2 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
4 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation, version 2.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/mutex.h>
17 #include <asm/div64.h>
19 #include <media/dvb_math.h>
21 #include <media/dvb_frontend.h>
30 #define MAX_NUMBER_OF_FRONTENDS 6
31 /* #define DIB8000_AGC_FREEZE */
34 module_param(debug
, int, 0644);
35 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
37 #define dprintk(fmt, arg...) do { \
39 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
44 struct i2c_adapter
*adap
;
48 struct mutex
*i2c_buffer_lock
;
51 enum param_loop_step
{
56 enum dib8000_autosearch_step
{
64 SYMBOL_DEPENDENT_OFF
= 0,
68 struct dib8000_state
{
69 struct dib8000_config cfg
;
71 struct i2c_device i2c
;
73 struct dibx000_i2c_master i2c_master
;
78 u32 current_bandwidth
;
79 struct dibx000_agc_config
*current_agc
;
88 u8 differential_constellation
;
91 s16 ber_monitored_layer
;
97 enum frontend_tune_state tune_state
;
100 struct dvb_frontend
*fe
[MAX_NUMBER_OF_FRONTENDS
];
102 /* for the I2C transfer */
103 struct i2c_msg msg
[2];
104 u8 i2c_write_buffer
[4];
105 u8 i2c_read_buffer
[2];
106 struct mutex i2c_buffer_lock
;
110 struct i2c_adapter dib8096p_tuner_adap
;
111 u16 current_demod_bw
;
119 u8 channel_parameters_set
;
120 u16 autosearch_state
;
125 unsigned long timeout
;
126 u8 longest_intlv_layer
;
129 /* for DVBv5 stats */
131 unsigned long per_jiffies_stats
;
132 unsigned long ber_jiffies_stats
;
133 unsigned long ber_jiffies_stats_layer
[3];
135 #ifdef DIB8000_AGC_FREEZE
143 enum dib8000_power_mode
{
144 DIB8000_POWER_ALL
= 0,
145 DIB8000_POWER_INTERFACE_ONLY
,
148 static u16
dib8000_i2c_read16(struct i2c_device
*i2c
, u16 reg
)
151 struct i2c_msg msg
[2] = {
152 {.addr
= i2c
->addr
>> 1, .flags
= 0, .len
= 2},
153 {.addr
= i2c
->addr
>> 1, .flags
= I2C_M_RD
, .len
= 2},
156 if (mutex_lock_interruptible(i2c
->i2c_buffer_lock
) < 0) {
157 dprintk("could not acquire lock\n");
161 msg
[0].buf
= i2c
->i2c_write_buffer
;
162 msg
[0].buf
[0] = reg
>> 8;
163 msg
[0].buf
[1] = reg
& 0xff;
164 msg
[1].buf
= i2c
->i2c_read_buffer
;
166 if (i2c_transfer(i2c
->adap
, msg
, 2) != 2)
167 dprintk("i2c read error on %d\n", reg
);
169 ret
= (msg
[1].buf
[0] << 8) | msg
[1].buf
[1];
170 mutex_unlock(i2c
->i2c_buffer_lock
);
174 static u16
__dib8000_read_word(struct dib8000_state
*state
, u16 reg
)
178 state
->i2c_write_buffer
[0] = reg
>> 8;
179 state
->i2c_write_buffer
[1] = reg
& 0xff;
181 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
182 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
183 state
->msg
[0].flags
= 0;
184 state
->msg
[0].buf
= state
->i2c_write_buffer
;
185 state
->msg
[0].len
= 2;
186 state
->msg
[1].addr
= state
->i2c
.addr
>> 1;
187 state
->msg
[1].flags
= I2C_M_RD
;
188 state
->msg
[1].buf
= state
->i2c_read_buffer
;
189 state
->msg
[1].len
= 2;
191 if (i2c_transfer(state
->i2c
.adap
, state
->msg
, 2) != 2)
192 dprintk("i2c read error on %d\n", reg
);
194 ret
= (state
->i2c_read_buffer
[0] << 8) | state
->i2c_read_buffer
[1];
199 static u16
dib8000_read_word(struct dib8000_state
*state
, u16 reg
)
203 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
204 dprintk("could not acquire lock\n");
208 ret
= __dib8000_read_word(state
, reg
);
210 mutex_unlock(&state
->i2c_buffer_lock
);
215 static u32
dib8000_read32(struct dib8000_state
*state
, u16 reg
)
219 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
220 dprintk("could not acquire lock\n");
224 rw
[0] = __dib8000_read_word(state
, reg
+ 0);
225 rw
[1] = __dib8000_read_word(state
, reg
+ 1);
227 mutex_unlock(&state
->i2c_buffer_lock
);
229 return ((rw
[0] << 16) | (rw
[1]));
232 static int dib8000_i2c_write16(struct i2c_device
*i2c
, u16 reg
, u16 val
)
234 struct i2c_msg msg
= {.addr
= i2c
->addr
>> 1, .flags
= 0, .len
= 4};
237 if (mutex_lock_interruptible(i2c
->i2c_buffer_lock
) < 0) {
238 dprintk("could not acquire lock\n");
242 msg
.buf
= i2c
->i2c_write_buffer
;
243 msg
.buf
[0] = (reg
>> 8) & 0xff;
244 msg
.buf
[1] = reg
& 0xff;
245 msg
.buf
[2] = (val
>> 8) & 0xff;
246 msg
.buf
[3] = val
& 0xff;
248 ret
= i2c_transfer(i2c
->adap
, &msg
, 1) != 1 ? -EREMOTEIO
: 0;
249 mutex_unlock(i2c
->i2c_buffer_lock
);
254 static int dib8000_write_word(struct dib8000_state
*state
, u16 reg
, u16 val
)
258 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
259 dprintk("could not acquire lock\n");
263 state
->i2c_write_buffer
[0] = (reg
>> 8) & 0xff;
264 state
->i2c_write_buffer
[1] = reg
& 0xff;
265 state
->i2c_write_buffer
[2] = (val
>> 8) & 0xff;
266 state
->i2c_write_buffer
[3] = val
& 0xff;
268 memset(&state
->msg
[0], 0, sizeof(struct i2c_msg
));
269 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
270 state
->msg
[0].flags
= 0;
271 state
->msg
[0].buf
= state
->i2c_write_buffer
;
272 state
->msg
[0].len
= 4;
274 ret
= (i2c_transfer(state
->i2c
.adap
, state
->msg
, 1) != 1 ?
276 mutex_unlock(&state
->i2c_buffer_lock
);
281 static const s16 coeff_2k_sb_1seg_dqpsk
[8] = {
282 (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
286 static const s16 coeff_2k_sb_1seg
[8] = {
287 (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
290 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk
[8] = {
291 (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
295 static const s16 coeff_2k_sb_3seg_0dqpsk
[8] = {
296 (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
300 static const s16 coeff_2k_sb_3seg_1dqpsk
[8] = {
301 (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
305 static const s16 coeff_2k_sb_3seg
[8] = {
306 (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
310 static const s16 coeff_4k_sb_1seg_dqpsk
[8] = {
311 (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
315 static const s16 coeff_4k_sb_1seg
[8] = {
316 (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
320 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk
[8] = {
321 (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
325 static const s16 coeff_4k_sb_3seg_0dqpsk
[8] = {
326 (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
330 static const s16 coeff_4k_sb_3seg_1dqpsk
[8] = {
331 (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
335 static const s16 coeff_4k_sb_3seg
[8] = {
336 (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
340 static const s16 coeff_8k_sb_1seg_dqpsk
[8] = {
341 (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
345 static const s16 coeff_8k_sb_1seg
[8] = {
346 (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
350 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk
[8] = {
351 (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
355 static const s16 coeff_8k_sb_3seg_0dqpsk
[8] = {
356 (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
360 static const s16 coeff_8k_sb_3seg_1dqpsk
[8] = {
361 (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
365 static const s16 coeff_8k_sb_3seg
[8] = {
366 (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
370 static const s16 ana_fe_coeff_3seg
[24] = {
371 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
374 static const s16 ana_fe_coeff_1seg
[24] = {
375 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
378 static const s16 ana_fe_coeff_13seg
[24] = {
379 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
382 static u16
fft_to_mode(struct dib8000_state
*state
)
385 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
386 case TRANSMISSION_MODE_2K
:
389 case TRANSMISSION_MODE_4K
:
393 case TRANSMISSION_MODE_AUTO
:
394 case TRANSMISSION_MODE_8K
:
401 static void dib8000_set_acquisition_mode(struct dib8000_state
*state
)
403 u16 nud
= dib8000_read_word(state
, 298);
404 nud
|= (1 << 3) | (1 << 0);
405 dprintk("acquisition mode activated\n");
406 dib8000_write_word(state
, 298, nud
);
408 static int dib8000_set_output_mode(struct dvb_frontend
*fe
, int mode
)
410 struct dib8000_state
*state
= fe
->demodulator_priv
;
411 u16 outreg
, fifo_threshold
, smo_mode
, sram
= 0x0205; /* by default SDRAM deintlv is enabled */
413 state
->output_mode
= mode
;
415 fifo_threshold
= 1792;
416 smo_mode
= (dib8000_read_word(state
, 299) & 0x0050) | (1 << 1);
418 dprintk("-I- Setting output mode for demod %p to %d\n",
419 &state
->fe
[0], mode
);
422 case OUTMODE_MPEG2_PAR_GATED_CLK
: // STBs with parallel gated clock
423 outreg
= (1 << 10); /* 0x0400 */
425 case OUTMODE_MPEG2_PAR_CONT_CLK
: // STBs with parallel continues clock
426 outreg
= (1 << 10) | (1 << 6); /* 0x0440 */
428 case OUTMODE_MPEG2_SERIAL
: // STBs with serial input
429 outreg
= (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
431 case OUTMODE_DIVERSITY
:
432 if (state
->cfg
.hostbus_diversity
) {
433 outreg
= (1 << 10) | (4 << 6); /* 0x0500 */
438 case OUTMODE_MPEG2_FIFO
: // e.g. USB feeding
439 smo_mode
|= (3 << 1);
440 fifo_threshold
= 512;
441 outreg
= (1 << 10) | (5 << 6);
443 case OUTMODE_HIGH_Z
: // disable
447 case OUTMODE_ANALOG_ADC
:
448 outreg
= (1 << 10) | (3 << 6);
449 dib8000_set_acquisition_mode(state
);
453 dprintk("Unhandled output_mode passed to be set for demod %p\n",
458 if (state
->cfg
.output_mpeg2_in_188_bytes
)
459 smo_mode
|= (1 << 5);
461 dib8000_write_word(state
, 299, smo_mode
);
462 dib8000_write_word(state
, 300, fifo_threshold
); /* synchronous fread */
463 dib8000_write_word(state
, 1286, outreg
);
464 dib8000_write_word(state
, 1291, sram
);
469 static int dib8000_set_diversity_in(struct dvb_frontend
*fe
, int onoff
)
471 struct dib8000_state
*state
= fe
->demodulator_priv
;
472 u16 tmp
, sync_wait
= dib8000_read_word(state
, 273) & 0xfff0;
474 dprintk("set diversity input to %i\n", onoff
);
475 if (!state
->differential_constellation
) {
476 dib8000_write_word(state
, 272, 1 << 9); //dvsy_off_lmod4 = 1
477 dib8000_write_word(state
, 273, sync_wait
| (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
479 dib8000_write_word(state
, 272, 0); //dvsy_off_lmod4 = 0
480 dib8000_write_word(state
, 273, sync_wait
); // sync_enable = 0; comb_mode = 0
482 state
->diversity_onoff
= onoff
;
485 case 0: /* only use the internal way - not the diversity input */
486 dib8000_write_word(state
, 270, 1);
487 dib8000_write_word(state
, 271, 0);
489 case 1: /* both ways */
490 dib8000_write_word(state
, 270, 6);
491 dib8000_write_word(state
, 271, 6);
493 case 2: /* only the diversity input */
494 dib8000_write_word(state
, 270, 0);
495 dib8000_write_word(state
, 271, 1);
499 if (state
->revision
== 0x8002) {
500 tmp
= dib8000_read_word(state
, 903);
501 dib8000_write_word(state
, 903, tmp
& ~(1 << 3));
503 dib8000_write_word(state
, 903, tmp
| (1 << 3));
508 static void dib8000_set_power_mode(struct dib8000_state
*state
, enum dib8000_power_mode mode
)
510 /* by default everything is going to be powered off */
511 u16 reg_774
= 0x3fff, reg_775
= 0xffff, reg_776
= 0xffff,
512 reg_900
= (dib8000_read_word(state
, 900) & 0xfffc) | 0x3,
515 if (state
->revision
!= 0x8090)
516 reg_1280
= (dib8000_read_word(state
, 1280) & 0x00ff) | 0xff00;
518 reg_1280
= (dib8000_read_word(state
, 1280) & 0x707f) | 0x8f80;
520 /* now, depending on the requested mode, we power on */
522 /* power up everything in the demod */
523 case DIB8000_POWER_ALL
:
528 if (state
->revision
!= 0x8090)
533 case DIB8000_POWER_INTERFACE_ONLY
:
534 if (state
->revision
!= 0x8090)
541 dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774
, reg_775
, reg_776
, reg_900
, reg_1280
);
542 dib8000_write_word(state
, 774, reg_774
);
543 dib8000_write_word(state
, 775, reg_775
);
544 dib8000_write_word(state
, 776, reg_776
);
545 dib8000_write_word(state
, 900, reg_900
);
546 dib8000_write_word(state
, 1280, reg_1280
);
549 static int dib8000_set_adc_state(struct dib8000_state
*state
, enum dibx000_adc_states no
)
552 u16 reg
, reg_907
= dib8000_read_word(state
, 907);
553 u16 reg_908
= dib8000_read_word(state
, 908);
556 case DIBX000_SLOW_ADC_ON
:
557 if (state
->revision
!= 0x8090) {
558 reg_908
|= (1 << 1) | (1 << 0);
559 ret
|= dib8000_write_word(state
, 908, reg_908
);
560 reg_908
&= ~(1 << 1);
562 reg
= dib8000_read_word(state
, 1925);
563 /* en_slowAdc = 1 & reset_sladc = 1 */
564 dib8000_write_word(state
, 1925, reg
|
567 /* read acces to make it works... strange ... */
568 reg
= dib8000_read_word(state
, 1925);
570 /* en_slowAdc = 1 & reset_sladc = 0 */
571 dib8000_write_word(state
, 1925, reg
& ~(1<<4));
573 reg
= dib8000_read_word(state
, 921) & ~((0x3 << 14)
575 /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
577 dib8000_write_word(state
, 921, reg
| (1 << 14)
582 case DIBX000_SLOW_ADC_OFF
:
583 if (state
->revision
== 0x8090) {
584 reg
= dib8000_read_word(state
, 1925);
585 /* reset_sladc = 1 en_slowAdc = 0 */
586 dib8000_write_word(state
, 1925,
587 (reg
& ~(1<<2)) | (1<<4));
589 reg_908
|= (1 << 1) | (1 << 0);
597 case DIBX000_ADC_OFF
: // leave the VBG voltage on
598 reg_907
= (1 << 13) | (1 << 12);
599 reg_908
= (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
602 case DIBX000_VBG_ENABLE
:
603 reg_907
&= ~(1 << 15);
606 case DIBX000_VBG_DISABLE
:
607 reg_907
|= (1 << 15);
614 ret
|= dib8000_write_word(state
, 907, reg_907
);
615 ret
|= dib8000_write_word(state
, 908, reg_908
);
620 static int dib8000_set_bandwidth(struct dvb_frontend
*fe
, u32 bw
)
622 struct dib8000_state
*state
= fe
->demodulator_priv
;
628 if (state
->timf
== 0) {
629 dprintk("using default timf\n");
630 timf
= state
->timf_default
;
632 dprintk("using updated timf\n");
636 dib8000_write_word(state
, 29, (u16
) ((timf
>> 16) & 0xffff));
637 dib8000_write_word(state
, 30, (u16
) ((timf
) & 0xffff));
642 static int dib8000_sad_calib(struct dib8000_state
*state
)
646 if (state
->revision
== 0x8090) {
647 dib8000_write_word(state
, 922, (sad_sel
<< 2));
648 dib8000_write_word(state
, 923, 2048);
650 dib8000_write_word(state
, 922, (sad_sel
<< 2) | 0x1);
651 dib8000_write_word(state
, 922, (sad_sel
<< 2));
654 dib8000_write_word(state
, 923, (0 << 1) | (0 << 0));
655 dib8000_write_word(state
, 924, 776);
657 /* do the calibration */
658 dib8000_write_word(state
, 923, (1 << 0));
659 dib8000_write_word(state
, 923, (0 << 0));
666 static int dib8000_set_wbd_ref(struct dvb_frontend
*fe
, u16 value
)
668 struct dib8000_state
*state
= fe
->demodulator_priv
;
671 state
->wbd_ref
= value
;
672 return dib8000_write_word(state
, 106, value
);
675 static void dib8000_reset_pll_common(struct dib8000_state
*state
, const struct dibx000_bandwidth_config
*bw
)
677 dprintk("ifreq: %d %x, inversion: %d\n", bw
->ifreq
, bw
->ifreq
, bw
->ifreq
>> 25);
678 if (state
->revision
!= 0x8090) {
679 dib8000_write_word(state
, 23,
680 (u16
) (((bw
->internal
* 1000) >> 16) & 0xffff));
681 dib8000_write_word(state
, 24,
682 (u16
) ((bw
->internal
* 1000) & 0xffff));
684 dib8000_write_word(state
, 23, (u16
) (((bw
->internal
/ 2 * 1000) >> 16) & 0xffff));
685 dib8000_write_word(state
, 24,
686 (u16
) ((bw
->internal
/ 2 * 1000) & 0xffff));
688 dib8000_write_word(state
, 27, (u16
) ((bw
->ifreq
>> 16) & 0x01ff));
689 dib8000_write_word(state
, 28, (u16
) (bw
->ifreq
& 0xffff));
690 dib8000_write_word(state
, 26, (u16
) ((bw
->ifreq
>> 25) & 0x0003));
692 if (state
->revision
!= 0x8090)
693 dib8000_write_word(state
, 922, bw
->sad_cfg
);
696 static void dib8000_reset_pll(struct dib8000_state
*state
)
698 const struct dibx000_bandwidth_config
*pll
= state
->cfg
.pll
;
701 if (state
->revision
!= 0x8090) {
702 dib8000_write_word(state
, 901,
703 (pll
->pll_prediv
<< 8) | (pll
->pll_ratio
<< 0));
705 clk_cfg1
= (1 << 10) | (0 << 9) | (pll
->IO_CLK_en_core
<< 8) |
706 (pll
->bypclk_div
