4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
22 #include "../perf_event.h"
25 * Intel PerfMon, used on Core and later.
27 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
29 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
39 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 static struct event_constraint intel_ivb_event_constraints
[] __read_mostly
=
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
173 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 static struct event_constraint intel_slm_event_constraints
[] __read_mostly
=
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 static struct event_constraint intel_skl_event_constraints
[] = {
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
196 * when HT is off, these can only run on the bottom 4 counters
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
207 static struct extra_reg intel_knl_extra_regs
[] __read_mostly
= {
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x799ffbb6e7ull
, RSP_0
),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x399ffbffe7ull
, RSP_1
),
213 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3f807f8fffull
, RSP_0
),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3f807f8fffull
, RSP_1
),
217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 static struct extra_reg intel_snbep_extra_regs
[] __read_mostly
= {
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 static struct extra_reg intel_skl_extra_regs
[] __read_mostly
= {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
241 EVENT_ATTR_STR(mem
-loads
, mem_ld_nhm
, "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem
-loads
, mem_ld_snb
, "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem
-stores
, mem_st_snb
, "event=0xcd,umask=0x2");
245 static struct attribute
*nhm_mem_events_attrs
[] = {
246 EVENT_PTR(mem_ld_nhm
),
251 * topdown events for Intel Core CPUs.
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
264 EVENT_ATTR_STR_HT(topdown
-total
-slots
, td_total_slots
,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown
-total
-slots
.scale
, td_total_slots_scale
, "4", "2");
268 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued
,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired
,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles
,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
, td_recovery_bubbles
,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
.scale
, td_recovery_bubbles_scale
,
280 static struct attribute
*snb_events_attrs
[] = {
281 EVENT_PTR(td_slots_issued
),
282 EVENT_PTR(td_slots_retired
),
283 EVENT_PTR(td_fetch_bubbles
),
284 EVENT_PTR(td_total_slots
),
285 EVENT_PTR(td_total_slots_scale
),
286 EVENT_PTR(td_recovery_bubbles
),
287 EVENT_PTR(td_recovery_bubbles_scale
),
291 static struct attribute
*snb_mem_events_attrs
[] = {
292 EVENT_PTR(mem_ld_snb
),
293 EVENT_PTR(mem_st_snb
),
297 static struct event_constraint intel_hsw_event_constraints
[] = {
298 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
302 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
312 * When HT is off these events can only run on the bottom 4 counters
313 * When HT is on, they are impacted by the HT bug and require EXCL access
315 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
323 static struct event_constraint intel_bdw_event_constraints
[] = {
324 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
325 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
326 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
327 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
328 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330 * when HT is off, these can only run on the bottom 4 counters
332 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
333 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
334 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
335 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
339 static u64
intel_pmu_event_map(int hw_event
)
341 return intel_perfmon_event_map
[hw_event
];
345 * Notes on the events:
346 * - data reads do not include code reads (comparable to earlier tables)
347 * - data counts include speculative execution (except L1 write, dtlb, bpu)
348 * - remote node access includes remote memory, remote cache, remote mmio.
349 * - prefetches are not included in the counts.
350 * - icache miss does not include decoded icache
353 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
354 #define SKL_DEMAND_RFO BIT_ULL(1)
355 #define SKL_ANY_RESPONSE BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
361 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
362 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT BIT_ULL(30)
366 #define SKL_SNOOP_NONE BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
368 #define SKL_SNOOP_MISS BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
371 #define SKL_SNOOP_HITM BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
373 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
374 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
379 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381 SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
388 static __initconst
const u64 skl_hw_cache_event_ids
389 [PERF_COUNT_HW_CACHE_MAX
]
390 [PERF_COUNT_HW_CACHE_OP_MAX
]
391 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
395 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
396 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
399 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
400 [ C(RESULT_MISS
) ] = 0x0,
402 [ C(OP_PREFETCH
) ] = {
403 [ C(RESULT_ACCESS
) ] = 0x0,
404 [ C(RESULT_MISS
) ] = 0x0,
409 [ C(RESULT_ACCESS
) ] = 0x0,
410 [ C(RESULT_MISS
) ] = 0x283, /* ICACHE_64B.MISS */
413 [ C(RESULT_ACCESS
) ] = -1,
414 [ C(RESULT_MISS
) ] = -1,
416 [ C(OP_PREFETCH
) ] = {
417 [ C(RESULT_ACCESS
) ] = 0x0,
418 [ C(RESULT_MISS
) ] = 0x0,
423 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
427 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
428 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
430 [ C(OP_PREFETCH
) ] = {
431 [ C(RESULT_ACCESS
) ] = 0x0,
432 [ C(RESULT_MISS
) ] = 0x0,
437 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
438 [ C(RESULT_MISS
) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
441 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
442 [ C(RESULT_MISS
) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
444 [ C(OP_PREFETCH
) ] = {
445 [ C(RESULT_ACCESS
) ] = 0x0,
446 [ C(RESULT_MISS
) ] = 0x0,
451 [ C(RESULT_ACCESS
) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
452 [ C(RESULT_MISS
) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
455 [ C(RESULT_ACCESS
) ] = -1,
456 [ C(RESULT_MISS
) ] = -1,
458 [ C(OP_PREFETCH
) ] = {
459 [ C(RESULT_ACCESS
) ] = -1,
460 [ C(RESULT_MISS
) ] = -1,
465 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
466 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
469 [ C(RESULT_ACCESS
) ] = -1,
470 [ C(RESULT_MISS
) ] = -1,
472 [ C(OP_PREFETCH
) ] = {
473 [ C(RESULT_ACCESS
) ] = -1,
474 [ C(RESULT_MISS
) ] = -1,
479 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
483 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
484 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
486 [ C(OP_PREFETCH
) ] = {
487 [ C(RESULT_ACCESS
) ] = 0x0,
488 [ C(RESULT_MISS
) ] = 0x0,
493 static __initconst
const u64 skl_hw_cache_extra_regs
494 [PERF_COUNT_HW_CACHE_MAX
]
495 [PERF_COUNT_HW_CACHE_OP_MAX
]
496 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
500 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
501 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
502 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
503 SKL_L3_MISS
|SKL_ANY_SNOOP
|
507 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
508 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
509 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
510 SKL_L3_MISS
|SKL_ANY_SNOOP
|
513 [ C(OP_PREFETCH
) ] = {
514 [ C(RESULT_ACCESS
) ] = 0x0,
515 [ C(RESULT_MISS
) ] = 0x0,
520 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
521 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
522 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
523 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
526 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
527 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
528 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
529 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
531 [ C(OP_PREFETCH
) ] = {
532 [ C(RESULT_ACCESS
) ] = 0x0,
533 [ C(RESULT_MISS
) ] = 0x0,
538 #define SNB_DMND_DATA_RD (1ULL << 0)
539 #define SNB_DMND_RFO (1ULL << 1)
540 #define SNB_DMND_IFETCH (1ULL << 2)
541 #define SNB_DMND_WB (1ULL << 3)
542 #define SNB_PF_DATA_RD (1ULL << 4)
543 #define SNB_PF_RFO (1ULL << 5)
544 #define SNB_PF_IFETCH (1ULL << 6)
545 #define SNB_LLC_DATA_RD (1ULL << 7)
546 #define SNB_LLC_RFO (1ULL << 8)
547 #define SNB_LLC_IFETCH (1ULL << 9)
548 #define SNB_BUS_LOCKS (1ULL << 10)
549 #define SNB_STRM_ST (1ULL << 11)
550 #define SNB_OTHER (1ULL << 15)
551 #define SNB_RESP_ANY (1ULL << 16)
552 #define SNB_NO_SUPP (1ULL << 17)
553 #define SNB_LLC_HITM (1ULL << 18)
554 #define SNB_LLC_HITE (1ULL << 19)
555 #define SNB_LLC_HITS (1ULL << 20)
556 #define SNB_LLC_HITF (1ULL << 21)
557 #define SNB_LOCAL (1ULL << 22)
558 #define SNB_REMOTE (0xffULL << 23)
559 #define SNB_SNP_NONE (1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
561 #define SNB_SNP_MISS (1ULL << 33)
562 #define SNB_NO_FWD (1ULL << 34)
563 #define SNB_SNP_FWD (1ULL << 35)
564 #define SNB_HITM (1ULL << 36)
565 #define SNB_NON_DRAM (1ULL << 37)
567 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
571 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
575 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
578 #define SNB_L3_ACCESS SNB_RESP_ANY
579 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
581 static __initconst
const u64 snb_hw_cache_extra_regs
582 [PERF_COUNT_HW_CACHE_MAX
]
583 [PERF_COUNT_HW_CACHE_OP_MAX
]
584 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
588 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_L3_ACCESS
,
589 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_L3_MISS
,
592 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_L3_ACCESS
,
593 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_L3_MISS
,
595 [ C(OP_PREFETCH
) ] = {
596 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_L3_ACCESS
,
597 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_L3_MISS
,
602 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_DRAM_ANY
,
603 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_DRAM_REMOTE
,
606 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_DRAM_ANY
,
607 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_DRAM_REMOTE
,
609 [ C(OP_PREFETCH
) ] = {
610 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_ANY
,
611 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_REMOTE
,
616 static __initconst
const u64 snb_hw_cache_event_ids
617 [PERF_COUNT_HW_CACHE_MAX
]
618 [PERF_COUNT_HW_CACHE_OP_MAX
]
619 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
623 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
624 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
627 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
628 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
630 [ C(OP_PREFETCH
) ] = {
631 [ C(RESULT_ACCESS
) ] = 0x0,
632 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
637 [ C(RESULT_ACCESS
) ] = 0x0,
638 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
641 [ C(RESULT_ACCESS
) ] = -1,
642 [ C(RESULT_MISS
) ] = -1,
644 [ C(OP_PREFETCH
) ] = {
645 [ C(RESULT_ACCESS
) ] = 0x0,
646 [ C(RESULT_MISS
) ] = 0x0,
651 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652 [ C(RESULT_ACCESS
) ] = 0x01b7,
653 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654 [ C(RESULT_MISS
) ] = 0x01b7,
657 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658 [ C(RESULT_ACCESS
) ] = 0x01b7,
659 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660 [ C(RESULT_MISS
) ] = 0x01b7,
662 [ C(OP_PREFETCH
) ] = {
663 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664 [ C(RESULT_ACCESS
) ] = 0x01b7,
665 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666 [ C(RESULT_MISS
) ] = 0x01b7,
671 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
675 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
678 [ C(OP_PREFETCH
) ] = {
679 [ C(RESULT_ACCESS
) ] = 0x0,
680 [ C(RESULT_MISS
) ] = 0x0,
685 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
686 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
689 [ C(RESULT_ACCESS
) ] = -1,
690 [ C(RESULT_MISS
) ] = -1,
692 [ C(OP_PREFETCH
) ] = {
693 [ C(RESULT_ACCESS
) ] = -1,
694 [ C(RESULT_MISS
) ] = -1,
699 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
703 [ C(RESULT_ACCESS
) ] = -1,
704 [ C(RESULT_MISS
) ] = -1,
706 [ C(OP_PREFETCH
) ] = {
707 [ C(RESULT_ACCESS
) ] = -1,
708 [ C(RESULT_MISS
) ] = -1,
713 [ C(RESULT_ACCESS
) ] = 0x01b7,
714 [ C(RESULT_MISS
) ] = 0x01b7,
717 [ C(RESULT_ACCESS
) ] = 0x01b7,
718 [ C(RESULT_MISS
) ] = 0x01b7,
720 [ C(OP_PREFETCH
) ] = {
721 [ C(RESULT_ACCESS
) ] = 0x01b7,
722 [ C(RESULT_MISS
) ] = 0x01b7,
729 * Notes on the events:
730 * - data reads do not include code reads (comparable to earlier tables)
731 * - data counts include speculative execution (except L1 write, dtlb, bpu)
732 * - remote node access includes remote memory, remote cache, remote mmio.
