4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/notifier.h>
53 #include <linux/mutex.h>
54 #include <linux/kthread.h>
56 #include <linux/interrupt.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ipmi.h>
59 #include <linux/ipmi_smi.h>
61 #include <linux/string.h>
62 #include <linux/ctype.h>
64 #define PFX "ipmi_si: "
66 /* Measure times between events in the driver. */
69 /* Call every 10 ms. */
70 #define SI_TIMEOUT_TIME_USEC 10000
71 #define SI_USEC_PER_JIFFY (1000000/HZ)
72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 /* FIXME - add watchdog stuff. */
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG 2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
92 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
94 static int initialized
;
97 * Indexes into stats[] in smi_info below.
99 enum si_stat_indexes
{
101 * Number of times the driver requested a timer while an operation
104 SI_STAT_short_timeouts
= 0,
107 * Number of times the driver requested a timer while nothing was in
110 SI_STAT_long_timeouts
,
112 /* Number of times the interface was idle while being polled. */
115 /* Number of interrupts the driver handled. */
118 /* Number of time the driver got an ATTN from the hardware. */
121 /* Number of times the driver requested flags from the hardware. */
122 SI_STAT_flag_fetches
,
124 /* Number of times the hardware didn't follow the state machine. */
127 /* Number of completed messages. */
128 SI_STAT_complete_transactions
,
130 /* Number of IPMI events received from the hardware. */
133 /* Number of watchdog pretimeouts. */
134 SI_STAT_watchdog_pretimeouts
,
136 /* Number of asynchronous messages received. */
137 SI_STAT_incoming_messages
,
140 /* This *must* remain last, add new values above this. */
147 struct si_sm_data
*si_sm
;
148 const struct si_sm_handlers
*handlers
;
150 struct ipmi_smi_msg
*waiting_msg
;
151 struct ipmi_smi_msg
*curr_msg
;
152 enum si_intf_state si_state
;
155 * Used to handle the various types of I/O that can occur with
161 * Per-OEM handler, called from handle_flags(). Returns 1
162 * when handle_flags() needs to be re-run or 0 indicating it
163 * set si_state itself.
165 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
168 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
169 * is set to hold the flags until we are done handling everything
172 #define RECEIVE_MSG_AVAIL 0x01
173 #define EVENT_MSG_BUFFER_FULL 0x02
174 #define WDT_PRE_TIMEOUT_INT 0x08
175 #define OEM0_DATA_AVAIL 0x20
176 #define OEM1_DATA_AVAIL 0x40
177 #define OEM2_DATA_AVAIL 0x80
178 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
181 unsigned char msg_flags
;
183 /* Does the BMC have an event buffer? */
184 bool has_event_buffer
;
187 * If set to true, this will request events the next time the
188 * state machine is idle.
193 * If true, run the state machine to completion on every send
194 * call. Generally used after a panic to make sure stuff goes
197 bool run_to_completion
;
199 /* The timer for this si. */
200 struct timer_list si_timer
;
202 /* This flag is set, if the timer can be set */
203 bool timer_can_start
;
205 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
208 /* The time (in jiffies) the last timeout occurred at. */
209 unsigned long last_timeout_jiffies
;
211 /* Are we waiting for the events, pretimeouts, received msgs? */
215 * The driver will disable interrupts when it gets into a
216 * situation where it cannot handle messages due to lack of
217 * memory. Once that situation clears up, it will re-enable
220 bool interrupt_disabled
;
223 * Does the BMC support events?
225 bool supports_event_msg_buff
;
228 * Can we disable interrupts the global enables receive irq
229 * bit? There are currently two forms of brokenness, some
230 * systems cannot disable the bit (which is technically within
231 * the spec but a bad idea) and some systems have the bit
232 * forced to zero even though interrupts work (which is
233 * clearly outside the spec). The next bool tells which form
234 * of brokenness is present.
236 bool cannot_disable_irq
;
239 * Some systems are broken and cannot set the irq enable
240 * bit, even if they support interrupts.
242 bool irq_enable_broken
;
245 * Did we get an attention that we did not handle?
249 /* From the get device id response... */
250 struct ipmi_device_id device_id
;
252 /* Default driver model device. */
253 struct platform_device
*pdev
;
255 /* Have we added the device group to the device? */
256 bool dev_group_added
;
258 /* Counters and things for the proc filesystem. */
259 atomic_t stats
[SI_NUM_STATS
];
261 struct task_struct
*thread
;
263 struct list_head link
;
266 #define smi_inc_stat(smi, stat) \
267 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
268 #define smi_get_stat(smi, stat) \
269 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
271 #define IPMI_MAX_INTFS 4
272 static int force_kipmid
[IPMI_MAX_INTFS
];
273 static int num_force_kipmid
;
275 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
276 static int num_max_busy_us
;
278 static bool unload_when_empty
= true;
280 static int try_smi_init(struct smi_info
*smi
);
281 static void cleanup_one_si(struct smi_info
*to_clean
);
282 static void cleanup_ipmi_si(void);
285 void debug_timestamp(char *msg
)
289 getnstimeofday64(&t
);
290 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
293 #define debug_timestamp(x)
296 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
297 static int register_xaction_notifier(struct notifier_block
*nb
)
299 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
302 static void deliver_recv_msg(struct smi_info
*smi_info
,
303 struct ipmi_smi_msg
*msg
)
305 /* Deliver the message to the upper layer. */
307 ipmi_smi_msg_received(smi_info
->intf
, msg
);
309 ipmi_free_smi_msg(msg
);
312 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
314 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
316 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
317 cCode
= IPMI_ERR_UNSPECIFIED
;
318 /* else use it as is */
320 /* Make it a response */
321 msg
->rsp
[0] = msg
->data
[0] | 4;
322 msg
->rsp
[1] = msg
->data
[1];
326 smi_info
->curr_msg
= NULL
;
327 deliver_recv_msg(smi_info
, msg
);
330 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
334 if (!smi_info
->waiting_msg
) {
335 smi_info
->curr_msg
= NULL
;
340 smi_info
->curr_msg
= smi_info
->waiting_msg
;
341 smi_info
->waiting_msg
= NULL
;
342 debug_timestamp("Start2");
343 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
345 if (err
& NOTIFY_STOP_MASK
) {
346 rv
= SI_SM_CALL_WITHOUT_DELAY
;
349 err
= smi_info
->handlers
->start_transaction(
351 smi_info
->curr_msg
->data
,
352 smi_info
->curr_msg
->data_size
);
354 return_hosed_msg(smi_info
, err
);
356 rv
= SI_SM_CALL_WITHOUT_DELAY
;
362 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
364 if (!smi_info
->timer_can_start
)
366 smi_info
->last_timeout_jiffies
= jiffies
;
367 mod_timer(&smi_info
->si_timer
, new_val
);
368 smi_info
->timer_running
= true;
372 * Start a new message and (re)start the timer and thread.
