Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv.c
blob84fb4fcfaa41b802a614515c67539b0d2d7ee3cf
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
60 #include "book3s.h"
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL (~(u64)0)
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
84 #ifdef CONFIG_KVM_XICS
85 static struct kernel_param_ops module_param_ops = {
86 .set = param_set_int,
87 .get = param_get_int,
90 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
91 S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
93 #endif
95 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
96 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
98 static bool kvmppc_ipi_thread(int cpu)
100 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
101 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
102 preempt_disable();
103 if (cpu_first_thread_sibling(cpu) ==
104 cpu_first_thread_sibling(smp_processor_id())) {
105 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
106 msg |= cpu_thread_in_core(cpu);
107 smp_mb();
108 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
109 preempt_enable();
110 return true;
112 preempt_enable();
115 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
116 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
117 xics_wake_cpu(cpu);
118 return true;
120 #endif
122 return false;
125 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
127 int cpu;
128 struct swait_queue_head *wqp;
130 wqp = kvm_arch_vcpu_wq(vcpu);
131 if (swait_active(wqp)) {
132 swake_up(wqp);
133 ++vcpu->stat.halt_wakeup;
136 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
137 return;
139 /* CPU points to the first thread of the core */
140 cpu = vcpu->cpu;
141 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
142 smp_send_reschedule(cpu);
146 * We use the vcpu_load/put functions to measure stolen time.
147 * Stolen time is counted as time when either the vcpu is able to
148 * run as part of a virtual core, but the task running the vcore
149 * is preempted or sleeping, or when the vcpu needs something done
150 * in the kernel by the task running the vcpu, but that task is
151 * preempted or sleeping. Those two things have to be counted
152 * separately, since one of the vcpu tasks will take on the job
153 * of running the core, and the other vcpu tasks in the vcore will
154 * sleep waiting for it to do that, but that sleep shouldn't count
155 * as stolen time.
157 * Hence we accumulate stolen time when the vcpu can run as part of
158 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
159 * needs its task to do other things in the kernel (for example,
160 * service a page fault) in busy_stolen. We don't accumulate
161 * stolen time for a vcore when it is inactive, or for a vcpu
162 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
163 * a misnomer; it means that the vcpu task is not executing in
164 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
165 * the kernel. We don't have any way of dividing up that time
166 * between time that the vcpu is genuinely stopped, time that
167 * the task is actively working on behalf of the vcpu, and time
168 * that the task is preempted, so we don't count any of it as
169 * stolen.
171 * Updates to busy_stolen are protected by arch.tbacct_lock;
172 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
173 * lock. The stolen times are measured in units of timebase ticks.
174 * (Note that the != TB_NIL checks below are purely defensive;
175 * they should never fail.)
178 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
180 unsigned long flags;
182 spin_lock_irqsave(&vc->stoltb_lock, flags);
183 vc->preempt_tb = mftb();
184 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
187 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
189 unsigned long flags;
191 spin_lock_irqsave(&vc->stoltb_lock, flags);
192 if (vc->preempt_tb != TB_NIL) {
193 vc->stolen_tb += mftb() - vc->preempt_tb;
194 vc->preempt_tb = TB_NIL;
196 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
199 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
201 struct kvmppc_vcore *vc = vcpu->arch.vcore;
202 unsigned long flags;
205 * We can test vc->runner without taking the vcore lock,
206 * because only this task ever sets vc->runner to this
207 * vcpu, and once it is set to this vcpu, only this task
208 * ever sets it to NULL.
210 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
211 kvmppc_core_end_stolen(vc);
213 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
214 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
215 vcpu->arch.busy_preempt != TB_NIL) {
216 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
217 vcpu->arch.busy_preempt = TB_NIL;
219 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
222 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
224 struct kvmppc_vcore *vc = vcpu->arch.vcore;
225 unsigned long flags;
227 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
228 kvmppc_core_start_stolen(vc);
230 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
231 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
232 vcpu->arch.busy_preempt = mftb();
233 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
236 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
239 * Check for illegal transactional state bit combination
240 * and if we find it, force the TS field to a safe state.
242 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
243 msr &= ~MSR_TS_MASK;
244 vcpu->arch.shregs.msr = msr;
245 kvmppc_end_cede(vcpu);
248 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
250 vcpu->arch.pvr = pvr;
253 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
255 unsigned long pcr = 0;
256 struct kvmppc_vcore *vc = vcpu->arch.vcore;
258 if (arch_compat) {
259 switch (arch_compat) {
260 case PVR_ARCH_205:
262 * If an arch bit is set in PCR, all the defined
263 * higher-order arch bits also have to be set.
265 pcr = PCR_ARCH_206 | PCR_ARCH_205;
266 break;
267 case PVR_ARCH_206:
268 case PVR_ARCH_206p:
269 pcr = PCR_ARCH_206;
270 break;
271 case PVR_ARCH_207:
272 break;
273 default:
274 return -EINVAL;
277 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
278 /* POWER7 can't emulate POWER8 */
279 if (!(pcr & PCR_ARCH_206))
280 return -EINVAL;
281 pcr &= ~PCR_ARCH_206;
285 spin_lock(&vc->lock);
286 vc->arch_compat = arch_compat;
287 vc->pcr = pcr;
288 spin_unlock(&vc->lock);
290 return 0;
293 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
295 int r;
297 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
298 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
299 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
300 for (r = 0; r < 16; ++r)
301 pr_err("r%2d = %.16lx r%d = %.16lx\n",
302 r, kvmppc_get_gpr(vcpu, r),
303 r+16, kvmppc_get_gpr(vcpu, r+16));
304 pr_err("ctr = %.16lx lr = %.16lx\n",
305 vcpu->arch.ctr, vcpu->arch.lr);
306 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
307 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
308 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
309 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
310 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
311 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
312 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
313 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
314 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
315 pr_err("fault dar = %.16lx dsisr = %.8x\n",
316 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
317 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
318 for (r = 0; r < vcpu->arch.slb_max; ++r)
319 pr_err(" ESID = %.16llx VSID = %.16llx\n",
320 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
321 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
322 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
323 vcpu->arch.last_inst);
326 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
328 struct kvm_vcpu *ret;
330 mutex_lock(&kvm->lock);
331 ret = kvm_get_vcpu_by_id(kvm, id);
332 mutex_unlock(&kvm->lock);
333 return ret;
336 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
338 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
339 vpa->yield_count = cpu_to_be32(1);
342 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
343 unsigned long addr, unsigned long len)
345 /* check address is cacheline aligned */
346 if (addr & (L1_CACHE_BYTES - 1))
347 return -EINVAL;
348 spin_lock(&vcpu->arch.vpa_update_lock);
349 if (v->next_gpa != addr || v->len != len) {
350 v->next_gpa = addr;
351 v->len = addr ? len : 0;
352 v->update_pending = 1;
354 spin_unlock(&vcpu->arch.vpa_update_lock);
355 return 0;
358 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
359 struct reg_vpa {
360 u32 dummy;
361 union {
362 __be16 hword;
363 __be32 word;
364 } length;
367 static int vpa_is_registered(struct kvmppc_vpa *vpap)
369 if (vpap->update_pending)
370 return vpap->next_gpa != 0;
371 return vpap->pinned_addr != NULL;
374 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
375 unsigned long flags,
376 unsigned long vcpuid, unsigned long vpa)
378 struct kvm *kvm = vcpu->kvm;
379 unsigned long len, nb;
380 void *va;
381 struct kvm_vcpu *tvcpu;
382 int err;
383 int subfunc;
384 struct kvmppc_vpa *vpap;
386 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
387 if (!tvcpu)
388 return H_PARAMETER;
390 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
391 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
392 subfunc == H_VPA_REG_SLB) {
393 /* Registering new area - address must be cache-line aligned */
394 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
395 return H_PARAMETER;
397 /* convert logical addr to kernel addr and read length */
398 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
399 if (va == NULL)
400 return H_PARAMETER;
401 if (subfunc == H_VPA_REG_VPA)
402 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
403 else
404 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
405 kvmppc_unpin_guest_page(kvm, va, vpa, false);
407 /* Check length */
408 if (len > nb || len < sizeof(struct reg_vpa))
409 return H_PARAMETER;
410 } else {
411 vpa = 0;
412 len = 0;
415 err = H_PARAMETER;
416 vpap = NULL;
417 spin_lock(&tvcpu->arch.vpa_update_lock);
419 switch (subfunc) {
420 case H_VPA_REG_VPA: /* register VPA */
421 if (len < sizeof(struct lppaca))
422 break;
423 vpap = &tvcpu->arch.vpa;
424 err = 0;
425 break;
427 case H_VPA_REG_DTL: /* register DTL */
428 if (len < sizeof(struct dtl_entry))
429 break;
430 len -= len % sizeof(struct dtl_entry);
432 /* Check that they have previously registered a VPA */
433 err = H_RESOURCE;
434 if (!vpa_is_registered(&tvcpu->arch.vpa))
435 break;
437 vpap = &tvcpu->arch.dtl;
438 err = 0;
439 break;
441 case H_VPA_REG_SLB: /* register SLB shadow buffer */
442 /* Check that they have previously registered a VPA */
443 err = H_RESOURCE;
444 if (!vpa_is_registered(&tvcpu->arch.vpa))
445 break;
447 vpap = &tvcpu->arch.slb_shadow;
448 err = 0;
449 break;
451 case H_VPA_DEREG_VPA: /* deregister VPA */
452 /* Check they don't still have a DTL or SLB buf registered */
453 err = H_RESOURCE;
454 if (vpa_is_registered(&tvcpu->arch.dtl) ||
455 vpa_is_registered(&tvcpu->arch.slb_shadow))
456 break;
458 vpap = &tvcpu->arch.vpa;
459 err = 0;
460 break;
462 case H_VPA_DEREG_DTL: /* deregister DTL */
463 vpap = &tvcpu->arch.dtl;
464 err = 0;
465 break;
467 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
468 vpap = &tvcpu->arch.slb_shadow;
469 err = 0;
470 break;
473 if (vpap) {
474 vpap->next_gpa = vpa;
475 vpap->len = len;
476 vpap->update_pending = 1;
479 spin_unlock(&tvcpu->arch.vpa_update_lock);
481 return err;
484 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
486 struct kvm *kvm = vcpu->kvm;
487 void *va;
488 unsigned long nb;
489 unsigned long gpa;
492 * We need to pin the page pointed to by vpap->next_gpa,
493 * but we can't call kvmppc_pin_guest_page under the lock
494 * as it does get_user_pages() and down_read(). So we
495 * have to drop the lock, pin the page, then get the lock
496 * again and check that a new area didn't get registered
497 * in the meantime.
499 for (;;) {
500 gpa = vpap->next_gpa;
501 spin_unlock(&vcpu->arch.vpa_update_lock);
502 va = NULL;
503 nb = 0;
504 if (gpa)
505 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
506 spin_lock(&vcpu->arch.vpa_update_lock);
507 if (gpa == vpap->next_gpa)
508 break;
509 /* sigh... unpin that one and try again */
510 if (va)
511 kvmppc_unpin_guest_page(kvm, va, gpa, false);
514 vpap->update_pending = 0;
515 if (va && nb < vpap->len) {
517 * If it's now too short, it must be that userspace
518 * has changed the mappings underlying guest memory,
519 * so unregister the region.
521 kvmppc_unpin_guest_page(kvm, va, gpa, false);
522 va = NULL;
524 if (vpap->pinned_addr)
525 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
526 vpap->dirty);
527 vpap->gpa = gpa;
528 vpap->pinned_addr = va;
529 vpap->dirty = false;
530 if (va)
531 vpap->pinned_end = va + vpap->len;
534 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
536 if (!(vcpu->arch.vpa.update_pending ||
537 vcpu->arch.slb_shadow.update_pending ||
538 vcpu->arch.dtl.update_pending))
539 return;
541 spin_lock(&vcpu->arch.vpa_update_lock);
542 if (vcpu->arch.vpa.update_pending) {
543 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
544 if (vcpu->arch.vpa.pinned_addr)
545 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
547 if (vcpu->arch.dtl.update_pending) {
548 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
549 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
550 vcpu->arch.dtl_index = 0;
552 if (vcpu->arch.slb_shadow.update_pending)
553 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
554 spin_unlock(&vcpu->arch.vpa_update_lock);
558 * Return the accumulated stolen time for the vcore up until `now'.
