void __init
init_cma_reserved_pageblock(struct page
*page
)
1602 unsigned i
= pageblock_nr_pages
;
1603 struct page
*p
= page
;
1606 __ClearPageReserved(p
);
1607 set_page_count(p
, 0);
1610 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1612 if (pageblock_order
>= MAX_ORDER
) {
1613 i
= pageblock_nr_pages
;
1616 set_page_refcounted(p
);
1617 __free_pages(p
, MAX_ORDER
- 1);
1618 p
+= MAX_ORDER_NR_PAGES
;
1619 } while (i
-= MAX_ORDER_NR_PAGES
);
1621 set_page_refcounted(page
);
1622 __free_pages(page
, pageblock_order
);
1625 adjust_managed_page_count(page
, pageblock_nr_pages
);
1630 * The order of subdivision here is critical for the IO subsystem.
1631 * Please do not alter this order without good reasons and regression
1632 * testing. Specifically, as large blocks of memory are subdivided,
1633 * the order in which smaller blocks are delivered depends on the order
1634 * they're subdivided in this function. This is the primary factor
1635 * influencing the order in which pages are delivered to the IO
1636 * subsystem according to empirical testing, and this is also justified
1637 * by considering the behavior of a buddy system containing a single
1638 * large block of memory acted on by a series of small allocations.
1639 * This behavior is a critical factor in sglist merging's success.
1643 static inline void expand(struct zone
*zone
, struct page
*page
,
1644 int low
, int high
, struct free_area
*area
,
1647 unsigned long size
= 1 << high
;
1649 while (high
> low
) {
1653 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1656 * Mark as guard pages (or page), that will allow to
1657 * merge back to allocator when buddy will be freed.
1658 * Corresponding page table entries will not be touched,
1659 * pages will stay not present in virtual address space
1661 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1664 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1666 set_page_order(&page
[size
], high
);
1670 static void check_new_page_bad(struct page
*page
)
1672 const char *bad_reason
= NULL
;
1673 unsigned long bad_flags
= 0;
1675 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1676 bad_reason
= "nonzero mapcount";
1677 if (unlikely(page
->mapping
!= NULL
))
1678 bad_reason
= "non-NULL mapping";
1679 if (unlikely(page_ref_count(page
) != 0))
1680 bad_reason
= "nonzero _count";
1681 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1682 bad_reason
= "HWPoisoned (hardware-corrupted)";
1683 bad_flags
= __PG_HWPOISON
;
1684 /* Don't complain about hwpoisoned pages */
1685 page_mapcount_reset(page
); /* remove PageBuddy */
1688 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1689 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1690 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1693 if (unlikely(page
->mem_cgroup
))
1694 bad_reason
= "page still charged to cgroup";
1696 bad_page(page
, bad_reason
, bad_flags
);
1700 * This page is about to be returned from the page allocator
1702 static inline int check_new_page(struct page
*page
)
1704 if (likely(page_expected_state(page
,
1705 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1708 check_new_page_bad(page
);
1712 static inline bool free_pages_prezeroed(void)
1714 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1715 page_poisoning_enabled();
1718 #ifdef CONFIG_DEBUG_VM
1719 static bool check_pcp_refill(struct page
*page
)
1724 static bool check_new_pcp(struct page
*page
)
1726 return check_new_page(page
);
1729 static bool check_pcp_refill(struct page
*page
)
1731 return check_new_page(page
);
1733 static bool check_new_pcp(struct page
*page
)
1737 #endif /* CONFIG_DEBUG_VM */
1739 static bool check_new_pages(struct page
*page
, unsigned int order
)
1742 for (i
= 0; i
< (1 << order
); i
++) {
1743 struct page
*p
= page
+ i
;
1745 if (unlikely(check_new_page(p
)))
1752 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1755 set_page_private(page
, 0);
1756 set_page_refcounted(page
);
1758 arch_alloc_page(page
, order
);
1759 kernel_map_pages(page
, 1 << order
, 1);
1760 kernel_poison_pages(page
, 1 << order
, 1);
1761 kasan_alloc_pages(page
, order
);
1762 set_page_owner(page
, order
, gfp_flags
);
1765 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1766 unsigned int alloc_flags
)
1770 post_alloc_hook(page
, order
, gfp_flags
);
1772 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1773 for (i
= 0; i
< (1 << order
); i
++)
1774 clear_highpage(page
+ i
);
1776 if (order
&& (gfp_flags
& __GFP_COMP
))
1777 prep_compound_page(page
, order
);
1780 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1781 * allocate the page. The expectation is that the caller is taking
1782 * steps that will free more memory. The caller should avoid the page
1783 * being used for !PFMEMALLOC purposes.
1785 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1786 set_page_pfmemalloc(page
);
1788 clear_page_pfmemalloc(page
);
1792 * Go through the free lists for the given migratetype and remove
1793 * the smallest available page from the freelists
1796 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1799 unsigned int current_order
;
1800 struct free_area
*area
;
1803 /* Find a page of the appropriate size in the preferred list */
1804 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1805 area
= &(zone
->free_area
[current_order
]);
1806 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1810 list_del(&page
->lru
);
1811 rmv_page_order(page
);
1813 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1814 set_pcppage_migratetype(page
, migratetype
);
1823 * This array describes the order lists are fallen back to when
1824 * the free lists for the desirable migrate type are depleted
1826 static int fallbacks
[MIGRATE_TYPES
][4] = {
1827 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1828 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1829 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1831 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1833 #ifdef CONFIG_MEMORY_ISOLATION
1834 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1839 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1842 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1845 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1846 unsigned int order
) { return NULL
; }
1850 * Move the free pages in a range to the free lists of the requested type.
1851 * Note that start_page and end_pages are not aligned on a pageblock
1852 * boundary. If alignment is required, use move_freepages_block()
1854 static int move_freepages(struct zone
*zone
,
1855 struct page
*start_page
, struct page
*end_page
,
1856 int migratetype
, int *num_movable
)
1860 int pages_moved
= 0;
1862 #ifndef CONFIG_HOLES_IN_ZONE
1864 * page_zone is not safe to call in this context when
1865 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1866 * anyway as we check zone boundaries in move_freepages_block().
1867 * Remove at a later date when no bug reports exist related to
1868 * grouping pages by mobility
1870 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1876 for (page
= start_page
; page
<= end_page
;) {
1877 if (!pfn_valid_within(page_to_pfn(page
))) {
1882 /* Make sure we are not inadvertently changing nodes */
1883 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1885 if (!PageBuddy(page
)) {
1887 * We assume that pages that could be isolated for
1888 * migration are movable. But we don't actually try
1889 * isolating, as that would be expensive.
1892 (PageLRU(page
) || __PageMovable(page
)))
1899 order
= page_order(page
);
1900 list_move(&page
->lru
,
1901 &zone
->free_area
[order
].free_list
[migratetype
]);
1903 pages_moved
+= 1 << order
;
1909 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1910 int migratetype
, int *num_movable
)
1912 unsigned long start_pfn
, end_pfn
;
1913 struct page
*start_page
, *end_page
;
1915 start_pfn
= page_to_pfn(page
);
1916 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1917 start_page
= pfn_to_page(start_pfn
);
1918 end_page
= start_page
+ pageblock_nr_pages
- 1;
1919 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1921 /* Do not cross zone boundaries */
1922 if (!zone_spans_pfn(zone
, start_pfn
))
1924 if (!zone_spans_pfn(zone
, end_pfn
))
1927 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1931 static void change_pageblock_range(struct page
*pageblock_page
,
1932 int start_order
, int migratetype
)
1934 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1936 while (nr_pageblocks
--) {
1937 set_pageblock_migratetype(pageblock_page
, migratetype
);
1938 pageblock_page
+= pageblock_nr_pages
;
1943 * When we are falling back to another migratetype during allocation, try to
1944 * steal extra free pages from the same pageblocks to satisfy further
1945 * allocations, instead of polluting multiple pageblocks.
1947 * If we are stealing a relatively large buddy page, it is likely there will
1948 * be more free pages in the pageblock, so try to steal them all. For
1949 * reclaimable and unmovable allocations, we steal regardless of page size,
1950 * as fragmentation caused by those allocations polluting movable pageblocks
1951 * is worse than movable allocations stealing from unmovable and reclaimable
1954 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1957 * Leaving this order check is intended, although there is
1958 * relaxed order check in next check. The reason is that
1959 * we can actually steal whole pageblock if this condition met,
1960 * but, below check doesn't guarantee it and that is just heuristic
1961 * so could be changed anytime.
1963 if (order
>= pageblock_order
)
1966 if (order
>= pageblock_order
/ 2 ||
1967 start_mt
== MIGRATE_RECLAIMABLE
||
1968 start_mt
== MIGRATE_UNMOVABLE
||
1969 page_group_by_mobility_disabled
)
1976 * This function implements actual steal behaviour. If order is large enough,
1977 * we can steal whole pageblock. If not, we first move freepages in this
1978 * pageblock to our migratetype and determine how many already-allocated pages
1979 * are there in the pageblock with a compatible migratetype. If at least half
1980 * of pages are free or compatible, we can change migratetype of the pageblock
1981 * itself, so pages freed in the future will be put on the correct free list.
1983 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1984 int start_type
, bool whole_block
)
1986 unsigned int current_order
= page_order(page
);
1987 struct free_area
*area
;
1988 int free_pages
, movable_pages
, alike_pages
;
1991 old_block_type
= get_pageblock_migratetype(page
);
1994 * This can happen due to races and we want to prevent broken
1995 * highatomic accounting.
1997 if (is_migrate_highatomic(old_block_type
))
2000 /* Take ownership for orders >= pageblock_order */
2001 if (current_order
>= pageblock_order
) {
2002 change_pageblock_range(page
, current_order
, start_type
);
2006 /* We are not allowed to try stealing from the whole block */
2010 free_pages
= move_freepages_block(zone
, page
, start_type
,
2013 * Determine how many pages are compatible with our allocation.
2014 * For movable allocation, it's the number of movable pages which
2015 * we just obtained. For other types it's a bit more tricky.
2017 if (start_type
== MIGRATE_MOVABLE
) {
2018 alike_pages
= movable_pages
;
2021 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2022 * to MOVABLE pageblock, consider all non-movable pages as
2023 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2024 * vice versa, be conservative since we can't distinguish the
2025 * exact migratetype of non-movable pages.
2027 if (old_block_type
== MIGRATE_MOVABLE
)
2028 alike_pages
= pageblock_nr_pages
2029 - (free_pages
+ movable_pages
);
2034 /* moving whole block can fail due to zone boundary conditions */
2039 * If a sufficient number of pages in the block are either free or of
2040 * comparable migratability as our allocation, claim the whole block.
2042 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2043 page_group_by_mobility_disabled
)
2044 set_pageblock_migratetype(page
, start_type
);
2049 area
= &zone
->free_area
[current_order
];
2050 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2054 * Check whether there is a suitable fallback freepage with requested order.
2055 * If only_stealable is true, this function returns fallback_mt only if
2056 * we can steal other freepages all together. This would help to reduce
2057 * fragmentation due to mixed migratetype pages in one pageblock.
2059 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2060 int migratetype
, bool only_stealable
, bool *can_steal
)
2065 if (area
->nr_free
== 0)
2070 fallback_mt
= fallbacks
[migratetype
][i
];
2071 if (fallback_mt
== MIGRATE_TYPES
)
2074 if (list_empty(&area
->free_list
[fallback_mt
]))
2077 if (can_steal_fallback(order
, migratetype
))
2080 if (!only_stealable
)
2091 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2092 * there are no empty page blocks that contain a page with a suitable order
2094 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2095 unsigned int alloc_order
)
2098 unsigned long max_managed
, flags
;
2101 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2102 * Check is race-prone but harmless.
2104 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2105 if (zone
->nr_reserved_highatomic
>= max_managed
)
2108 spin_lock_irqsave(&zone
->lock
, flags
);
2110 /* Recheck the nr_reserved_highatomic limit under the lock */
2111 if (zone
->nr_reserved_highatomic
>= max_managed
)
2115 mt
= get_pageblock_migratetype(page
);
2116 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2117 && !is_migrate_cma(mt
)) {
2118 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2119 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2120 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2124 spin_unlock_irqrestore(&zone
->lock
, flags
);
2128 * Used when an allocation is about to fail under memory pressure. This
2129 * potentially hurts the reliability of high-order allocations when under
2130 * intense memory pressure but failed atomic allocations should be easier
2131 * to recover from than an OOM.
2133 * If @force is true, try to unreserve a pageblock even though highatomic
2134 * pageblock is exhausted.
2136 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2139 struct zonelist
*zonelist
= ac
->zonelist
;
2140 unsigned long flags
;
2147 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2150 * Preserve at least one pageblock unless memory pressure
2153 if (!force
&& zone
->nr_reserved_highatomic
<=
2157 spin_lock_irqsave(&zone
->lock
, flags
);
2158 for (order
= 0; order
< MAX_ORDER
; order
++) {
2159 struct free_area
*area
= &(zone
->free_area
[order
]);
2161 page
= list_first_entry_or_null(
2162 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2168 * In page freeing path, migratetype change is racy so
2169 * we can counter several free pages in a pageblock
2170 * in this loop althoug we changed the pageblock type
2171 * from highatomic to ac->migratetype. So we should
2172 * adjust the count once.
2174 if (is_migrate_highatomic_page(page
)) {
2176 * It should never happen but changes to
2177 * locking could inadvertently allow a per-cpu
2178 * drain to add pages to MIGRATE_HIGHATOMIC
2179 * while unreserving so be safe and watch for
2182 zone
->nr_reserved_highatomic
-= min(
2184 zone
->nr_reserved_highatomic
);
2188 * Convert to ac->migratetype and avoid the normal
2189 * pageblock stealing heuristics. Minimally, the caller
2190 * is doing the work and needs the pages. More
2191 * importantly, if the block was always converted to
2192 * MIGRATE_UNMOVABLE or another type then the number
2193 * of pageblocks that cannot be completely freed
2196 set_pageblock_migratetype(page
, ac
->migratetype
);
2197 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2200 spin_unlock_irqrestore(&zone
->lock
, flags
);
2204 spin_unlock_irqrestore(&zone
->lock
, flags
);
2211 * Try finding a free buddy page on the fallback list and put it on the free
2212 * list of requested migratetype, possibly along with other pages from the same
2213 * block, depending on fragmentation avoidance heuristics. Returns true if
2214 * fallback was found so that __rmqueue_smallest() can grab it.
2216 * The use of signed ints for order and current_order is a deliberate
2217 * deviation from the rest of this file, to make the for loop
2218 * condition simpler.
2221 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2223 struct free_area
*area
;
2230 * Find the largest available free page in the other list. This roughly
2231 * approximates finding the pageblock with the most free pages, which
2232 * would be too costly to do exactly.
2234 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2236 area
= &(zone
->free_area
[current_order
]);
2237 fallback_mt
= find_suitable_fallback(area
, current_order
,
2238 start_migratetype
, false, &can_steal
);
2239 if (fallback_mt
== -1)
2243 * We cannot steal all free pages from the pageblock and the
2244 * requested migratetype is movable. In that case it's better to
2245 * steal and split the smallest available page instead of the
2246 * largest available page, because even if the next movable
2247 * allocation falls back into a different pageblock than this
2248 * one, it won't cause permanent fragmentation.
2250 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2251 && current_order
> order
)
2260 for (current_order
= order
; current_order
< MAX_ORDER
;
2262 area
= &(zone
->free_area
[current_order
]);
2263 fallback_mt
= find_suitable_fallback(area
, current_order
,
2264 start_migratetype
, false, &can_steal
);
2265 if (fallback_mt
!= -1)
2270 * This should not happen - we already found a suitable fallback
2271 * when looking for the largest page.
2273 VM_BUG_ON(current_order
== MAX_ORDER
);
2276 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2279 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2281 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2282 start_migratetype
, fallback_mt
);
2289 * Do the hard work of removing an element from the buddy allocator.
2290 * Call me with the zone->lock already held.
2292 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2298 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2299 if (unlikely(!page
)) {
2300 if (migratetype
== MIGRATE_MOVABLE
)
2301 page
= __rmqueue_cma_fallback(zone
, order
);
2303 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2307 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2312 * Obtain a specified number of elements from the buddy allocator, all under
2313 * a single hold of the lock, for efficiency. Add them to the supplied list.
2314 * Returns the number of new pages which were placed at *list.
2316 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2317 unsigned long count
, struct list_head
*list
,
2318 int migratetype
, bool cold
)
2322 spin_lock(&zone
->lock
);
2323 for (i
= 0; i
< count
; ++i
) {
2324 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2325 if (unlikely(page
== NULL
))
2328 if (unlikely(check_pcp_refill(page
)))
2332 * Split buddy pages returned by expand() are received here
2333 * in physical page order. The page is added to the callers and
2334 * list and the list head then moves forward. From the callers
2335 * perspective, the linked list is ordered by page number in
2336 * some conditions. This is useful for IO devices that can
2337 * merge IO requests if the physical pages are ordered
2341 list_add(&page
->lru
, list
);
2343 list_add_tail(&page
->lru
, list
);
2346 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2347 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2352 * i pages were removed from the buddy list even if some leak due
2353 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2354 * on i. Do not confuse with 'alloced' which is the number of
2355 * pages added to the pcp list.
2357 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2358 spin_unlock(&zone
->lock
);
2364 * Called from the vmstat counter updater to drain pagesets of this
2365 * currently executing processor on remote nodes after they have
2368 * Note that this function must be called with the thread pinned to
2369 * a single processor.
