posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nvkm / subdev / instmem / gk20a.c
blob14107b5b7811c9d0180e4553adbac77ffd06a94a
1 /*
2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
24 * GK20A does not have dedicated video memory, and to accurately represent this
25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
26 * implementation must be done directly on top of system memory, while
27 * preserving coherency for read and write operations.
29 * Instmem can be allocated through two means:
30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31 * pages contiguous to the GPU. This is the preferred way.
32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33 * contiguous memory.
35 * In both cases CPU read and writes are performed by creating a write-combined
36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37 * be conservative we do this every time we acquire or release an instobj, but
38 * ideally L2 management should be handled at a higher level.
40 * To improve performance, CPU mappings are not removed upon instobj release.
41 * Instead they are placed into a LRU list to be recycled when the mapped space
42 * goes beyond a certain threshold. At the moment this limit is 1MB.
44 #include "priv.h"
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
52 struct gk20a_instobj {
53 struct nvkm_memory memory;
54 struct nvkm_mem mem;
55 struct gk20a_instmem *imem;
57 /* CPU mapping */
58 u32 *vaddr;
59 struct list_head vaddr_node;
61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
64 * Used for objects allocated using the DMA API
66 struct gk20a_instobj_dma {
67 struct gk20a_instobj base;
69 u32 *cpuaddr;
70 dma_addr_t handle;
71 struct nvkm_mm_node r;
73 #define gk20a_instobj_dma(p) \
74 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
77 * Used for objects flattened using the IOMMU API
79 struct gk20a_instobj_iommu {
80 struct gk20a_instobj base;
82 /* will point to the higher half of pages */
83 dma_addr_t *dma_addrs;
84 /* array of base.mem->size pages (+ dma_addr_ts) */
85 struct page *pages[];
87 #define gk20a_instobj_iommu(p) \
88 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
90 struct gk20a_instmem {
91 struct nvkm_instmem base;
93 /* protects vaddr_* and gk20a_instobj::vaddr* */
94 spinlock_t lock;
96 /* CPU mappings LRU */
97 unsigned int vaddr_use;
98 unsigned int vaddr_max;
99 struct list_head vaddr_lru;
101 /* Only used if IOMMU if present */
102 struct mutex *mm_mutex;
103 struct nvkm_mm *mm;
104 struct iommu_domain *domain;
105 unsigned long iommu_pgshift;
106 u16 iommu_bit;
108 /* Only used by DMA API */
109 struct dma_attrs attrs;
111 void __iomem * (*cpu_map)(struct nvkm_memory *);
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
118 return NVKM_MEM_TARGET_HOST;
121 static u64
122 gk20a_instobj_addr(struct nvkm_memory *memory)
124 return gk20a_instobj(memory)->mem.offset;
127 static u64
128 gk20a_instobj_size(struct nvkm_memory *memory)
130 return (u64)gk20a_instobj(memory)->mem.size << 12;
133 static void __iomem *
134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
136 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
137 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
138 struct device *dev = node->base.imem->base.subdev.device->dev;
139 int npages = nvkm_memory_size(memory) >> 12;
140 struct page *pages[npages];
141 int i;
143 /* we shouldn't see a gk20a on anything but arm/arm64 anyways */
144 /* phys_to_page does not exist on all platforms... */
145 pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
146 for (i = 1; i < npages; i++)
147 pages[i] = pages[0] + i;
149 return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
150 #else
151 BUG();
152 return NULL;
153 #endif
156 static void __iomem *
157 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
159 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
160 int npages = nvkm_memory_size(memory) >> 12;
162 return vmap(node->pages, npages, VM_MAP,
163 pgprot_writecombine(PAGE_KERNEL));
167 * Must be called while holding gk20a_instmem_lock
169 static void