<< 5) | (pll
->enable_refdiv
<< 4) |
707 (1 << 3) | (pll
->pll_range
<< 1) |
708 (pll
->pll_reset
<< 0);
710 dib8000_write_word(state
, 902, clk_cfg1
);
711 clk_cfg1
= (clk_cfg1
& 0xfff7) | (pll
->pll_bypass
<< 3);
712 dib8000_write_word(state
, 902, clk_cfg1
);
714 dprintk("clk_cfg1: 0x%04x\n", clk_cfg1
);
716 /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
717 if (state
->cfg
.pll
->ADClkSrc
== 0)
718 dib8000_write_word(state
, 904,
719 (0 << 15) | (0 << 12) | (0 << 10) |
721 (pll
->ADClkSrc
<< 7) | (0 << 1));
722 else if (state
->cfg
.refclksel
!= 0)
723 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) |
724 ((state
->cfg
.refclksel
& 0x3) << 10) |
726 (pll
->ADClkSrc
<< 7) | (0 << 1));
728 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) |
729 (3 << 10) | (pll
->modulo
<< 8) |
730 (pll
->ADClkSrc
<< 7) | (0 << 1));
732 dib8000_write_word(state
, 1856, (!pll
->pll_reset
<<13) |
733 (pll
->pll_range
<<12) | (pll
->pll_ratio
<<6) |
736 reg
= dib8000_read_word(state
, 1857);
737 dib8000_write_word(state
, 1857, reg
|(!pll
->pll_bypass
<<15));
739 reg
= dib8000_read_word(state
, 1858); /* Force clk out pll /2 */
740 dib8000_write_word(state
, 1858, reg
| 1);
742 dib8000_write_word(state
, 904, (pll
->modulo
<< 8));
745 dib8000_reset_pll_common(state
, pll
);
748 static int dib8000_update_pll(struct dvb_frontend
*fe
,
749 struct dibx000_bandwidth_config
*pll
, u32 bw
, u8 ratio
)
751 struct dib8000_state
*state
= fe
->demodulator_priv
;
752 u16 reg_1857
, reg_1856
= dib8000_read_word(state
, 1856);
753 u8 loopdiv
, prediv
, oldprediv
= state
->cfg
.pll
->pll_prediv
;
756 /* get back old values */
757 prediv
= reg_1856
& 0x3f;
758 loopdiv
= (reg_1856
>> 6) & 0x3f;
760 if ((pll
== NULL
) || (pll
->pll_prediv
== prediv
&&
761 pll
->pll_ratio
== loopdiv
))
764 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv
, pll
->pll_prediv
, loopdiv
, pll
->pll_ratio
);
765 if (state
->revision
== 0x8090) {
767 reg_1857
= dib8000_read_word(state
, 1857);
769 dib8000_write_word(state
, 1857, reg_1857
& ~(1 << 15));
771 dib8000_write_word(state
, 1856, reg_1856
|
772 ((pll
->pll_ratio
& 0x3f) << 6) |
773 (pll
->pll_prediv
& 0x3f));
775 /* write new system clk into P_sec_len */
776 internal
= dib8000_read32(state
, 23) / 1000;
777 dprintk("Old Internal = %d\n", internal
);
778 xtal
= 2 * (internal
/ loopdiv
) * prediv
;
779 internal
= 1000 * (xtal
/pll
->pll_prediv
) * pll
->pll_ratio
;
780 dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal
, internal
/1000, internal
/2000, internal
/8000);
781 dprintk("New Internal = %d\n", internal
);
783 dib8000_write_word(state
, 23,
784 (u16
) (((internal
/ 2) >> 16) & 0xffff));
785 dib8000_write_word(state
, 24, (u16
) ((internal
/ 2) & 0xffff));
787 dib8000_write_word(state
, 1857, reg_1857
| (1 << 15));
789 while (((dib8000_read_word(state
, 1856)>>15)&0x1) != 1)
790 dprintk("Waiting for PLL to lock\n");
793 reg_1856
= dib8000_read_word(state
, 1856);
794 dprintk("PLL Updated with prediv = %d and loopdiv = %d\n",
795 reg_1856
&0x3f, (reg_1856
>>6)&0x3f);
797 if (bw
!= state
->current_demod_bw
) {
798 /** Bandwidth change => force PLL update **/
799 dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state
->current_demod_bw
/ 1000, bw
/ 1000, oldprediv
, state
->cfg
.pll
->pll_prediv
);
801 if (state
->cfg
.pll
->pll_prediv
!= oldprediv
) {
802 /** Full PLL change only if prediv is changed **/
804 /** full update => bypass and reconfigure **/
805 dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw
/1000, state
->cfg
.pll
->pll_prediv
, state
->cfg
.pll
->pll_ratio
);
806 dib8000_write_word(state
, 902, dib8000_read_word(state
, 902) | (1<<3)); /* bypass PLL */
807 dib8000_reset_pll(state
);
808 dib8000_write_word(state
, 898, 0x0004); /* sad */
810 ratio
= state
->cfg
.pll
->pll_ratio
;
812 state
->current_demod_bw
= bw
;
816 /** ratio update => only change ratio **/
817 dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state
->cfg
.pll
->pll_prediv
, ratio
);
818 dib8000_write_word(state
, 901, (state
->cfg
.pll
->pll_prediv
<< 8) | (ratio
<< 0)); /* only the PLL ratio is updated. */
825 static int dib8000_reset_gpio(struct dib8000_state
*st
)
827 /* reset the GPIOs */
828 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
829 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
831 /* TODO 782 is P_gpio_od */
833 dib8000_write_word(st
, 1032, st
->cfg
.gpio_pwm_pos
);
835 dib8000_write_word(st
, 1037, st
->cfg
.pwm_freq_div
);
839 static int dib8000_cfg_gpio(struct dib8000_state
*st
, u8 num
, u8 dir
, u8 val
)
841 st
->cfg
.gpio_dir
= dib8000_read_word(st
, 1029);
842 st
->cfg
.gpio_dir
&= ~(1 << num
); /* reset the direction bit */
843 st
->cfg
.gpio_dir
|= (dir
& 0x1) << num
; /* set the new direction */
844 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
846 st
->cfg
.gpio_val
= dib8000_read_word(st
, 1030);
847 st
->cfg
.gpio_val
&= ~(1 << num
); /* reset the direction bit */
848 st
->cfg
.gpio_val
|= (val
& 0x01) << num
; /* set the new value */
849 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
851 dprintk("gpio dir: %x: gpio val: %x\n", st
->cfg
.gpio_dir
, st
->cfg
.gpio_val
);
856 static int dib8000_set_gpio(struct dvb_frontend
*fe
, u8 num
, u8 dir
, u8 val
)
858 struct dib8000_state
*state
= fe
->demodulator_priv
;
859 return dib8000_cfg_gpio(state
, num
, dir
, val
);
862 static const u16 dib8000_defaults
[] = {
863 /* auto search configuration - lock0 by default waiting
864 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
885 0x6680 // P_corm_thres Lock algorithms configuration */
887 11, 80, /* set ADC level to -16 */
888 (1 << 13) - 825 - 117,
889 (1 << 13) - 837 - 117,
890 (1 << 13) - 811 - 117,
891 (1 << 13) - 766 - 117,
892 (1 << 13) - 737 - 117,
893 (1 << 13) - 693 - 117,
894 (1 << 13) - 648 - 117,
895 (1 << 13) - 619 - 117,
896 (1 << 13) - 575 - 117,
897 (1 << 13) - 531 - 117,
898 (1 << 13) - 501 - 117,
909 8192, // P_fft_nb_to_cut
912 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
915 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
920 0x0666, // P_pha3_thres
921 0x0000, // P_cti_use_cpe, P_cti_use_prog
924 0x200f, // P_cspu_regul, P_cspu_win_cut
925 0x000f, // P_des_shift_work
928 0x023d, // P_adp_regul_cnt
929 0x00a4, // P_adp_noise_cnt
930 0x00a4, // P_adp_regul_ext
931 0x7ff0, // P_adp_noise_ext
935 0x0000, // P_2d_byp_ti_num
938 0x800, //P_equal_thres_wgn
941 (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
944 0x0001, // P_div_lock0_wait
948 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
951 (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
953 (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
954 (3 << 5) | /* P_ctrl_pre_freq_step=3 */
955 (1 << 0), /* P_pre_freq_win_len=1 */
960 static u16
dib8000_identify(struct i2c_device
*client
)
964 //because of glitches sometimes
965 value
= dib8000_i2c_read16(client
, 896);
967 if ((value
= dib8000_i2c_read16(client
, 896)) != 0x01b3) {
968 dprintk("wrong Vendor ID (read=0x%x)\n", value
);
972 value
= dib8000_i2c_read16(client
, 897);
973 if (value
!= 0x8000 && value
!= 0x8001 &&
974 value
!= 0x8002 && value
!= 0x8090) {
975 dprintk("wrong Device ID (%x)\n", value
);
981 dprintk("found DiB8000A\n");
984 dprintk("found DiB8000B\n");
987 dprintk("found DiB8000C\n");
990 dprintk("found DiB8096P\n");
996 static int dib8000_read_unc_blocks(struct dvb_frontend
*fe
, u32
*unc
);
998 static void dib8000_reset_stats(struct dvb_frontend
*fe
)
1000 struct dib8000_state
*state
= fe
->demodulator_priv
;
1001 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
1004 memset(&c
->strength
, 0, sizeof(c
->strength
));
1005 memset(&c
->cnr
, 0, sizeof(c
->cnr
));
1006 memset(&c
->post_bit_error
, 0, sizeof(c
->post_bit_error
));
1007 memset(&c
->post_bit_count
, 0, sizeof(c
->post_bit_count
));
1008 memset(&c
->block_error
, 0, sizeof(c
->block_error
));
1010 c
->strength
.len
= 1;
1012 c
->block_error
.len
= 1;
1013 c
->block_count
.len
= 1;
1014 c
->post_bit_error
.len
= 1;
1015 c
->post_bit_count
.len
= 1;
1017 c
->strength
.stat
[0].scale
= FE_SCALE_DECIBEL
;
1018 c
->strength
.stat
[0].uvalue
= 0;
1020 c
->cnr
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1021 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1022 c
->block_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1023 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1024 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1026 dib8000_read_unc_blocks(fe
, &ucb
);
1028 state
->init_ucb
= -ucb
;
1029 state
->ber_jiffies_stats
= 0;
1030 state
->per_jiffies_stats
= 0;
1031 memset(&state
->ber_jiffies_stats_layer
, 0,
1032 sizeof(state
->ber_jiffies_stats_layer
));
1035 static int dib8000_reset(struct dvb_frontend
*fe
)
1037 struct dib8000_state
*state
= fe
->demodulator_priv
;
1039 if ((state
->revision
= dib8000_identify(&state
->i2c
)) == 0)
1042 /* sram lead in, rdy */
1043 if (state
->revision
!= 0x8090)
1044 dib8000_write_word(state
, 1287, 0x0003);
1046 if (state
->revision
== 0x8000)
1047 dprintk("error : dib8000 MA not supported\n");
1049 dibx000_reset_i2c_master(&state
->i2c_master
);
1051 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
1053 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
1054 dib8000_set_adc_state(state
, DIBX000_ADC_OFF
);
1056 /* restart all parts */
1057 dib8000_write_word(state
, 770, 0xffff);
1058 dib8000_write_word(state
, 771, 0xffff);
1059 dib8000_write_word(state
, 772, 0xfffc);
1060 dib8000_write_word(state
, 898, 0x000c); /* restart sad */
1061 if (state
->revision
== 0x8090)
1062 dib8000_write_word(state
, 1280, 0x0045);
1064 dib8000_write_word(state
, 1280, 0x004d);
1065 dib8000_write_word(state
, 1281, 0x000c);
1067 dib8000_write_word(state
, 770, 0x0000);
1068 dib8000_write_word(state
, 771, 0x0000);
1069 dib8000_write_word(state
, 772, 0x0000);
1070 dib8000_write_word(state
, 898, 0x0004); // sad
1071 dib8000_write_word(state
, 1280, 0x0000);
1072 dib8000_write_word(state
, 1281, 0x0000);
1075 if (state
->revision
!= 0x8090) {
1076 if (state
->cfg
.drives
)
1077 dib8000_write_word(state
, 906, state
->cfg
.drives
);
1079 dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n");
1080 /* min drive SDRAM - not optimal - adjust */
1081 dib8000_write_word(state
, 906, 0x2d98);
1085 dib8000_reset_pll(state
);
1086 if (state
->revision
!= 0x8090)
1087 dib8000_write_word(state
, 898, 0x0004);
1089 if (dib8000_reset_gpio(state
) != 0)
1090 dprintk("GPIO reset was not successful.\n");
1092 if ((state
->revision
!= 0x8090) &&
1093 (dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
) != 0))
1094 dprintk("OUTPUT_MODE could not be resetted.\n");
1096 state
->current_agc
= NULL
;
1098 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
1099 /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
1100 if (state
->cfg
.pll
->ifreq
== 0)
1101 dib8000_write_word(state
, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
1103 dib8000_write_word(state
, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
1108 n
= dib8000_defaults
;
1113 dib8000_write_word(state
, r
, *n
++);
1120 state
->isdbt_cfg_loaded
= 0;
1122 //div_cfg override for special configs
1123 if ((state
->revision
!= 8090) && (state
->cfg
.div_cfg
!= 0))
1124 dib8000_write_word(state
, 903, state
->cfg
.div_cfg
);
1126 /* unforce divstr regardless whether i2c enumeration was done or not */
1127 dib8000_write_word(state
, 1285, dib8000_read_word(state
, 1285) & ~(1 << 1));
1129 dib8000_set_bandwidth(fe
, 6000);
1131 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
);
1132 dib8000_sad_calib(state
);
1133 if (state
->revision
!= 0x8090)
1134 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
);
1136 /* ber_rs_len = 3 */
1137 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & ~0x60) | (3 << 5));
1139 dib8000_set_power_mode(state
, DIB8000_POWER_INTERFACE_ONLY
);
1141 dib8000_reset_stats(fe
);
1146 static void dib8000_restart_agc(struct dib8000_state
*state
)
1148 // P_restart_iqc & P_restart_agc
1149 dib8000_write_word(state
, 770, 0x0a00);
1150 dib8000_write_word(state
, 770, 0x0000);
1153 static int dib8000_update_lna(struct dib8000_state
*state
)
1157 if (state
->cfg
.update_lna
) {
1158 // read dyn_gain here (because it is demod-dependent and not tuner)
1159 dyn_gain
= dib8000_read_word(state
, 390);
1161 if (state
->cfg
.update_lna(state
->fe
[0], dyn_gain
)) {
1162 dib8000_restart_agc(state
);
1169 static int dib8000_set_agc_config(struct dib8000_state
*state
, u8 band
)
1171 struct dibx000_agc_config
*agc
= NULL
;
1175 if (state
->current_band
== band
&& state
->current_agc
!= NULL
)
1177 state
->current_band
= band
;
1179 for (i
= 0; i
< state
->cfg
.agc_config_count
; i
++)
1180 if (state
->cfg
.agc
[i
].band_caps
& band
) {
1181 agc
= &state
->cfg
.agc
[i
];
1186 dprintk("no valid AGC configuration found for band 0x%02x\n", band
);
1190 state
->current_agc
= agc
;
1193 dib8000_write_word(state
, 76, agc
->setup
);
1194 dib8000_write_word(state
, 77, agc
->inv_gain
);
1195 dib8000_write_word(state
, 78, agc
->time_stabiliz
);
1196 dib8000_write_word(state
, 101, (agc
->alpha_level
<< 12) | agc
->thlock
);
1198 // Demod AGC loop configuration
1199 dib8000_write_word(state
, 102, (agc
->alpha_mant
<< 5) | agc
->alpha_exp
);
1200 dib8000_write_word(state
, 103, (agc
->beta_mant
<< 6) | agc
->beta_exp
);
1202 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
1203 state
->wbd_ref
!= 0 ? state
->wbd_ref
: agc
->wbd_ref
, agc
->wbd_sel
, !agc
->perform_agc_softsplit
, agc
->wbd_sel
);
1206 if (state
->wbd_ref
!= 0)
1207 dib8000_write_word(state
, 106, state
->wbd_ref
);
1209 dib8000_write_word(state
, 106, agc
->wbd_ref
);
1211 if (state
->revision
== 0x8090) {
1212 reg
= dib8000_read_word(state
, 922) & (0x3 << 2);
1213 dib8000_write_word(state
, 922, reg
| (agc
->wbd_sel
<< 2));
1216 dib8000_write_word(state
, 107, (agc
->wbd_alpha
<< 9) | (agc
->perform_agc_softsplit
<< 8));
1217 dib8000_write_word(state
, 108, agc
->agc1_max
);
1218 dib8000_write_word(state
, 109, agc
->agc1_min
);
1219 dib8000_write_word(state
, 110, agc
->agc2_max
);
1220 dib8000_write_word(state
, 111, agc
->agc2_min
);
1221 dib8000_write_word(state
, 112, (agc
->agc1_pt1
<< 8) | agc
->agc1_pt2
);
1222 dib8000_write_word(state
, 113, (agc
->agc1_slope1
<< 8) | agc
->agc1_slope2
);
1223 dib8000_write_word(state
, 114, (agc
->agc2_pt1
<< 8) | agc
->agc2_pt2
);
1224 dib8000_write_word(state
, 115, (agc
->agc2_slope1
<< 8) | agc
->agc2_slope2
);
1226 dib8000_write_word(state
, 75, agc
->agc1_pt3
);
1227 if (state
->revision
!= 0x8090)
1228 dib8000_write_word(state
, 923,
1229 (dib8000_read_word(state
, 923) & 0xffe3) |
1230 (agc
->wbd_inv
<< 4) | (agc
->wbd_sel
<< 2));
1235 static void dib8000_pwm_agc_reset(struct dvb_frontend
*fe
)
1237 struct dib8000_state
*state
= fe
->demodulator_priv
;
1238 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
1239 dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000)));
1242 static int dib8000_agc_soft_split(struct dib8000_state
*state
)
1244 u16 agc
, split_offset
;
1246 if (!state
->current_agc
|| !state
->current_agc
->perform_agc_softsplit
|| state
->current_agc
->split
.max
== 0)
1250 agc
= dib8000_read_word(state
, 390);
1252 if (agc
> state
->current_agc
->split
.min_thres
)
1253 split_offset
= state
->current_agc
->split
.min
;
1254 else if (agc
< state
->current_agc
->split
.max_thres
)
1255 split_offset
= state
->current_agc
->split
.max
;
1257 split_offset
= state
->current_agc
->split
.max
*
1258 (agc
- state
->current_agc
->split
.min_thres