559 * The caller should hold the vcore lock.
561 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
563 u64 p;
564 unsigned long flags;
566 spin_lock_irqsave(&vc->stoltb_lock, flags);
567 p = vc->stolen_tb;
568 if (vc->vcore_state != VCORE_INACTIVE &&
569 vc->preempt_tb != TB_NIL)
570 p += now - vc->preempt_tb;
571 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
572 return p;
575 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
576 struct kvmppc_vcore *vc)
578 struct dtl_entry *dt;
579 struct lppaca *vpa;
580 unsigned long stolen;
581 unsigned long core_stolen;
582 u64 now;
584 dt = vcpu->arch.dtl_ptr;
585 vpa = vcpu->arch.vpa.pinned_addr;
586 now = mftb();
587 core_stolen = vcore_stolen_time(vc, now);
588 stolen = core_stolen - vcpu->arch.stolen_logged;
589 vcpu->arch.stolen_logged = core_stolen;
590 spin_lock_irq(&vcpu->arch.tbacct_lock);
591 stolen += vcpu->arch.busy_stolen;
592 vcpu->arch.busy_stolen = 0;
593 spin_unlock_irq(&vcpu->arch.tbacct_lock);
594 if (!dt || !vpa)
595 return;
596 memset(dt, 0, sizeof(struct dtl_entry));
597 dt->dispatch_reason = 7;
598 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
599 dt->timebase = cpu_to_be64(now + vc->tb_offset);
600 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
601 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
602 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
603 ++dt;
604 if (dt == vcpu->arch.dtl.pinned_end)
605 dt = vcpu->arch.dtl.pinned_addr;
606 vcpu->arch.dtl_ptr = dt;
607 /* order writing *dt vs. writing vpa->dtl_idx */
608 smp_wmb();
609 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
610 vcpu->arch.dtl.dirty = true;
613 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
615 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
616 return true;
617 if ((!vcpu->arch.vcore->arch_compat) &&
618 cpu_has_feature(CPU_FTR_ARCH_207S))
619 return true;
620 return false;
623 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
624 unsigned long resource, unsigned long value1,
625 unsigned long value2)
627 switch (resource) {
628 case H_SET_MODE_RESOURCE_SET_CIABR:
629 if (!kvmppc_power8_compatible(vcpu))
630 return H_P2;
631 if (value2)
632 return H_P4;
633 if (mflags)
634 return H_UNSUPPORTED_FLAG_START;
635 /* Guests can't breakpoint the hypervisor */
636 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
637 return H_P3;
638 vcpu->arch.ciabr = value1;
639 return H_SUCCESS;
640 case H_SET_MODE_RESOURCE_SET_DAWR:
641 if (!kvmppc_power8_compatible(vcpu))
642 return H_P2;
643 if (mflags)
644 return H_UNSUPPORTED_FLAG_START;
645 if (value2 & DABRX_HYP)
646 return H_P4;
647 vcpu->arch.dawr = value1;
648 vcpu->arch.dawrx = value2;
649 return H_SUCCESS;
650 default:
651 return H_TOO_HARD;
655 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
657 struct kvmppc_vcore *vcore = target->arch.vcore;
660 * We expect to have been called by the real mode handler
661 * (kvmppc_rm_h_confer()) which would have directly returned
662 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
663 * have useful work to do and should not confer) so we don't
664 * recheck that here.
667 spin_lock(&vcore->lock);
668 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
669 vcore->vcore_state != VCORE_INACTIVE &&
670 vcore->runner)
671 target = vcore->runner;
672 spin_unlock(&vcore->lock);
674 return kvm_vcpu_yield_to(target);
677 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
679 int yield_count = 0;
680 struct lppaca *lppaca;
682 spin_lock(&vcpu->arch.vpa_update_lock);
683 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
684 if (lppaca)
685 yield_count = be32_to_cpu(lppaca->yield_count);
686 spin_unlock(&vcpu->arch.vpa_update_lock);
687 return yield_count;
690 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
692 unsigned long req = kvmppc_get_gpr(vcpu, 3);
693 unsigned long target, ret = H_SUCCESS;
694 int yield_count;
695 struct kvm_vcpu *tvcpu;
696 int idx, rc;
698 if (req <= MAX_HCALL_OPCODE &&
699 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
700 return RESUME_HOST;
702 switch (req) {
703 case H_CEDE:
704 break;
705 case H_PROD:
706 target = kvmppc_get_gpr(vcpu, 4);
707 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
708 if (!tvcpu) {
709 ret = H_PARAMETER;
710 break;
712 tvcpu->arch.prodded = 1;
713 smp_mb();
714 if (vcpu->arch.ceded) {
715 if (swait_active(&vcpu->wq)) {
716 swake_up(&vcpu->wq);
717 vcpu->stat.halt_wakeup++;
720 break;
721 case H_CONFER:
722 target = kvmppc_get_gpr(vcpu, 4);
723 if (target == -1)
724 break;
725 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
726 if (!tvcpu) {
727 ret = H_PARAMETER;
728 break;
730 yield_count = kvmppc_get_gpr(vcpu, 5);
731 if (kvmppc_get_yield_count(tvcpu) != yield_count)
732 break;
733 kvm_arch_vcpu_yield_to(tvcpu);
734 break;
735 case H_REGISTER_VPA:
736 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
737 kvmppc_get_gpr(vcpu, 5),
738 kvmppc_get_gpr(vcpu, 6));
739 break;
740 case H_RTAS:
741 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
742 return RESUME_HOST;
744 idx = srcu_read_lock(&vcpu->kvm->srcu);
745 rc = kvmppc_rtas_hcall(vcpu);
746 srcu_read_unlock(&vcpu->kvm->srcu, idx);
748 if (rc == -ENOENT)
749 return RESUME_HOST;
750 else if (rc == 0)
751 break;
753 /* Send the error out to userspace via KVM_RUN */
754 return rc;
755 case H_LOGICAL_CI_LOAD:
756 ret = kvmppc_h_logical_ci_load(vcpu);
757 if (ret == H_TOO_HARD)
758 return RESUME_HOST;
759 break;
760 case H_LOGICAL_CI_STORE:
761 ret = kvmppc_h_logical_ci_store(vcpu);
762 if (ret == H_TOO_HARD)
763 return RESUME_HOST;
764 break;
765 case H_SET_MODE:
766 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
767 kvmppc_get_gpr(vcpu, 5),
768 kvmppc_get_gpr(vcpu, 6),
769 kvmppc_get_gpr(vcpu, 7));
770 if (ret == H_TOO_HARD)
771 return RESUME_HOST;
772 break;
773 case H_XIRR:
774 case H_CPPR:
775 case H_EOI:
776 case H_IPI:
777 case H_IPOLL:
778 case H_XIRR_X:
779 if (kvmppc_xics_enabled(vcpu)) {
780 ret = kvmppc_xics_hcall(vcpu, req);
781 break;
783 return RESUME_HOST;
784 case H_PUT_TCE:
785 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
786 kvmppc_get_gpr(vcpu, 5),
787 kvmppc_get_gpr(vcpu, 6));
788 if (ret == H_TOO_HARD)
789 return RESUME_HOST;
790 break;
791 case H_PUT_TCE_INDIRECT:
792 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
793 kvmppc_get_gpr(vcpu, 5),
794 kvmppc_get_gpr(vcpu, 6),
795 kvmppc_get_gpr(vcpu, 7));
796 if (ret == H_TOO_HARD)
797 return RESUME_HOST;
798 break;
799 case H_STUFF_TCE:
800 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
801 kvmppc_get_gpr(vcpu, 5),
802 kvmppc_get_gpr(vcpu, 6),
803 kvmppc_get_gpr(vcpu, 7));
804 if (ret == H_TOO_HARD)
805 return RESUME_HOST;
806 break;
807 default:
808 return RESUME_HOST;
810 kvmppc_set_gpr(vcpu, 3, ret);
811 vcpu->arch.hcall_needed = 0;
812 return RESUME_GUEST;
815 static int kvmppc_hcall_impl_hv(unsigned long cmd)
817 switch (cmd) {
818 case H_CEDE:
819 case H_PROD:
820 case H_CONFER:
821 case H_REGISTER_VPA:
822 case H_SET_MODE:
823 case H_LOGICAL_CI_LOAD:
824 case H_LOGICAL_CI_STORE:
825 #ifdef CONFIG_KVM_XICS
826 case H_XIRR:
827 case H_CPPR:
828 case H_EOI:
829 case H_IPI:
830 case H_IPOLL:
831 case H_XIRR_X:
832 #endif
833 return 1;
836 /* See if it's in the real-mode table */
837 return kvmppc_hcall_impl_hv_realmode(cmd);
840 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
841 struct kvm_vcpu *vcpu)
843 u32 last_inst;
845 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
846 EMULATE_DONE) {
848 * Fetch failed, so return to guest and
849 * try executing it again.
851 return RESUME_GUEST;
854 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
855 run->exit_reason = KVM_EXIT_DEBUG;
856 run->debug.arch.address = kvmppc_get_pc(vcpu);
857 return RESUME_HOST;
858 } else {
859 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
860 return RESUME_GUEST;
864 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
865 struct task_struct *tsk)
867 int r = RESUME_HOST;
869 vcpu->stat.sum_exits++;
872 * This can happen if an interrupt occurs in the last stages
873 * of guest entry or the first stages of guest exit (i.e. after
874 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
875 * and before setting it to KVM_GUEST_MODE_HOST_HV).
876 * That can happen due to a bug, or due to a machine check
877 * occurring at just the wrong time.
879 if (vcpu->arch.shregs.msr & MSR_HV) {
880 printk(KERN_EMERG "KVM trap in HV mode!\n");
881 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
882 vcpu->arch.trap, kvmppc_get_pc(vcpu),
883 vcpu->arch.shregs.msr);
884 kvmppc_dump_regs(vcpu);
885 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
886 run->hw.hardware_exit_reason = vcpu->arch.trap;
887 return RESUME_HOST;
889 run->exit_reason = KVM_EXIT_UNKNOWN;
890 run->ready_for_interrupt_injection = 1;
891 switch (vcpu->arch.trap) {
892 /* We're good on these - the host merely wanted to get our attention */
893 case BOOK3S_INTERRUPT_HV_DECREMENTER:
894 vcpu->stat.dec_exits++;
895 r = RESUME_GUEST;
896 break;
897 case BOOK3S_INTERRUPT_EXTERNAL:
898 case BOOK3S_INTERRUPT_H_DOORBELL:
899 vcpu->stat.ext_intr_exits++;
900 r = RESUME_GUEST;
901 break;
902 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
903 case BOOK3S_INTERRUPT_HMI:
904 case BOOK3S_INTERRUPT_PERFMON:
905 r = RESUME_GUEST;
906 break;
907 case BOOK3S_INTERRUPT_MACHINE_CHECK:
909 * Deliver a machine check interrupt to the guest.
910 * We have to do this, even if the host has handled the
911 * machine check, because machine checks use SRR0/1 and
912 * the interrupt might have trashed guest state in them.
914 kvmppc_book3s_queue_irqprio(vcpu,
915 BOOK3S_INTERRUPT_MACHINE_CHECK);
916 r = RESUME_GUEST;
917 break;
918 case BOOK3S_INTERRUPT_PROGRAM:
920 ulong flags;
922 * Normally program interrupts are delivered directly
923 * to the guest by the hardware, but we can get here
924 * as a result of a hypervisor emulation interrupt
925 * (e40) getting turned into a 700 by BML RTAS.
927 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
928 kvmppc_core_queue_program(vcpu, flags);
929 r = RESUME_GUEST;
930 break;
932 case BOOK3S_INTERRUPT_SYSCALL:
934 /* hcall - punt to userspace */
935 int i;
937 /* hypercall with MSR_PR has already been handled in rmode,
938 * and never reaches here.