374 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
377 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
379 if (smi_info
->thread
)
380 wake_up_process(smi_info
->thread
);
382 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
385 static void start_check_enables(struct smi_info
*smi_info
)
387 unsigned char msg
[2];
389 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
390 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
392 start_new_msg(smi_info
, msg
, 2);
393 smi_info
->si_state
= SI_CHECKING_ENABLES
;
396 static void start_clear_flags(struct smi_info
*smi_info
)
398 unsigned char msg
[3];
400 /* Make sure the watchdog pre-timeout flag is not set at startup. */
401 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
402 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
403 msg
[2] = WDT_PRE_TIMEOUT_INT
;
405 start_new_msg(smi_info
, msg
, 3);
406 smi_info
->si_state
= SI_CLEARING_FLAGS
;
409 static void start_getting_msg_queue(struct smi_info
*smi_info
)
411 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
412 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
413 smi_info
->curr_msg
->data_size
= 2;
415 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
416 smi_info
->curr_msg
->data_size
);
417 smi_info
->si_state
= SI_GETTING_MESSAGES
;
420 static void start_getting_events(struct smi_info
*smi_info
)
422 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
423 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
424 smi_info
->curr_msg
->data_size
= 2;
426 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
427 smi_info
->curr_msg
->data_size
);
428 smi_info
->si_state
= SI_GETTING_EVENTS
;
432 * When we have a situtaion where we run out of memory and cannot
433 * allocate messages, we just leave them in the BMC and run the system
434 * polled until we can allocate some memory. Once we have some
435 * memory, we will re-enable the interrupt.
437 * Note that we cannot just use disable_irq(), since the interrupt may
440 static inline bool disable_si_irq(struct smi_info
*smi_info
)
442 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
443 smi_info
->interrupt_disabled
= true;
444 start_check_enables(smi_info
);
450 static inline bool enable_si_irq(struct smi_info
*smi_info
)
452 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
453 smi_info
->interrupt_disabled
= false;
454 start_check_enables(smi_info
);
461 * Allocate a message. If unable to allocate, start the interrupt
462 * disable process and return NULL. If able to allocate but
463 * interrupts are disabled, free the message and return NULL after
464 * starting the interrupt enable process.
466 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
468 struct ipmi_smi_msg
*msg
;
470 msg
= ipmi_alloc_smi_msg();
472 if (!disable_si_irq(smi_info
))
473 smi_info
->si_state
= SI_NORMAL
;
474 } else if (enable_si_irq(smi_info
)) {
475 ipmi_free_smi_msg(msg
);
481 static void handle_flags(struct smi_info
*smi_info
)
484 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
485 /* Watchdog pre-timeout */
486 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
488 start_clear_flags(smi_info
);
489 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
491 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
492 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
493 /* Messages available. */
494 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
495 if (!smi_info
->curr_msg
)
498 start_getting_msg_queue(smi_info
);
499 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
500 /* Events available. */
501 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
502 if (!smi_info
->curr_msg
)
505 start_getting_events(smi_info
);
506 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
507 smi_info
->oem_data_avail_handler
) {
508 if (smi_info
->oem_data_avail_handler(smi_info
))
511 smi_info
->si_state
= SI_NORMAL
;
515 * Global enables we care about.
517 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
518 IPMI_BMC_EVT_MSG_INTR)
520 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
525 if (smi_info
->supports_event_msg_buff
)
526 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
528 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
529 smi_info
->cannot_disable_irq
) &&
530 !smi_info
->irq_enable_broken
)
531 enables
|= IPMI_BMC_RCV_MSG_INTR
;
533 if (smi_info
->supports_event_msg_buff
&&
534 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
535 !smi_info
->irq_enable_broken
)
536 enables
|= IPMI_BMC_EVT_MSG_INTR
;
538 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
543 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
545 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
547 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
549 if ((bool)irqstate
== irq_on
)
553 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
554 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
556 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
559 static void handle_transaction_done(struct smi_info
*smi_info
)
561 struct ipmi_smi_msg
*msg
;
563 debug_timestamp("Done");
564 switch (smi_info
->si_state
) {
566 if (!smi_info
->curr_msg
)
569 smi_info
->curr_msg
->rsp_size
570 = smi_info
->handlers
->get_result(
572 smi_info
->curr_msg
->rsp
,
573 IPMI_MAX_MSG_LENGTH
);
576 * Do this here becase deliver_recv_msg() releases the
577 * lock, and a new message can be put in during the
578 * time the lock is released.
580 msg
= smi_info
->curr_msg
;
581 smi_info
->curr_msg
= NULL
;
582 deliver_recv_msg(smi_info
, msg
);
585 case SI_GETTING_FLAGS
:
587 unsigned char msg
[4];
590 /* We got the flags from the SMI, now handle them. */
591 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
593 /* Error fetching flags, just give up for now. */
594 smi_info
->si_state
= SI_NORMAL
;
595 } else if (len
< 4) {
597 * Hmm, no flags. That's technically illegal, but
598 * don't use uninitialized data.
600 smi_info
->si_state
= SI_NORMAL
;
602 smi_info
->msg_flags
= msg
[3];
603 handle_flags(smi_info
);
608 case SI_CLEARING_FLAGS
:
610 unsigned char msg
[3];
612 /* We cleared the flags. */
613 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
615 /* Error clearing flags */
616 dev_warn(smi_info
->io
.dev
,
617 "Error clearing flags: %2.2x\n", msg
[2]);
619 smi_info
->si_state
= SI_NORMAL
;
623 case SI_GETTING_EVENTS
:
625 smi_info
->curr_msg
->rsp_size
626 = smi_info
->handlers
->get_result(
628 smi_info
->curr_msg
->rsp
,
629 IPMI_MAX_MSG_LENGTH
);
632 * Do this here becase deliver_recv_msg() releases the
633 * lock, and a new message can be put in during the
634 * time the lock is released.
636 msg
= smi_info
->curr_msg
;
637 smi_info
->curr_msg
= NULL
;
638 if (msg
->rsp
[2] != 0) {
639 /* Error getting event, probably done. */
642 /* Take off the event flag. */
643 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
644 handle_flags(smi_info
);
646 smi_inc_stat(smi_info
, events
);
649 * Do this before we deliver the message
650 * because delivering the message releases the
651 * lock and something else can mess with the
654 handle_flags(smi_info
);
656 deliver_recv_msg(smi_info
, msg
);
661 case SI_GETTING_MESSAGES
:
663 smi_info
->curr_msg
->rsp_size
664 = smi_info
->handlers
->get_result(
666 smi_info
->curr_msg
->rsp
,
667 IPMI_MAX_MSG_LENGTH
);
670 * Do this here becase deliver_recv_msg() releases the
671 * lock, and a new message can be put in during the
672 * time the lock is released.