733 * - prefetches are not included in the counts because they are not
737 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
738 #define HSW_DEMAND_RFO BIT_ULL(1)
739 #define HSW_ANY_RESPONSE BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
745 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
746 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747 HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
750 #define HSW_SNOOP_MISS BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
753 #define HSW_SNOOP_HITM BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
755 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
756 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
763 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
766 #define BDW_L3_MISS_LOCAL BIT(26)
767 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
768 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769 HSW_L3_MISS_REMOTE_HOP2P)
772 static __initconst
const u64 hsw_hw_cache_event_ids
773 [PERF_COUNT_HW_CACHE_MAX
]
774 [PERF_COUNT_HW_CACHE_OP_MAX
]
775 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
779 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
780 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
783 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
784 [ C(RESULT_MISS
) ] = 0x0,
786 [ C(OP_PREFETCH
) ] = {
787 [ C(RESULT_ACCESS
) ] = 0x0,
788 [ C(RESULT_MISS
) ] = 0x0,
793 [ C(RESULT_ACCESS
) ] = 0x0,
794 [ C(RESULT_MISS
) ] = 0x280, /* ICACHE.MISSES */
797 [ C(RESULT_ACCESS
) ] = -1,
798 [ C(RESULT_MISS
) ] = -1,
800 [ C(OP_PREFETCH
) ] = {
801 [ C(RESULT_ACCESS
) ] = 0x0,
802 [ C(RESULT_MISS
) ] = 0x0,
807 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
811 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
812 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
814 [ C(OP_PREFETCH
) ] = {
815 [ C(RESULT_ACCESS
) ] = 0x0,
816 [ C(RESULT_MISS
) ] = 0x0,
821 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
822 [ C(RESULT_MISS
) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
825 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
826 [ C(RESULT_MISS
) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
828 [ C(OP_PREFETCH
) ] = {
829 [ C(RESULT_ACCESS
) ] = 0x0,
830 [ C(RESULT_MISS
) ] = 0x0,
835 [ C(RESULT_ACCESS
) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
836 [ C(RESULT_MISS
) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
839 [ C(RESULT_ACCESS
) ] = -1,
840 [ C(RESULT_MISS
) ] = -1,
842 [ C(OP_PREFETCH
) ] = {
843 [ C(RESULT_ACCESS
) ] = -1,
844 [ C(RESULT_MISS
) ] = -1,
849 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
850 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
853 [ C(RESULT_ACCESS
) ] = -1,
854 [ C(RESULT_MISS
) ] = -1,
856 [ C(OP_PREFETCH
) ] = {
857 [ C(RESULT_ACCESS
) ] = -1,
858 [ C(RESULT_MISS
) ] = -1,
863 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
867 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
868 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
870 [ C(OP_PREFETCH
) ] = {
871 [ C(RESULT_ACCESS
) ] = 0x0,
872 [ C(RESULT_MISS
) ] = 0x0,
877 static __initconst
const u64 hsw_hw_cache_extra_regs
878 [PERF_COUNT_HW_CACHE_MAX
]
879 [PERF_COUNT_HW_CACHE_OP_MAX
]
880 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
884 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
886 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
887 HSW_L3_MISS
|HSW_ANY_SNOOP
,
890 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
892 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
893 HSW_L3_MISS
|HSW_ANY_SNOOP
,
895 [ C(OP_PREFETCH
) ] = {
896 [ C(RESULT_ACCESS
) ] = 0x0,
897 [ C(RESULT_MISS
) ] = 0x0,
902 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
903 HSW_L3_MISS_LOCAL_DRAM
|
905 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
910 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
911 HSW_L3_MISS_LOCAL_DRAM
|
913 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
917 [ C(OP_PREFETCH
) ] = {
918 [ C(RESULT_ACCESS
) ] = 0x0,
919 [ C(RESULT_MISS
) ] = 0x0,
924 static __initconst
const u64 westmere_hw_cache_event_ids
925 [PERF_COUNT_HW_CACHE_MAX
]
926 [PERF_COUNT_HW_CACHE_OP_MAX
]
927 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
931 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
932 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
935 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
936 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
938 [ C(OP_PREFETCH
) ] = {
939 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
940 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
945 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
946 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
949 [ C(RESULT_ACCESS
) ] = -1,
950 [ C(RESULT_MISS
) ] = -1,
952 [ C(OP_PREFETCH
) ] = {
953 [ C(RESULT_ACCESS
) ] = 0x0,
954 [ C(RESULT_MISS
) ] = 0x0,
959 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960 [ C(RESULT_ACCESS
) ] = 0x01b7,
961 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962 [ C(RESULT_MISS
) ] = 0x01b7,
965 * Use RFO, not WRITEBACK, because a write miss would typically occur
969 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970 [ C(RESULT_ACCESS
) ] = 0x01b7,
971 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972 [ C(RESULT_MISS
) ] = 0x01b7,
974 [ C(OP_PREFETCH
) ] = {
975 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976 [ C(RESULT_ACCESS
) ] = 0x01b7,
977 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978 [ C(RESULT_MISS
) ] = 0x01b7,
983 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
984 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
987 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
988 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
990 [ C(OP_PREFETCH
) ] = {
991 [ C(RESULT_ACCESS
) ] = 0x0,
992 [ C(RESULT_MISS
) ] = 0x0,
997 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
998 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
1001 [ C(RESULT_ACCESS
) ] = -1,
1002 [ C(RESULT_MISS
) ] = -1,
1004 [ C(OP_PREFETCH
) ] = {
1005 [ C(RESULT_ACCESS
) ] = -1,
1006 [ C(RESULT_MISS
) ] = -1,
1011 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1015 [ C(RESULT_ACCESS
) ] = -1,
1016 [ C(RESULT_MISS
) ] = -1,
1018 [ C(OP_PREFETCH
) ] = {
1019 [ C(RESULT_ACCESS
) ] = -1,
1020 [ C(RESULT_MISS
) ] = -1,
1025 [ C(RESULT_ACCESS
) ] = 0x01b7,
1026 [ C(RESULT_MISS
) ] = 0x01b7,
1029 [ C(RESULT_ACCESS
) ] = 0x01b7,
1030 [ C(RESULT_MISS
) ] = 0x01b7,
1032 [ C(OP_PREFETCH
) ] = {
1033 [ C(RESULT_ACCESS
) ] = 0x01b7,
1034 [ C(RESULT_MISS
) ] = 0x01b7,
1040 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041 * See IA32 SDM Vol 3B 30.6.1.3
1044 #define NHM_DMND_DATA_RD (1 << 0)
1045 #define NHM_DMND_RFO (1 << 1)
1046 #define NHM_DMND_IFETCH (1 << 2)
1047 #define NHM_DMND_WB (1 << 3)
1048 #define NHM_PF_DATA_RD (1 << 4)
1049 #define NHM_PF_DATA_RFO (1 << 5)
1050 #define NHM_PF_IFETCH (1 << 6)
1051 #define NHM_OFFCORE_OTHER (1 << 7)
1052 #define NHM_UNCORE_HIT (1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1054 #define NHM_OTHER_CORE_HITM (1 << 10)
1056 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1057 #define NHM_REMOTE_DRAM (1 << 13)
1058 #define NHM_LOCAL_DRAM (1 << 14)
1059 #define NHM_NON_DRAM (1 << 15)
1061 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1064 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1068 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1072 static __initconst
const u64 nehalem_hw_cache_extra_regs
1073 [PERF_COUNT_HW_CACHE_MAX
]
1074 [PERF_COUNT_HW_CACHE_OP_MAX
]
1075 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1079 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
1080 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
1083 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
1084 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
1086 [ C(OP_PREFETCH
) ] = {
1087 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
1088 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
1093 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
1094 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
1097 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
1098 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
1100 [ C(OP_PREFETCH
) ] = {
1101 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
1102 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
1107 static __initconst
const u64 nehalem_hw_cache_event_ids
1108 [PERF_COUNT_HW_CACHE_MAX
]
1109 [PERF_COUNT_HW_CACHE_OP_MAX
]
1110 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1114 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1115 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
1118 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1119 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
1121 [ C(OP_PREFETCH
) ] = {
1122 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1123 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
1128 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1129 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1132 [ C(RESULT_ACCESS
) ] = -1,
1133 [ C(RESULT_MISS
) ] = -1,
1135 [ C(OP_PREFETCH
) ] = {
1136 [ C(RESULT_ACCESS
) ] = 0x0,
1137 [ C(RESULT_MISS
) ] = 0x0,
1142 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143 [ C(RESULT_ACCESS
) ] = 0x01b7,
1144 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145 [ C(RESULT_MISS
) ] = 0x01b7,
1148 * Use RFO, not WRITEBACK, because a write miss would typically occur
1152 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153 [ C(RESULT_ACCESS
) ] = 0x01b7,
1154 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155 [ C(RESULT_MISS
) ] = 0x01b7,
1157 [ C(OP_PREFETCH
) ] = {
1158 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159 [ C(RESULT_ACCESS
) ] = 0x01b7,
1160 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161 [ C(RESULT_MISS
) ] = 0x01b7,
1166 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1167 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1170 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1171 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1173 [ C(OP_PREFETCH
) ] = {
1174 [ C(RESULT_ACCESS
) ] = 0x0,
1175 [ C(RESULT_MISS
) ] = 0x0,
1180 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1181 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1184 [ C(RESULT_ACCESS
) ] = -1,
1185 [ C(RESULT_MISS
) ] = -1,
1187 [ C(OP_PREFETCH
) ] = {
1188 [ C(RESULT_ACCESS
) ] = -1,
1189 [ C(RESULT_MISS
) ] = -1,
1194 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1198 [ C(RESULT_ACCESS
) ] = -1,
1199 [ C(RESULT_MISS
) ] = -1,
1201 [ C(OP_PREFETCH
) ] = {
1202 [ C(RESULT_ACCESS
) ] = -1,
1203 [ C(RESULT_MISS
) ] = -1,
1208 [ C(RESULT_ACCESS
) ] = 0x01b7,
1209 [ C(RESULT_MISS
) ] = 0x01b7,
1212 [ C(RESULT_ACCESS
) ] = 0x01b7,
1213 [ C(RESULT_MISS
) ] = 0x01b7,
1215 [ C(OP_PREFETCH
) ] = {
1216 [ C(RESULT_ACCESS
) ] = 0x01b7,
1217 [ C(RESULT_MISS
) ] = 0x01b7,
1222 static __initconst
const u64 core2_hw_cache_event_ids
1223 [PERF_COUNT_HW_CACHE_MAX
]
1224 [PERF_COUNT_HW_CACHE_OP_MAX
]
1225 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1229 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1230 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1233 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1234 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1236 [ C(OP_PREFETCH
) ] = {
1237 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1238 [ C(RESULT_MISS
) ] = 0,
1243 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
1244 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
1247 [ C(RESULT_ACCESS
) ] = -1,
1248 [ C(RESULT_MISS
) ] = -1,
1250 [ C(OP_PREFETCH
) ] = {
1251 [ C(RESULT_ACCESS
) ] = 0,
1252 [ C(RESULT_MISS
) ] = 0,
1257 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1258 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1261 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1262 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1264 [ C(OP_PREFETCH
) ] = {
1265 [ C(RESULT_ACCESS
) ] = 0,
1266 [ C(RESULT_MISS
) ] = 0,
1271 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1272 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1275 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1276 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1278 [ C(OP_PREFETCH
) ] = {
1279 [ C(RESULT_ACCESS
) ] = 0,
1280 [ C(RESULT_MISS
) ] = 0,
1285 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1286 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
1289 [ C(RESULT_ACCESS
) ] = -1,
1290 [ C(RESULT_MISS
) ] = -1,
1292 [ C(OP_PREFETCH
) ] = {
1293 [ C(RESULT_ACCESS
) ] = -1,
1294 [ C(RESULT_MISS
) ] = -1,
1299 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1300 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1303 [ C(RESULT_ACCESS
) ] = -1,
1304 [ C(RESULT_MISS
) ] = -1,
1306 [ C(OP_PREFETCH
) ] = {
1307 [ C(RESULT_ACCESS
) ] = -1,
1308 [ C(RESULT_MISS
) ] = -1,
1313 static __initconst
const u64 atom_hw_cache_event_ids
1314 [PERF_COUNT_HW_CACHE_MAX
]
1315 [PERF_COUNT_HW_CACHE_OP_MAX
]
1316 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1320 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
1321 [ C(RESULT_MISS
) ] = 0,
1324 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
1325 [ C(RESULT_MISS
) ] = 0,
1327 [ C(OP_PREFETCH
) ] = {
1328 [ C(RESULT_ACCESS
) ] = 0x0,
1329 [ C(RESULT_MISS
) ] = 0,
1334 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1335 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1338 [ C(RESULT_ACCESS
) ] = -1,
1339 [ C(RESULT_MISS
) ] = -1,
1341 [ C(OP_PREFETCH
) ] = {
1342 [ C(RESULT_ACCESS
) ] = 0,
1343 [ C(RESULT_MISS
) ] = 0,
1348 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1349 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1352 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1353 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1355 [ C(OP_PREFETCH
) ] = {
1356 [ C(RESULT_ACCESS
) ] = 0,
1357 [ C(RESULT_MISS
) ] = 0,
1362 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1363 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1366 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1367 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1369 [ C(OP_PREFETCH
) ] = {
1370 [ C(RESULT_ACCESS
) ] = 0,
1371 [ C(RESULT_MISS
) ] = 0,
1376 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1377 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
1380 [ C(RESULT_ACCESS
) ] = -1,
1381 [ C(RESULT_MISS
) ] = -1,
1383 [ C(OP_PREFETCH
) ] = {
1384 [ C(RESULT_ACCESS
) ] = -1,
1385 [ C(RESULT_MISS
) ] = -1,
1390 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1391 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1394 [ C(RESULT_ACCESS
) ] = -1,
1395 [ C(RESULT_MISS
) ] = -1,
1397 [ C(OP_PREFETCH
) ] = {
1398 [ C(RESULT_ACCESS
) ] = -1,
1399 [ C(RESULT_MISS
) ] = -1,
1404 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_slm
, "event=0x3c");
1405 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_slm
, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_slm
,
1408 "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown
-fetch
-bubbles
.scale
, td_fetch_bubbles_scale_slm
, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_slm
,
1412 "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_slm
,
1415 "event=0xc2,umask=0x10");
1417 static struct attribute
*slm_events_attrs
[] = {
1418 EVENT_PTR(td_total_slots_slm
),
1419 EVENT_PTR(td_total_slots_scale_slm
),
1420 EVENT_PTR(td_fetch_bubbles_slm
),
1421 EVENT_PTR(td_fetch_bubbles_scale_slm
),
1422 EVENT_PTR(td_slots_issued_slm
),
1423 EVENT_PTR(td_slots_retired_slm
),
1427 static struct extra_reg intel_slm_extra_regs
[] __read_mostly
=
1429 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x768005ffffull
, RSP_0
),
1431 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x368005ffffull
, RSP_1
),
1435 #define SLM_DMND_READ SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1439 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS SNB_RESP_ANY
1441 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1443 static __initconst
const u64 slm_hw_cache_extra_regs
1444 [PERF_COUNT_HW_CACHE_MAX
]
1445 [PERF_COUNT_HW_CACHE_OP_MAX
]
1446 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1450 [ C(RESULT_ACCESS
) ] = SLM_DMND_READ
|SLM_LLC_ACCESS
,
1451 [ C(RESULT_MISS
) ] = 0,
1454 [ C(RESULT_ACCESS
) ] = SLM_DMND_WRITE
|SLM_LLC_ACCESS
,
1455 [ C(RESULT_MISS
) ] = SLM_DMND_WRITE
|SLM_LLC_MISS
,
1457 [ C(OP_PREFETCH
) ] = {
1458 [ C(RESULT_ACCESS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_ACCESS
,