2371 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2373 unsigned long flags
;
2374 int to_drain
, batch
;
2376 local_irq_save(flags
);
2377 batch
= READ_ONCE(pcp
->batch
);
2378 to_drain
= min(pcp
->count
, batch
);
2380 free_pcppages_bulk(zone
, to_drain
, pcp
);
2381 pcp
->count
-= to_drain
;
2383 local_irq_restore(flags
);
2388 * Drain pcplists of the indicated processor and zone.
2390 * The processor must either be the current processor and the
2391 * thread pinned to the current processor or a processor that
2394 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2396 unsigned long flags
;
2397 struct per_cpu_pageset
*pset
;
2398 struct per_cpu_pages
*pcp
;
2400 local_irq_save(flags
);
2401 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2405 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2408 local_irq_restore(flags
);
2412 * Drain pcplists of all zones on the indicated processor.
2414 * The processor must either be the current processor and the
2415 * thread pinned to the current processor or a processor that
2418 static void drain_pages(unsigned int cpu
)
2422 for_each_populated_zone(zone
) {
2423 drain_pages_zone(cpu
, zone
);
2428 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2430 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2431 * the single zone's pages.
2433 void drain_local_pages(struct zone
*zone
)
2435 int cpu
= smp_processor_id();
2438 drain_pages_zone(cpu
, zone
);
2443 static void drain_local_pages_wq(struct work_struct
*work
)
2446 * drain_all_pages doesn't use proper cpu hotplug protection so
2447 * we can race with cpu offline when the WQ can move this from
2448 * a cpu pinned worker to an unbound one. We can operate on a different
2449 * cpu which is allright but we also have to make sure to not move to
2453 drain_local_pages(NULL
);
2458 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2460 * When zone parameter is non-NULL, spill just the single zone's pages.
2462 * Note that this can be extremely slow as the draining happens in a workqueue.
2464 void drain_all_pages(struct zone
*zone
)
2469 * Allocate in the BSS so we wont require allocation in
2470 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2472 static cpumask_t cpus_with_pcps
;
2475 * Make sure nobody triggers this path before mm_percpu_wq is fully
2478 if (WARN_ON_ONCE(!mm_percpu_wq
))
2481 /* Workqueues cannot recurse */
2482 if (current
->flags
& PF_WQ_WORKER
)
2486 * Do not drain if one is already in progress unless it's specific to
2487 * a zone. Such callers are primarily CMA and memory hotplug and need
2488 * the drain to be complete when the call returns.
2490 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2493 mutex_lock(&pcpu_drain_mutex
);
2497 * We don't care about racing with CPU hotplug event
2498 * as offline notification will cause the notified
2499 * cpu to drain that CPU pcps and on_each_cpu_mask
2500 * disables preemption as part of its processing
2502 for_each_online_cpu(cpu
) {
2503 struct per_cpu_pageset
*pcp
;
2505 bool has_pcps
= false;
2508 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2512 for_each_populated_zone(z
) {
2513 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2514 if (pcp
->pcp
.count
) {
2522 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2524 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2527 for_each_cpu(cpu
, &cpus_with_pcps
) {
2528 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2529 INIT_WORK(work
, drain_local_pages_wq
);
2530 queue_work_on(cpu
, mm_percpu_wq
, work
);
2532 for_each_cpu(cpu
, &cpus_with_pcps
)
2533 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2535 mutex_unlock(&pcpu_drain_mutex
);
2538 #ifdef CONFIG_HIBERNATION
2541 * Touch the watchdog for every WD_PAGE_COUNT pages.
2543 #define WD_PAGE_COUNT (128*1024)
2545 void mark_free_pages(struct zone
*zone
)
2547 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2548 unsigned long flags
;
2549 unsigned int order
, t
;
2552 if (zone_is_empty(zone
))
2555 spin_lock_irqsave(&zone
->lock
, flags
);
2557 max_zone_pfn
= zone_end_pfn(zone
);
2558 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2559 if (pfn_valid(pfn
)) {
2560 page
= pfn_to_page(pfn
);
2562 if (!--page_count
) {
2563 touch_nmi_watchdog();
2564 page_count
= WD_PAGE_COUNT
;
2567 if (page_zone(page
) != zone
)
2570 if (!swsusp_page_is_forbidden(page
))
2571 swsusp_unset_page_free(page
);
2574 for_each_migratetype_order(order
, t
) {
2575 list_for_each_entry(page
,
2576 &zone
->free_area
[order
].free_list
[t
], lru
) {
2579 pfn
= page_to_pfn(page
);
2580 for (i
= 0; i
< (1UL << order
); i
++) {
2581 if (!--page_count
) {
2582 touch_nmi_watchdog();
2583 page_count
= WD_PAGE_COUNT
;
2585 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2589 spin_unlock_irqrestore(&zone
->lock
, flags
);
2591 #endif /* CONFIG_PM */
2594 * Free a 0-order page
2595 * cold == true ? free a cold page : free a hot page
2597 void free_hot_cold_page(struct page
*page
, bool cold
)
2599 struct zone
*zone
= page_zone(page
);
2600 struct per_cpu_pages
*pcp
;
2601 unsigned long flags
;
2602 unsigned long pfn
= page_to_pfn(page
);
2605 if (!free_pcp_prepare(page
))
2608 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2609 set_pcppage_migratetype(page
, migratetype
);
2610 local_irq_save(flags
);
2611 __count_vm_event(PGFREE
);
2614 * We only track unmovable, reclaimable and movable on pcp lists.
2615 * Free ISOLATE pages back to the allocator because they are being
2616 * offlined but treat HIGHATOMIC as movable pages so we can get those
2617 * areas back if necessary. Otherwise, we may have to free
2618 * excessively into the page allocator
2620 if (migratetype
>= MIGRATE_PCPTYPES
) {
2621 if (unlikely(is_migrate_isolate(migratetype
))) {
2622 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2625 migratetype
= MIGRATE_MOVABLE
;
2628 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2630 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2632 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2634 if (pcp
->count
>= pcp
->high
) {
2635 unsigned long batch
= READ_ONCE(pcp
->batch
);
2636 free_pcppages_bulk(zone
, batch
, pcp
);
2637 pcp
->count
-= batch
;
2641 local_irq_restore(flags
);
2645 * Free a list of 0-order pages
2647 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2649 struct page
*page
, *next
;
2651 list_for_each_entry_safe(page
, next
, list
, lru
) {
2652 trace_mm_page_free_batched(page
, cold
);
2653 free_hot_cold_page(page
, cold
);
2658 * split_page takes a non-compound higher-order page, and splits it into
2659 * n (1<<order) sub-pages: page[0..n]
2660 * Each sub-page must be freed individually.
2662 * Note: this is probably too low level an operation for use in drivers.
2663 * Please consult with lkml before using this in your driver.
2665 void split_page(struct page
*page
, unsigned int order
)
2669 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2670 VM_BUG_ON_PAGE(!page_count(page
), page
);
2672 #ifdef CONFIG_KMEMCHECK
2674 * Split shadow pages too, because free(page[0]) would
2675 * otherwise free the whole shadow.
2677 if (kmemcheck_page_is_tracked(page
))
2678 split_page(virt_to_page(page
[0].shadow
), order
);
2681 for (i
= 1; i
< (1 << order
); i
++)
2682 set_page_refcounted(page
+ i
);
2683 split_page_owner(page
, order
);
2685 EXPORT_SYMBOL_GPL(split_page
);
2687 int __isolate_free_page(struct page
*page
, unsigned int order
)
2689 unsigned long watermark
;
2693 BUG_ON(!PageBuddy(page
));
2695 zone
= page_zone(page
);
2696 mt
= get_pageblock_migratetype(page
);
2698 if (!is_migrate_isolate(mt
)) {
2700 * Obey watermarks as if the page was being allocated. We can
2701 * emulate a high-order watermark check with a raised order-0
2702 * watermark, because we already know our high-order page
2705 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2706 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2709 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2712 /* Remove page from free list */
2713 list_del(&page
->lru
);
2714 zone
->free_area
[order
].nr_free
--;
2715 rmv_page_order(page
);
2718 * Set the pageblock if the isolated page is at least half of a
2721 if (order
>= pageblock_order
- 1) {
2722 struct page
*endpage
= page
+ (1 << order
) - 1;
2723 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2724 int mt
= get_pageblock_migratetype(page
);
2725 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2726 && !is_migrate_highatomic(mt
))
2727 set_pageblock_migratetype(page
,
2733 return 1UL << order
;
2737 * Update NUMA hit/miss statistics
2739 * Must be called with interrupts disabled.
2741 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2744 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2746 if (z
->node
!= numa_node_id())
2747 local_stat
= NUMA_OTHER
;
2749 if (z
->node
== preferred_zone
->node
)
2750 __inc_numa_state(z
, NUMA_HIT
);
2752 __inc_numa_state(z
, NUMA_MISS
);
2753 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2755 __inc_numa_state(z
, local_stat
);
2759 /* Remove page from the per-cpu list, caller must protect the list */
2760 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2761 bool cold
, struct per_cpu_pages
*pcp
,
2762 struct list_head
*list
)
2767 if (list_empty(list
)) {
2768 pcp
->count
+= rmqueue_bulk(zone
, 0,
2771 if (unlikely(list_empty(list
)))
2776 page
= list_last_entry(list
, struct page
, lru
);
2778 page
= list_first_entry(list
, struct page
, lru
);
2780 list_del(&page
->lru
);
2782 } while (check_new_pcp(page
));
2787 /* Lock and remove page from the per-cpu list */
2788 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2789 struct zone
*zone
, unsigned int order
,
2790 gfp_t gfp_flags
, int migratetype
)
2792 struct per_cpu_pages
*pcp
;
2793 struct list_head
*list
;
2794 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2796 unsigned long flags
;
2798 local_irq_save(flags
);
2799 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2800 list
= &pcp
->lists
[migratetype
];
2801 page
= __rmqueue_pcplist(zone
, migratetype
, cold
, pcp
, list
);
2803 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2804 zone_statistics(preferred_zone
, zone
);
2806 local_irq_restore(flags
);
2811 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2814 struct page
*rmqueue(struct zone
*preferred_zone
,
2815 struct zone
*zone
, unsigned int order
,
2816 gfp_t gfp_flags
, unsigned int alloc_flags
,
2819 unsigned long flags
;
2822 if (likely(order
== 0)) {
2823 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2824 gfp_flags
, migratetype
);
2829 * We most definitely don't want callers attempting to
2830 * allocate greater than order-1 page units with __GFP_NOFAIL.
2832 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2833 spin_lock_irqsave(&zone
->lock
, flags
);
2837 if (alloc_flags
& ALLOC_HARDER
) {
2838 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2840 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2843 page
= __rmqueue(zone
, order
, migratetype
);
2844 } while (page
&& check_new_pages(page
, order
));
2845 spin_unlock(&zone
->lock
);
2848 __mod_zone_freepage_state(zone
, -(1 << order
),
2849 get_pcppage_migratetype(page
));
2851 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2852 zone_statistics(preferred_zone
, zone
);
2853 local_irq_restore(flags
);
2856 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2860 local_irq_restore(flags
);
2864 #ifdef CONFIG_FAIL_PAGE_ALLOC
2867 struct fault_attr attr
;
2869 bool ignore_gfp_highmem
;
2870 bool ignore_gfp_reclaim
;
2872 } fail_page_alloc
= {
2873 .attr
= FAULT_ATTR_INITIALIZER
,
2874 .ignore_gfp_reclaim
= true,
2875 .ignore_gfp_highmem
= true,
2879 static int __init
setup_fail_page_alloc(char *str
)
2881 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2883 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2885 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2887 if (order
< fail_page_alloc
.min_order
)
2889 if (gfp_mask
& __GFP_NOFAIL
)
2891 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2893 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2894 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2897 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2900 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2902 static int __init
fail_page_alloc_debugfs(void)
2904 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2907 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2908 &fail_page_alloc
.attr
);
2910 return PTR_ERR(dir
);
2912 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2913 &fail_page_alloc
.ignore_gfp_reclaim
))
2915 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2916 &fail_page_alloc
.ignore_gfp_highmem
))
2918 if (!debugfs_create_u32("min-order", mode
, dir
,
2919 &fail_page_alloc
.min_order
))
2924 debugfs_remove_recursive(dir
);
2929 late_initcall(fail_page_alloc_debugfs
);
2931 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2933 #else /* CONFIG_FAIL_PAGE_ALLOC */
2935 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2940 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2943 * Return true if free base pages are above 'mark'. For high-order checks it
2944 * will return true of the order-0 watermark is reached and there is at least
2945 * one free page of a suitable size. Checking now avoids taking the zone lock
2946 * to check in the allocation paths if no pages are free.
2948 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2949 int classzone_idx
, unsigned int alloc_flags
,
2954 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
2956 /* free_pages may go negative - that's OK */
2957 free_pages
-= (1 << order
) - 1;
2959 if (alloc_flags
& ALLOC_HIGH
)
2963 * If the caller does not have rights to ALLOC_HARDER then subtract
2964 * the high-atomic reserves. This will over-estimate the size of the
2965 * atomic reserve but it avoids a search.
2967 if (likely(!alloc_harder
)) {
2968 free_pages
-= z
->nr_reserved_highatomic
;
2971 * OOM victims can try even harder than normal ALLOC_HARDER
2972 * users on the grounds that it's definitely going to be in
2973 * the exit path shortly and free memory. Any allocation it
2974 * makes during the free path will be small and short-lived.
2976 if (alloc_flags
& ALLOC_OOM
)
2984 /* If allocation can't use CMA areas don't use free CMA pages */
2985 if (!(alloc_flags
& ALLOC_CMA
))
2986 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2990 * Check watermarks for an order-0 allocation request. If these
2991 * are not met, then a high-order request also cannot go ahead
2992 * even if a suitable page happened to be free.
2994 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2997 /* If this is an order-0 request then the watermark is fine */
3001 /* For a high-order request, check at least one suitable page is free */
3002 for (o
= order
; o
< MAX_ORDER
; o
++) {
3003 struct free_area
*area
= &z
->free_area
[o
];
3012 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3013 if (!list_empty(&area
->free_list
[mt
]))
3018 if ((alloc_flags
& ALLOC_CMA
) &&
3019 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3027 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3028 int classzone_idx
, unsigned int alloc_flags
)
3030 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3031 zone_page_state(z
, NR_FREE_PAGES
));
3034 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3035 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3037 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3041 /* If allocation can't use CMA areas don't use free CMA pages */
3042 if (!(alloc_flags
& ALLOC_CMA
))
3043 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3047 * Fast check for order-0 only. If this fails then the reserves
3048 * need to be calculated. There is a corner case where the check
3049 * passes but only the high-order atomic reserve are free. If
3050 * the caller is !atomic then it'll uselessly search the free
3051 * list. That corner case is then slower but it is harmless.
3053 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3056 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3060 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3061 unsigned long mark
, int classzone_idx
)
3063 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3065 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3066 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3068 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3073 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3075 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3078 #else /* CONFIG_NUMA */
3079 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3083 #endif /* CONFIG_NUMA */
3086 * get_page_from_freelist goes through the zonelist trying to allocate
3089 static struct page
*
3090 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3091 const struct alloc_context
*ac
)
3093 struct zoneref
*z
= ac
->preferred_zoneref
;
3095 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3098 * Scan zonelist, looking for a zone with enough free.
3099 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3101 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3106 if (cpusets_enabled() &&
3107 (alloc_flags
& ALLOC_CPUSET
) &&
3108 !__cpuset_zone_allowed(zone
, gfp_mask
))
3111 * When allocating a page cache page for writing, we
3112 * want to get it from a node that is within its dirty
3113 * limit, such that no single node holds more than its
3114 * proportional share of globally allowed dirty pages.
3115 * The dirty limits take into account the node's
3116 * lowmem reserves and high watermark so that kswapd
3117 * should be able to balance it without having to
3118 * write pages from its LRU list.
3120 * XXX: For now, allow allocations to potentially
3121 * exceed the per-node dirty limit in the slowpath
3122 * (spread_dirty_pages unset) before going into reclaim,
3123 * which is important when on a NUMA setup the allowed
3124 * nodes are together not big enough to reach the
3125 * global limit. The proper fix for these situations
3126 * will require awareness of nodes in the
3127 * dirty-throttling and the flusher threads.
3129 if (ac
->spread_dirty_pages
) {
3130 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3133 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3134 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3139 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3140 if (!zone_watermark_fast(zone
, order
, mark
,
3141 ac_classzone_idx(ac
), alloc_flags
)) {
3144 /* Checked here to keep the fast path fast */
3145 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3146 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3149 if (node_reclaim_mode
== 0 ||
3150 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3153 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3155 case NODE_RECLAIM_NOSCAN
:
3158 case NODE_RECLAIM_FULL
:
3159 /* scanned but unreclaimable */
3162 /* did we reclaim enough */
3163 if (zone_watermark_ok(zone
, order
, mark
,
3164 ac_classzone_idx(ac
), alloc_flags
))
3172 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3173 gfp_mask
, alloc_flags
, ac
->migratetype
);
3175 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3178 * If this is a high-order atomic allocation then check
3179 * if the pageblock should be reserved for the future
3181 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3182 reserve_highatomic_pageblock(page
, zone
, order
);
3192 * Large machines with many possible nodes should not always dump per-node
3193 * meminfo in irq context.
