2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
42 #include <asm/pgtable.h>
44 #include <asm/processor.h>
47 #include <asm/machdep.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
53 #include <asm/debug.h>
55 #include <asm/firmware.h>
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct
*tsk
)
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
79 if (tsk
== current
&& tsk
->thread
.regs
&&
80 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
81 !test_thread_flag(TIF_RESTORE_TM
)) {
82 tsk
->thread
.ckpt_regs
.msr
= tsk
->thread
.regs
->msr
;
83 set_thread_flag(TIF_RESTORE_TM
);
87 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
90 bool strict_msr_control
;
91 EXPORT_SYMBOL(strict_msr_control
);
93 static int __init
enable_strict_msr_control(char *str
)
95 strict_msr_control
= true;
96 pr_info("Enabling strict facility control\n");
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
102 void msr_check_and_set(unsigned long bits
)
104 unsigned long oldmsr
= mfmsr();
105 unsigned long newmsr
;
107 newmsr
= oldmsr
| bits
;
110 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
114 if (oldmsr
!= newmsr
)
118 void __msr_check_and_clear(unsigned long bits
)
120 unsigned long oldmsr
= mfmsr();
121 unsigned long newmsr
;
123 newmsr
= oldmsr
& ~bits
;
126 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
130 if (oldmsr
!= newmsr
)
133 EXPORT_SYMBOL(__msr_check_and_clear
);
135 #ifdef CONFIG_PPC_FPU
136 void __giveup_fpu(struct task_struct
*tsk
)
139 tsk
->thread
.regs
->msr
&= ~MSR_FP
;
141 if (cpu_has_feature(CPU_FTR_VSX
))
142 tsk
->thread
.regs
->msr
&= ~MSR_VSX
;
146 void giveup_fpu(struct task_struct
*tsk
)
148 check_if_tm_restore_required(tsk
);
150 msr_check_and_set(MSR_FP
);
152 msr_check_and_clear(MSR_FP
);
154 EXPORT_SYMBOL(giveup_fpu
);
157 * Make sure the floating-point register state in the
158 * the thread_struct is up to date for task tsk.
160 void flush_fp_to_thread(struct task_struct
*tsk
)
162 if (tsk
->thread
.regs
) {
164 * We need to disable preemption here because if we didn't,
165 * another process could get scheduled after the regs->msr
166 * test but before we have finished saving the FP registers
167 * to the thread_struct. That process could take over the
168 * FPU, and then when we get scheduled again we would store
169 * bogus values for the remaining FP registers.
172 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
174 * This should only ever be called for current or
175 * for a stopped child process. Since we save away
176 * the FP register state on context switch,
177 * there is something wrong if a stopped child appears
178 * to still have its FP state in the CPU registers.
180 BUG_ON(tsk
!= current
);
186 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
188 void enable_kernel_fp(void)
190 WARN_ON(preemptible());
192 msr_check_and_set(MSR_FP
);
194 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
195 check_if_tm_restore_required(current
);
196 __giveup_fpu(current
);
199 EXPORT_SYMBOL(enable_kernel_fp
);
201 static int restore_fp(struct task_struct
*tsk
) {
202 if (tsk
->thread
.load_fp
) {
203 load_fp_state(¤t
->thread
.fp_state
);
204 current
->thread
.load_fp
++;
210 static int restore_fp(struct task_struct
*tsk
) { return 0; }
211 #endif /* CONFIG_PPC_FPU */
213 #ifdef CONFIG_ALTIVEC
214 #define loadvec(thr) ((thr).load_vec)
216 static void __giveup_altivec(struct task_struct
*tsk
)
219 tsk
->thread
.regs
->msr
&= ~MSR_VEC
;
221 if (cpu_has_feature(CPU_FTR_VSX
))
222 tsk
->thread
.regs
->msr
&= ~MSR_VSX
;
226 void giveup_altivec(struct task_struct
*tsk
)
228 check_if_tm_restore_required(tsk
);
230 msr_check_and_set(MSR_VEC
);
231 __giveup_altivec(tsk
);
232 msr_check_and_clear(MSR_VEC
);
234 EXPORT_SYMBOL(giveup_altivec
);
236 void enable_kernel_altivec(void)
238 WARN_ON(preemptible());
240 msr_check_and_set(MSR_VEC
);
242 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
243 check_if_tm_restore_required(current
);
244 __giveup_altivec(current
);
247 EXPORT_SYMBOL(enable_kernel_altivec
);
250 * Make sure the VMX/Altivec register state in the
251 * the thread_struct is up to date for task tsk.