1459 [ C(RESULT_MISS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_MISS
,
1464 static __initconst
const u64 slm_hw_cache_event_ids
1465 [PERF_COUNT_HW_CACHE_MAX
]
1466 [PERF_COUNT_HW_CACHE_OP_MAX
]
1467 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1471 [ C(RESULT_ACCESS
) ] = 0,
1472 [ C(RESULT_MISS
) ] = 0x0104, /* LD_DCU_MISS */
1475 [ C(RESULT_ACCESS
) ] = 0,
1476 [ C(RESULT_MISS
) ] = 0,
1478 [ C(OP_PREFETCH
) ] = {
1479 [ C(RESULT_ACCESS
) ] = 0,
1480 [ C(RESULT_MISS
) ] = 0,
1485 [ C(RESULT_ACCESS
) ] = 0x0380, /* ICACHE.ACCESSES */
1486 [ C(RESULT_MISS
) ] = 0x0280, /* ICACGE.MISSES */
1489 [ C(RESULT_ACCESS
) ] = -1,
1490 [ C(RESULT_MISS
) ] = -1,
1492 [ C(OP_PREFETCH
) ] = {
1493 [ C(RESULT_ACCESS
) ] = 0,
1494 [ C(RESULT_MISS
) ] = 0,
1499 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500 [ C(RESULT_ACCESS
) ] = 0x01b7,
1501 [ C(RESULT_MISS
) ] = 0,
1504 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505 [ C(RESULT_ACCESS
) ] = 0x01b7,
1506 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507 [ C(RESULT_MISS
) ] = 0x01b7,
1509 [ C(OP_PREFETCH
) ] = {
1510 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511 [ C(RESULT_ACCESS
) ] = 0x01b7,
1512 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513 [ C(RESULT_MISS
) ] = 0x01b7,
1518 [ C(RESULT_ACCESS
) ] = 0,
1519 [ C(RESULT_MISS
) ] = 0x0804, /* LD_DTLB_MISS */
1522 [ C(RESULT_ACCESS
) ] = 0,
1523 [ C(RESULT_MISS
) ] = 0,
1525 [ C(OP_PREFETCH
) ] = {
1526 [ C(RESULT_ACCESS
) ] = 0,
1527 [ C(RESULT_MISS
) ] = 0,
1532 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533 [ C(RESULT_MISS
) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1536 [ C(RESULT_ACCESS
) ] = -1,
1537 [ C(RESULT_MISS
) ] = -1,
1539 [ C(OP_PREFETCH
) ] = {
1540 [ C(RESULT_ACCESS
) ] = -1,
1541 [ C(RESULT_MISS
) ] = -1,
1546 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1550 [ C(RESULT_ACCESS
) ] = -1,
1551 [ C(RESULT_MISS
) ] = -1,
1553 [ C(OP_PREFETCH
) ] = {
1554 [ C(RESULT_ACCESS
) ] = -1,
1555 [ C(RESULT_MISS
) ] = -1,
1560 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_glm
, "event=0x3c");
1561 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_glm
, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_glm
, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown
-recovery
-bubbles
, td_recovery_bubbles_glm
, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_glm
, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_glm
, "event=0x0e");
1571 static struct attribute
*glm_events_attrs
[] = {
1572 EVENT_PTR(td_total_slots_glm
),
1573 EVENT_PTR(td_total_slots_scale_glm
),
1574 EVENT_PTR(td_fetch_bubbles_glm
),
1575 EVENT_PTR(td_recovery_bubbles_glm
),
1576 EVENT_PTR(td_slots_issued_glm
),
1577 EVENT_PTR(td_slots_retired_glm
),
1581 static struct extra_reg intel_glm_extra_regs
[] __read_mostly
= {
1582 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x760005ffbfull
, RSP_0
),
1584 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x360005ffbfull
, RSP_1
),
1588 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1589 #define GLM_DEMAND_RFO BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1592 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1599 static __initconst
const u64 glm_hw_cache_event_ids
1600 [PERF_COUNT_HW_CACHE_MAX
]
1601 [PERF_COUNT_HW_CACHE_OP_MAX
]
1602 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1605 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1606 [C(RESULT_MISS
)] = 0x0,
1609 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1610 [C(RESULT_MISS
)] = 0x0,
1612 [C(OP_PREFETCH
)] = {
1613 [C(RESULT_ACCESS
)] = 0x0,
1614 [C(RESULT_MISS
)] = 0x0,
1619 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1620 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1623 [C(RESULT_ACCESS
)] = -1,
1624 [C(RESULT_MISS
)] = -1,
1626 [C(OP_PREFETCH
)] = {
1627 [C(RESULT_ACCESS
)] = 0x0,
1628 [C(RESULT_MISS
)] = 0x0,
1633 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1637 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1640 [C(OP_PREFETCH
)] = {
1641 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1642 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1647 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1648 [C(RESULT_MISS
)] = 0x0,
1651 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1652 [C(RESULT_MISS
)] = 0x0,
1654 [C(OP_PREFETCH
)] = {
1655 [C(RESULT_ACCESS
)] = 0x0,
1656 [C(RESULT_MISS
)] = 0x0,
1661 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1662 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1665 [C(RESULT_ACCESS
)] = -1,
1666 [C(RESULT_MISS
)] = -1,
1668 [C(OP_PREFETCH
)] = {
1669 [C(RESULT_ACCESS
)] = -1,
1670 [C(RESULT_MISS
)] = -1,
1675 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1676 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1679 [C(RESULT_ACCESS
)] = -1,
1680 [C(RESULT_MISS
)] = -1,
1682 [C(OP_PREFETCH
)] = {
1683 [C(RESULT_ACCESS
)] = -1,
1684 [C(RESULT_MISS
)] = -1,
1689 static __initconst
const u64 glm_hw_cache_extra_regs
1690 [PERF_COUNT_HW_CACHE_MAX
]
1691 [PERF_COUNT_HW_CACHE_OP_MAX
]
1692 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1695 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1697 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1701 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1703 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1706 [C(OP_PREFETCH
)] = {
1707 [C(RESULT_ACCESS
)] = GLM_DEMAND_PREFETCH
|
1709 [C(RESULT_MISS
)] = GLM_DEMAND_PREFETCH
|
1715 static __initconst
const u64 glp_hw_cache_event_ids
1716 [PERF_COUNT_HW_CACHE_MAX
]
1717 [PERF_COUNT_HW_CACHE_OP_MAX
]
1718 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1721 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1722 [C(RESULT_MISS
)] = 0x0,
1725 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1726 [C(RESULT_MISS
)] = 0x0,
1728 [C(OP_PREFETCH
)] = {
1729 [C(RESULT_ACCESS
)] = 0x0,
1730 [C(RESULT_MISS
)] = 0x0,
1735 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1736 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1739 [C(RESULT_ACCESS
)] = -1,
1740 [C(RESULT_MISS
)] = -1,
1742 [C(OP_PREFETCH
)] = {
1743 [C(RESULT_ACCESS
)] = 0x0,
1744 [C(RESULT_MISS
)] = 0x0,
1749 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1750 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1753 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1754 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1756 [C(OP_PREFETCH
)] = {
1757 [C(RESULT_ACCESS
)] = 0x0,
1758 [C(RESULT_MISS
)] = 0x0,
1763 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1764 [C(RESULT_MISS
)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1767 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1768 [C(RESULT_MISS
)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1770 [C(OP_PREFETCH
)] = {
1771 [C(RESULT_ACCESS
)] = 0x0,
1772 [C(RESULT_MISS
)] = 0x0,
1777 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1778 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1781 [C(RESULT_ACCESS
)] = -1,
1782 [C(RESULT_MISS
)] = -1,
1784 [C(OP_PREFETCH
)] = {
1785 [C(RESULT_ACCESS
)] = -1,
1786 [C(RESULT_MISS
)] = -1,
1791 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1792 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1795 [C(RESULT_ACCESS
)] = -1,
1796 [C(RESULT_MISS
)] = -1,
1798 [C(OP_PREFETCH
)] = {
1799 [C(RESULT_ACCESS
)] = -1,
1800 [C(RESULT_MISS
)] = -1,
1805 static __initconst
const u64 glp_hw_cache_extra_regs
1806 [PERF_COUNT_HW_CACHE_MAX
]
1807 [PERF_COUNT_HW_CACHE_OP_MAX
]
1808 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1811 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1813 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1817 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1819 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1822 [C(OP_PREFETCH
)] = {
1823 [C(RESULT_ACCESS
)] = 0x0,
1824 [C(RESULT_MISS
)] = 0x0,
1829 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR BIT_ULL(22)
1833 #define KNL_DDR_LOCAL BIT_ULL(23)
1834 #define KNL_DDR_FAR BIT_ULL(24)
1835 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836 KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ SLM_DMND_READ
1838 #define KNL_L2_WRITE SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1841 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842 KNL_DRAM_ANY | SNB_SNP_ANY | \
1845 static __initconst
const u64 knl_hw_cache_extra_regs
1846 [PERF_COUNT_HW_CACHE_MAX
]
1847 [PERF_COUNT_HW_CACHE_OP_MAX
]
1848 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1851 [C(RESULT_ACCESS
)] = KNL_L2_READ
| KNL_L2_ACCESS
,
1852 [C(RESULT_MISS
)] = 0,
1855 [C(RESULT_ACCESS
)] = KNL_L2_WRITE
| KNL_L2_ACCESS
,
1856 [C(RESULT_MISS
)] = KNL_L2_WRITE
| KNL_L2_MISS
,
1858 [C(OP_PREFETCH
)] = {
1859 [C(RESULT_ACCESS
)] = KNL_L2_PREFETCH
| KNL_L2_ACCESS
,
1860 [C(RESULT_MISS
)] = KNL_L2_PREFETCH
| KNL_L2_MISS
,
1866 * Used from PMIs where the LBRs are already disabled.
1868 * This function could be called consecutively. It is required to remain in
1869 * disabled state if called consecutively.
1871 * During consecutive calls, the same disable value will be written to related
1872 * registers, so the PMU state remains unchanged.
1874 * intel_bts events don't coexist with intel PMU's BTS events because of
1875 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878 static void __intel_pmu_disable_all(void)
1880 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1882 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1884 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1885 intel_pmu_disable_bts();
1887 intel_pmu_pebs_disable_all();
1890 static void intel_pmu_disable_all(void)
1892 __intel_pmu_disable_all();
1893 intel_pmu_lbr_disable_all();
1896 static void __intel_pmu_enable_all(int added
, bool pmi
)
1898 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1900 intel_pmu_pebs_enable_all();
1901 intel_pmu_lbr_enable_all(pmi
);
1902 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
1903 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
1905 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
1906 struct perf_event
*event
=
1907 cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
1909 if (WARN_ON_ONCE(!event
))
1912 intel_pmu_enable_bts(event
->hw
.config
);
1916 static void intel_pmu_enable_all(int added
)
1918 __intel_pmu_enable_all(added
, false);
1923 * Intel Errata AAK100 (model 26)
1924 * Intel Errata AAP53 (model 30)
1925 * Intel Errata BD53 (model 44)
1927 * The official story:
1928 * These chips need to be 'reset' when adding counters by programming the
1929 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930 * in sequence on the same PMC or on different PMCs.
1932 * In practise it appears some of these events do in fact count, and
1933 * we need to programm all 4 events.
1935 static void intel_pmu_nhm_workaround(void)
1937 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1938 static const unsigned long nhm_magic
[4] = {
1944 struct perf_event
*event
;
1948 * The Errata requires below steps:
1949 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951 * the corresponding PMCx;
1952 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1958 * The real steps we choose are a little different from above.
1959 * A) To reduce MSR operations, we don't run step 1) as they
1960 * are already cleared before this function is called;
1961 * B) Call x86_perf_event_update to save PMCx before configuring
1962 * PERFEVTSELx with magic number;
1963 * C) With step 5), we do clear only when the PERFEVTSELx is
1964 * not used currently.
1965 * D) Call x86_perf_event_set_period to restore PMCx;
1968 /* We always operate 4 pairs of PERF Counters */
1969 for (i
= 0; i
< 4; i
++) {
1970 event
= cpuc
->events
[i
];
1972 x86_perf_event_update(event
);
1975 for (i
= 0; i
< 4; i
++) {
1976 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
1977 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
1980 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
1981 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
1983 for (i
= 0; i
< 4; i
++) {
1984 event
= cpuc
->events
[i
];
1987 x86_perf_event_set_period(event
);
1988 __x86_pmu_enable_event(&event
->hw
,
1989 ARCH_PERFMON_EVENTSEL_ENABLE
);
1991 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
1995 static void intel_pmu_nhm_enable_all(int added
)
1998 intel_pmu_nhm_workaround();
1999 intel_pmu_enable_all(added
);
2002 static void enable_counter_freeze(void)
2004 update_debugctlmsr(get_debugctlmsr() |
2005 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2008 static void disable_counter_freeze(void)
2010 update_debugctlmsr(get_debugctlmsr() &
2011 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2014 static inline u64
intel_pmu_get_status(void)
2018 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
2023 static inline void intel_pmu_ack_status(u64 ack
)
2025 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
2028 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
2030 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2033 mask
= 0xfULL
<< (idx
* 4);
2035 rdmsrl(hwc
->config_base
, ctrl_val
);
2037 wrmsrl(hwc
->config_base
, ctrl_val
);
2040 static inline bool event_is_checkpointed(struct perf_event
*event
)
2042 return (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) != 0;
2045 static void intel_pmu_disable_event(struct perf_event
*event
)
2047 struct hw_perf_event
*hwc
= &event
->hw
;
2048 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2050 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2051 intel_pmu_disable_bts();
2052 intel_pmu_drain_bts_buffer();
2056 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
2057 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
2058 cpuc
->intel_cp_status
&= ~(1ull << hwc
->idx
);
2060 if (unlikely(event
->attr
.precise_ip
))
2061 intel_pmu_pebs_disable(event
);
2063 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
2064 intel_pmu_disable_fixed(hwc
);
2068 x86_pmu_disable_event(event
);
2071 static void intel_pmu_del_event(struct perf_event
*event
)
2073 if (needs_branch_stack(event
))
2074 intel_pmu_lbr_del(event
);
2075 if (event
->attr
.precise_ip
)
2076 intel_pmu_pebs_del(event
);
2079 static void intel_pmu_read_event(struct perf_event
*event
)
2081 if (event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
)
2082 intel_pmu_auto_reload_read(event
);
2084 x86_perf_event_update(event
);
2087 static void intel_pmu_enable_fixed(struct perf_event
*event
)
2089 struct hw_perf_event
*hwc
= &event
->hw
;
2090 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2091 u64 ctrl_val
, mask
, bits
= 0;
2094 * Enable IRQ generation (0x8), if not PEBS,
2095 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2098 if (!event
->attr
.precise_ip
)
2100 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
2102 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
2106 * ANY bit is supported in v3 and up
2108 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
2112 mask
= 0xfULL
<< (idx
* 4);
2114 rdmsrl(hwc
->config_base
, ctrl_val
);
2117 wrmsrl(hwc
->config_base
, ctrl_val
);
2120 static void intel_pmu_enable_event(struct perf_event
*event
)
2122 struct hw_perf_event
*hwc
= &event
->hw
;
2123 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2125 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2126 if (!__this_cpu_read(cpu_hw_events
.enabled
))
2129 intel_pmu_enable_bts(hwc
->config
);
2133 if (event
->attr
.exclude_host
)
2134 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
2135 if (event
->attr
.exclude_guest
)
2136 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
2138 if (unlikely(event_is_checkpointed(event
)))
2139 cpuc
->intel_cp_status
|= (1ull << hwc
->idx
);
2141 if (unlikely(event
->attr
.precise_ip
))
2142 intel_pmu_pebs_enable(event
);
2144 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
2145 intel_pmu_enable_fixed(event
);
2149 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
2152 static void intel_pmu_add_event(struct perf_event
*event
)
2154 if (event
->attr
.precise_ip
)
2155 intel_pmu_pebs_add(event
);
2156 if (needs_branch_stack(event
))
2157 intel_pmu_lbr_add(event
);
2161 * Save and restart an expired event. Called by NMI contexts,
2162 * so it has to be careful about preempting normal event ops:
2164 int intel_pmu_save_and_restart(struct perf_event
*event
)
2166 x86_perf_event_update(event
);
2168 * For a checkpointed counter always reset back to 0. This
2169 * avoids a situation where the counter overflows, aborts the
2170 * transaction and is then set back to shortly before the
2171 * overflow, and overflows and aborts again.