) /
1259 (state
->current_agc
->split
.max_thres
- state
->current_agc
->split
.min_thres
);
1261 dprintk("AGC split_offset: %d\n", split_offset
);
1263 // P_agc_force_split and P_agc_split_offset
1264 dib8000_write_word(state
, 107, (dib8000_read_word(state
, 107) & 0xff00) | split_offset
);
1268 static int dib8000_agc_startup(struct dvb_frontend
*fe
)
1270 struct dib8000_state
*state
= fe
->demodulator_priv
;
1271 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1274 u32 upd_demod_gain_period
= 0x8000;
1276 switch (*tune_state
) {
1278 // set power-up level: interf+analog+AGC
1280 if (state
->revision
!= 0x8090)
1281 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
1283 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
1285 reg
= dib8000_read_word(state
, 1947)&0xff00;
1286 dib8000_write_word(state
, 1946,
1287 upd_demod_gain_period
& 0xFFFF);
1288 /* bit 14 = enDemodGain */
1289 dib8000_write_word(state
, 1947, reg
| (1<<14) |
1290 ((upd_demod_gain_period
>> 16) & 0xFF));
1292 /* enable adc i & q */
1293 reg
= dib8000_read_word(state
, 1920);
1294 dib8000_write_word(state
, 1920, (reg
| 0x3) &
1298 if (dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000))) != 0) {
1299 *tune_state
= CT_AGC_STOP
;
1300 state
->status
= FE_STATUS_TUNE_FAILED
;
1305 *tune_state
= CT_AGC_STEP_0
;
1309 //AGC initialization
1310 if (state
->cfg
.agc_control
)
1311 state
->cfg
.agc_control(fe
, 1);
1313 dib8000_restart_agc(state
);
1315 // wait AGC rough lock time
1317 *tune_state
= CT_AGC_STEP_1
;
1321 // wait AGC accurate lock time
1324 if (dib8000_update_lna(state
))
1325 // wait only AGC rough lock time
1328 *tune_state
= CT_AGC_STEP_2
;
1332 dib8000_agc_soft_split(state
);
1334 if (state
->cfg
.agc_control
)
1335 state
->cfg
.agc_control(fe
, 0);
1337 *tune_state
= CT_AGC_STOP
;
1340 ret
= dib8000_agc_soft_split(state
);
1347 static void dib8096p_host_bus_drive(struct dib8000_state
*state
, u8 drive
)
1353 /* drive host bus 2, 3, 4 */
1354 reg
= dib8000_read_word(state
, 1798) &
1355 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1356 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1357 dib8000_write_word(state
, 1798, reg
);
1359 /* drive host bus 5,6 */
1360 reg
= dib8000_read_word(state
, 1799) & ~((0x7 << 2) | (0x7 << 8));
1361 reg
|= (drive
<<8) | (drive
<<2);
1362 dib8000_write_word(state
, 1799, reg
);
1364 /* drive host bus 7, 8, 9 */
1365 reg
= dib8000_read_word(state
, 1800) &
1366 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1367 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1368 dib8000_write_word(state
, 1800, reg
);
1370 /* drive host bus 10, 11 */
1371 reg
= dib8000_read_word(state
, 1801) & ~((0x7 << 2) | (0x7 << 8));
1372 reg
|= (drive
<<8) | (drive
<<2);
1373 dib8000_write_word(state
, 1801, reg
);
1375 /* drive host bus 12, 13, 14 */
1376 reg
= dib8000_read_word(state
, 1802) &
1377 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1378 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1379 dib8000_write_word(state
, 1802, reg
);
1382 static u32
dib8096p_calcSyncFreq(u32 P_Kin
, u32 P_Kout
,
1383 u32 insertExtSynchro
, u32 syncSize
)
1386 u32 nom
= (insertExtSynchro
* P_Kin
+syncSize
);
1388 u32 syncFreq
= ((nom
<< quantif
) / denom
);
1390 if ((syncFreq
& ((1 << quantif
) - 1)) != 0)
1391 syncFreq
= (syncFreq
>> quantif
) + 1;
1393 syncFreq
= (syncFreq
>> quantif
);
1396 syncFreq
= syncFreq
- 1;
1401 static void dib8096p_cfg_DibTx(struct dib8000_state
*state
, u32 P_Kin
,
1402 u32 P_Kout
, u32 insertExtSynchro
, u32 synchroMode
,
1403 u32 syncWord
, u32 syncSize
)
1405 dprintk("Configure DibStream Tx\n");
1407 dib8000_write_word(state
, 1615, 1);
1408 dib8000_write_word(state
, 1603, P_Kin
);
1409 dib8000_write_word(state
, 1605, P_Kout
);
1410 dib8000_write_word(state
, 1606, insertExtSynchro
);
1411 dib8000_write_word(state
, 1608, synchroMode
);
1412 dib8000_write_word(state
, 1609, (syncWord
>> 16) & 0xffff);
1413 dib8000_write_word(state
, 1610, syncWord
& 0xffff);
1414 dib8000_write_word(state
, 1612, syncSize
);
1415 dib8000_write_word(state
, 1615, 0);
1418 static void dib8096p_cfg_DibRx(struct dib8000_state
*state
, u32 P_Kin
,
1419 u32 P_Kout
, u32 synchroMode
, u32 insertExtSynchro
,
1420 u32 syncWord
, u32 syncSize
, u32 dataOutRate
)
1424 dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode
);
1426 if ((P_Kin
!= 0) && (P_Kout
!= 0)) {
1427 syncFreq
= dib8096p_calcSyncFreq(P_Kin
, P_Kout
,
1428 insertExtSynchro
, syncSize
);
1429 dib8000_write_word(state
, 1542, syncFreq
);
1432 dib8000_write_word(state
, 1554, 1);
1433 dib8000_write_word(state
, 1536, P_Kin
);
1434 dib8000_write_word(state
, 1537, P_Kout
);
1435 dib8000_write_word(state
, 1539, synchroMode
);
1436 dib8000_write_word(state
, 1540, (syncWord
>> 16) & 0xffff);
1437 dib8000_write_word(state
, 1541, syncWord
& 0xffff);
1438 dib8000_write_word(state
, 1543, syncSize
);
1439 dib8000_write_word(state
, 1544, dataOutRate
);
1440 dib8000_write_word(state
, 1554, 0);
1443 static void dib8096p_enMpegMux(struct dib8000_state
*state
, int onoff
)
1447 reg_1287
= dib8000_read_word(state
, 1287);
1451 reg_1287
&= ~(1 << 8);
1454 reg_1287
|= (1 << 8);
1458 dib8000_write_word(state
, 1287, reg_1287
);
1461 static void dib8096p_configMpegMux(struct dib8000_state
*state
,
1462 u16 pulseWidth
, u16 enSerialMode
, u16 enSerialClkDiv2
)
1466 dprintk("Enable Mpeg mux\n");
1468 dib8096p_enMpegMux(state
, 0);
1470 /* If the input mode is MPEG do not divide the serial clock */
1471 if ((enSerialMode
== 1) && (state
->input_mode_mpeg
== 1))
1472 enSerialClkDiv2
= 0;
1474 reg_1287
= ((pulseWidth
& 0x1f) << 3) |
1475 ((enSerialMode
& 0x1) << 2) | (enSerialClkDiv2
& 0x1);
1476 dib8000_write_word(state
, 1287, reg_1287
);
1478 dib8096p_enMpegMux(state
, 1);
1481 static void dib8096p_setDibTxMux(struct dib8000_state
*state
, int mode
)
1483 u16 reg_1288
= dib8000_read_word(state
, 1288) & ~(0x7 << 7);
1487 dprintk("SET MPEG ON DIBSTREAM TX\n");
1488 dib8096p_cfg_DibTx(state
, 8, 5, 0, 0, 0, 0);
1489 reg_1288
|= (1 << 9); break;
1491 dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
1492 dib8096p_cfg_DibTx(state
, 5, 5, 0, 0, 0, 0);
1493 reg_1288
|= (1 << 8); break;
1495 dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
1496 dib8096p_cfg_DibTx(state
, 20, 5, 10, 0, 0, 0);
1497 reg_1288
|= (1 << 7); break;
1501 dib8000_write_word(state
, 1288, reg_1288
);
1504 static void dib8096p_setHostBusMux(struct dib8000_state
*state
, int mode
)
1506 u16 reg_1288
= dib8000_read_word(state
, 1288) & ~(0x7 << 4);
1509 case DEMOUT_ON_HOSTBUS
:
1510 dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
1511 dib8096p_enMpegMux(state
, 0);
1512 reg_1288
|= (1 << 6);
1514 case DIBTX_ON_HOSTBUS
:
1515 dprintk("SET DIBSTREAM TX ON HOST BUS\n");
1516 dib8096p_enMpegMux(state
, 0);
1517 reg_1288
|= (1 << 5);
1519 case MPEG_ON_HOSTBUS
:
1520 dprintk("SET MPEG MUX ON HOST BUS\n");
1521 reg_1288
|= (1 << 4);
1526 dib8000_write_word(state
, 1288, reg_1288
);
1529 static int dib8096p_set_diversity_in(struct dvb_frontend
*fe
, int onoff
)
1531 struct dib8000_state
*state
= fe
->demodulator_priv
;
1535 case 0: /* only use the internal way - not the diversity input */
1536 dprintk("%s mode OFF : by default Enable Mpeg INPUT\n",
1538 /* outputRate = 8 */
1539 dib8096p_cfg_DibRx(state
, 8, 5, 0, 0, 0, 8, 0);
1541 /* Do not divide the serial clock of MPEG MUX in
1542 SERIAL MODE in case input mode MPEG is used */
1543 reg_1287
= dib8000_read_word(state
, 1287);
1544 /* enSerialClkDiv2 == 1 ? */
1545 if ((reg_1287
& 0x1) == 1) {
1546 /* force enSerialClkDiv2 = 0 */
1548 dib8000_write_word(state
, 1287, reg_1287
);
1550 state
->input_mode_mpeg
= 1;
1552 case 1: /* both ways */
1553 case 2: /* only the diversity input */
1554 dprintk("%s ON : Enable diversity INPUT\n", __func__
);
1555 dib8096p_cfg_DibRx(state
, 5, 5, 0, 0, 0, 0, 0);
1556 state
->input_mode_mpeg
= 0;
1560 dib8000_set_diversity_in(state
->fe
[0], onoff
);
1564 static int dib8096p_set_output_mode(struct dvb_frontend
*fe
, int mode
)
1566 struct dib8000_state
*state
= fe
->demodulator_priv
;
1567 u16 outreg
, smo_mode
, fifo_threshold
;
1568 u8 prefer_mpeg_mux_use
= 1;
1571 state
->output_mode
= mode
;
1572 dib8096p_host_bus_drive(state
, 1);
1574 fifo_threshold
= 1792;
1575 smo_mode
= (dib8000_read_word(state
, 299) & 0x0050) | (1 << 1);
1576 outreg
= dib8000_read_word(state
, 1286) &
1577 ~((1 << 10) | (0x7 << 6) | (1 << 1));
1580 case OUTMODE_HIGH_Z
:
1584 case OUTMODE_MPEG2_SERIAL
:
1585 if (prefer_mpeg_mux_use
) {
1586 dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n");
1587 dib8096p_configMpegMux(state
, 3, 1, 1);
1588 dib8096p_setHostBusMux(state
, MPEG_ON_HOSTBUS
);
1589 } else {/* Use Smooth block */
1590 dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n");
1591 dib8096p_setHostBusMux(state
,
1593 outreg
|= (2 << 6) | (0 << 1);
1597 case OUTMODE_MPEG2_PAR_GATED_CLK
:
1598 if (prefer_mpeg_mux_use
) {
1599 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
1600 dib8096p_configMpegMux(state
, 2, 0, 0);
1601 dib8096p_setHostBusMux(state
, MPEG_ON_HOSTBUS
);
1602 } else { /* Use Smooth block */
1603 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n");
1604 dib8096p_setHostBusMux(state
,
1610 case OUTMODE_MPEG2_PAR_CONT_CLK
: /* Using Smooth block only */
1611 dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n");
1612 dib8096p_setHostBusMux(state
, DEMOUT_ON_HOSTBUS
);
1616 case OUTMODE_MPEG2_FIFO
:
1617 /* Using Smooth block because not supported
1618 by new Mpeg Mux bloc */
1619 dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n");
1620 dib8096p_setHostBusMux(state
, DEMOUT_ON_HOSTBUS
);
1622 smo_mode
|= (3 << 1);
1623 fifo_threshold
= 512;
1626 case OUTMODE_DIVERSITY
:
1627 dprintk("dib8096P setting output mode MODE_DIVERSITY\n");
1628 dib8096p_setDibTxMux(state
, DIV_ON_DIBTX
);
1629 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
1632 case OUTMODE_ANALOG_ADC
:
1633 dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n");
1634 dib8096p_setDibTxMux(state
, ADC_ON_DIBTX
);
1635 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
1639 if (mode
!= OUTMODE_HIGH_Z
)
1642 dprintk("output_mpeg2_in_188_bytes = %d\n",
1643 state
->cfg
.output_mpeg2_in_188_bytes
);
1644 if (state
->cfg
.output_mpeg2_in_188_bytes
)
1645 smo_mode
|= (1 << 5);
1647 ret
|= dib8000_write_word(state
, 299, smo_mode
);
1648 /* synchronous fread */
1649 ret
|= dib8000_write_word(state
, 299 + 1, fifo_threshold
);
1650 ret
|= dib8000_write_word(state
, 1286, outreg
);
1655 static int map_addr_to_serpar_number(struct i2c_msg
*msg
)
1657 if (msg
->buf
[0] <= 15)
1659 else if (msg
->buf
[0] == 17)
1661 else if (msg
->buf
[0] == 16)
1663 else if (msg
->buf
[0] == 19)
1665 else if (msg
->buf
[0] >= 21 && msg
->buf
[0] <= 25)
1667 else if (msg
->buf
[0] == 28)
1669 else if (msg
->buf
[0] == 99)
1676 static int dib8096p_tuner_write_serpar(struct i2c_adapter
*i2c_adap
,
1677 struct i2c_msg msg
[], int num
)
1679 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1682 u16 serpar_num
= msg
[0].buf
[0];
1684 while (n_overflow
== 1 && i
) {
1685 n_overflow
= (dib8000_read_word(state
, 1984) >> 1) & 0x1;
1688 dprintk("Tuner ITF: write busy (overflow)\n");
1690 dib8000_write_word(state
, 1985, (1 << 6) | (serpar_num
& 0x3f));
1691 dib8000_write_word(state
, 1986, (msg
[0].buf
[1] << 8) | msg
[0].buf
[2]);
1696 static int dib8096p_tuner_read_serpar(struct i2c_adapter
*i2c_adap
,
1697 struct i2c_msg msg
[], int num
)
1699 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1700 u8 n_overflow
= 1, n_empty
= 1;
1702 u16 serpar_num
= msg
[0].buf
[0];
1705 while (n_overflow
== 1 && i
) {
1706 n_overflow
= (dib8000_read_word(state
, 1984) >> 1) & 0x1;
1709 dprintk("TunerITF: read busy (overflow)\n");
1711 dib8000_write_word(state
, 1985, (0<<6) | (serpar_num
&0x3f));
1714 while (n_empty
== 1 && i
) {
1715 n_empty
= dib8000_read_word(state
, 1984)&0x1;
1718 dprintk("TunerITF: read busy (empty)\n");
1721 read_word
= dib8000_read_word(state
, 1987);
1722 msg
[1].buf
[0] = (read_word
>> 8) & 0xff;
1723 msg
[1].buf
[1] = (read_word
) & 0xff;
1728 static int dib8096p_tuner_rw_serpar(struct i2c_adapter
*i2c_adap
,
1729 struct i2c_msg msg
[], int num
)
1731 if (map_addr_to_serpar_number(&msg
[0]) == 0) {
1732 if (num
== 1) /* write */
1733 return dib8096p_tuner_write_serpar(i2c_adap
, msg
, 1);
1735 return dib8096p_tuner_read_serpar(i2c_adap
, msg
, 2);
1740 static int dib8096p_rw_on_apb(struct i2c_adapter
*i2c_adap
,
1741 struct i2c_msg msg
[], int num
, u16 apb_address
)
1743 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1746 if (num
== 1) { /* write */
1747 dib8000_write_word(state
, apb_address
,
1748 ((msg
[0].buf
[1] << 8) | (msg
[0].buf
[2])));
1750 word
= dib8000_read_word(state
, apb_address
);
1751 msg
[1].buf
[0] = (word
>> 8) & 0xff;
1752 msg
[1].buf
[1] = (word
) & 0xff;
1757 static int dib8096p_tuner_xfer(struct i2c_adapter
*i2c_adap
,
1758 struct i2c_msg msg
[], int num
)
1760 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1761 u16 apb_address
= 0, word
;
1764 switch (msg
[0].buf
[0]) {
1850 /* get sad sel request */
1851 i
= ((dib8000_read_word(state
, 921) >> 12)&0x3);
1852 word
= dib8000_read_word(state
, 924+i
);
1853 msg
[1].buf
[0] = (word
>> 8) & 0xff;
1854 msg
[1].buf
[1] = (word
) & 0xff;
1857 if (num
== 1) { /* write */
1858 word
= (u16
) ((msg
[0].buf
[1] << 8) |
1860 /* in the VGAMODE Sel are located on bit 0/1 */
1862 word
= (dib8000_read_word(state
, 921) &
1863 ~(3<<12)) | (word
<<12);
1864 /* Set the proper input */
1865 dib8000_write_word(state
, 921, word
);
1870 if (apb_address
!= 0) /* R/W acces via APB */
1871 return dib8096p_rw_on_apb(i2c_adap
, msg
, num
, apb_address
);
1872 else /* R/W access via SERPAR */
1873 return dib8096p_tuner_rw_serpar(i2c_adap
, msg
, num
);
1878 static u32
dib8096p_i2c_func(struct i2c_adapter
*adapter
)
1880 return I2C_FUNC_I2C
;
1883 static const struct i2c_algorithm dib8096p_tuner_xfer_algo
= {
1884 .master_xfer
= dib8096p_tuner_xfer
,
1885 .functionality
= dib8096p_i2c_func
,
1888 static struct i2c_adapter
*dib8096p_get_i2c_tuner(struct dvb_frontend
*fe
)
1890 struct dib8000_state
*st
= fe
->demodulator_priv
;
1891 return &st
->dib8096p_tuner_adap
;
1894 static int dib8096p_tuner_sleep(struct dvb_frontend
*fe
, int onoff
)
1896 struct dib8000_state
*state
= fe
->demodulator_priv
;
1899 dprintk("sleep dib8096p: %d\n", onoff
);
1901 en_cur_state
= dib8000_read_word(state
, 1922);
1903 /* LNAs and MIX are ON and therefore it is a valid configuration */
1904 if (en_cur_state
> 0xff)
1905 state
->tuner_enable
= en_cur_state
;
1908 en_cur_state
&= 0x00ff;
1910 if (state
->tuner_enable
!= 0)
1911 en_cur_state
= state
->tuner_enable
;
1914 dib8000_write_word(state
, 1922, en_cur_state
);
1919 static const s32 lut_1000ln_mant
[] =
1921 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
1924 static s32
dib8000_get_adc_power(struct dvb_frontend
*fe
, u8 mode
)
1926 struct dib8000_state
*state
= fe
->demodulator_priv
;
1927 u32 ix
= 0, tmp_val
= 0, exp
= 0, mant
= 0;
1930 val
= dib8000_read32(state
, 384);
1933 while (tmp_val
>>= 1)
1935 mant
= (val
* 1000 / (1<<exp
));
1936 ix
= (u8
)((mant
-1000)/100); /* index of the LUT */
1937 val
= (lut_1000ln_mant
[ix
] + 693*(exp
-20) - 6908);
1938 val
= (val
*256)/1000;
1943 static int dib8090p_get_dc_power(struct dvb_frontend
*fe
, u8 IQ
)
1945 struct dib8000_state
*state
= fe
->demodulator_priv
;
1950 val
= dib8000_read_word(state
, 403);
1953 val
= dib8000_read_word(state
, 404);
