2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * The UBI Eraseblock Association (EBA) sub-system.
24 * This sub-system is responsible for I/O to/from logical eraseblock.
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
53 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54 * @pnum: the physical eraseblock number attached to the LEB
56 * This structure is encoding a LEB -> PEB association. Note that the LEB
57 * number is not stored here, because it is the index used to access the
60 struct ubi_eba_entry
{
65 * struct ubi_eba_table - LEB -> PEB association information
66 * @entries: the LEB to PEB mapping (one entry per LEB).
68 * This structure is private to the EBA logic and should be kept here.
69 * It is encoding the LEB to PEB association table, and is subject to
72 struct ubi_eba_table
{
73 struct ubi_eba_entry
*entries
;
77 * next_sqnum - get next sequence number.
78 * @ubi: UBI device description object
80 * This function returns next sequence number to use, which is just the current
81 * global sequence counter value. It also increases the global sequence
84 unsigned long long ubi_next_sqnum(struct ubi_device
*ubi
)
86 unsigned long long sqnum
;
88 spin_lock(&ubi
->ltree_lock
);
89 sqnum
= ubi
->global_sqnum
++;
90 spin_unlock(&ubi
->ltree_lock
);
96 * ubi_get_compat - get compatibility flags of a volume.
97 * @ubi: UBI device description object
100 * This function returns compatibility flags for an internal volume. User
101 * volumes have no compatibility flags, so %0 is returned.
103 static int ubi_get_compat(const struct ubi_device
*ubi
, int vol_id
)
105 if (vol_id
== UBI_LAYOUT_VOLUME_ID
)
106 return UBI_LAYOUT_VOLUME_COMPAT
;
111 * ubi_eba_get_ldesc - get information about a LEB
112 * @vol: volume description object
113 * @lnum: logical eraseblock number
114 * @ldesc: the LEB descriptor to fill
116 * Used to query information about a specific LEB.
117 * It is currently only returning the physical position of the LEB, but will be
118 * extended to provide more information.
120 void ubi_eba_get_ldesc(struct ubi_volume
*vol
, int lnum
,
121 struct ubi_eba_leb_desc
*ldesc
)
124 ldesc
->pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
128 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
130 * @vol: volume containing the EBA table to copy
131 * @nentries: number of entries in the table
133 * Allocate a new EBA table and initialize it with all LEBs unmapped.
134 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
136 struct ubi_eba_table
*ubi_eba_create_table(struct ubi_volume
*vol
,
139 struct ubi_eba_table
*tbl
;
143 tbl
= kzalloc(sizeof(*tbl
), GFP_KERNEL
);
145 return ERR_PTR(-ENOMEM
);
147 tbl
->entries
= kmalloc_array(nentries
, sizeof(*tbl
->entries
),
152 for (i
= 0; i
< nentries
; i
++)
153 tbl
->entries
[i
].pnum
= UBI_LEB_UNMAPPED
;
165 * ubi_eba_destroy_table - destroy an EBA table
166 * @tbl: the table to destroy
168 * Destroy an EBA table.
170 void ubi_eba_destroy_table(struct ubi_eba_table
*tbl
)
180 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181 * @vol: volume containing the EBA table to copy
183 * @nentries: number of entries to copy
185 * Copy the EBA table stored in vol into the one pointed by dst.
187 void ubi_eba_copy_table(struct ubi_volume
*vol
, struct ubi_eba_table
*dst
,
190 struct ubi_eba_table
*src
;
193 ubi_assert(dst
&& vol
&& vol
->eba_tbl
);
197 for (i
= 0; i
< nentries
; i
++)
198 dst
->entries
[i
].pnum
= src
->entries
[i
].pnum
;
202 * ubi_eba_replace_table - assign a new EBA table to a volume
203 * @vol: volume containing the EBA table to copy
204 * @tbl: new EBA table
206 * Assign a new EBA table to the volume and release the old one.