3195 static inline bool should_suppress_show_mem(void)
3200 ret
= in_interrupt();
3205 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3207 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3208 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3210 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3214 * This documents exceptions given to allocations in certain
3215 * contexts that are allowed to allocate outside current's set
3218 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3219 if (tsk_is_oom_victim(current
) ||
3220 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3221 filter
&= ~SHOW_MEM_FILTER_NODES
;
3222 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3223 filter
&= ~SHOW_MEM_FILTER_NODES
;
3225 show_mem(filter
, nodemask
);
3228 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3230 struct va_format vaf
;
3232 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3233 DEFAULT_RATELIMIT_BURST
);
3235 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3238 pr_warn("%s: ", current
->comm
);
3240 va_start(args
, fmt
);
3243 pr_cont("%pV", &vaf
);
3246 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask
, &gfp_mask
);
3248 pr_cont("%*pbl\n", nodemask_pr_args(nodemask
));
3250 pr_cont("(null)\n");
3252 cpuset_print_current_mems_allowed();
3255 warn_alloc_show_mem(gfp_mask
, nodemask
);
3258 static inline struct page
*
3259 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3260 unsigned int alloc_flags
,
3261 const struct alloc_context
*ac
)
3265 page
= get_page_from_freelist(gfp_mask
, order
,
3266 alloc_flags
|ALLOC_CPUSET
, ac
);
3268 * fallback to ignore cpuset restriction if our nodes
3272 page
= get_page_from_freelist(gfp_mask
, order
,
3278 static inline struct page
*
3279 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3280 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3282 struct oom_control oc
= {
3283 .zonelist
= ac
->zonelist
,
3284 .nodemask
= ac
->nodemask
,
3286 .gfp_mask
= gfp_mask
,
3291 *did_some_progress
= 0;
3294 * Acquire the oom lock. If that fails, somebody else is
3295 * making progress for us.
3297 if (!mutex_trylock(&oom_lock
)) {
3298 *did_some_progress
= 1;
3299 schedule_timeout_uninterruptible(1);
3304 * Go through the zonelist yet one more time, keep very high watermark
3305 * here, this is only to catch a parallel oom killing, we must fail if
3306 * we're still under heavy pressure. But make sure that this reclaim
3307 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3308 * allocation which will never fail due to oom_lock already held.
3310 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3311 ~__GFP_DIRECT_RECLAIM
, order
,
3312 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3316 /* Coredumps can quickly deplete all memory reserves */
3317 if (current
->flags
& PF_DUMPCORE
)
3319 /* The OOM killer will not help higher order allocs */
3320 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3323 * We have already exhausted all our reclaim opportunities without any
3324 * success so it is time to admit defeat. We will skip the OOM killer
3325 * because it is very likely that the caller has a more reasonable
3326 * fallback than shooting a random task.
3328 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3330 /* The OOM killer does not needlessly kill tasks for lowmem */
3331 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3333 if (pm_suspended_storage())
3336 * XXX: GFP_NOFS allocations should rather fail than rely on
3337 * other request to make a forward progress.
3338 * We are in an unfortunate situation where out_of_memory cannot
3339 * do much for this context but let's try it to at least get
3340 * access to memory reserved if the current task is killed (see
3341 * out_of_memory). Once filesystems are ready to handle allocation
3342 * failures more gracefully we should just bail out here.
3345 /* The OOM killer may not free memory on a specific node */
3346 if (gfp_mask
& __GFP_THISNODE
)
3349 /* Exhausted what can be done so it's blamo time */
3350 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3351 *did_some_progress
= 1;
3354 * Help non-failing allocations by giving them access to memory
3357 if (gfp_mask
& __GFP_NOFAIL
)
3358 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3359 ALLOC_NO_WATERMARKS
, ac
);
3362 mutex_unlock(&oom_lock
);
3367 * Maximum number of compaction retries wit a progress before OOM
3368 * killer is consider as the only way to move forward.
3370 #define MAX_COMPACT_RETRIES 16
3372 #ifdef CONFIG_COMPACTION
3373 /* Try memory compaction for high-order allocations before reclaim */
3374 static struct page
*
3375 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3376 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3377 enum compact_priority prio
, enum compact_result
*compact_result
)
3380 unsigned int noreclaim_flag
;
3385 noreclaim_flag
= memalloc_noreclaim_save();
3386 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3388 memalloc_noreclaim_restore(noreclaim_flag
);
3390 if (*compact_result
<= COMPACT_INACTIVE
)
3394 * At least in one zone compaction wasn't deferred or skipped, so let's
3395 * count a compaction stall
3397 count_vm_event(COMPACTSTALL
);
3399 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3402 struct zone
*zone
= page_zone(page
);
3404 zone
->compact_blockskip_flush
= false;
3405 compaction_defer_reset(zone
, order
, true);
3406 count_vm_event(COMPACTSUCCESS
);
3411 * It's bad if compaction run occurs and fails. The most likely reason
3412 * is that pages exist, but not enough to satisfy watermarks.
3414 count_vm_event(COMPACTFAIL
);
3422 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3423 enum compact_result compact_result
,
3424 enum compact_priority
*compact_priority
,
3425 int *compaction_retries
)
3427 int max_retries
= MAX_COMPACT_RETRIES
;
3430 int retries
= *compaction_retries
;
3431 enum compact_priority priority
= *compact_priority
;
3436 if (compaction_made_progress(compact_result
))
3437 (*compaction_retries
)++;
3440 * compaction considers all the zone as desperately out of memory
3441 * so it doesn't really make much sense to retry except when the
3442 * failure could be caused by insufficient priority
3444 if (compaction_failed(compact_result
))
3445 goto check_priority
;
3448 * make sure the compaction wasn't deferred or didn't bail out early
3449 * due to locks contention before we declare that we should give up.
3450 * But do not retry if the given zonelist is not suitable for
3453 if (compaction_withdrawn(compact_result
)) {
3454 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3459 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3460 * costly ones because they are de facto nofail and invoke OOM
3461 * killer to move on while costly can fail and users are ready
3462 * to cope with that. 1/4 retries is rather arbitrary but we
3463 * would need much more detailed feedback from compaction to
3464 * make a better decision.
3466 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3468 if (*compaction_retries
<= max_retries
) {
3474 * Make sure there are attempts at the highest priority if we exhausted
3475 * all retries or failed at the lower priorities.
3478 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3479 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3481 if (*compact_priority
> min_priority
) {
3482 (*compact_priority
)--;
3483 *compaction_retries
= 0;
3487 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3491 static inline struct page
*
3492 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3493 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3494 enum compact_priority prio
, enum compact_result
*compact_result
)
3496 *compact_result
= COMPACT_SKIPPED
;
3501 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3502 enum compact_result compact_result
,
3503 enum compact_priority
*compact_priority
,
3504 int *compaction_retries
)
3509 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3513 * There are setups with compaction disabled which would prefer to loop
3514 * inside the allocator rather than hit the oom killer prematurely.
3515 * Let's give them a good hope and keep retrying while the order-0
3516 * watermarks are OK.
3518 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3520 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3521 ac_classzone_idx(ac
), alloc_flags
))
3526 #endif /* CONFIG_COMPACTION */
3528 #ifdef CONFIG_LOCKDEP
3529 struct lockdep_map __fs_reclaim_map
=
3530 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3532 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3534 gfp_mask
= current_gfp_context(gfp_mask
);
3536 /* no reclaim without waiting on it */
3537 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3540 /* this guy won't enter reclaim */
3541 if ((current
->flags
& PF_MEMALLOC
) && !(gfp_mask
& __GFP_NOMEMALLOC
))
3544 /* We're only interested __GFP_FS allocations for now */
3545 if (!(gfp_mask
& __GFP_FS
))
3548 if (gfp_mask
& __GFP_NOLOCKDEP
)
3554 void fs_reclaim_acquire(gfp_t gfp_mask
)
3556 if (__need_fs_reclaim(gfp_mask
))
3557 lock_map_acquire(&__fs_reclaim_map
);
3559 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3561 void fs_reclaim_release(gfp_t gfp_mask
)
3563 if (__need_fs_reclaim(gfp_mask
))
3564 lock_map_release(&__fs_reclaim_map
);
3566 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3569 /* Perform direct synchronous page reclaim */
3571 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3572 const struct alloc_context
*ac
)
3574 struct reclaim_state reclaim_state
;
3576 unsigned int noreclaim_flag
;
3580 /* We now go into synchronous reclaim */
3581 cpuset_memory_pressure_bump();
3582 noreclaim_flag
= memalloc_noreclaim_save();
3583 fs_reclaim_acquire(gfp_mask
);
3584 reclaim_state
.reclaimed_slab
= 0;
3585 current
->reclaim_state
= &reclaim_state
;
3587 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3590 current
->reclaim_state
= NULL
;
3591 fs_reclaim_release(gfp_mask
);
3592 memalloc_noreclaim_restore(noreclaim_flag
);
3599 /* The really slow allocator path where we enter direct reclaim */
3600 static inline struct page
*
3601 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3602 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3603 unsigned long *did_some_progress
)
3605 struct page
*page
= NULL
;
3606 bool drained
= false;
3608 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3609 if (unlikely(!(*did_some_progress
)))
3613 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3616 * If an allocation failed after direct reclaim, it could be because
3617 * pages are pinned on the per-cpu lists or in high alloc reserves.
3618 * Shrink them them and try again
3620 if (!page
&& !drained
) {
3621 unreserve_highatomic_pageblock(ac
, false);
3622 drain_all_pages(NULL
);
3630 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3634 pg_data_t
*last_pgdat
= NULL
;
3636 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3637 ac
->high_zoneidx
, ac
->nodemask
) {
3638 if (last_pgdat
!= zone
->zone_pgdat
)
3639 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3640 last_pgdat
= zone
->zone_pgdat
;
3644 static inline unsigned int
3645 gfp_to_alloc_flags(gfp_t gfp_mask
)
3647 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3649 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3650 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3653 * The caller may dip into page reserves a bit more if the caller
3654 * cannot run direct reclaim, or if the caller has realtime scheduling
3655 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3656 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3658 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3660 if (gfp_mask
& __GFP_ATOMIC
) {
3662 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3663 * if it can't schedule.
3665 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3666 alloc_flags
|= ALLOC_HARDER
;
3668 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3669 * comment for __cpuset_node_allowed().
3671 alloc_flags
&= ~ALLOC_CPUSET
;
3672 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3673 alloc_flags
|= ALLOC_HARDER
;
3676 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3677 alloc_flags
|= ALLOC_CMA
;
3682 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3684 if (!tsk_is_oom_victim(tsk
))
3688 * !MMU doesn't have oom reaper so give access to memory reserves
3689 * only to the thread with TIF_MEMDIE set
3691 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3698 * Distinguish requests which really need access to full memory
3699 * reserves from oom victims which can live with a portion of it
3701 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3703 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3705 if (gfp_mask
& __GFP_MEMALLOC
)
3706 return ALLOC_NO_WATERMARKS
;
3707 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3708 return ALLOC_NO_WATERMARKS
;
3709 if (!in_interrupt()) {
3710 if (current
->flags
& PF_MEMALLOC
)
3711 return ALLOC_NO_WATERMARKS
;
3712 else if (oom_reserves_allowed(current
))
3719 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3721 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3725 * Checks whether it makes sense to retry the reclaim to make a forward progress
3726 * for the given allocation request.
3728 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3729 * without success, or when we couldn't even meet the watermark if we
3730 * reclaimed all remaining pages on the LRU lists.
3732 * Returns true if a retry is viable or false to enter the oom path.
3735 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3736 struct alloc_context
*ac
, int alloc_flags
,
3737 bool did_some_progress
, int *no_progress_loops
)
3743 * Costly allocations might have made a progress but this doesn't mean
3744 * their order will become available due to high fragmentation so
3745 * always increment the no progress counter for them
3747 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3748 *no_progress_loops
= 0;
3750 (*no_progress_loops
)++;
3753 * Make sure we converge to OOM if we cannot make any progress
3754 * several times in the row.
3756 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3757 /* Before OOM, exhaust highatomic_reserve */
3758 return unreserve_highatomic_pageblock(ac
, true);
3762 * Keep reclaiming pages while there is a chance this will lead
3763 * somewhere. If none of the target zones can satisfy our allocation
3764 * request even if all reclaimable pages are considered then we are
3765 * screwed and have to go OOM.
3767 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3769 unsigned long available
;
3770 unsigned long reclaimable
;
3771 unsigned long min_wmark
= min_wmark_pages(zone
);
3774 available
= reclaimable
= zone_reclaimable_pages(zone
);
3775 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3778 * Would the allocation succeed if we reclaimed all
3779 * reclaimable pages?
3781 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3782 ac_classzone_idx(ac
), alloc_flags
, available
);
3783 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3784 available
, min_wmark
, *no_progress_loops
, wmark
);
3787 * If we didn't make any progress and have a lot of
3788 * dirty + writeback pages then we should wait for
3789 * an IO to complete to slow down the reclaim and
3790 * prevent from pre mature OOM
3792 if (!did_some_progress
) {
3793 unsigned long write_pending
;
3795 write_pending
= zone_page_state_snapshot(zone
,
3796 NR_ZONE_WRITE_PENDING
);
3798 if (2 * write_pending
> reclaimable
) {
3799 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3805 * Memory allocation/reclaim might be called from a WQ
3806 * context and the current implementation of the WQ
3807 * concurrency control doesn't recognize that
3808 * a particular WQ is congested if the worker thread is
3809 * looping without ever sleeping. Therefore we have to
3810 * do a short sleep here rather than calling
3813 if (current
->flags
& PF_WQ_WORKER
)
3814 schedule_timeout_uninterruptible(1);
3826 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3829 * It's possible that cpuset's mems_allowed and the nodemask from
3830 * mempolicy don't intersect. This should be normally dealt with by
3831 * policy_nodemask(), but it's possible to race with cpuset update in
3832 * such a way the check therein was true, and then it became false
3833 * before we got our cpuset_mems_cookie here.
3834 * This assumes that for all allocations, ac->nodemask can come only
3835 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3836 * when it does not intersect with the cpuset restrictions) or the
3837 * caller can deal with a violated nodemask.
3839 if (cpusets_enabled() && ac
->nodemask
&&
3840 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3841 ac
->nodemask
= NULL
;
3846 * When updating a task's mems_allowed or mempolicy nodemask, it is
3847 * possible to race with parallel threads in such a way that our
3848 * allocation can fail while the mask is being updated. If we are about
3849 * to fail, check if the cpuset changed during allocation and if so,
3852 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3858 static inline struct page
*
3859 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3860 struct alloc_context
*ac
)
3862 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3863 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3864 struct page
*page
= NULL
;
3865 unsigned int alloc_flags
;
3866 unsigned long did_some_progress
;
3867 enum compact_priority compact_priority
;
3868 enum compact_result compact_result
;
3869 int compaction_retries
;
3870 int no_progress_loops
;
3871 unsigned long alloc_start
= jiffies
;
3872 unsigned int stall_timeout
= 10 * HZ
;
3873 unsigned int cpuset_mems_cookie
;
3877 * In the slowpath, we sanity check order to avoid ever trying to
3878 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3879 * be using allocators in order of preference for an area that is
3882 if (order
>= MAX_ORDER
) {
3883 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3888 * We also sanity check to catch abuse of atomic reserves being used by
3889 * callers that are not in atomic context.
3891 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3892 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3893 gfp_mask
&= ~__GFP_ATOMIC
;
3896 compaction_retries
= 0;
3897 no_progress_loops
= 0;
3898 compact_priority
= DEF_COMPACT_PRIORITY
;
3899 cpuset_mems_cookie
= read_mems_allowed_begin();
3902 * The fast path uses conservative alloc_flags to succeed only until
3903 * kswapd needs to be woken up, and to avoid the cost of setting up
3904 * alloc_flags precisely. So we do that now.
3906 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3909 * We need to recalculate the starting point for the zonelist iterator
3910 * because we might have used different nodemask in the fast path, or
3911 * there was a cpuset modification and we are retrying - otherwise we
3912 * could end up iterating over non-eligible zones endlessly.
3914 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3915 ac
->high_zoneidx
, ac
->nodemask
);
3916 if (!ac
->preferred_zoneref
->zone
)
3919 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3920 wake_all_kswapds(order
, ac
);
3923 * The adjusted alloc_flags might result in immediate success, so try
3926 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3931 * For costly allocations, try direct compaction first, as it's likely
3932 * that we have enough base pages and don't need to reclaim. For non-
3933 * movable high-order allocations, do that as well, as compaction will
3934 * try prevent permanent fragmentation by migrating from blocks of the
3936 * Don't try this for allocations that are allowed to ignore
3937 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3939 if (can_direct_reclaim
&&
3941 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3942 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3943 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3945 INIT_COMPACT_PRIORITY
,
3951 * Checks for costly allocations with __GFP_NORETRY, which
3952 * includes THP page fault allocations
3954 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
3956 * If compaction is deferred for high-order allocations,
3957 * it is because sync compaction recently failed. If
3958 * this is the case and the caller requested a THP
3959 * allocation, we do not want to heavily disrupt the
3960 * system, so we fail the allocation instead of entering
3963 if (compact_result
== COMPACT_DEFERRED
)
3967 * Looks like reclaim/compaction is worth trying, but
3968 * sync compaction could be very expensive, so keep
3969 * using async compaction.
3971 compact_priority
= INIT_COMPACT_PRIORITY
;
3976 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3977 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3978 wake_all_kswapds(order
, ac
);
3980 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
3982 alloc_flags
= reserve_flags
;
3985 * Reset the zonelist iterators if memory policies can be ignored.