2173 if (unlikely(event_is_checkpointed(event
))) {
2174 /* No race with NMIs because the counter should not be armed */
2175 wrmsrl(event
->hw
.event_base
, 0);
2176 local64_set(&event
->hw
.prev_count
, 0);
2178 return x86_perf_event_set_period(event
);
2181 static void intel_pmu_reset(void)
2183 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
2184 unsigned long flags
;
2187 if (!x86_pmu
.num_counters
)
2190 local_irq_save(flags
);
2192 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2194 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2195 wrmsrl_safe(x86_pmu_config_addr(idx
), 0ull);
2196 wrmsrl_safe(x86_pmu_event_addr(idx
), 0ull);
2198 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
2199 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
2202 ds
->bts_index
= ds
->bts_buffer_base
;
2204 /* Ack all overflows and disable fixed counters */
2205 if (x86_pmu
.version
>= 2) {
2206 intel_pmu_ack_status(intel_pmu_get_status());
2207 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2210 /* Reset LBRs and LBR freezing */
2211 if (x86_pmu
.lbr_nr
) {
2212 update_debugctlmsr(get_debugctlmsr() &
2213 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
|DEBUGCTLMSR_LBR
));
2216 local_irq_restore(flags
);
2219 static int handle_pmi_common(struct pt_regs
*regs
, u64 status
)
2221 struct perf_sample_data data
;
2222 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2226 inc_irq_stat(apic_perf_irqs
);
2229 * Ignore a range of extra bits in status that do not indicate
2230 * overflow by themselves.
2232 status
&= ~(GLOBAL_STATUS_COND_CHG
|
2233 GLOBAL_STATUS_ASIF
|
2234 GLOBAL_STATUS_LBRS_FROZEN
);
2238 * In case multiple PEBS events are sampled at the same time,
2239 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2240 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2241 * having their bits set in the status register. This is a sign
2242 * that there was at least one PEBS record pending at the time
2243 * of the PMU interrupt. PEBS counters must only be processed
2244 * via the drain_pebs() calls and not via the regular sample
2245 * processing loop coming after that the function, otherwise
2246 * phony regular samples may be generated in the sampling buffer
2247 * not marked with the EXACT tag. Another possibility is to have
2248 * one PEBS event and at least one non-PEBS event whic hoverflows
2249 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2250 * not be set, yet the overflow status bit for the PEBS counter will
2253 * To avoid this problem, we systematically ignore the PEBS-enabled
2254 * counters from the GLOBAL_STATUS mask and we always process PEBS
2255 * events via drain_pebs().
2257 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
2258 status
&= ~cpuc
->pebs_enabled
;
2260 status
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
2263 * PEBS overflow sets bit 62 in the global status register
2265 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
2267 x86_pmu
.drain_pebs(regs
);
2268 status
&= x86_pmu
.intel_ctrl
| GLOBAL_STATUS_TRACE_TOPAPMI
;
2274 if (__test_and_clear_bit(55, (unsigned long *)&status
)) {
2276 intel_pt_interrupt();
2280 * Checkpointed counters can lead to 'spurious' PMIs because the
2281 * rollback caused by the PMI will have cleared the overflow status
2282 * bit. Therefore always force probe these counters.
2284 status
|= cpuc
->intel_cp_status
;
2286 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
2287 struct perf_event
*event
= cpuc
->events
[bit
];
2291 if (!test_bit(bit
, cpuc
->active_mask
))
2294 if (!intel_pmu_save_and_restart(event
))
2297 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
2299 if (has_branch_stack(event
))
2300 data
.br_stack
= &cpuc
->lbr_stack
;
2302 if (perf_event_overflow(event
, &data
, regs
))
2303 x86_pmu_stop(event
, 0);
2309 static bool disable_counter_freezing
;
2310 static int __init
intel_perf_counter_freezing_setup(char *s
)
2312 disable_counter_freezing
= true;
2313 pr_info("Intel PMU Counter freezing feature disabled\n");
2316 __setup("disable_counter_freezing", intel_perf_counter_freezing_setup
);
2319 * Simplified handler for Arch Perfmon v4:
2320 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2321 * This is done automatically on PMU ack.
2322 * - Ack the PMU only after the APIC.
2325 static int intel_pmu_handle_irq_v4(struct pt_regs
*regs
)
2327 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2331 int pmu_enabled
= cpuc
->enabled
;
2334 /* PMU has been disabled because of counter freezing */
2336 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
2338 intel_bts_disable_local();
2339 handled
= intel_pmu_drain_bts_buffer();
2340 handled
+= intel_bts_interrupt();
2342 status
= intel_pmu_get_status();
2346 intel_pmu_lbr_read();
2347 if (++loops
> 100) {
2351 WARN(1, "perfevents: irq loop stuck!\n");
2352 perf_event_print_debug();
2360 handled
+= handle_pmi_common(regs
, status
);
2362 /* Ack the PMI in the APIC */
2363 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2366 * The counters start counting immediately while ack the status.
2367 * Make it as close as possible to IRET. This avoids bogus
2368 * freezing on Skylake CPUs.
2371 intel_pmu_ack_status(status
);
2374 * CPU may issues two PMIs very close to each other.
2375 * When the PMI handler services the first one, the
2376 * GLOBAL_STATUS is already updated to reflect both.
2377 * When it IRETs, the second PMI is immediately
2378 * handled and it sees clear status. At the meantime,
2379 * there may be a third PMI, because the freezing bit
2380 * isn't set since the ack in first PMI handlers.
2381 * Double check if there is more work to be done.
2383 status
= intel_pmu_get_status();
2389 intel_bts_enable_local();
2390 cpuc
->enabled
= pmu_enabled
;
2395 * This handler is triggered by the local APIC, so the APIC IRQ handling
2398 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
2400 struct cpu_hw_events
*cpuc
;
2406 cpuc
= this_cpu_ptr(&cpu_hw_events
);
2409 * Save the PMU state.
2410 * It needs to be restored when leaving the handler.
2412 pmu_enabled
= cpuc
->enabled
;
2414 * No known reason to not always do late ACK,
2415 * but just in case do it opt-in.
2417 if (!x86_pmu
.late_ack
)
2418 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2419 intel_bts_disable_local();
2421 __intel_pmu_disable_all();
2422 handled
= intel_pmu_drain_bts_buffer();
2423 handled
+= intel_bts_interrupt();
2424 status
= intel_pmu_get_status();
2430 intel_pmu_lbr_read();
2431 intel_pmu_ack_status(status
);
2432 if (++loops
> 100) {
2436 WARN(1, "perfevents: irq loop stuck!\n");
2437 perf_event_print_debug();
2444 handled
+= handle_pmi_common(regs
, status
);
2447 * Repeat if there is more work to be done:
2449 status
= intel_pmu_get_status();
2454 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2455 cpuc
->enabled
= pmu_enabled
;
2457 __intel_pmu_enable_all(0, true);
2458 intel_bts_enable_local();
2461 * Only unmask the NMI after the overflow counters
2462 * have been reset. This avoids spurious NMIs on
2465 if (x86_pmu
.late_ack
)
2466 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2470 static struct event_constraint
*
2471 intel_bts_constraints(struct perf_event
*event
)
2473 struct hw_perf_event
*hwc
= &event
->hw
;
2474 unsigned int hw_event
, bts_event
;
2476 if (event
->attr
.freq
)
2479 hw_event
= hwc
->config
& INTEL_ARCH_EVENT_MASK
;
2480 bts_event
= x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
);
2482 if (unlikely(hw_event
== bts_event
&& hwc
->sample_period
== 1))
2483 return &bts_constraint
;
2488 static int intel_alt_er(int idx
, u64 config
)
2492 if (!(x86_pmu
.flags
& PMU_FL_HAS_RSP_1
))
2495 if (idx
== EXTRA_REG_RSP_0
)
2496 alt_idx
= EXTRA_REG_RSP_1
;
2498 if (idx
== EXTRA_REG_RSP_1
)
2499 alt_idx
= EXTRA_REG_RSP_0
;
2501 if (config
& ~x86_pmu
.extra_regs
[alt_idx
].valid_mask
)
2507 static void intel_fixup_er(struct perf_event
*event
, int idx
)
2509 event
->hw
.extra_reg
.idx
= idx
;
2511 if (idx
== EXTRA_REG_RSP_0
) {
2512 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2513 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_0
].event
;
2514 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
2515 } else if (idx
== EXTRA_REG_RSP_1
) {
2516 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2517 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_1
].event
;
2518 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
2523 * manage allocation of shared extra msr for certain events
2526 * per-cpu: to be shared between the various events on a single PMU
2527 * per-core: per-cpu + shared by HT threads
2529 static struct event_constraint
*
2530 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
2531 struct perf_event
*event
,
2532 struct hw_perf_event_extra
*reg
)
2534 struct event_constraint
*c
= &emptyconstraint
;
2535 struct er_account
*era
;
2536 unsigned long flags
;
2540 * reg->alloc can be set due to existing state, so for fake cpuc we
2541 * need to ignore this, otherwise we might fail to allocate proper fake
2542 * state for this extra reg constraint. Also see the comment below.
2544 if (reg
->alloc
&& !cpuc
->is_fake
)
2545 return NULL
; /* call x86_get_event_constraint() */
2548 era
= &cpuc
->shared_regs
->regs
[idx
];
2550 * we use spin_lock_irqsave() to avoid lockdep issues when
2551 * passing a fake cpuc
2553 raw_spin_lock_irqsave(&era
->lock
, flags
);
2555 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
2558 * If its a fake cpuc -- as per validate_{group,event}() we
2559 * shouldn't touch event state and we can avoid doing so
2560 * since both will only call get_event_constraints() once
2561 * on each event, this avoids the need for reg->alloc.
2563 * Not doing the ER fixup will only result in era->reg being
2564 * wrong, but since we won't actually try and program hardware
2565 * this isn't a problem either.
2567 if (!cpuc
->is_fake
) {
2568 if (idx
!= reg
->idx
)
2569 intel_fixup_er(event
, idx
);
2572 * x86_schedule_events() can call get_event_constraints()
2573 * multiple times on events in the case of incremental
2574 * scheduling(). reg->alloc ensures we only do the ER
2580 /* lock in msr value */
2581 era
->config
= reg
->config
;
2582 era
->reg
= reg
->reg
;
2585 atomic_inc(&era
->ref
);
2588 * need to call x86_get_event_constraint()
2589 * to check if associated event has constraints
2593 idx
= intel_alt_er(idx
, reg
->config
);
2594 if (idx
!= reg
->idx
) {
2595 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2599 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2605 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
2606 struct hw_perf_event_extra
*reg
)
2608 struct er_account
*era
;
2611 * Only put constraint if extra reg was actually allocated. Also takes
2612 * care of event which do not use an extra shared reg.
2614 * Also, if this is a fake cpuc we shouldn't touch any event state
2615 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2616 * either since it'll be thrown out.
2618 if (!reg
->alloc
|| cpuc
->is_fake
)
2621 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
2623 /* one fewer user */
2624 atomic_dec(&era
->ref
);
2626 /* allocate again next time */
2630 static struct event_constraint
*
2631 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
2632 struct perf_event
*event
)
2634 struct event_constraint
*c
= NULL
, *d
;
2635 struct hw_perf_event_extra
*xreg
, *breg
;
2637 xreg
= &event
->hw
.extra_reg
;
2638 if (xreg
->idx
!= EXTRA_REG_NONE
) {
2639 c
= __intel_shared_reg_get_constraints(cpuc
, event
, xreg
);
2640 if (c
== &emptyconstraint
)
2643 breg
= &event
->hw
.branch_reg
;
2644 if (breg
->idx
!= EXTRA_REG_NONE
) {
2645 d
= __intel_shared_reg_get_constraints(cpuc
, event
, breg
);
2646 if (d
== &emptyconstraint
) {
2647 __intel_shared_reg_put_constraints(cpuc
, xreg
);
2654 struct event_constraint
*
2655 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2656 struct perf_event
*event
)
2658 struct event_constraint
*c
;
2660 if (x86_pmu
.event_constraints
) {
2661 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
2662 if ((event
->hw
.config
& c
->cmask
) == c
->code
) {
2663 event
->hw
.flags
|= c
->flags
;
2669 return &unconstrained
;
2672 static struct event_constraint
*
2673 __intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2674 struct perf_event
*event
)
2676 struct event_constraint
*c
;
2678 c
= intel_bts_constraints(event
);
2682 c
= intel_shared_regs_constraints(cpuc
, event
);
2686 c
= intel_pebs_constraints(event
);
2690 return x86_get_event_constraints(cpuc
, idx
, event
);
2694 intel_start_scheduling(struct cpu_hw_events
*cpuc
)
2696 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2697 struct intel_excl_states
*xl
;
2698 int tid
= cpuc
->excl_thread_id
;
2701 * nothing needed if in group validation mode
2703 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2707 * no exclusion needed
2709 if (WARN_ON_ONCE(!excl_cntrs
))
2712 xl
= &excl_cntrs
->states
[tid
];
2714 xl
->sched_started
= true;
2716 * lock shared state until we are done scheduling
2717 * in stop_event_scheduling()
2718 * makes scheduling appear as a transaction
2720 raw_spin_lock(&excl_cntrs
->lock
);
2723 static void intel_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2725 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2726 struct event_constraint
*c
= cpuc
->event_constraint
[idx
];
2727 struct intel_excl_states
*xl
;
2728 int tid
= cpuc
->excl_thread_id
;
2730 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2733 if (WARN_ON_ONCE(!excl_cntrs
))
2736 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
))
2739 xl
= &excl_cntrs
->states
[tid
];
2741 lockdep_assert_held(&excl_cntrs
->lock
);
2743 if (c
->flags
& PERF_X86_EVENT_EXCL
)
2744 xl
->state
[cntr
] = INTEL_EXCL_EXCLUSIVE
;
2746 xl
->state
[cntr
] = INTEL_EXCL_SHARED
;
2750 intel_stop_scheduling(struct cpu_hw_events
*cpuc
)
2752 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2753 struct intel_excl_states
*xl
;
2754 int tid
= cpuc
->excl_thread_id
;
2757 * nothing needed if in group validation mode
2759 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2762 * no exclusion needed
2764 if (WARN_ON_ONCE(!excl_cntrs
))
2767 xl
= &excl_cntrs
->states
[tid
];
2769 xl
->sched_started
= false;
2771 * release shared state lock (acquired in intel_start_scheduling())
2773 raw_spin_unlock(&excl_cntrs
->lock
);
2776 static struct event_constraint
*
2777 intel_get_excl_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
2778 int idx
, struct event_constraint
*c
)
2780 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2781 struct intel_excl_states
*xlo
;
2782 int tid
= cpuc
->excl_thread_id
;
2786 * validating a group does not require
2787 * enforcing cross-thread exclusion
2789 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2793 * no exclusion needed
2795 if (WARN_ON_ONCE(!excl_cntrs
))
2799 * because we modify the constraint, we need
2800 * to make a copy. Static constraints come
2801 * from static const tables.