253 void flush_altivec_to_thread(struct task_struct
*tsk
)
255 if (tsk
->thread
.regs
) {
257 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
258 BUG_ON(tsk
!= current
);
264 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
266 static int restore_altivec(struct task_struct
*tsk
)
268 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && tsk
->thread
.load_vec
) {
269 load_vr_state(&tsk
->thread
.vr_state
);
270 tsk
->thread
.used_vr
= 1;
271 tsk
->thread
.load_vec
++;
278 #define loadvec(thr) 0
279 static inline int restore_altivec(struct task_struct
*tsk
) { return 0; }
280 #endif /* CONFIG_ALTIVEC */
283 static void __giveup_vsx(struct task_struct
*tsk
)
285 if (tsk
->thread
.regs
->msr
& MSR_FP
)
287 if (tsk
->thread
.regs
->msr
& MSR_VEC
)
288 __giveup_altivec(tsk
);
289 tsk
->thread
.regs
->msr
&= ~MSR_VSX
;
292 static void giveup_vsx(struct task_struct
*tsk
)
294 check_if_tm_restore_required(tsk
);
296 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
298 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
301 static void save_vsx(struct task_struct
*tsk
)
303 if (tsk
->thread
.regs
->msr
& MSR_FP
)
305 if (tsk
->thread
.regs
->msr
& MSR_VEC
)
309 void enable_kernel_vsx(void)
311 WARN_ON(preemptible());
313 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
315 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
)) {
316 check_if_tm_restore_required(current
);
317 if (current
->thread
.regs
->msr
& MSR_FP
)
318 __giveup_fpu(current
);
319 if (current
->thread
.regs
->msr
& MSR_VEC
)
320 __giveup_altivec(current
);
321 __giveup_vsx(current
);
324 EXPORT_SYMBOL(enable_kernel_vsx
);
326 void flush_vsx_to_thread(struct task_struct
*tsk
)
328 if (tsk
->thread
.regs
) {
330 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
331 BUG_ON(tsk
!= current
);
337 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
339 static int restore_vsx(struct task_struct
*tsk
)
341 if (cpu_has_feature(CPU_FTR_VSX
)) {
342 tsk
->thread
.used_vsr
= 1;
349 static inline int restore_vsx(struct task_struct
*tsk
) { return 0; }
350 static inline void save_vsx(struct task_struct
*tsk
) { }
351 #endif /* CONFIG_VSX */
354 void giveup_spe(struct task_struct
*tsk
)
356 check_if_tm_restore_required(tsk
);
358 msr_check_and_set(MSR_SPE
);
360 msr_check_and_clear(MSR_SPE
);
362 EXPORT_SYMBOL(giveup_spe
);
364 void enable_kernel_spe(void)
366 WARN_ON(preemptible());
368 msr_check_and_set(MSR_SPE
);
370 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
371 check_if_tm_restore_required(current
);
372 __giveup_spe(current
);
375 EXPORT_SYMBOL(enable_kernel_spe
);
377 void flush_spe_to_thread(struct task_struct
*tsk
)
379 if (tsk
->thread
.regs
) {
381 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
382 BUG_ON(tsk
!= current
);
383 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
389 #endif /* CONFIG_SPE */
391 static unsigned long msr_all_available
;
393 static int __init
init_msr_all_available(void)
395 #ifdef CONFIG_PPC_FPU
396 msr_all_available
|= MSR_FP
;
398 #ifdef CONFIG_ALTIVEC
399 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
400 msr_all_available
|= MSR_VEC
;
403 if (cpu_has_feature(CPU_FTR_VSX
))
404 msr_all_available
|= MSR_VSX
;
407 if (cpu_has_feature(CPU_FTR_SPE
))
408 msr_all_available
|= MSR_SPE
;
413 early_initcall(init_msr_all_available
);
415 void giveup_all(struct task_struct
*tsk
)
417 unsigned long usermsr
;
419 if (!tsk
->thread
.regs
)
422 usermsr
= tsk
->thread
.regs
->msr
;
424 if ((usermsr
& msr_all_available
) == 0)
427 msr_check_and_set(msr_all_available
);
429 #ifdef CONFIG_PPC_FPU
430 if (usermsr
& MSR_FP
)
433 #ifdef CONFIG_ALTIVEC
434 if (usermsr
& MSR_VEC
)
435 __giveup_altivec(tsk
);
438 if (usermsr
& MSR_VSX
)
442 if (usermsr
& MSR_SPE
)
446 msr_check_and_clear(msr_all_available
);
448 EXPORT_SYMBOL(giveup_all
);
450 void restore_math(struct pt_regs
*regs
)
454 if (!current
->thread
.load_fp
&& !loadvec(current
->thread
))
458 msr_check_and_set(msr_all_available
);
461 * Only reload if the bit is not set in the user MSR, the bit BEING set
462 * indicates that the registers are hot
464 if ((!(msr
& MSR_FP
)) && restore_fp(current
))
465 msr
|= MSR_FP
| current
->thread
.fpexc_mode
;
467 if ((!(msr
& MSR_VEC
)) && restore_altivec(current
))
470 if ((msr
& (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
) &&
471 restore_vsx(current
)) {
475 msr_check_and_clear(msr_all_available
);
480 void save_all(struct task_struct
*tsk
)
482 unsigned long usermsr
;
484 if (!tsk
->thread
.regs
)
487 usermsr
= tsk
->thread
.regs
->msr
;
489 if ((usermsr
& msr_all_available
) == 0)
492 msr_check_and_set(msr_all_available
);
495 * Saving the way the register space is in hardware, save_vsx boils
496 * down to a save_fpu() and save_altivec()
498 if (usermsr
& MSR_VSX
) {
501 if (usermsr
& MSR_FP
)
504 if (usermsr
& MSR_VEC
)
508 if (usermsr
& MSR_SPE
)
511 msr_check_and_clear(msr_all_available
);
514 void flush_all_to_thread(struct task_struct
*tsk
)
516 if (tsk
->thread
.regs
) {
518 BUG_ON(tsk
!= current
);
522 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
523 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
529 EXPORT_SYMBOL(flush_all_to_thread
);
531 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
532 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
533 unsigned long error_code
, int signal_code
, int breakpt
)
537 current
->thread
.trap_nr
= signal_code
;
538 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
539 11, SIGSEGV
) == NOTIFY_STOP
)
542 /* Deliver the signal to userspace */
543 info
.si_signo
= SIGTRAP
;
544 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
545 info
.si_code
= signal_code
;
546 info
.si_addr
= (void __user
*)address
;
547 force_sig_info(SIGTRAP
, &info
, current
);
549 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
550 void do_break (struct pt_regs
*regs
, unsigned long address
,
551 unsigned long error_code
)
555 current
->thread
.trap_nr
= TRAP_HWBKPT
;
556 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
557 11, SIGSEGV
) == NOTIFY_STOP
)
560 if (debugger_break_match(regs
))
563 /* Clear the breakpoint */
564 hw_breakpoint_disable();
566 /* Deliver the signal to userspace */
567 info
.si_signo
= SIGTRAP
;
569 info
.si_code
= TRAP_HWBKPT
;
570 info
.si_addr
= (void __user
*)address
;
571 force_sig_info(SIGTRAP
, &info
, current
);
573 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
575 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
577 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
579 * Set the debug registers back to their default "safe" values.