208 void ubi_eba_replace_table(struct ubi_volume
*vol
, struct ubi_eba_table
*tbl
)
210 ubi_eba_destroy_table(vol
->eba_tbl
);
215 * ltree_lookup - look up the lock tree.
216 * @ubi: UBI device description object
218 * @lnum: logical eraseblock number
220 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221 * object if the logical eraseblock is locked and %NULL if it is not.
222 * @ubi->ltree_lock has to be locked.
224 static struct ubi_ltree_entry
*ltree_lookup(struct ubi_device
*ubi
, int vol_id
,
229 p
= ubi
->ltree
.rb_node
;
231 struct ubi_ltree_entry
*le
;
233 le
= rb_entry(p
, struct ubi_ltree_entry
, rb
);
235 if (vol_id
< le
->vol_id
)
237 else if (vol_id
> le
->vol_id
)
242 else if (lnum
> le
->lnum
)
253 * ltree_add_entry - add new entry to the lock tree.
254 * @ubi: UBI device description object
256 * @lnum: logical eraseblock number
258 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259 * lock tree. If such entry is already there, its usage counter is increased.
260 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
263 static struct ubi_ltree_entry
*ltree_add_entry(struct ubi_device
*ubi
,
264 int vol_id
, int lnum
)
266 struct ubi_ltree_entry
*le
, *le1
, *le_free
;
268 le
= kmalloc(sizeof(struct ubi_ltree_entry
), GFP_NOFS
);
270 return ERR_PTR(-ENOMEM
);
273 init_rwsem(&le
->mutex
);
277 spin_lock(&ubi
->ltree_lock
);
278 le1
= ltree_lookup(ubi
, vol_id
, lnum
);
282 * This logical eraseblock is already locked. The newly
283 * allocated lock entry is not needed.
288 struct rb_node
**p
, *parent
= NULL
;
291 * No lock entry, add the newly allocated one to the
292 * @ubi->ltree RB-tree.
296 p
= &ubi
->ltree
.rb_node
;
299 le1
= rb_entry(parent
, struct ubi_ltree_entry
, rb
);
301 if (vol_id
< le1
->vol_id
)
303 else if (vol_id
> le1
->vol_id
)
306 ubi_assert(lnum
!= le1
->lnum
);
307 if (lnum
< le1
->lnum
)
314 rb_link_node(&le
->rb
, parent
, p
);
315 rb_insert_color(&le
->rb
, &ubi
->ltree
);
318 spin_unlock(&ubi
->ltree_lock
);
325 * leb_read_lock - lock logical eraseblock for reading.
326 * @ubi: UBI device description object
328 * @lnum: logical eraseblock number
330 * This function locks a logical eraseblock for reading. Returns zero in case
331 * of success and a negative error code in case of failure.
333 static int leb_read_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
335 struct ubi_ltree_entry
*le
;
337 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
340 down_read(&le
->mutex
);
345 * leb_read_unlock - unlock logical eraseblock.
346 * @ubi: UBI device description object
348 * @lnum: logical eraseblock number
350 static void leb_read_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
352 struct ubi_ltree_entry
*le
;
354 spin_lock(&ubi
->ltree_lock
);
355 le
= ltree_lookup(ubi
, vol_id
, lnum
);
357 ubi_assert(le
->users
>= 0);
359 if (le
->users
== 0) {
360 rb_erase(&le
->rb
, &ubi
->ltree
);
363 spin_unlock(&ubi
->ltree_lock
);
367 * leb_write_lock - lock logical eraseblock for writing.
368 * @ubi: UBI device description object
370 * @lnum: logical eraseblock number
372 * This function locks a logical eraseblock for writing. Returns zero in case
373 * of success and a negative error code in case of failure.
375 static int leb_write_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
377 struct ubi_ltree_entry
*le
;
379 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
382 down_write(&le
->mutex
);
387 * leb_write_trylock - try to lock logical eraseblock for writing.