674 msg
= smi_info
->curr_msg
;
675 smi_info
->curr_msg
= NULL
;
676 if (msg
->rsp
[2] != 0) {
677 /* Error getting event, probably done. */
680 /* Take off the msg flag. */
681 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
682 handle_flags(smi_info
);
684 smi_inc_stat(smi_info
, incoming_messages
);
687 * Do this before we deliver the message
688 * because delivering the message releases the
689 * lock and something else can mess with the
692 handle_flags(smi_info
);
694 deliver_recv_msg(smi_info
, msg
);
699 case SI_CHECKING_ENABLES
:
701 unsigned char msg
[4];
705 /* We got the flags from the SMI, now handle them. */
706 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
708 dev_warn(smi_info
->io
.dev
,
709 "Couldn't get irq info: %x.\n", msg
[2]);
710 dev_warn(smi_info
->io
.dev
,
711 "Maybe ok, but ipmi might run very slowly.\n");
712 smi_info
->si_state
= SI_NORMAL
;
715 enables
= current_global_enables(smi_info
, 0, &irq_on
);
716 if (smi_info
->io
.si_type
== SI_BT
)
717 /* BT has its own interrupt enable bit. */
718 check_bt_irq(smi_info
, irq_on
);
719 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
720 /* Enables are not correct, fix them. */
721 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
722 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
723 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
724 smi_info
->handlers
->start_transaction(
725 smi_info
->si_sm
, msg
, 3);
726 smi_info
->si_state
= SI_SETTING_ENABLES
;
727 } else if (smi_info
->supports_event_msg_buff
) {
728 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
729 if (!smi_info
->curr_msg
) {
730 smi_info
->si_state
= SI_NORMAL
;
733 start_getting_events(smi_info
);
735 smi_info
->si_state
= SI_NORMAL
;
740 case SI_SETTING_ENABLES
:
742 unsigned char msg
[4];
744 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
746 dev_warn(smi_info
->io
.dev
,
747 "Could not set the global enables: 0x%x.\n",
750 if (smi_info
->supports_event_msg_buff
) {
751 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
752 if (!smi_info
->curr_msg
) {
753 smi_info
->si_state
= SI_NORMAL
;
756 start_getting_events(smi_info
);
758 smi_info
->si_state
= SI_NORMAL
;
766 * Called on timeouts and events. Timeouts should pass the elapsed
767 * time, interrupts should pass in zero. Must be called with
768 * si_lock held and interrupts disabled.
770 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
773 enum si_sm_result si_sm_result
;
777 * There used to be a loop here that waited a little while
778 * (around 25us) before giving up. That turned out to be
779 * pointless, the minimum delays I was seeing were in the 300us
780 * range, which is far too long to wait in an interrupt. So
781 * we just run until the state machine tells us something
782 * happened or it needs a delay.
784 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
786 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
787 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
789 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
790 smi_inc_stat(smi_info
, complete_transactions
);
792 handle_transaction_done(smi_info
);
794 } else if (si_sm_result
== SI_SM_HOSED
) {
795 smi_inc_stat(smi_info
, hosed_count
);
798 * Do the before return_hosed_msg, because that
801 smi_info
->si_state
= SI_NORMAL
;
802 if (smi_info
->curr_msg
!= NULL
) {
804 * If we were handling a user message, format
805 * a response to send to the upper layer to
806 * tell it about the error.
808 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
814 * We prefer handling attn over new messages. But don't do
815 * this if there is not yet an upper layer to handle anything.
817 if (likely(smi_info
->intf
) &&
818 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
819 unsigned char msg
[2];
821 if (smi_info
->si_state
!= SI_NORMAL
) {
823 * We got an ATTN, but we are doing something else.
824 * Handle the ATTN later.
826 smi_info
->got_attn
= true;
828 smi_info
->got_attn
= false;
829 smi_inc_stat(smi_info
, attentions
);
832 * Got a attn, send down a get message flags to see
833 * what's causing it. It would be better to handle
834 * this in the upper layer, but due to the way
835 * interrupts work with the SMI, that's not really
838 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
839 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
841 start_new_msg(smi_info
, msg
, 2);
842 smi_info
->si_state
= SI_GETTING_FLAGS
;
847 /* If we are currently idle, try to start the next message. */
848 if (si_sm_result
== SI_SM_IDLE
) {
849 smi_inc_stat(smi_info
, idles
);
851 si_sm_result
= start_next_msg(smi_info
);
852 if (si_sm_result
!= SI_SM_IDLE
)
856 if ((si_sm_result
== SI_SM_IDLE
)
857 && (atomic_read(&smi_info
->req_events
))) {
859 * We are idle and the upper layer requested that I fetch
862 atomic_set(&smi_info
->req_events
, 0);
865 * Take this opportunity to check the interrupt and
866 * message enable state for the BMC. The BMC can be
867 * asynchronously reset, and may thus get interrupts
868 * disable and messages disabled.
870 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
871 start_check_enables(smi_info
);
873 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
874 if (!smi_info
->curr_msg
)
877 start_getting_events(smi_info
);
882 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
883 /* Ok it if fails, the timer will just go off. */
884 if (del_timer(&smi_info
->si_timer
))
885 smi_info
->timer_running
= false;
892 static void check_start_timer_thread(struct smi_info
*smi_info
)
894 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
895 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
897 if (smi_info
->thread
)
898 wake_up_process(smi_info
->thread
);
900 start_next_msg(smi_info
);
901 smi_event_handler(smi_info
, 0);
905 static void flush_messages(void *send_info
)
907 struct smi_info
*smi_info
= send_info
;
908 enum si_sm_result result
;
911 * Currently, this function is called only in run-to-completion
912 * mode. This means we are single-threaded, no need for locks.
914 result
= smi_event_handler(smi_info
, 0);
915 while (result
!= SI_SM_IDLE
) {
916 udelay(SI_SHORT_TIMEOUT_USEC
);
917 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
921 static void sender(void *send_info
,
922 struct ipmi_smi_msg
*msg
)
924 struct smi_info
*smi_info
= send_info
;
927 debug_timestamp("Enqueue");
929 if (smi_info
->run_to_completion
) {
931 * If we are running to completion, start it. Upper
932 * layer will call flush_messages to clear it out.
934 smi_info
->waiting_msg
= msg
;
938 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
940 * The following two lines don't need to be under the lock for
941 * the lock's sake, but they do need SMP memory barriers to
942 * avoid getting things out of order. We are already claiming
943 * the lock, anyway, so just do it under the lock to avoid the
946 BUG_ON(smi_info
->waiting_msg
);
947 smi_info
->waiting_msg
= msg
;
948 check_start_timer_thread(smi_info
);
949 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
952 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
954 struct smi_info
*smi_info
= send_info
;
956 smi_info
->run_to_completion
= i_run_to_completion
;
957 if (i_run_to_completion
)
958 flush_messages(smi_info
);
962 * Use -1 in the nsec value of the busy waiting timespec to tell that
963 * we are spinning in kipmid looking for something and not delaying
966 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
970 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
972 return ts
->tv_nsec
!= -1;
975 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
976 const struct smi_info
*smi_info
,
977 struct timespec64
*busy_until
)
979 unsigned int max_busy_us
= 0;
981 if (smi_info
->intf_num
< num_max_busy_us
)
982 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
983 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
984 ipmi_si_set_not_busy(busy_until
);
985 else if (!ipmi_si_is_busy(busy_until
)) {
986 getnstimeofday64(busy_until
);
987 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
989 struct timespec64 now
;
991 getnstimeofday64(&now
);
992 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
993 ipmi_si_set_not_busy(busy_until
);
1002 * A busy-waiting loop for speeding up IPMI operation.
1004 * Lousy hardware makes this hard. This is only enabled for systems
1005 * that are not BT and do not have interrupts. It starts spinning
1006 * when an operation is complete or until max_busy tells it to stop
1007 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1008 * Documentation/IPMI.txt for details.