581 static void set_debug_reg_defaults(struct thread_struct
*thread
)
583 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
584 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
585 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
587 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
588 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
589 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
591 thread
->debug
.dbcr0
= 0;
594 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
596 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
597 DBCR1_IAC3US
| DBCR1_IAC4US
;
599 * Force Data Address Compare User/Supervisor bits to be User-only
600 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
602 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
604 thread
->debug
.dbcr1
= 0;
608 static void prime_debug_regs(struct debug_reg
*debug
)
611 * We could have inherited MSR_DE from userspace, since
612 * it doesn't get cleared on exception entry. Make sure
613 * MSR_DE is clear before we enable any debug events.
615 mtmsr(mfmsr() & ~MSR_DE
);
617 mtspr(SPRN_IAC1
, debug
->iac1
);
618 mtspr(SPRN_IAC2
, debug
->iac2
);
619 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
620 mtspr(SPRN_IAC3
, debug
->iac3
);
621 mtspr(SPRN_IAC4
, debug
->iac4
);
623 mtspr(SPRN_DAC1
, debug
->dac1
);
624 mtspr(SPRN_DAC2
, debug
->dac2
);
625 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
626 mtspr(SPRN_DVC1
, debug
->dvc1
);
627 mtspr(SPRN_DVC2
, debug
->dvc2
);
629 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
630 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
632 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
636 * Unless neither the old or new thread are making use of the
637 * debug registers, set the debug registers from the values
638 * stored in the new thread.
640 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
642 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
643 || (new_debug
->dbcr0
& DBCR0_IDM
))
644 prime_debug_regs(new_debug
);
646 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
647 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
648 #ifndef CONFIG_HAVE_HW_BREAKPOINT
649 static void set_debug_reg_defaults(struct thread_struct
*thread
)
651 thread
->hw_brk
.address
= 0;
652 thread
->hw_brk
.type
= 0;
653 set_breakpoint(&thread
->hw_brk
);
655 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
656 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
658 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
659 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
661 mtspr(SPRN_DAC1
, dabr
);
662 #ifdef CONFIG_PPC_47x
667 #elif defined(CONFIG_PPC_BOOK3S)
668 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
670 mtspr(SPRN_DABR
, dabr
);
671 if (cpu_has_feature(CPU_FTR_DABRX
))
672 mtspr(SPRN_DABRX
, dabrx
);
676 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
682 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
684 unsigned long dabr
, dabrx
;
686 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
687 dabrx
= ((brk
->type
>> 3) & 0x7);
690 return ppc_md
.set_dabr(dabr
, dabrx
);
692 return __set_dabr(dabr
, dabrx
);
695 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
697 unsigned long dawr
, dawrx
, mrd
;
701 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
702 << (63 - 58); //* read/write bits */
703 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
704 << (63 - 59); //* translate */
705 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
706 >> 3; //* PRIM bits */
707 /* dawr length is stored in field MDR bits 48:53. Matches range in
708 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
710 brk->len is in bytes.
711 This aligns up to double word size, shifts and does the bias.
713 mrd
= ((brk
->len
+ 7) >> 3) - 1;
714 dawrx
|= (mrd
& 0x3f) << (63 - 53);
717 return ppc_md
.set_dawr(dawr
, dawrx
);
718 mtspr(SPRN_DAWR
, dawr
);
719 mtspr(SPRN_DAWRX
, dawrx
);
723 void __set_breakpoint(struct arch_hw_breakpoint
*brk
)
725 memcpy(this_cpu_ptr(¤t_brk
), brk
, sizeof(*brk
));
727 if (cpu_has_feature(CPU_FTR_DAWR
))
733 void set_breakpoint(struct arch_hw_breakpoint
*brk
)
736 __set_breakpoint(brk
);
741 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
744 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
745 struct arch_hw_breakpoint
*b
)
747 if (a
->address
!= b
->address
)
749 if (a
->type
!= b
->type
)
751 if (a
->len
!= b
->len
)
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 static void tm_reclaim_thread(struct thread_struct
*thr
,
758 struct thread_info
*ti
, uint8_t cause
)
760 unsigned long msr_diff
= 0;
763 * If FP/VSX registers have been already saved to the
764 * thread_struct, move them to the transact_fp array.
765 * We clear the TIF_RESTORE_TM bit since after the reclaim
766 * the thread will no longer be transactional.