388 * @ubi: UBI device description object
390 * @lnum: logical eraseblock number
392 * This function locks a logical eraseblock for writing if there is no
393 * contention and does nothing if there is contention. Returns %0 in case of
394 * success, %1 in case of contention, and and a negative error code in case of
397 static int leb_write_trylock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
399 struct ubi_ltree_entry
*le
;
401 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
404 if (down_write_trylock(&le
->mutex
))
407 /* Contention, cancel */
408 spin_lock(&ubi
->ltree_lock
);
410 ubi_assert(le
->users
>= 0);
411 if (le
->users
== 0) {
412 rb_erase(&le
->rb
, &ubi
->ltree
);
415 spin_unlock(&ubi
->ltree_lock
);
421 * leb_write_unlock - unlock logical eraseblock.
422 * @ubi: UBI device description object
424 * @lnum: logical eraseblock number
426 static void leb_write_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
428 struct ubi_ltree_entry
*le
;
430 spin_lock(&ubi
->ltree_lock
);
431 le
= ltree_lookup(ubi
, vol_id
, lnum
);
433 ubi_assert(le
->users
>= 0);
434 up_write(&le
->mutex
);
435 if (le
->users
== 0) {
436 rb_erase(&le
->rb
, &ubi
->ltree
);
439 spin_unlock(&ubi
->ltree_lock
);
443 * ubi_eba_is_mapped - check if a LEB is mapped.
444 * @vol: volume description object
445 * @lnum: logical eraseblock number
447 * This function returns true if the LEB is mapped, false otherwise.
449 bool ubi_eba_is_mapped(struct ubi_volume
*vol
, int lnum
)
451 return vol
->eba_tbl
->entries
[lnum
].pnum
>= 0;
455 * ubi_eba_unmap_leb - un-map logical eraseblock.
456 * @ubi: UBI device description object
457 * @vol: volume description object
458 * @lnum: logical eraseblock number
460 * This function un-maps logical eraseblock @lnum and schedules corresponding
461 * physical eraseblock for erasure. Returns zero in case of success and a
462 * negative error code in case of failure.
464 int ubi_eba_unmap_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
467 int err
, pnum
, vol_id
= vol
->vol_id
;
472 err
= leb_write_lock(ubi
, vol_id
, lnum
);
476 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
478 /* This logical eraseblock is already unmapped */
481 dbg_eba("erase LEB %d:%d, PEB %d", vol_id
, lnum
, pnum
);
483 down_read(&ubi
->fm_eba_sem
);
484 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
485 up_read(&ubi
->fm_eba_sem
);
486 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 0);
489 leb_write_unlock(ubi
, vol_id
, lnum
);
494 * ubi_eba_read_leb - read data.
495 * @ubi: UBI device description object
496 * @vol: volume description object
497 * @lnum: logical eraseblock number
498 * @buf: buffer to store the read data
499 * @offset: offset from where to read
500 * @len: how many bytes to read
501 * @check: data CRC check flag
503 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
504 * bytes. The @check flag only makes sense for static volumes and forces
505 * eraseblock data CRC checking.
507 * In case of success this function returns zero. In case of a static volume,
508 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
509 * returned for any volume type if an ECC error was detected by the MTD device
510 * driver. Other negative error cored may be returned in case of other errors.
512 int ubi_eba_read_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
513 void *buf
, int offset
, int len
, int check
)
515 int err
, pnum
, scrub
= 0, vol_id
= vol
->vol_id
;
516 struct ubi_vid_io_buf
*vidb
;
517 struct ubi_vid_hdr
*vid_hdr
;
518 uint32_t uninitialized_var(crc
);
520 err
= leb_read_lock(ubi
, vol_id
, lnum
);
524 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
527 * The logical eraseblock is not mapped, fill the whole buffer
528 * with 0xFF bytes. The exception is static volumes for which
529 * it is an error to read unmapped logical eraseblocks.