2803 * only needed when constraint has not yet
2804 * been cloned (marked dynamic)
2806 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2807 struct event_constraint
*cx
;
2810 * grab pre-allocated constraint entry
2812 cx
= &cpuc
->constraint_list
[idx
];
2815 * initialize dynamic constraint
2816 * with static constraint
2821 * mark constraint as dynamic, so we
2822 * can free it later on
2824 cx
->flags
|= PERF_X86_EVENT_DYNAMIC
;
2829 * From here on, the constraint is dynamic.
2830 * Either it was just allocated above, or it
2831 * was allocated during a earlier invocation
2836 * state of sibling HT
2838 xlo
= &excl_cntrs
->states
[tid
^ 1];
2841 * event requires exclusive counter access
2844 is_excl
= c
->flags
& PERF_X86_EVENT_EXCL
;
2845 if (is_excl
&& !(event
->hw
.flags
& PERF_X86_EVENT_EXCL_ACCT
)) {
2846 event
->hw
.flags
|= PERF_X86_EVENT_EXCL_ACCT
;
2847 if (!cpuc
->n_excl
++)
2848 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 1);
2852 * Modify static constraint with current dynamic
2855 * EXCLUSIVE: sibling counter measuring exclusive event
2856 * SHARED : sibling counter measuring non-exclusive event
2857 * UNUSED : sibling counter unused
2859 for_each_set_bit(i
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
2861 * exclusive event in sibling counter
2862 * our corresponding counter cannot be used
2863 * regardless of our event
2865 if (xlo
->state
[i
] == INTEL_EXCL_EXCLUSIVE
)
2866 __clear_bit(i
, c
->idxmsk
);
2868 * if measuring an exclusive event, sibling
2869 * measuring non-exclusive, then counter cannot
2872 if (is_excl
&& xlo
->state
[i
] == INTEL_EXCL_SHARED
)
2873 __clear_bit(i
, c
->idxmsk
);
2877 * recompute actual bit weight for scheduling algorithm
2879 c
->weight
= hweight64(c
->idxmsk64
);
2882 * if we return an empty mask, then switch
2883 * back to static empty constraint to avoid
2884 * the cost of freeing later on
2887 c
= &emptyconstraint
;
2892 static struct event_constraint
*
2893 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2894 struct perf_event
*event
)
2896 struct event_constraint
*c1
= NULL
;
2897 struct event_constraint
*c2
;
2899 if (idx
>= 0) /* fake does < 0 */
2900 c1
= cpuc
->event_constraint
[idx
];
2904 * - static constraint: no change across incremental scheduling calls
2905 * - dynamic constraint: handled by intel_get_excl_constraints()
2907 c2
= __intel_get_event_constraints(cpuc
, idx
, event
);
2908 if (c1
&& (c1
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2909 bitmap_copy(c1
->idxmsk
, c2
->idxmsk
, X86_PMC_IDX_MAX
);
2910 c1
->weight
= c2
->weight
;
2914 if (cpuc
->excl_cntrs
)
2915 return intel_get_excl_constraints(cpuc
, event
, idx
, c2
);
2920 static void intel_put_excl_constraints(struct cpu_hw_events
*cpuc
,
2921 struct perf_event
*event
)
2923 struct hw_perf_event
*hwc
= &event
->hw
;
2924 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2925 int tid
= cpuc
->excl_thread_id
;
2926 struct intel_excl_states
*xl
;
2929 * nothing needed if in group validation mode
2934 if (WARN_ON_ONCE(!excl_cntrs
))
2937 if (hwc
->flags
& PERF_X86_EVENT_EXCL_ACCT
) {
2938 hwc
->flags
&= ~PERF_X86_EVENT_EXCL_ACCT
;
2939 if (!--cpuc
->n_excl
)
2940 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 0);
2944 * If event was actually assigned, then mark the counter state as
2947 if (hwc
->idx
>= 0) {
2948 xl
= &excl_cntrs
->states
[tid
];
2951 * put_constraint may be called from x86_schedule_events()
2952 * which already has the lock held so here make locking
2955 if (!xl
->sched_started
)
2956 raw_spin_lock(&excl_cntrs
->lock
);
2958 xl
->state
[hwc
->idx
] = INTEL_EXCL_UNUSED
;
2960 if (!xl
->sched_started
)
2961 raw_spin_unlock(&excl_cntrs
->lock
);
2966 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
2967 struct perf_event
*event
)
2969 struct hw_perf_event_extra
*reg
;
2971 reg
= &event
->hw
.extra_reg
;
2972 if (reg
->idx
!= EXTRA_REG_NONE
)
2973 __intel_shared_reg_put_constraints(cpuc
, reg
);
2975 reg
= &event
->hw
.branch_reg
;
2976 if (reg
->idx
!= EXTRA_REG_NONE
)
2977 __intel_shared_reg_put_constraints(cpuc
, reg
);
2980 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
2981 struct perf_event
*event
)
2983 intel_put_shared_regs_event_constraints(cpuc
, event
);
2986 * is PMU has exclusive counter restrictions, then
2987 * all events are subject to and must call the
2988 * put_excl_constraints() routine
2990 if (cpuc
->excl_cntrs
)
2991 intel_put_excl_constraints(cpuc
, event
);
2994 static void intel_pebs_aliases_core2(struct perf_event
*event
)
2996 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2998 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2999 * (0x003c) so that we can use it with PEBS.
3001 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3002 * PEBS capable. However we can use INST_RETIRED.ANY_P
3003 * (0x00c0), which is a PEBS capable event, to get the same
3006 * INST_RETIRED.ANY_P counts the number of cycles that retires
3007 * CNTMASK instructions. By setting CNTMASK to a value (16)
3008 * larger than the maximum number of instructions that can be
3009 * retired per cycle (4) and then inverting the condition, we
3010 * count all cycles that retire 16 or less instructions, which
3013 * Thereby we gain a PEBS capable cycle counter.
3015 u64 alt_config
= X86_CONFIG(.event
=0xc0, .inv
=1, .cmask
=16);
3017 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3018 event
->hw
.config
= alt_config
;
3022 static void intel_pebs_aliases_snb(struct perf_event
*event
)
3024 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3026 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3027 * (0x003c) so that we can use it with PEBS.
3029 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3030 * PEBS capable. However we can use UOPS_RETIRED.ALL
3031 * (0x01c2), which is a PEBS capable event, to get the same
3034 * UOPS_RETIRED.ALL counts the number of cycles that retires
3035 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3036 * larger than the maximum number of micro-ops that can be
3037 * retired per cycle (4) and then inverting the condition, we
3038 * count all cycles that retire 16 or less micro-ops, which
3041 * Thereby we gain a PEBS capable cycle counter.
3043 u64 alt_config
= X86_CONFIG(.event
=0xc2, .umask
=0x01, .inv
=1, .cmask
=16);
3045 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3046 event
->hw
.config
= alt_config
;
3050 static void intel_pebs_aliases_precdist(struct perf_event
*event
)
3052 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3054 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3055 * (0x003c) so that we can use it with PEBS.
3057 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3058 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3059 * (0x01c0), which is a PEBS capable event, to get the same
3062 * The PREC_DIST event has special support to minimize sample
3063 * shadowing effects. One drawback is that it can be
3064 * only programmed on counter 1, but that seems like an
3065 * acceptable trade off.
3067 u64 alt_config
= X86_CONFIG(.event
=0xc0, .umask
=0x01, .inv
=1, .cmask
=16);
3069 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3070 event
->hw
.config
= alt_config
;
3074 static void intel_pebs_aliases_ivb(struct perf_event
*event
)
3076 if (event
->attr
.precise_ip
< 3)
3077 return intel_pebs_aliases_snb(event
);
3078 return intel_pebs_aliases_precdist(event
);
3081 static void intel_pebs_aliases_skl(struct perf_event
*event
)
3083 if (event
->attr
.precise_ip
< 3)
3084 return intel_pebs_aliases_core2(event
);
3085 return intel_pebs_aliases_precdist(event
);
3088 static unsigned long intel_pmu_large_pebs_flags(struct perf_event
*event
)
3090 unsigned long flags
= x86_pmu
.large_pebs_flags
;
3092 if (event
->attr
.use_clockid
)
3093 flags
&= ~PERF_SAMPLE_TIME
;
3094 if (!event
->attr
.exclude_kernel
)
3095 flags
&= ~PERF_SAMPLE_REGS_USER
;
3096 if (event
->attr
.sample_regs_user
& ~PEBS_REGS
)
3097 flags
&= ~(PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_REGS_INTR
);
3101 static int intel_pmu_hw_config(struct perf_event
*event
)
3103 int ret
= x86_pmu_hw_config(event
);
3108 if (event
->attr
.precise_ip
) {
3109 if (!event
->attr
.freq
) {
3110 event
->hw
.flags
|= PERF_X86_EVENT_AUTO_RELOAD
;
3111 if (!(event
->attr
.sample_type
&
3112 ~intel_pmu_large_pebs_flags(event
)))
3113 event
->hw
.flags
|= PERF_X86_EVENT_LARGE_PEBS
;
3115 if (x86_pmu
.pebs_aliases
)
3116 x86_pmu
.pebs_aliases(event
);
3118 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3119 event
->attr
.sample_type
|= __PERF_SAMPLE_CALLCHAIN_EARLY
;
3122 if (needs_branch_stack(event
)) {
3123 ret
= intel_pmu_setup_lbr_filter(event
);
3128 * BTS is set up earlier in this path, so don't account twice
3130 if (!intel_pmu_has_bts(event
)) {
3131 /* disallow lbr if conflicting events are present */
3132 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
3135 event
->destroy
= hw_perf_lbr_event_destroy
;
3139 if (event
->attr
.type
!= PERF_TYPE_RAW
)
3142 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
3145 if (x86_pmu
.version
< 3)
3148 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3151 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
3156 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
3158 if (x86_pmu
.guest_get_msrs
)
3159 return x86_pmu
.guest_get_msrs(nr
);
3163 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
3165 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
3167 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3168 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3170 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
3171 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
3172 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
3174 * If PMU counter has PEBS enabled it is not enough to disable counter
3175 * on a guest entry since PEBS memory write can overshoot guest entry
3176 * and corrupt guest memory. Disabling PEBS solves the problem.
3178 arr
[1].msr
= MSR_IA32_PEBS_ENABLE
;
3179 arr
[1].host
= cpuc
->pebs_enabled
;
3186 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
3188 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3189 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3192 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3193 struct perf_event
*event
= cpuc
->events
[idx
];
3195 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
3196 arr
[idx
].host
= arr
[idx
].guest
= 0;
3198 if (!test_bit(idx
, cpuc
->active_mask
))
3201 arr
[idx
].host
= arr
[idx
].guest
=
3202 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
3204 if (event
->attr
.exclude_host
)
3205 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3206 else if (event
->attr
.exclude_guest
)
3207 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3210 *nr
= x86_pmu
.num_counters
;
3214 static void core_pmu_enable_event(struct perf_event
*event
)
3216 if (!event
->attr
.exclude_host
)
3217 x86_pmu_enable_event(event
);
3220 static void core_pmu_enable_all(int added
)
3222 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3225 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3226 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
3228 if (!test_bit(idx
, cpuc
->active_mask
) ||
3229 cpuc
->events
[idx
]->attr
.exclude_host
)
3232 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
3236 static int hsw_hw_config(struct perf_event
*event
)
3238 int ret
= intel_pmu_hw_config(event
);
3242 if (!boot_cpu_has(X86_FEATURE_RTM
) && !boot_cpu_has(X86_FEATURE_HLE
))
3244 event
->hw
.config
|= event
->attr
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
);
3247 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3248 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3251 if ((event
->hw
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
)) &&
3252 ((event
->hw
.config
& ARCH_PERFMON_EVENTSEL_ANY
) ||
3253 event
->attr
.precise_ip
> 0))
3256 if (event_is_checkpointed(event
)) {
3258 * Sampling of checkpointed events can cause situations where
3259 * the CPU constantly aborts because of a overflow, which is
3260 * then checkpointed back and ignored. Forbid checkpointing
3263 * But still allow a long sampling period, so that perf stat
3266 if (event
->attr
.sample_period
> 0 &&
3267 event
->attr
.sample_period
< 0x7fffffff)
3273 static struct event_constraint counter0_constraint
=
3274 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3276 static struct event_constraint counter2_constraint
=
3277 EVENT_CONSTRAINT(0, 0x4, 0);
3279 static struct event_constraint
*
3280 hsw_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3281 struct perf_event
*event
)
3283 struct event_constraint
*c
;
3285 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3287 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3288 if (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) {
3289 if (c
->idxmsk64
& (1U << 2))
3290 return &counter2_constraint
;
3291 return &emptyconstraint
;
3297 static struct event_constraint
*
3298 glp_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3299 struct perf_event
*event
)
3301 struct event_constraint
*c
;
3303 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3304 if (event
->attr
.precise_ip
== 3)
3305 return &counter0_constraint
;
3307 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3315 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3316 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3317 * the two to enforce a minimum period of 128 (the smallest value that has bits
3318 * 0-5 cleared and >= 100).