768 if (test_ti_thread_flag(ti
, TIF_RESTORE_TM
)) {
769 msr_diff
= thr
->ckpt_regs
.msr
& ~thr
->regs
->msr
;
770 if (msr_diff
& MSR_FP
)
771 memcpy(&thr
->transact_fp
, &thr
->fp_state
,
772 sizeof(struct thread_fp_state
));
773 if (msr_diff
& MSR_VEC
)
774 memcpy(&thr
->transact_vr
, &thr
->vr_state
,
775 sizeof(struct thread_vr_state
));
776 clear_ti_thread_flag(ti
, TIF_RESTORE_TM
);
777 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
| MSR_FE0
| MSR_FE1
;
781 * Use the current MSR TM suspended bit to track if we have
782 * checkpointed state outstanding.
783 * On signal delivery, we'd normally reclaim the checkpointed
784 * state to obtain stack pointer (see:get_tm_stackpointer()).
785 * This will then directly return to userspace without going
786 * through __switch_to(). However, if the stack frame is bad,
787 * we need to exit this thread which calls __switch_to() which
788 * will again attempt to reclaim the already saved tm state.
789 * Hence we need to check that we've not already reclaimed
791 * We do this using the current MSR, rather tracking it in
792 * some specific thread_struct bit, as it has the additional
793 * benifit of checking for a potential TM bad thing exception.
795 if (!MSR_TM_SUSPENDED(mfmsr()))
798 tm_reclaim(thr
, thr
->regs
->msr
, cause
);
800 /* Having done the reclaim, we now have the checkpointed
801 * FP/VSX values in the registers. These might be valid
802 * even if we have previously called enable_kernel_fp() or
803 * flush_fp_to_thread(), so update thr->regs->msr to
804 * indicate their current validity.
806 thr
->regs
->msr
|= msr_diff
;
809 void tm_reclaim_current(uint8_t cause
)
812 tm_reclaim_thread(¤t
->thread
, current_thread_info(), cause
);
815 static inline void tm_reclaim_task(struct task_struct
*tsk
)
817 /* We have to work out if we're switching from/to a task that's in the
818 * middle of a transaction.
820 * In switching we need to maintain a 2nd register state as
821 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
822 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
823 * (current) FPRs into oldtask->thread.transact_fpr[].
825 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
827 struct thread_struct
*thr
= &tsk
->thread
;
832 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
833 goto out_and_saveregs
;
835 /* Stash the original thread MSR, as giveup_fpu et al will
836 * modify it. We hold onto it to see whether the task used
837 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
838 * ckpt_regs.msr is already set.
840 if (!test_ti_thread_flag(task_thread_info(tsk
), TIF_RESTORE_TM
))
841 thr
->ckpt_regs
.msr
= thr
->regs
->msr
;
843 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
844 "ccr=%lx, msr=%lx, trap=%lx)\n",
845 tsk
->pid
, thr
->regs
->nip
,
846 thr
->regs
->ccr
, thr
->regs
->msr
,
849 tm_reclaim_thread(thr
, task_thread_info(tsk
), TM_CAUSE_RESCHED
);
851 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
855 /* Always save the regs here, even if a transaction's not active.
856 * This context-switches a thread's TM info SPRs. We do it here to
857 * be consistent with the restore path (in recheckpoint) which
858 * cannot happen later in _switch().
863 extern void __tm_recheckpoint(struct thread_struct
*thread
,
864 unsigned long orig_msr
);
866 void tm_recheckpoint(struct thread_struct
*thread
,
867 unsigned long orig_msr
)
871 /* We really can't be interrupted here as the TEXASR registers can't
872 * change and later in the trecheckpoint code, we have a userspace R1.
873 * So let's hard disable over this region.
875 local_irq_save(flags
);
878 /* The TM SPRs are restored here, so that TEXASR.FS can be set
879 * before the trecheckpoint and no explosion occurs.
881 tm_restore_sprs(thread
);
883 __tm_recheckpoint(thread
, orig_msr
);
885 local_irq_restore(flags
);
888 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
892 if (!cpu_has_feature(CPU_FTR_TM
))
895 /* Recheckpoint the registers of the thread we're about to switch to.
897 * If the task was using FP, we non-lazily reload both the original and
898 * the speculative FP register states. This is because the kernel
899 * doesn't see if/when a TM rollback occurs, so if we take an FP
900 * unavoidable later, we are unable to determine which set of FP regs
901 * need to be restored.
903 if (!new->thread
.regs
)
906 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
907 tm_restore_sprs(&new->thread
);
910 msr
= new->thread
.ckpt_regs
.msr
;
911 /* Recheckpoint to restore original checkpointed register state. */
912 TM_DEBUG("*** tm_recheckpoint of pid %d "
913 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
914 new->pid
, new->thread
.regs
->msr
, msr
);
916 /* This loads the checkpointed FP/VEC state, if used */
917 tm_recheckpoint(&new->thread
, msr
);
919 /* This loads the speculative FP/VEC state, if used */
921 do_load_up_transact_fpu(&new->thread
);
922 new->thread
.regs
->msr
|=
923 (MSR_FP
| new->thread
.fpexc_mode
);
925 #ifdef CONFIG_ALTIVEC
927 do_load_up_transact_altivec(&new->thread
);
928 new->thread
.regs
->msr
|= MSR_VEC
;
931 /* We may as well turn on VSX too since all the state is restored now */
933 new->thread
.regs
->msr
|= MSR_VSX
;
935 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
936 "(kernel msr 0x%lx)\n",
940 static inline void __switch_to_tm(struct task_struct
*prev
)
942 if (cpu_has_feature(CPU_FTR_TM
)) {
944 tm_reclaim_task(prev
);
949 * This is called if we are on the way out to userspace and the
950 * TIF_RESTORE_TM flag is set. It checks if we need to reload
951 * FP and/or vector state and does so if necessary.