1962 static void dib8000_update_timf(struct dib8000_state
*state
)
1964 u32 timf
= state
->timf
= dib8000_read32(state
, 435);
1966 dib8000_write_word(state
, 29, (u16
) (timf
>> 16));
1967 dib8000_write_word(state
, 30, (u16
) (timf
& 0xffff));
1968 dprintk("Updated timing frequency: %d (default: %d)\n", state
->timf
, state
->timf_default
);
1971 static u32
dib8000_ctrl_timf(struct dvb_frontend
*fe
, uint8_t op
, uint32_t timf
)
1973 struct dib8000_state
*state
= fe
->demodulator_priv
;
1976 case DEMOD_TIMF_SET
:
1979 case DEMOD_TIMF_UPDATE
:
1980 dib8000_update_timf(state
);
1982 case DEMOD_TIMF_GET
:
1985 dib8000_set_bandwidth(state
->fe
[0], 6000);
1990 static const u16 adc_target_16dB
[11] = {
1991 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
1994 static const u8 permu_seg
[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
1996 static u16
dib8000_set_layer(struct dib8000_state
*state
, u8 layer_index
, u16 max_constellation
)
1998 u8 cr
, constellation
, time_intlv
;
1999 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2001 switch (c
->layer
[layer_index
].modulation
) {
2017 switch (c
->layer
[layer_index
].fec
) {
2036 time_intlv
= fls(c
->layer
[layer_index
].interleaving
);
2037 if (time_intlv
> 3 && !(time_intlv
== 4 && c
->isdbt_sb_mode
== 1))
2040 dib8000_write_word(state
, 2 + layer_index
, (constellation
<< 10) | ((c
->layer
[layer_index
].segment_count
& 0xf) << 6) | (cr
<< 3) | time_intlv
);
2041 if (c
->layer
[layer_index
].segment_count
> 0) {
2042 switch (max_constellation
) {
2045 if (c
->layer
[layer_index
].modulation
== QAM_16
|| c
->layer
[layer_index
].modulation
== QAM_64
)
2046 max_constellation
= c
->layer
[layer_index
].modulation
;
2049 if (c
->layer
[layer_index
].modulation
== QAM_64
)
2050 max_constellation
= c
->layer
[layer_index
].modulation
;
2055 return max_constellation
;
2058 static const u16 adp_Q64
[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
2059 static const u16 adp_Q16
[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
2060 static const u16 adp_Qdefault
[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */
2061 static u16
dib8000_adp_fine_tune(struct dib8000_state
*state
, u16 max_constellation
)
2063 u16 i
, ana_gain
= 0;
2066 /* channel estimation fine configuration */
2067 switch (max_constellation
) {
2078 adp
= &adp_Qdefault
[0];
2082 for (i
= 0; i
< 4; i
++)
2083 dib8000_write_word(state
, 215 + i
, adp
[i
]);
2088 static void dib8000_update_ana_gain(struct dib8000_state
*state
, u16 ana_gain
)
2092 dib8000_write_word(state
, 116, ana_gain
);
2094 /* update ADC target depending on ana_gain */
2095 if (ana_gain
) { /* set -16dB ADC target for ana_gain=-1 */
2096 for (i
= 0; i
< 10; i
++)
2097 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
]);
2098 } else { /* set -22dB ADC target for ana_gain=0 */
2099 for (i
= 0; i
< 10; i
++)
2100 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
] - 355);
2104 static void dib8000_load_ana_fe_coefs(struct dib8000_state
*state
, const s16
*ana_fe
)
2108 if (state
->isdbt_cfg_loaded
== 0)
2109 for (mode
= 0; mode
< 24; mode
++)
2110 dib8000_write_word(state
, 117 + mode
, ana_fe
[mode
]);
2113 static const u16 lut_prbs_2k
[14] = {
2114 0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213
2116 static const u16 lut_prbs_4k
[14] = {
2117 0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E
2119 static const u16 lut_prbs_8k
[14] = {
2120 0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684
2123 static u16
dib8000_get_init_prbs(struct dib8000_state
*state
, u16 subchannel
)
2125 int sub_channel_prbs_group
= 0;
2127 sub_channel_prbs_group
= (subchannel
/ 3) + 1;
2128 dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", sub_channel_prbs_group
, subchannel
, lut_prbs_8k
[sub_channel_prbs_group
]);
2130 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
2131 case TRANSMISSION_MODE_2K
:
2132 return lut_prbs_2k
[sub_channel_prbs_group
];
2133 case TRANSMISSION_MODE_4K
:
2134 return lut_prbs_4k
[sub_channel_prbs_group
];
2136 case TRANSMISSION_MODE_8K
:
2137 return lut_prbs_8k
[sub_channel_prbs_group
];
2141 static void dib8000_set_13seg_channel(struct dib8000_state
*state
)
2144 u16 coff_pow
= 0x2800;
2146 state
->seg_mask
= 0x1fff; /* All 13 segments enabled */
2148 /* ---- COFF ---- Carloff, the most robust --- */
2149 if (state
->isdbt_cfg_loaded
== 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */
2150 dib8000_write_word(state
, 180, (16 << 6) | 9);
2151 dib8000_write_word(state
, 187, (4 << 12) | (8 << 5) | 0x2);
2153 for (i
= 0; i
< 6; i
++)
2154 dib8000_write_word(state
, 181+i
, coff_pow
);
2156 /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
2157 /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
2158 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
2160 /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
2161 dib8000_write_word(state
, 340, (8 << 6) | (6 << 0));
2162 /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
2163 dib8000_write_word(state
, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
2165 dib8000_write_word(state
, 228, 0); /* default value */
2166 dib8000_write_word(state
, 265, 31); /* default value */
2167 dib8000_write_word(state
, 205, 0x200f); /* init value */
2171 * make the cpil_coff_lock more robust but slower p_coff_winlen
2172 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2175 if (state
->cfg
.pll
->ifreq
== 0)
2176 dib8000_write_word(state
, 266, ~state
->seg_mask
| state
->seg_diff_mask
| 0x40); /* P_equal_noise_seg_inh */
2178 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_13seg
);
2181 static void dib8000_set_subchannel_prbs(struct dib8000_state
*state
, u16 init_prbs
)
2185 reg_1
= dib8000_read_word(state
, 1);
2186 dib8000_write_word(state
, 1, (init_prbs
<< 2) | (reg_1
& 0x3)); /* ADDR 1 */
2189 static void dib8000_small_fine_tune(struct dib8000_state
*state
)
2193 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2195 dib8000_write_word(state
, 352, state
->seg_diff_mask
);
2196 dib8000_write_word(state
, 353, state
->seg_mask
);
2198 /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
2199 dib8000_write_word(state
, 351, (c
->isdbt_sb_mode
<< 9) | (c
->isdbt_sb_mode
<< 8) | (13 << 4) | 5);
2201 if (c
->isdbt_sb_mode
) {
2202 /* ---- SMALL ---- */
2203 switch (c
->transmission_mode
) {
2204 case TRANSMISSION_MODE_2K
:
2205 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2206 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2207 ncoeff
= coeff_2k_sb_1seg_dqpsk
;
2208 else /* QPSK or QAM */
2209 ncoeff
= coeff_2k_sb_1seg
;
2210 } else { /* 3-segments */
2211 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2212 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2213 ncoeff
= coeff_2k_sb_3seg_0dqpsk_1dqpsk
;
2214 else /* QPSK or QAM on external segments */
2215 ncoeff
= coeff_2k_sb_3seg_0dqpsk
;
2216 } else { /* QPSK or QAM on central segment */
2217 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2218 ncoeff
= coeff_2k_sb_3seg_1dqpsk
;
2219 else /* QPSK or QAM on external segments */
2220 ncoeff
= coeff_2k_sb_3seg
;
2224 case TRANSMISSION_MODE_4K
:
2225 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2226 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2227 ncoeff
= coeff_4k_sb_1seg_dqpsk
;
2228 else /* QPSK or QAM */
2229 ncoeff
= coeff_4k_sb_1seg
;
2230 } else { /* 3-segments */
2231 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2232 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2233 ncoeff
= coeff_4k_sb_3seg_0dqpsk_1dqpsk
;
2234 else /* QPSK or QAM on external segments */
2235 ncoeff
= coeff_4k_sb_3seg_0dqpsk
;
2236 } else { /* QPSK or QAM on central segment */
2237 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2238 ncoeff
= coeff_4k_sb_3seg_1dqpsk
;
2239 else /* QPSK or QAM on external segments */
2240 ncoeff
= coeff_4k_sb_3seg
;
2244 case TRANSMISSION_MODE_AUTO
:
2245 case TRANSMISSION_MODE_8K
:
2247 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2248 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2249 ncoeff
= coeff_8k_sb_1seg_dqpsk
;
2250 else /* QPSK or QAM */
2251 ncoeff
= coeff_8k_sb_1seg
;
2252 } else { /* 3-segments */
2253 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2254 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2255 ncoeff
= coeff_8k_sb_3seg_0dqpsk_1dqpsk
;
2256 else /* QPSK or QAM on external segments */
2257 ncoeff
= coeff_8k_sb_3seg_0dqpsk
;
2258 } else { /* QPSK or QAM on central segment */
2259 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2260 ncoeff
= coeff_8k_sb_3seg_1dqpsk
;
2261 else /* QPSK or QAM on external segments */
2262 ncoeff
= coeff_8k_sb_3seg
;
2268 for (i
= 0; i
< 8; i
++)
2269 dib8000_write_word(state
, 343 + i
, ncoeff
[i
]);
2273 static const u16 coff_thres_1seg
[3] = {300, 150, 80};
2274 static const u16 coff_thres_3seg
[3] = {350, 300, 250};
2275 static void dib8000_set_sb_channel(struct dib8000_state
*state
)
2277 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2281 if (c
->transmission_mode
== TRANSMISSION_MODE_2K
|| c
->transmission_mode
== TRANSMISSION_MODE_4K
) {
2282 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) | 0x1); /* adp_pass =1 */
2283 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
2285 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) & 0xfffe); /* adp_pass =0 */
2286 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
2289 if (c
->isdbt_partial_reception
== 1) /* 3-segments */
2290 state
->seg_mask
= 0x00E0;
2291 else /* 1-segment */
2292 state
->seg_mask
= 0x0040;
2294 dib8000_write_word(state
, 268, (dib8000_read_word(state
, 268) & 0xF9FF) | 0x0200);
2296 /* ---- COFF ---- Carloff, the most robust --- */
2297 /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
2298 dib8000_write_word(state
, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c
->isdbt_partial_reception
& 1) << 2) | 0x3);
2300 dib8000_write_word(state
, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
2301 dib8000_write_word(state
, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
2303 /* Sound Broadcasting mode 1 seg */
2304 if (c
->isdbt_partial_reception
== 0) {
2305 /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
2306 if (state
->mode
== 3)
2307 dib8000_write_word(state
, 180, 0x1fcf | ((state
->mode
- 1) << 14));
2309 dib8000_write_word(state
, 180, 0x0fcf | ((state
->mode
- 1) << 14));
2311 /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
2312 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
2313 coff
= &coff_thres_1seg
[0];
2314 } else { /* Sound Broadcasting mode 3 seg */
2315 dib8000_write_word(state
, 180, 0x1fcf | (1 << 14));
2316 /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
2317 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
2318 coff
= &coff_thres_3seg
[0];
2321 dib8000_write_word(state
, 228, 1); /* P_2d_mode_byp=1 */
2322 dib8000_write_word(state
, 205, dib8000_read_word(state
, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
2324 if (c
->isdbt_partial_reception
== 0 && c
->transmission_mode
== TRANSMISSION_MODE_2K
)
2325 dib8000_write_word(state
, 265, 15); /* P_equal_noise_sel = 15 */
2327 /* Write COFF thres */
2328 for (i
= 0 ; i
< 3; i
++) {
2329 dib8000_write_word(state
, 181+i
, coff
[i
]);
2330 dib8000_write_word(state
, 184+i
, coff
[i
]);
2334 * make the cpil_coff_lock more robust but slower p_coff_winlen
2335 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2338 dib8000_write_word(state
, 266, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_equal_noise_seg_inh */
2340 if (c
->isdbt_partial_reception
== 0)
2341 dib8000_write_word(state
, 178, 64); /* P_fft_powrange = 64 */
2343 dib8000_write_word(state
, 178, 32); /* P_fft_powrange = 32 */
2346 static void dib8000_set_isdbt_common_channel(struct dib8000_state
*state
, u8 seq
, u8 autosearching
)
2348 u16 p_cfr_left_edge
= 0, p_cfr_right_edge
= 0;
2349 u16 tmcc_pow
= 0, ana_gain
= 0, tmp
= 0, i
= 0, nbseg_diff
= 0 ;
2350 u16 max_constellation
= DQPSK
;
2352 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2355 c
->isdbt_partial_reception
= 1;
2358 dib8000_write_word(state
, 10, (seq
<< 4));
2361 state
->mode
= fft_to_mode(state
);
2364 tmp
= dib8000_read_word(state
, 1);
2365 dib8000_write_word(state
, 1, (tmp
&0xfffc) | (c
->guard_interval
& 0x3));
2367 dib8000_write_word(state
, 274, (dib8000_read_word(state
, 274) & 0xffcf) | ((c
->isdbt_partial_reception
& 1) << 5) | ((c
->isdbt_sb_mode
& 1) << 4));
2369 /* signal optimization parameter */
2370 if (c
->isdbt_partial_reception
) {
2371 state
->seg_diff_mask
= (c
->layer
[0].modulation
== DQPSK
) << permu_seg
[0];
2372 for (i
= 1; i
< 3; i
++)
2373 nbseg_diff
+= (c
->layer
[i
].modulation
== DQPSK
) * c
->layer
[i
].segment_count
;
2374 for (i
= 0; i
< nbseg_diff
; i
++)
2375 state
->seg_diff_mask
|= 1 << permu_seg
[i
+1];
2377 for (i
= 0; i
< 3; i
++)
2378 nbseg_diff
+= (c
->layer
[i
].modulation
== DQPSK
) * c
->layer
[i
].segment_count
;
2379 for (i
= 0; i
< nbseg_diff
; i
++)
2380 state
->seg_diff_mask
|= 1 << permu_seg
[i
];
2383 if (state
->seg_diff_mask
)
2384 dib8000_write_word(state
, 268, (dib8000_read_word(state
, 268) & 0xF9FF) | 0x0200);
2386 dib8000_write_word(state
, 268, (2 << 9) | 39); /*init value */
2388 for (i
= 0; i
< 3; i
++)
2389 max_constellation
= dib8000_set_layer(state
, i
, max_constellation
);
2390 if (autosearching
== 0) {
2391 state
->layer_b_nb_seg
= c
->layer
[1].segment_count
;
2392 state
->layer_c_nb_seg
= c
->layer
[2].segment_count
;
2395 /* WRITE: Mode & Diff mask */
2396 dib8000_write_word(state
, 0, (state
->mode
<< 13) | state
->seg_diff_mask
);
2398 state
->differential_constellation
= (state
->seg_diff_mask
!= 0);
2400 /* channel estimation fine configuration */
2401 ana_gain
= dib8000_adp_fine_tune(state
, max_constellation
);
2403 /* update ana_gain depending on max constellation */
2404 dib8000_update_ana_gain(state
, ana_gain
);
2406 /* ---- ANA_FE ---- */
2407 if (c
->isdbt_partial_reception
) /* 3-segments */
2408 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_3seg
);
2410 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_1seg
); /* 1-segment */
2412 /* TSB or ISDBT ? apply it now */
2413 if (c
->isdbt_sb_mode
) {
2414 dib8000_set_sb_channel(state
);
2415 if (c
->isdbt_sb_subchannel
< 14)
2416 init_prbs
= dib8000_get_init_prbs(state
, c
->isdbt_sb_subchannel
);
2420 dib8000_set_13seg_channel(state
);
2425 dib8000_small_fine_tune(state
);
2427 dib8000_set_subchannel_prbs(state
, init_prbs
);
2429 /* ---- CHAN_BLK ---- */
2430 for (i
= 0; i
< 13; i
++) {
2431 if ((((~state
->seg_diff_mask
) >> i
) & 1) == 1) {
2432 p_cfr_left_edge
+= (1 << i
) * ((i
== 0) || ((((state
->seg_mask
& (~state
->seg_diff_mask
)) >> (i
- 1)) & 1) == 0));
2433 p_cfr_right_edge
+= (1 << i
) * ((i
== 12) || ((((state
->seg_mask
& (~state
->seg_diff_mask
)) >> (i
+ 1)) & 1) == 0));
2436 dib8000_write_word(state
, 222, p_cfr_left_edge
); /* p_cfr_left_edge */
2437 dib8000_write_word(state
, 223, p_cfr_right_edge
); /* p_cfr_right_edge */
2438 /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
2440 dib8000_write_word(state
, 189, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_lmod4_seg_inh */
2441 dib8000_write_word(state
, 192, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_pha3_seg_inh */
2442 dib8000_write_word(state
, 225, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_tac_seg_inh */
2445 dib8000_write_word(state
, 288, (~state
->seg_mask
| state
->seg_diff_mask
) & 0x1fff); /* P_tmcc_seg_eq_inh */
2447 dib8000_write_word(state
, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
2449 dib8000_write_word(state
, 211, state
->seg_mask
& (~state
->seg_diff_mask
)); /* P_des_seg_enabled */
2450 dib8000_write_word(state
, 287, ~state
->seg_mask
| 0x1000); /* P_tmcc_seg_inh */
2452 dib8000_write_word(state
, 178, 32); /* P_fft_powrange = 32 */
2454 /* ---- TMCC ---- */
2455 for (i
= 0; i
< 3; i
++)
2456 tmcc_pow
+= (((c
->layer
[i
].modulation
== DQPSK
) * 4 + 1) * c
->layer
[i
].segment_count
) ;
2458 /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
2459 /* Threshold is set at 1/4 of max power. */
2460 tmcc_pow
*= (1 << (9-2));
2461 dib8000_write_word(state
, 290, tmcc_pow
); /* P_tmcc_dec_thres_2k */
2462 dib8000_write_word(state
, 291, tmcc_pow
); /* P_tmcc_dec_thres_4k */
2463 dib8000_write_word(state
, 292, tmcc_pow
); /* P_tmcc_dec_thres_8k */
2464 /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
2466 /* ---- PHA3 ---- */
2467 if (state
->isdbt_cfg_loaded
== 0)
2468 dib8000_write_word(state
, 250, 3285); /* p_2d_hspeed_thr0 */
2470 state
->isdbt_cfg_loaded
= 0;
2473 static u32
dib8000_wait_lock(struct dib8000_state
*state
, u32 internal
,
2474 u32 wait0_ms
, u32 wait1_ms
, u32 wait2_ms
)
2476 u32 value
= 0; /* P_search_end0 wait time */
2477 u16 reg
= 11; /* P_search_end0 start addr */
2479 for (reg
= 11; reg
< 16; reg
+= 2) {
2481 if (state
->revision
== 0x8090)
2482 value
= internal
* wait1_ms
;
2484 value
= internal
* wait0_ms
;
2485 } else if (reg
== 13)
2486 value
= internal
* wait1_ms
;
2488 value
= internal
* wait2_ms
;
2489 dib8000_write_word(state
, reg
, (u16
)((value
>> 16) & 0xffff));
2490 dib8000_write_word(state
, (reg
+ 1), (u16
)(value
& 0xffff));
2495 static int dib8000_autosearch_start(struct dvb_frontend
*fe
)
2497 struct dib8000_state
*state
= fe
->demodulator_priv
;
2498 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2500 u32 value
, internal
= state
->cfg
.pll
->internal
;
2502 if (state
->revision
== 0x8090)
2503 internal
= dib8000_read32(state
, 23) / 1000;
2505 if ((state
->revision
>= 0x8002) &&
2506 (state
->autosearch_state
== AS_SEARCHING_FFT
)) {
2507 dib8000_write_word(state
, 37, 0x0065); /* P_ctrl_pha_off_max default values */
2508 dib8000_write_word(state
, 116, 0x0000); /* P_ana_gain to 0 */
2510 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
2511 dib8000_write_word(state
, 1, (dib8000_read_word(state
, 1) & 0xfffc) | 0); /* P_guard = 0 */
2512 dib8000_write_word(state
, 6, 0); /* P_lock0_mask = 0 */
2513 dib8000_write_word(state
, 7, 0); /* P_lock1_mask = 0 */
2514 dib8000_write_word(state
, 8, 0); /* P_lock2_mask = 0 */
2515 dib8000_write_word(state
, 10, (dib8000_read_word(state
, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
2517 if (state
->revision
== 0x8090)
2518 value
= dib8000_wait_lock(state
, internal
, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2520 value
= dib8000_wait_lock(state
, internal
, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2522 dib8000_write_word(state
, 17, 0);
2523 dib8000_write_word(state
, 18, 200); /* P_search_rstst = 200 */
2524 dib8000_write_word(state
, 19, 0);
2525 dib8000_write_word(state
, 20, 400); /* P_search_rstend = 400 */
2526 dib8000_write_word(state
, 21, (value
>> 16) & 0xffff); /* P_search_checkst */
2527 dib8000_write_word(state
, 22, value
& 0xffff);
2529 if (state
->revision
== 0x8090)
2530 dib8000_write_word(state
, 32, (dib8000_read_word(state
, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
2532 dib8000_write_word(state
, 32, (dib8000_read_word(state
, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
2533 dib8000_write_word(state
, 355, 2); /* P_search_param_max = 2 */
2535 /* P_search_param_select = (1 | 1<<4 | 1 << 8) */
2536 dib8000_write_word(state
, 356, 0);
2537 dib8000_write_word(state
, 357, 0x111);
2539 dib8000_write_word(state
, 770, (dib8000_read_word(state
, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
2540 dib8000_write_word(state
, 770, (dib8000_read_word(state
, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
2541 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
2542 } else if ((state
->revision
>= 0x8002) &&
2543 (state
->autosearch_state
== AS_SEARCHING_GUARD
)) {
2544 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2545 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2547 c
->layer
[0].modulation
= QAM_64
;
2548 c
->layer
[0].fec
= FEC_2_3
;
2549 c
->layer
[0].interleaving
= 0;
2550 c
->layer
[0].segment_count
= 13;
2553 c
->transmission_mode
= state
->found_nfft
;
2555 dib8000_set_isdbt_common_channel(state
, slist
, 1);
2557 /* set lock_mask values */
2558 dib8000_write_word(state
, 6, 0x4);
2559 if (state
->revision
== 0x8090)
2560 dib8000_write_word(state
, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
2562 dib8000_write_word(state
, 7, 0x8);
2563 dib8000_write_word(state
, 8, 0x1000);
2565 /* set lock_mask wait time values */
2566 if (state
->revision
== 0x8090)
2567 dib8000_wait_lock(state
, internal
, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2569 dib8000_wait_lock(state
, internal
, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2571 dib8000_write_word(state
, 355, 3); /* P_search_param_max = 3 */
2573 /* P_search_param_select = 0xf; look for the 4 different guard intervals */
2574 dib8000_write_word(state
, 356, 0);
2575 dib8000_write_word(state
, 357, 0xf);
2577 value
= dib8000_read_word(state
, 0);
2578 dib8000_write_word(state
, 0, (u16
)((1 << 15) | value
));
2579 dib8000_read_word(state
, 1284); /* reset the INT. n_irq_pending */
2580 dib8000_write_word(state
, 0, (u16
)value
);
2583 c
->layer
[0].modulation
= QAM_64
;
2584 c
->layer
[0].fec
= FEC_2_3
;
2585 c
->layer
[0].interleaving
= 0;
2586 c
->layer
[0].segment_count
= 13;
2587 if (!c
->isdbt_sb_mode
)
2588 c
->layer
[0].segment_count
= 13;
2590 /* choose the right list, in sb, always do everything */
2591 if (c
->isdbt_sb_mode
) {
2593 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13));
2595 if (c
->guard_interval
== GUARD_INTERVAL_AUTO
) {
2596 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2597 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2598 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2600 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */
2602 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2606 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2607 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2609 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */
2614 dprintk("Using list for autosearch : %d\n", slist
);
2616 dib8000_set_isdbt_common_channel(state
, slist
, 1);
2618 /* set lock_mask values */
2619 dib8000_write_word(state
, 6, 0x4);
2620 if (state
->revision
== 0x8090)
2621 dib8000_write_word(state
, 7, (1 << 12) | (1 << 11) | (1 << 10));
2623 dib8000_write_word(state
, 7, 0x8);
2624 dib8000_write_word(state
, 8, 0x1000);
2626 /* set lock_mask wait time values */
2627 if (state
->revision
== 0x8090)
2628 dib8000_wait_lock(state
, internal
, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2630 dib8000_wait_lock(state
, internal
, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2632 value
= dib8000_read_word(state
, 0);
2633 dib8000_write_word(state
, 0, (u16
)((1 << 15) | value
));
2634 dib8000_read_word(state
, 1284); /* reset the INT. n_irq_pending */
2635 dib8000_write_word(state
, 0, (u16
)value
);
2640 static int dib8000_autosearch_irq(struct dvb_frontend
*fe
)
2642 struct dib8000_state
*state
= fe
->demodulator_priv
;
2643 u16 irq_pending
= dib8000_read_word(state
, 1284);
2645 if ((state
->revision
>= 0x8002) &&
2646 (state
->autosearch_state
== AS_SEARCHING_FFT
)) {
2647 if (irq_pending
& 0x1) {
2648 dprintk("dib8000_autosearch_irq: max correlation result available\n");
2652 if (irq_pending
& 0x1) { /* failed */
2653 dprintk("dib8000_autosearch_irq failed\n");
2657 if (irq_pending
& 0x2) { /* succeeded */
2658 dprintk("dib8000_autosearch_irq succeeded\n");
2663 return 0; // still pending
2666 static void dib8000_viterbi_state(struct dib8000_state
*state
, u8 onoff
)
2670 tmp
= dib8000_read_word(state
, 771);
2671 if (onoff
) /* start P_restart_chd : channel_decoder */
2672 dib8000_write_word(state
, 771, tmp
& 0xfffd);
2673 else /* stop P_restart_chd : channel_decoder */
2674 dib8000_write_word(state
, 771, tmp
| (1<<1));
2677 static void dib8000_set_dds(struct dib8000_state
*state
, s32 offset_khz
)
2679 s16 unit_khz_dds_val
;
2680 u32 abs_offset_khz
= ABS(offset_khz
);
2681 u32 dds
= state
->cfg
.pll
->ifreq
& 0x1ffffff;
2682 u8 invert
= !!(state
->cfg
.pll
->ifreq
& (1 << 25));
2685 if (state
->revision
== 0x8090) {
2687 unit_khz_dds_val
= (1<<26) / (dib8000_read32(state
, 23) / 1000);
2689 dds
= (1 << 26) - (abs_offset_khz
* unit_khz_dds_val
);
2691 dds
= (abs_offset_khz
* unit_khz_dds_val
);
2694 dds
= (1<<26) - dds
;
2697 unit_khz_dds_val
= (u16
) (67108864 / state
->cfg
.pll
->internal
);
2700 unit_khz_dds_val
*= -1;
2704 dds
-= abs_offset_khz
* unit_khz_dds_val
;
2706 dds
+= abs_offset_khz
* unit_khz_dds_val
;
2709 dprintk("setting a DDS frequency offset of %c%dkHz\n", invert
? '-' : ' ', dds
/ unit_khz_dds_val
);
2711 if (abs_offset_khz
<= (state
->cfg
.pll
->internal
/ ratio
)) {
2712 /* Max dds offset is the half of the demod freq */
2713 dib8000_write_word(state
, 26, invert
);
2714 dib8000_write_word(state
, 27, (u16
)(dds
>> 16) & 0x1ff);
2715 dib8000_write_word(state
, 28, (u16
)(dds
& 0xffff));
2719 static void dib8000_set_frequency_offset(struct dib8000_state
*state
)
2721 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2724 int total_dds_offset_khz
;
2726 if (state
->fe
[0]->ops
.tuner_ops
.get_frequency
)
2727 state
->fe
[0]->ops
.tuner_ops
.get_frequency(state
->fe
[0], ¤t_rf
);
2729 current_rf
= c
->frequency
;
2731 total_dds_offset_khz
= (int)current_rf
- (int)c
->frequency
/ 1000;
2733 if (c
->isdbt_sb_mode
) {
2734 state
->subchannel
= c
->isdbt_sb_subchannel
;
2736 i
= dib8000_read_word(state
, 26) & 1; /* P_dds_invspec */
2737 dib8000_write_word(state
, 26, c
->inversion
^ i
);
2739 if (state
->cfg
.pll
->ifreq
== 0) { /* low if tuner */
2740 if ((c
->inversion
^ i
) == 0)
2741 dib8000_write_word(state
, 26, dib8000_read_word(state
, 26) | 1);
2743 if ((c
->inversion
^ i
) == 0)
2744 total_dds_offset_khz
*= -1;
2748 dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c
->frequency
- current_rf
, c
->frequency
, current_rf
, total_dds_offset_khz
);
2750 /* apply dds offset now */
2751 dib8000_set_dds(state
, total_dds_offset_khz
);
2754 static u16 LUT_isdbt_symbol_duration
[4] = { 26, 101, 63 };
2756 static u32
dib8000_get_symbol_duration(struct dib8000_state
*state
)
2758 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2761 switch (c
->transmission_mode
) {
2762 case TRANSMISSION_MODE_2K
:
2765 case TRANSMISSION_MODE_4K
:
2769 case TRANSMISSION_MODE_AUTO
:
2770 case TRANSMISSION_MODE_8K
:
2775 return (LUT_isdbt_symbol_duration
[i
] / (c
->bandwidth_hz
/ 1000)) + 1;
2778 static void dib8000_set_isdbt_loop_params(struct dib8000_state
*state
, enum param_loop_step loop_step
)
2780 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2781 u16 reg_32
= 0, reg_37
= 0;
2783 switch (loop_step
) {
2785 if (c
->isdbt_sb_mode
) {
2786 if (c
->isdbt_partial_reception
== 0) {
2787 reg_32
= ((11 - state
->mode
) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
2788 reg_37
= (3 << 5) | (0 << 4) | (10 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
2789 } else { /* Sound Broadcasting mode 3 seg */
2790 reg_32
= ((10 - state
->mode
) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
2791 reg_37
= (3 << 5) | (0 << 4) | (9 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */
2793 } else { /* 13-seg start conf offset loop parameters */
2794 reg_32
= ((9 - state
->mode
) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
2795 reg_37
= (3 << 5) | (0 << 4) | (8 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
2799 if (c
->isdbt_sb_mode
) {
2800 if (c
->isdbt_partial_reception
== 0) { /* Sound Broadcasting mode 1 seg */
2801 reg_32
= ((13-state
->mode
) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
2802 reg_37
= (12-state
->mode
) | ((5 + state
->mode
) << 5);
2803 } else { /* Sound Broadcasting mode 3 seg */
2804 reg_32
= ((12-state
->mode
) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
2805 reg_37
= (11-state
->mode
) | ((5 + state
->mode
) << 5);
2807 } else { /* 13 seg */
2808 reg_32
= ((11-state
->mode
) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
2809 reg_37
= ((5+state
->mode
) << 5) | (10 - state
->mode
);
2813 dib8000_write_word(state
, 32, reg_32
);
2814 dib8000_write_word(state
, 37, reg_37
);
2817 static void dib8000_demod_restart(struct dib8000_state
*state
)
2819 dib8000_write_word(state
, 770, 0x4000);
2820 dib8000_write_word(state
, 770, 0x0000);
2824 static void dib8000_set_sync_wait(struct dib8000_state
*state
)
2826 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2829 /* P_dvsy_sync_wait - reuse mode */
2830 switch (c
->transmission_mode
) {
2831 case TRANSMISSION_MODE_8K
:
2834 case TRANSMISSION_MODE_4K
:
2838 case TRANSMISSION_MODE_2K
:
2843 if (state
->cfg
.diversity_delay
== 0)
2844 sync_wait
= (sync_wait
* (1 << (c
->guard_interval
)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
2846 sync_wait
= (sync_wait
* (1 << (c
->guard_interval
)) * 3) / 2 + state
->cfg
.diversity_delay
; /* add 50% SFN margin + compensate for DVSY-fifo */
2848 dib8000_write_word(state
, 273, (dib8000_read_word(state
, 273) & 0x000f) | (sync_wait
<< 4));
2851 static unsigned long dib8000_get_timeout(struct dib8000_state
*state
, u32 delay
, enum timeout_mode mode
)
2853 if (mode
== SYMBOL_DEPENDENT_ON
)
2854 delay
*= state
->symbol_duration
;
2856 return jiffies
+ usecs_to_jiffies(delay
* 100);
2859 static s32
dib8000_get_status(struct dvb_frontend
*fe
)
2861 struct dib8000_state
*state
= fe
->demodulator_priv
;
2862 return state
->status
;
2865 static enum frontend_tune_state
dib8000_get_tune_state(struct dvb_frontend
*fe
)
2867 struct dib8000_state
*state
= fe
->demodulator_priv
;
2868 return state
->tune_state
;
2871 static int dib8000_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2873 struct dib8000_state
*state
= fe
->demodulator_priv
;
2875 state
->tune_state
= tune_state
;
2879 static int dib8000_tune_restart_from_demod(struct dvb_frontend
*fe
)
2881 struct dib8000_state
*state
= fe
->demodulator_priv
;
2883 state
->status
= FE_STATUS_TUNE_PENDING
;
2884 state
->tune_state
= CT_DEMOD_START
;
2888 static u16
dib8000_read_lock(struct dvb_frontend
*fe
)
2890 struct dib8000_state
*state
= fe
->demodulator_priv
;
2892 if (state
->revision
== 0x8090)
2893 return dib8000_read_word(state
, 570);
2894 return dib8000_read_word(state
, 568);
2897 static int dib8090p_init_sdram(struct dib8000_state
*state
)
2900 dprintk("init sdram\n");
2902 reg
= dib8000_read_word(state
, 274) & 0xfff0;
2903 dib8000_write_word(state
, 274, reg
| 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
2905 dib8000_write_word(state
, 1803, (7 << 2));
2907 reg
= dib8000_read_word(state
, 1280);
2908 dib8000_write_word(state
, 1280, reg
| (1 << 2)); /* force restart P_restart_sdram */
2909 dib8000_write_word(state
, 1280, reg
); /* release restart P_restart_sdram */
2915 * is_manual_mode - Check if TMCC should be used for parameters settings
2916 * @c: struct dvb_frontend_properties
2918 * By default, TMCC table should be used for parameter settings on most
2919 * usercases. However, sometimes it is desirable to lock the demod to
2920 * use the manual parameters.