941 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
942 for (i = 0; i < 9; ++i)
943 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
944 run->exit_reason = KVM_EXIT_PAPR_HCALL;
945 vcpu->arch.hcall_needed = 1;
946 r = RESUME_HOST;
947 break;
950 * We get these next two if the guest accesses a page which it thinks
951 * it has mapped but which is not actually present, either because
952 * it is for an emulated I/O device or because the corresonding
953 * host page has been paged out. Any other HDSI/HISI interrupts
954 * have been handled already.
956 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
957 r = RESUME_PAGE_FAULT;
958 break;
959 case BOOK3S_INTERRUPT_H_INST_STORAGE:
960 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
961 vcpu->arch.fault_dsisr = 0;
962 r = RESUME_PAGE_FAULT;
963 break;
965 * This occurs if the guest executes an illegal instruction.
966 * If the guest debug is disabled, generate a program interrupt
967 * to the guest. If guest debug is enabled, we need to check
968 * whether the instruction is a software breakpoint instruction.
969 * Accordingly return to Guest or Host.
971 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
972 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
973 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
974 swab32(vcpu->arch.emul_inst) :
975 vcpu->arch.emul_inst;
976 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
977 r = kvmppc_emulate_debug_inst(run, vcpu);
978 } else {
979 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
980 r = RESUME_GUEST;
982 break;
984 * This occurs if the guest (kernel or userspace), does something that
985 * is prohibited by HFSCR. We just generate a program interrupt to
986 * the guest.
988 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
989 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
990 r = RESUME_GUEST;
991 break;
992 default:
993 kvmppc_dump_regs(vcpu);
994 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
995 vcpu->arch.trap, kvmppc_get_pc(vcpu),
996 vcpu->arch.shregs.msr);
997 run->hw.hardware_exit_reason = vcpu->arch.trap;
998 r = RESUME_HOST;
999 break;
1002 return r;
1005 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1006 struct kvm_sregs *sregs)
1008 int i;
1010 memset(sregs, 0, sizeof(struct kvm_sregs));
1011 sregs->pvr = vcpu->arch.pvr;
1012 for (i = 0; i < vcpu->arch.slb_max; i++) {
1013 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1014 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1017 return 0;
1020 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1021 struct kvm_sregs *sregs)
1023 int i, j;
1025 /* Only accept the same PVR as the host's, since we can't spoof it */
1026 if (sregs->pvr != vcpu->arch.pvr)
1027 return -EINVAL;
1029 j = 0;
1030 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1031 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1032 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1033 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1034 ++j;
1037 vcpu->arch.slb_max = j;
1039 return 0;
1042 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1043 bool preserve_top32)
1045 struct kvm *kvm = vcpu->kvm;
1046 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1047 u64 mask;
1049 mutex_lock(&kvm->lock);
1050 spin_lock(&vc->lock);
1052 * If ILE (interrupt little-endian) has changed, update the
1053 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1055 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1056 struct kvm_vcpu *vcpu;
1057 int i;
1059 kvm_for_each_vcpu(i, vcpu, kvm) {
1060 if (vcpu->arch.vcore != vc)
1061 continue;
1062 if (new_lpcr & LPCR_ILE)
1063 vcpu->arch.intr_msr |= MSR_LE;
1064 else
1065 vcpu->arch.intr_msr &= ~MSR_LE;
1070 * Userspace can only modify DPFD (default prefetch depth),
1071 * ILE (interrupt little-endian) and TC (translation control).
1072 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1074 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1075 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1076 mask |= LPCR_AIL;
1078 /* Broken 32-bit version of LPCR must not clear top bits */
1079 if (preserve_top32)
1080 mask &= 0xFFFFFFFF;
1081 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1082 spin_unlock(&vc->lock);
1083 mutex_unlock(&kvm->lock);
1086 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1087 union kvmppc_one_reg *val)
1089 int r = 0;
1090 long int i;
1092 switch (id) {
1093 case KVM_REG_PPC_DEBUG_INST:
1094 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1095 break;
1096 case KVM_REG_PPC_HIOR:
1097 *val = get_reg_val(id, 0);
1098 break;
1099 case KVM_REG_PPC_DABR:
1100 *val = get_reg_val(id, vcpu->arch.dabr);
1101 break;
1102 case KVM_REG_PPC_DABRX:
1103 *val = get_reg_val(id, vcpu->arch.dabrx);
1104 break;
1105 case KVM_REG_PPC_DSCR:
1106 *val = get_reg_val(id, vcpu->arch.dscr);
1107 break;
1108 case KVM_REG_PPC_PURR:
1109 *val = get_reg_val(id, vcpu->arch.purr);
1110 break;
1111 case KVM_REG_PPC_SPURR:
1112 *val = get_reg_val(id, vcpu->arch.spurr);
1113 break;
1114 case KVM_REG_PPC_AMR:
1115 *val = get_reg_val(id, vcpu->arch.amr);
1116 break;
1117 case KVM_REG_PPC_UAMOR:
1118 *val = get_reg_val(id, vcpu->arch.uamor);
1119 break;
1120 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1121 i = id - KVM_REG_PPC_MMCR0;
1122 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1123 break;
1124 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1125 i = id - KVM_REG_PPC_PMC1;
1126 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1127 break;
1128 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1129 i = id - KVM_REG_PPC_SPMC1;
1130 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1131 break;
1132 case KVM_REG_PPC_SIAR:
1133 *val = get_reg_val(id, vcpu->arch.siar);
1134 break;
1135 case KVM_REG_PPC_SDAR:
1136 *val = get_reg_val(id, vcpu->arch.sdar);
1137 break;
1138 case KVM_REG_PPC_SIER:
1139 *val = get_reg_val(id, vcpu->arch.sier);
1140 break;
1141 case KVM_REG_PPC_IAMR:
1142 *val = get_reg_val(id, vcpu->arch.iamr);
1143 break;
1144 case KVM_REG_PPC_PSPB:
1145 *val = get_reg_val(id, vcpu->arch.pspb);
1146 break;
1147 case KVM_REG_PPC_DPDES:
1148 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1149 break;
1150 case KVM_REG_PPC_DAWR:
1151 *val = get_reg_val(id, vcpu->arch.dawr);
1152 break;
1153 case KVM_REG_PPC_DAWRX:
1154 *val = get_reg_val(id, vcpu->arch.dawrx);
1155 break;
1156 case KVM_REG_PPC_CIABR:
1157 *val = get_reg_val(id, vcpu->arch.ciabr);
1158 break;
1159 case KVM_REG_PPC_CSIGR:
1160 *val = get_reg_val(id, vcpu->arch.csigr);
1161 break;
1162 case KVM_REG_PPC_TACR:
1163 *val = get_reg_val(id, vcpu->arch.tacr);
1164 break;
1165 case KVM_REG_PPC_TCSCR:
1166 *val = get_reg_val(id, vcpu->arch.tcscr);
1167 break;
1168 case KVM_REG_PPC_PID:
1169 *val = get_reg_val(id, vcpu->arch.pid);
1170 break;
1171 case KVM_REG_PPC_ACOP:
1172 *val = get_reg_val(id, vcpu->arch.acop);
1173 break;
1174 case KVM_REG_PPC_WORT:
1175 *val = get_reg_val(id, vcpu->arch.wort);
1176 break;
1177 case KVM_REG_PPC_VPA_ADDR:
1178 spin_lock(&vcpu->arch.vpa_update_lock);
1179 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1180 spin_unlock(&vcpu->arch.vpa_update_lock);
1181 break;
1182 case KVM_REG_PPC_VPA_SLB:
1183 spin_lock(&vcpu->arch.vpa_update_lock);
1184 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1185 val->vpaval.length = vcpu->arch.slb_shadow.len;
1186 spin_unlock(&vcpu->arch.vpa_update_lock);
1187 break;
1188 case KVM_REG_PPC_VPA_DTL:
1189 spin_lock(&vcpu->arch.vpa_update_lock);
1190 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1191 val->vpaval.length = vcpu->arch.dtl.len;
1192 spin_unlock(&vcpu->arch.vpa_update_lock);
1193 break;
1194 case KVM_REG_PPC_TB_OFFSET:
1195 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1196 break;
1197 case KVM_REG_PPC_LPCR:
1198 case KVM_REG_PPC_LPCR_64:
1199 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1200 break;
1201 case KVM_REG_PPC_PPR:
1202 *val = get_reg_val(id, vcpu->arch.ppr);
1203 break;
1204 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1205 case KVM_REG_PPC_TFHAR:
1206 *val = get_reg_val(id, vcpu->arch.tfhar);
1207 break;
1208 case KVM_REG_PPC_TFIAR:
1209 *val = get_reg_val(id, vcpu->arch.tfiar);
1210 break;
1211 case KVM_REG_PPC_TEXASR:
1212 *val = get_reg_val(id, vcpu->arch.texasr);
1213 break;
1214 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1215 i = id - KVM_REG_PPC_TM_GPR0;
1216 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1217 break;
1218 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1220 int j;
1221 i = id - KVM_REG_PPC_TM_VSR0;
1222 if (i < 32)
1223 for (j = 0; j < TS_FPRWIDTH; j++)
1224 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1225 else {
1226 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1227 val->vval = vcpu->arch.vr_tm.vr[i-32];
1228 else
1229 r = -ENXIO;
1231 break;
1233 case KVM_REG_PPC_TM_CR:
1234 *val = get_reg_val(id, vcpu->arch.cr_tm);
1235 break;
1236 case KVM_REG_PPC_TM_LR:
1237 *val = get_reg_val(id, vcpu->arch.lr_tm);
1238 break;
1239 case KVM_REG_PPC_TM_CTR:
1240 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1241 break;
1242 case KVM_REG_PPC_TM_FPSCR:
1243 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1244 break;
1245 case KVM_REG_PPC_TM_AMR:
1246 *val = get_reg_val(id, vcpu->arch.amr_tm);
1247 break;
1248 case KVM_REG_PPC_TM_PPR:
1249 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1250 break;
1251 case KVM_REG_PPC_TM_VRSAVE:
1252 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1253 break;
1254 case KVM_REG_PPC_TM_VSCR:
1255 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1256 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1257 else
1258 r = -ENXIO;
1259 break;
1260 case KVM_REG_PPC_TM_DSCR:
1261 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1262 break;
1263 case KVM_REG_PPC_TM_TAR:
1264 *val = get_reg_val(id, vcpu->arch.tar_tm);
1265 break;
1266 #endif
1267 case KVM_REG_PPC_ARCH_COMPAT:
1268 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1269 break;
1270 default:
1271 r = -EINVAL;
1272 break;
1275 return r;
1278 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1279 union kvmppc_one_reg *val)
1281 int r = 0;
1282 long int i;
1283 unsigned long addr, len;
1285 switch (id) {
1286 case KVM_REG_PPC_HIOR:
1287 /* Only allow this to be set to zero */
1288 if (set_reg_val(id, *val))
1289 r = -EINVAL;
1290 break;
1291 case KVM_REG_PPC_DABR:
1292 vcpu->arch.dabr = set_reg_val(id, *val);
1293 break;
1294 case KVM_REG_PPC_DABRX:
1295 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1296 break;
1297 case KVM_REG_PPC_DSCR:
1298 vcpu->arch.dscr = set_reg_val(id, *val);
1299 break;
1300 case KVM_REG_PPC_PURR:
1301 vcpu->arch.purr = set_reg_val(id, *val);
1302 break;
1303 case KVM_REG_PPC_SPURR:
1304 vcpu->arch.spurr = set_reg_val(id, *val);
1305 break;
1306 case KVM_REG_PPC_AMR:
1307 vcpu->arch.amr = set_reg_val(id, *val);
1308 break;
1309 case KVM_REG_PPC_UAMOR:
1310 vcpu->arch.uamor = set_reg_val(id, *val);
1311 break;
1312 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1313 i = id - KVM_REG_PPC_MMCR0;
1314 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1315 break;
1316 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1317 i = id - KVM_REG_PPC_PMC1;
1318 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1319 break;
1320 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1321 i = id - KVM_REG_PPC_SPMC1;
1322 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1323 break;
1324 case KVM_REG_PPC_SIAR:
1325 vcpu->arch.siar = set_reg_val(id, *val);
1326 break;
1327 case KVM_REG_PPC_SDAR:
1328 vcpu->arch.sdar = set_reg_val(id, *val);
1329 break;
1330 case KVM_REG_PPC_SIER:
1331 vcpu->arch.sier = set_reg_val(id, *val);
1332 break;
1333 case KVM_REG_PPC_IAMR:
1334 vcpu->arch.iamr = set_reg_val(id, *val);
1335 break;
1336 case KVM_REG_PPC_PSPB:
1337 vcpu->arch.pspb = set_reg_val(id, *val);
1338 break;
1339 case KVM_REG_PPC_DPDES:
1340 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1341 break;
1342 case KVM_REG_PPC_DAWR:
1343 vcpu->arch.dawr = set_reg_val(id, *val);
1344 break;
1345 case KVM_REG_PPC_DAWRX:
1346 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1347 break;
1348 case KVM_REG_PPC_CIABR:
1349 vcpu->arch.ciabr = set_reg_val(id, *val);
1350 /* Don't allow setting breakpoints in hypervisor code */
1351 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1352 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1353 break;
1354 case KVM_REG_PPC_CSIGR:
1355 vcpu->arch.csigr = set_reg_val(id, *val);
1356 break;