3320 * Because of how the code in x86_perf_event_set_period() works, the truncation
3321 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3322 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3324 * Therefore the effective (average) period matches the requested period,
3325 * despite coarser hardware granularity.
3327 static u64
bdw_limit_period(struct perf_event
*event
, u64 left
)
3329 if ((event
->hw
.config
& INTEL_ARCH_EVENT_MASK
) ==
3330 X86_CONFIG(.event
=0xc0, .umask
=0x01)) {
3338 PMU_FORMAT_ATTR(event
, "config:0-7" );
3339 PMU_FORMAT_ATTR(umask
, "config:8-15" );
3340 PMU_FORMAT_ATTR(edge
, "config:18" );
3341 PMU_FORMAT_ATTR(pc
, "config:19" );
3342 PMU_FORMAT_ATTR(any
, "config:21" ); /* v3 + */
3343 PMU_FORMAT_ATTR(inv
, "config:23" );
3344 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
3345 PMU_FORMAT_ATTR(in_tx
, "config:32");
3346 PMU_FORMAT_ATTR(in_tx_cp
, "config:33");
3348 static struct attribute
*intel_arch_formats_attr
[] = {
3349 &format_attr_event
.attr
,
3350 &format_attr_umask
.attr
,
3351 &format_attr_edge
.attr
,
3352 &format_attr_pc
.attr
,
3353 &format_attr_inv
.attr
,
3354 &format_attr_cmask
.attr
,
3358 ssize_t
intel_event_sysfs_show(char *page
, u64 config
)
3360 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
);
3362 return x86_event_sysfs_show(page
, config
, event
);
3365 struct intel_shared_regs
*allocate_shared_regs(int cpu
)
3367 struct intel_shared_regs
*regs
;
3370 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
3371 GFP_KERNEL
, cpu_to_node(cpu
));
3374 * initialize the locks to keep lockdep happy
3376 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
3377 raw_spin_lock_init(®s
->regs
[i
].lock
);
3384 static struct intel_excl_cntrs
*allocate_excl_cntrs(int cpu
)
3386 struct intel_excl_cntrs
*c
;
3388 c
= kzalloc_node(sizeof(struct intel_excl_cntrs
),
3389 GFP_KERNEL
, cpu_to_node(cpu
));
3391 raw_spin_lock_init(&c
->lock
);
3397 static int intel_pmu_cpu_prepare(int cpu
)
3399 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3401 if (x86_pmu
.extra_regs
|| x86_pmu
.lbr_sel_map
) {
3402 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
3403 if (!cpuc
->shared_regs
)
3407 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3408 size_t sz
= X86_PMC_IDX_MAX
* sizeof(struct event_constraint
);
3410 cpuc
->constraint_list
= kzalloc(sz
, GFP_KERNEL
);
3411 if (!cpuc
->constraint_list
)
3412 goto err_shared_regs
;
3414 cpuc
->excl_cntrs
= allocate_excl_cntrs(cpu
);
3415 if (!cpuc
->excl_cntrs
)
3416 goto err_constraint_list
;
3418 cpuc
->excl_thread_id
= 0;
3423 err_constraint_list
:
3424 kfree(cpuc
->constraint_list
);
3425 cpuc
->constraint_list
= NULL
;
3428 kfree(cpuc
->shared_regs
);
3429 cpuc
->shared_regs
= NULL
;
3435 static void flip_smm_bit(void *data
)
3437 unsigned long set
= *(unsigned long *)data
;
3440 msr_set_bit(MSR_IA32_DEBUGCTLMSR
,
3441 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3443 msr_clear_bit(MSR_IA32_DEBUGCTLMSR
,
3444 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3448 static void intel_pmu_cpu_starting(int cpu
)
3450 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3451 int core_id
= topology_core_id(cpu
);
3454 init_debug_store_on_cpu(cpu
);
3456 * Deal with CPUs that don't clear their LBRs on power-up.
3458 intel_pmu_lbr_reset();
3460 cpuc
->lbr_sel
= NULL
;
3462 if (x86_pmu
.version
> 1)
3463 flip_smm_bit(&x86_pmu
.attr_freeze_on_smi
);
3465 if (x86_pmu
.counter_freezing
)
3466 enable_counter_freeze();
3468 if (!cpuc
->shared_regs
)
3471 if (!(x86_pmu
.flags
& PMU_FL_NO_HT_SHARING
)) {
3472 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3473 struct intel_shared_regs
*pc
;
3475 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
3476 if (pc
&& pc
->core_id
== core_id
) {
3477 cpuc
->kfree_on_online
[0] = cpuc
->shared_regs
;
3478 cpuc
->shared_regs
= pc
;
3482 cpuc
->shared_regs
->core_id
= core_id
;
3483 cpuc
->shared_regs
->refcnt
++;
3486 if (x86_pmu
.lbr_sel_map
)
3487 cpuc
->lbr_sel
= &cpuc
->shared_regs
->regs
[EXTRA_REG_LBR
];
3489 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3490 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3491 struct cpu_hw_events
*sibling
;
3492 struct intel_excl_cntrs
*c
;
3494 sibling
= &per_cpu(cpu_hw_events
, i
);
3495 c
= sibling
->excl_cntrs
;
3496 if (c
&& c
->core_id
== core_id
) {
3497 cpuc
->kfree_on_online
[1] = cpuc
->excl_cntrs
;
3498 cpuc
->excl_cntrs
= c
;
3499 if (!sibling
->excl_thread_id
)
3500 cpuc
->excl_thread_id
= 1;
3504 cpuc
->excl_cntrs
->core_id
= core_id
;
3505 cpuc
->excl_cntrs
->refcnt
++;
3509 static void free_excl_cntrs(int cpu
)
3511 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3512 struct intel_excl_cntrs
*c
;
3514 c
= cpuc
->excl_cntrs
;
3516 if (c
->core_id
== -1 || --c
->refcnt
== 0)
3518 cpuc
->excl_cntrs
= NULL
;
3519 kfree(cpuc
->constraint_list
);
3520 cpuc
->constraint_list
= NULL
;
3524 static void intel_pmu_cpu_dying(int cpu
)
3526 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3527 struct intel_shared_regs
*pc
;
3529 pc
= cpuc
->shared_regs
;
3531 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
3533 cpuc
->shared_regs
= NULL
;
3536 free_excl_cntrs(cpu
);
3538 fini_debug_store_on_cpu(cpu
);
3540 if (x86_pmu
.counter_freezing
)
3541 disable_counter_freeze();
3544 static void intel_pmu_sched_task(struct perf_event_context
*ctx
,
3547 intel_pmu_pebs_sched_task(ctx
, sched_in
);
3548 intel_pmu_lbr_sched_task(ctx
, sched_in
);
3551 PMU_FORMAT_ATTR(offcore_rsp
, "config1:0-63");
3553 PMU_FORMAT_ATTR(ldlat
, "config1:0-15");
3555 PMU_FORMAT_ATTR(frontend
, "config1:0-23");
3557 static struct attribute
*intel_arch3_formats_attr
[] = {
3558 &format_attr_event
.attr
,
3559 &format_attr_umask
.attr
,
3560 &format_attr_edge
.attr
,
3561 &format_attr_pc
.attr
,
3562 &format_attr_any
.attr
,
3563 &format_attr_inv
.attr
,
3564 &format_attr_cmask
.attr
,
3568 static struct attribute
*hsw_format_attr
[] = {
3569 &format_attr_in_tx
.attr
,
3570 &format_attr_in_tx_cp
.attr
,
3571 &format_attr_offcore_rsp
.attr
,
3572 &format_attr_ldlat
.attr
,
3576 static struct attribute
*nhm_format_attr
[] = {
3577 &format_attr_offcore_rsp
.attr
,
3578 &format_attr_ldlat
.attr
,
3582 static struct attribute
*slm_format_attr
[] = {
3583 &format_attr_offcore_rsp
.attr
,
3587 static struct attribute
*skl_format_attr
[] = {
3588 &format_attr_frontend
.attr
,
3592 static __initconst
const struct x86_pmu core_pmu
= {
3594 .handle_irq
= x86_pmu_handle_irq
,
3595 .disable_all
= x86_pmu_disable_all
,
3596 .enable_all
= core_pmu_enable_all
,
3597 .enable
= core_pmu_enable_event
,
3598 .disable
= x86_pmu_disable_event
,
3599 .hw_config
= x86_pmu_hw_config
,
3600 .schedule_events
= x86_schedule_events
,
3601 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3602 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3603 .event_map
= intel_pmu_event_map
,
3604 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3606 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
3609 * Intel PMCs cannot be accessed sanely above 32-bit width,
3610 * so we install an artificial 1<<31 period regardless of
3611 * the generic event period:
3613 .max_period
= (1ULL<<31) - 1,
3614 .get_event_constraints
= intel_get_event_constraints
,
3615 .put_event_constraints
= intel_put_event_constraints
,
3616 .event_constraints
= intel_core_event_constraints
,
3617 .guest_get_msrs
= core_guest_get_msrs
,
3618 .format_attrs
= intel_arch_formats_attr
,
3619 .events_sysfs_show
= intel_event_sysfs_show
,
3622 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3623 * together with PMU version 1 and thus be using core_pmu with
3624 * shared_regs. We need following callbacks here to allocate
3627 .cpu_prepare
= intel_pmu_cpu_prepare
,
3628 .cpu_starting
= intel_pmu_cpu_starting
,
3629 .cpu_dying
= intel_pmu_cpu_dying
,
3632 static struct attribute
*intel_pmu_attrs
[];
3634 static __initconst
const struct x86_pmu intel_pmu
= {
3636 .handle_irq
= intel_pmu_handle_irq
,
3637 .disable_all
= intel_pmu_disable_all
,
3638 .enable_all
= intel_pmu_enable_all
,
3639 .enable
= intel_pmu_enable_event
,
3640 .disable
= intel_pmu_disable_event
,
3641 .add
= intel_pmu_add_event
,
3642 .del
= intel_pmu_del_event
,
3643 .read
= intel_pmu_read_event
,
3644 .hw_config
= intel_pmu_hw_config
,
3645 .schedule_events
= x86_schedule_events
,
3646 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3647 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3648 .event_map
= intel_pmu_event_map
,
3649 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3651 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
3653 * Intel PMCs cannot be accessed sanely above 32 bit width,
3654 * so we install an artificial 1<<31 period regardless of
3655 * the generic event period:
3657 .max_period
= (1ULL << 31) - 1,
3658 .get_event_constraints
= intel_get_event_constraints
,
3659 .put_event_constraints
= intel_put_event_constraints
,
3660 .pebs_aliases
= intel_pebs_aliases_core2
,
3662 .format_attrs
= intel_arch3_formats_attr
,
3663 .events_sysfs_show
= intel_event_sysfs_show
,
3665 .attrs
= intel_pmu_attrs
,
3667 .cpu_prepare
= intel_pmu_cpu_prepare
,
3668 .cpu_starting
= intel_pmu_cpu_starting
,
3669 .cpu_dying
= intel_pmu_cpu_dying
,
3670 .guest_get_msrs
= intel_guest_get_msrs
,
3671 .sched_task
= intel_pmu_sched_task
,
3674 static __init
void intel_clovertown_quirk(void)
3677 * PEBS is unreliable due to:
3679 * AJ67 - PEBS may experience CPL leaks
3680 * AJ68 - PEBS PMI may be delayed by one event
3681 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3682 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3684 * AJ67 could be worked around by restricting the OS/USR flags.
3685 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3687 * AJ106 could possibly be worked around by not allowing LBR
3688 * usage from PEBS, including the fixup.
3689 * AJ68 could possibly be worked around by always programming
3690 * a pebs_event_reset[0] value and coping with the lost events.
3692 * But taken together it might just make sense to not enable PEBS on
3695 pr_warn("PEBS disabled due to CPU errata\n");
3697 x86_pmu
.pebs_constraints
= NULL
;
3700 static int intel_snb_pebs_broken(int cpu
)
3702 u32 rev
= UINT_MAX
; /* default to broken for unknown models */
3704 switch (cpu_data(cpu
).x86_model
) {
3705 case INTEL_FAM6_SANDYBRIDGE
:
3709 case INTEL_FAM6_SANDYBRIDGE_X
:
3710 switch (cpu_data(cpu
).x86_stepping
) {
3711 case 6: rev
= 0x618; break;
3712 case 7: rev
= 0x70c; break;
3716 return (cpu_data(cpu
).microcode
< rev
);
3719 static void intel_snb_check_microcode(void)
3721 int pebs_broken
= 0;
3724 for_each_online_cpu(cpu
) {
3725 if ((pebs_broken
= intel_snb_pebs_broken(cpu
)))
3729 if (pebs_broken
== x86_pmu
.pebs_broken
)
3733 * Serialized by the microcode lock..
3735 if (x86_pmu
.pebs_broken
) {
3736 pr_info("PEBS enabled due to microcode update\n");
3737 x86_pmu
.pebs_broken
= 0;
3739 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3740 x86_pmu
.pebs_broken
= 1;
3744 static bool is_lbr_from(unsigned long msr
)
3746 unsigned long lbr_from_nr
= x86_pmu
.lbr_from
+ x86_pmu
.lbr_nr
;
3748 return x86_pmu
.lbr_from
<= msr
&& msr
< lbr_from_nr
;
3752 * Under certain circumstances, access certain MSR may cause #GP.
3753 * The function tests if the input MSR can be safely accessed.
3755 static bool check_msr(unsigned long msr
, u64 mask
)
3757 u64 val_old
, val_new
, val_tmp
;
3760 * Read the current value, change it and read it back to see if it
3761 * matches, this is needed to detect certain hardware emulators
3762 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3764 if (rdmsrl_safe(msr
, &val_old
))
3768 * Only change the bits which can be updated by wrmsrl.
3770 val_tmp
= val_old
^ mask
;
3772 if (is_lbr_from(msr
))
3773 val_tmp
= lbr_from_signext_quirk_wr(val_tmp
);
3775 if (wrmsrl_safe(msr
, val_tmp
) ||
3776 rdmsrl_safe(msr
, &val_new
))
3780 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3781 * should equal rdmsrl()'s even with the quirk.
3783 if (val_new
!= val_tmp
)
3786 if (is_lbr_from(msr
))
3787 val_old
= lbr_from_signext_quirk_wr(val_old
);
3789 /* Here it's sure that the MSR can be safely accessed.
3790 * Restore the old value and return.
