1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
5 #include <linux/export.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
16 #include <asm/cpufeature.h>
17 #include <asm/irqdomain.h>
18 #include <asm/fixmap.h>
22 #define HPET_MASK CLOCKSOURCE_MASK(32)
26 #define FSEC_PER_NSEC 1000000L
28 #define HPET_DEV_USED_BIT 2
29 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
30 #define HPET_DEV_VALID 0x8
31 #define HPET_DEV_FSB_CAP 0x1000
32 #define HPET_DEV_PERI_CAP 0x2000
34 #define HPET_MIN_CYCLES 128
35 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
38 * HPET address is set in acpi/boot.c, when an ACPI entry exists
40 unsigned long hpet_address
;
41 u8 hpet_blockid
; /* OS timer block num */
42 bool hpet_msi_disable
;
45 static unsigned int hpet_num_timers
;
47 static void __iomem
*hpet_virt_address
;
50 struct clock_event_device evt
;
58 static inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
60 return container_of(evtdev
, struct hpet_dev
, evt
);
63 inline unsigned int hpet_readl(unsigned int a
)
65 return readl(hpet_virt_address
+ a
);
68 static inline void hpet_writel(unsigned int d
, unsigned int a
)
70 writel(d
, hpet_virt_address
+ a
);
74 #include <asm/pgtable.h>
77 static inline void hpet_set_mapping(void)
79 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
82 static inline void hpet_clear_mapping(void)
84 iounmap(hpet_virt_address
);
85 hpet_virt_address
= NULL
;
89 * HPET command line enable / disable
91 bool boot_hpet_disable
;
93 static bool hpet_verbose
;
95 static int __init
hpet_setup(char *str
)
98 char *next
= strchr(str
, ',');
102 if (!strncmp("disable", str
, 7))
103 boot_hpet_disable
= true;
104 if (!strncmp("force", str
, 5))
105 hpet_force_user
= true;
106 if (!strncmp("verbose", str
, 7))
112 __setup("hpet=", hpet_setup
);
114 static int __init
disable_hpet(char *str
)
116 boot_hpet_disable
= true;
119 __setup("nohpet", disable_hpet
);
121 static inline int is_hpet_capable(void)
123 return !boot_hpet_disable
&& hpet_address
;
127 * HPET timer interrupt enable / disable
129 static bool hpet_legacy_int_enabled
;
132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
134 int is_hpet_enabled(void)
136 return is_hpet_capable() && hpet_legacy_int_enabled
;
138 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
140 static void _hpet_print_config(const char *function
, int line
)
143 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
144 l
= hpet_readl(HPET_ID
);
145 h
= hpet_readl(HPET_PERIOD
);
146 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
147 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
148 l
= hpet_readl(HPET_CFG
);
149 h
= hpet_readl(HPET_STATUS
);
150 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
151 l
= hpet_readl(HPET_COUNTER
);
152 h
= hpet_readl(HPET_COUNTER
+4);
153 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
155 for (i
= 0; i
< timers
; i
++) {
156 l
= hpet_readl(HPET_Tn_CFG(i
));
157 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
158 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
160 l
= hpet_readl(HPET_Tn_CMP(i
));
161 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
162 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
164 l
= hpet_readl(HPET_Tn_ROUTE(i
));
165 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
166 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
171 #define hpet_print_config() \
174 _hpet_print_config(__func__, __LINE__); \
178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179 * timer 0 and timer 1 in case of RTC emulation.
183 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
185 static void hpet_reserve_platform_timers(unsigned int id
)
187 struct hpet __iomem
*hpet
= hpet_virt_address
;
188 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
189 unsigned int nrtimers
, i
;
192 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
194 memset(&hd
, 0, sizeof(hd
));
195 hd
.hd_phys_address
= hpet_address
;
196 hd
.hd_address
= hpet
;
197 hd
.hd_nirqs
= nrtimers
;
198 hpet_reserve_timer(&hd
, 0);
200 #ifdef CONFIG_HPET_EMULATE_RTC
201 hpet_reserve_timer(&hd
, 1);
205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 * is wrong for i8259!) not the output IRQ. Many BIOS writers
207 * don't bother configuring *any* comparator interrupts.