531 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
532 len
, offset
, vol_id
, lnum
);
533 leb_read_unlock(ubi
, vol_id
, lnum
);
534 ubi_assert(vol
->vol_type
!= UBI_STATIC_VOLUME
);
535 memset(buf
, 0xFF, len
);
539 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
540 len
, offset
, vol_id
, lnum
, pnum
);
542 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
547 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
553 vid_hdr
= ubi_get_vid_hdr(vidb
);
555 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
556 if (err
&& err
!= UBI_IO_BITFLIPS
) {
559 * The header is either absent or corrupted.
560 * The former case means there is a bug -
561 * switch to read-only mode just in case.
562 * The latter case means a real corruption - we
563 * may try to recover data. FIXME: but this is
566 if (err
== UBI_IO_BAD_HDR_EBADMSG
||
567 err
== UBI_IO_BAD_HDR
) {
568 ubi_warn(ubi
, "corrupted VID header at PEB %d, LEB %d:%d",
573 * Ending up here in the non-Fastmap case
574 * is a clear bug as the VID header had to
575 * be present at scan time to have it referenced.
576 * With fastmap the story is more complicated.
577 * Fastmap has the mapping info without the need
578 * of a full scan. So the LEB could have been
579 * unmapped, Fastmap cannot know this and keeps
580 * the LEB referenced.
581 * This is valid and works as the layer above UBI
582 * has to do bookkeeping about used/referenced
585 if (ubi
->fast_attach
) {
594 } else if (err
== UBI_IO_BITFLIPS
)
597 ubi_assert(lnum
< be32_to_cpu(vid_hdr
->used_ebs
));
598 ubi_assert(len
== be32_to_cpu(vid_hdr
->data_size
));
600 crc
= be32_to_cpu(vid_hdr
->data_crc
);
601 ubi_free_vid_buf(vidb
);
604 err
= ubi_io_read_data(ubi
, buf
, pnum
, offset
, len
);
606 if (err
== UBI_IO_BITFLIPS
)
608 else if (mtd_is_eccerr(err
)) {
609 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
613 ubi_msg(ubi
, "force data checking");
622 uint32_t crc1
= crc32(UBI_CRC32_INIT
, buf
, len
);
624 ubi_warn(ubi
, "CRC error: calculated %#08x, must be %#08x",
632 err
= ubi_wl_scrub_peb(ubi
, pnum
);
634 leb_read_unlock(ubi
, vol_id
, lnum
);
638 ubi_free_vid_buf(vidb
);
640 leb_read_unlock(ubi
, vol_id
, lnum
);
645 * ubi_eba_read_leb_sg - read data into a scatter gather list.
646 * @ubi: UBI device description object
647 * @vol: volume description object
648 * @lnum: logical eraseblock number
649 * @sgl: UBI scatter gather list to store the read data
650 * @offset: offset from where to read
651 * @len: how many bytes to read
652 * @check: data CRC check flag
654 * This function works exactly like ubi_eba_read_leb(). But instead of
655 * storing the read data into a buffer it writes to an UBI scatter gather
658 int ubi_eba_read_leb_sg(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
659 struct ubi_sgl
*sgl
, int lnum
, int offset
, int len
,
664 struct scatterlist
*sg
;
667 ubi_assert(sgl
->list_pos
< UBI_MAX_SG_COUNT
);
668 sg
= &sgl
->sg
[sgl
->list_pos
];
669 if (len
< sg
->length
- sgl
->page_pos
)
672 to_read
= sg
->length
- sgl
->page_pos
;
674 ret
= ubi_eba_read_leb(ubi
, vol
, lnum
,
675 sg_virt(sg
) + sgl
->page_pos
, offset
,
683 sgl
->page_pos
+= to_read
;
684 if (sgl
->page_pos
== sg
->length
) {
700 * try_recover_peb - try to recover from write failure.