952 * If userspace is inside a transaction (whether active or
953 * suspended) and FP/VMX/VSX instructions have ever been enabled
954 * inside that transaction, then we have to keep them enabled
955 * and keep the FP/VMX/VSX state loaded while ever the transaction
956 * continues. The reason is that if we didn't, and subsequently
957 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
958 * we don't know whether it's the same transaction, and thus we
959 * don't know which of the checkpointed state and the transactional
962 void restore_tm_state(struct pt_regs
*regs
)
964 unsigned long msr_diff
;
966 clear_thread_flag(TIF_RESTORE_TM
);
967 if (!MSR_TM_ACTIVE(regs
->msr
))
970 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
971 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
975 regs
->msr
|= msr_diff
;
979 #define tm_recheckpoint_new_task(new)
980 #define __switch_to_tm(prev)
981 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
983 static inline void save_sprs(struct thread_struct
*t
)
985 #ifdef CONFIG_ALTIVEC
986 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
987 t
->vrsave
= mfspr(SPRN_VRSAVE
);
989 #ifdef CONFIG_PPC_BOOK3S_64
990 if (cpu_has_feature(CPU_FTR_DSCR
))
991 t
->dscr
= mfspr(SPRN_DSCR
);
993 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
994 t
->bescr
= mfspr(SPRN_BESCR
);
995 t
->ebbhr
= mfspr(SPRN_EBBHR
);
996 t
->ebbrr
= mfspr(SPRN_EBBRR
);
998 t
->fscr
= mfspr(SPRN_FSCR
);
1001 * Note that the TAR is not available for use in the kernel.
1002 * (To provide this, the TAR should be backed up/restored on
1003 * exception entry/exit instead, and be in pt_regs. FIXME,
1004 * this should be in pt_regs anyway (for debug).)
1006 t
->tar
= mfspr(SPRN_TAR
);
1011 static inline void restore_sprs(struct thread_struct
*old_thread
,
1012 struct thread_struct
*new_thread
)
1014 #ifdef CONFIG_ALTIVEC
1015 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1016 old_thread
->vrsave
!= new_thread
->vrsave
)
1017 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1019 #ifdef CONFIG_PPC_BOOK3S_64
1020 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1021 u64 dscr
= get_paca()->dscr_default
;
1022 u64 fscr
= old_thread
->fscr
& ~FSCR_DSCR
;
1024 if (new_thread
->dscr_inherit
) {
1025 dscr
= new_thread
->dscr
;
1029 if (old_thread
->dscr
!= dscr
)
1030 mtspr(SPRN_DSCR
, dscr
);
1032 if (old_thread
->fscr
!= fscr
)
1033 mtspr(SPRN_FSCR
, fscr
);
1036 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1037 if (old_thread
->bescr
!= new_thread
->bescr
)
1038 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1039 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1040 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1041 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1042 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1044 if (old_thread
->tar
!= new_thread
->tar
)
1045 mtspr(SPRN_TAR
, new_thread
->tar
);
1050 struct task_struct
*__switch_to(struct task_struct
*prev
,
1051 struct task_struct
*new)
1053 struct thread_struct
*new_thread
, *old_thread
;
1054 struct task_struct
*last
;
1055 #ifdef CONFIG_PPC_BOOK3S_64
1056 struct ppc64_tlb_batch
*batch
;
1059 new_thread
= &new->thread
;
1060 old_thread
= ¤t
->thread
;
1062 WARN_ON(!irqs_disabled());
1066 * Collect processor utilization data per process
1068 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
1069 struct cpu_usage
*cu
= this_cpu_ptr(&cpu_usage_array
);
1070 long unsigned start_tb
, current_tb
;
1071 start_tb
= old_thread
->start_tb
;
1072 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
1073 old_thread
->accum_tb
+= (current_tb
- start_tb
);
1074 new_thread
->start_tb
= current_tb
;
1076 #endif /* CONFIG_PPC64 */
1078 #ifdef CONFIG_PPC_BOOK3S_64
1079 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1080 if (batch
->active
) {
1081 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1083 __flush_tlb_pending(batch
);
1086 #endif /* CONFIG_PPC_BOOK3S_64 */
1088 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089 switch_booke_debug_regs(&new->thread
.debug
);
1092 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1095 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1096 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk
), &new->thread
.hw_brk
)))
1097 __set_breakpoint(&new->thread
.hw_brk
);
1098 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1102 * We need to save SPRs before treclaim/trecheckpoint as these will
1103 * change a number of them.
1105 save_sprs(&prev
->thread
);
1107 __switch_to_tm(prev
);
1109 /* Save FPU, Altivec, VSX and SPE state */
1113 * We can't take a PMU exception inside _switch() since there is a
1114 * window where the kernel stack SLB and the kernel stack are out
1115 * of sync. Hard disable here.
1119 tm_recheckpoint_new_task(new);
1122 * Call restore_sprs() before calling _switch(). If we move it after
1123 * _switch() then we miss out on calling it for new tasks. The reason
1124 * for this is we manually create a stack frame for new tasks that
1125 * directly returns through ret_from_fork() or
1126 * ret_from_kernel_thread(). See copy_thread() for details.