2922 * On manual mode, the current dib8000_tune state machine is very restrict:
2923 * It requires that both per-layer and per-transponder parameters to be
2924 * properly specified, otherwise the device won't lock.
2926 * Check if all those conditions are properly satisfied before allowing
2927 * the device to use the manual frequency lock mode.
2929 static int is_manual_mode(struct dtv_frontend_properties
*c
)
2933 /* Use auto mode on DVB-T compat mode */
2934 if (c
->delivery_system
!= SYS_ISDBT
)
2938 * Transmission mode is only detected on auto mode, currently
2940 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2941 dprintk("transmission mode auto\n");
2946 * Guard interval is only detected on auto mode, currently
2948 if (c
->guard_interval
== GUARD_INTERVAL_AUTO
) {
2949 dprintk("guard interval auto\n");
2954 * If no layer is enabled, assume auto mode, as at least one
2955 * layer should be enabled
2957 if (!c
->isdbt_layer_enabled
) {
2958 dprintk("no layer modulation specified\n");
2963 * Check if the per-layer parameters aren't auto and
2964 * disable a layer if segment count is 0 or invalid.
2966 for (i
= 0; i
< 3; i
++) {
2967 if (!(c
->isdbt_layer_enabled
& 1 << i
))
2970 if ((c
->layer
[i
].segment_count
> 13) ||
2971 (c
->layer
[i
].segment_count
== 0)) {
2972 c
->isdbt_layer_enabled
&= ~(1 << i
);
2976 n_segs
+= c
->layer
[i
].segment_count
;
2978 if ((c
->layer
[i
].modulation
== QAM_AUTO
) ||
2979 (c
->layer
[i
].fec
== FEC_AUTO
)) {
2980 dprintk("layer %c has either modulation or FEC auto\n",
2987 * Userspace specified a wrong number of segments.
2988 * fallback to auto mode.
2990 if (n_segs
== 0 || n_segs
> 13) {
2991 dprintk("number of segments is invalid\n");
2995 /* Everything looks ok for manual mode */
2999 static int dib8000_tune(struct dvb_frontend
*fe
)
3001 struct dib8000_state
*state
= fe
->demodulator_priv
;
3002 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3003 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
3005 u16 locks
, deeper_interleaver
= 0, i
;
3006 int ret
= 1; /* 1 symbol duration (in 100us unit) delay most of the time */
3008 unsigned long *timeout
= &state
->timeout
;
3009 unsigned long now
= jiffies
;
3010 #ifdef DIB8000_AGC_FREEZE
3014 u32 corm
[4] = {0, 0, 0, 0};
3015 u8 find_index
, max_value
;
3018 if (*tune_state
< CT_DEMOD_STOP
)
3019 dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n",
3020 state
->channel_parameters_set
, *tune_state
, state
->autosearch_state
, now
);
3023 switch (*tune_state
) {
3024 case CT_DEMOD_START
: /* 30 */
3025 dib8000_reset_stats(fe
);
3027 if (state
->revision
== 0x8090)
3028 dib8090p_init_sdram(state
);
3029 state
->status
= FE_STATUS_TUNE_PENDING
;
3030 state
->channel_parameters_set
= is_manual_mode(c
);
3032 dprintk("Tuning channel on %s search mode\n",
3033 state
->channel_parameters_set
? "manual" : "auto");
3035 dib8000_viterbi_state(state
, 0); /* force chan dec in restart */
3038 dib8000_write_word(state
, 285, dib8000_read_word(state
, 285) & 0x60);
3040 dib8000_set_frequency_offset(state
);
3041 dib8000_set_bandwidth(fe
, c
->bandwidth_hz
/ 1000);
3043 if (state
->channel_parameters_set
== 0) { /* The channel struct is unknown, search it ! */
3044 #ifdef DIB8000_AGC_FREEZE
3045 if (state
->revision
!= 0x8090) {
3046 state
->agc1_max
= dib8000_read_word(state
, 108);
3047 state
->agc1_min
= dib8000_read_word(state
, 109);
3048 state
->agc2_max
= dib8000_read_word(state
, 110);
3049 state
->agc2_min
= dib8000_read_word(state
, 111);
3050 agc1
= dib8000_read_word(state
, 388);
3051 agc2
= dib8000_read_word(state
, 389);
3052 dib8000_write_word(state
, 108, agc1
);
3053 dib8000_write_word(state
, 109, agc1
);
3054 dib8000_write_word(state
, 110, agc2
);
3055 dib8000_write_word(state
, 111, agc2
);
3058 state
->autosearch_state
= AS_SEARCHING_FFT
;
3059 state
->found_nfft
= TRANSMISSION_MODE_AUTO
;
3060 state
->found_guard
= GUARD_INTERVAL_AUTO
;
3061 *tune_state
= CT_DEMOD_SEARCH_NEXT
;
3062 } else { /* we already know the channel struct so TUNE only ! */
3063 state
->autosearch_state
= AS_DONE
;
3064 *tune_state
= CT_DEMOD_STEP_3
;
3066 state
->symbol_duration
= dib8000_get_symbol_duration(state
);
3069 case CT_DEMOD_SEARCH_NEXT
: /* 51 */
3070 dib8000_autosearch_start(fe
);
3071 if (state
->revision
== 0x8090)
3075 *tune_state
= CT_DEMOD_STEP_1
;
3078 case CT_DEMOD_STEP_1
: /* 31 */
3079 switch (dib8000_autosearch_irq(fe
)) {
3081 state
->status
= FE_STATUS_TUNE_FAILED
;
3082 state
->autosearch_state
= AS_DONE
;
3083 *tune_state
= CT_DEMOD_STOP
; /* else we are done here */
3085 case 2: /* Succes */
3086 state
->status
= FE_STATUS_FFT_SUCCESS
; /* signal to the upper layer, that there was a channel found and the parameters can be read */
3087 *tune_state
= CT_DEMOD_STEP_3
;
3088 if (state
->autosearch_state
== AS_SEARCHING_GUARD
)
3089 *tune_state
= CT_DEMOD_STEP_2
;
3091 state
->autosearch_state
= AS_DONE
;
3093 case 3: /* Autosearch FFT max correlation endded */
3094 *tune_state
= CT_DEMOD_STEP_2
;
3099 case CT_DEMOD_STEP_2
:
3100 switch (state
->autosearch_state
) {
3101 case AS_SEARCHING_FFT
:
3102 /* searching for the correct FFT */
3103 if (state
->revision
== 0x8090) {
3104 corm
[2] = (dib8000_read_word(state
, 596) << 16) | (dib8000_read_word(state
, 597));
3105 corm
[1] = (dib8000_read_word(state
, 598) << 16) | (dib8000_read_word(state
, 599));
3106 corm
[0] = (dib8000_read_word(state
, 600) << 16) | (dib8000_read_word(state
, 601));
3108 corm
[2] = (dib8000_read_word(state
, 594) << 16) | (dib8000_read_word(state
, 595));
3109 corm
[1] = (dib8000_read_word(state
, 596) << 16) | (dib8000_read_word(state
, 597));
3110 corm
[0] = (dib8000_read_word(state
, 598) << 16) | (dib8000_read_word(state
, 599));
3112 /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */
3115 for (find_index
= 1 ; find_index
< 3 ; find_index
++) {
3116 if (corm
[max_value
] < corm
[find_index
])
3117 max_value
= find_index
;
3120 switch (max_value
) {
3122 state
->found_nfft
= TRANSMISSION_MODE_2K
;
3125 state
->found_nfft
= TRANSMISSION_MODE_4K
;
3129 state
->found_nfft
= TRANSMISSION_MODE_8K
;
3132 /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */
3134 *tune_state
= CT_DEMOD_SEARCH_NEXT
;
3135 state
->autosearch_state
= AS_SEARCHING_GUARD
;
3136 if (state
->revision
== 0x8090)
3141 case AS_SEARCHING_GUARD
:
3142 /* searching for the correct guard interval */
3143 if (state
->revision
== 0x8090)
3144 state
->found_guard
= dib8000_read_word(state
, 572) & 0x3;
3146 state
->found_guard
= dib8000_read_word(state
, 570) & 0x3;
3147 /* dprintk("guard interval found=%i\n", state->found_guard); */
3149 *tune_state
= CT_DEMOD_STEP_3
;
3152 /* the demod should never be in this state */
3153 state
->status
= FE_STATUS_TUNE_FAILED
;
3154 state
->autosearch_state
= AS_DONE
;
3155 *tune_state
= CT_DEMOD_STOP
; /* else we are done here */
3160 case CT_DEMOD_STEP_3
: /* 33 */
3161 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_1
);
3162 dib8000_set_isdbt_common_channel(state
, 0, 0);/* setting the known channel parameters here */
3163 *tune_state
= CT_DEMOD_STEP_4
;
3166 case CT_DEMOD_STEP_4
: /* (34) */
3167 dib8000_demod_restart(state
);
3169 dib8000_set_sync_wait(state
);
3170 dib8000_set_diversity_in(state
->fe
[0], state
->diversity_onoff
);
3172 locks
= (dib8000_read_word(state
, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
3173 /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
3174 *timeout
= dib8000_get_timeout(state
, 2 * locks
, SYMBOL_DEPENDENT_ON
);
3175 *tune_state
= CT_DEMOD_STEP_5
;
3178 case CT_DEMOD_STEP_5
: /* (35) */
3179 locks
= dib8000_read_lock(fe
);
3180 if (locks
& (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
3181 dib8000_update_timf(state
); /* we achieved a coff_cpil_lock - it's time to update the timf */
3182 if (!state
->differential_constellation
) {
3183 /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
3184 *timeout
= dib8000_get_timeout(state
, (20 * ((dib8000_read_word(state
, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON
);
3185 *tune_state
= CT_DEMOD_STEP_7
;
3187 *tune_state
= CT_DEMOD_STEP_8
;
3189 } else if (time_after(now
, *timeout
)) {
3190 *tune_state
= CT_DEMOD_STEP_6
; /* goto check for diversity input connection */
3194 case CT_DEMOD_STEP_6
: /* (36) if there is an input (diversity) */
3195 if ((state
->fe
[1] != NULL
) && (state
->output_mode
!= OUTMODE_DIVERSITY
)) {
3196 /* if there is a diversity fe in input and this fe is has not already failled : wait here until this this fe has succedeed or failled */
3197 if (dib8000_get_status(state
->fe
[1]) <= FE_STATUS_STD_SUCCESS
) /* Something is locked on the input fe */
3198 *tune_state
= CT_DEMOD_STEP_8
; /* go for mpeg */
3199 else if (dib8000_get_status(state
->fe
[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT
) { /* fe in input failled also, break the current one */
3200 *tune_state
= CT_DEMOD_STOP
; /* else we are done here ; step 8 will close the loops and exit */
3201 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3202 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3203 state
->status
= FE_STATUS_TUNE_FAILED
;
3206 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3207 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3208 *tune_state
= CT_DEMOD_STOP
; /* else we are done here ; step 8 will close the loops and exit */
3209 state
->status
= FE_STATUS_TUNE_FAILED
;
3213 case CT_DEMOD_STEP_7
: /* 37 */
3214 locks
= dib8000_read_lock(fe
);
3215 if (locks
& (1<<10)) { /* lmod4_lock */
3216 ret
= 14; /* wait for 14 symbols */
3217 *tune_state
= CT_DEMOD_STEP_8
;
3218 } else if (time_after(now
, *timeout
))
3219 *tune_state
= CT_DEMOD_STEP_6
; /* goto check for diversity input connection */
3222 case CT_DEMOD_STEP_8
: /* 38 */
3223 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3224 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3226 /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
3227 if (c
->isdbt_sb_mode
3228 && c
->isdbt_sb_subchannel
< 14
3229 && !state
->differential_constellation
) {
3230 state
->subchannel
= 0;
3231 *tune_state
= CT_DEMOD_STEP_11
;
3233 *tune_state
= CT_DEMOD_STEP_9
;
3234 state
->status
= FE_STATUS_LOCKED
;
3238 case CT_DEMOD_STEP_9
: /* 39 */
3239 if ((state
->revision
== 0x8090) || ((dib8000_read_word(state
, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
3240 /* defines timeout for mpeg lock depending on interleaver length of longest layer */
3241 for (i
= 0; i
< 3; i
++) {
3242 if (c
->layer
[i
].interleaving
>= deeper_interleaver
) {
3243 dprintk("layer%i: time interleaver = %d\n", i
, c
->layer
[i
].interleaving
);
3244 if (c
->layer
[i
].segment_count
> 0) { /* valid layer */
3245 deeper_interleaver
= c
->layer
[0].interleaving
;
3246 state
->longest_intlv_layer
= i
;
3251 if (deeper_interleaver
== 0)
3252 locks
= 2; /* locks is the tmp local variable name */
3253 else if (deeper_interleaver
== 3)
3256 locks
= 2 * deeper_interleaver
;
3258 if (state
->diversity_onoff
!= 0) /* because of diversity sync */
3261 *timeout
= now
+ msecs_to_jiffies(200 * locks
); /* give the mpeg lock 800ms if sram is present */
3262 dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n",
3263 deeper_interleaver
, state
->longest_intlv_layer
, locks
, *timeout
);
3265 *tune_state
= CT_DEMOD_STEP_10
;
3267 *tune_state
= CT_DEMOD_STOP
;
3270 case CT_DEMOD_STEP_10
: /* 40 */
3271 locks
= dib8000_read_lock(fe
);
3272 if (locks
&(1<<(7-state
->longest_intlv_layer
))) { /* mpeg lock : check the longest one */
3273 dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n",
3274 c
->layer
[0].segment_count
? (locks
>> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3275 c
->layer
[1].segment_count
? (locks
>> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3276 c
->layer
[2].segment_count
? (locks
>> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3277 if (c
->isdbt_sb_mode
3278 && c
->isdbt_sb_subchannel
< 14
3279 && !state
->differential_constellation
)
3280 /* signal to the upper layer, that there was a channel found and the parameters can be read */
3281 state
->status
= FE_STATUS_DEMOD_SUCCESS
;
3283 state
->status
= FE_STATUS_DATA_LOCKED
;
3284 *tune_state
= CT_DEMOD_STOP
;
3285 } else if (time_after(now
, *timeout
)) {
3286 if (c
->isdbt_sb_mode
3287 && c
->isdbt_sb_subchannel
< 14
3288 && !state
->differential_constellation
) { /* continue to try init prbs autosearch */
3289 state
->subchannel
+= 3;
3290 *tune_state
= CT_DEMOD_STEP_11
;
3291 } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
3292 if (locks
& (0x7 << 5)) {
3293 dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n",
3294 jiffies_to_msecs(now
- *timeout
),
3295 c
->layer
[0].segment_count
? (locks
>> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3296 c
->layer
[1].segment_count
? (locks
>> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3297 c
->layer
[2].segment_count
? (locks
>> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3299 state
->status
= FE_STATUS_DATA_LOCKED
;
3301 state
->status
= FE_STATUS_TUNE_FAILED
;
3302 *tune_state
= CT_DEMOD_STOP
;
3307 case CT_DEMOD_STEP_11
: /* 41 : init prbs autosearch */
3308 if (state
->subchannel
<= 41) {
3309 dib8000_set_subchannel_prbs(state
, dib8000_get_init_prbs(state
, state
->subchannel
));
3310 *tune_state
= CT_DEMOD_STEP_9
;
3312 *tune_state
= CT_DEMOD_STOP
;
3313 state
->status
= FE_STATUS_TUNE_FAILED
;
3321 /* tuning is finished - cleanup the demod */
3322 switch (*tune_state
) {
3323 case CT_DEMOD_STOP
: /* (42) */
3324 #ifdef DIB8000_AGC_FREEZE
3325 if ((state
->revision
!= 0x8090) && (state
->agc1_max
!= 0)) {
3326 dib8000_write_word(state
, 108, state
->agc1_max
);
3327 dib8000_write_word(state
, 109, state
->agc1_min
);
3328 dib8000_write_word(state
, 110, state
->agc2_max
);
3329 dib8000_write_word(state
, 111, state
->agc2_min
);
3330 state
->agc1_max
= 0;
3331 state
->agc1_min
= 0;
3332 state
->agc2_max
= 0;
3333 state
->agc2_min
= 0;
3342 if ((ret
> 0) && (*tune_state
> CT_DEMOD_STEP_3
))
3343 return ret
* state
->symbol_duration
;
3344 if ((ret
> 0) && (ret
< state
->symbol_duration
))
3345 return state
->symbol_duration
; /* at least one symbol */
3349 static int dib8000_wakeup(struct dvb_frontend
*fe
)
3351 struct dib8000_state
*state
= fe
->demodulator_priv
;
3355 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
3356 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
3357 if (dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
) != 0)
3358 dprintk("could not start Slow ADC\n");
3360 if (state
->revision
== 0x8090)
3361 dib8000_sad_calib(state
);
3363 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3364 ret
= state
->fe
[index_frontend
]->ops
.init(state
->fe
[index_frontend
]);
3372 static int dib8000_sleep(struct dvb_frontend
*fe
)
3374 struct dib8000_state
*state
= fe
->demodulator_priv
;
3378 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3379 ret
= state
->fe
[index_frontend
]->ops
.sleep(state
->fe
[index_frontend
]);
3384 if (state
->revision
!= 0x8090)
3385 dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
);
3386 dib8000_set_power_mode(state
, DIB8000_POWER_INTERFACE_ONLY
);
3387 return dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
) | dib8000_set_adc_state(state
, DIBX000_ADC_OFF
);
3390 static int dib8000_read_status(struct dvb_frontend
*fe
, enum fe_status
*stat
);
3392 static int dib8000_get_frontend(struct dvb_frontend
*fe
,
3393 struct dtv_frontend_properties
*c
)
3395 struct dib8000_state
*state
= fe
->demodulator_priv
;
3397 enum fe_status stat
= 0;
3398 u8 index_frontend
, sub_index_frontend
;
3400 c
->bandwidth_hz
= 6000000;
3403 * If called to early, get_frontend makes dib8000_tune to either
3404 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
3405 * So, let's just return if frontend 0 has not locked.