3986 * These allocations are high priority and system rather than user
3989 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
3990 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3991 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3992 ac
->high_zoneidx
, ac
->nodemask
);
3995 /* Attempt with potentially adjusted zonelist and alloc_flags */
3996 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4000 /* Caller is not willing to reclaim, we can't balance anything */
4001 if (!can_direct_reclaim
)
4004 /* Make sure we know about allocations which stall for too long */
4005 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
4006 warn_alloc(gfp_mask
& ~__GFP_NOWARN
, ac
->nodemask
,
4007 "page allocation stalls for %ums, order:%u",
4008 jiffies_to_msecs(jiffies
-alloc_start
), order
);
4009 stall_timeout
+= 10 * HZ
;
4012 /* Avoid recursion of direct reclaim */
4013 if (current
->flags
& PF_MEMALLOC
)
4016 /* Try direct reclaim and then allocating */
4017 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4018 &did_some_progress
);
4022 /* Try direct compaction and then allocating */
4023 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4024 compact_priority
, &compact_result
);
4028 /* Do not loop if specifically requested */
4029 if (gfp_mask
& __GFP_NORETRY
)
4033 * Do not retry costly high order allocations unless they are
4034 * __GFP_RETRY_MAYFAIL
4036 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4039 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4040 did_some_progress
> 0, &no_progress_loops
))
4044 * It doesn't make any sense to retry for the compaction if the order-0
4045 * reclaim is not able to make any progress because the current
4046 * implementation of the compaction depends on the sufficient amount
4047 * of free memory (see __compaction_suitable)
4049 if (did_some_progress
> 0 &&
4050 should_compact_retry(ac
, order
, alloc_flags
,
4051 compact_result
, &compact_priority
,
4052 &compaction_retries
))
4056 /* Deal with possible cpuset update races before we start OOM killing */
4057 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4060 /* Reclaim has failed us, start killing things */
4061 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4065 /* Avoid allocations with no watermarks from looping endlessly */
4066 if (tsk_is_oom_victim(current
) &&
4067 (alloc_flags
== ALLOC_OOM
||
4068 (gfp_mask
& __GFP_NOMEMALLOC
)))
4071 /* Retry as long as the OOM killer is making progress */
4072 if (did_some_progress
) {
4073 no_progress_loops
= 0;
4078 /* Deal with possible cpuset update races before we fail */
4079 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4086 if (gfp_mask
& __GFP_NOFAIL
) {
4088 * All existing users of the __GFP_NOFAIL are blockable, so warn
4089 * of any new users that actually require GFP_NOWAIT
4091 if (WARN_ON_ONCE(!can_direct_reclaim
))
4095 * PF_MEMALLOC request from this context is rather bizarre
4096 * because we cannot reclaim anything and only can loop waiting
4097 * for somebody to do a work for us
4099 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4102 * non failing costly orders are a hard requirement which we
4103 * are not prepared for much so let's warn about these users
4104 * so that we can identify them and convert them to something
4107 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4110 * Help non-failing allocations by giving them access to memory
4111 * reserves but do not use ALLOC_NO_WATERMARKS because this
4112 * could deplete whole memory reserves which would just make
4113 * the situation worse
4115 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4123 warn_alloc(gfp_mask
, ac
->nodemask
,
4124 "page allocation failure: order:%u", order
);
4129 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4130 int preferred_nid
, nodemask_t
*nodemask
,
4131 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4132 unsigned int *alloc_flags
)
4134 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4135 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4136 ac
->nodemask
= nodemask
;
4137 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4139 if (cpusets_enabled()) {
4140 *alloc_mask
|= __GFP_HARDWALL
;
4142 ac
->nodemask
= &cpuset_current_mems_allowed
;
4144 *alloc_flags
|= ALLOC_CPUSET
;
4147 fs_reclaim_acquire(gfp_mask
);
4148 fs_reclaim_release(gfp_mask
);
4150 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4152 if (should_fail_alloc_page(gfp_mask
, order
))
4155 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4156 *alloc_flags
|= ALLOC_CMA
;
4161 /* Determine whether to spread dirty pages and what the first usable zone */
4162 static inline void finalise_ac(gfp_t gfp_mask
,
4163 unsigned int order
, struct alloc_context
*ac
)
4165 /* Dirty zone balancing only done in the fast path */
4166 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4169 * The preferred zone is used for statistics but crucially it is
4170 * also used as the starting point for the zonelist iterator. It
4171 * may get reset for allocations that ignore memory policies.
4173 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4174 ac
->high_zoneidx
, ac
->nodemask
);
4178 * This is the 'heart' of the zoned buddy allocator.
4181 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4182 nodemask_t
*nodemask
)
4185 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4186 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4187 struct alloc_context ac
= { };
4189 gfp_mask
&= gfp_allowed_mask
;
4190 alloc_mask
= gfp_mask
;
4191 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4194 finalise_ac(gfp_mask
, order
, &ac
);
4196 /* First allocation attempt */
4197 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4202 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4203 * resp. GFP_NOIO which has to be inherited for all allocation requests
4204 * from a particular context which has been marked by
4205 * memalloc_no{fs,io}_{save,restore}.
4207 alloc_mask
= current_gfp_context(gfp_mask
);
4208 ac
.spread_dirty_pages
= false;
4211 * Restore the original nodemask if it was potentially replaced with
4212 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4214 if (unlikely(ac
.nodemask
!= nodemask
))
4215 ac
.nodemask
= nodemask
;
4217 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4220 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4221 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4222 __free_pages(page
, order
);
4226 if (kmemcheck_enabled
&& page
)
4227 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
4229 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4233 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4236 * Common helper functions.
4238 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4243 * __get_free_pages() returns a 32-bit address, which cannot represent
4246 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4248 page
= alloc_pages(gfp_mask
, order
);
4251 return (unsigned long) page_address(page
);
4253 EXPORT_SYMBOL(__get_free_pages
);
4255 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4257 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4259 EXPORT_SYMBOL(get_zeroed_page
);
4261 void __free_pages(struct page
*page
, unsigned int order
)
4263 if (put_page_testzero(page
)) {
4265 free_hot_cold_page(page
, false);
4267 __free_pages_ok(page
, order
);
4271 EXPORT_SYMBOL(__free_pages
);
4273 void free_pages(unsigned long addr
, unsigned int order
)
4276 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4277 __free_pages(virt_to_page((void *)addr
), order
);
4281 EXPORT_SYMBOL(free_pages
);
4285 * An arbitrary-length arbitrary-offset area of memory which resides
4286 * within a 0 or higher order page. Multiple fragments within that page
4287 * are individually refcounted, in the page's reference counter.
4289 * The page_frag functions below provide a simple allocation framework for
4290 * page fragments. This is used by the network stack and network device
4291 * drivers to provide a backing region of memory for use as either an
4292 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4294 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4297 struct page
*page
= NULL
;
4298 gfp_t gfp
= gfp_mask
;
4300 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4301 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4303 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4304 PAGE_FRAG_CACHE_MAX_ORDER
);
4305 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4307 if (unlikely(!page
))
4308 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4310 nc
->va
= page
? page_address(page
) : NULL
;
4315 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4317 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4319 if (page_ref_sub_and_test(page
, count
)) {
4320 unsigned int order
= compound_order(page
);
4323 free_hot_cold_page(page
, false);
4325 __free_pages_ok(page
, order
);
4328 EXPORT_SYMBOL(__page_frag_cache_drain
);
4330 void *page_frag_alloc(struct page_frag_cache
*nc
,
4331 unsigned int fragsz
, gfp_t gfp_mask
)
4333 unsigned int size
= PAGE_SIZE
;
4337 if (unlikely(!nc
->va
)) {
4339 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 /* if size can vary use size else just use PAGE_SIZE */
4347 /* Even if we own the page, we do not use atomic_set().
4348 * This would break get_page_unless_zero() users.
4350 page_ref_add(page
, size
- 1);
4352 /* reset page count bias and offset to start of new frag */
4353 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4354 nc
->pagecnt_bias
= size
;
4358 offset
= nc
->offset
- fragsz
;
4359 if (unlikely(offset
< 0)) {
4360 page
= virt_to_page(nc
->va
);
4362 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4365 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4366 /* if size can vary use size else just use PAGE_SIZE */
4369 /* OK, page count is 0, we can safely set it */
4370 set_page_count(page
, size
);
4372 /* reset page count bias and offset to start of new frag */
4373 nc
->pagecnt_bias
= size
;
4374 offset
= size
- fragsz
;
4378 nc
->offset
= offset
;
4380 return nc
->va
+ offset
;
4382 EXPORT_SYMBOL(page_frag_alloc
);
4385 * Frees a page fragment allocated out of either a compound or order 0 page.
4387 void page_frag_free(void *addr
)
4389 struct page
*page
= virt_to_head_page(addr
);
4391 if (unlikely(put_page_testzero(page
)))
4392 __free_pages_ok(page
, compound_order(page
));
4394 EXPORT_SYMBOL(page_frag_free
);
4396 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4400 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4401 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4403 split_page(virt_to_page((void *)addr
), order
);
4404 while (used
< alloc_end
) {
4409 return (void *)addr
;
4413 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4414 * @size: the number of bytes to allocate
4415 * @gfp_mask: GFP flags for the allocation
4417 * This function is similar to alloc_pages(), except that it allocates the
4418 * minimum number of pages to satisfy the request. alloc_pages() can only
4419 * allocate memory in power-of-two pages.
4421 * This function is also limited by MAX_ORDER.
4423 * Memory allocated by this function must be released by free_pages_exact().
4425 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4427 unsigned int order
= get_order(size
);
4430 addr
= __get_free_pages(gfp_mask
, order
);
4431 return make_alloc_exact(addr
, order
, size
);
4433 EXPORT_SYMBOL(alloc_pages_exact
);
4436 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4438 * @nid: the preferred node ID where memory should be allocated
4439 * @size: the number of bytes to allocate
4440 * @gfp_mask: GFP flags for the allocation
4442 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4445 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4447 unsigned int order
= get_order(size
);
4448 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4451 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4455 * free_pages_exact - release memory allocated via alloc_pages_exact()
4456 * @virt: the value returned by alloc_pages_exact.
4457 * @size: size of allocation, same value as passed to alloc_pages_exact().
4459 * Release the memory allocated by a previous call to alloc_pages_exact.
4461 void free_pages_exact(void *virt
, size_t size
)
4463 unsigned long addr
= (unsigned long)virt
;
4464 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4466 while (addr
< end
) {
4471 EXPORT_SYMBOL(free_pages_exact
);
4474 * nr_free_zone_pages - count number of pages beyond high watermark
4475 * @offset: The zone index of the highest zone
4477 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4478 * high watermark within all zones at or below a given zone index. For each
4479 * zone, the number of pages is calculated as:
4481 * nr_free_zone_pages = managed_pages - high_pages
4483 static unsigned long nr_free_zone_pages(int offset
)
4488 /* Just pick one node, since fallback list is circular */
4489 unsigned long sum
= 0;
4491 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4493 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4494 unsigned long size
= zone
->managed_pages
;
4495 unsigned long high
= high_wmark_pages(zone
);
4504 * nr_free_buffer_pages - count number of pages beyond high watermark
4506 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4507 * watermark within ZONE_DMA and ZONE_NORMAL.
4509 unsigned long nr_free_buffer_pages(void)
4511 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4513 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4516 * nr_free_pagecache_pages - count number of pages beyond high watermark
4518 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4519 * high watermark within all zones.
4521 unsigned long nr_free_pagecache_pages(void)
4523 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4526 static inline void show_node(struct zone
*zone
)
4528 if (IS_ENABLED(CONFIG_NUMA
))
4529 printk("Node %d ", zone_to_nid(zone
));
4532 long si_mem_available(void)
4535 unsigned long pagecache
;
4536 unsigned long wmark_low
= 0;
4537 unsigned long pages
[NR_LRU_LISTS
];
4541 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4542 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4545 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4548 * Estimate the amount of memory available for userspace allocations,
4549 * without causing swapping.
4551 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4554 * Not all the page cache can be freed, otherwise the system will
4555 * start swapping. Assume at least half of the page cache, or the
4556 * low watermark worth of cache, needs to stay.
4558 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4559 pagecache
-= min(pagecache
/ 2, wmark_low
);
4560 available
+= pagecache
;
4563 * Part of the reclaimable slab consists of items that are in use,
4564 * and cannot be freed. Cap this estimate at the low watermark.
4566 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4567 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4574 EXPORT_SYMBOL_GPL(si_mem_available
);
4576 void si_meminfo(struct sysinfo
*val
)
4578 val
->totalram
= totalram_pages
;
4579 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4580 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4581 val
->bufferram
= nr_blockdev_pages();
4582 val
->totalhigh
= totalhigh_pages
;
4583 val
->freehigh
= nr_free_highpages();
4584 val
->mem_unit
= PAGE_SIZE
;
4587 EXPORT_SYMBOL(si_meminfo
);
4590 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4592 int zone_type
; /* needs to be signed */
4593 unsigned long managed_pages
= 0;
4594 unsigned long managed_highpages
= 0;
4595 unsigned long free_highpages
= 0;
4596 pg_data_t
*pgdat
= NODE_DATA(nid
);
4598 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4599 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4600 val
->totalram
= managed_pages
;
4601 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4602 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4603 #ifdef CONFIG_HIGHMEM
4604 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4605 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4607 if (is_highmem(zone
)) {
4608 managed_highpages
+= zone
->managed_pages
;
4609 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4612 val
->totalhigh
= managed_highpages
;
4613 val
->freehigh
= free_highpages
;
4615 val
->totalhigh
= managed_highpages
;
4616 val
->freehigh
= free_highpages
;
4618 val
->mem_unit
= PAGE_SIZE
;
4623 * Determine whether the node should be displayed or not, depending on whether
4624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4626 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4628 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4632 * no node mask - aka implicit memory numa policy. Do not bother with
4633 * the synchronization - read_mems_allowed_begin - because we do not
4634 * have to be precise here.
4637 nodemask
= &cpuset_current_mems_allowed
;
4639 return !node_isset(nid
, *nodemask
);
4642 #define K(x) ((x) << (PAGE_SHIFT-10))
4644 static void show_migration_types(unsigned char type
)
4646 static const char types
[MIGRATE_TYPES
] = {
4647 [MIGRATE_UNMOVABLE
] = 'U',
4648 [MIGRATE_MOVABLE
] = 'M',
4649 [MIGRATE_RECLAIMABLE
] = 'E',
4650 [MIGRATE_HIGHATOMIC
] = 'H',
4652 [MIGRATE_CMA
] = 'C',
4654 #ifdef CONFIG_MEMORY_ISOLATION
4655 [MIGRATE_ISOLATE
] = 'I',
4658 char tmp
[MIGRATE_TYPES
+ 1];
4662 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4663 if (type
& (1 << i
))
4668 printk(KERN_CONT
"(%s) ", tmp
);
4672 * Show free area list (used inside shift_scroll-lock stuff)
4673 * We also calculate the percentage fragmentation. We do this by counting the
4674 * memory on each free list with the exception of the first item on the list.
4677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4680 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4682 unsigned long free_pcp
= 0;
4687 for_each_populated_zone(zone
) {
4688 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4691 for_each_online_cpu(cpu
)
4692 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4695 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4696 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4697 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4698 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4699 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4700 " free:%lu free_pcp:%lu free_cma:%lu\n",
4701 global_node_page_state(NR_ACTIVE_ANON
),
4702 global_node_page_state(NR_INACTIVE_ANON
),
4703 global_node_page_state(NR_ISOLATED_ANON
),
4704 global_node_page_state(NR_ACTIVE_FILE
),
4705 global_node_page_state(NR_INACTIVE_FILE
),
4706 global_node_page_state(NR_ISOLATED_FILE
),
4707 global_node_page_state(NR_UNEVICTABLE
),
4708 global_node_page_state(NR_FILE_DIRTY
),
4709 global_node_page_state(NR_WRITEBACK
),
4710 global_node_page_state(NR_UNSTABLE_NFS
),
4711 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4712 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4713 global_node_page_state(NR_FILE_MAPPED
),
4714 global_node_page_state(NR_SHMEM
),
4715 global_zone_page_state(NR_PAGETABLE
),
4716 global_zone_page_state(NR_BOUNCE
),
4717 global_zone_page_state(NR_FREE_PAGES
),
4719 global_zone_page_state(NR_FREE_CMA_PAGES
));
4721 for_each_online_pgdat(pgdat
) {
4722 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4726 " active_anon:%lukB"
4727 " inactive_anon:%lukB"
4728 " active_file:%lukB"
4729 " inactive_file:%lukB"
4730 " unevictable:%lukB"
4731 " isolated(anon):%lukB"
4732 " isolated(file):%lukB"
4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4739 " shmem_pmdmapped: %lukB"
4742 " writeback_tmp:%lukB"
4744 " all_unreclaimable? %s"
4747 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4748 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4749 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4750 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4751 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4752 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4753 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4754 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4755 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4756 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4757 K(node_page_state(pgdat
, NR_SHMEM
)),
4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4760 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4762 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4764 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4765 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4766 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4770 for_each_populated_zone(zone
) {
4773 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4777 for_each_online_cpu(cpu
)
4778 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4787 " active_anon:%lukB"
4788 " inactive_anon:%lukB"
4789 " active_file:%lukB"
4790 " inactive_file:%lukB"
4791 " unevictable:%lukB"
4792 " writepending:%lukB"
4796 " kernel_stack:%lukB"
4804 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4805 K(min_wmark_pages(zone
)),
4806 K(low_wmark_pages(zone
)),
4807 K(high_wmark_pages(zone
)),
4808 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4809 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4810 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4811 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4812 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4813 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4814 K(zone
->present_pages
),
4815 K(zone
->managed_pages
),
4816 K(zone_page_state(zone
, NR_MLOCK
)),
4817 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4818 K(zone_page_state(zone
, NR_PAGETABLE
)),
4819 K(zone_page_state(zone
, NR_BOUNCE
)),
4821 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4822 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4823 printk("lowmem_reserve[]:");
4824 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4825 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4826 printk(KERN_CONT
"\n");
4829 for_each_populated_zone(zone
) {
4831 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4832 unsigned char types
[MAX_ORDER
];
4834 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4837 printk(KERN_CONT
"%s: ", zone
->name
);
4839 spin_lock_irqsave(&zone
->lock
, flags
);
4840 for (order
= 0; order
< MAX_ORDER
; order
++) {
4841 struct free_area
*area
= &zone
->free_area
[order
];
4844 nr
[order
] = area
->nr_free
;
4845 total
+= nr
[order
] << order
;
4848 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4849 if (!list_empty(&area
->free_list
[type
]))
4850 types
[order
] |= 1 << type
;
4853 spin_unlock_irqrestore(&zone
->lock
, flags
);
4854 for (order
= 0; order
< MAX_ORDER
; order
++) {
4855 printk(KERN_CONT
"%lu*%lukB ",
4856 nr
[order
], K(1UL) << order
);
4858 show_migration_types(types
[order
]);
4860 printk(KERN_CONT
"= %lukB\n", K(total
));
4863 hugetlb_show_meminfo();
4865 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4867 show_swap_cache_info();
4870 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4872 zoneref
->zone
= zone
;
4873 zoneref
->zone_idx
= zone_idx(zone
);
4877 * Builds allocation fallback zone lists.