1010 static int ipmi_thread(void *data
)
1012 struct smi_info
*smi_info
= data
;
1013 unsigned long flags
;
1014 enum si_sm_result smi_result
;
1015 struct timespec64 busy_until
;
1017 ipmi_si_set_not_busy(&busy_until
);
1018 set_user_nice(current
, MAX_NICE
);
1019 while (!kthread_should_stop()) {
1022 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1023 smi_result
= smi_event_handler(smi_info
, 0);
1026 * If the driver is doing something, there is a possible
1027 * race with the timer. If the timer handler see idle,
1028 * and the thread here sees something else, the timer
1029 * handler won't restart the timer even though it is
1030 * required. So start it here if necessary.
1032 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1033 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1035 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1036 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1038 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1040 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1042 else if (smi_result
== SI_SM_IDLE
) {
1043 if (atomic_read(&smi_info
->need_watch
)) {
1044 schedule_timeout_interruptible(100);
1046 /* Wait to be woken up when we are needed. */
1047 __set_current_state(TASK_INTERRUPTIBLE
);
1051 schedule_timeout_interruptible(1);
1057 static void poll(void *send_info
)
1059 struct smi_info
*smi_info
= send_info
;
1060 unsigned long flags
= 0;
1061 bool run_to_completion
= smi_info
->run_to_completion
;
1064 * Make sure there is some delay in the poll loop so we can
1065 * drive time forward and timeout things.
1068 if (!run_to_completion
)
1069 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1070 smi_event_handler(smi_info
, 10);
1071 if (!run_to_completion
)
1072 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1075 static void request_events(void *send_info
)
1077 struct smi_info
*smi_info
= send_info
;
1079 if (!smi_info
->has_event_buffer
)
1082 atomic_set(&smi_info
->req_events
, 1);
1085 static void set_need_watch(void *send_info
, bool enable
)
1087 struct smi_info
*smi_info
= send_info
;
1088 unsigned long flags
;
1090 atomic_set(&smi_info
->need_watch
, enable
);
1091 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1092 check_start_timer_thread(smi_info
);
1093 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1096 static void smi_timeout(struct timer_list
*t
)
1098 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1099 enum si_sm_result smi_result
;
1100 unsigned long flags
;
1101 unsigned long jiffies_now
;
1105 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1106 debug_timestamp("Timer");
1108 jiffies_now
= jiffies
;
1109 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1110 * SI_USEC_PER_JIFFY
);
1111 smi_result
= smi_event_handler(smi_info
, time_diff
);
1113 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1114 /* Running with interrupts, only do long timeouts. */
1115 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1116 smi_inc_stat(smi_info
, long_timeouts
);
1121 * If the state machine asks for a short delay, then shorten
1122 * the timer timeout.
1124 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1125 smi_inc_stat(smi_info
, short_timeouts
);
1126 timeout
= jiffies
+ 1;
1128 smi_inc_stat(smi_info
, long_timeouts
);
1129 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1133 if (smi_result
!= SI_SM_IDLE
)
1134 smi_mod_timer(smi_info
, timeout
);
1136 smi_info
->timer_running
= false;
1137 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1140 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1142 struct smi_info
*smi_info
= data
;
1143 unsigned long flags
;
1145 if (smi_info
->io
.si_type
== SI_BT
)
1146 /* We need to clear the IRQ flag for the BT interface. */
1147 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1148 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1149 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1151 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1153 smi_inc_stat(smi_info
, interrupts
);
1155 debug_timestamp("Interrupt");
1157 smi_event_handler(smi_info
, 0);
1158 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1162 static int smi_start_processing(void *send_info
,
1165 struct smi_info
*new_smi
= send_info
;
1168 new_smi
->intf
= intf
;
1170 /* Set up the timer that drives the interface. */
1171 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1172 new_smi
->timer_can_start
= true;
1173 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1175 /* Try to claim any interrupts. */
1176 if (new_smi
->io
.irq_setup
) {
1177 new_smi
->io
.irq_handler_data
= new_smi
;
1178 new_smi
->io
.irq_setup(&new_smi
->io
);
1182 * Check if the user forcefully enabled the daemon.
1184 if (new_smi
->intf_num
< num_force_kipmid
)
1185 enable
= force_kipmid
[new_smi
->intf_num
];
1187 * The BT interface is efficient enough to not need a thread,
1188 * and there is no need for a thread if we have interrupts.
1190 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1194 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1195 "kipmi%d", new_smi
->intf_num
);
1196 if (IS_ERR(new_smi
->thread
)) {
1197 dev_notice(new_smi
->io
.dev
, "Could not start"
1198 " kernel thread due to error %ld, only using"
1199 " timers to drive the interface\n",
1200 PTR_ERR(new_smi
->thread
));
1201 new_smi
->thread
= NULL
;
1208 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1210 struct smi_info
*smi
= send_info
;
1212 data
->addr_src
= smi
->io
.addr_source
;
1213 data
->dev
= smi
->io
.dev
;
1214 data
->addr_info
= smi
->io
.addr_info
;
1215 get_device(smi
->io
.dev
);
1220 static void set_maintenance_mode(void *send_info
, bool enable
)
1222 struct smi_info
*smi_info
= send_info
;
1225 atomic_set(&smi_info
->req_events
, 0);
1228 static const struct ipmi_smi_handlers handlers
= {
1229 .owner
= THIS_MODULE
,
1230 .start_processing
= smi_start_processing
,
1231 .get_smi_info
= get_smi_info
,
1233 .request_events
= request_events
,
1234 .set_need_watch
= set_need_watch
,
1235 .set_maintenance_mode
= set_maintenance_mode
,
1236 .set_run_to_completion
= set_run_to_completion
,
1237 .flush_messages
= flush_messages
,
1241 static LIST_HEAD(smi_infos
);
1242 static DEFINE_MUTEX(smi_infos_lock
);
1243 static int smi_num
; /* Used to sequence the SMIs */
1245 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1247 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1248 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1249 " disabled(0). Normally the IPMI driver auto-detects"
1250 " this, but the value may be overridden by this parm.");
1251 module_param(unload_when_empty
, bool, 0);
1252 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1253 " specified or found, default is 1. Setting to 0"
1254 " is useful for hot add of devices using hotmod.");
1255 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1256 MODULE_PARM_DESC(kipmid_max_busy_us
,
1257 "Max time (in microseconds) to busy-wait for IPMI data before"
1258 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1259 " if kipmid is using up a lot of CPU time.");
1261 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1263 if (io
->si_type
== SI_BT
)
1264 /* Enable the interrupt in the BT interface. */
1265 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1266 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1269 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1271 if (io
->si_type
== SI_BT
)
1272 /* Disable the interrupt in the BT interface. */
1273 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1276 static void std_irq_cleanup(struct si_sm_io
*io
)
1278 ipmi_irq_start_cleanup(io
);
1279 free_irq(io
->irq
, io
->irq_handler_data
);
1282 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1289 rv
= request_irq(io
->irq
,
1290 ipmi_si_irq_handler
,
1293 io
->irq_handler_data
);
1295 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1296 " running polled\n",
1297 DEVICE_NAME
, io
->irq
);
1300 io
->irq_cleanup
= std_irq_cleanup
;
1301 ipmi_irq_finish_setup(io
);
1302 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1308 static int wait_for_msg_done(struct smi_info
*smi_info
)
1310 enum si_sm_result smi_result
;
1312 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1314 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1315 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1316 schedule_timeout_uninterruptible(1);
1317 smi_result
= smi_info
->handlers
->event(
1318 smi_info
->si_sm
, jiffies_to_usecs(1));
1319 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1320 smi_result
= smi_info
->handlers
->event(
1321 smi_info
->si_sm
, 0);
1325 if (smi_result
== SI_SM_HOSED
)
1327 * We couldn't get the state machine to run, so whatever's at
1328 * the port is probably not an IPMI SMI interface.