170 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
172 while (imem->vaddr_use + size > imem->vaddr_max) {
173 struct gk20a_instobj *obj;
175 /* no candidate that can be unmapped, abort... */
176 if (list_empty(&imem->vaddr_lru))
177 break;
179 obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
180 vaddr_node);
181 list_del(&obj->vaddr_node);
182 vunmap(obj->vaddr);
183 obj->vaddr = NULL;
184 imem->vaddr_use -= nvkm_memory_size(&obj->memory);
185 nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
186 imem->vaddr_use, imem->vaddr_max);
191 static void __iomem *
192 gk20a_instobj_acquire(struct nvkm_memory *memory)
194 struct gk20a_instobj *node = gk20a_instobj(memory);
195 struct gk20a_instmem *imem = node->imem;
196 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
197 const u64 size = nvkm_memory_size(memory);
198 unsigned long flags;
200 nvkm_ltc_flush(ltc);
202 spin_lock_irqsave(&imem->lock, flags);
204 if (node->vaddr) {
205 /* remove us from the LRU list since we cannot be unmapped */
206 list_del(&node->vaddr_node);
208 goto out;
211 /* try to free some address space if we reached the limit */
212 gk20a_instmem_vaddr_gc(imem, size);
214 node->vaddr = imem->cpu_map(memory);
216 if (!node->vaddr) {
217 nvkm_error(&imem->base.subdev, "cannot map instobj - "
218 "this is not going to end well...\n");
219 goto out;
222 imem->vaddr_use += size;
223 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
224 imem->vaddr_use, imem->vaddr_max);
226 out:
227 spin_unlock_irqrestore(&imem->lock, flags);
229 return node->vaddr;
232 static void
233 gk20a_instobj_release(struct nvkm_memory *memory)
235 struct gk20a_instobj *node = gk20a_instobj(memory);
236 struct gk20a_instmem *imem = node->imem;
237 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
238 unsigned long flags;
240 spin_lock_irqsave(&imem->lock, flags);
242 /* add ourselves to the LRU list so our CPU mapping can be freed */
243 list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
245 spin_unlock_irqrestore(&imem->lock, flags);
247 wmb();
248 nvkm_ltc_invalidate(ltc);
251 static u32
252 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
254 struct gk20a_instobj *node = gk20a_instobj(memory);
256 return node->vaddr[offset / 4];
259 static void
260 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
262 struct gk20a_instobj *node = gk20a_instobj(memory);
264 node->vaddr[offset / 4] = data;
267 static void
268 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
270 struct gk20a_instobj *node = gk20a_instobj(memory);
272 nvkm_vm_map_at(vma, offset, &node->mem);
276 * Clear the CPU mapping of an instobj if it exists
278 static void
279 gk20a_instobj_dtor(struct gk20a_instobj *node)
281 struct gk20a_instmem *imem = node->imem;
282 struct gk20a_instobj *obj;
283 unsigned long flags;
285 spin_lock_irqsave(&imem->lock, flags);
287 if (!node->vaddr)
288 goto out;
290 list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
291 if (obj == node) {
292 list_del(&obj->vaddr_node);
293 break;
296 vunmap(node->vaddr);
297 node->vaddr = NULL;
298 imem->vaddr_use -= nvkm_memory_size(&node->memory);
299 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
300 imem->vaddr_use, imem->vaddr_max);
302 out:
303 spin_unlock_irqrestore(&imem->lock, flags);
306 static void *
307 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
309 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
310 struct gk20a_instmem *imem = node->base.imem;
311 struct device *dev = imem->base.subdev.device->dev;
313 gk20a_instobj_dtor(&node->base);
315 if (unlikely(!node->cpuaddr))
316 goto out;
318 dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
319 node->handle, &imem->attrs);
321 out:
322 return node;
325 static void *
326 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
328 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
329 struct gk20a_instmem *imem = node->base.imem;
330 struct device *dev = imem->base.subdev.device->dev;
331 struct nvkm_mm_node *r;
332 int i;
334 gk20a_instobj_dtor(&node->base);