4879 * Add all populated zones of a node to the zonelist.
4881 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
4884 enum zone_type zone_type
= MAX_NR_ZONES
;
4889 zone
= pgdat
->node_zones
+ zone_type
;
4890 if (managed_zone(zone
)) {
4891 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
4892 check_highest_zone(zone_type
);
4894 } while (zone_type
);
4901 static int __parse_numa_zonelist_order(char *s
)
4904 * We used to support different zonlists modes but they turned
4905 * out to be just not useful. Let's keep the warning in place
4906 * if somebody still use the cmd line parameter so that we do
4907 * not fail it silently
4909 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
4910 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
4916 static __init
int setup_numa_zonelist_order(char *s
)
4921 return __parse_numa_zonelist_order(s
);
4923 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4925 char numa_zonelist_order
[] = "Node";
4928 * sysctl handler for numa_zonelist_order
4930 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4931 void __user
*buffer
, size_t *length
,
4938 return proc_dostring(table
, write
, buffer
, length
, ppos
);
4939 str
= memdup_user_nul(buffer
, 16);
4941 return PTR_ERR(str
);
4943 ret
= __parse_numa_zonelist_order(str
);
4949 #define MAX_NODE_LOAD (nr_online_nodes)
4950 static int node_load
[MAX_NUMNODES
];
4953 * find_next_best_node - find the next node that should appear in a given node's fallback list
4954 * @node: node whose fallback list we're appending
4955 * @used_node_mask: nodemask_t of already used nodes
4957 * We use a number of factors to determine which is the next node that should
4958 * appear on a given node's fallback list. The node should not have appeared
4959 * already in @node's fallback list, and it should be the next closest node
4960 * according to the distance array (which contains arbitrary distance values
4961 * from each node to each node in the system), and should also prefer nodes
4962 * with no CPUs, since presumably they'll have very little allocation pressure
4963 * on them otherwise.
4964 * It returns -1 if no node is found.
4966 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4969 int min_val
= INT_MAX
;
4970 int best_node
= NUMA_NO_NODE
;
4971 const struct cpumask
*tmp
= cpumask_of_node(0);
4973 /* Use the local node if we haven't already */
4974 if (!node_isset(node
, *used_node_mask
)) {
4975 node_set(node
, *used_node_mask
);
4979 for_each_node_state(n
, N_MEMORY
) {
4981 /* Don't want a node to appear more than once */
4982 if (node_isset(n
, *used_node_mask
))
4985 /* Use the distance array to find the distance */
4986 val
= node_distance(node
, n
);
4988 /* Penalize nodes under us ("prefer the next node") */
4991 /* Give preference to headless and unused nodes */
4992 tmp
= cpumask_of_node(n
);
4993 if (!cpumask_empty(tmp
))
4994 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4996 /* Slight preference for less loaded node */
4997 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4998 val
+= node_load
[n
];
5000 if (val
< min_val
) {
5007 node_set(best_node
, *used_node_mask
);
5014 * Build zonelists ordered by node and zones within node.
5015 * This results in maximum locality--normal zone overflows into local
5016 * DMA zone, if any--but risks exhausting DMA zone.
5018 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5021 struct zoneref
*zonerefs
;
5024 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5026 for (i
= 0; i
< nr_nodes
; i
++) {
5029 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5031 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5032 zonerefs
+= nr_zones
;
5034 zonerefs
->zone
= NULL
;
5035 zonerefs
->zone_idx
= 0;
5039 * Build gfp_thisnode zonelists
5041 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5043 struct zoneref
*zonerefs
;
5046 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5047 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5048 zonerefs
+= nr_zones
;
5049 zonerefs
->zone
= NULL
;
5050 zonerefs
->zone_idx
= 0;
5054 * Build zonelists ordered by zone and nodes within zones.
5055 * This results in conserving DMA zone[s] until all Normal memory is
5056 * exhausted, but results in overflowing to remote node while memory
5057 * may still exist in local DMA zone.
5060 static void build_zonelists(pg_data_t
*pgdat
)
5062 static int node_order
[MAX_NUMNODES
];
5063 int node
, load
, nr_nodes
= 0;
5064 nodemask_t used_mask
;
5065 int local_node
, prev_node
;
5067 /* NUMA-aware ordering of nodes */
5068 local_node
= pgdat
->node_id
;
5069 load
= nr_online_nodes
;
5070 prev_node
= local_node
;
5071 nodes_clear(used_mask
);
5073 memset(node_order
, 0, sizeof(node_order
));
5074 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5076 * We don't want to pressure a particular node.
5077 * So adding penalty to the first node in same
5078 * distance group to make it round-robin.
5080 if (node_distance(local_node
, node
) !=
5081 node_distance(local_node
, prev_node
))
5082 node_load
[node
] = load
;
5084 node_order
[nr_nodes
++] = node
;
5089 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5090 build_thisnode_zonelists(pgdat
);
5093 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5095 * Return node id of node used for "local" allocations.
5096 * I.e., first node id of first zone in arg node's generic zonelist.
5097 * Used for initializing percpu 'numa_mem', which is used primarily
5098 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5100 int local_memory_node(int node
)
5104 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5105 gfp_zone(GFP_KERNEL
),
5107 return z
->zone
->node
;
5111 static void setup_min_unmapped_ratio(void);
5112 static void setup_min_slab_ratio(void);
5113 #else /* CONFIG_NUMA */
5115 static void build_zonelists(pg_data_t
*pgdat
)
5117 int node
, local_node
;
5118 struct zoneref
*zonerefs
;
5121 local_node
= pgdat
->node_id
;
5123 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5124 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5125 zonerefs
+= nr_zones
;
5128 * Now we build the zonelist so that it contains the zones
5129 * of all the other nodes.
5130 * We don't want to pressure a particular node, so when
5131 * building the zones for node N, we make sure that the
5132 * zones coming right after the local ones are those from
5133 * node N+1 (modulo N)
5135 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5136 if (!node_online(node
))
5138 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5139 zonerefs
+= nr_zones
;
5141 for (node
= 0; node
< local_node
; node
++) {
5142 if (!node_online(node
))
5144 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5145 zonerefs
+= nr_zones
;
5148 zonerefs
->zone
= NULL
;
5149 zonerefs
->zone_idx
= 0;
5152 #endif /* CONFIG_NUMA */
5155 * Boot pageset table. One per cpu which is going to be used for all
5156 * zones and all nodes. The parameters will be set in such a way
5157 * that an item put on a list will immediately be handed over to
5158 * the buddy list. This is safe since pageset manipulation is done
5159 * with interrupts disabled.
5161 * The boot_pagesets must be kept even after bootup is complete for
5162 * unused processors and/or zones. They do play a role for bootstrapping
5163 * hotplugged processors.
5165 * zoneinfo_show() and maybe other functions do
5166 * not check if the processor is online before following the pageset pointer.
5167 * Other parts of the kernel may not check if the zone is available.
5169 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5170 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5171 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5173 static void __build_all_zonelists(void *data
)
5176 int __maybe_unused cpu
;
5177 pg_data_t
*self
= data
;
5178 static DEFINE_SPINLOCK(lock
);
5183 memset(node_load
, 0, sizeof(node_load
));
5187 * This node is hotadded and no memory is yet present. So just
5188 * building zonelists is fine - no need to touch other nodes.
5190 if (self
&& !node_online(self
->node_id
)) {
5191 build_zonelists(self
);
5193 for_each_online_node(nid
) {
5194 pg_data_t
*pgdat
= NODE_DATA(nid
);
5196 build_zonelists(pgdat
);
5199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5201 * We now know the "local memory node" for each node--
5202 * i.e., the node of the first zone in the generic zonelist.
5203 * Set up numa_mem percpu variable for on-line cpus. During
5204 * boot, only the boot cpu should be on-line; we'll init the
5205 * secondary cpus' numa_mem as they come on-line. During
5206 * node/memory hotplug, we'll fixup all on-line cpus.
5208 for_each_online_cpu(cpu
)
5209 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5216 static noinline
void __init
5217 build_all_zonelists_init(void)
5221 __build_all_zonelists(NULL
);
5224 * Initialize the boot_pagesets that are going to be used
5225 * for bootstrapping processors. The real pagesets for
5226 * each zone will be allocated later when the per cpu
5227 * allocator is available.
5229 * boot_pagesets are used also for bootstrapping offline
5230 * cpus if the system is already booted because the pagesets
5231 * are needed to initialize allocators on a specific cpu too.
5232 * F.e. the percpu allocator needs the page allocator which
5233 * needs the percpu allocator in order to allocate its pagesets
5234 * (a chicken-egg dilemma).
5236 for_each_possible_cpu(cpu
)
5237 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5239 mminit_verify_zonelist();
5240 cpuset_init_current_mems_allowed();
5244 * unless system_state == SYSTEM_BOOTING.
5246 * __ref due to call of __init annotated helper build_all_zonelists_init
5247 * [protected by SYSTEM_BOOTING].
5249 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5251 if (system_state
== SYSTEM_BOOTING
) {
5252 build_all_zonelists_init();
5254 __build_all_zonelists(pgdat
);
5255 /* cpuset refresh routine should be here */
5257 vm_total_pages
= nr_free_pagecache_pages();
5259 * Disable grouping by mobility if the number of pages in the
5260 * system is too low to allow the mechanism to work. It would be
5261 * more accurate, but expensive to check per-zone. This check is
5262 * made on memory-hotadd so a system can start with mobility
5263 * disabled and enable it later
5265 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5266 page_group_by_mobility_disabled
= 1;
5268 page_group_by_mobility_disabled
= 0;
5270 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5272 page_group_by_mobility_disabled
? "off" : "on",
5275 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5280 * Initially all pages are reserved - free ones are freed
5281 * up by free_all_bootmem() once the early boot process is
5282 * done. Non-atomic initialization, single-pass.
5284 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5285 unsigned long start_pfn
, enum memmap_context context
)
5287 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5288 unsigned long end_pfn
= start_pfn
+ size
;
5289 pg_data_t
*pgdat
= NODE_DATA(nid
);
5291 unsigned long nr_initialised
= 0;
5292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5293 struct memblock_region
*r
= NULL
, *tmp
;
5296 if (highest_memmap_pfn
< end_pfn
- 1)
5297 highest_memmap_pfn
= end_pfn
- 1;
5300 * Honor reservation requested by the driver for this ZONE_DEVICE
5303 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5304 start_pfn
+= altmap
->reserve
;
5306 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5308 * There can be holes in boot-time mem_map[]s handed to this
5309 * function. They do not exist on hotplugged memory.
5311 if (context
!= MEMMAP_EARLY
)
5314 if (!early_pfn_valid(pfn
)) {
5315 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5317 * Skip to the pfn preceding the next valid one (or
5318 * end_pfn), such that we hit a valid pfn (or end_pfn)
5319 * on our next iteration of the loop.
5321 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5325 if (!early_pfn_in_nid(pfn
, nid
))
5327 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5330 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5332 * Check given memblock attribute by firmware which can affect
5333 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5334 * mirrored, it's an overlapped memmap init. skip it.
5336 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5337 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5338 for_each_memblock(memory
, tmp
)
5339 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5343 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5344 memblock_is_mirror(r
)) {
5345 /* already initialized as NORMAL */
5346 pfn
= memblock_region_memory_end_pfn(r
);
5354 * Mark the block movable so that blocks are reserved for
5355 * movable at startup. This will force kernel allocations
5356 * to reserve their blocks rather than leaking throughout
5357 * the address space during boot when many long-lived
5358 * kernel allocations are made.
5360 * bitmap is created for zone's valid pfn range. but memmap
5361 * can be created for invalid pages (for alignment)
5362 * check here not to call set_pageblock_migratetype() against
5365 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5366 struct page
*page
= pfn_to_page(pfn
);
5368 __init_single_page(page
, pfn
, zone
, nid
);
5369 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5372 __init_single_pfn(pfn
, zone
, nid
);
5377 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5379 unsigned int order
, t
;
5380 for_each_migratetype_order(order
, t
) {
5381 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5382 zone
->free_area
[order
].nr_free
= 0;
5386 #ifndef __HAVE_ARCH_MEMMAP_INIT
5387 #define memmap_init(size, nid, zone, start_pfn) \
5388 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5391 static int zone_batchsize(struct zone
*zone
)
5397 * The per-cpu-pages pools are set to around 1000th of the
5398 * size of the zone. But no more than 1/2 of a meg.
5400 * OK, so we don't know how big the cache is. So guess.
5402 batch
= zone
->managed_pages
/ 1024;
5403 if (batch
* PAGE_SIZE
> 512 * 1024)
5404 batch
= (512 * 1024) / PAGE_SIZE
;
5405 batch
/= 4; /* We effectively *= 4 below */
5410 * Clamp the batch to a 2^n - 1 value. Having a power
5411 * of 2 value was found to be more likely to have
5412 * suboptimal cache aliasing properties in some cases.
5414 * For example if 2 tasks are alternately allocating
5415 * batches of pages, one task can end up with a lot
5416 * of pages of one half of the possible page colors
5417 * and the other with pages of the other colors.
5419 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5424 /* The deferral and batching of frees should be suppressed under NOMMU
5427 * The problem is that NOMMU needs to be able to allocate large chunks
5428 * of contiguous memory as there's no hardware page translation to
5429 * assemble apparent contiguous memory from discontiguous pages.
5431 * Queueing large contiguous runs of pages for batching, however,
5432 * causes the pages to actually be freed in smaller chunks. As there
5433 * can be a significant delay between the individual batches being
5434 * recycled, this leads to the once large chunks of space being
5435 * fragmented and becoming unavailable for high-order allocations.
5442 * pcp->high and pcp->batch values are related and dependent on one another:
5443 * ->batch must never be higher then ->high.
5444 * The following function updates them in a safe manner without read side
5447 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5448 * those fields changing asynchronously (acording the the above rule).
5450 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5451 * outside of boot time (or some other assurance that no concurrent updaters
5454 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5455 unsigned long batch
)
5457 /* start with a fail safe value for batch */
5461 /* Update high, then batch, in order */
5468 /* a companion to pageset_set_high() */
5469 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5471 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5474 static void pageset_init(struct per_cpu_pageset
*p
)
5476 struct per_cpu_pages
*pcp
;
5479 memset(p
, 0, sizeof(*p
));
5483 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5484 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5487 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5490 pageset_set_batch(p
, batch
);
5494 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5495 * to the value high for the pageset p.
5497 static void pageset_set_high(struct per_cpu_pageset
*p
,
5500 unsigned long batch
= max(1UL, high
/ 4);
5501 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5502 batch
= PAGE_SHIFT
* 8;
5504 pageset_update(&p
->pcp
, high
, batch
);
5507 static void pageset_set_high_and_batch(struct zone
*zone
,
5508 struct per_cpu_pageset
*pcp
)
5510 if (percpu_pagelist_fraction
)
5511 pageset_set_high(pcp
,
5512 (zone
->managed_pages
/
5513 percpu_pagelist_fraction
));
5515 pageset_set_batch(pcp
, zone_batchsize(zone
));
5518 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5520 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5523 pageset_set_high_and_batch(zone
, pcp
);
5526 void __meminit
setup_zone_pageset(struct zone
*zone
)
5529 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5530 for_each_possible_cpu(cpu
)
5531 zone_pageset_init(zone
, cpu
);
5535 * Allocate per cpu pagesets and initialize them.
5536 * Before this call only boot pagesets were available.
5538 void __init
setup_per_cpu_pageset(void)
5540 struct pglist_data
*pgdat
;
5543 for_each_populated_zone(zone
)
5544 setup_zone_pageset(zone
);
5546 for_each_online_pgdat(pgdat
)
5547 pgdat
->per_cpu_nodestats
=
5548 alloc_percpu(struct per_cpu_nodestat
);
5551 static __meminit
void zone_pcp_init(struct zone
*zone
)
5554 * per cpu subsystem is not up at this point. The following code
5555 * relies on the ability of the linker to provide the
5556 * offset of a (static) per cpu variable into the per cpu area.