1357 case KVM_REG_PPC_TACR:
1358 vcpu->arch.tacr = set_reg_val(id, *val);
1359 break;
1360 case KVM_REG_PPC_TCSCR:
1361 vcpu->arch.tcscr = set_reg_val(id, *val);
1362 break;
1363 case KVM_REG_PPC_PID:
1364 vcpu->arch.pid = set_reg_val(id, *val);
1365 break;
1366 case KVM_REG_PPC_ACOP:
1367 vcpu->arch.acop = set_reg_val(id, *val);
1368 break;
1369 case KVM_REG_PPC_WORT:
1370 vcpu->arch.wort = set_reg_val(id, *val);
1371 break;
1372 case KVM_REG_PPC_VPA_ADDR:
1373 addr = set_reg_val(id, *val);
1374 r = -EINVAL;
1375 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1376 vcpu->arch.dtl.next_gpa))
1377 break;
1378 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1379 break;
1380 case KVM_REG_PPC_VPA_SLB:
1381 addr = val->vpaval.addr;
1382 len = val->vpaval.length;
1383 r = -EINVAL;
1384 if (addr && !vcpu->arch.vpa.next_gpa)
1385 break;
1386 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1387 break;
1388 case KVM_REG_PPC_VPA_DTL:
1389 addr = val->vpaval.addr;
1390 len = val->vpaval.length;
1391 r = -EINVAL;
1392 if (addr && (len < sizeof(struct dtl_entry) ||
1393 !vcpu->arch.vpa.next_gpa))
1394 break;
1395 len -= len % sizeof(struct dtl_entry);
1396 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1397 break;
1398 case KVM_REG_PPC_TB_OFFSET:
1399 /* round up to multiple of 2^24 */
1400 vcpu->arch.vcore->tb_offset =
1401 ALIGN(set_reg_val(id, *val), 1UL << 24);
1402 break;
1403 case KVM_REG_PPC_LPCR:
1404 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1405 break;
1406 case KVM_REG_PPC_LPCR_64:
1407 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1408 break;
1409 case KVM_REG_PPC_PPR:
1410 vcpu->arch.ppr = set_reg_val(id, *val);
1411 break;
1412 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1413 case KVM_REG_PPC_TFHAR:
1414 vcpu->arch.tfhar = set_reg_val(id, *val);
1415 break;
1416 case KVM_REG_PPC_TFIAR:
1417 vcpu->arch.tfiar = set_reg_val(id, *val);
1418 break;
1419 case KVM_REG_PPC_TEXASR:
1420 vcpu->arch.texasr = set_reg_val(id, *val);
1421 break;
1422 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1423 i = id - KVM_REG_PPC_TM_GPR0;
1424 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1425 break;
1426 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1428 int j;
1429 i = id - KVM_REG_PPC_TM_VSR0;
1430 if (i < 32)
1431 for (j = 0; j < TS_FPRWIDTH; j++)
1432 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1433 else
1434 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1435 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1436 else
1437 r = -ENXIO;
1438 break;
1440 case KVM_REG_PPC_TM_CR:
1441 vcpu->arch.cr_tm = set_reg_val(id, *val);
1442 break;
1443 case KVM_REG_PPC_TM_LR:
1444 vcpu->arch.lr_tm = set_reg_val(id, *val);
1445 break;
1446 case KVM_REG_PPC_TM_CTR:
1447 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1448 break;
1449 case KVM_REG_PPC_TM_FPSCR:
1450 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1451 break;
1452 case KVM_REG_PPC_TM_AMR:
1453 vcpu->arch.amr_tm = set_reg_val(id, *val);
1454 break;
1455 case KVM_REG_PPC_TM_PPR:
1456 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1457 break;
1458 case KVM_REG_PPC_TM_VRSAVE:
1459 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1460 break;
1461 case KVM_REG_PPC_TM_VSCR:
1462 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1463 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1464 else
1465 r = - ENXIO;
1466 break;
1467 case KVM_REG_PPC_TM_DSCR:
1468 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1469 break;
1470 case KVM_REG_PPC_TM_TAR:
1471 vcpu->arch.tar_tm = set_reg_val(id, *val);
1472 break;
1473 #endif
1474 case KVM_REG_PPC_ARCH_COMPAT:
1475 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1476 break;
1477 default:
1478 r = -EINVAL;
1479 break;
1482 return r;
1485 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1487 struct kvmppc_vcore *vcore;
1489 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1491 if (vcore == NULL)
1492 return NULL;
1494 INIT_LIST_HEAD(&vcore->runnable_threads);
1495 spin_lock_init(&vcore->lock);
1496 spin_lock_init(&vcore->stoltb_lock);
1497 init_swait_queue_head(&vcore->wq);
1498 vcore->preempt_tb = TB_NIL;
1499 vcore->lpcr = kvm->arch.lpcr;
1500 vcore->first_vcpuid = core * threads_per_subcore;
1501 vcore->kvm = kvm;
1502 INIT_LIST_HEAD(&vcore->preempt_list);
1504 return vcore;
1507 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1508 static struct debugfs_timings_element {
1509 const char *name;
1510 size_t offset;
1511 } timings[] = {
1512 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1513 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1514 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1515 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1516 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1519 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1521 struct debugfs_timings_state {
1522 struct kvm_vcpu *vcpu;
1523 unsigned int buflen;
1524 char buf[N_TIMINGS * 100];
1527 static int debugfs_timings_open(struct inode *inode, struct file *file)
1529 struct kvm_vcpu *vcpu = inode->i_private;
1530 struct debugfs_timings_state *p;
1532 p = kzalloc(sizeof(*p), GFP_KERNEL);
1533 if (!p)
1534 return -ENOMEM;
1536 kvm_get_kvm(vcpu->kvm);
1537 p->vcpu = vcpu;
1538 file->private_data = p;
1540 return nonseekable_open(inode, file);
1543 static int debugfs_timings_release(struct inode *inode, struct file *file)
1545 struct debugfs_timings_state *p = file->private_data;
1547 kvm_put_kvm(p->vcpu->kvm);
1548 kfree(p);
1549 return 0;
1552 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1553 size_t len, loff_t *ppos)
1555 struct debugfs_timings_state *p = file->private_data;
1556 struct kvm_vcpu *vcpu = p->vcpu;
1557 char *s, *buf_end;
1558 struct kvmhv_tb_accumulator tb;
1559 u64 count;
1560 loff_t pos;
1561 ssize_t n;
1562 int i, loops;
1563 bool ok;
1565 if (!p->buflen) {
1566 s = p->buf;
1567 buf_end = s + sizeof(p->buf);
1568 for (i = 0; i < N_TIMINGS; ++i) {
1569 struct kvmhv_tb_accumulator *acc;
1571 acc = (struct kvmhv_tb_accumulator *)
1572 ((unsigned long)vcpu + timings[i].offset);
1573 ok = false;
1574 for (loops = 0; loops < 1000; ++loops) {
1575 count = acc->seqcount;
1576 if (!(count & 1)) {
1577 smp_rmb();
1578 tb = *acc;
1579 smp_rmb();
1580 if (count == acc->seqcount) {
1581 ok = true;
1582 break;
1585 udelay(1);
1587 if (!ok)
1588 snprintf(s, buf_end - s, "%s: stuck\n",
1589 timings[i].name);
1590 else
1591 snprintf(s, buf_end - s,
1592 "%s: %llu %llu %llu %llu\n",
1593 timings[i].name, count / 2,
1594 tb_to_ns(tb.tb_total),
1595 tb_to_ns(tb.tb_min),
1596 tb_to_ns(tb.tb_max));
1597 s += strlen(s);
1599 p->buflen = s - p->buf;
1602 pos = *ppos;
1603 if (pos >= p->buflen)
1604 return 0;
1605 if (len > p->buflen - pos)
1606 len = p->buflen - pos;
1607 n = copy_to_user(buf, p->buf + pos, len);
1608 if (n) {
1609 if (n == len)
1610 return -EFAULT;
1611 len -= n;
1613 *ppos = pos + len;
1614 return len;
1617 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1618 size_t len, loff_t *ppos)
1620 return -EACCES;
1623 static const struct file_operations debugfs_timings_ops = {
1624 .owner = THIS_MODULE,
1625 .open = debugfs_timings_open,
1626 .release = debugfs_timings_release,
1627 .read = debugfs_timings_read,
1628 .write = debugfs_timings_write,
1629 .llseek = generic_file_llseek,
1632 /* Create a debugfs directory for the vcpu */
1633 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1635 char buf[16];
1636 struct kvm *kvm = vcpu->kvm;
1638 snprintf(buf, sizeof(buf), "vcpu%u", id);
1639 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1640 return;
1641 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1642 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1643 return;
1644 vcpu->arch.debugfs_timings =
1645 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1646 vcpu, &debugfs_timings_ops);
1649 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1650 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1653 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1655 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1656 unsigned int id)
1658 struct kvm_vcpu *vcpu;
1659 int err = -EINVAL;
1660 int core;
1661 struct kvmppc_vcore *vcore;
1663 core = id / threads_per_subcore;
1664 if (core >= KVM_MAX_VCORES)
1665 goto out;
1667 err = -ENOMEM;
1668 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1669 if (!vcpu)
1670 goto out;
1672 err = kvm_vcpu_init(vcpu, kvm, id);
1673 if (err)
1674 goto free_vcpu;
1676 vcpu->arch.shared = &vcpu->arch.shregs;
1677 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1679 * The shared struct is never shared on HV,
1680 * so we can always use host endianness
1682 #ifdef __BIG_ENDIAN__
1683 vcpu->arch.shared_big_endian = true;
1684 #else
1685 vcpu->arch.shared_big_endian = false;
1686 #endif
1687 #endif
1688 vcpu->arch.mmcr[0] = MMCR0_FC;
1689 vcpu->arch.ctrl = CTRL_RUNLATCH;
1690 /* default to host PVR, since we can't spoof it */
1691 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1692 spin_lock_init(&vcpu->arch.vpa_update_lock);
1693 spin_lock_init(&vcpu->arch.tbacct_lock);
1694 vcpu->arch.busy_preempt = TB_NIL;
1695 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1697 kvmppc_mmu_book3s_hv_init(vcpu);
1699 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1701 init_waitqueue_head(&vcpu->arch.cpu_run);
1703 mutex_lock(&kvm->lock);
1704 vcore = kvm->arch.vcores[core];
1705 if (!vcore) {
1706 vcore = kvmppc_vcore_create(kvm, core);
1707 kvm->arch.vcores[core] = vcore;
1708 kvm->arch.online_vcores++;
1710 mutex_unlock(&kvm->lock);
1712 if (!vcore)
1713 goto free_vcpu;
1715 spin_lock(&vcore->lock);
1716 ++vcore->num_threads;
1717 spin_unlock(&vcore->lock);
1718 vcpu->arch.vcore = vcore;
1719 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1720 vcpu->arch.thread_cpu = -1;
1722 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1723 kvmppc_sanity_check(vcpu);
1725 debugfs_vcpu_init(vcpu, id);
1727 return vcpu;
1729 free_vcpu:
1730 kmem_cache_free(kvm_vcpu_cache, vcpu);
1731 out:
1732 return ERR_PTR(err);
1735 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1737 if (vpa->pinned_addr)
1738 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1739 vpa->dirty);
1742 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1744 spin_lock(&vcpu->arch.vpa_update_lock);
1745 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1746 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1747 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1748 spin_unlock(&vcpu->arch.vpa_update_lock);
1749 kvm_vcpu_uninit(vcpu);
1750 kmem_cache_free(kvm_vcpu_cache, vcpu);
1753 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1755 /* Indicate we want to get back into the guest */
1756 return 1;
1759 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1761 unsigned long dec_nsec, now;
1763 now = get_tb();
1764 if (now > vcpu->arch.dec_expires) {
1765 /* decrementer has already gone negative */
1766 kvmppc_core_queue_dec(vcpu);
1767 kvmppc_core_prepare_to_enter(vcpu);
1768 return;
1770 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1771 / tb_ticks_per_sec;
1772 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1773 HRTIMER_MODE_REL);
1774 vcpu->arch.timer_running = 1;
1777 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1779 vcpu->arch.ceded = 0;
1780 if (vcpu->arch.timer_running) {
1781 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1782 vcpu->arch.timer_running = 0;
1786 extern void __kvmppc_vcore_entry(void);
1788 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1789 struct kvm_vcpu *vcpu)
1791 u64 now;
1793 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1794 return;
1795 spin_lock_irq(&vcpu->arch.tbacct_lock);
1796 now = mftb();
1797 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1798 vcpu->arch.stolen_logged;
1799 vcpu->arch.busy_preempt = now;
1800 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1801 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1802 --vc->n_runnable;
1803 list_del(&vcpu->arch.run_list);
1806 static int kvmppc_grab_hwthread(int cpu)
1808 struct paca_struct *tpaca;
1809 long timeout = 10000;
1811 tpaca = &paca[cpu];
1813 /* Ensure the thread won't go into the kernel if it wakes */
1814 tpaca->kvm_hstate.kvm_vcpu = NULL;
1815 tpaca->kvm_hstate.kvm_vcore = NULL;
1816 tpaca->kvm_hstate.napping = 0;
1817 smp_wmb();
1818 tpaca->kvm_hstate.hwthread_req = 1;
1821 * If the thread is already executing in the kernel (e.g. handling
1822 * a stray interrupt), wait for it to get back to nap mode.