1128 restore_sprs(old_thread
, new_thread
);
1130 last
= _switch(old_thread
, new_thread
);
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1134 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1135 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1139 if (current_thread_info()->task
->thread
.regs
)
1140 restore_math(current_thread_info()->task
->thread
.regs
);
1142 #endif /* CONFIG_PPC_BOOK3S_64 */
1147 static int instructions_to_print
= 16;
1149 static void show_instructions(struct pt_regs
*regs
)
1152 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
1155 printk("Instruction dump:");
1157 for (i
= 0; i
< instructions_to_print
; i
++) {
1163 #if !defined(CONFIG_BOOKE)
1164 /* If executing with the IMMU off, adjust pc rather
1165 * than print XXXXXXXX.
1167 if (!(regs
->msr
& MSR_IR
))
1168 pc
= (unsigned long)phys_to_virt(pc
);
1171 if (!__kernel_text_address(pc
) ||
1172 probe_kernel_address((unsigned int __user
*)pc
, instr
)) {
1173 printk(KERN_CONT
"XXXXXXXX ");
1175 if (regs
->nip
== pc
)
1176 printk(KERN_CONT
"<%08x> ", instr
);
1178 printk(KERN_CONT
"%08x ", instr
);
1192 static struct regbit msr_bits
[] = {
1193 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1215 #ifndef CONFIG_BOOKE
1222 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1226 for (; bits
->bit
; ++bits
)
1227 if (val
& bits
->bit
) {
1228 printk("%s%s", s
, bits
->name
);
1233 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234 static struct regbit msr_tm_bits
[] = {
1241 static void print_tm_bits(unsigned long val
)
1244 * This only prints something if at least one of the TM bit is set.
1245 * Inside the TM[], the output means:
1246 * E: Enabled (bit 32)
1247 * S: Suspended (bit 33)
1248 * T: Transactional (bit 34)
1250 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1252 print_bits(val
, msr_tm_bits
, "");
1257 static void print_tm_bits(unsigned long val
) {}
1260 static void print_msr_bits(unsigned long val
)
1263 print_bits(val
, msr_bits
, ",");
1269 #define REG "%016lx"
1270 #define REGS_PER_LINE 4
1271 #define LAST_VOLATILE 13
1274 #define REGS_PER_LINE 8
1275 #define LAST_VOLATILE 12
1278 void show_regs(struct pt_regs
* regs
)
1282 show_regs_print_info(KERN_DEFAULT
);
1284 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1285 regs
->nip
, regs
->link
, regs
->ctr
);
1286 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1287 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1288 printk("MSR: "REG
" ", regs
->msr
);
1289 print_msr_bits(regs
->msr
);
1290 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1292 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1293 printk("CFAR: "REG
" ", regs
->orig_gpr3
);
1294 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1295 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296 printk("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1298 printk("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1301 printk("SOFTE: %ld ", regs
->softe
);
1303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304 if (MSR_TM_ACTIVE(regs
->msr
))
1305 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1308 for (i
= 0; i
< 32; i
++) {
1309 if ((i
% REGS_PER_LINE
) == 0)
1310 printk("\nGPR%02d: ", i
);
1311 printk(REG
" ", regs
->gpr
[i
]);
1312 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1316 #ifdef CONFIG_KALLSYMS
1318 * Lookup NIP late so we have the best change of getting the
1319 * above info out without failing
1321 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1322 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1324 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1325 if (!user_mode(regs
))
1326 show_instructions(regs
);
1329 void exit_thread(void)
1333 void flush_thread(void)
1335 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1336 flush_ptrace_hw_breakpoint(current
);
1337 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1338 set_debug_reg_defaults(¤t
->thread
);
1339 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1343 release_thread(struct task_struct
*t
)
1348 * this gets called so that we can store coprocessor state into memory and
1349 * copy the current task into the new thread.
1351 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1353 flush_all_to_thread(src
);
1355 * Flush TM state out so we can copy it. __switch_to_tm() does this
1356 * flush but it removes the checkpointed state from the current CPU and
1357 * transitions the CPU out of TM mode. Hence we need to call
1358 * tm_recheckpoint_new_task() (on the same task) to restore the
1359 * checkpointed state back and the TM mode.
1361 __switch_to_tm(src
);
1362 tm_recheckpoint_new_task(src
);
1366 clear_task_ebb(dst
);
1371 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1373 #ifdef CONFIG_PPC_STD_MMU_64
1374 unsigned long sp_vsid
;
1375 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1377 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1378 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1379 << SLB_VSID_SHIFT_1T
;
1381 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1383 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1384 p
->thread
.ksp_vsid
= sp_vsid
;
1393 * Copy architecture-specific thread state
1395 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1396 unsigned long kthread_arg
, struct task_struct
*p
)
1398 struct pt_regs
*childregs
, *kregs
;
1399 extern void ret_from_fork(void);
1400 extern void ret_from_kernel_thread(void);
1402 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1404 /* Copy registers */
1405 sp
-= sizeof(struct pt_regs
);
1406 childregs
= (struct pt_regs
*) sp
;
1407 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1409 struct thread_info
*ti
= (void *)task_stack_page(p
);
1410 memset(childregs
, 0, sizeof(struct pt_regs
));
1411 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1414 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1416 clear_tsk_thread_flag(p
, TIF_32BIT
);
1417 childregs
->softe
= 1;
1419 childregs
->gpr
[15] = kthread_arg
;
1420 p
->thread
.regs
= NULL
; /* no user register state */
1421 ti
->flags
|= _TIF_RESTOREALL
;
1422 f
= ret_from_kernel_thread
;
1425 struct pt_regs
*regs
= current_pt_regs();
1426 CHECK_FULL_REGS(regs
);
1429 childregs
->gpr
[1] = usp
;
1430 p
->thread
.regs
= childregs
;
1431 childregs
->gpr
[3] = 0; /* Result from fork() */
1432 if (clone_flags
& CLONE_SETTLS
) {
1434 if (!is_32bit_task())
1435 childregs
->gpr
[13] = childregs
->gpr
[6];
1438 childregs
->gpr
[2] = childregs
->gpr
[6];
1443 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1444 sp
-= STACK_FRAME_OVERHEAD
;
1447 * The way this works is that at some point in the future
1448 * some task will call _switch to switch to the new task.