209 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
210 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
212 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
213 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
214 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
217 hpet_reserve_msi_timers(&hd
);
223 static void hpet_reserve_platform_timers(unsigned int id
) { }
229 static unsigned long hpet_freq
;
231 static struct clock_event_device hpet_clockevent
;
233 static void hpet_stop_counter(void)
235 u32 cfg
= hpet_readl(HPET_CFG
);
236 cfg
&= ~HPET_CFG_ENABLE
;
237 hpet_writel(cfg
, HPET_CFG
);
240 static void hpet_reset_counter(void)
242 hpet_writel(0, HPET_COUNTER
);
243 hpet_writel(0, HPET_COUNTER
+ 4);
246 static void hpet_start_counter(void)
248 unsigned int cfg
= hpet_readl(HPET_CFG
);
249 cfg
|= HPET_CFG_ENABLE
;
250 hpet_writel(cfg
, HPET_CFG
);
253 static void hpet_restart_counter(void)
256 hpet_reset_counter();
257 hpet_start_counter();
260 static void hpet_resume_device(void)
265 static void hpet_resume_counter(struct clocksource
*cs
)
267 hpet_resume_device();
268 hpet_restart_counter();
271 static void hpet_enable_legacy_int(void)
273 unsigned int cfg
= hpet_readl(HPET_CFG
);
275 cfg
|= HPET_CFG_LEGACY
;
276 hpet_writel(cfg
, HPET_CFG
);
277 hpet_legacy_int_enabled
= true;
280 static void hpet_legacy_clockevent_register(void)
282 /* Start HPET legacy interrupts */
283 hpet_enable_legacy_int();
286 * Start hpet with the boot cpu mask and make it
287 * global after the IO_APIC has been initialized.
289 hpet_clockevent
.cpumask
= cpumask_of(boot_cpu_data
.cpu_index
);
290 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
291 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
292 global_clock_event
= &hpet_clockevent
;
293 printk(KERN_DEBUG
"hpet clockevent registered\n");
296 static int hpet_set_periodic(struct clock_event_device
*evt
, int timer
)
298 unsigned int cfg
, cmp
, now
;
302 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
303 delta
>>= evt
->shift
;
304 now
= hpet_readl(HPET_COUNTER
);
305 cmp
= now
+ (unsigned int)delta
;
306 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
307 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
309 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
310 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
313 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 * bit is automatically cleared after the first write.
316 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 * Publication # 24674)
319 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(timer
));
320 hpet_start_counter();
326 static int hpet_set_oneshot(struct clock_event_device
*evt
, int timer
)
330 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
331 cfg
&= ~HPET_TN_PERIODIC
;
332 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
333 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
338 static int hpet_shutdown(struct clock_event_device
*evt
, int timer
)
342 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
343 cfg
&= ~HPET_TN_ENABLE
;
344 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
349 static int hpet_resume(struct clock_event_device
*evt
)
351 hpet_enable_legacy_int();
356 static int hpet_next_event(unsigned long delta
,
357 struct clock_event_device
*evt
, int timer
)
362 cnt
= hpet_readl(HPET_COUNTER
);
364 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
367 * HPETs are a complete disaster. The compare register is
368 * based on a equal comparison and neither provides a less
369 * than or equal functionality (which would require to take
370 * the wraparound into account) nor a simple count down event
371 * mode. Further the write to the comparator register is
372 * delayed internally up to two HPET clock cycles in certain
373 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
374 * longer delays. We worked around that by reading back the
375 * compare register, but that required another workaround for
376 * ICH9,10 chips where the first readout after write can
377 * return the old stale value. We already had a minimum
378 * programming delta of 5us enforced, but a NMI or SMI hitting
379 * between the counter readout and the comparator write can
380 * move us behind that point easily. Now instead of reading
381 * the compare register back several times, we make the ETIME
382 * decision based on the following: Return ETIME if the