5558 zone
->pageset
= &boot_pageset
;
5560 if (populated_zone(zone
))
5561 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5562 zone
->name
, zone
->present_pages
,
5563 zone_batchsize(zone
));
5566 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5567 unsigned long zone_start_pfn
,
5570 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5572 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5574 zone
->zone_start_pfn
= zone_start_pfn
;
5576 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5577 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5579 (unsigned long)zone_idx(zone
),
5580 zone_start_pfn
, (zone_start_pfn
+ size
));
5582 zone_init_free_lists(zone
);
5583 zone
->initialized
= 1;
5586 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5587 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5592 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5593 struct mminit_pfnnid_cache
*state
)
5595 unsigned long start_pfn
, end_pfn
;
5598 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5599 return state
->last_nid
;
5601 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5603 state
->last_start
= start_pfn
;
5604 state
->last_end
= end_pfn
;
5605 state
->last_nid
= nid
;
5610 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5613 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5614 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5615 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5617 * If an architecture guarantees that all ranges registered contain no holes
5618 * and may be freed, this this function may be used instead of calling
5619 * memblock_free_early_nid() manually.
5621 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5623 unsigned long start_pfn
, end_pfn
;
5626 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5627 start_pfn
= min(start_pfn
, max_low_pfn
);
5628 end_pfn
= min(end_pfn
, max_low_pfn
);
5630 if (start_pfn
< end_pfn
)
5631 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5632 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5638 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5639 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5641 * If an architecture guarantees that all ranges registered contain no holes and may
5642 * be freed, this function may be used instead of calling memory_present() manually.
5644 void __init
sparse_memory_present_with_active_regions(int nid
)
5646 unsigned long start_pfn
, end_pfn
;
5649 #ifdef CONFIG_SPARSEMEM_EXTREME
5651 unsigned long size
, align
;
5653 size
= sizeof(struct mem_section
) * NR_SECTION_ROOTS
;
5654 align
= 1 << (INTERNODE_CACHE_SHIFT
);
5655 mem_section
= memblock_virt_alloc(size
, align
);
5659 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5660 memory_present(this_nid
, start_pfn
, end_pfn
);
5664 * get_pfn_range_for_nid - Return the start and end page frames for a node
5665 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5666 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5667 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5669 * It returns the start and end page frame of a node based on information
5670 * provided by memblock_set_node(). If called for a node
5671 * with no available memory, a warning is printed and the start and end
5674 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5675 unsigned long *start_pfn
, unsigned long *end_pfn
)
5677 unsigned long this_start_pfn
, this_end_pfn
;
5683 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5684 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5685 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5688 if (*start_pfn
== -1UL)
5693 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5694 * assumption is made that zones within a node are ordered in monotonic
5695 * increasing memory addresses so that the "highest" populated zone is used
5697 static void __init
find_usable_zone_for_movable(void)
5700 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5701 if (zone_index
== ZONE_MOVABLE
)
5704 if (arch_zone_highest_possible_pfn
[zone_index
] >
5705 arch_zone_lowest_possible_pfn
[zone_index
])
5709 VM_BUG_ON(zone_index
== -1);
5710 movable_zone
= zone_index
;
5714 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5715 * because it is sized independent of architecture. Unlike the other zones,
5716 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5717 * in each node depending on the size of each node and how evenly kernelcore
5718 * is distributed. This helper function adjusts the zone ranges
5719 * provided by the architecture for a given node by using the end of the
5720 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5721 * zones within a node are in order of monotonic increases memory addresses
5723 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5724 unsigned long zone_type
,
5725 unsigned long node_start_pfn
,
5726 unsigned long node_end_pfn
,
5727 unsigned long *zone_start_pfn
,
5728 unsigned long *zone_end_pfn
)
5730 /* Only adjust if ZONE_MOVABLE is on this node */
5731 if (zone_movable_pfn
[nid
]) {
5732 /* Size ZONE_MOVABLE */
5733 if (zone_type
== ZONE_MOVABLE
) {
5734 *zone_start_pfn
= zone_movable_pfn
[nid
];
5735 *zone_end_pfn
= min(node_end_pfn
,
5736 arch_zone_highest_possible_pfn
[movable_zone
]);
5738 /* Adjust for ZONE_MOVABLE starting within this range */
5739 } else if (!mirrored_kernelcore
&&
5740 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5741 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5742 *zone_end_pfn
= zone_movable_pfn
[nid
];
5744 /* Check if this whole range is within ZONE_MOVABLE */
5745 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5746 *zone_start_pfn
= *zone_end_pfn
;
5751 * Return the number of pages a zone spans in a node, including holes
5752 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5754 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5755 unsigned long zone_type
,
5756 unsigned long node_start_pfn
,
5757 unsigned long node_end_pfn
,
5758 unsigned long *zone_start_pfn
,
5759 unsigned long *zone_end_pfn
,
5760 unsigned long *ignored
)
5762 /* When hotadd a new node from cpu_up(), the node should be empty */
5763 if (!node_start_pfn
&& !node_end_pfn
)
5766 /* Get the start and end of the zone */
5767 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5768 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5769 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5770 node_start_pfn
, node_end_pfn
,
5771 zone_start_pfn
, zone_end_pfn
);
5773 /* Check that this node has pages within the zone's required range */
5774 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5777 /* Move the zone boundaries inside the node if necessary */
5778 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5779 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5781 /* Return the spanned pages */
5782 return *zone_end_pfn
- *zone_start_pfn
;
5786 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5787 * then all holes in the requested range will be accounted for.
5789 unsigned long __meminit
__absent_pages_in_range(int nid
,
5790 unsigned long range_start_pfn
,
5791 unsigned long range_end_pfn
)
5793 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5794 unsigned long start_pfn
, end_pfn
;
5797 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5798 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5799 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5800 nr_absent
-= end_pfn
- start_pfn
;
5806 * absent_pages_in_range - Return number of page frames in holes within a range
5807 * @start_pfn: The start PFN to start searching for holes
5808 * @end_pfn: The end PFN to stop searching for holes
5810 * It returns the number of pages frames in memory holes within a range.
5812 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5813 unsigned long end_pfn
)
5815 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5818 /* Return the number of page frames in holes in a zone on a node */
5819 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5820 unsigned long zone_type
,
5821 unsigned long node_start_pfn
,
5822 unsigned long node_end_pfn
,
5823 unsigned long *ignored
)
5825 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5826 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5827 unsigned long zone_start_pfn
, zone_end_pfn
;
5828 unsigned long nr_absent
;
5830 /* When hotadd a new node from cpu_up(), the node should be empty */
5831 if (!node_start_pfn
&& !node_end_pfn
)
5834 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5835 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5837 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5838 node_start_pfn
, node_end_pfn
,
5839 &zone_start_pfn
, &zone_end_pfn
);
5840 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5843 * ZONE_MOVABLE handling.
5844 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5847 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5848 unsigned long start_pfn
, end_pfn
;
5849 struct memblock_region
*r
;
5851 for_each_memblock(memory
, r
) {
5852 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5853 zone_start_pfn
, zone_end_pfn
);
5854 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5855 zone_start_pfn
, zone_end_pfn
);
5857 if (zone_type
== ZONE_MOVABLE
&&
5858 memblock_is_mirror(r
))
5859 nr_absent
+= end_pfn
- start_pfn
;
5861 if (zone_type
== ZONE_NORMAL
&&
5862 !memblock_is_mirror(r
))
5863 nr_absent
+= end_pfn
- start_pfn
;
5870 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5871 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5872 unsigned long zone_type
,
5873 unsigned long node_start_pfn
,
5874 unsigned long node_end_pfn
,
5875 unsigned long *zone_start_pfn
,
5876 unsigned long *zone_end_pfn
,
5877 unsigned long *zones_size
)
5881 *zone_start_pfn
= node_start_pfn
;
5882 for (zone
= 0; zone
< zone_type
; zone
++)
5883 *zone_start_pfn
+= zones_size
[zone
];
5885 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5887 return zones_size
[zone_type
];
5890 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5891 unsigned long zone_type
,
5892 unsigned long node_start_pfn
,
5893 unsigned long node_end_pfn
,
5894 unsigned long *zholes_size
)
5899 return zholes_size
[zone_type
];
5902 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5904 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5905 unsigned long node_start_pfn
,
5906 unsigned long node_end_pfn
,
5907 unsigned long *zones_size
,
5908 unsigned long *zholes_size
)
5910 unsigned long realtotalpages
= 0, totalpages
= 0;
5913 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5914 struct zone
*zone
= pgdat
->node_zones
+ i
;
5915 unsigned long zone_start_pfn
, zone_end_pfn
;
5916 unsigned long size
, real_size
;
5918 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5924 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5925 node_start_pfn
, node_end_pfn
,
5928 zone
->zone_start_pfn
= zone_start_pfn
;
5930 zone
->zone_start_pfn
= 0;
5931 zone
->spanned_pages
= size
;
5932 zone
->present_pages
= real_size
;
5935 realtotalpages
+= real_size
;
5938 pgdat
->node_spanned_pages
= totalpages
;
5939 pgdat
->node_present_pages
= realtotalpages
;
5940 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5944 #ifndef CONFIG_SPARSEMEM
5946 * Calculate the size of the zone->blockflags rounded to an unsigned long
5947 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5948 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5949 * round what is now in bits to nearest long in bits, then return it in
5952 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5954 unsigned long usemapsize
;
5956 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5957 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5958 usemapsize
= usemapsize
>> pageblock_order
;
5959 usemapsize
*= NR_PAGEBLOCK_BITS
;
5960 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5962 return usemapsize
/ 8;
5965 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5967 unsigned long zone_start_pfn
,
5968 unsigned long zonesize
)
5970 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5971 zone
->pageblock_flags
= NULL
;
5973 zone
->pageblock_flags
=
5974 memblock_virt_alloc_node_nopanic(usemapsize
,
5978 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5979 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5980 #endif /* CONFIG_SPARSEMEM */
5982 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5984 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5985 void __paginginit
set_pageblock_order(void)
5989 /* Check that pageblock_nr_pages has not already been setup */
5990 if (pageblock_order
)
5993 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5994 order
= HUGETLB_PAGE_ORDER
;
5996 order
= MAX_ORDER
- 1;
5999 * Assume the largest contiguous order of interest is a huge page.
6000 * This value may be variable depending on boot parameters on IA64 and
6003 pageblock_order
= order
;
6005 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6008 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6009 * is unused as pageblock_order is set at compile-time. See
6010 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6013 void __paginginit
set_pageblock_order(void)
6017 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6019 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6020 unsigned long present_pages
)
6022 unsigned long pages
= spanned_pages
;
6025 * Provide a more accurate estimation if there are holes within
6026 * the zone and SPARSEMEM is in use. If there are holes within the
6027 * zone, each populated memory region may cost us one or two extra
6028 * memmap pages due to alignment because memmap pages for each
6029 * populated regions may not be naturally aligned on page boundary.
6030 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6032 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6033 IS_ENABLED(CONFIG_SPARSEMEM
))
6034 pages
= present_pages
;
6036 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6040 * Set up the zone data structures:
6041 * - mark all pages reserved
6042 * - mark all memory queues empty
6043 * - clear the memory bitmaps
6045 * NOTE: pgdat should get zeroed by caller.
6047 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6050 int nid
= pgdat
->node_id
;
6052 pgdat_resize_init(pgdat
);
6053 #ifdef CONFIG_NUMA_BALANCING
6054 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6055 pgdat
->numabalancing_migrate_nr_pages
= 0;
6056 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6059 spin_lock_init(&pgdat
->split_queue_lock
);
6060 INIT_LIST_HEAD(&pgdat
->split_queue
);
6061 pgdat
->split_queue_len
= 0;
6063 init_waitqueue_head(&pgdat
->kswapd_wait
);
6064 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6065 #ifdef CONFIG_COMPACTION
6066 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6068 pgdat_page_ext_init(pgdat
);
6069 spin_lock_init(&pgdat
->lru_lock
);
6070 lruvec_init(node_lruvec(pgdat
));
6072 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6074 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6075 struct zone
*zone
= pgdat
->node_zones
+ j
;
6076 unsigned long size
, realsize
, freesize
, memmap_pages
;
6077 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6079 size
= zone
->spanned_pages
;
6080 realsize
= freesize
= zone
->present_pages
;
6083 * Adjust freesize so that it accounts for how much memory
6084 * is used by this zone for memmap. This affects the watermark
6085 * and per-cpu initialisations
6087 memmap_pages
= calc_memmap_size(size
, realsize
);
6088 if (!is_highmem_idx(j
)) {
6089 if (freesize
>= memmap_pages
) {
6090 freesize
-= memmap_pages
;
6093 " %s zone: %lu pages used for memmap\n",
6094 zone_names
[j
], memmap_pages
);
6096 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6097 zone_names
[j
], memmap_pages
, freesize
);
6100 /* Account for reserved pages */
6101 if (j
== 0 && freesize
> dma_reserve
) {
6102 freesize
-= dma_reserve
;
6103 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6104 zone_names
[0], dma_reserve
);
6107 if (!is_highmem_idx(j
))
6108 nr_kernel_pages
+= freesize
;
6109 /* Charge for highmem memmap if there are enough kernel pages */
6110 else if (nr_kernel_pages
> memmap_pages
* 2)
6111 nr_kernel_pages
-= memmap_pages
;
6112 nr_all_pages
+= freesize
;
6115 * Set an approximate value for lowmem here, it will be adjusted
6116 * when the bootmem allocator frees pages into the buddy system.
6117 * And all highmem pages will be managed by the buddy system.
6119 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6123 zone
->name
= zone_names
[j
];
6124 zone
->zone_pgdat
= pgdat
;
6125 spin_lock_init(&zone
->lock
);
6126 zone_seqlock_init(zone
);
6127 zone_pcp_init(zone
);
6132 set_pageblock_order();
6133 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6134 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6135 memmap_init(size
, nid
, j
, zone_start_pfn
);
6139 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6141 unsigned long __maybe_unused start
= 0;
6142 unsigned long __maybe_unused offset
= 0;
6144 /* Skip empty nodes */
6145 if (!pgdat
->node_spanned_pages
)
6148 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6149 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6150 offset
= pgdat
->node_start_pfn
- start
;
6151 /* ia64 gets its own node_mem_map, before this, without bootmem */
6152 if (!pgdat
->node_mem_map
) {
6153 unsigned long size
, end
;
6157 * The zone's endpoints aren't required to be MAX_ORDER
6158 * aligned but the node_mem_map endpoints must be in order
6159 * for the buddy allocator to function correctly.
6161 end
= pgdat_end_pfn(pgdat
);
6162 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6163 size
= (end
- start
) * sizeof(struct page
);
6164 map
= alloc_remap(pgdat
->node_id
, size
);
6166 map
= memblock_virt_alloc_node_nopanic(size
,
6168 pgdat
->node_mem_map
= map
+ offset
;
6170 #ifndef CONFIG_NEED_MULTIPLE_NODES
6172 * With no DISCONTIG, the global mem_map is just set as node 0's
6174 if (pgdat
== NODE_DATA(0)) {
6175 mem_map
= NODE_DATA(0)->node_mem_map
;
6176 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6177 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6179 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6182 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6185 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6186 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6188 pg_data_t
*pgdat
= NODE_DATA(nid
);
6189 unsigned long start_pfn
= 0;
6190 unsigned long end_pfn
= 0;
6192 /* pg_data_t should be reset to zero when it's allocated */
6193 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6195 pgdat
->node_id
= nid
;
6196 pgdat
->node_start_pfn
= node_start_pfn
;
6197 pgdat
->per_cpu_nodestats
= NULL
;
6198 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6199 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6200 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6201 (u64
)start_pfn
<< PAGE_SHIFT
,
6202 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6204 start_pfn
= node_start_pfn
;
6206 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6207 zones_size
, zholes_size
);
6209 alloc_node_mem_map(pgdat
);
6210 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6211 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6212 nid
, (unsigned long)pgdat
,
6213 (unsigned long)pgdat
->node_mem_map
);
6216 reset_deferred_meminit(pgdat
);
6217 free_area_init_core(pgdat
);
6220 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6222 #if MAX_NUMNODES > 1
6224 * Figure out the number of possible node ids.
6226 void __init
setup_nr_node_ids(void)
6228 unsigned int highest
;
6230 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6231 nr_node_ids
= highest
+ 1;
6236 * node_map_pfn_alignment - determine the maximum internode alignment
6238 * This function should be called after node map is populated and sorted.
6239 * It calculates the maximum power of two alignment which can distinguish
6242 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6243 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6244 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6245 * shifted, 1GiB is enough and this function will indicate so.
6247 * This is used to test whether pfn -> nid mapping of the chosen memory
6248 * model has fine enough granularity to avoid incorrect mapping for the
6249 * populated node map.
6251 * Returns the determined alignment in pfn's. 0 if there is no alignment
6252 * requirement (single node).
6254 unsigned long __init
node_map_pfn_alignment(void)
6256 unsigned long accl_mask
= 0, last_end
= 0;
6257 unsigned long start
, end
, mask
;
6261 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6262 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6269 * Start with a mask granular enough to pin-point to the
6270 * start pfn and tick off bits one-by-one until it becomes
6271 * too coarse to separate the current node from the last.
6273 mask
= ~((1 << __ffs(start
)) - 1);
6274 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6277 /* accumulate all internode masks */
6281 /* convert mask to number of pages */
6282 return ~accl_mask
+ 1;
6285 /* Find the lowest pfn for a node */
6286 static unsigned long __init
find_min_pfn_for_node(int nid
)
6288 unsigned long min_pfn
= ULONG_MAX
;
6289 unsigned long start_pfn
;
6292 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6293 min_pfn
= min(min_pfn
, start_pfn
);
6295 if (min_pfn
== ULONG_MAX
) {
6296 pr_warn("Could not find start_pfn for node %d\n", nid
);
6304 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6306 * It returns the minimum PFN based on information provided via
6307 * memblock_set_node().