1449 * That will pop off the stack frame created below and start
1450 * the new task running at ret_from_fork. The new task will
1451 * do some house keeping and then return from the fork or clone
1452 * system call, using the stack frame created above.
1454 ((unsigned long *)sp
)[0] = 0;
1455 sp
-= sizeof(struct pt_regs
);
1456 kregs
= (struct pt_regs
*) sp
;
1457 sp
-= STACK_FRAME_OVERHEAD
;
1460 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
1461 _ALIGN_UP(sizeof(struct thread_info
), 16);
1463 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1464 p
->thread
.ptrace_bps
[0] = NULL
;
1467 p
->thread
.fp_save_area
= NULL
;
1468 #ifdef CONFIG_ALTIVEC
1469 p
->thread
.vr_save_area
= NULL
;
1472 setup_ksp_vsid(p
, sp
);
1475 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1476 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1477 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1479 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1480 p
->thread
.ppr
= INIT_PPR
;
1482 kregs
->nip
= ppc_function_entry(f
);
1487 * Set up a thread for executing a new program
1489 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1492 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1496 * If we exec out of a kernel thread then thread.regs will not be
1499 if (!current
->thread
.regs
) {
1500 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1501 current
->thread
.regs
= regs
- 1;
1504 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1512 * We have just cleared all the nonvolatile GPRs, so make
1513 * FULL_REGS(regs) return true. This is necessary to allow
1514 * ptrace to examine the thread immediately after exec.
1521 regs
->msr
= MSR_USER
;
1523 if (!is_32bit_task()) {
1524 unsigned long entry
;
1526 if (is_elf2_task()) {
1527 /* Look ma, no function descriptors! */
1532 * The latest iteration of the ABI requires that when
1533 * calling a function (at its global entry point),
1534 * the caller must ensure r12 holds the entry point
1535 * address (so that the function can quickly
1536 * establish addressability).
1538 regs
->gpr
[12] = start
;
1539 /* Make sure that's restored on entry to userspace. */
1540 set_thread_flag(TIF_RESTOREALL
);
1544 /* start is a relocated pointer to the function
1545 * descriptor for the elf _start routine. The first
1546 * entry in the function descriptor is the entry
1547 * address of _start and the second entry is the TOC
1548 * value we need to use.
1550 __get_user(entry
, (unsigned long __user
*)start
);
1551 __get_user(toc
, (unsigned long __user
*)start
+1);
1553 /* Check whether the e_entry function descriptor entries
1554 * need to be relocated before we can use them.
1556 if (load_addr
!= 0) {
1563 regs
->msr
= MSR_USER64
;
1567 regs
->msr
= MSR_USER32
;
1571 current
->thread
.used_vsr
= 0;
1573 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1574 current
->thread
.fp_save_area
= NULL
;
1575 #ifdef CONFIG_ALTIVEC
1576 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1577 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1578 current
->thread
.vr_save_area
= NULL
;
1579 current
->thread
.vrsave
= 0;
1580 current
->thread
.used_vr
= 0;
1581 #endif /* CONFIG_ALTIVEC */
1583 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1584 current
->thread
.acc
= 0;
1585 current
->thread
.spefscr
= 0;
1586 current
->thread
.used_spe
= 0;
1587 #endif /* CONFIG_SPE */
1588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589 if (cpu_has_feature(CPU_FTR_TM
))
1590 regs
->msr
|= MSR_TM
;
1591 current
->thread
.tm_tfhar
= 0;
1592 current
->thread
.tm_texasr
= 0;
1593 current
->thread
.tm_tfiar
= 0;
1594 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1596 EXPORT_SYMBOL(start_thread
);
1598 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1601 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1603 struct pt_regs
*regs
= tsk
->thread
.regs
;
1605 /* This is a bit hairy. If we are an SPE enabled processor
1606 * (have embedded fp) we store the IEEE exception enable flags in
1607 * fpexc_mode. fpexc_mode is also used for setting FP exception
1608 * mode (asyn, precise, disabled) for 'Classic' FP. */
1609 if (val
& PR_FP_EXC_SW_ENABLE
) {
1611 if (cpu_has_feature(CPU_FTR_SPE
)) {
1613 * When the sticky exception bits are set
1614 * directly by userspace, it must call prctl
1615 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616 * in the existing prctl settings) or
1617 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618 * the bits being set). <fenv.h> functions
1619 * saving and restoring the whole
1620 * floating-point environment need to do so
1621 * anyway to restore the prctl settings from
1622 * the saved environment.