1823 * The smp_mb() is to ensure that our setting of hwthread_req
1824 * is visible before we look at hwthread_state, so if this
1825 * races with the code at system_reset_pSeries and the thread
1826 * misses our setting of hwthread_req, we are sure to see its
1827 * setting of hwthread_state, and vice versa.
1829 smp_mb();
1830 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1831 if (--timeout <= 0) {
1832 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1833 return -EBUSY;
1835 udelay(1);
1837 return 0;
1840 static void kvmppc_release_hwthread(int cpu)
1842 struct paca_struct *tpaca;
1844 tpaca = &paca[cpu];
1845 tpaca->kvm_hstate.hwthread_req = 0;
1846 tpaca->kvm_hstate.kvm_vcpu = NULL;
1847 tpaca->kvm_hstate.kvm_vcore = NULL;
1848 tpaca->kvm_hstate.kvm_split_mode = NULL;
1851 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1853 int cpu;
1854 struct paca_struct *tpaca;
1855 struct kvmppc_vcore *mvc = vc->master_vcore;
1857 cpu = vc->pcpu;
1858 if (vcpu) {
1859 if (vcpu->arch.timer_running) {
1860 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1861 vcpu->arch.timer_running = 0;
1863 cpu += vcpu->arch.ptid;
1864 vcpu->cpu = mvc->pcpu;
1865 vcpu->arch.thread_cpu = cpu;
1867 tpaca = &paca[cpu];
1868 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1869 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1870 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1871 smp_wmb();
1872 tpaca->kvm_hstate.kvm_vcore = mvc;
1873 if (cpu != smp_processor_id())
1874 kvmppc_ipi_thread(cpu);
1877 static void kvmppc_wait_for_nap(void)
1879 int cpu = smp_processor_id();
1880 int i, loops;
1882 for (loops = 0; loops < 1000000; ++loops) {
1884 * Check if all threads are finished.
1885 * We set the vcore pointer when starting a thread
1886 * and the thread clears it when finished, so we look
1887 * for any threads that still have a non-NULL vcore ptr.
1889 for (i = 1; i < threads_per_subcore; ++i)
1890 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1891 break;
1892 if (i == threads_per_subcore) {
1893 HMT_medium();
1894 return;
1896 HMT_low();
1898 HMT_medium();
1899 for (i = 1; i < threads_per_subcore; ++i)
1900 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1901 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1905 * Check that we are on thread 0 and that any other threads in
1906 * this core are off-line. Then grab the threads so they can't
1907 * enter the kernel.
1909 static int on_primary_thread(void)
1911 int cpu = smp_processor_id();
1912 int thr;
1914 /* Are we on a primary subcore? */
1915 if (cpu_thread_in_subcore(cpu))
1916 return 0;
1918 thr = 0;
1919 while (++thr < threads_per_subcore)
1920 if (cpu_online(cpu + thr))
1921 return 0;
1923 /* Grab all hw threads so they can't go into the kernel */
1924 for (thr = 1; thr < threads_per_subcore; ++thr) {
1925 if (kvmppc_grab_hwthread(cpu + thr)) {
1926 /* Couldn't grab one; let the others go */
1927 do {
1928 kvmppc_release_hwthread(cpu + thr);
1929 } while (--thr > 0);
1930 return 0;
1933 return 1;
1937 * A list of virtual cores for each physical CPU.
1938 * These are vcores that could run but their runner VCPU tasks are
1939 * (or may be) preempted.
1941 struct preempted_vcore_list {
1942 struct list_head list;
1943 spinlock_t lock;
1946 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1948 static void init_vcore_lists(void)
1950 int cpu;
1952 for_each_possible_cpu(cpu) {
1953 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1954 spin_lock_init(&lp->lock);
1955 INIT_LIST_HEAD(&lp->list);
1959 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1961 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1963 vc->vcore_state = VCORE_PREEMPT;
1964 vc->pcpu = smp_processor_id();
1965 if (vc->num_threads < threads_per_subcore) {
1966 spin_lock(&lp->lock);
1967 list_add_tail(&vc->preempt_list, &lp->list);
1968 spin_unlock(&lp->lock);
1971 /* Start accumulating stolen time */
1972 kvmppc_core_start_stolen(vc);
1975 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1977 struct preempted_vcore_list *lp;
1979 kvmppc_core_end_stolen(vc);
1980 if (!list_empty(&vc->preempt_list)) {
1981 lp = &per_cpu(preempted_vcores, vc->pcpu);
1982 spin_lock(&lp->lock);
1983 list_del_init(&vc->preempt_list);
1984 spin_unlock(&lp->lock);
1986 vc->vcore_state = VCORE_INACTIVE;
1990 * This stores information about the virtual cores currently
1991 * assigned to a physical core.
1993 struct core_info {
1994 int n_subcores;
1995 int max_subcore_threads;
1996 int total_threads;
1997 int subcore_threads[MAX_SUBCORES];
1998 struct kvm *subcore_vm[MAX_SUBCORES];
1999 struct list_head vcs[MAX_SUBCORES];
2003 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2004 * respectively in 2-way micro-threading (split-core) mode.
2006 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2008 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2010 int sub;
2012 memset(cip, 0, sizeof(*cip));
2013 cip->n_subcores = 1;
2014 cip->max_subcore_threads = vc->num_threads;
2015 cip->total_threads = vc->num_threads;
2016 cip->subcore_threads[0] = vc->num_threads;
2017 cip->subcore_vm[0] = vc->kvm;
2018 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2019 INIT_LIST_HEAD(&cip->vcs[sub]);
2020 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2023 static bool subcore_config_ok(int n_subcores, int n_threads)
2025 /* Can only dynamically split if unsplit to begin with */
2026 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2027 return false;
2028 if (n_subcores > MAX_SUBCORES)
2029 return false;
2030 if (n_subcores > 1) {
2031 if (!(dynamic_mt_modes & 2))
2032 n_subcores = 4;
2033 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2034 return false;
2037 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2040 static void init_master_vcore(struct kvmppc_vcore *vc)
2042 vc->master_vcore = vc;
2043 vc->entry_exit_map = 0;
2044 vc->in_guest = 0;
2045 vc->napping_threads = 0;
2046 vc->conferring_threads = 0;
2050 * See if the existing subcores can be split into 3 (or fewer) subcores
2051 * of at most two threads each, so we can fit in another vcore. This
2052 * assumes there are at most two subcores and at most 6 threads in total.
2054 static bool can_split_piggybacked_subcores(struct core_info *cip)
2056 int sub, new_sub;
2057 int large_sub = -1;
2058 int thr;
2059 int n_subcores = cip->n_subcores;
2060 struct kvmppc_vcore *vc, *vcnext;
2061 struct kvmppc_vcore *master_vc = NULL;
2063 for (sub = 0; sub < cip->n_subcores; ++sub) {
2064 if (cip->subcore_threads[sub] <= 2)
2065 continue;
2066 if (large_sub >= 0)
2067 return false;
2068 large_sub = sub;
2069 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2070 preempt_list);
2071 if (vc->num_threads > 2)
2072 return false;
2073 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2075 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2076 return false;
2079 * Seems feasible, so go through and move vcores to new subcores.
2080 * Note that when we have two or more vcores in one subcore,
2081 * all those vcores must have only one thread each.
2083 new_sub = cip->n_subcores;
2084 thr = 0;
2085 sub = large_sub;
2086 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2087 if (thr >= 2) {
2088 list_del(&vc->preempt_list);
2089 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2090 /* vc->num_threads must be 1 */
2091 if (++cip->subcore_threads[new_sub] == 1) {
2092 cip->subcore_vm[new_sub] = vc->kvm;
2093 init_master_vcore(vc);
2094 master_vc = vc;
2095 ++cip->n_subcores;
2096 } else {
2097 vc->master_vcore = master_vc;
2098 ++new_sub;
2101 thr += vc->num_threads;
2103 cip->subcore_threads[large_sub] = 2;
2104 cip->max_subcore_threads = 2;
2106 return true;
2109 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2111 int n_threads = vc->num_threads;
2112 int sub;
2114 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2115 return false;
2117 if (n_threads < cip->max_subcore_threads)
2118 n_threads = cip->max_subcore_threads;
2119 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2120 cip->max_subcore_threads = n_threads;
2121 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2122 vc->num_threads <= 2) {
2124 * We may be able to fit another subcore in by
2125 * splitting an existing subcore with 3 or 4
2126 * threads into two 2-thread subcores, or one
2127 * with 5 or 6 threads into three subcores.
2128 * We can only do this if those subcores have
2129 * piggybacked virtual cores.