3792 wrmsrl(msr
, val_old
);
3797 static __init
void intel_sandybridge_quirk(void)
3799 x86_pmu
.check_microcode
= intel_snb_check_microcode
;
3801 intel_snb_check_microcode();
3805 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
3806 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
3807 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
3808 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
3809 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
3810 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
3811 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
3812 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
3815 static __init
void intel_arch_events_quirk(void)
3819 /* disable event that reported as not presend by cpuid */
3820 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
3821 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
3822 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3823 intel_arch_events_map
[bit
].name
);
3827 static __init
void intel_nehalem_quirk(void)
3829 union cpuid10_ebx ebx
;
3831 ebx
.full
= x86_pmu
.events_maskl
;
3832 if (ebx
.split
.no_branch_misses_retired
) {
3834 * Erratum AAJ80 detected, we work it around by using
3835 * the BR_MISP_EXEC.ANY event. This will over-count
3836 * branch-misses, but it's still much better than the
3837 * architectural event which is often completely bogus:
3839 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
3840 ebx
.split
.no_branch_misses_retired
= 0;
3841 x86_pmu
.events_maskl
= ebx
.full
;
3842 pr_info("CPU erratum AAJ80 worked around\n");
3846 static bool intel_glp_counter_freezing_broken(int cpu
)
3848 u32 rev
= UINT_MAX
; /* default to broken for unknown stepping */
3850 switch (cpu_data(cpu
).x86_stepping
) {
3859 return (cpu_data(cpu
).microcode
< rev
);
3862 static __init
void intel_glp_counter_freezing_quirk(void)
3864 /* Check if it's already disabled */
3865 if (disable_counter_freezing
)
3869 * If the system starts with the wrong ucode, leave the
3870 * counter-freezing feature permanently disabled.
3872 if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3873 pr_info("PMU counter freezing disabled due to CPU errata,"
3874 "please upgrade microcode\n");
3875 x86_pmu
.counter_freezing
= false;
3876 x86_pmu
.handle_irq
= intel_pmu_handle_irq
;
3881 * enable software workaround for errata:
3886 * Only needed when HT is enabled. However detecting
3887 * if HT is enabled is difficult (model specific). So instead,
3888 * we enable the workaround in the early boot, and verify if
3889 * it is needed in a later initcall phase once we have valid
3890 * topology information to check if HT is actually enabled
3892 static __init
void intel_ht_bug(void)
3894 x86_pmu
.flags
|= PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
;
3896 x86_pmu
.start_scheduling
= intel_start_scheduling
;
3897 x86_pmu
.commit_scheduling
= intel_commit_scheduling
;
3898 x86_pmu
.stop_scheduling
= intel_stop_scheduling
;
3901 EVENT_ATTR_STR(mem
-loads
, mem_ld_hsw
, "event=0xcd,umask=0x1,ldlat=3");
3902 EVENT_ATTR_STR(mem
-stores
, mem_st_hsw
, "event=0xd0,umask=0x82")
3904 /* Haswell special events */
3905 EVENT_ATTR_STR(tx
-start
, tx_start
, "event=0xc9,umask=0x1");
3906 EVENT_ATTR_STR(tx
-commit
, tx_commit
, "event=0xc9,umask=0x2");
3907 EVENT_ATTR_STR(tx
-abort
, tx_abort
, "event=0xc9,umask=0x4");
3908 EVENT_ATTR_STR(tx
-capacity
, tx_capacity
, "event=0x54,umask=0x2");
3909 EVENT_ATTR_STR(tx
-conflict
, tx_conflict
, "event=0x54,umask=0x1");
3910 EVENT_ATTR_STR(el
-start
, el_start
, "event=0xc8,umask=0x1");
3911 EVENT_ATTR_STR(el
-commit
, el_commit
, "event=0xc8,umask=0x2");
3912 EVENT_ATTR_STR(el
-abort
, el_abort
, "event=0xc8,umask=0x4");
3913 EVENT_ATTR_STR(el
-capacity
, el_capacity
, "event=0x54,umask=0x2");
3914 EVENT_ATTR_STR(el
-conflict
, el_conflict
, "event=0x54,umask=0x1");
3915 EVENT_ATTR_STR(cycles
-t
, cycles_t
, "event=0x3c,in_tx=1");
3916 EVENT_ATTR_STR(cycles
-ct
, cycles_ct
, "event=0x3c,in_tx=1,in_tx_cp=1");
3918 static struct attribute
*hsw_events_attrs
[] = {
3919 EVENT_PTR(td_slots_issued
),
3920 EVENT_PTR(td_slots_retired
),
3921 EVENT_PTR(td_fetch_bubbles
),
3922 EVENT_PTR(td_total_slots
),
3923 EVENT_PTR(td_total_slots_scale
),
3924 EVENT_PTR(td_recovery_bubbles
),
3925 EVENT_PTR(td_recovery_bubbles_scale
),
3929 static struct attribute
*hsw_mem_events_attrs
[] = {
3930 EVENT_PTR(mem_ld_hsw
),
3931 EVENT_PTR(mem_st_hsw
),
3935 static struct attribute
*hsw_tsx_events_attrs
[] = {
3936 EVENT_PTR(tx_start
),
3937 EVENT_PTR(tx_commit
),
3938 EVENT_PTR(tx_abort
),
3939 EVENT_PTR(tx_capacity
),
3940 EVENT_PTR(tx_conflict
),
3941 EVENT_PTR(el_start
),
3942 EVENT_PTR(el_commit
),
3943 EVENT_PTR(el_abort
),
3944 EVENT_PTR(el_capacity
),
3945 EVENT_PTR(el_conflict
),
3946 EVENT_PTR(cycles_t
),
3947 EVENT_PTR(cycles_ct
),
3951 static ssize_t
freeze_on_smi_show(struct device
*cdev
,
3952 struct device_attribute
*attr
,
3955 return sprintf(buf
, "%lu\n", x86_pmu
.attr_freeze_on_smi
);
3958 static DEFINE_MUTEX(freeze_on_smi_mutex
);
3960 static ssize_t
freeze_on_smi_store(struct device
*cdev
,
3961 struct device_attribute
*attr
,
3962 const char *buf
, size_t count
)
3967 ret
= kstrtoul(buf
, 0, &val
);
3974 mutex_lock(&freeze_on_smi_mutex
);
3976 if (x86_pmu
.attr_freeze_on_smi
== val
)
3979 x86_pmu
.attr_freeze_on_smi
= val
;
3982 on_each_cpu(flip_smm_bit
, &val
, 1);
3985 mutex_unlock(&freeze_on_smi_mutex
);
3990 static DEVICE_ATTR_RW(freeze_on_smi
);
3992 static ssize_t
branches_show(struct device
*cdev
,
3993 struct device_attribute
*attr
,
3996 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu
.lbr_nr
);
3999 static DEVICE_ATTR_RO(branches
);
4001 static struct attribute
*lbr_attrs
[] = {
4002 &dev_attr_branches
.attr
,
4006 static char pmu_name_str
[30];
4008 static ssize_t
pmu_name_show(struct device
*cdev
,
4009 struct device_attribute
*attr
,
4012 return snprintf(buf
, PAGE_SIZE
, "%s\n", pmu_name_str
);
4015 static DEVICE_ATTR_RO(pmu_name
);
4017 static struct attribute
*intel_pmu_caps_attrs
[] = {
4018 &dev_attr_pmu_name
.attr
,
4022 static struct attribute
*intel_pmu_attrs
[] = {
4023 &dev_attr_freeze_on_smi
.attr
,
4027 static __init
struct attribute
**
4028 get_events_attrs(struct attribute
**base
,
4029 struct attribute
**mem
,
4030 struct attribute
**tsx
)
4032 struct attribute
**attrs
= base
;
4033 struct attribute
**old
;
4035 if (mem
&& x86_pmu
.pebs
)
4036 attrs
= merge_attr(attrs
, mem
);
4038 if (tsx
&& boot_cpu_has(X86_FEATURE_RTM
)) {
4040 attrs
= merge_attr(attrs
, tsx
);
4048 __init
int intel_pmu_init(void)
4050 struct attribute
**extra_attr
= NULL
;
4051 struct attribute
**mem_attr
= NULL
;
4052 struct attribute
**tsx_attr
= NULL
;
4053 struct attribute
**to_free
= NULL
;
4054 union cpuid10_edx edx
;
4055 union cpuid10_eax eax
;
4056 union cpuid10_ebx ebx
;
4057 struct event_constraint
*c
;
4058 unsigned int unused
;
4059 struct extra_reg
*er
;
4063 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
4064 switch (boot_cpu_data
.x86
) {
4066 return p6_pmu_init();
4068 return knc_pmu_init();
4070 return p4_pmu_init();
4076 * Check whether the Architectural PerfMon supports
4077 * Branch Misses Retired hw_event or not.
4079 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
4080 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
4083 version
= eax
.split
.version_id
;
4087 x86_pmu
= intel_pmu
;
4089 x86_pmu
.version
= version
;
4090 x86_pmu
.num_counters
= eax
.split
.num_counters
;
4091 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
4092 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
4094 x86_pmu
.events_maskl
= ebx
.full
;
4095 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
4097 x86_pmu
.max_pebs_events
= min_t(unsigned, MAX_PEBS_EVENTS
, x86_pmu
.num_counters
);
4100 * Quirk: v2 perfmon does not report fixed-purpose events, so
4101 * assume at least 3 events, when not running in a hypervisor:
4104 int assume
= 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR
);
4106 x86_pmu
.num_counters_fixed
=
4107 max((int)edx
.split
.num_counters_fixed
, assume
);
4111 x86_pmu
.counter_freezing
= !disable_counter_freezing
;
4113 if (boot_cpu_has(X86_FEATURE_PDCM
)) {
4116 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
4117 x86_pmu
.intel_cap
.capabilities
= capabilities
;
4122 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
4125 * Install the hw-cache-events table:
4127 switch (boot_cpu_data
.x86_model
) {
4128 case INTEL_FAM6_CORE_YONAH
:
4129 pr_cont("Core events, ");
4133 case INTEL_FAM6_CORE2_MEROM
:
4134 x86_add_quirk(intel_clovertown_quirk
);
4135 case INTEL_FAM6_CORE2_MEROM_L
:
4136 case INTEL_FAM6_CORE2_PENRYN
:
4137 case INTEL_FAM6_CORE2_DUNNINGTON
:
4138 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
4139 sizeof(hw_cache_event_ids
));
4141 intel_pmu_lbr_init_core();
4143 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
4144 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
4145 pr_cont("Core2 events, ");
4149 case INTEL_FAM6_NEHALEM
:
4150 case INTEL_FAM6_NEHALEM_EP
:
4151 case INTEL_FAM6_NEHALEM_EX
:
4152 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
4153 sizeof(hw_cache_event_ids
));
4154 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
4155 sizeof(hw_cache_extra_regs
));
4157 intel_pmu_lbr_init_nhm();
4159 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
4160 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
4161 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
4162 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
4164 mem_attr
= nhm_mem_events_attrs
;
4166 /* UOPS_ISSUED.STALLED_CYCLES */
4167 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4168 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4169 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4170 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4171 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
4173 intel_pmu_pebs_data_source_nhm();
4174 x86_add_quirk(intel_nehalem_quirk
);
4175 x86_pmu
.pebs_no_tlb
= 1;
4176 extra_attr
= nhm_format_attr
;
4178 pr_cont("Nehalem events, ");
4182 case INTEL_FAM6_ATOM_BONNELL
:
4183 case INTEL_FAM6_ATOM_BONNELL_MID
:
4184 case INTEL_FAM6_ATOM_SALTWELL
:
4185 case INTEL_FAM6_ATOM_SALTWELL_MID
:
4186 case INTEL_FAM6_ATOM_SALTWELL_TABLET
:
4187 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
4188 sizeof(hw_cache_event_ids
));
4190 intel_pmu_lbr_init_atom();
4192 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
4193 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
4194 x86_pmu
.pebs_aliases
= intel_pebs_aliases_core2
;
4195 pr_cont("Atom events, ");
4199 case INTEL_FAM6_ATOM_SILVERMONT
:
4200 case INTEL_FAM6_ATOM_SILVERMONT_X
:
4201 case INTEL_FAM6_ATOM_SILVERMONT_MID
:
4202 case INTEL_FAM6_ATOM_AIRMONT
:
4203 case INTEL_FAM6_ATOM_AIRMONT_MID
:
4204 memcpy(hw_cache_event_ids
, slm_hw_cache_event_ids
,
4205 sizeof(hw_cache_event_ids
));
4206 memcpy(hw_cache_extra_regs
, slm_hw_cache_extra_regs
,
4207 sizeof(hw_cache_extra_regs
));
4209 intel_pmu_lbr_init_slm();
4211 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4212 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4213 x86_pmu
.extra_regs
= intel_slm_extra_regs
;
4214 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4215 x86_pmu
.cpu_events
= slm_events_attrs
;
4216 extra_attr
= slm_format_attr
;
4217 pr_cont("Silvermont events, ");
4218 name
= "silvermont";
4221 case INTEL_FAM6_ATOM_GOLDMONT
:
4222 case INTEL_FAM6_ATOM_GOLDMONT_X
:
4223 memcpy(hw_cache_event_ids
, glm_hw_cache_event_ids
,
4224 sizeof(hw_cache_event_ids
));
4225 memcpy(hw_cache_extra_regs
, glm_hw_cache_extra_regs
,
4226 sizeof(hw_cache_extra_regs
));
4228 intel_pmu_lbr_init_skl();
4230 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4231 x86_pmu
.pebs_constraints
= intel_glm_pebs_event_constraints
;
4232 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4234 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4235 * for precise cycles.
4236 * :pp is identical to :ppp
4238 x86_pmu
.pebs_aliases
= NULL
;
4239 x86_pmu
.pebs_prec_dist
= true;
4240 x86_pmu
.lbr_pt_coexist
= true;
4241 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4242 x86_pmu
.cpu_events
= glm_events_attrs
;
4243 extra_attr
= slm_format_attr
;
4244 pr_cont("Goldmont events, ");
4248 case INTEL_FAM6_ATOM_GOLDMONT_PLUS
:
4249 x86_add_quirk(intel_glp_counter_freezing_quirk
);
4250 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
4251 sizeof(hw_cache_event_ids
));
4252 memcpy(hw_cache_extra_regs
, glp_hw_cache_extra_regs
,
4253 sizeof(hw_cache_extra_regs
));
4255 intel_pmu_lbr_init_skl();
4257 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4258 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4260 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4261 * for precise cycles.