383 * counter value after the write is less than HPET_MIN_CYCLES
384 * away from the event or if the counter is already ahead of
385 * the event. The minimum programming delta for the generic
386 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
388 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
390 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
393 static int hpet_legacy_shutdown(struct clock_event_device
*evt
)
395 return hpet_shutdown(evt
, 0);
398 static int hpet_legacy_set_oneshot(struct clock_event_device
*evt
)
400 return hpet_set_oneshot(evt
, 0);
403 static int hpet_legacy_set_periodic(struct clock_event_device
*evt
)
405 return hpet_set_periodic(evt
, 0);
408 static int hpet_legacy_resume(struct clock_event_device
*evt
)
410 return hpet_resume(evt
);
413 static int hpet_legacy_next_event(unsigned long delta
,
414 struct clock_event_device
*evt
)
416 return hpet_next_event(delta
, evt
, 0);
420 * The hpet clock event device
422 static struct clock_event_device hpet_clockevent
= {
424 .features
= CLOCK_EVT_FEAT_PERIODIC
|
425 CLOCK_EVT_FEAT_ONESHOT
,
426 .set_state_periodic
= hpet_legacy_set_periodic
,
427 .set_state_oneshot
= hpet_legacy_set_oneshot
,
428 .set_state_shutdown
= hpet_legacy_shutdown
,
429 .tick_resume
= hpet_legacy_resume
,
430 .set_next_event
= hpet_legacy_next_event
,
438 #ifdef CONFIG_PCI_MSI
440 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
441 static struct hpet_dev
*hpet_devs
;
442 static struct irq_domain
*hpet_domain
;
444 void hpet_msi_unmask(struct irq_data
*data
)
446 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
450 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
451 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
452 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
455 void hpet_msi_mask(struct irq_data
*data
)
457 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
461 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
462 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
463 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
466 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
468 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
469 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
472 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
474 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
475 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
479 static int hpet_msi_shutdown(struct clock_event_device
*evt
)
481 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
483 return hpet_shutdown(evt
, hdev
->num
);
486 static int hpet_msi_set_oneshot(struct clock_event_device
*evt
)
488 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
490 return hpet_set_oneshot(evt
, hdev
->num
);
493 static int hpet_msi_set_periodic(struct clock_event_device
*evt
)
495 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
497 return hpet_set_periodic(evt
, hdev
->num
);
500 static int hpet_msi_resume(struct clock_event_device
*evt
)
502 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
503 struct irq_data
*data
= irq_get_irq_data(hdev
->irq
);
506 /* Restore the MSI msg and unmask the interrupt */
507 irq_chip_compose_msi_msg(data
, &msg
);
508 hpet_msi_write(hdev
, &msg
);
509 hpet_msi_unmask(data
);
513 static int hpet_msi_next_event(unsigned long delta
,
514 struct clock_event_device
*evt
)
516 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
517 return hpet_next_event(delta
, evt
, hdev
->num
);
520 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
522 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
523 struct clock_event_device
*hevt
= &dev
->evt
;
525 if (!hevt
->event_handler
) {
526 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
531 hevt
->event_handler(hevt
);
535 static int hpet_setup_irq(struct hpet_dev
*dev
)
538 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
539 IRQF_TIMER
| IRQF_NOBALANCING
,
543 disable_irq(dev
->irq
);
544 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
545 enable_irq(dev
->irq
);
547 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
548 dev
->name
, dev
->irq
);
553 /* This should be called in specific @cpu */
554 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
556 struct clock_event_device
*evt
= &hdev
->evt
;
558 WARN_ON(cpu
!= smp_processor_id());
559 if (!(hdev
->flags
& HPET_DEV_VALID
))
563 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
564 evt
->name
= hdev
->name
;
565 hpet_setup_irq(hdev