701 * @vol: volume description object
702 * @pnum: the physical eraseblock to recover
703 * @lnum: logical eraseblock number
704 * @buf: data which was not written because of the write failure
705 * @offset: offset of the failed write
706 * @len: how many bytes should have been written
708 * @retry: whether the caller should retry in case of failure
710 * This function is called in case of a write failure and moves all good data
711 * from the potentially bad physical eraseblock to a good physical eraseblock.
712 * This function also writes the data which was not written due to the failure.
713 * Returns 0 in case of success, and a negative error code in case of failure.
714 * In case of failure, the %retry parameter is set to false if this is a fatal
715 * error (retrying won't help), and true otherwise.
717 static int try_recover_peb(struct ubi_volume
*vol
, int pnum
, int lnum
,
718 const void *buf
, int offset
, int len
,
719 struct ubi_vid_io_buf
*vidb
, bool *retry
)
721 struct ubi_device
*ubi
= vol
->ubi
;
722 struct ubi_vid_hdr
*vid_hdr
;
723 int new_pnum
, err
, vol_id
= vol
->vol_id
, data_size
;
728 new_pnum
= ubi_wl_get_peb(ubi
);
734 ubi_msg(ubi
, "recover PEB %d, move data to PEB %d",
737 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
738 if (err
&& err
!= UBI_IO_BITFLIPS
) {
744 vid_hdr
= ubi_get_vid_hdr(vidb
);
745 ubi_assert(vid_hdr
->vol_type
== UBI_VID_DYNAMIC
);
747 mutex_lock(&ubi
->buf_mutex
);
748 memset(ubi
->peb_buf
+ offset
, 0xFF, len
);
750 /* Read everything before the area where the write failure happened */
752 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, offset
);
753 if (err
&& err
!= UBI_IO_BITFLIPS
)
759 memcpy(ubi
->peb_buf
+ offset
, buf
, len
);
761 data_size
= offset
+ len
;
762 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
763 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
764 vid_hdr
->copy_flag
= 1;
765 vid_hdr
->data_size
= cpu_to_be32(data_size
);
766 vid_hdr
->data_crc
= cpu_to_be32(crc
);
767 err
= ubi_io_write_vid_hdr(ubi
, new_pnum
, vidb
);
771 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, new_pnum
, 0, data_size
);
774 mutex_unlock(&ubi
->buf_mutex
);
777 vol
->eba_tbl
->entries
[lnum
].pnum
= new_pnum
;
780 up_read(&ubi
->fm_eba_sem
);
783 ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
784 ubi_msg(ubi
, "data was successfully recovered");
785 } else if (new_pnum
>= 0) {
787 * Bad luck? This physical eraseblock is bad too? Crud. Let's
788 * try to get another one.
790 ubi_wl_put_peb(ubi
, vol_id
, lnum
, new_pnum
, 1);
791 ubi_warn(ubi
, "failed to write to PEB %d", new_pnum
);
798 * recover_peb - recover from write failure.
799 * @ubi: UBI device description object
800 * @pnum: the physical eraseblock to recover
802 * @lnum: logical eraseblock number
803 * @buf: data which was not written because of the write failure
804 * @offset: offset of the failed write
805 * @len: how many bytes should have been written
807 * This function is called in case of a write failure and moves all good data
808 * from the potentially bad physical eraseblock to a good physical eraseblock.
809 * This function also writes the data which was not written due to the failure.
810 * Returns 0 in case of success, and a negative error code in case of failure.
811 * This function tries %UBI_IO_RETRIES before giving up.