4263 x86_pmu
.pebs_aliases
= NULL
;
4264 x86_pmu
.pebs_prec_dist
= true;
4265 x86_pmu
.lbr_pt_coexist
= true;
4266 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4267 x86_pmu
.flags
|= PMU_FL_PEBS_ALL
;
4268 x86_pmu
.get_event_constraints
= glp_get_event_constraints
;
4269 x86_pmu
.cpu_events
= glm_events_attrs
;
4270 /* Goldmont Plus has 4-wide pipeline */
4271 event_attr_td_total_slots_scale_glm
.event_str
= "4";
4272 extra_attr
= slm_format_attr
;
4273 pr_cont("Goldmont plus events, ");
4274 name
= "goldmont_plus";
4277 case INTEL_FAM6_WESTMERE
:
4278 case INTEL_FAM6_WESTMERE_EP
:
4279 case INTEL_FAM6_WESTMERE_EX
:
4280 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
4281 sizeof(hw_cache_event_ids
));
4282 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
4283 sizeof(hw_cache_extra_regs
));
4285 intel_pmu_lbr_init_nhm();
4287 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
4288 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
4289 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
4290 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
4291 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4293 mem_attr
= nhm_mem_events_attrs
;
4295 /* UOPS_ISSUED.STALLED_CYCLES */
4296 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4297 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4298 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4299 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4300 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
4302 intel_pmu_pebs_data_source_nhm();
4303 extra_attr
= nhm_format_attr
;
4304 pr_cont("Westmere events, ");
4308 case INTEL_FAM6_SANDYBRIDGE
:
4309 case INTEL_FAM6_SANDYBRIDGE_X
:
4310 x86_add_quirk(intel_sandybridge_quirk
);
4311 x86_add_quirk(intel_ht_bug
);
4312 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4313 sizeof(hw_cache_event_ids
));
4314 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4315 sizeof(hw_cache_extra_regs
));
4317 intel_pmu_lbr_init_snb();
4319 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
4320 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
4321 x86_pmu
.pebs_aliases
= intel_pebs_aliases_snb
;
4322 if (boot_cpu_data
.x86_model
== INTEL_FAM6_SANDYBRIDGE_X
)
4323 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4325 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4328 /* all extra regs are per-cpu when HT is on */
4329 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4330 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4332 x86_pmu
.cpu_events
= snb_events_attrs
;
4333 mem_attr
= snb_mem_events_attrs
;
4335 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4336 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4337 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4338 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4339 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4340 X86_CONFIG(.event
=0xb1, .umask
=0x01, .inv
=1, .cmask
=1);
4342 extra_attr
= nhm_format_attr
;
4344 pr_cont("SandyBridge events, ");
4345 name
= "sandybridge";
4348 case INTEL_FAM6_IVYBRIDGE
:
4349 case INTEL_FAM6_IVYBRIDGE_X
:
4350 x86_add_quirk(intel_ht_bug
);
4351 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4352 sizeof(hw_cache_event_ids
));
4353 /* dTLB-load-misses on IVB is different than SNB */
4354 hw_cache_event_ids
[C(DTLB
)][C(OP_READ
)][C(RESULT_MISS
)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4356 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4357 sizeof(hw_cache_extra_regs
));
4359 intel_pmu_lbr_init_snb();
4361 x86_pmu
.event_constraints
= intel_ivb_event_constraints
;
4362 x86_pmu
.pebs_constraints
= intel_ivb_pebs_event_constraints
;
4363 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4364 x86_pmu
.pebs_prec_dist
= true;
4365 if (boot_cpu_data
.x86_model
== INTEL_FAM6_IVYBRIDGE_X
)
4366 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4368 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4369 /* all extra regs are per-cpu when HT is on */
4370 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4371 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4373 x86_pmu
.cpu_events
= snb_events_attrs
;
4374 mem_attr
= snb_mem_events_attrs
;
4376 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4377 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4378 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4380 extra_attr
= nhm_format_attr
;
4382 pr_cont("IvyBridge events, ");
4387 case INTEL_FAM6_HASWELL_CORE
:
4388 case INTEL_FAM6_HASWELL_X
:
4389 case INTEL_FAM6_HASWELL_ULT
:
4390 case INTEL_FAM6_HASWELL_GT3E
:
4391 x86_add_quirk(intel_ht_bug
);
4392 x86_pmu
.late_ack
= true;
4393 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4394 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4396 intel_pmu_lbr_init_hsw();
4398 x86_pmu
.event_constraints
= intel_hsw_event_constraints
;
4399 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
4400 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4401 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4402 x86_pmu
.pebs_prec_dist
= true;
4403 /* all extra regs are per-cpu when HT is on */
4404 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4405 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4407 x86_pmu
.hw_config
= hsw_hw_config
;
4408 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4409 x86_pmu
.cpu_events
= hsw_events_attrs
;
4410 x86_pmu
.lbr_double_abort
= true;
4411 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4412 hsw_format_attr
: nhm_format_attr
;
4413 mem_attr
= hsw_mem_events_attrs
;
4414 tsx_attr
= hsw_tsx_events_attrs
;
4415 pr_cont("Haswell events, ");
4419 case INTEL_FAM6_BROADWELL_CORE
:
4420 case INTEL_FAM6_BROADWELL_XEON_D
:
4421 case INTEL_FAM6_BROADWELL_GT3E
:
4422 case INTEL_FAM6_BROADWELL_X
:
4423 x86_pmu
.late_ack
= true;
4424 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4425 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4427 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4428 hw_cache_extra_regs
[C(LL
)][C(OP_READ
)][C(RESULT_MISS
)] = HSW_DEMAND_READ
|
4429 BDW_L3_MISS
|HSW_SNOOP_DRAM
;
4430 hw_cache_extra_regs
[C(LL
)][C(OP_WRITE
)][C(RESULT_MISS
)] = HSW_DEMAND_WRITE
|BDW_L3_MISS
|
4432 hw_cache_extra_regs
[C(NODE
)][C(OP_READ
)][C(RESULT_ACCESS
)] = HSW_DEMAND_READ
|
4433 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4434 hw_cache_extra_regs
[C(NODE
)][C(OP_WRITE
)][C(RESULT_ACCESS
)] = HSW_DEMAND_WRITE
|
4435 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4437 intel_pmu_lbr_init_hsw();
4439 x86_pmu
.event_constraints
= intel_bdw_event_constraints
;
4440 x86_pmu
.pebs_constraints
= intel_bdw_pebs_event_constraints
;
4441 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4442 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4443 x86_pmu
.pebs_prec_dist
= true;
4444 /* all extra regs are per-cpu when HT is on */
4445 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4446 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4448 x86_pmu
.hw_config
= hsw_hw_config
;
4449 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4450 x86_pmu
.cpu_events
= hsw_events_attrs
;
4451 x86_pmu
.limit_period
= bdw_limit_period
;
4452 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4453 hsw_format_attr
: nhm_format_attr
;
4454 mem_attr
= hsw_mem_events_attrs
;
4455 tsx_attr
= hsw_tsx_events_attrs
;
4456 pr_cont("Broadwell events, ");
4460 case INTEL_FAM6_XEON_PHI_KNL
:
4461 case INTEL_FAM6_XEON_PHI_KNM
:
4462 memcpy(hw_cache_event_ids
,
4463 slm_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4464 memcpy(hw_cache_extra_regs
,
4465 knl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4466 intel_pmu_lbr_init_knl();
4468 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4469 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4470 x86_pmu
.extra_regs
= intel_knl_extra_regs
;
4472 /* all extra regs are per-cpu when HT is on */
4473 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4474 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4475 extra_attr
= slm_format_attr
;
4476 pr_cont("Knights Landing/Mill events, ");
4477 name
= "knights-landing";
4480 case INTEL_FAM6_SKYLAKE_MOBILE
:
4481 case INTEL_FAM6_SKYLAKE_DESKTOP
:
4482 case INTEL_FAM6_SKYLAKE_X
:
4483 case INTEL_FAM6_KABYLAKE_MOBILE
:
4484 case INTEL_FAM6_KABYLAKE_DESKTOP
:
4485 x86_pmu
.late_ack
= true;
4486 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4487 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4488 intel_pmu_lbr_init_skl();
4490 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4491 event_attr_td_recovery_bubbles
.event_str_noht
=
4492 "event=0xd,umask=0x1,cmask=1";
4493 event_attr_td_recovery_bubbles
.event_str_ht
=
4494 "event=0xd,umask=0x1,cmask=1,any=1";
4496 x86_pmu
.event_constraints
= intel_skl_event_constraints
;
4497 x86_pmu
.pebs_constraints
= intel_skl_pebs_event_constraints
;
4498 x86_pmu
.extra_regs
= intel_skl_extra_regs
;
4499 x86_pmu
.pebs_aliases
= intel_pebs_aliases_skl
;
4500 x86_pmu
.pebs_prec_dist
= true;
4501 /* all extra regs are per-cpu when HT is on */
4502 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4503 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4505 x86_pmu
.hw_config
= hsw_hw_config
;
4506 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4507 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4508 hsw_format_attr
: nhm_format_attr
;
4509 extra_attr
= merge_attr(extra_attr
, skl_format_attr
);
4510 to_free
= extra_attr
;
4511 x86_pmu
.cpu_events
= hsw_events_attrs
;
4512 mem_attr
= hsw_mem_events_attrs
;
4513 tsx_attr
= hsw_tsx_events_attrs
;
4514 intel_pmu_pebs_data_source_skl(
4515 boot_cpu_data
.x86_model
== INTEL_FAM6_SKYLAKE_X
);
4516 pr_cont("Skylake events, ");
4521 switch (x86_pmu
.version
) {
4523 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
4524 pr_cont("generic architected perfmon v1, ");
4525 name
= "generic_arch_v1";
4529 * default constraints for v2 and up
4531 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
4532 pr_cont("generic architected perfmon, ");
4533 name
= "generic_arch_v2+";
4538 snprintf(pmu_name_str
, sizeof pmu_name_str
, "%s", name
);
4540 if (version
>= 2 && extra_attr
) {
4541 x86_pmu
.format_attrs
= merge_attr(intel_arch3_formats_attr
,
4543 WARN_ON(!x86_pmu
.format_attrs
);
4546 x86_pmu
.cpu_events
= get_events_attrs(x86_pmu
.cpu_events
,
4547 mem_attr
, tsx_attr
);
4549 if (x86_pmu
.num_counters
> INTEL_PMC_MAX_GENERIC
) {
4550 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
4551 x86_pmu
.num_counters
, INTEL_PMC_MAX_GENERIC
);
4552 x86_pmu
.num_counters
= INTEL_PMC_MAX_GENERIC
;
4554 x86_pmu
.intel_ctrl
= (1ULL << x86_pmu
.num_counters
) - 1;
4556 if (x86_pmu
.num_counters_fixed
> INTEL_PMC_MAX_FIXED
) {
4557 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
4558 x86_pmu
.num_counters_fixed
, INTEL_PMC_MAX_FIXED
);
4559 x86_pmu
.num_counters_fixed
= INTEL_PMC_MAX_FIXED
;
4562 x86_pmu
.intel_ctrl
|=
4563 ((1LL << x86_pmu
.num_counters_fixed
)-1) << INTEL_PMC_IDX_FIXED
;
4565 if (x86_pmu
.event_constraints
) {
4567 * event on fixed counter2 (REF_CYCLES) only works on this
4568 * counter, so do not extend mask to generic counters
4570 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
4571 if (c
->cmask
== FIXED_EVENT_FLAGS
4572 && c
->idxmsk64
!= INTEL_PMC_MSK_FIXED_REF_CYCLES
) {
4573 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
4576 ~(~0ULL << (INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
));
4577 c
->weight
= hweight64(c
->idxmsk64
);
4582 * Access LBR MSR may cause #GP under certain circumstances.
4583 * E.g. KVM doesn't support LBR MSR
4584 * Check all LBT MSR here.
4585 * Disable LBR access if any LBR MSRs can not be accessed.
4587 if (x86_pmu
.lbr_nr
&& !check_msr(x86_pmu
.lbr_tos
, 0x3UL
))
4589 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
4590 if (!(check_msr(x86_pmu
.lbr_from
+ i
, 0xffffUL
) &&
4591 check_msr(x86_pmu
.lbr_to
+ i
, 0xffffUL
)))
4595 x86_pmu
.caps_attrs
= intel_pmu_caps_attrs
;
4597 if (x86_pmu
.lbr_nr
) {
4598 x86_pmu
.caps_attrs
= merge_attr(x86_pmu
.caps_attrs
, lbr_attrs
);
4599 pr_cont("%d-deep LBR, ", x86_pmu
.lbr_nr
);
4603 * Access extra MSR may cause #GP under certain circumstances.
4604 * E.g. KVM doesn't support offcore event
4605 * Check all extra_regs here.
4607 if (x86_pmu
.extra_regs
) {
4608 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
4609 er
->extra_msr_access
= check_msr(er
->msr
, 0x11UL
);
4610 /* Disable LBR select mapping */
4611 if ((er
->idx
== EXTRA_REG_LBR
) && !er
->extra_msr_access
)
4612 x86_pmu
.lbr_sel_map
= NULL
;
4616 /* Support full width counters using alternative MSR range */
4617 if (x86_pmu
.intel_cap
.full_width_write
) {
4618 x86_pmu
.max_period
= x86_pmu
.cntval_mask
>> 1;
4619 x86_pmu
.perfctr
= MSR_IA32_PMC0
;
4620 pr_cont("full-width counters, ");
4624 * For arch perfmon 4 use counter freezing to avoid
4625 * several MSR accesses in the PMI.
4627 if (x86_pmu
.counter_freezing
)
4628 x86_pmu
.handle_irq
= intel_pmu_handle_irq_v4
;
4635 * HT bug: phase 2 init
4636 * Called once we have valid topology information to check
4637 * whether or not HT is enabled
4638 * If HT is off, then we disable the workaround
4640 static __init
int fixup_ht_bug(void)
4644 * problem not present on this CPU model, nothing to do
4646 if (!(x86_pmu
.flags
& PMU_FL_EXCL_ENABLED
))
4649 if (topology_max_smt_threads() > 1) {
4650 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4656 hardlockup_detector_perf_stop();
4658 x86_pmu
.flags
&= ~(PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
);
4660 x86_pmu
.start_scheduling
= NULL
;
4661 x86_pmu
.commit_scheduling
= NULL
;
4662 x86_pmu
.stop_scheduling
= NULL
;
4664 hardlockup_detector_perf_restart();
4666 for_each_online_cpu(c
)
4670 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4673 subsys_initcall(fixup_ht_bug
)