2131 if (!can_split_piggybacked_subcores(cip))
2132 return false;
2133 } else {
2134 return false;
2137 sub = cip->n_subcores;
2138 ++cip->n_subcores;
2139 cip->total_threads += vc->num_threads;
2140 cip->subcore_threads[sub] = vc->num_threads;
2141 cip->subcore_vm[sub] = vc->kvm;
2142 init_master_vcore(vc);
2143 list_del(&vc->preempt_list);
2144 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2146 return true;
2149 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2150 struct core_info *cip, int sub)
2152 struct kvmppc_vcore *vc;
2153 int n_thr;
2155 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2156 preempt_list);
2158 /* require same VM and same per-core reg values */
2159 if (pvc->kvm != vc->kvm ||
2160 pvc->tb_offset != vc->tb_offset ||
2161 pvc->pcr != vc->pcr ||
2162 pvc->lpcr != vc->lpcr)
2163 return false;
2165 /* P8 guest with > 1 thread per core would see wrong TIR value */
2166 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2167 (vc->num_threads > 1 || pvc->num_threads > 1))
2168 return false;
2170 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2171 if (n_thr > cip->max_subcore_threads) {
2172 if (!subcore_config_ok(cip->n_subcores, n_thr))
2173 return false;
2174 cip->max_subcore_threads = n_thr;
2177 cip->total_threads += pvc->num_threads;
2178 cip->subcore_threads[sub] = n_thr;
2179 pvc->master_vcore = vc;
2180 list_del(&pvc->preempt_list);
2181 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2183 return true;
2187 * Work out whether it is possible to piggyback the execution of
2188 * vcore *pvc onto the execution of the other vcores described in *cip.
2190 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2191 int target_threads)
2193 int sub;
2195 if (cip->total_threads + pvc->num_threads > target_threads)
2196 return false;
2197 for (sub = 0; sub < cip->n_subcores; ++sub)
2198 if (cip->subcore_threads[sub] &&
2199 can_piggyback_subcore(pvc, cip, sub))
2200 return true;
2202 if (can_dynamic_split(pvc, cip))
2203 return true;
2205 return false;
2208 static void prepare_threads(struct kvmppc_vcore *vc)
2210 struct kvm_vcpu *vcpu, *vnext;
2212 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2213 arch.run_list) {
2214 if (signal_pending(vcpu->arch.run_task))
2215 vcpu->arch.ret = -EINTR;
2216 else if (vcpu->arch.vpa.update_pending ||
2217 vcpu->arch.slb_shadow.update_pending ||
2218 vcpu->arch.dtl.update_pending)
2219 vcpu->arch.ret = RESUME_GUEST;
2220 else
2221 continue;
2222 kvmppc_remove_runnable(vc, vcpu);
2223 wake_up(&vcpu->arch.cpu_run);
2227 static void collect_piggybacks(struct core_info *cip, int target_threads)
2229 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2230 struct kvmppc_vcore *pvc, *vcnext;
2232 spin_lock(&lp->lock);
2233 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2234 if (!spin_trylock(&pvc->lock))
2235 continue;
2236 prepare_threads(pvc);
2237 if (!pvc->n_runnable) {
2238 list_del_init(&pvc->preempt_list);
2239 if (pvc->runner == NULL) {
2240 pvc->vcore_state = VCORE_INACTIVE;
2241 kvmppc_core_end_stolen(pvc);
2243 spin_unlock(&pvc->lock);
2244 continue;
2246 if (!can_piggyback(pvc, cip, target_threads)) {
2247 spin_unlock(&pvc->lock);
2248 continue;
2250 kvmppc_core_end_stolen(pvc);
2251 pvc->vcore_state = VCORE_PIGGYBACK;
2252 if (cip->total_threads >= target_threads)
2253 break;
2255 spin_unlock(&lp->lock);
2258 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2260 int still_running = 0;
2261 u64 now;
2262 long ret;
2263 struct kvm_vcpu *vcpu, *vnext;
2265 spin_lock(&vc->lock);
2266 now = get_tb();
2267 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2268 arch.run_list) {
2269 /* cancel pending dec exception if dec is positive */
2270 if (now < vcpu->arch.dec_expires &&
2271 kvmppc_core_pending_dec(vcpu))
2272 kvmppc_core_dequeue_dec(vcpu);
2274 trace_kvm_guest_exit(vcpu);
2276 ret = RESUME_GUEST;
2277 if (vcpu->arch.trap)
2278 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2279 vcpu->arch.run_task);
2281 vcpu->arch.ret = ret;
2282 vcpu->arch.trap = 0;
2284 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2285 if (vcpu->arch.pending_exceptions)
2286 kvmppc_core_prepare_to_enter(vcpu);
2287 if (vcpu->arch.ceded)
2288 kvmppc_set_timer(vcpu);
2289 else
2290 ++still_running;
2291 } else {
2292 kvmppc_remove_runnable(vc, vcpu);
2293 wake_up(&vcpu->arch.cpu_run);
2296 list_del_init(&vc->preempt_list);
2297 if (!is_master) {
2298 if (still_running > 0) {
2299 kvmppc_vcore_preempt(vc);
2300 } else if (vc->runner) {
2301 vc->vcore_state = VCORE_PREEMPT;
2302 kvmppc_core_start_stolen(vc);
2303 } else {
2304 vc->vcore_state = VCORE_INACTIVE;
2306 if (vc->n_runnable > 0 && vc->runner == NULL) {
2307 /* make sure there's a candidate runner awake */
2308 vcpu = list_first_entry(&vc->runnable_threads,
2309 struct kvm_vcpu, arch.run_list);
2310 wake_up(&vcpu->arch.cpu_run);
2313 spin_unlock(&vc->lock);
2317 * Clear core from the list of active host cores as we are about to
2318 * enter the guest. Only do this if it is the primary thread of the
2319 * core (not if a subcore) that is entering the guest.
2321 static inline void kvmppc_clear_host_core(int cpu)
2323 int core;
2325 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2326 return;
2328 * Memory barrier can be omitted here as we will do a smp_wmb()
2329 * later in kvmppc_start_thread and we need ensure that state is
2330 * visible to other CPUs only after we enter guest.
2332 core = cpu >> threads_shift;
2333 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2337 * Advertise this core as an active host core since we exited the guest
2338 * Only need to do this if it is the primary thread of the core that is
2339 * exiting.
2341 static inline void kvmppc_set_host_core(int cpu)
2343 int core;
2345 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2346 return;
2349 * Memory barrier can be omitted here because we do a spin_unlock
2350 * immediately after this which provides the memory barrier.
2352 core = cpu >> threads_shift;
2353 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2357 * Run a set of guest threads on a physical core.
2358 * Called with vc->lock held.
2360 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2362 struct kvm_vcpu *vcpu, *vnext;
2363 int i;
2364 int srcu_idx;
2365 struct core_info core_info;
2366 struct kvmppc_vcore *pvc, *vcnext;
2367 struct kvm_split_mode split_info, *sip;
2368 int split, subcore_size, active;
2369 int sub;
2370 bool thr0_done;
2371 unsigned long cmd_bit, stat_bit;
2372 int pcpu, thr;
2373 int target_threads;
2376 * Remove from the list any threads that have a signal pending
2377 * or need a VPA update done
2379 prepare_threads(vc);
2381 /* if the runner is no longer runnable, let the caller pick a new one */
2382 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2383 return;
2386 * Initialize *vc.
2388 init_master_vcore(vc);
2389 vc->preempt_tb = TB_NIL;
2392 * Make sure we are running on primary threads, and that secondary
2393 * threads are offline. Also check if the number of threads in this
2394 * guest are greater than the current system threads per guest.
2396 if ((threads_per_core > 1) &&
2397 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2398 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2399 arch.run_list) {
2400 vcpu->arch.ret = -EBUSY;
2401 kvmppc_remove_runnable(vc, vcpu);
2402 wake_up(&vcpu->arch.cpu_run);
2404 goto out;
2408 * See if we could run any other vcores on the physical core
2409 * along with this one.
2411 init_core_info(&core_info, vc);
2412 pcpu = smp_processor_id();
2413 target_threads = threads_per_subcore;
2414 if (target_smt_mode && target_smt_mode < target_threads)
2415 target_threads = target_smt_mode;
2416 if (vc->num_threads < target_threads)
2417 collect_piggybacks(&core_info, target_threads);
2419 /* Decide on micro-threading (split-core) mode */
2420 subcore_size = threads_per_subcore;
2421 cmd_bit = stat_bit = 0;
2422 split = core_info.n_subcores;
2423 sip = NULL;
2424 if (split > 1) {
2425 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2426 if (split == 2 && (dynamic_mt_modes & 2)) {
2427 cmd_bit = HID0_POWER8_1TO2LPAR;
2428 stat_bit = HID0_POWER8_2LPARMODE;
2429 } else {
2430 split = 4;
2431 cmd_bit = HID0_POWER8_1TO4LPAR;
2432 stat_bit = HID0_POWER8_4LPARMODE;
2434 subcore_size = MAX_SMT_THREADS / split;
2435 sip = &split_info;
2436 memset(&split_info, 0, sizeof(split_info));
2437 split_info.rpr = mfspr(SPRN_RPR);
2438 split_info.pmmar = mfspr(SPRN_PMMAR);
2439 split_info.ldbar = mfspr(SPRN_LDBAR);
2440 split_info.subcore_size = subcore_size;
2441 for (sub = 0; sub < core_info.n_subcores; ++sub)
2442 split_info.master_vcs[sub] =
2443 list_first_entry(&core_info.vcs[sub],
2444 struct kvmppc_vcore, preempt_list);
2445 /* order writes to split_info before kvm_split_mode pointer */
2446 smp_wmb();
2448 pcpu = smp_processor_id();
2449 for (thr = 0; thr < threads_per_subcore; ++thr)
2450 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2452 /* Initiate micro-threading (split-core) if required */
2453 if (cmd_bit) {
2454 unsigned long hid0 = mfspr(SPRN_HID0);
2456 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2457 mb();
2458 mtspr(SPRN_HID0, hid0);
2459 isync();
2460 for (;;) {
2461 hid0 = mfspr(SPRN_HID0);
2462 if (hid0 & stat_bit)
2463 break;
2464 cpu_relax();
2468 kvmppc_clear_host_core(pcpu);
2470 /* Start all the threads */
2471 active = 0;
2472 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2473 thr = subcore_thread_map[sub];
2474 thr0_done = false;
2475 active |= 1 << thr;
2476 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2477 pvc->pcpu = pcpu + thr;
2478 list_for_each_entry(vcpu, &pvc->runnable_threads,
2479 arch.run_list) {
2480 kvmppc_start_thread(vcpu, pvc);
2481 kvmppc_create_dtl_entry(vcpu, pvc);
2482 trace_kvm_guest_enter(vcpu);
2483 if (!vcpu->arch.ptid)
2484 thr0_done = true;
2485 active |= 1 << (thr + vcpu->arch.ptid);
2488 * We need to start the first thread of each subcore
2489 * even if it doesn't have a vcpu.
2491 if (pvc->master_vcore == pvc && !thr0_done)
2492 kvmppc_start_thread(NULL, pvc);
2493 thr += pvc->num_threads;
2498 * Ensure that split_info.do_nap is set after setting
2499 * the vcore pointer in the PACA of the secondaries.
2501 smp_mb();
2502 if (cmd_bit)
2503 split_info.do_nap = 1; /* ask secondaries to nap when done */
2506 * When doing micro-threading, poke the inactive threads as well.
2507 * This gets them to the nap instruction after kvm_do_nap,
2508 * which reduces the time taken to unsplit later.