1624 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1625 tsk
->thread
.fpexc_mode
= val
&
1626 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1636 /* on a CONFIG_SPE this does not hurt us. The bits that
1637 * __pack_fe01 use do not overlap with bits used for
1638 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1639 * on CONFIG_SPE implementations are reserved so writing to
1640 * them does not change anything */
1641 if (val
> PR_FP_EXC_PRECISE
)
1643 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1644 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1645 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1646 | tsk
->thread
.fpexc_mode
;
1650 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1654 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1656 if (cpu_has_feature(CPU_FTR_SPE
)) {
1658 * When the sticky exception bits are set
1659 * directly by userspace, it must call prctl
1660 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661 * in the existing prctl settings) or
1662 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663 * the bits being set). <fenv.h> functions
1664 * saving and restoring the whole
1665 * floating-point environment need to do so
1666 * anyway to restore the prctl settings from
1667 * the saved environment.
1669 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1670 val
= tsk
->thread
.fpexc_mode
;
1677 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1678 return put_user(val
, (unsigned int __user
*) adr
);
1681 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1683 struct pt_regs
*regs
= tsk
->thread
.regs
;
1685 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1686 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1692 if (val
== PR_ENDIAN_BIG
)
1693 regs
->msr
&= ~MSR_LE
;
1694 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1695 regs
->msr
|= MSR_LE
;
1702 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1704 struct pt_regs
*regs
= tsk
->thread
.regs
;
1707 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1708 !cpu_has_feature(CPU_FTR_REAL_LE
))
1714 if (regs
->msr
& MSR_LE
) {
1715 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1716 val
= PR_ENDIAN_LITTLE
;
1718 val
= PR_ENDIAN_PPC_LITTLE
;
1720 val
= PR_ENDIAN_BIG
;
1722 return put_user(val
, (unsigned int __user
*)adr
);
1725 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1727 tsk
->thread
.align_ctl
= val
;
1731 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1733 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1736 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1737 unsigned long nbytes
)
1739 unsigned long stack_page
;
1740 unsigned long cpu
= task_cpu(p
);
1743 * Avoid crashing if the stack has overflowed and corrupted
1744 * task_cpu(p), which is in the thread_info struct.
1746 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1747 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1748 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1749 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1752 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1753 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1754 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1760 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1761 unsigned long nbytes
)
1763 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1765 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1766 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1769 return valid_irq_stack(sp
, p
, nbytes
);
1772 EXPORT_SYMBOL(validate_sp
);
1774 unsigned long get_wchan(struct task_struct
*p
)
1776 unsigned long ip
, sp
;
1779 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1783 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1787 sp
= *(unsigned long *)sp
;
1788 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1791 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1792 if (!in_sched_functions(ip
))
1795 } while (count
++ < 16);
1799 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1801 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1803 unsigned long sp
, ip
, lr
, newsp
;
1806 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807 int curr_frame
= current
->curr_ret_stack
;
1808 extern void return_to_handler(void);
1809 unsigned long rth
= (unsigned long)return_to_handler
;
1812 sp
= (unsigned long) stack
;
1817 sp
= current_stack_pointer();
1819 sp
= tsk
->thread
.ksp
;
1823 printk("Call Trace:\n");
1825 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1828 stack
= (unsigned long *) sp
;
1830 ip
= stack
[STACK_FRAME_LR_SAVE
];
1831 if (!firstframe
|| ip
!= lr
) {
1832 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1833 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834 if ((ip
== rth
) && curr_frame
>= 0) {
1836 (void *)current
->ret_stack
[curr_frame
].ret
);
1841 printk(" (unreliable)");
1847 * See if this is an exception frame.
1848 * We look for the "regshere" marker in the current frame.
1850 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1851 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1852 struct pt_regs
*regs
= (struct pt_regs
*)
1853 (sp
+ STACK_FRAME_OVERHEAD
);
1855 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1856 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1861 } while (count
++ < kstack_depth_to_print
);
1865 /* Called with hard IRQs off */
1866 void notrace
__ppc64_runlatch_on(void)
1868 struct thread_info
*ti
= current_thread_info();
1871 ctrl
= mfspr(SPRN_CTRLF
);
1872 ctrl
|= CTRL_RUNLATCH
;
1873 mtspr(SPRN_CTRLT
, ctrl
);
1875 ti
->local_flags
|= _TLF_RUNLATCH
;
1878 /* Called with hard IRQs off */
1879 void notrace
__ppc64_runlatch_off(void)
1881 struct thread_info
*ti
= current_thread_info();
1884 ti
->local_flags
&= ~_TLF_RUNLATCH
;
1886 ctrl
= mfspr(SPRN_CTRLF
);
1887 ctrl
&= ~CTRL_RUNLATCH
;
1888 mtspr(SPRN_CTRLT
, ctrl
);
1890 #endif /* CONFIG_PPC64 */
1892 unsigned long arch_align_stack(unsigned long sp
)
1894 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1895 sp
-= get_random_int() & ~PAGE_MASK
;
1899 static inline unsigned long brk_rnd(void)
1901 unsigned long rnd
= 0;
1903 /* 8MB for 32bit, 1GB for 64bit */
1904 if (is_32bit_task())
1905 rnd
= (get_random_long() % (1UL<<(23-PAGE_SHIFT
)));
1907 rnd
= (get_random_long() % (1UL<<(30-PAGE_SHIFT
)));
1909 return rnd
<< PAGE_SHIFT
;
1912 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1914 unsigned long base
= mm
->brk
;
1917 #ifdef CONFIG_PPC_STD_MMU_64
1919 * If we are using 1TB segments and we are allowed to randomise
1920 * the heap, we can put it above 1TB so it is backed by a 1TB
1921 * segment. Otherwise the heap will be in the bottom 1TB
1922 * which always uses 256MB segments and this may result in a
1923 * performance penalty.
1925 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1926 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1929 ret
= PAGE_ALIGN(base
+ brk_rnd());