813 static int recover_peb(struct ubi_device
*ubi
, int pnum
, int vol_id
, int lnum
,
814 const void *buf
, int offset
, int len
)
816 int err
, idx
= vol_id2idx(ubi
, vol_id
), tries
;
817 struct ubi_volume
*vol
= ubi
->volumes
[idx
];
818 struct ubi_vid_io_buf
*vidb
;
820 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
824 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
827 err
= try_recover_peb(vol
, pnum
, lnum
, buf
, offset
, len
, vidb
,
832 ubi_msg(ubi
, "try again");
835 ubi_free_vid_buf(vidb
);
841 * try_write_vid_and_data - try to write VID header and data to a new PEB.
842 * @vol: volume description object
843 * @lnum: logical eraseblock number
844 * @vidb: the VID buffer to write
845 * @buf: buffer containing the data
846 * @offset: where to start writing data
847 * @len: how many bytes should be written
849 * This function tries to write VID header and data belonging to logical
850 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
851 * in case of success and a negative error code in case of failure.
852 * In case of error, it is possible that something was still written to the
853 * flash media, but may be some garbage.
855 static int try_write_vid_and_data(struct ubi_volume
*vol
, int lnum
,
856 struct ubi_vid_io_buf
*vidb
, const void *buf
,
859 struct ubi_device
*ubi
= vol
->ubi
;
860 int pnum
, opnum
, err
, vol_id
= vol
->vol_id
;
862 pnum
= ubi_wl_get_peb(ubi
);
868 opnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
870 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
871 len
, offset
, vol_id
, lnum
, pnum
);
873 err
= ubi_io_write_vid_hdr(ubi
, pnum
, vidb
);
875 ubi_warn(ubi
, "failed to write VID header to LEB %d:%d, PEB %d",
881 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
884 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
885 len
, offset
, vol_id
, lnum
, pnum
);
890 vol
->eba_tbl
->entries
[lnum
].pnum
= pnum
;
893 up_read(&ubi
->fm_eba_sem
);
895 if (err
&& pnum
>= 0)
896 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
897 else if (!err
&& opnum
>= 0)
898 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, opnum
, 0);
904 * ubi_eba_write_leb - write data to dynamic volume.
905 * @ubi: UBI device description object
906 * @vol: volume description object
907 * @lnum: logical eraseblock number
908 * @buf: the data to write
909 * @offset: offset within the logical eraseblock where to write
910 * @len: how many bytes to write
912 * This function writes data to logical eraseblock @lnum of a dynamic volume
913 * @vol. Returns zero in case of success and a negative error code in case
914 * of failure. In case of error, it is possible that something was still
915 * written to the flash media, but may be some garbage.
916 * This function retries %UBI_IO_RETRIES times before giving up.
918 int ubi_eba_write_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
919 const void *buf
, int offset
, int len
)
921 int err
, pnum
, tries
, vol_id
= vol
->vol_id
;
922 struct ubi_vid_io_buf
*vidb
;
923 struct ubi_vid_hdr
*vid_hdr
;
928 err
= leb_write_lock(ubi
, vol_id
, lnum
);
932 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
934 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
935 len
, offset
, vol_id
, lnum
, pnum
);
937 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
939 ubi_warn(ubi
, "failed to write data to PEB %d", pnum
);
940 if (err
== -EIO
&& ubi
->bad_allowed
)
941 err
= recover_peb(ubi
, pnum
, vol_id
, lnum
, buf
,
949 * The logical eraseblock is not mapped. We have to get a free physical
950 * eraseblock and write the volume identifier header there first.
952 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
954 leb_write_unlock(ubi
, vol_id
, lnum
);
958 vid_hdr
= ubi_get_vid_hdr(vidb
);
960 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
961 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
962 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
963 vid_hdr
->lnum
= cpu_to_be32(lnum
);
964 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
965 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
967 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
968 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, offset
, len
);
969 if (err
!= -EIO
|| !ubi
->bad_allowed
)
973 * Fortunately, this is the first write operation to this
974 * physical eraseblock, so just put it and request a new one.
975 * We assume that if this physical eraseblock went bad, the
976 * erase code will handle that.