1335 static int try_get_dev_id(struct smi_info
*smi_info
)
1337 unsigned char msg
[2];
1338 unsigned char *resp
;
1339 unsigned long resp_len
;
1342 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1347 * Do a Get Device ID command, since it comes back with some
1350 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1351 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1352 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1354 rv
= wait_for_msg_done(smi_info
);
1358 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1359 resp
, IPMI_MAX_MSG_LENGTH
);
1361 /* Check and record info from the get device id, in case we need it. */
1362 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1363 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1370 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1372 unsigned char msg
[3];
1373 unsigned char *resp
;
1374 unsigned long resp_len
;
1377 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1381 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1382 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1383 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1385 rv
= wait_for_msg_done(smi_info
);
1387 dev_warn(smi_info
->io
.dev
,
1388 "Error getting response from get global enables command: %d\n",
1393 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1394 resp
, IPMI_MAX_MSG_LENGTH
);
1397 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1398 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1400 dev_warn(smi_info
->io
.dev
,
1401 "Invalid return from get global enables command: %ld %x %x %x\n",
1402 resp_len
, resp
[0], resp
[1], resp
[2]);
1415 * Returns 1 if it gets an error from the command.
1417 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1419 unsigned char msg
[3];
1420 unsigned char *resp
;
1421 unsigned long resp_len
;
1424 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1428 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1429 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1431 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1433 rv
= wait_for_msg_done(smi_info
);
1435 dev_warn(smi_info
->io
.dev
,
1436 "Error getting response from set global enables command: %d\n",
1441 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1442 resp
, IPMI_MAX_MSG_LENGTH
);
1445 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1446 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1447 dev_warn(smi_info
->io
.dev
,
1448 "Invalid return from set global enables command: %ld %x %x\n",
1449 resp_len
, resp
[0], resp
[1]);
1463 * Some BMCs do not support clearing the receive irq bit in the global
1464 * enables (even if they don't support interrupts on the BMC). Check
1465 * for this and handle it properly.
1467 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1472 rv
= get_global_enables(smi_info
, &enables
);
1474 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1475 /* Already clear, should work ok. */
1478 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1479 rv
= set_global_enables(smi_info
, enables
);
1483 dev_err(smi_info
->io
.dev
,
1484 "Cannot check clearing the rcv irq: %d\n", rv
);
1490 * An error when setting the event buffer bit means
1491 * clearing the bit is not supported.
1493 dev_warn(smi_info
->io
.dev
,
1494 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1495 smi_info
->cannot_disable_irq
= true;
1500 * Some BMCs do not support setting the interrupt bits in the global
1501 * enables even if they support interrupts. Clearly bad, but we can
1504 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1509 if (!smi_info
->io
.irq
)
1512 rv
= get_global_enables(smi_info
, &enables
);
1514 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1515 rv
= set_global_enables(smi_info
, enables
);
1519 dev_err(smi_info
->io
.dev
,
1520 "Cannot check setting the rcv irq: %d\n", rv
);
1526 * An error when setting the event buffer bit means
1527 * setting the bit is not supported.
1529 dev_warn(smi_info
->io
.dev
,
1530 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1531 smi_info
->cannot_disable_irq
= true;
1532 smi_info
->irq_enable_broken
= true;
1536 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1538 unsigned char msg
[3];
1539 unsigned char *resp
;
1540 unsigned long resp_len
;
1543 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1547 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1548 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1549 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1551 rv
= wait_for_msg_done(smi_info
);
1553 pr_warn(PFX
"Error getting response from get global enables command, the event buffer is not enabled.\n");
1557 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1558 resp
, IPMI_MAX_MSG_LENGTH
);
1561 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1562 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1564 pr_warn(PFX
"Invalid return from get global enables command, cannot enable the event buffer.\n");
1569 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1570 /* buffer is already enabled, nothing to do. */
1571 smi_info
->supports_event_msg_buff
= true;
1575 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1576 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1577 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1578 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1580 rv
= wait_for_msg_done(smi_info
);
1582 pr_warn(PFX
"Error getting response from set global, enables command, the event buffer is not enabled.\n");
1586 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1587 resp
, IPMI_MAX_MSG_LENGTH
);
1590 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1591 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1592 pr_warn(PFX
"Invalid return from get global, enables command, not enable the event buffer.\n");
1599 * An error when setting the event buffer bit means
1600 * that the event buffer is not supported.