6309 unsigned long __init
find_min_pfn_with_active_regions(void)
6311 return find_min_pfn_for_node(MAX_NUMNODES
);
6315 * early_calculate_totalpages()
6316 * Sum pages in active regions for movable zone.
6317 * Populate N_MEMORY for calculating usable_nodes.
6319 static unsigned long __init
early_calculate_totalpages(void)
6321 unsigned long totalpages
= 0;
6322 unsigned long start_pfn
, end_pfn
;
6325 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6326 unsigned long pages
= end_pfn
- start_pfn
;
6328 totalpages
+= pages
;
6330 node_set_state(nid
, N_MEMORY
);
6336 * Find the PFN the Movable zone begins in each node. Kernel memory
6337 * is spread evenly between nodes as long as the nodes have enough
6338 * memory. When they don't, some nodes will have more kernelcore than
6341 static void __init
find_zone_movable_pfns_for_nodes(void)
6344 unsigned long usable_startpfn
;
6345 unsigned long kernelcore_node
, kernelcore_remaining
;
6346 /* save the state before borrow the nodemask */
6347 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6348 unsigned long totalpages
= early_calculate_totalpages();
6349 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6350 struct memblock_region
*r
;
6352 /* Need to find movable_zone earlier when movable_node is specified. */
6353 find_usable_zone_for_movable();
6356 * If movable_node is specified, ignore kernelcore and movablecore
6359 if (movable_node_is_enabled()) {
6360 for_each_memblock(memory
, r
) {
6361 if (!memblock_is_hotpluggable(r
))
6366 usable_startpfn
= PFN_DOWN(r
->base
);
6367 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6368 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6376 * If kernelcore=mirror is specified, ignore movablecore option
6378 if (mirrored_kernelcore
) {
6379 bool mem_below_4gb_not_mirrored
= false;
6381 for_each_memblock(memory
, r
) {
6382 if (memblock_is_mirror(r
))
6387 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6389 if (usable_startpfn
< 0x100000) {
6390 mem_below_4gb_not_mirrored
= true;
6394 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6395 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6399 if (mem_below_4gb_not_mirrored
)
6400 pr_warn("This configuration results in unmirrored kernel memory.");
6406 * If movablecore=nn[KMG] was specified, calculate what size of
6407 * kernelcore that corresponds so that memory usable for
6408 * any allocation type is evenly spread. If both kernelcore
6409 * and movablecore are specified, then the value of kernelcore
6410 * will be used for required_kernelcore if it's greater than
6411 * what movablecore would have allowed.
6413 if (required_movablecore
) {
6414 unsigned long corepages
;
6417 * Round-up so that ZONE_MOVABLE is at least as large as what
6418 * was requested by the user
6420 required_movablecore
=
6421 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6422 required_movablecore
= min(totalpages
, required_movablecore
);
6423 corepages
= totalpages
- required_movablecore
;
6425 required_kernelcore
= max(required_kernelcore
, corepages
);
6429 * If kernelcore was not specified or kernelcore size is larger
6430 * than totalpages, there is no ZONE_MOVABLE.
6432 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6435 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6436 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6439 /* Spread kernelcore memory as evenly as possible throughout nodes */
6440 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6441 for_each_node_state(nid
, N_MEMORY
) {
6442 unsigned long start_pfn
, end_pfn
;
6445 * Recalculate kernelcore_node if the division per node
6446 * now exceeds what is necessary to satisfy the requested
6447 * amount of memory for the kernel
6449 if (required_kernelcore
< kernelcore_node
)
6450 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6453 * As the map is walked, we track how much memory is usable
6454 * by the kernel using kernelcore_remaining. When it is
6455 * 0, the rest of the node is usable by ZONE_MOVABLE
6457 kernelcore_remaining
= kernelcore_node
;
6459 /* Go through each range of PFNs within this node */
6460 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6461 unsigned long size_pages
;
6463 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6464 if (start_pfn
>= end_pfn
)
6467 /* Account for what is only usable for kernelcore */
6468 if (start_pfn
< usable_startpfn
) {
6469 unsigned long kernel_pages
;
6470 kernel_pages
= min(end_pfn
, usable_startpfn
)
6473 kernelcore_remaining
-= min(kernel_pages
,
6474 kernelcore_remaining
);
6475 required_kernelcore
-= min(kernel_pages
,
6476 required_kernelcore
);
6478 /* Continue if range is now fully accounted */
6479 if (end_pfn
<= usable_startpfn
) {
6482 * Push zone_movable_pfn to the end so
6483 * that if we have to rebalance
6484 * kernelcore across nodes, we will
6485 * not double account here
6487 zone_movable_pfn
[nid
] = end_pfn
;
6490 start_pfn
= usable_startpfn
;
6494 * The usable PFN range for ZONE_MOVABLE is from
6495 * start_pfn->end_pfn. Calculate size_pages as the
6496 * number of pages used as kernelcore
6498 size_pages
= end_pfn
- start_pfn
;
6499 if (size_pages
> kernelcore_remaining
)
6500 size_pages
= kernelcore_remaining
;
6501 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6504 * Some kernelcore has been met, update counts and
6505 * break if the kernelcore for this node has been
6508 required_kernelcore
-= min(required_kernelcore
,
6510 kernelcore_remaining
-= size_pages
;
6511 if (!kernelcore_remaining
)
6517 * If there is still required_kernelcore, we do another pass with one
6518 * less node in the count. This will push zone_movable_pfn[nid] further
6519 * along on the nodes that still have memory until kernelcore is
6523 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6527 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6528 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6529 zone_movable_pfn
[nid
] =
6530 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6533 /* restore the node_state */
6534 node_states
[N_MEMORY
] = saved_node_state
;
6537 /* Any regular or high memory on that node ? */
6538 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6540 enum zone_type zone_type
;
6542 if (N_MEMORY
== N_NORMAL_MEMORY
)
6545 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6546 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6547 if (populated_zone(zone
)) {
6548 node_set_state(nid
, N_HIGH_MEMORY
);
6549 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6550 zone_type
<= ZONE_NORMAL
)
6551 node_set_state(nid
, N_NORMAL_MEMORY
);
6558 * free_area_init_nodes - Initialise all pg_data_t and zone data
6559 * @max_zone_pfn: an array of max PFNs for each zone
6561 * This will call free_area_init_node() for each active node in the system.
6562 * Using the page ranges provided by memblock_set_node(), the size of each
6563 * zone in each node and their holes is calculated. If the maximum PFN
6564 * between two adjacent zones match, it is assumed that the zone is empty.
6565 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6566 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6567 * starts where the previous one ended. For example, ZONE_DMA32 starts
6568 * at arch_max_dma_pfn.
6570 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6572 unsigned long start_pfn
, end_pfn
;
6575 /* Record where the zone boundaries are */
6576 memset(arch_zone_lowest_possible_pfn
, 0,
6577 sizeof(arch_zone_lowest_possible_pfn
));
6578 memset(arch_zone_highest_possible_pfn
, 0,
6579 sizeof(arch_zone_highest_possible_pfn
));
6581 start_pfn
= find_min_pfn_with_active_regions();
6583 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6584 if (i
== ZONE_MOVABLE
)
6587 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6588 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6589 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6591 start_pfn
= end_pfn
;
6594 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6595 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6596 find_zone_movable_pfns_for_nodes();
6598 /* Print out the zone ranges */
6599 pr_info("Zone ranges:\n");
6600 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6601 if (i
== ZONE_MOVABLE
)
6603 pr_info(" %-8s ", zone_names
[i
]);
6604 if (arch_zone_lowest_possible_pfn
[i
] ==
6605 arch_zone_highest_possible_pfn
[i
])
6608 pr_cont("[mem %#018Lx-%#018Lx]\n",
6609 (u64
)arch_zone_lowest_possible_pfn
[i
]
6611 ((u64
)arch_zone_highest_possible_pfn
[i
]
6612 << PAGE_SHIFT
) - 1);
6615 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6616 pr_info("Movable zone start for each node\n");
6617 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6618 if (zone_movable_pfn
[i
])
6619 pr_info(" Node %d: %#018Lx\n", i
,
6620 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6623 /* Print out the early node map */
6624 pr_info("Early memory node ranges\n");
6625 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6626 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6627 (u64
)start_pfn
<< PAGE_SHIFT
,
6628 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6630 /* Initialise every node */
6631 mminit_verify_pageflags_layout();
6632 setup_nr_node_ids();
6633 for_each_online_node(nid
) {
6634 pg_data_t
*pgdat
= NODE_DATA(nid
);
6635 free_area_init_node(nid
, NULL
,
6636 find_min_pfn_for_node(nid
), NULL
);
6638 /* Any memory on that node */
6639 if (pgdat
->node_present_pages
)
6640 node_set_state(nid
, N_MEMORY
);
6641 check_for_memory(pgdat
, nid
);
6645 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6647 unsigned long long coremem
;
6651 coremem
= memparse(p
, &p
);
6652 *core
= coremem
>> PAGE_SHIFT
;
6654 /* Paranoid check that UL is enough for the coremem value */
6655 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6661 * kernelcore=size sets the amount of memory for use for allocations that
6662 * cannot be reclaimed or migrated.
6664 static int __init
cmdline_parse_kernelcore(char *p
)
6666 /* parse kernelcore=mirror */
6667 if (parse_option_str(p
, "mirror")) {
6668 mirrored_kernelcore
= true;
6672 return cmdline_parse_core(p
, &required_kernelcore
);
6676 * movablecore=size sets the amount of memory for use for allocations that
6677 * can be reclaimed or migrated.
6679 static int __init
cmdline_parse_movablecore(char *p
)
6681 return cmdline_parse_core(p
, &required_movablecore
);
6684 early_param("kernelcore", cmdline_parse_kernelcore
);
6685 early_param("movablecore", cmdline_parse_movablecore
);
6687 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6689 void adjust_managed_page_count(struct page
*page
, long count
)
6691 spin_lock(&managed_page_count_lock
);
6692 page_zone(page
)->managed_pages
+= count
;
6693 totalram_pages
+= count
;
6694 #ifdef CONFIG_HIGHMEM
6695 if (PageHighMem(page
))
6696 totalhigh_pages
+= count
;
6698 spin_unlock(&managed_page_count_lock
);
6700 EXPORT_SYMBOL(adjust_managed_page_count
);
6702 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6705 unsigned long pages
= 0;
6707 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6708 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6709 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6710 if ((unsigned int)poison
<= 0xFF)
6711 memset(pos
, poison
, PAGE_SIZE
);
6712 free_reserved_page(virt_to_page(pos
));
6716 pr_info("Freeing %s memory: %ldK\n",
6717 s
, pages
<< (PAGE_SHIFT
- 10));
6721 EXPORT_SYMBOL(free_reserved_area
);
6723 #ifdef CONFIG_HIGHMEM
6724 void free_highmem_page(struct page
*page
)
6726 __free_reserved_page(page
);
6728 page_zone(page
)->managed_pages
++;
6734 void __init
mem_init_print_info(const char *str
)
6736 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6737 unsigned long init_code_size
, init_data_size
;
6739 physpages
= get_num_physpages();
6740 codesize
= _etext
- _stext
;
6741 datasize
= _edata
- _sdata
;
6742 rosize
= __end_rodata
- __start_rodata
;
6743 bss_size
= __bss_stop
- __bss_start
;
6744 init_data_size
= __init_end
- __init_begin
;
6745 init_code_size
= _einittext
- _sinittext
;
6748 * Detect special cases and adjust section sizes accordingly:
6749 * 1) .init.* may be embedded into .data sections
6750 * 2) .init.text.* may be out of [__init_begin, __init_end],
6751 * please refer to arch/tile/kernel/vmlinux.lds.S.
6752 * 3) .rodata.* may be embedded into .text or .data sections.
6754 #define adj_init_size(start, end, size, pos, adj) \
6756 if (start <= pos && pos < end && size > adj) \
6760 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6761 _sinittext
, init_code_size
);
6762 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6763 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6764 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6765 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6767 #undef adj_init_size
6769 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6770 #ifdef CONFIG_HIGHMEM
6774 nr_free_pages() << (PAGE_SHIFT
- 10),
6775 physpages
<< (PAGE_SHIFT
- 10),
6776 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6777 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6778 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6779 totalcma_pages
<< (PAGE_SHIFT
- 10),
6780 #ifdef CONFIG_HIGHMEM
6781 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6783 str
? ", " : "", str
? str
: "");
6787 * set_dma_reserve - set the specified number of pages reserved in the first zone
6788 * @new_dma_reserve: The number of pages to mark reserved
6790 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6791 * In the DMA zone, a significant percentage may be consumed by kernel image
6792 * and other unfreeable allocations which can skew the watermarks badly. This
6793 * function may optionally be used to account for unfreeable pages in the
6794 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6795 * smaller per-cpu batchsize.
6797 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6799 dma_reserve
= new_dma_reserve
;
6802 void __init
free_area_init(unsigned long *zones_size
)
6804 free_area_init_node(0, zones_size
,
6805 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6808 static int page_alloc_cpu_dead(unsigned int cpu
)
6811 lru_add_drain_cpu(cpu
);
6815 * Spill the event counters of the dead processor
6816 * into the current processors event counters.
6817 * This artificially elevates the count of the current
6820 vm_events_fold_cpu(cpu
);
6823 * Zero the differential counters of the dead processor
6824 * so that the vm statistics are consistent.
6826 * This is only okay since the processor is dead and cannot
6827 * race with what we are doing.
6829 cpu_vm_stats_fold(cpu
);
6833 void __init
page_alloc_init(void)
6837 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6838 "mm/page_alloc:dead", NULL
,
6839 page_alloc_cpu_dead
);
6844 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6845 * or min_free_kbytes changes.
6847 static void calculate_totalreserve_pages(void)
6849 struct pglist_data
*pgdat
;
6850 unsigned long reserve_pages
= 0;
6851 enum zone_type i
, j
;
6853 for_each_online_pgdat(pgdat
) {
6855 pgdat
->totalreserve_pages
= 0;
6857 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6858 struct zone
*zone
= pgdat
->node_zones
+ i
;
6861 /* Find valid and maximum lowmem_reserve in the zone */
6862 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6863 if (zone
->lowmem_reserve
[j
] > max
)
6864 max
= zone
->lowmem_reserve
[j
];
6867 /* we treat the high watermark as reserved pages. */
6868 max
+= high_wmark_pages(zone
);
6870 if (max
> zone
->managed_pages
)
6871 max
= zone
->managed_pages
;
6873 pgdat
->totalreserve_pages
+= max
;
6875 reserve_pages
+= max
;
6878 totalreserve_pages
= reserve_pages
;
6882 * setup_per_zone_lowmem_reserve - called whenever
6883 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6884 * has a correct pages reserved value, so an adequate number of
6885 * pages are left in the zone after a successful __alloc_pages().
6887 static void setup_per_zone_lowmem_reserve(void)
6889 struct pglist_data
*pgdat
;
6890 enum zone_type j
, idx
;
6892 for_each_online_pgdat(pgdat
) {
6893 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6894 struct zone
*zone
= pgdat
->node_zones
+ j
;
6895 unsigned long managed_pages
= zone
->managed_pages
;
6897 zone
->lowmem_reserve
[j
] = 0;
6901 struct zone
*lower_zone
;
6905 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6906 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6908 lower_zone
= pgdat
->node_zones
+ idx
;
6909 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6910 sysctl_lowmem_reserve_ratio
[idx
];
6911 managed_pages
+= lower_zone
->managed_pages
;
6916 /* update totalreserve_pages */
6917 calculate_totalreserve_pages();
6920 static void __setup_per_zone_wmarks(void)
6922 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6923 unsigned long lowmem_pages
= 0;
6925 unsigned long flags
;
6927 /* Calculate total number of !ZONE_HIGHMEM pages */
6928 for_each_zone(zone
) {
6929 if (!is_highmem(zone
))
6930 lowmem_pages
+= zone
->managed_pages
;
6933 for_each_zone(zone
) {
6936 spin_lock_irqsave(&zone
->lock
, flags
);
6937 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6938 do_div(tmp
, lowmem_pages
);
6939 if (is_highmem(zone
)) {
6941 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6942 * need highmem pages, so cap pages_min to a small
6945 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6946 * deltas control asynch page reclaim, and so should
6947 * not be capped for highmem.
6949 unsigned long min_pages
;
6951 min_pages
= zone
->managed_pages
/ 1024;
6952 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6953 zone
->watermark
[WMARK_MIN
] = min_pages
;
6956 * If it's a lowmem zone, reserve a number of pages
6957 * proportionate to the zone's size.
6959 zone
->watermark
[WMARK_MIN
] = tmp
;
6963 * Set the kswapd watermarks distance according to the
6964 * scale factor in proportion to available memory, but
6965 * ensure a minimum size on small systems.
6967 tmp
= max_t(u64
, tmp
>> 2,
6968 mult_frac(zone
->managed_pages
,
6969 watermark_scale_factor
, 10000));
6971 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6972 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6974 spin_unlock_irqrestore(&zone
->lock
, flags
);
6977 /* update totalreserve_pages */
6978 calculate_totalreserve_pages();
6982 * setup_per_zone_wmarks - called when min_free_kbytes changes
6983 * or when memory is hot-{added|removed}
6985 * Ensures that the watermark[min,low,high] values for each zone are set
6986 * correctly with respect to min_free_kbytes.
6988 void setup_per_zone_wmarks(void)
6990 static DEFINE_SPINLOCK(lock
);
6993 __setup_per_zone_wmarks();
6998 * Initialise min_free_kbytes.