978 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
979 ubi_msg(ubi
, "try another PEB");
982 ubi_free_vid_buf(vidb
);
988 leb_write_unlock(ubi
, vol_id
, lnum
);
994 * ubi_eba_write_leb_st - write data to static volume.
995 * @ubi: UBI device description object
996 * @vol: volume description object
997 * @lnum: logical eraseblock number
998 * @buf: data to write
999 * @len: how many bytes to write
1000 * @used_ebs: how many logical eraseblocks will this volume contain
1002 * This function writes data to logical eraseblock @lnum of static volume
1003 * @vol. The @used_ebs argument should contain total number of logical
1004 * eraseblock in this static volume.
1006 * When writing to the last logical eraseblock, the @len argument doesn't have
1007 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1008 * to the real data size, although the @buf buffer has to contain the
1009 * alignment. In all other cases, @len has to be aligned.
1011 * It is prohibited to write more than once to logical eraseblocks of static
1012 * volumes. This function returns zero in case of success and a negative error
1013 * code in case of failure.
1015 int ubi_eba_write_leb_st(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1016 int lnum
, const void *buf
, int len
, int used_ebs
)
1018 int err
, tries
, data_size
= len
, vol_id
= vol
->vol_id
;
1019 struct ubi_vid_io_buf
*vidb
;
1020 struct ubi_vid_hdr
*vid_hdr
;
1026 if (lnum
== used_ebs
- 1)
1027 /* If this is the last LEB @len may be unaligned */
1028 len
= ALIGN(data_size
, ubi
->min_io_size
);
1030 ubi_assert(!(len
& (ubi
->min_io_size
- 1)));
1032 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1036 vid_hdr
= ubi_get_vid_hdr(vidb
);
1038 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1042 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1043 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1044 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1045 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1046 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1048 crc
= crc32(UBI_CRC32_INIT
, buf
, data_size
);
1049 vid_hdr
->vol_type
= UBI_VID_STATIC
;
1050 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1051 vid_hdr
->used_ebs
= cpu_to_be32(used_ebs
);
1052 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1054 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
< 0);
1056 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1057 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1058 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1061 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1062 ubi_msg(ubi
, "try another PEB");
1068 leb_write_unlock(ubi
, vol_id
, lnum
);
1071 ubi_free_vid_buf(vidb
);
1077 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1078 * @ubi: UBI device description object
1079 * @vol: volume description object
1080 * @lnum: logical eraseblock number
1081 * @buf: data to write
1082 * @len: how many bytes to write
1084 * This function changes the contents of a logical eraseblock atomically. @buf
1085 * has to contain new logical eraseblock data, and @len - the length of the
1086 * data, which has to be aligned. This function guarantees that in case of an
1087 * unclean reboot the old contents is preserved. Returns zero in case of
1088 * success and a negative error code in case of failure.
1090 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1091 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1093 int ubi_eba_atomic_leb_change(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1094 int lnum
, const void *buf
, int len
)
1096 int err
, tries
, vol_id
= vol
->vol_id
;
1097 struct ubi_vid_io_buf
*vidb
;
1098 struct ubi_vid_hdr
*vid_hdr
;
1106 * Special case when data length is zero. In this case the LEB
1107 * has to be unmapped and mapped somewhere else.
1109 err
= ubi_eba_unmap_leb(ubi
, vol
, lnum
);
1112 return ubi_eba_write_leb(ubi
, vol
, lnum
, NULL
, 0, 0);
1115 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1119 vid_hdr
= ubi_get_vid_hdr(vidb
);
1121 mutex_lock(&ubi
->alc_mutex
);
1122 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1126 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1127 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1128 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1129 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1130 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1132 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
1133 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1134 vid_hdr
->data_size
= cpu_to_be32(len
);
1135 vid_hdr
->copy_flag
= 1;
1136 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1138 dbg_eba("change LEB %d:%d", vol_id
, lnum
);
1140 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1141 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1142 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1145 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1146 ubi_msg(ubi
, "try another PEB");
1150 * This flash device does not admit of bad eraseblocks or
1151 * something nasty and unexpected happened. Switch to read-only
1152 * mode just in case.