);
566 evt
->irq
= hdev
->irq
;
569 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
570 if (hdev
->flags
& HPET_DEV_PERI_CAP
) {
571 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
572 evt
->set_state_periodic
= hpet_msi_set_periodic
;
575 evt
->set_state_shutdown
= hpet_msi_shutdown
;
576 evt
->set_state_oneshot
= hpet_msi_set_oneshot
;
577 evt
->tick_resume
= hpet_msi_resume
;
578 evt
->set_next_event
= hpet_msi_next_event
;
579 evt
->cpumask
= cpumask_of(hdev
->cpu
);
581 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
586 /* Reserve at least one timer for userspace (/dev/hpet) */
587 #define RESERVE_TIMERS 1
589 #define RESERVE_TIMERS 0
592 static void hpet_msi_capability_lookup(unsigned int start_timer
)
595 unsigned int num_timers
;
596 unsigned int num_timers_used
= 0;
599 if (hpet_msi_disable
)
602 if (boot_cpu_has(X86_FEATURE_ARAT
))
604 id
= hpet_readl(HPET_ID
);
606 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
607 num_timers
++; /* Value read out starts from 0 */
610 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
614 hpet_devs
= kcalloc(num_timers
, sizeof(struct hpet_dev
), GFP_KERNEL
);
618 hpet_num_timers
= num_timers
;
620 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
621 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
622 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
624 /* Only consider HPET timer with MSI support */
625 if (!(cfg
& HPET_TN_FSB_CAP
))
629 if (cfg
& HPET_TN_PERIODIC_CAP
)
630 hdev
->flags
|= HPET_DEV_PERI_CAP
;
631 sprintf(hdev
->name
, "hpet%d", i
);
634 irq
= hpet_assign_irq(hpet_domain
, hdev
, hdev
->num
);
639 hdev
->flags
|= HPET_DEV_FSB_CAP
;
640 hdev
->flags
|= HPET_DEV_VALID
;
642 if (num_timers_used
== num_possible_cpus())
646 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
647 num_timers
, num_timers_used
);
651 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
658 for (i
= 0; i
< hpet_num_timers
; i
++) {
659 struct hpet_dev
*hdev
= &hpet_devs
[i
];
661 if (!(hdev
->flags
& HPET_DEV_VALID
))
664 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
665 hpet_reserve_timer(hd
, hdev
->num
);
670 static struct hpet_dev
*hpet_get_unused_timer(void)
677 for (i
= 0; i
< hpet_num_timers
; i
++) {
678 struct hpet_dev
*hdev
= &hpet_devs
[i
];
680 if (!(hdev
->flags
& HPET_DEV_VALID
))
682 if (test_and_set_bit(HPET_DEV_USED_BIT
,
683 (unsigned long *)&hdev
->flags
))
690 struct hpet_work_struct
{
691 struct delayed_work work
;
692 struct completion complete
;
695 static void hpet_work(struct work_struct
*w
)
697 struct hpet_dev
*hdev
;
698 int cpu
= smp_processor_id();
699 struct hpet_work_struct
*hpet_work
;
701 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
703 hdev
= hpet_get_unused_timer();
705 init_one_hpet_msi_clockevent(hdev
, cpu
);
707 complete(&hpet_work
->complete
);
710 static int hpet_cpuhp_online(unsigned int cpu
)
712 struct hpet_work_struct work
;
714 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
715 init_completion(&work
.complete
);
716 /* FIXME: add schedule_work_on() */
717 schedule_delayed_work_on(cpu
, &work
.work
, 0);
718 wait_for_completion(&work
.complete
);
719 destroy_delayed_work_on_stack(&work
.work
);
723 static int hpet_cpuhp_dead(unsigned int cpu
)
725 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
729 free_irq(hdev
->irq
, hdev
);
730 hdev
->flags
&= ~HPET_DEV_USED
;
731 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
736 static void hpet_msi_capability_lookup(unsigned int start_timer
)
742 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
748 #define hpet_cpuhp_online NULL
749 #define hpet_cpuhp_dead NULL
754 * Clock source related code
756 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
758 * Reading the HPET counter is a very slow operation. If a large number of
759 * CPUs are trying to access the HPET counter simultaneously, it can cause
760 * massive delay and slow down system performance dramatically. This may
761 * happen when HPET is the default clock source instead of TSC. For a
762 * really large system with hundreds of CPUs, the slowdown may be so
763 * severe that it may actually crash the system because of a NMI watchdog
764 * soft lockup, for example.
766 * If multiple CPUs are trying to access the HPET counter at the same time,
767 * we don't actually need to read the counter multiple times. Instead, the
768 * other CPUs can use the counter value read by the first CPU in the group.