3407 dib8000_read_status(fe
, &stat
);
3408 if (!(stat
& FE_HAS_SYNC
))
3411 dprintk("dib8000_get_frontend: TMCC lock\n");
3412 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3413 state
->fe
[index_frontend
]->ops
.read_status(state
->fe
[index_frontend
], &stat
);
3414 if (stat
&FE_HAS_SYNC
) {
3415 dprintk("TMCC lock on the slave%i\n", index_frontend
);
3416 /* synchronize the cache with the other frontends */
3417 state
->fe
[index_frontend
]->ops
.get_frontend(state
->fe
[index_frontend
], c
);
3418 for (sub_index_frontend
= 0; (sub_index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[sub_index_frontend
] != NULL
); sub_index_frontend
++) {
3419 if (sub_index_frontend
!= index_frontend
) {
3420 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
;
3421 state
->fe
[sub_index_frontend
]->dtv_property_cache
.inversion
= state
->fe
[index_frontend
]->dtv_property_cache
.inversion
;
3422 state
->fe
[sub_index_frontend
]->dtv_property_cache
.transmission_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
;
3423 state
->fe
[sub_index_frontend
]->dtv_property_cache
.guard_interval
= state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
;
3424 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
;
3425 for (i
= 0; i
< 3; i
++) {
3426 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
;
3427 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
;
3428 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].fec
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
;
3429 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
;
3437 c
->isdbt_sb_mode
= dib8000_read_word(state
, 508) & 0x1;
3439 if (state
->revision
== 0x8090)
3440 val
= dib8000_read_word(state
, 572);
3442 val
= dib8000_read_word(state
, 570);
3443 c
->inversion
= (val
& 0x40) >> 6;
3444 switch ((val
& 0x30) >> 4) {
3446 c
->transmission_mode
= TRANSMISSION_MODE_2K
;
3447 dprintk("dib8000_get_frontend: transmission mode 2K\n");
3450 c
->transmission_mode
= TRANSMISSION_MODE_4K
;
3451 dprintk("dib8000_get_frontend: transmission mode 4K\n");
3455 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
3456 dprintk("dib8000_get_frontend: transmission mode 8K\n");
3460 switch (val
& 0x3) {
3462 c
->guard_interval
= GUARD_INTERVAL_1_32
;
3463 dprintk("dib8000_get_frontend: Guard Interval = 1/32\n");
3466 c
->guard_interval
= GUARD_INTERVAL_1_16
;
3467 dprintk("dib8000_get_frontend: Guard Interval = 1/16\n");
3470 dprintk("dib8000_get_frontend: Guard Interval = 1/8\n");
3471 c
->guard_interval
= GUARD_INTERVAL_1_8
;
3474 dprintk("dib8000_get_frontend: Guard Interval = 1/4\n");
3475 c
->guard_interval
= GUARD_INTERVAL_1_4
;
3479 val
= dib8000_read_word(state
, 505);
3480 c
->isdbt_partial_reception
= val
& 1;
3481 dprintk("dib8000_get_frontend: partial_reception = %d\n", c
->isdbt_partial_reception
);
3483 for (i
= 0; i
< 3; i
++) {
3486 val
= dib8000_read_word(state
, 493 + i
) & 0x0f;
3487 c
->layer
[i
].segment_count
= val
;
3489 if (val
== 0 || val
> 13)
3495 dprintk("dib8000_get_frontend: Layer %d segments = %d\n",
3496 i
, c
->layer
[i
].segment_count
);
3498 val
= dib8000_read_word(state
, 499 + i
) & 0x3;
3499 /* Interleaving can be 0, 1, 2 or 4 */
3502 c
->layer
[i
].interleaving
= val
;
3504 dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n",
3505 i
, c
->layer
[i
].interleaving
);
3507 val
= dib8000_read_word(state
, 481 + i
);
3508 switch (val
& 0x7) {
3510 c
->layer
[i
].fec
= FEC_1_2
;
3512 dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i
);
3515 c
->layer
[i
].fec
= FEC_2_3
;
3517 dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i
);
3520 c
->layer
[i
].fec
= FEC_3_4
;
3522 dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i
);
3525 c
->layer
[i
].fec
= FEC_5_6
;
3527 dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i
);
3530 c
->layer
[i
].fec
= FEC_7_8
;
3532 dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i
);
3536 val
= dib8000_read_word(state
, 487 + i
);
3537 switch (val
& 0x3) {
3539 c
->layer
[i
].modulation
= DQPSK
;
3541 dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i
);
3544 c
->layer
[i
].modulation
= QPSK
;
3546 dprintk("dib8000_get_frontend: Layer %d QPSK\n", i
);
3549 c
->layer
[i
].modulation
= QAM_16
;
3551 dprintk("dib8000_get_frontend: Layer %d QAM16\n", i
);
3555 c
->layer
[i
].modulation
= QAM_64
;
3557 dprintk("dib8000_get_frontend: Layer %d QAM64\n", i
);
3562 /* synchronize the cache with the other frontends */
3563 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3564 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= c
->isdbt_sb_mode
;
3565 state
->fe
[index_frontend
]->dtv_property_cache
.inversion
= c
->inversion
;
3566 state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
= c
->transmission_mode
;
3567 state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
= c
->guard_interval
;
3568 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= c
->isdbt_partial_reception
;
3569 for (i
= 0; i
< 3; i
++) {
3570 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= c
->layer
[i
].segment_count
;
3571 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= c
->layer
[i
].interleaving
;
3572 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
= c
->layer
[i
].fec
;
3573 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= c
->layer
[i
].modulation
;
3579 static int dib8000_set_frontend(struct dvb_frontend
*fe
)
3581 struct dib8000_state
*state
= fe
->demodulator_priv
;
3582 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3583 int l
, i
, active
, time
, time_slave
= 0;
3584 u8 exit_condition
, index_frontend
;
3585 unsigned long delay
, callback_time
;
3587 if (c
->frequency
== 0) {
3588 dprintk("dib8000: must at least specify frequency\n");
3592 if (c
->bandwidth_hz
== 0) {
3593 dprintk("dib8000: no bandwidth specified, set to default\n");
3594 c
->bandwidth_hz
= 6000000;
3597 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3598 /* synchronization of the cache */
3599 state
->fe
[index_frontend
]->dtv_property_cache
.delivery_system
= SYS_ISDBT
;
3600 memcpy(&state
->fe
[index_frontend
]->dtv_property_cache
, &fe
->dtv_property_cache
, sizeof(struct dtv_frontend_properties
));
3602 /* set output mode and diversity input */
3603 if (state
->revision
!= 0x8090) {
3604 dib8000_set_diversity_in(state
->fe
[index_frontend
], 1);
3605 if (index_frontend
!= 0)
3606 dib8000_set_output_mode(state
->fe
[index_frontend
],
3609 dib8000_set_output_mode(state
->fe
[0], OUTMODE_HIGH_Z
);
3611 dib8096p_set_diversity_in(state
->fe
[index_frontend
], 1);
3612 if (index_frontend
!= 0)
3613 dib8096p_set_output_mode(state
->fe
[index_frontend
],
3616 dib8096p_set_output_mode(state
->fe
[0], OUTMODE_HIGH_Z
);
3619 /* tune the tuner */
3620 if (state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params
)
3621 state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params(state
->fe
[index_frontend
]);
3623 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_AGC_START
);
3626 /* turn off the diversity of the last chip */
3627 if (state
->revision
!= 0x8090)
3628 dib8000_set_diversity_in(state
->fe
[index_frontend
- 1], 0);
3630 dib8096p_set_diversity_in(state
->fe
[index_frontend
- 1], 0);
3632 /* start up the AGC */
3634 time
= dib8000_agc_startup(state
->fe
[0]);
3635 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3636 time_slave
= dib8000_agc_startup(state
->fe
[index_frontend
]);
3639 else if ((time_slave
!= 0) && (time_slave
> time
))
3646 * Despite dib8000_agc_startup returns time at a 0.1 ms range,
3647 * the actual sleep time depends on CONFIG_HZ. The worse case
3648 * is when CONFIG_HZ=100. In such case, the minimum granularity
3649 * is 10ms. On some real field tests, the tuner sometimes don't
3650 * lock when this timer is lower than 10ms. So, enforce a 10ms
3653 time
= 10 * (time
+ 99)/100;
3654 usleep_range(time
* 1000, (time
+ 1) * 1000);
3656 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3657 if (dib8000_get_tune_state(state
->fe
[index_frontend
]) != CT_AGC_STOP
) {
3662 } while (exit_condition
== 0);
3664 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3665 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_DEMOD_START
);
3670 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3671 delay
= dib8000_tune(state
->fe
[index_frontend
]);
3673 delay
= jiffies
+ usecs_to_jiffies(100 * delay
);
3674 if (!callback_time
|| delay
< callback_time
)
3675 callback_time
= delay
;
3678 /* we are in autosearch */
3679 if (state
->channel_parameters_set
== 0) { /* searching */
3680 if ((dib8000_get_status(state
->fe
[index_frontend
]) == FE_STATUS_DEMOD_SUCCESS
) || (dib8000_get_status(state
->fe
[index_frontend
]) == FE_STATUS_FFT_SUCCESS
)) {
3681 dprintk("autosearch succeeded on fe%i\n", index_frontend
);
3682 dib8000_get_frontend(state
->fe
[index_frontend
], c
); /* we read the channel parameters from the frontend which was successful */
3683 state
->channel_parameters_set
= 1;
3685 for (l
= 0; (l
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[l
] != NULL
); l
++) {
3686 if (l
!= index_frontend
) { /* and for all frontend except the successful one */
3687 dprintk("Restarting frontend %d\n", l
);
3688 dib8000_tune_restart_from_demod(state
->fe
[l
]);
3690 state
->fe
[l
]->dtv_property_cache
.isdbt_sb_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
;
3691 state
->fe
[l
]->dtv_property_cache
.inversion
= state
->fe
[index_frontend
]->dtv_property_cache
.inversion
;
3692 state
->fe
[l
]->dtv_property_cache
.transmission_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
;
3693 state
->fe
[l
]->dtv_property_cache
.guard_interval
= state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
;
3694 state
->fe
[l
]->dtv_property_cache
.isdbt_partial_reception
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
;
3695 for (i
= 0; i
< 3; i
++) {
3696 state
->fe
[l
]->dtv_property_cache
.layer
[i
].segment_count
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
;
3697 state
->fe
[l
]->dtv_property_cache
.layer
[i
].interleaving
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
;
3698 state
->fe
[l
]->dtv_property_cache
.layer
[i
].fec
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
;
3699 state
->fe
[l
]->dtv_property_cache
.layer
[i
].modulation
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
;
3707 /* tuning is done when the master frontend is done (failed or success) */
3708 if (dib8000_get_status(state
->fe
[0]) == FE_STATUS_TUNE_FAILED
||
3709 dib8000_get_status(state
->fe
[0]) == FE_STATUS_LOCKED
||
3710 dib8000_get_status(state
->fe
[0]) == FE_STATUS_DATA_LOCKED
) {
3712 /* we need to wait for all frontends to be finished */
3713 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3714 if (dib8000_get_tune_state(state
->fe
[index_frontend
]) != CT_DEMOD_STOP
)
3718 dprintk("tuning done with status %d\n", dib8000_get_status(state
->fe
[0]));
3721 if ((active
== 1) && (callback_time
== 0)) {
3722 dprintk("strange callback time something went wrong\n");
3726 while ((active
== 1) && (time_before(jiffies
, callback_time
)))
3730 /* set output mode */
3731 if (state
->revision
!= 0x8090)
3732 dib8000_set_output_mode(state
->fe
[0], state
->cfg
.output_mode
);
3734 dib8096p_set_output_mode(state
->fe
[0], state
->cfg
.output_mode
);
3735 if (state
->cfg
.enMpegOutput
== 0) {
3736 dib8096p_setDibTxMux(state
, MPEG_ON_DIBTX
);
3737 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
3744 static int dib8000_get_stats(struct dvb_frontend
*fe
, enum fe_status stat
);
3746 static int dib8000_read_status(struct dvb_frontend
*fe
, enum fe_status
*stat
)
3748 struct dib8000_state
*state
= fe
->demodulator_priv
;
3749 u16 lock_slave
= 0, lock
;
3752 lock
= dib8000_read_lock(fe
);
3753 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3754 lock_slave
|= dib8000_read_lock(state
->fe
[index_frontend
]);
3758 if (((lock
>> 13) & 1) || ((lock_slave
>> 13) & 1))
3759 *stat
|= FE_HAS_SIGNAL
;
3761 if (((lock
>> 8) & 1) || ((lock_slave
>> 8) & 1)) /* Equal */
3762 *stat
|= FE_HAS_CARRIER
;
3764 if ((((lock
>> 1) & 0xf) == 0xf) || (((lock_slave
>> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
3765 *stat
|= FE_HAS_SYNC
;
3767 if ((((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) && ((lock
>> 5) & 7)) /* FEC MPEG */
3768 *stat
|= FE_HAS_LOCK
;
3770 if (((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) {
3771 lock
= dib8000_read_word(state
, 554); /* Viterbi Layer A */
3773 *stat
|= FE_HAS_VITERBI
;
3775 lock
= dib8000_read_word(state
, 555); /* Viterbi Layer B */
3777 *stat
|= FE_HAS_VITERBI
;
3779 lock
= dib8000_read_word(state
, 556); /* Viterbi Layer C */
3781 *stat
|= FE_HAS_VITERBI
;
3783 dib8000_get_stats(fe
, *stat
);
3788 static int dib8000_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
3790 struct dib8000_state
*state
= fe
->demodulator_priv
;
3793 if (state
->revision
== 0x8090)
3794 *ber
= (dib8000_read_word(state
, 562) << 16) |
3795 dib8000_read_word(state
, 563);
3797 *ber
= (dib8000_read_word(state
, 560) << 16) |
3798 dib8000_read_word(state
, 561);
3802 static int dib8000_read_unc_blocks(struct dvb_frontend
*fe
, u32
* unc
)
3804 struct dib8000_state
*state
= fe
->demodulator_priv
;
3806 /* packet error on 13 seg */
3807 if (state
->revision
== 0x8090)
3808 *unc
= dib8000_read_word(state
, 567);
3810 *unc
= dib8000_read_word(state
, 565);
3814 static int dib8000_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
3816 struct dib8000_state
*state
= fe
->demodulator_priv
;
3821 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3822 state
->fe
[index_frontend
]->ops
.read_signal_strength(state
->fe
[index_frontend
], &val
);
3823 if (val
> 65535 - *strength
)
3829 val
= 65535 - dib8000_read_word(state
, 390);
3830 if (val
> 65535 - *strength
)
3837 static u32
dib8000_get_snr(struct dvb_frontend
*fe
)
3839 struct dib8000_state
*state
= fe
->demodulator_priv
;
3843 if (state
->revision
!= 0x8090)
3844 val
= dib8000_read_word(state
, 542);
3846 val
= dib8000_read_word(state
, 544);
3847 n
= (val
>> 6) & 0xff;
3849 if ((exp
& 0x20) != 0)
3853 if (state
->revision
!= 0x8090)
3854 val
= dib8000_read_word(state
, 543);
3856 val
= dib8000_read_word(state
, 545);
3857 s
= (val
>> 6) & 0xff;
3859 if ((exp
& 0x20) != 0)
3864 u32 t
= (s
/n
) << 16;
3865 return t
+ ((s
<< 16) - n
*t
) / n
;
3870 static int dib8000_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
3872 struct dib8000_state
*state
= fe
->demodulator_priv
;
3876 snr_master
= dib8000_get_snr(fe
);
3877 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3878 snr_master
+= dib8000_get_snr(state
->fe
[index_frontend
]);
3880 if ((snr_master
>> 16) != 0) {
3881 snr_master
= 10*intlog10(snr_master
>>16);
3882 *snr
= snr_master
/ ((1 << 24) / 10);
3890 struct per_layer_regs
{
3894 static const struct per_layer_regs per_layer_regs
[] = {
3900 struct linear_segments
{
3906 * Table to estimate signal strength in dBm.
3907 * This table was empirically determinated by measuring the signal
3908 * strength generated by a DTA-2111 RF generator directly connected into
3909 * a dib8076 device (a PixelView PV-D231U stick), using a good quality
3910 * 3 meters RC6 cable and good RC6 connectors.
3911 * The real value can actually be different on other devices, depending
3912 * on several factors, like if LNA is enabled or not, if diversity is
3913 * enabled, type of connectors, etc.
3914 * Yet, it is better to use this measure in dB than a random non-linear
3915 * percentage value, especially for antenna adjustments.
3916 * On my tests, the precision of the measure using this table is about
3917 * 0.5 dB, with sounds reasonable enough.