336 if (unlikely(list_empty(&node->base.mem.regions)))
337 goto out;
339 r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
340 rl_entry);
342 /* clear IOMMU bit to unmap pages */
343 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
345 /* Unmap pages from GPU address space and free them */
346 for (i = 0; i < node->base.mem.size; i++) {
347 iommu_unmap(imem->domain,
348 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
349 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
350 DMA_BIDIRECTIONAL);
351 __free_page(node->pages[i]);
354 /* Release area from GPU address space */
355 mutex_lock(imem->mm_mutex);
356 nvkm_mm_free(imem->mm, &r);
357 mutex_unlock(imem->mm_mutex);
359 out:
360 return node;
363 static const struct nvkm_memory_func
364 gk20a_instobj_func_dma = {
365 .dtor = gk20a_instobj_dtor_dma,
366 .target = gk20a_instobj_target,
367 .addr = gk20a_instobj_addr,
368 .size = gk20a_instobj_size,
369 .acquire = gk20a_instobj_acquire,
370 .release = gk20a_instobj_release,
371 .rd32 = gk20a_instobj_rd32,
372 .wr32 = gk20a_instobj_wr32,
373 .map = gk20a_instobj_map,
376 static const struct nvkm_memory_func
377 gk20a_instobj_func_iommu = {
378 .dtor = gk20a_instobj_dtor_iommu,
379 .target = gk20a_instobj_target,
380 .addr = gk20a_instobj_addr,
381 .size = gk20a_instobj_size,
382 .acquire = gk20a_instobj_acquire,
383 .release = gk20a_instobj_release,
384 .rd32 = gk20a_instobj_rd32,
385 .wr32 = gk20a_instobj_wr32,
386 .map = gk20a_instobj_map,
389 static int
390 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
391 struct gk20a_instobj **_node)
393 struct gk20a_instobj_dma *node;
394 struct nvkm_subdev *subdev = &imem->base.subdev;
395 struct device *dev = subdev->device->dev;
397 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
398 return -ENOMEM;
399 *_node = &node->base;
401 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
403 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
404 &node->handle, GFP_KERNEL,
405 &imem->attrs);
406 if (!node->cpuaddr) {
407 nvkm_error(subdev, "cannot allocate DMA memory\n");
408 return -ENOMEM;
411 /* alignment check */
412 if (unlikely(node->handle & (align - 1)))
413 nvkm_warn(subdev,
414 "memory not aligned as requested: %pad (0x%x)\n",
415 &node->handle, align);
417 /* present memory for being mapped using small pages */
418 node->r.type = 12;
419 node->r.offset = node->handle >> 12;
420 node->r.length = (npages << PAGE_SHIFT) >> 12;
422 node->base.mem.offset = node->handle;
424 INIT_LIST_HEAD(&node->base.mem.regions);
425 list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
427 return 0;
430 static int
431 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
432 struct gk20a_instobj **_node)
434 struct gk20a_instobj_iommu *node;
435 struct nvkm_subdev *subdev = &imem->base.subdev;
436 struct device *dev = subdev->device->dev;
437 struct nvkm_mm_node *r;
438 int ret;
439 int i;
442 * despite their variable size, instmem allocations are small enough
443 * (< 1 page) to be handled by kzalloc
445 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
446 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
447 return -ENOMEM;
448 *_node = &node->base;
449 node->dma_addrs = (void *)(node->pages + npages);
451 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
453 /* Allocate backing memory */
454 for (i = 0; i < npages; i++) {
455 struct page *p = alloc_page(GFP_KERNEL);
456 dma_addr_t dma_adr;
458 if (p == NULL) {
459 ret = -ENOMEM;
460 goto free_pages;
462 node->pages[i] = p;
463 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
464 if (dma_mapping_error(dev, dma_adr)) {
465 nvkm_error(subdev, "DMA mapping error!\n");
466 ret = -ENOMEM;
467 goto free_pages;
469 node->dma_addrs[i] = dma_adr;
472 mutex_lock(imem->mm_mutex);
473 /* Reserve area from GPU address space */
474 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
475 align >> imem->iommu_pgshift, &r);
476 mutex_unlock(imem->mm_mutex);
477 if (ret) {
478 nvkm_error(subdev, "IOMMU space is full!\n");
479 goto free_pages;
482 /* Map into GPU address space */
483 for (i = 0; i < npages; i++) {