770 * This special feature is only enabled on x86-64 systems. It is unlikely
771 * that 32-bit x86 systems will have enough CPUs to require this feature
772 * with its associated locking overhead. And we also need 64-bit atomic
775 * The lock and the hpet value are stored together and can be read in a
776 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
777 * is 32 bits in size.
781 arch_spinlock_t lock
;
787 static union hpet_lock hpet __cacheline_aligned
= {
788 { .lock
= __ARCH_SPIN_LOCK_UNLOCKED
, },
791 static u64
read_hpet(struct clocksource
*cs
)
794 union hpet_lock old
, new;
796 BUILD_BUG_ON(sizeof(union hpet_lock
) != 8);
799 * Read HPET directly if in NMI.
802 return (u64
)hpet_readl(HPET_COUNTER
);
805 * Read the current state of the lock and HPET value atomically.
807 old
.lockval
= READ_ONCE(hpet
.lockval
);
809 if (arch_spin_is_locked(&old
.lock
))
812 local_irq_save(flags
);
813 if (arch_spin_trylock(&hpet
.lock
)) {
814 new.value
= hpet_readl(HPET_COUNTER
);
816 * Use WRITE_ONCE() to prevent store tearing.
818 WRITE_ONCE(hpet
.value
, new.value
);
819 arch_spin_unlock(&hpet
.lock
);
820 local_irq_restore(flags
);
821 return (u64
)new.value
;
823 local_irq_restore(flags
);
829 * Wait until the HPET value change or the lock is free to indicate
830 * its value is up-to-date.
832 * It is possible that old.value has already contained the latest
833 * HPET value while the lock holder was in the process of releasing
834 * the lock. Checking for lock state change will enable us to return
835 * the value immediately instead of waiting for the next HPET reader
840 new.lockval
= READ_ONCE(hpet
.lockval
);
841 } while ((new.value
== old
.value
) && arch_spin_is_locked(&new.lock
));
843 return (u64
)new.value
;
849 static u64
read_hpet(struct clocksource
*cs
)
851 return (u64
)hpet_readl(HPET_COUNTER
);
855 static struct clocksource clocksource_hpet
= {
860 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
861 .resume
= hpet_resume_counter
,
864 static int hpet_clocksource_register(void)
869 /* Start the counter */
870 hpet_restart_counter();
872 /* Verify whether hpet counter works */
873 t1
= hpet_readl(HPET_COUNTER
);
877 * We don't know the TSC frequency yet, but waiting for
878 * 200000 TSC cycles is safe:
885 } while ((now
- start
) < 200000UL);
887 if (t1
== hpet_readl(HPET_COUNTER
)) {
889 "HPET counter not counting. HPET disabled\n");
893 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
897 static u32
*hpet_boot_cfg
;
900 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
902 int __init
hpet_enable(void)
904 u32 hpet_period
, cfg
, id
;
906 unsigned int i
, last
;
908 if (!is_hpet_capable())
914 * Read the period and check for a sane value:
916 hpet_period
= hpet_readl(HPET_PERIOD
);
919 * AMD SB700 based systems with spread spectrum enabled use a
920 * SMM based HPET emulation to provide proper frequency
921 * setting. The SMM code is initialized with the first HPET
922 * register access and takes some time to complete. During
923 * this time the config register reads 0xffffffff. We check
924 * for max. 1000 loops whether the config register reads a non
925 * 0xffffffff value to make sure that HPET is up and running
926 * before we go further. A counting loop is safe, as the HPET
927 * access takes thousands of CPU cycles. On non SB700 based
928 * machines this check is only done once and has no side
931 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
934 "HPET config register value = 0xFFFFFFFF. "
940 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
944 * The period is a femto seconds value. Convert it to a
948 do_div(freq
, hpet_period
);
952 * Read the HPET ID register to retrieve the IRQ routing
953 * information and the number of channels
955 id
= hpet_readl(HPET_ID
);
958 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
960 #ifdef CONFIG_HPET_EMULATE_RTC
962 * The legacy routing mode needs at least two channels, tick timer
963 * and the rtc emulation channel.