1604 smi_info
->supports_event_msg_buff
= true;
1611 #ifdef CONFIG_IPMI_PROC_INTERFACE
1612 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
1614 struct smi_info
*smi
= m
->private;
1616 seq_printf(m
, "%s\n", si_to_str
[smi
->io
.si_type
]);
1621 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
1623 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
1626 static const struct file_operations smi_type_proc_ops
= {
1627 .open
= smi_type_proc_open
,
1629 .llseek
= seq_lseek
,
1630 .release
= single_release
,
1633 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
1635 struct smi_info
*smi
= m
->private;
1637 seq_printf(m
, "interrupts_enabled: %d\n",
1638 smi
->io
.irq
&& !smi
->interrupt_disabled
);
1639 seq_printf(m
, "short_timeouts: %u\n",
1640 smi_get_stat(smi
, short_timeouts
));
1641 seq_printf(m
, "long_timeouts: %u\n",
1642 smi_get_stat(smi
, long_timeouts
));
1643 seq_printf(m
, "idles: %u\n",
1644 smi_get_stat(smi
, idles
));
1645 seq_printf(m
, "interrupts: %u\n",
1646 smi_get_stat(smi
, interrupts
));
1647 seq_printf(m
, "attentions: %u\n",
1648 smi_get_stat(smi
, attentions
));
1649 seq_printf(m
, "flag_fetches: %u\n",
1650 smi_get_stat(smi
, flag_fetches
));
1651 seq_printf(m
, "hosed_count: %u\n",
1652 smi_get_stat(smi
, hosed_count
));
1653 seq_printf(m
, "complete_transactions: %u\n",
1654 smi_get_stat(smi
, complete_transactions
));
1655 seq_printf(m
, "events: %u\n",
1656 smi_get_stat(smi
, events
));
1657 seq_printf(m
, "watchdog_pretimeouts: %u\n",
1658 smi_get_stat(smi
, watchdog_pretimeouts
));
1659 seq_printf(m
, "incoming_messages: %u\n",
1660 smi_get_stat(smi
, incoming_messages
));
1664 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
1666 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
1669 static const struct file_operations smi_si_stats_proc_ops
= {
1670 .open
= smi_si_stats_proc_open
,
1672 .llseek
= seq_lseek
,
1673 .release
= single_release
,
1676 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
1678 struct smi_info
*smi
= m
->private;
1681 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1682 si_to_str
[smi
->io
.si_type
],
1683 addr_space_to_str
[smi
->io
.addr_type
],
1689 smi
->io
.slave_addr
);
1694 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
1696 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
1699 static const struct file_operations smi_params_proc_ops
= {
1700 .open
= smi_params_proc_open
,
1702 .llseek
= seq_lseek
,
1703 .release
= single_release
,
1707 #define IPMI_SI_ATTR(name) \
1708 static ssize_t ipmi_##name##_show(struct device *dev, \
1709 struct device_attribute *attr, \
1712 struct smi_info *smi_info = dev_get_drvdata(dev); \
1714 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1716 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1718 static ssize_t
ipmi_type_show(struct device
*dev
,
1719 struct device_attribute
*attr
,
1722 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1724 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1726 static DEVICE_ATTR(type
, S_IRUGO
, ipmi_type_show
, NULL
);
1728 static ssize_t
ipmi_interrupts_enabled_show(struct device
*dev
,
1729 struct device_attribute
*attr
,
1732 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1733 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1735 return snprintf(buf
, 10, "%d\n", enabled
);
1737 static DEVICE_ATTR(interrupts_enabled
, S_IRUGO
,
1738 ipmi_interrupts_enabled_show
, NULL
);
1740 IPMI_SI_ATTR(short_timeouts
);
1741 IPMI_SI_ATTR(long_timeouts
);
1742 IPMI_SI_ATTR(idles
);
1743 IPMI_SI_ATTR(interrupts
);
1744 IPMI_SI_ATTR(attentions
);
1745 IPMI_SI_ATTR(flag_fetches
);
1746 IPMI_SI_ATTR(hosed_count
);
1747 IPMI_SI_ATTR(complete_transactions
);
1748 IPMI_SI_ATTR(events
);
1749 IPMI_SI_ATTR(watchdog_pretimeouts
);
1750 IPMI_SI_ATTR(incoming_messages
);
1752 static ssize_t
ipmi_params_show(struct device
*dev
,
1753 struct device_attribute
*attr
,
1756 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1758 return snprintf(buf
, 200,
1759 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1760 si_to_str
[smi_info
->io
.si_type
],
1761 addr_space_to_str
[smi_info
->io
.addr_type
],
1762 smi_info
->io
.addr_data
,
1763 smi_info
->io
.regspacing
,
1764 smi_info
->io
.regsize
,
1765 smi_info
->io
.regshift
,
1767 smi_info
->io
.slave_addr
);
1769 static DEVICE_ATTR(params
, S_IRUGO
, ipmi_params_show
, NULL
);
1771 static struct attribute
*ipmi_si_dev_attrs
[] = {
1772 &dev_attr_type
.attr
,
1773 &dev_attr_interrupts_enabled
.attr
,
1774 &dev_attr_short_timeouts
.attr
,
1775 &dev_attr_long_timeouts
.attr
,
1776 &dev_attr_idles
.attr
,
1777 &dev_attr_interrupts
.attr
,
1778 &dev_attr_attentions
.attr
,
1779 &dev_attr_flag_fetches
.attr
,
1780 &dev_attr_hosed_count
.attr
,
1781 &dev_attr_complete_transactions
.attr
,
1782 &dev_attr_events
.attr
,
1783 &dev_attr_watchdog_pretimeouts
.attr
,
1784 &dev_attr_incoming_messages
.attr
,
1785 &dev_attr_params
.attr
,
1789 static const struct attribute_group ipmi_si_dev_attr_group
= {
1790 .attrs
= ipmi_si_dev_attrs
,
1794 * oem_data_avail_to_receive_msg_avail
1795 * @info - smi_info structure with msg_flags set
1797 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1798 * Returns 1 indicating need to re-run handle_flags().
1800 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1802 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1808 * setup_dell_poweredge_oem_data_handler
1809 * @info - smi_info.device_id must be populated
1811 * Systems that match, but have firmware version < 1.40 may assert
1812 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1813 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1814 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1815 * as RECEIVE_MSG_AVAIL instead.
1817 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1818 * assert the OEM[012] bits, and if it did, the driver would have to
1819 * change to handle that properly, we don't actually check for the
1821 * Device ID = 0x20 BMC on PowerEdge 8G servers
1822 * Device Revision = 0x80
1823 * Firmware Revision1 = 0x01 BMC version 1.40
1824 * Firmware Revision2 = 0x40 BCD encoded
1825 * IPMI Version = 0x51 IPMI 1.5
1826 * Manufacturer ID = A2 02 00 Dell IANA
1828 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1829 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1832 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1833 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1834 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1835 #define DELL_IANA_MFR_ID 0x0002a2
1836 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1838 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1839 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1840 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1841 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1842 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1843 smi_info
->oem_data_avail_handler
=
1844 oem_data_avail_to_receive_msg_avail
;
1845 } else if (ipmi_version_major(id
) < 1 ||
1846 (ipmi_version_major(id
) == 1 &&
1847 ipmi_version_minor(id
) < 5)) {
1848 smi_info
->oem_data_avail_handler
=
1849 oem_data_avail_to_receive_msg_avail
;
1854 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1855 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1857 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1859 /* Make it a response */
1860 msg
->rsp
[0] = msg
->data
[0] | 4;
1861 msg
->rsp
[1] = msg
->data
[1];
1862 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1864 smi_info
->curr_msg
= NULL
;
1865 deliver_recv_msg(smi_info
, msg
);
1869 * dell_poweredge_bt_xaction_handler
1870 * @info - smi_info.device_id must be populated
1872 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1873 * not respond to a Get SDR command if the length of the data
1874 * requested is exactly 0x3A, which leads to command timeouts and no
1875 * data returned. This intercepts such commands, and causes userspace
1876 * callers to try again with a different-sized buffer, which succeeds.
1879 #define STORAGE_NETFN 0x0A
1880 #define STORAGE_CMD_GET_SDR 0x23
1881 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1882 unsigned long unused
,
1885 struct smi_info
*smi_info
= in
;
1886 unsigned char *data
= smi_info
->curr_msg
->data
;
1887 unsigned int size
= smi_info
->curr_msg
->data_size
;
1889 (data
[0]>>2) == STORAGE_NETFN
&&
1890 data
[1] == STORAGE_CMD_GET_SDR
&&
1892 return_hosed_msg_badsize(smi_info
);
1898 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1899 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1903 * setup_dell_poweredge_bt_xaction_handler
1904 * @info - smi_info.device_id must be filled in already
1906 * Fills in smi_info.device_id.start_transaction_pre_hook
1907 * when we know what function to use there.
1910 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1912 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1913 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1914 smi_info
->io
.si_type
== SI_BT
)
1915 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1919 * setup_oem_data_handler
1920 * @info - smi_info.device_id must be filled in already
1922 * Fills in smi_info.device_id.oem_data_available_handler
1923 * when we know what function to use there.