2510 if (split > 1)
2511 for (thr = 1; thr < threads_per_subcore; ++thr)
2512 if (!(active & (1 << thr)))
2513 kvmppc_ipi_thread(pcpu + thr);
2515 vc->vcore_state = VCORE_RUNNING;
2516 preempt_disable();
2518 trace_kvmppc_run_core(vc, 0);
2520 for (sub = 0; sub < core_info.n_subcores; ++sub)
2521 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2522 spin_unlock(&pvc->lock);
2524 kvm_guest_enter();
2526 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2528 __kvmppc_vcore_entry();
2530 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2532 spin_lock(&vc->lock);
2533 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2534 vc->vcore_state = VCORE_EXITING;
2536 /* wait for secondary threads to finish writing their state to memory */
2537 kvmppc_wait_for_nap();
2539 /* Return to whole-core mode if we split the core earlier */
2540 if (split > 1) {
2541 unsigned long hid0 = mfspr(SPRN_HID0);
2542 unsigned long loops = 0;
2544 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2545 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2546 mb();
2547 mtspr(SPRN_HID0, hid0);
2548 isync();
2549 for (;;) {
2550 hid0 = mfspr(SPRN_HID0);
2551 if (!(hid0 & stat_bit))
2552 break;
2553 cpu_relax();
2554 ++loops;
2556 split_info.do_nap = 0;
2559 /* Let secondaries go back to the offline loop */
2560 for (i = 0; i < threads_per_subcore; ++i) {
2561 kvmppc_release_hwthread(pcpu + i);
2562 if (sip && sip->napped[i])
2563 kvmppc_ipi_thread(pcpu + i);
2566 kvmppc_set_host_core(pcpu);
2568 spin_unlock(&vc->lock);
2570 /* make sure updates to secondary vcpu structs are visible now */
2571 smp_mb();
2572 kvm_guest_exit();
2574 for (sub = 0; sub < core_info.n_subcores; ++sub)
2575 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2576 preempt_list)
2577 post_guest_process(pvc, pvc == vc);
2579 spin_lock(&vc->lock);
2580 preempt_enable();
2582 out:
2583 vc->vcore_state = VCORE_INACTIVE;
2584 trace_kvmppc_run_core(vc, 1);
2588 * Wait for some other vcpu thread to execute us, and
2589 * wake us up when we need to handle something in the host.
2591 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2592 struct kvm_vcpu *vcpu, int wait_state)
2594 DEFINE_WAIT(wait);
2596 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2597 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2598 spin_unlock(&vc->lock);
2599 schedule();
2600 spin_lock(&vc->lock);
2602 finish_wait(&vcpu->arch.cpu_run, &wait);
2606 * All the vcpus in this vcore are idle, so wait for a decrementer
2607 * or external interrupt to one of the vcpus. vc->lock is held.
2609 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2611 struct kvm_vcpu *vcpu;
2612 int do_sleep = 1;
2613 DECLARE_SWAITQUEUE(wait);
2615 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2618 * Check one last time for pending exceptions and ceded state after
2619 * we put ourselves on the wait queue
2621 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2622 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2623 do_sleep = 0;
2624 break;
2628 if (!do_sleep) {
2629 finish_swait(&vc->wq, &wait);
2630 return;
2633 vc->vcore_state = VCORE_SLEEPING;
2634 trace_kvmppc_vcore_blocked(vc, 0);
2635 spin_unlock(&vc->lock);
2636 schedule();
2637 finish_swait(&vc->wq, &wait);
2638 spin_lock(&vc->lock);
2639 vc->vcore_state = VCORE_INACTIVE;
2640 trace_kvmppc_vcore_blocked(vc, 1);
2643 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2645 int n_ceded;
2646 struct kvmppc_vcore *vc;
2647 struct kvm_vcpu *v, *vn;
2649 trace_kvmppc_run_vcpu_enter(vcpu);
2651 kvm_run->exit_reason = 0;
2652 vcpu->arch.ret = RESUME_GUEST;
2653 vcpu->arch.trap = 0;
2654 kvmppc_update_vpas(vcpu);
2657 * Synchronize with other threads in this virtual core
2659 vc = vcpu->arch.vcore;
2660 spin_lock(&vc->lock);
2661 vcpu->arch.ceded = 0;
2662 vcpu->arch.run_task = current;
2663 vcpu->arch.kvm_run = kvm_run;
2664 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2665 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2666 vcpu->arch.busy_preempt = TB_NIL;
2667 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2668 ++vc->n_runnable;
2671 * This happens the first time this is called for a vcpu.
2672 * If the vcore is already running, we may be able to start
2673 * this thread straight away and have it join in.
2675 if (!signal_pending(current)) {
2676 if (vc->vcore_state == VCORE_PIGGYBACK) {
2677 struct kvmppc_vcore *mvc = vc->master_vcore;
2678 if (spin_trylock(&mvc->lock)) {
2679 if (mvc->vcore_state == VCORE_RUNNING &&
2680 !VCORE_IS_EXITING(mvc)) {
2681 kvmppc_create_dtl_entry(vcpu, vc);
2682 kvmppc_start_thread(vcpu, vc);
2683 trace_kvm_guest_enter(vcpu);
2685 spin_unlock(&mvc->lock);
2687 } else if (vc->vcore_state == VCORE_RUNNING &&
2688 !VCORE_IS_EXITING(vc)) {
2689 kvmppc_create_dtl_entry(vcpu, vc);
2690 kvmppc_start_thread(vcpu, vc);
2691 trace_kvm_guest_enter(vcpu);
2692 } else if (vc->vcore_state == VCORE_SLEEPING) {
2693 swake_up(&vc->wq);
2698 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2699 !signal_pending(current)) {
2700 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2701 kvmppc_vcore_end_preempt(vc);
2703 if (vc->vcore_state != VCORE_INACTIVE) {
2704 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2705 continue;
2707 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2708 arch.run_list) {
2709 kvmppc_core_prepare_to_enter(v);
2710 if (signal_pending(v->arch.run_task)) {
2711 kvmppc_remove_runnable(vc, v);
2712 v->stat.signal_exits++;
2713 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2714 v->arch.ret = -EINTR;
2715 wake_up(&v->arch.cpu_run);
2718 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2719 break;
2720 n_ceded = 0;
2721 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2722 if (!v->arch.pending_exceptions)
2723 n_ceded += v->arch.ceded;
2724 else
2725 v->arch.ceded = 0;
2727 vc->runner = vcpu;
2728 if (n_ceded == vc->n_runnable) {
2729 kvmppc_vcore_blocked(vc);
2730 } else if (need_resched()) {
2731 kvmppc_vcore_preempt(vc);
2732 /* Let something else run */
2733 cond_resched_lock(&vc->lock);
2734 if (vc->vcore_state == VCORE_PREEMPT)
2735 kvmppc_vcore_end_preempt(vc);
2736 } else {
2737 kvmppc_run_core(vc);
2739 vc->runner = NULL;
2742 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2743 (vc->vcore_state == VCORE_RUNNING ||
2744 vc->vcore_state == VCORE_EXITING ||
2745 vc->vcore_state == VCORE_PIGGYBACK))
2746 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2748 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2749 kvmppc_vcore_end_preempt(vc);
2751 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2752 kvmppc_remove_runnable(vc, vcpu);
2753 vcpu->stat.signal_exits++;
2754 kvm_run->exit_reason = KVM_EXIT_INTR;
2755 vcpu->arch.ret = -EINTR;
2758 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2759 /* Wake up some vcpu to run the core */
2760 v = list_first_entry(&vc->runnable_threads,
2761 struct kvm_vcpu, arch.run_list);
2762 wake_up(&v->arch.cpu_run);
2765 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2766 spin_unlock(&vc->lock);
2767 return vcpu->arch.ret;
2770 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2772 int r;
2773 int srcu_idx;
2775 if (!vcpu->arch.sane) {
2776 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2777 return -EINVAL;
2780 kvmppc_core_prepare_to_enter(vcpu);
2782 /* No need to go into the guest when all we'll do is come back out */
2783 if (signal_pending(current)) {
2784 run->exit_reason = KVM_EXIT_INTR;
2785 return -EINTR;
2788 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2789 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2790 smp_mb();
2792 /* On the first time here, set up HTAB and VRMA */
2793 if (!vcpu->kvm->arch.hpte_setup_done) {
2794 r = kvmppc_hv_setup_htab_rma(vcpu);
2795 if (r)
2796 goto out;
2799 flush_all_to_thread(current);
2801 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2802 vcpu->arch.pgdir = current->mm->pgd;
2803 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2805 do {
2806 r = kvmppc_run_vcpu(run, vcpu);
2808 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2809 !(vcpu->arch.shregs.msr & MSR_PR)) {
2810 trace_kvm_hcall_enter(vcpu);
2811 r = kvmppc_pseries_do_hcall(vcpu);
2812 trace_kvm_hcall_exit(vcpu, r);
2813 kvmppc_core_prepare_to_enter(vcpu);
2814 } else if (r == RESUME_PAGE_FAULT) {
2815 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2816 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2817 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2818 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2820 } while (is_kvmppc_resume_guest(r));
2822 out:
2823 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2824 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2825 return r;
2828 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2829 int linux_psize)
2831 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2833 if (!def->shift)
2834 return;
2835 (*sps)->page_shift = def->shift;
2836 (*sps)->slb_enc = def->sllp;
2837 (*sps)->enc[0].page_shift = def->shift;
2838 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2840 * Add 16MB MPSS support if host supports it
2842 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2843 (*sps)->enc[1].page_shift = 24;
2844 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2846 (*sps)++;
2849 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2850 struct kvm_ppc_smmu_info *info)
2852 struct kvm_ppc_one_seg_page_size *sps;
2854 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2855 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2856 info->flags |= KVM_PPC_1T_SEGMENTS;
2857 info->slb_size = mmu_slb_size;
2859 /* We only support these sizes for now, and no muti-size segments */
2860 sps = &info->sps[0];
2861 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2862 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2863 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2865 return 0;
2869 * Get (and clear) the dirty memory log for a memory slot.
2871 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2872 struct kvm_dirty_log *log)
2874 struct kvm_memslots *slots;
2875 struct kvm_memory_slot *memslot;
2876 int r;
2877 unsigned long n;
2879 mutex_lock(&kvm->slots_lock);
2881 r = -EINVAL;
2882 if (log->slot >= KVM_USER_MEM_SLOTS)
2883 goto out;
2885 slots = kvm_memslots(kvm);
2886 memslot = id_to_memslot(slots, log->slot);
2887 r = -ENOENT;
2888 if (!memslot->dirty_bitmap)
2889 goto out;
2891 n = kvm_dirty_bitmap_bytes(memslot);
2892 memset(memslot->dirty_bitmap, 0, n);
2894 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2895 if (r)
2896 goto out;
2898 r = -EFAULT;
2899 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2900 goto out;
2902 r = 0;
2903 out:
2904 mutex_unlock(&kvm->slots_lock);
2905 return r;
2908 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2909 struct kvm_memory_slot *dont)
2911 if (!dont || free->arch.rmap != dont->arch.rmap) {
2912 vfree(free->arch.rmap);
2913 free->arch.rmap = NULL;
2917 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2918 unsigned long npages)
2920 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2921 if (!slot->arch.rmap)
2922 return -ENOMEM;
2924 return 0;
2927 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2928 struct kvm_memory_slot *memslot,
2929 const struct kvm_userspace_memory_region *mem)
2931 return 0;
2934 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2935 const struct kvm_userspace_memory_region *mem,
2936 const struct kvm_memory_slot *old,
2937 const struct kvm_memory_slot *new)
2939 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2940 struct kvm_memslots *slots;
2941 struct kvm_memory_slot *memslot;
2943 if (npages && old->npages) {
2945 * If modifying a memslot, reset all the rmap dirty bits.
2946 * If this is a new memslot, we don't need to do anything
2947 * since the rmap array starts out as all zeroes,
2948 * i.e. no pages are dirty.
2950 slots = kvm_memslots(kvm);
2951 memslot = id_to_memslot(slots, mem->slot);
2952 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2957 * Update LPCR values in kvm->arch and in vcores.
2958 * Caller must hold kvm->lock.