969 cfg
= hpet_readl(HPET_CFG
);
970 hpet_boot_cfg
= kmalloc_array(last
+ 2, sizeof(*hpet_boot_cfg
),
973 *hpet_boot_cfg
= cfg
;
975 pr_warn("HPET initial state will not be saved\n");
976 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
977 hpet_writel(cfg
, HPET_CFG
);
979 pr_warn("Unrecognized bits %#x set in global cfg\n", cfg
);
981 for (i
= 0; i
<= last
; ++i
) {
982 cfg
= hpet_readl(HPET_Tn_CFG(i
));
984 hpet_boot_cfg
[i
+ 1] = cfg
;
985 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
986 hpet_writel(cfg
, HPET_Tn_CFG(i
));
987 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
988 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
989 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
991 pr_warn("Unrecognized bits %#x set in cfg#%u\n",
996 if (hpet_clocksource_register())
999 if (id
& HPET_ID_LEGSUP
) {
1000 hpet_legacy_clockevent_register();
1006 hpet_clear_mapping();
1012 * Needs to be late, as the reserve_timer code calls kalloc !
1014 * Not a problem on i386 as hpet_enable is called from late_time_init,
1015 * but on x86_64 it is necessary !
1017 static __init
int hpet_late_init(void)
1021 if (boot_hpet_disable
)
1024 if (!hpet_address
) {
1025 if (!force_hpet_address
)
1028 hpet_address
= force_hpet_address
;
1032 if (!hpet_virt_address
)
1035 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
1036 hpet_msi_capability_lookup(2);
1038 hpet_msi_capability_lookup(0);
1040 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
1041 hpet_print_config();
1043 if (hpet_msi_disable
)
1046 if (boot_cpu_has(X86_FEATURE_ARAT
))
1049 /* This notifier should be called after workqueue is ready */
1050 ret
= cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE
, "x86/hpet:online",
1051 hpet_cpuhp_online
, NULL
);
1054 ret
= cpuhp_setup_state(CPUHP_X86_HPET_DEAD
, "x86/hpet:dead", NULL
,
1061 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE
);
1064 fs_initcall(hpet_late_init
);
1066 void hpet_disable(void)
1068 if (is_hpet_capable() && hpet_virt_address
) {
1069 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
1072 cfg
= *hpet_boot_cfg
;
1073 else if (hpet_legacy_int_enabled
) {
1074 cfg
&= ~HPET_CFG_LEGACY
;
1075 hpet_legacy_int_enabled
= false;
1077 cfg
&= ~HPET_CFG_ENABLE
;
1078 hpet_writel(cfg
, HPET_CFG
);
1083 id
= hpet_readl(HPET_ID
);
1084 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
1086 for (id
= 0; id
<= last
; ++id
)
1087 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
1089 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
1090 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
1094 #ifdef CONFIG_HPET_EMULATE_RTC
1096 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097 * is enabled, we support RTC interrupt functionality in software.
1098 * RTC has 3 kinds of interrupts:
1099 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1101 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104 * (1) and (2) above are implemented using polling at a frequency of
1105 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106 * overhead. (DEFAULT_RTC_INT_FREQ)
1107 * For (3), we use interrupts at 64Hz or user specified periodic
1108 * frequency, whichever is higher.
1110 #include <linux/mc146818rtc.h>
1111 #include <linux/rtc.h>
1113 #define DEFAULT_RTC_INT_FREQ 64
1114 #define DEFAULT_RTC_SHIFT 6
1115 #define RTC_NUM_INTS 1
1117 static unsigned long hpet_rtc_flags
;
1118 static int hpet_prev_update_sec
;
1119 static struct rtc_time hpet_alarm_time
;
1120 static unsigned long hpet_pie_count
;
1121 static u32 hpet_t1_cmp
;
1122 static u32 hpet_default_delta
;
1123 static u32 hpet_pie_delta
;
1124 static unsigned long hpet_pie_limit
;
1126 static rtc_irq_handler irq_handler
;
1129 * Check that the hpet counter c1 is ahead of the c2
1131 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1133 return (s32
)(c2
- c1
) < 0;
1137 * Registers a IRQ handler.