1926 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1928 setup_dell_poweredge_oem_data_handler(smi_info
);
1931 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1933 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1936 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1938 check_clr_rcv_irq(smi_info
);
1939 check_set_rcv_irq(smi_info
);
1942 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1944 if (smi_info
->thread
!= NULL
) {
1945 kthread_stop(smi_info
->thread
);
1946 smi_info
->thread
= NULL
;
1949 smi_info
->timer_can_start
= false;
1950 if (smi_info
->timer_running
)
1951 del_timer_sync(&smi_info
->si_timer
);
1954 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1958 list_for_each_entry(e
, &smi_infos
, link
) {
1959 if (e
->io
.addr_type
!= info
->io
.addr_type
)
1961 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1963 * This is a cheap hack, ACPI doesn't have a defined
1964 * slave address but SMBIOS does. Pick it up from
1965 * any source that has it available.
1967 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1968 e
->io
.slave_addr
= info
->io
.slave_addr
;
1976 int ipmi_si_add_smi(struct si_sm_io
*io
)
1979 struct smi_info
*new_smi
, *dup
;
1981 if (!io
->io_setup
) {
1982 if (io
->addr_type
== IPMI_IO_ADDR_SPACE
) {
1983 io
->io_setup
= ipmi_si_port_setup
;
1984 } else if (io
->addr_type
== IPMI_MEM_ADDR_SPACE
) {
1985 io
->io_setup
= ipmi_si_mem_setup
;
1991 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1994 spin_lock_init(&new_smi
->si_lock
);
1998 mutex_lock(&smi_infos_lock
);
1999 dup
= find_dup_si(new_smi
);
2001 if (new_smi
->io
.addr_source
== SI_ACPI
&&
2002 dup
->io
.addr_source
== SI_SMBIOS
) {
2003 /* We prefer ACPI over SMBIOS. */
2004 dev_info(dup
->io
.dev
,
2005 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
2006 si_to_str
[new_smi
->io
.si_type
]);
2007 cleanup_one_si(dup
);
2009 dev_info(new_smi
->io
.dev
,
2010 "%s-specified %s state machine: duplicate\n",
2011 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2012 si_to_str
[new_smi
->io
.si_type
]);
2019 pr_info(PFX
"Adding %s-specified %s state machine\n",
2020 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2021 si_to_str
[new_smi
->io
.si_type
]);
2023 /* So we know not to free it unless we have allocated one. */
2024 new_smi
->intf
= NULL
;
2025 new_smi
->si_sm
= NULL
;
2026 new_smi
->handlers
= NULL
;
2028 list_add_tail(&new_smi
->link
, &smi_infos
);
2031 rv
= try_smi_init(new_smi
);
2033 cleanup_one_si(new_smi
);
2034 mutex_unlock(&smi_infos_lock
);
2039 mutex_unlock(&smi_infos_lock
);
2044 * Try to start up an interface. Must be called with smi_infos_lock
2045 * held, primarily to keep smi_num consistent, we only one to do these
2048 static int try_smi_init(struct smi_info
*new_smi
)
2052 char *init_name
= NULL
;
2053 bool platform_device_registered
= false;
2055 pr_info(PFX
"Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2056 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2057 si_to_str
[new_smi
->io
.si_type
],
2058 addr_space_to_str
[new_smi
->io
.addr_type
],
2059 new_smi
->io
.addr_data
,
2060 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
2062 switch (new_smi
->io
.si_type
) {
2064 new_smi
->handlers
= &kcs_smi_handlers
;
2068 new_smi
->handlers
= &smic_smi_handlers
;
2072 new_smi
->handlers
= &bt_smi_handlers
;
2076 /* No support for anything else yet. */
2081 new_smi
->intf_num
= smi_num
;
2083 /* Do this early so it's available for logs. */
2084 if (!new_smi
->io
.dev
) {
2085 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d",
2089 * If we don't already have a device from something
2090 * else (like PCI), then register a new one.
2092 new_smi
->pdev
= platform_device_alloc("ipmi_si",
2094 if (!new_smi
->pdev
) {
2095 pr_err(PFX
"Unable to allocate platform device\n");
2098 new_smi
->io
.dev
= &new_smi
->pdev
->dev
;
2099 new_smi
->io
.dev
->driver
= &ipmi_platform_driver
.driver
;
2100 /* Nulled by device_add() */
2101 new_smi
->io
.dev
->init_name
= init_name
;
2104 /* Allocate the state machine's data and initialize it. */
2105 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
2106 if (!new_smi
->si_sm
) {
2110 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
2113 /* Now that we know the I/O size, we can set up the I/O. */
2114 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
2116 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
2120 /* Do low-level detection first. */
2121 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
2122 if (new_smi
->io
.addr_source
)
2123 dev_err(new_smi
->io
.dev
,
2124 "Interface detection failed\n");
2130 * Attempt a get device id command. If it fails, we probably
2131 * don't have a BMC here.
2133 rv
= try_get_dev_id(new_smi
);
2135 if (new_smi
->io
.addr_source
)
2136 dev_err(new_smi
->io
.dev
,
2137 "There appears to be no BMC at this location\n");
2141 setup_oem_data_handler(new_smi
);
2142 setup_xaction_handlers(new_smi
);
2143 check_for_broken_irqs(new_smi
);
2145 new_smi
->waiting_msg
= NULL
;
2146 new_smi
->curr_msg
= NULL
;
2147 atomic_set(&new_smi
->req_events
, 0);
2148 new_smi
->run_to_completion
= false;
2149 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2150 atomic_set(&new_smi
->stats
[i
], 0);
2152 new_smi
->interrupt_disabled
= true;
2153 atomic_set(&new_smi
->need_watch
, 0);
2155 rv
= try_enable_event_buffer(new_smi
);
2157 new_smi
->has_event_buffer
= true;
2160 * Start clearing the flags before we enable interrupts or the
2161 * timer to avoid racing with the timer.
2163 start_clear_flags(new_smi
);
2166 * IRQ is defined to be set when non-zero. req_events will
2167 * cause a global flags check that will enable interrupts.