484 u32 offset = (r->offset + i) << imem->iommu_pgshift;
486 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
487 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
488 if (ret < 0) {
489 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
491 while (i-- > 0) {
492 offset -= PAGE_SIZE;
493 iommu_unmap(imem->domain, offset, PAGE_SIZE);
495 goto release_area;
499 /* IOMMU bit tells that an address is to be resolved through the IOMMU */
500 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
502 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
504 INIT_LIST_HEAD(&node->base.mem.regions);
505 list_add_tail(&r->rl_entry, &node->base.mem.regions);
507 return 0;
509 release_area:
510 mutex_lock(imem->mm_mutex);
511 nvkm_mm_free(imem->mm, &r);
512 mutex_unlock(imem->mm_mutex);
514 free_pages:
515 for (i = 0; i < npages && node->pages[i] != NULL; i++) {
516 dma_addr_t dma_addr = node->dma_addrs[i];
517 if (dma_addr)
518 dma_unmap_page(dev, dma_addr, PAGE_SIZE,
519 DMA_BIDIRECTIONAL);
520 __free_page(node->pages[i]);
523 return ret;
526 static int
527 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
528 struct nvkm_memory **pmemory)
530 struct gk20a_instmem *imem = gk20a_instmem(base);
531 struct nvkm_subdev *subdev = &imem->base.subdev;
532 struct gk20a_instobj *node = NULL;
533 int ret;
535 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
536 imem->domain ? "IOMMU" : "DMA", size, align);
538 /* Round size and align to page bounds */
539 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
540 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
542 if (imem->domain)
543 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
544 align, &node);
545 else
546 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
547 align, &node);
548 *pmemory = node ? &node->memory : NULL;
549 if (ret)
550 return ret;
552 node->imem = imem;
554 /* present memory for being mapped using small pages */
555 node->mem.size = size >> 12;
556 node->mem.memtype = 0;
557 node->mem.page_shift = 12;
559 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
560 size, align, node->mem.offset);
562 return 0;
565 static void *
566 gk20a_instmem_dtor(struct nvkm_instmem *base)
568 struct gk20a_instmem *imem = gk20a_instmem(base);
570 /* perform some sanity checks... */
571 if (!list_empty(&imem->vaddr_lru))
572 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
574 if (imem->vaddr_use != 0)
575 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
576 "0x%x bytes still mapped\n", imem->vaddr_use);
578 return imem;
581 static const struct nvkm_instmem_func
582 gk20a_instmem = {
583 .dtor = gk20a_instmem_dtor,
584 .memory_new = gk20a_instobj_new,
585 .persistent = true,
586 .zero = false,
590 gk20a_instmem_new(struct nvkm_device *device, int index,
591 struct nvkm_instmem **pimem)
593 struct nvkm_device_tegra *tdev = device->func->tegra(device);
594 struct gk20a_instmem *imem;
596 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
597 return -ENOMEM;
598 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
599 spin_lock_init(&imem->lock);
600 *pimem = &imem->base;
602 /* do not allow more than 1MB of CPU-mapped instmem */
603 imem->vaddr_use = 0;
604 imem->vaddr_max = 0x100000;
605 INIT_LIST_HEAD(&imem->vaddr_lru);
607 if (tdev->iommu.domain) {
608 imem->mm_mutex = &tdev->iommu.mutex;
609 imem->mm = &tdev->iommu.mm;
610 imem->domain = tdev->iommu.domain;
611 imem->iommu_pgshift = tdev->iommu.pgshift;
612 imem->cpu_map = gk20a_instobj_cpu_map_iommu;
613 imem->iommu_bit = tdev->func->iommu_bit;
615 nvkm_info(&imem->base.subdev, "using IOMMU\n");
616 } else {
617 init_dma_attrs(&imem->attrs);
618 /* We will access the memory through our own mapping */
619 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
620 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
621 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
622 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
623 imem->cpu_map = gk20a_instobj_cpu_map_dma;
625 nvkm_info(&imem->base.subdev, "using DMA API\n");
628 return 0;