1139 int hpet_register_irq_handler(rtc_irq_handler handler
)
1141 if (!is_hpet_enabled())
1146 irq_handler
= handler
;
1150 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1153 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1156 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1158 if (!is_hpet_enabled())
1164 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1167 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168 * is not supported by all HPET implementations for timer 1.
1170 * hpet_rtc_timer_init() is called when the rtc is initialized.
1172 int hpet_rtc_timer_init(void)
1174 unsigned int cfg
, cnt
, delta
;
1175 unsigned long flags
;
1177 if (!is_hpet_enabled())
1180 if (!hpet_default_delta
) {
1183 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1184 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1185 hpet_default_delta
= clc
;
1188 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1189 delta
= hpet_default_delta
;
1191 delta
= hpet_pie_delta
;
1193 local_irq_save(flags
);
1195 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1196 hpet_writel(cnt
, HPET_T1_CMP
);
1199 cfg
= hpet_readl(HPET_T1_CFG
);
1200 cfg
&= ~HPET_TN_PERIODIC
;
1201 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1202 hpet_writel(cfg
, HPET_T1_CFG
);
1204 local_irq_restore(flags
);
1208 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1210 static void hpet_disable_rtc_channel(void)
1212 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1213 cfg
&= ~HPET_TN_ENABLE
;
1214 hpet_writel(cfg
, HPET_T1_CFG
);
1218 * The functions below are called from rtc driver.
1219 * Return 0 if HPET is not being used.
1220 * Otherwise do the necessary changes and return 1.
1222 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1224 if (!is_hpet_enabled())
1227 hpet_rtc_flags
&= ~bit_mask
;
1228 if (unlikely(!hpet_rtc_flags
))
1229 hpet_disable_rtc_channel();
1233 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1235 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1237 unsigned long oldbits
= hpet_rtc_flags
;
1239 if (!is_hpet_enabled())
1242 hpet_rtc_flags
|= bit_mask
;
1244 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1245 hpet_prev_update_sec
= -1;
1248 hpet_rtc_timer_init();
1252 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1254 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1257 if (!is_hpet_enabled())
1260 hpet_alarm_time
.tm_hour
= hrs
;
1261 hpet_alarm_time
.tm_min
= min
;
1262 hpet_alarm_time
.tm_sec
= sec
;
1266 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1268 int hpet_set_periodic_freq(unsigned long freq
)
1272 if (!is_hpet_enabled())
1275 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1276 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1278 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1280 clc
>>= hpet_clockevent
.shift
;
1281 hpet_pie_delta
= clc
;
1286 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1288 int hpet_rtc_dropped_irq(void)
1290 return is_hpet_enabled();
1292 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1294 static void hpet_rtc_timer_reinit(void)
1299 if (unlikely(!hpet_rtc_flags
))
1300 hpet_disable_rtc_channel();
1302 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1303 delta
= hpet_default_delta
;
1305 delta
= hpet_pie_delta
;
1308 * Increment the comparator value until we are ahead of the
1312 hpet_t1_cmp
+= delta
;
1313 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1315 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1318 if (hpet_rtc_flags
& RTC_PIE
)
1319 hpet_pie_count
+= lost_ints
;
1320 if (printk_ratelimit())
1321 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1326 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1328 struct rtc_time curr_time
;
1329 unsigned long rtc_int_flag
= 0;
1331 hpet_rtc_timer_reinit();
1332 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1334 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1335 mc146818_get_time(&curr_time
);
1337 if (hpet_rtc_flags
& RTC_UIE
&&
1338 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1339 if (hpet_prev_update_sec
>= 0)
1340 rtc_int_flag
= RTC_UF
;
1341 hpet_prev_update_sec
= curr_time
.tm_sec
;
1344 if (hpet_rtc_flags
& RTC_PIE
&&
1345 ++hpet_pie_count
>= hpet_pie_limit
) {
1346 rtc_int_flag
|= RTC_PF
;
1350 if (hpet_rtc_flags
& RTC_AIE
&&
1351 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1352 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1353 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1354 rtc_int_flag
|= RTC_AF
;
1357 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1359 irq_handler(rtc_int_flag
, dev_id
);
1363 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);