7000 * For small machines we want it small (128k min). For large machines
7001 * we want it large (64MB max). But it is not linear, because network
7002 * bandwidth does not increase linearly with machine size. We use
7004 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7005 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7021 int __meminit
init_per_zone_wmark_min(void)
7023 unsigned long lowmem_kbytes
;
7024 int new_min_free_kbytes
;
7026 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7027 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7029 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7030 min_free_kbytes
= new_min_free_kbytes
;
7031 if (min_free_kbytes
< 128)
7032 min_free_kbytes
= 128;
7033 if (min_free_kbytes
> 65536)
7034 min_free_kbytes
= 65536;
7036 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7037 new_min_free_kbytes
, user_min_free_kbytes
);
7039 setup_per_zone_wmarks();
7040 refresh_zone_stat_thresholds();
7041 setup_per_zone_lowmem_reserve();
7044 setup_min_unmapped_ratio();
7045 setup_min_slab_ratio();
7050 core_initcall(init_per_zone_wmark_min
)
7053 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7054 * that we can call two helper functions whenever min_free_kbytes
7057 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7058 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7062 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7067 user_min_free_kbytes
= min_free_kbytes
;
7068 setup_per_zone_wmarks();
7073 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7074 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7078 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7083 setup_per_zone_wmarks();
7089 static void setup_min_unmapped_ratio(void)
7094 for_each_online_pgdat(pgdat
)
7095 pgdat
->min_unmapped_pages
= 0;
7098 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7099 sysctl_min_unmapped_ratio
) / 100;
7103 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7104 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7108 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7112 setup_min_unmapped_ratio();
7117 static void setup_min_slab_ratio(void)
7122 for_each_online_pgdat(pgdat
)
7123 pgdat
->min_slab_pages
= 0;
7126 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7127 sysctl_min_slab_ratio
) / 100;
7130 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7131 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7135 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7139 setup_min_slab_ratio();
7146 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7147 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7148 * whenever sysctl_lowmem_reserve_ratio changes.
7150 * The reserve ratio obviously has absolutely no relation with the
7151 * minimum watermarks. The lowmem reserve ratio can only make sense
7152 * if in function of the boot time zone sizes.
7154 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7155 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7157 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7158 setup_per_zone_lowmem_reserve();
7163 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7164 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7165 * pagelist can have before it gets flushed back to buddy allocator.
7167 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7168 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7171 int old_percpu_pagelist_fraction
;
7174 mutex_lock(&pcp_batch_high_lock
);
7175 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7177 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7178 if (!write
|| ret
< 0)
7181 /* Sanity checking to avoid pcp imbalance */
7182 if (percpu_pagelist_fraction
&&
7183 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7184 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7190 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7193 for_each_populated_zone(zone
) {
7196 for_each_possible_cpu(cpu
)
7197 pageset_set_high_and_batch(zone
,
7198 per_cpu_ptr(zone
->pageset
, cpu
));
7201 mutex_unlock(&pcp_batch_high_lock
);
7206 int hashdist
= HASHDIST_DEFAULT
;
7208 static int __init
set_hashdist(char *str
)
7212 hashdist
= simple_strtoul(str
, &str
, 0);
7215 __setup("hashdist=", set_hashdist
);
7218 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7220 * Returns the number of pages that arch has reserved but
7221 * is not known to alloc_large_system_hash().
7223 static unsigned long __init
arch_reserved_kernel_pages(void)
7230 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7231 * machines. As memory size is increased the scale is also increased but at
7232 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7233 * quadruples the scale is increased by one, which means the size of hash table
7234 * only doubles, instead of quadrupling as well.
7235 * Because 32-bit systems cannot have large physical memory, where this scaling
7236 * makes sense, it is disabled on such platforms.
7238 #if __BITS_PER_LONG > 32
7239 #define ADAPT_SCALE_BASE (64ul << 30)
7240 #define ADAPT_SCALE_SHIFT 2
7241 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7245 * allocate a large system hash table from bootmem
7246 * - it is assumed that the hash table must contain an exact power-of-2
7247 * quantity of entries
7248 * - limit is the number of hash buckets, not the total allocation size
7250 void *__init
alloc_large_system_hash(const char *tablename
,
7251 unsigned long bucketsize
,
7252 unsigned long numentries
,
7255 unsigned int *_hash_shift
,
7256 unsigned int *_hash_mask
,
7257 unsigned long low_limit
,
7258 unsigned long high_limit
)
7260 unsigned long long max
= high_limit
;
7261 unsigned long log2qty
, size
;
7265 /* allow the kernel cmdline to have a say */
7267 /* round applicable memory size up to nearest megabyte */
7268 numentries
= nr_kernel_pages
;
7269 numentries
-= arch_reserved_kernel_pages();
7271 /* It isn't necessary when PAGE_SIZE >= 1MB */
7272 if (PAGE_SHIFT
< 20)
7273 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7275 #if __BITS_PER_LONG > 32
7277 unsigned long adapt
;
7279 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7280 adapt
<<= ADAPT_SCALE_SHIFT
)
7285 /* limit to 1 bucket per 2^scale bytes of low memory */
7286 if (scale
> PAGE_SHIFT
)
7287 numentries
>>= (scale
- PAGE_SHIFT
);
7289 numentries
<<= (PAGE_SHIFT
- scale
);
7291 /* Make sure we've got at least a 0-order allocation.. */
7292 if (unlikely(flags
& HASH_SMALL
)) {
7293 /* Makes no sense without HASH_EARLY */
7294 WARN_ON(!(flags
& HASH_EARLY
));
7295 if (!(numentries
>> *_hash_shift
)) {
7296 numentries
= 1UL << *_hash_shift
;
7297 BUG_ON(!numentries
);
7299 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7300 numentries
= PAGE_SIZE
/ bucketsize
;
7302 numentries
= roundup_pow_of_two(numentries
);
7304 /* limit allocation size to 1/16 total memory by default */
7306 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7307 do_div(max
, bucketsize
);
7309 max
= min(max
, 0x80000000ULL
);
7311 if (numentries
< low_limit
)
7312 numentries
= low_limit
;
7313 if (numentries
> max
)
7316 log2qty
= ilog2(numentries
);
7319 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7320 * currently not used when HASH_EARLY is specified.
7322 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7324 size
= bucketsize
<< log2qty
;
7325 if (flags
& HASH_EARLY
)
7326 table
= memblock_virt_alloc_nopanic(size
, 0);
7328 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7331 * If bucketsize is not a power-of-two, we may free
7332 * some pages at the end of hash table which
7333 * alloc_pages_exact() automatically does
7335 if (get_order(size
) < MAX_ORDER
) {
7336 table
= alloc_pages_exact(size
, gfp_flags
);
7337 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7340 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7343 panic("Failed to allocate %s hash table\n", tablename
);
7345 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7346 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7349 *_hash_shift
= log2qty
;
7351 *_hash_mask
= (1 << log2qty
) - 1;
7357 * This function checks whether pageblock includes unmovable pages or not.
7358 * If @count is not zero, it is okay to include less @count unmovable pages
7360 * PageLRU check without isolation or lru_lock could race so that
7361 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7362 * check without lock_page also may miss some movable non-lru pages at
7363 * race condition. So you can't expect this function should be exact.
7365 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7366 bool skip_hwpoisoned_pages
)
7368 unsigned long pfn
, iter
, found
;
7372 * For avoiding noise data, lru_add_drain_all() should be called
7373 * If ZONE_MOVABLE, the zone never contains unmovable pages
7375 if (zone_idx(zone
) == ZONE_MOVABLE
)
7377 mt
= get_pageblock_migratetype(page
);
7378 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7381 pfn
= page_to_pfn(page
);
7382 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7383 unsigned long check
= pfn
+ iter
;
7385 if (!pfn_valid_within(check
))
7388 page
= pfn_to_page(check
);
7391 * Hugepages are not in LRU lists, but they're movable.
7392 * We need not scan over tail pages bacause we don't
7393 * handle each tail page individually in migration.
7395 if (PageHuge(page
)) {
7396 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7401 * We can't use page_count without pin a page
7402 * because another CPU can free compound page.
7403 * This check already skips compound tails of THP
7404 * because their page->_refcount is zero at all time.
7406 if (!page_ref_count(page
)) {
7407 if (PageBuddy(page
))
7408 iter
+= (1 << page_order(page
)) - 1;
7413 * The HWPoisoned page may be not in buddy system, and
7414 * page_count() is not 0.
7416 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7419 if (__PageMovable(page
))
7425 * If there are RECLAIMABLE pages, we need to check
7426 * it. But now, memory offline itself doesn't call
7427 * shrink_node_slabs() and it still to be fixed.
7430 * If the page is not RAM, page_count()should be 0.
7431 * we don't need more check. This is an _used_ not-movable page.
7433 * The problematic thing here is PG_reserved pages. PG_reserved
7434 * is set to both of a memory hole page and a _used_ kernel
7443 bool is_pageblock_removable_nolock(struct page
*page
)
7449 * We have to be careful here because we are iterating over memory
7450 * sections which are not zone aware so we might end up outside of
7451 * the zone but still within the section.
7452 * We have to take care about the node as well. If the node is offline
7453 * its NODE_DATA will be NULL - see page_zone.
7455 if (!node_online(page_to_nid(page
)))
7458 zone
= page_zone(page
);
7459 pfn
= page_to_pfn(page
);
7460 if (!zone_spans_pfn(zone
, pfn
))
7463 return !has_unmovable_pages(zone
, page
, 0, true);
7466 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7468 static unsigned long pfn_max_align_down(unsigned long pfn
)
7470 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7471 pageblock_nr_pages
) - 1);
7474 static unsigned long pfn_max_align_up(unsigned long pfn
)
7476 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7477 pageblock_nr_pages
));
7480 /* [start, end) must belong to a single zone. */
7481 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7482 unsigned long start
, unsigned long end
)
7484 /* This function is based on compact_zone() from compaction.c. */
7485 unsigned long nr_reclaimed
;
7486 unsigned long pfn
= start
;
7487 unsigned int tries
= 0;
7492 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7493 if (fatal_signal_pending(current
)) {
7498 if (list_empty(&cc
->migratepages
)) {
7499 cc
->nr_migratepages
= 0;
7500 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7506 } else if (++tries
== 5) {
7507 ret
= ret
< 0 ? ret
: -EBUSY
;
7511 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7513 cc
->nr_migratepages
-= nr_reclaimed
;
7515 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7516 NULL
, 0, cc
->mode
, MR_CMA
);
7519 putback_movable_pages(&cc
->migratepages
);
7526 * alloc_contig_range() -- tries to allocate given range of pages
7527 * @start: start PFN to allocate
7528 * @end: one-past-the-last PFN to allocate
7529 * @migratetype: migratetype of the underlaying pageblocks (either
7530 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7531 * in range must have the same migratetype and it must
7532 * be either of the two.
7533 * @gfp_mask: GFP mask to use during compaction
7535 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7536 * aligned, however it's the caller's responsibility to guarantee that
7537 * we are the only thread that changes migrate type of pageblocks the
7540 * The PFN range must belong to a single zone.
7542 * Returns zero on success or negative error code. On success all
7543 * pages which PFN is in [start, end) are allocated for the caller and
7544 * need to be freed with free_contig_range().
7546 int alloc_contig_range(unsigned long start
, unsigned long end
,
7547 unsigned migratetype
, gfp_t gfp_mask
)
7549 unsigned long outer_start
, outer_end
;
7553 struct compact_control cc
= {
7554 .nr_migratepages
= 0,
7556 .zone
= page_zone(pfn_to_page(start
)),
7557 .mode
= MIGRATE_SYNC
,
7558 .ignore_skip_hint
= true,
7559 .gfp_mask
= current_gfp_context(gfp_mask
),
7561 INIT_LIST_HEAD(&cc
.migratepages
);
7564 * What we do here is we mark all pageblocks in range as
7565 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7566 * have different sizes, and due to the way page allocator
7567 * work, we align the range to biggest of the two pages so
7568 * that page allocator won't try to merge buddies from
7569 * different pageblocks and change MIGRATE_ISOLATE to some
7570 * other migration type.
7572 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7573 * migrate the pages from an unaligned range (ie. pages that
7574 * we are interested in). This will put all the pages in
7575 * range back to page allocator as MIGRATE_ISOLATE.
7577 * When this is done, we take the pages in range from page
7578 * allocator removing them from the buddy system. This way
7579 * page allocator will never consider using them.
7581 * This lets us mark the pageblocks back as
7582 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7583 * aligned range but not in the unaligned, original range are
7584 * put back to page allocator so that buddy can use them.
7587 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7588 pfn_max_align_up(end
), migratetype
,
7594 * In case of -EBUSY, we'd like to know which page causes problem.
7595 * So, just fall through. We will check it in test_pages_isolated().
7597 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7598 if (ret
&& ret
!= -EBUSY
)
7602 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7603 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7604 * more, all pages in [start, end) are free in page allocator.
7605 * What we are going to do is to allocate all pages from
7606 * [start, end) (that is remove them from page allocator).
7608 * The only problem is that pages at the beginning and at the
7609 * end of interesting range may be not aligned with pages that
7610 * page allocator holds, ie. they can be part of higher order
7611 * pages. Because of this, we reserve the bigger range and
7612 * once this is done free the pages we are not interested in.
7614 * We don't have to hold zone->lock here because the pages are
7615 * isolated thus they won't get removed from buddy.
7618 lru_add_drain_all();
7619 drain_all_pages(cc
.zone
);
7622 outer_start
= start
;
7623 while (!PageBuddy(pfn_to_page(outer_start
))) {
7624 if (++order
>= MAX_ORDER
) {
7625 outer_start
= start
;
7628 outer_start
&= ~0UL << order
;
7631 if (outer_start
!= start
) {
7632 order
= page_order(pfn_to_page(outer_start
));
7635 * outer_start page could be small order buddy page and
7636 * it doesn't include start page. Adjust outer_start
7637 * in this case to report failed page properly
7638 * on tracepoint in test_pages_isolated()
7640 if (outer_start
+ (1UL << order
) <= start
)
7641 outer_start
= start
;
7644 /* Make sure the range is really isolated. */
7645 if (test_pages_isolated(outer_start
, end
, false)) {
7646 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7647 __func__
, outer_start
, end
);
7652 /* Grab isolated pages from freelists. */
7653 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7659 /* Free head and tail (if any) */
7660 if (start
!= outer_start
)
7661 free_contig_range(outer_start
, start
- outer_start
);
7662 if (end
!= outer_end
)
7663 free_contig_range(end
, outer_end
- end
);
7666 undo_isolate_page_range(pfn_max_align_down(start
),
7667 pfn_max_align_up(end
), migratetype
);
7671 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7673 unsigned int count
= 0;
7675 for (; nr_pages
--; pfn
++) {
7676 struct page
*page
= pfn_to_page(pfn
);
7678 count
+= page_count(page
) != 1;
7681 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7685 #ifdef CONFIG_MEMORY_HOTPLUG
7687 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7688 * page high values need to be recalulated.
7690 void __meminit
zone_pcp_update(struct zone
*zone
)
7693 mutex_lock(&pcp_batch_high_lock
);
7694 for_each_possible_cpu(cpu
)
7695 pageset_set_high_and_batch(zone
,
7696 per_cpu_ptr(zone
->pageset
, cpu
));
7697 mutex_unlock(&pcp_batch_high_lock
);
7701 void zone_pcp_reset(struct zone
*zone
)
7703 unsigned long flags
;
7705 struct per_cpu_pageset
*pset
;
7707 /* avoid races with drain_pages() */
7708 local_irq_save(flags
);
7709 if (zone
->pageset
!= &boot_pageset
) {
7710 for_each_online_cpu(cpu
) {
7711 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7712 drain_zonestat(zone
, pset
);
7714 free_percpu(zone
->pageset
);
7715 zone
->pageset
= &boot_pageset
;
7717 local_irq_restore(flags
);
7720 #ifdef CONFIG_MEMORY_HOTREMOVE
7722 * All pages in the range must be in a single zone and isolated
7723 * before calling this.
7726 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7730 unsigned int order
, i
;
7732 unsigned long flags
;
7733 /* find the first valid pfn */
7734 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7739 offline_mem_sections(pfn
, end_pfn
);
7740 zone
= page_zone(pfn_to_page(pfn
));
7741 spin_lock_irqsave(&zone
->lock
, flags
);
7743 while (pfn
< end_pfn
) {
7744 if (!pfn_valid(pfn
)) {
7748 page
= pfn_to_page(pfn
);
7750 * The HWPoisoned page may be not in buddy system, and
7751 * page_count() is not 0.
7753 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7755 SetPageReserved(page
);
7759 BUG_ON(page_count(page
));
7760 BUG_ON(!PageBuddy(page
));
7761 order
= page_order(page
);
7762 #ifdef CONFIG_DEBUG_VM
7763 pr_info("remove from free list %lx %d %lx\n",
7764 pfn
, 1 << order
, end_pfn
);
7766 list_del(&page
->lru
);
7767 rmv_page_order(page
);
7768 zone
->free_area
[order
].nr_free
--;
7769 for (i
= 0; i
< (1 << order
); i
++)
7770 SetPageReserved((page
+i
));
7771 pfn
+= (1 << order
);
7773 spin_unlock_irqrestore(&zone
->lock
, flags
);
7777 bool is_free_buddy_page(struct page
*page
)
7779 struct zone
*zone
= page_zone(page
);
7780 unsigned long pfn
= page_to_pfn(page
);
7781 unsigned long flags
;
7784 spin_lock_irqsave(&zone
->lock
, flags
);
7785 for (order
= 0; order
< MAX_ORDER
; order
++) {
7786 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7788 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7791 spin_unlock_irqrestore(&zone
->lock
, flags
);
7793 return order
< MAX_ORDER
;