2960 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2962 long int i;
2963 u32 cores_done = 0;
2965 if ((kvm->arch.lpcr & mask) == lpcr)
2966 return;
2968 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2970 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2971 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2972 if (!vc)
2973 continue;
2974 spin_lock(&vc->lock);
2975 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2976 spin_unlock(&vc->lock);
2977 if (++cores_done >= kvm->arch.online_vcores)
2978 break;
2982 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2984 return;
2987 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2989 int err = 0;
2990 struct kvm *kvm = vcpu->kvm;
2991 unsigned long hva;
2992 struct kvm_memory_slot *memslot;
2993 struct vm_area_struct *vma;
2994 unsigned long lpcr = 0, senc;
2995 unsigned long psize, porder;
2996 int srcu_idx;
2998 mutex_lock(&kvm->lock);
2999 if (kvm->arch.hpte_setup_done)
3000 goto out; /* another vcpu beat us to it */
3002 /* Allocate hashed page table (if not done already) and reset it */
3003 if (!kvm->arch.hpt_virt) {
3004 err = kvmppc_alloc_hpt(kvm, NULL);
3005 if (err) {
3006 pr_err("KVM: Couldn't alloc HPT\n");
3007 goto out;
3011 /* Look up the memslot for guest physical address 0 */
3012 srcu_idx = srcu_read_lock(&kvm->srcu);
3013 memslot = gfn_to_memslot(kvm, 0);
3015 /* We must have some memory at 0 by now */
3016 err = -EINVAL;
3017 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3018 goto out_srcu;
3020 /* Look up the VMA for the start of this memory slot */
3021 hva = memslot->userspace_addr;
3022 down_read(&current->mm->mmap_sem);
3023 vma = find_vma(current->mm, hva);
3024 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3025 goto up_out;
3027 psize = vma_kernel_pagesize(vma);
3028 porder = __ilog2(psize);
3030 up_read(&current->mm->mmap_sem);
3032 /* We can handle 4k, 64k or 16M pages in the VRMA */
3033 err = -EINVAL;
3034 if (!(psize == 0x1000 || psize == 0x10000 ||
3035 psize == 0x1000000))
3036 goto out_srcu;
3038 /* Update VRMASD field in the LPCR */
3039 senc = slb_pgsize_encoding(psize);
3040 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3041 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3042 /* the -4 is to account for senc values starting at 0x10 */
3043 lpcr = senc << (LPCR_VRMASD_SH - 4);
3045 /* Create HPTEs in the hash page table for the VRMA */
3046 kvmppc_map_vrma(vcpu, memslot, porder);
3048 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3050 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3051 smp_wmb();
3052 kvm->arch.hpte_setup_done = 1;
3053 err = 0;
3054 out_srcu:
3055 srcu_read_unlock(&kvm->srcu, srcu_idx);
3056 out:
3057 mutex_unlock(&kvm->lock);
3058 return err;
3060 up_out:
3061 up_read(&current->mm->mmap_sem);
3062 goto out_srcu;
3065 #ifdef CONFIG_KVM_XICS
3066 static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
3067 void *hcpu)
3069 unsigned long cpu = (long)hcpu;
3071 switch (action) {
3072 case CPU_UP_PREPARE:
3073 case CPU_UP_PREPARE_FROZEN:
3074 kvmppc_set_host_core(cpu);
3075 break;
3077 #ifdef CONFIG_HOTPLUG_CPU
3078 case CPU_DEAD:
3079 case CPU_DEAD_FROZEN:
3080 case CPU_UP_CANCELED:
3081 case CPU_UP_CANCELED_FROZEN:
3082 kvmppc_clear_host_core(cpu);
3083 break;
3084 #endif
3085 default:
3086 break;
3089 return NOTIFY_OK;
3092 static struct notifier_block kvmppc_cpu_notifier = {
3093 .notifier_call = kvmppc_cpu_notify,
3097 * Allocate a per-core structure for managing state about which cores are
3098 * running in the host versus the guest and for exchanging data between
3099 * real mode KVM and CPU running in the host.
3100 * This is only done for the first VM.
3101 * The allocated structure stays even if all VMs have stopped.
3102 * It is only freed when the kvm-hv module is unloaded.
3103 * It's OK for this routine to fail, we just don't support host
3104 * core operations like redirecting H_IPI wakeups.
3106 void kvmppc_alloc_host_rm_ops(void)
3108 struct kvmppc_host_rm_ops *ops;
3109 unsigned long l_ops;
3110 int cpu, core;
3111 int size;
3113 /* Not the first time here ? */
3114 if (kvmppc_host_rm_ops_hv != NULL)
3115 return;
3117 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3118 if (!ops)
3119 return;
3121 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3122 ops->rm_core = kzalloc(size, GFP_KERNEL);
3124 if (!ops->rm_core) {
3125 kfree(ops);
3126 return;
3129 get_online_cpus();
3131 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3132 if (!cpu_online(cpu))
3133 continue;
3135 core = cpu >> threads_shift;
3136 ops->rm_core[core].rm_state.in_host = 1;
3139 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3142 * Make the contents of the kvmppc_host_rm_ops structure visible
3143 * to other CPUs before we assign it to the global variable.
3144 * Do an atomic assignment (no locks used here), but if someone
3145 * beats us to it, just free our copy and return.
3147 smp_wmb();
3148 l_ops = (unsigned long) ops;
3150 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3151 put_online_cpus();
3152 kfree(ops->rm_core);
3153 kfree(ops);
3154 return;
3157 register_cpu_notifier(&kvmppc_cpu_notifier);
3159 put_online_cpus();
3162 void kvmppc_free_host_rm_ops(void)
3164 if (kvmppc_host_rm_ops_hv) {
3165 unregister_cpu_notifier(&kvmppc_cpu_notifier);
3166 kfree(kvmppc_host_rm_ops_hv->rm_core);
3167 kfree(kvmppc_host_rm_ops_hv);
3168 kvmppc_host_rm_ops_hv = NULL;
3171 #endif
3173 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3175 unsigned long lpcr, lpid;
3176 char buf[32];
3178 /* Allocate the guest's logical partition ID */
3180 lpid = kvmppc_alloc_lpid();
3181 if ((long)lpid < 0)
3182 return -ENOMEM;
3183 kvm->arch.lpid = lpid;
3185 kvmppc_alloc_host_rm_ops();
3188 * Since we don't flush the TLB when tearing down a VM,
3189 * and this lpid might have previously been used,
3190 * make sure we flush on each core before running the new VM.
3192 cpumask_setall(&kvm->arch.need_tlb_flush);
3194 /* Start out with the default set of hcalls enabled */
3195 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3196 sizeof(kvm->arch.enabled_hcalls));
3198 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3200 /* Init LPCR for virtual RMA mode */
3201 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3202 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3203 lpcr &= LPCR_PECE | LPCR_LPES;
3204 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3205 LPCR_VPM0 | LPCR_VPM1;
3206 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3207 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3208 /* On POWER8 turn on online bit to enable PURR/SPURR */
3209 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3210 lpcr |= LPCR_ONL;
3211 kvm->arch.lpcr = lpcr;
3214 * Track that we now have a HV mode VM active. This blocks secondary
3215 * CPU threads from coming online.
3217 kvm_hv_vm_activated();
3220 * Create a debugfs directory for the VM
3222 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3223 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3224 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3225 kvmppc_mmu_debugfs_init(kvm);
3227 return 0;
3230 static void kvmppc_free_vcores(struct kvm *kvm)
3232 long int i;
3234 for (i = 0; i < KVM_MAX_VCORES; ++i)
3235 kfree(kvm->arch.vcores[i]);
3236 kvm->arch.online_vcores = 0;
3239 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3241 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3243 kvm_hv_vm_deactivated();
3245 kvmppc_free_vcores(kvm);
3247 kvmppc_free_hpt(kvm);
3250 /* We don't need to emulate any privileged instructions or dcbz */
3251 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3252 unsigned int inst, int *advance)
3254 return EMULATE_FAIL;
3257 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3258 ulong spr_val)
3260 return EMULATE_FAIL;
3263 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3264 ulong *spr_val)
3266 return EMULATE_FAIL;
3269 static int kvmppc_core_check_processor_compat_hv(void)
3271 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3272 !cpu_has_feature(CPU_FTR_ARCH_206))
3273 return -EIO;
3274 return 0;
3277 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3278 unsigned int ioctl, unsigned long arg)
3280 struct kvm *kvm __maybe_unused = filp->private_data;
3281 void __user *argp = (void __user *)arg;
3282 long r;
3284 switch (ioctl) {
3286 case KVM_PPC_ALLOCATE_HTAB: {
3287 u32 htab_order;
3289 r = -EFAULT;
3290 if (get_user(htab_order, (u32 __user *)argp))
3291 break;
3292 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3293 if (r)
3294 break;
3295 r = -EFAULT;
3296 if (put_user(htab_order, (u32 __user *)argp))
3297 break;
3298 r = 0;
3299 break;
3302 case KVM_PPC_GET_HTAB_FD: {
3303 struct kvm_get_htab_fd ghf;
3305 r = -EFAULT;
3306 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3307 break;
3308 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3309 break;
3312 default:
3313 r = -ENOTTY;
3316 return r;
3320 * List of hcall numbers to enable by default.
3321 * For compatibility with old userspace, we enable by default
3322 * all hcalls that were implemented before the hcall-enabling
3323 * facility was added. Note this list should not include H_RTAS.
3325 static unsigned int default_hcall_list[] = {
3326 H_REMOVE,
3327 H_ENTER,
3328 H_READ,
3329 H_PROTECT,
3330 H_BULK_REMOVE,
3331 H_GET_TCE,
3332 H_PUT_TCE,
3333 H_SET_DABR,
3334 H_SET_XDABR,
3335 H_CEDE,
3336 H_PROD,
3337 H_CONFER,
3338 H_REGISTER_VPA,
3339 #ifdef CONFIG_KVM_XICS
3340 H_EOI,
3341 H_CPPR,
3342 H_IPI,
3343 H_IPOLL,
3344 H_XIRR,
3345 H_XIRR_X,
3346 #endif
3350 static void init_default_hcalls(void)
3352 int i;
3353 unsigned int hcall;
3355 for (i = 0; default_hcall_list[i]; ++i) {
3356 hcall = default_hcall_list[i];
3357 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3358 __set_bit(hcall / 4, default_enabled_hcalls);
3362 static struct kvmppc_ops kvm_ops_hv = {
3363 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3364 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3365 .get_one_reg = kvmppc_get_one_reg_hv,
3366 .set_one_reg = kvmppc_set_one_reg_hv,
3367 .vcpu_load = kvmppc_core_vcpu_load_hv,
3368 .vcpu_put = kvmppc_core_vcpu_put_hv,
3369 .set_msr = kvmppc_set_msr_hv,
3370 .vcpu_run = kvmppc_vcpu_run_hv,
3371 .vcpu_create = kvmppc_core_vcpu_create_hv,
3372 .vcpu_free = kvmppc_core_vcpu_free_hv,
3373 .check_requests = kvmppc_core_check_requests_hv,
3374 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3375 .flush_memslot = kvmppc_core_flush_memslot_hv,
3376 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3377 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3378 .unmap_hva = kvm_unmap_hva_hv,
3379 .unmap_hva_range = kvm_unmap_hva_range_hv,
3380 .age_hva = kvm_age_hva_hv,
3381 .test_age_hva = kvm_test_age_hva_hv,
3382 .set_spte_hva = kvm_set_spte_hva_hv,
3383 .mmu_destroy = kvmppc_mmu_destroy_hv,
3384 .free_memslot = kvmppc_core_free_memslot_hv,
3385 .create_memslot = kvmppc_core_create_memslot_hv,
3386 .init_vm = kvmppc_core_init_vm_hv,
3387 .destroy_vm = kvmppc_core_destroy_vm_hv,
3388 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3389 .emulate_op = kvmppc_core_emulate_op_hv,
3390 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3391 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3392 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3393 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3394 .hcall_implemented = kvmppc_hcall_impl_hv,
3397 static int kvmppc_book3s_init_hv(void)
3399 int r;
3401 * FIXME!! Do we need to check on all cpus ?
3403 r = kvmppc_core_check_processor_compat_hv();
3404 if (r < 0)
3405 return -ENODEV;
3407 kvm_ops_hv.owner = THIS_MODULE;
3408 kvmppc_hv_ops = &kvm_ops_hv;
3410 init_default_hcalls();
3412 init_vcore_lists();
3414 r = kvmppc_mmu_hv_init();
3415 return r;
3418 static void kvmppc_book3s_exit_hv(void)
3420 kvmppc_free_host_rm_ops();
3421 kvmppc_hv_ops = NULL;
3424 module_init(kvmppc_book3s_init_hv);
3425 module_exit(kvmppc_book3s_exit_hv);
3426 MODULE_LICENSE("GPL");
3427 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3428 MODULE_ALIAS("devname:kvm");