2169 if (new_smi
->io
.irq
) {
2170 new_smi
->interrupt_disabled
= false;
2171 atomic_set(&new_smi
->req_events
, 1);
2174 if (new_smi
->pdev
) {
2175 rv
= platform_device_add(new_smi
->pdev
);
2177 dev_err(new_smi
->io
.dev
,
2178 "Unable to register system interface device: %d\n",
2182 platform_device_registered
= true;
2185 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2186 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2188 dev_err(new_smi
->io
.dev
,
2189 "Unable to add device attributes: error %d\n",
2191 goto out_err_stop_timer
;
2193 new_smi
->dev_group_added
= true;
2195 rv
= ipmi_register_smi(&handlers
,
2198 new_smi
->io
.slave_addr
);
2200 dev_err(new_smi
->io
.dev
,
2201 "Unable to register device: error %d\n",
2203 goto out_err_remove_attrs
;
2206 #ifdef CONFIG_IPMI_PROC_INTERFACE
2207 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
2211 dev_err(new_smi
->io
.dev
,
2212 "Unable to create proc entry: %d\n", rv
);
2213 goto out_err_stop_timer
;
2216 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
2217 &smi_si_stats_proc_ops
,
2220 dev_err(new_smi
->io
.dev
,
2221 "Unable to create proc entry: %d\n", rv
);
2222 goto out_err_stop_timer
;
2225 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
2226 &smi_params_proc_ops
,
2229 dev_err(new_smi
->io
.dev
,
2230 "Unable to create proc entry: %d\n", rv
);
2231 goto out_err_stop_timer
;
2235 /* Don't increment till we know we have succeeded. */
2238 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2239 si_to_str
[new_smi
->io
.si_type
]);
2241 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2246 out_err_remove_attrs
:
2247 if (new_smi
->dev_group_added
) {
2248 device_remove_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2249 new_smi
->dev_group_added
= false;
2251 dev_set_drvdata(new_smi
->io
.dev
, NULL
);
2254 stop_timer_and_thread(new_smi
);
2257 new_smi
->interrupt_disabled
= true;
2259 if (new_smi
->intf
) {
2260 ipmi_smi_t intf
= new_smi
->intf
;
2261 new_smi
->intf
= NULL
;
2262 ipmi_unregister_smi(intf
);
2265 if (new_smi
->io
.irq_cleanup
) {
2266 new_smi
->io
.irq_cleanup(&new_smi
->io
);
2267 new_smi
->io
.irq_cleanup
= NULL
;
2271 * Wait until we know that we are out of any interrupt
2272 * handlers might have been running before we freed the
2275 synchronize_sched();
2277 if (new_smi
->si_sm
) {
2278 if (new_smi
->handlers
)
2279 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
2280 kfree(new_smi
->si_sm
);
2281 new_smi
->si_sm
= NULL
;
2283 if (new_smi
->io
.addr_source_cleanup
) {
2284 new_smi
->io
.addr_source_cleanup(&new_smi
->io
);
2285 new_smi
->io
.addr_source_cleanup
= NULL
;
2287 if (new_smi
->io
.io_cleanup
) {
2288 new_smi
->io
.io_cleanup(&new_smi
->io
);
2289 new_smi
->io
.io_cleanup
= NULL
;
2292 if (new_smi
->pdev
) {
2293 if (platform_device_registered
)
2294 platform_device_unregister(new_smi
->pdev
);
2296 platform_device_put(new_smi
->pdev
);
2297 new_smi
->pdev
= NULL
;
2298 new_smi
->io
.dev
= NULL
;
2306 static int init_ipmi_si(void)
2309 enum ipmi_addr_src type
= SI_INVALID
;
2314 pr_info("IPMI System Interface driver.\n");
2316 /* If the user gave us a device, they presumably want us to use it */
2317 if (!ipmi_si_hardcode_find_bmc())
2320 ipmi_si_platform_init();
2324 ipmi_si_parisc_init();
2326 /* We prefer devices with interrupts, but in the case of a machine
2327 with multiple BMCs we assume that there will be several instances
2328 of a given type so if we succeed in registering a type then also
2329 try to register everything else of the same type */
2331 mutex_lock(&smi_infos_lock
);
2332 list_for_each_entry(e
, &smi_infos
, link
) {
2333 /* Try to register a device if it has an IRQ and we either
2334 haven't successfully registered a device yet or this
2335 device has the same type as one we successfully registered */
2336 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2337 if (!try_smi_init(e
)) {
2338 type
= e
->io
.addr_source
;
2343 /* type will only have been set if we successfully registered an si */
2345 goto skip_fallback_noirq
;
2347 /* Fall back to the preferred device */
2349 list_for_each_entry(e
, &smi_infos
, link
) {
2350 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2351 if (!try_smi_init(e
)) {
2352 type
= e
->io
.addr_source
;
2357 skip_fallback_noirq
:
2359 mutex_unlock(&smi_infos_lock
);
2364 mutex_lock(&smi_infos_lock
);
2365 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2366 mutex_unlock(&smi_infos_lock
);
2368 pr_warn(PFX
"Unable to find any System Interface(s)\n");
2371 mutex_unlock(&smi_infos_lock
);
2375 module_init(init_ipmi_si
);
2377 static void cleanup_one_si(struct smi_info
*to_clean
)
2384 if (to_clean
->intf
) {
2385 ipmi_smi_t intf
= to_clean
->intf
;
2387 to_clean
->intf
= NULL
;
2388 rv
= ipmi_unregister_smi(intf
);
2390 pr_err(PFX
"Unable to unregister device: errno=%d\n",
2395 if (to_clean
->dev_group_added
)
2396 device_remove_group(to_clean
->io
.dev
, &ipmi_si_dev_attr_group
);
2397 if (to_clean
->io
.dev
)
2398 dev_set_drvdata(to_clean
->io
.dev
, NULL
);
2400 list_del(&to_clean
->link
);
2403 * Make sure that interrupts, the timer and the thread are
2404 * stopped and will not run again.
2406 if (to_clean
->io
.irq_cleanup
)
2407 to_clean
->io
.irq_cleanup(&to_clean
->io
);
2408 stop_timer_and_thread(to_clean
);
2411 * Timeouts are stopped, now make sure the interrupts are off
2412 * in the BMC. Note that timers and CPU interrupts are off,
2413 * so no need for locks.
2415 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
2417 schedule_timeout_uninterruptible(1);
2419 if (to_clean
->handlers
)
2420 disable_si_irq(to_clean
);
2421 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
2423 schedule_timeout_uninterruptible(1);
2426 if (to_clean
->handlers
)
2427 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
2429 kfree(to_clean
->si_sm
);
2431 if (to_clean
->io
.addr_source_cleanup
)
2432 to_clean
->io
.addr_source_cleanup(&to_clean
->io
);
2433 if (to_clean
->io
.io_cleanup
)
2434 to_clean
->io
.io_cleanup(&to_clean
->io
);
2437 platform_device_unregister(to_clean
->pdev
);
2442 int ipmi_si_remove_by_dev(struct device
*dev
)
2447 mutex_lock(&smi_infos_lock
);
2448 list_for_each_entry(e
, &smi_infos
, link
) {
2449 if (e
->io
.dev
== dev
) {
2455 mutex_unlock(&smi_infos_lock
);
2460 void ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2464 struct smi_info
*e
, *tmp_e
;
2466 mutex_lock(&smi_infos_lock
);
2467 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2468 if (e
->io
.addr_type
!= addr_space
)
2470 if (e
->io
.si_type
!= si_type
)
2472 if (e
->io
.addr_data
== addr
)
2475 mutex_unlock(&smi_infos_lock
);
2478 static void cleanup_ipmi_si(void)
2480 struct smi_info
*e
, *tmp_e
;
2485 ipmi_si_pci_shutdown();
2487 ipmi_si_parisc_shutdown();
2489 ipmi_si_platform_shutdown();
2491 mutex_lock(&smi_infos_lock
);
2492 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2494 mutex_unlock(&smi_infos_lock
);
2496 module_exit(cleanup_ipmi_si
);
2498 MODULE_ALIAS("platform:dmi-ipmi-si");
2499 MODULE_LICENSE("GPL");
2500 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2501 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2502 " system interfaces.");