3919 static struct linear_segments strength_to_db_table
[] = {
3920 { 55953, 108500 }, /* -22.5 dBm */
3933 { 50117, 96000 }, /* -35 dBm */
3949 { 42010, 80000 }, /* -51 dBm */
3953 static u32
interpolate_value(u32 value
, struct linear_segments
*segments
,
3961 if (value
>= segments
[0].x
)
3962 return segments
[0].y
;
3963 if (value
< segments
[len
-1].x
)
3964 return segments
[len
-1].y
;
3966 for (i
= 1; i
< len
- 1; i
++) {
3967 /* If value is identical, no need to interpolate */
3968 if (value
== segments
[i
].x
)
3969 return segments
[i
].y
;
3970 if (value
> segments
[i
].x
)
3974 /* Linear interpolation between the two (x,y) points */
3975 dy
= segments
[i
- 1].y
- segments
[i
].y
;
3976 dx
= segments
[i
- 1].x
- segments
[i
].x
;
3978 tmp64
= value
- segments
[i
].x
;
3981 ret
= segments
[i
].y
+ tmp64
;
3986 static u32
dib8000_get_time_us(struct dvb_frontend
*fe
, int layer
)
3988 struct dib8000_state
*state
= fe
->demodulator_priv
;
3989 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3990 int ini_layer
, end_layer
, i
;
3993 int guard
, rate_num
, rate_denum
= 1, bits_per_symbol
, nsegs
;
3994 int interleaving
= 0, fft_div
;
3998 end_layer
= layer
+ 1;
4004 switch (c
->guard_interval
) {
4005 case GUARD_INTERVAL_1_4
:
4008 case GUARD_INTERVAL_1_8
:
4011 case GUARD_INTERVAL_1_16
:
4015 case GUARD_INTERVAL_1_32
:
4020 switch (c
->transmission_mode
) {
4021 case TRANSMISSION_MODE_2K
:
4024 case TRANSMISSION_MODE_4K
:
4028 case TRANSMISSION_MODE_8K
:
4034 for (i
= ini_layer
; i
< end_layer
; i
++) {
4035 nsegs
= c
->layer
[i
].segment_count
;
4036 if (nsegs
== 0 || nsegs
> 13)
4039 switch (c
->layer
[i
].modulation
) {
4042 bits_per_symbol
= 2;
4045 bits_per_symbol
= 4;
4049 bits_per_symbol
= 6;
4053 switch (c
->layer
[i
].fec
) {
4077 interleaving
= c
->layer
[i
].interleaving
;
4079 denom
+= bits_per_symbol
* rate_num
* fft_div
* nsegs
* 384;
4082 /* If all goes wrong, wait for 1s for the next stats */
4086 /* Estimate the period for the total bit rate */
4087 time_us
= rate_denum
* (1008 * 1562500L);
4089 do_div(tmp64
, guard
);
4090 time_us
= time_us
+ tmp64
;
4091 time_us
+= denom
/ 2;
4092 do_div(time_us
, denom
);
4094 tmp
= 1008 * 96 * interleaving
;
4095 time_us
+= tmp
+ tmp
/ guard
;
4100 static int dib8000_get_stats(struct dvb_frontend
*fe
, enum fe_status stat
)
4102 struct dib8000_state
*state
= fe
->demodulator_priv
;
4103 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
4105 int show_per_stats
= 0;
4106 u32 time_us
= 0, snr
, val
;
4111 /* Get Signal strength */
4112 dib8000_read_signal_strength(fe
, &strength
);
4114 db
= interpolate_value(val
,
4115 strength_to_db_table
,
4116 ARRAY_SIZE(strength_to_db_table
)) - 131000;
4117 c
->strength
.stat
[0].svalue
= db
;
4119 /* UCB/BER/CNR measures require lock */
4120 if (!(stat
& FE_HAS_LOCK
)) {
4122 c
->block_count
.len
= 1;
4123 c
->block_error
.len
= 1;
4124 c
->post_bit_error
.len
= 1;
4125 c
->post_bit_count
.len
= 1;
4126 c
->cnr
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4127 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4128 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4129 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4130 c
->block_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4134 /* Check if time for stats was elapsed */
4135 if (time_after(jiffies
, state
->per_jiffies_stats
)) {
4136 state
->per_jiffies_stats
= jiffies
+ msecs_to_jiffies(1000);
4139 snr
= dib8000_get_snr(fe
);
4140 for (i
= 1; i
< MAX_NUMBER_OF_FRONTENDS
; i
++) {
4142 snr
+= dib8000_get_snr(state
->fe
[i
]);
4147 snr
= 10 * intlog10(snr
);
4148 snr
= (1000L * snr
) >> 24;
4152 c
->cnr
.stat
[0].svalue
= snr
;
4153 c
->cnr
.stat
[0].scale
= FE_SCALE_DECIBEL
;
4155 /* Get UCB measures */
4156 dib8000_read_unc_blocks(fe
, &val
);
4157 if (val
< state
->init_ucb
)
4158 state
->init_ucb
+= 0x100000000LL
;
4160 c
->block_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
4161 c
->block_error
.stat
[0].uvalue
= val
+ state
->init_ucb
;
4163 /* Estimate the number of packets based on bitrate */
4165 time_us
= dib8000_get_time_us(fe
, -1);
4168 blocks
= 1250000ULL * 1000000ULL;
4169 do_div(blocks
, time_us
* 8 * 204);
4170 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4171 c
->block_count
.stat
[0].uvalue
+= blocks
;
4177 /* Get post-BER measures */
4178 if (time_after(jiffies
, state
->ber_jiffies_stats
)) {
4179 time_us
= dib8000_get_time_us(fe
, -1);
4180 state
->ber_jiffies_stats
= jiffies
+ msecs_to_jiffies((time_us
+ 500) / 1000);
4182 dprintk("Next all layers stats available in %u us.\n", time_us
);
4184 dib8000_read_ber(fe
, &val
);
4185 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
4186 c
->post_bit_error
.stat
[0].uvalue
+= val
;
4188 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4189 c
->post_bit_count
.stat
[0].uvalue
+= 100000000;
4192 if (state
->revision
< 0x8002)
4195 c
->block_error
.len
= 4;
4196 c
->post_bit_error
.len
= 4;
4197 c
->post_bit_count
.len
= 4;
4199 for (i
= 0; i
< 3; i
++) {
4200 unsigned nsegs
= c
->layer
[i
].segment_count
;
4202 if (nsegs
== 0 || nsegs
> 13)
4207 if (time_after(jiffies
, state
->ber_jiffies_stats_layer
[i
])) {
4208 time_us
= dib8000_get_time_us(fe
, i
);
4210 state
->ber_jiffies_stats_layer
[i
] = jiffies
+ msecs_to_jiffies((time_us
+ 500) / 1000);
4211 dprintk("Next layer %c stats will be available in %u us\n",
4214 val
= dib8000_read_word(state
, per_layer_regs
[i
].ber
);
4215 c
->post_bit_error
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4216 c
->post_bit_error
.stat
[1 + i
].uvalue
+= val
;
4218 c
->post_bit_count
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4219 c
->post_bit_count
.stat
[1 + i
].uvalue
+= 100000000;
4222 if (show_per_stats
) {
4223 val
= dib8000_read_word(state
, per_layer_regs
[i
].per
);
4225 c
->block_error
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4226 c
->block_error
.stat
[1 + i
].uvalue
+= val
;
4229 time_us
= dib8000_get_time_us(fe
, i
);
4231 blocks
= 1250000ULL * 1000000ULL;
4232 do_div(blocks
, time_us
* 8 * 204);
4233 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4234 c
->block_count
.stat
[0].uvalue
+= blocks
;
4241 static int dib8000_set_slave_frontend(struct dvb_frontend
*fe
, struct dvb_frontend
*fe_slave
)
4243 struct dib8000_state
*state
= fe
->demodulator_priv
;
4244 u8 index_frontend
= 1;
4246 while ((index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
))
4248 if (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) {
4249 dprintk("set slave fe %p to index %i\n", fe_slave
, index_frontend
);
4250 state
->fe
[index_frontend
] = fe_slave
;
4254 dprintk("too many slave frontend\n");
4258 static struct dvb_frontend
*dib8000_get_slave_frontend(struct dvb_frontend
*fe
, int slave_index
)
4260 struct dib8000_state
*state
= fe
->demodulator_priv
;
4262 if (slave_index
>= MAX_NUMBER_OF_FRONTENDS
)
4264 return state
->fe
[slave_index
];
4267 static int dib8000_i2c_enumeration(struct i2c_adapter
*host
, int no_of_demods
,
4268 u8 default_addr
, u8 first_addr
, u8 is_dib8096p
)
4272 struct i2c_device client
= {.adap
= host
};
4274 client
.i2c_write_buffer
= kzalloc(4 * sizeof(u8
), GFP_KERNEL
);
4275 if (!client
.i2c_write_buffer
) {
4276 dprintk("%s: not enough memory\n", __func__
);
4279 client
.i2c_read_buffer
= kzalloc(4 * sizeof(u8
), GFP_KERNEL
);
4280 if (!client
.i2c_read_buffer
) {
4281 dprintk("%s: not enough memory\n", __func__
);
4283 goto error_memory_read
;
4285 client
.i2c_buffer_lock
= kzalloc(sizeof(struct mutex
), GFP_KERNEL
);
4286 if (!client
.i2c_buffer_lock
) {
4287 dprintk("%s: not enough memory\n", __func__
);
4289 goto error_memory_lock
;
4291 mutex_init(client
.i2c_buffer_lock
);
4293 for (k
= no_of_demods
- 1; k
>= 0; k
--) {
4294 /* designated i2c address */
4295 new_addr
= first_addr
+ (k
<< 1);
4297 client
.addr
= new_addr
;
4299 dib8000_i2c_write16(&client
, 1287, 0x0003); /* sram lead in, rdy */
4300 if (dib8000_identify(&client
) == 0) {
4301 /* sram lead in, rdy */
4303 dib8000_i2c_write16(&client
, 1287, 0x0003);
4304 client
.addr
= default_addr
;
4305 if (dib8000_identify(&client
) == 0) {
4306 dprintk("#%d: not identified\n", k
);
4312 /* start diversity to pull_down div_str - just for i2c-enumeration */
4313 dib8000_i2c_write16(&client
, 1286, (1 << 10) | (4 << 6));
4315 /* set new i2c address and force divstart */
4316 dib8000_i2c_write16(&client
, 1285, (new_addr
<< 2) | 0x2);
4317 client
.addr
= new_addr
;
4318 dib8000_identify(&client
);
4320 dprintk("IC %d initialized (to i2c_address 0x%x)\n", k
, new_addr
);
4323 for (k
= 0; k
< no_of_demods
; k
++) {
4324 new_addr
= first_addr
| (k
<< 1);
4325 client
.addr
= new_addr
;
4328 dib8000_i2c_write16(&client
, 1285, new_addr
<< 2);
4330 /* deactivate div - it was just for i2c-enumeration */
4331 dib8000_i2c_write16(&client
, 1286, 0);
4335 kfree(client
.i2c_buffer_lock
);
4337 kfree(client
.i2c_read_buffer
);
4339 kfree(client
.i2c_write_buffer
);
4344 static int dib8000_fe_get_tune_settings(struct dvb_frontend
*fe
, struct dvb_frontend_tune_settings
*tune
)
4346 tune
->min_delay_ms
= 1000;
4347 tune
->step_size
= 0;
4348 tune
->max_drift
= 0;
4352 static void dib8000_release(struct dvb_frontend
*fe
)
4354 struct dib8000_state
*st
= fe
->demodulator_priv
;
4357 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (st
->fe
[index_frontend
] != NULL
); index_frontend
++)
4358 dvb_frontend_detach(st
->fe
[index_frontend
]);
4360 dibx000_exit_i2c_master(&st
->i2c_master
);
4361 i2c_del_adapter(&st
->dib8096p_tuner_adap
);
4366 static struct i2c_adapter
*dib8000_get_i2c_master(struct dvb_frontend
*fe
, enum dibx000_i2c_interface intf
, int gating
)
4368 struct dib8000_state
*st
= fe
->demodulator_priv
;
4369 return dibx000_get_i2c_adapter(&st
->i2c_master
, intf
, gating
);
4372 static int dib8000_pid_filter_ctrl(struct dvb_frontend
*fe
, u8 onoff
)
4374 struct dib8000_state
*st
= fe
->demodulator_priv
;
4375 u16 val
= dib8000_read_word(st
, 299) & 0xffef;
4376 val
|= (onoff
& 0x1) << 4;
4378 dprintk("pid filter enabled %d\n", onoff
);
4379 return dib8000_write_word(st
, 299, val
);
4382 static int dib8000_pid_filter(struct dvb_frontend
*fe
, u8 id
, u16 pid
, u8 onoff
)
4384 struct dib8000_state
*st
= fe
->demodulator_priv
;
4385 dprintk("Index %x, PID %d, OnOff %d\n", id
, pid
, onoff
);
4386 return dib8000_write_word(st
, 305 + id
, onoff
? (1 << 13) | pid
: 0);
4389 static const struct dvb_frontend_ops dib8000_ops
= {
4390 .delsys
= { SYS_ISDBT
},
4392 .name
= "DiBcom 8000 ISDB-T",
4393 .frequency_min
= 44250000,
4394 .frequency_max
= 867250000,
4395 .frequency_stepsize
= 62500,
4396 .caps
= FE_CAN_INVERSION_AUTO
|
4397 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
4398 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
4399 FE_CAN_QPSK
| FE_CAN_QAM_16
| FE_CAN_QAM_64
| FE_CAN_QAM_AUTO
|
4400 FE_CAN_TRANSMISSION_MODE_AUTO
| FE_CAN_GUARD_INTERVAL_AUTO
| FE_CAN_RECOVER
| FE_CAN_HIERARCHY_AUTO
,
4403 .release
= dib8000_release
,
4405 .init
= dib8000_wakeup
,
4406 .sleep
= dib8000_sleep
,
4408 .set_frontend
= dib8000_set_frontend
,
4409 .get_tune_settings
= dib8000_fe_get_tune_settings
,
4410 .get_frontend
= dib8000_get_frontend
,
4412 .read_status
= dib8000_read_status
,
4413 .read_ber
= dib8000_read_ber
,
4414 .read_signal_strength
= dib8000_read_signal_strength
,
4415 .read_snr
= dib8000_read_snr
,
4416 .read_ucblocks
= dib8000_read_unc_blocks
,
4419 static struct dvb_frontend
*dib8000_init(struct i2c_adapter
*i2c_adap
, u8 i2c_addr
, struct dib8000_config
*cfg
)
4421 struct dvb_frontend
*fe
;
4422 struct dib8000_state
*state
;
4424 dprintk("dib8000_init\n");
4426 state
= kzalloc(sizeof(struct dib8000_state
), GFP_KERNEL
);
4429 fe
= kzalloc(sizeof(struct dvb_frontend
), GFP_KERNEL
);
4433 memcpy(&state
->cfg
, cfg
, sizeof(struct dib8000_config
));
4434 state
->i2c
.adap
= i2c_adap
;
4435 state
->i2c
.addr
= i2c_addr
;
4436 state
->i2c
.i2c_write_buffer
= state
->i2c_write_buffer
;
4437 state
->i2c
.i2c_read_buffer
= state
->i2c_read_buffer
;
4438 mutex_init(&state
->i2c_buffer_lock
);
4439 state
->i2c
.i2c_buffer_lock
= &state
->i2c_buffer_lock
;
4440 state
->gpio_val
= cfg
->gpio_val
;
4441 state
->gpio_dir
= cfg
->gpio_dir
;
4443 /* Ensure the output mode remains at the previous default if it's
4444 * not specifically set by the caller.
4446 if ((state
->cfg
.output_mode
!= OUTMODE_MPEG2_SERIAL
) && (state
->cfg
.output_mode
!= OUTMODE_MPEG2_PAR_GATED_CLK
))
4447 state
->cfg
.output_mode
= OUTMODE_MPEG2_FIFO
;
4450 fe
->demodulator_priv
= state
;
4451 memcpy(&state
->fe
[0]->ops
, &dib8000_ops
, sizeof(struct dvb_frontend_ops
));
4453 state
->timf_default
= cfg
->pll
->timf
;
4455 if (dib8000_identify(&state
->i2c
) == 0)
4458 dibx000_init_i2c_master(&state
->i2c_master
, DIB8000
, state
->i2c
.adap
, state
->i2c
.addr
);
4460 /* init 8096p tuner adapter */
4461 strncpy(state
->dib8096p_tuner_adap
.name
, "DiB8096P tuner interface",
4462 sizeof(state
->dib8096p_tuner_adap
.name
));
4463 state
->dib8096p_tuner_adap
.algo
= &dib8096p_tuner_xfer_algo
;
4464 state
->dib8096p_tuner_adap
.algo_data
= NULL
;
4465 state
->dib8096p_tuner_adap
.dev
.parent
= state
->i2c
.adap
->dev
.parent
;
4466 i2c_set_adapdata(&state
->dib8096p_tuner_adap
, state
);
4467 i2c_add_adapter(&state
->dib8096p_tuner_adap
);
4471 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
4472 state
->current_demod_bw
= 6000;
4481 void *dib8000_attach(struct dib8000_ops
*ops
)
4486 ops
->pwm_agc_reset
= dib8000_pwm_agc_reset
;
4487 ops
->get_dc_power
= dib8090p_get_dc_power
;
4488 ops
->set_gpio
= dib8000_set_gpio
;
4489 ops
->get_slave_frontend
= dib8000_get_slave_frontend
;
4490 ops
->set_tune_state
= dib8000_set_tune_state
;
4491 ops
->pid_filter_ctrl
= dib8000_pid_filter_ctrl
;
4492 ops
->get_adc_power
= dib8000_get_adc_power
;
4493 ops
->update_pll
= dib8000_update_pll
;
4494 ops
->tuner_sleep
= dib8096p_tuner_sleep
;
4495 ops
->get_tune_state
= dib8000_get_tune_state
;
4496 ops
->get_i2c_tuner
= dib8096p_get_i2c_tuner
;
4497 ops
->set_slave_frontend
= dib8000_set_slave_frontend
;
4498 ops
->pid_filter
= dib8000_pid_filter
;
4499 ops
->ctrl_timf
= dib8000_ctrl_timf
;
4500 ops
->init
= dib8000_init
;
4501 ops
->get_i2c_master
= dib8000_get_i2c_master
;
4502 ops
->i2c_enumeration
= dib8000_i2c_enumeration
;
4503 ops
->set_wbd_ref
= dib8000_set_wbd_ref
;
4507 EXPORT_SYMBOL(dib8000_attach
);
4509 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
4510 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
4511 MODULE_LICENSE("GPL");