1157 leb_write_unlock(ubi
, vol_id
, lnum
);
1160 mutex_unlock(&ubi
->alc_mutex
);
1161 ubi_free_vid_buf(vidb
);
1166 * is_error_sane - check whether a read error is sane.
1167 * @err: code of the error happened during reading
1169 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1170 * cannot read data from the target PEB (an error @err happened). If the error
1171 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1172 * fatal and UBI will be switched to R/O mode later.
1174 * The idea is that we try not to switch to R/O mode if the read error is
1175 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1176 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1177 * mode, simply because we do not know what happened at the MTD level, and we
1178 * cannot handle this. E.g., the underlying driver may have become crazy, and
1179 * it is safer to switch to R/O mode to preserve the data.
1181 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1182 * which we have just written.
1184 static int is_error_sane(int err
)
1186 if (err
== -EIO
|| err
== -ENOMEM
|| err
== UBI_IO_BAD_HDR
||
1187 err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== -ETIMEDOUT
)
1193 * ubi_eba_copy_leb - copy logical eraseblock.
1194 * @ubi: UBI device description object
1195 * @from: physical eraseblock number from where to copy
1196 * @to: physical eraseblock number where to copy
1197 * @vid_hdr: VID header of the @from physical eraseblock
1199 * This function copies logical eraseblock from physical eraseblock @from to
1200 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1201 * function. Returns:
1202 * o %0 in case of success;
1203 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1204 * o a negative error code in case of failure.
1206 int ubi_eba_copy_leb(struct ubi_device
*ubi
, int from
, int to
,
1207 struct ubi_vid_io_buf
*vidb
)
1209 int err
, vol_id
, lnum
, data_size
, aldata_size
, idx
;
1210 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1211 struct ubi_volume
*vol
;
1214 ubi_assert(rwsem_is_locked(&ubi
->fm_eba_sem
));
1216 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
1217 lnum
= be32_to_cpu(vid_hdr
->lnum
);
1219 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id
, lnum
, from
, to
);
1221 if (vid_hdr
->vol_type
== UBI_VID_STATIC
) {
1222 data_size
= be32_to_cpu(vid_hdr
->data_size
);
1223 aldata_size
= ALIGN(data_size
, ubi
->min_io_size
);
1225 data_size
= aldata_size
=
1226 ubi
->leb_size
- be32_to_cpu(vid_hdr
->data_pad
);
1228 idx
= vol_id2idx(ubi
, vol_id
);
1229 spin_lock(&ubi
->volumes_lock
);
1231 * Note, we may race with volume deletion, which means that the volume
1232 * this logical eraseblock belongs to might be being deleted. Since the
1233 * volume deletion un-maps all the volume's logical eraseblocks, it will
1234 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1236 vol
= ubi
->volumes
[idx
];
1237 spin_unlock(&ubi
->volumes_lock
);
1239 /* No need to do further work, cancel */
1240 dbg_wl("volume %d is being removed, cancel", vol_id
);
1241 return MOVE_CANCEL_RACE
;
1245 * We do not want anybody to write to this logical eraseblock while we
1246 * are moving it, so lock it.
1248 * Note, we are using non-waiting locking here, because we cannot sleep
1249 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1250 * unmapping the LEB which is mapped to the PEB we are going to move
1251 * (@from). This task locks the LEB and goes sleep in the
1252 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1253 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1254 * LEB is already locked, we just do not move it and return
1255 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1256 * we do not know the reasons of the contention - it may be just a
1257 * normal I/O on this LEB, so we want to re-try.
1259 err
= leb_write_trylock(ubi
, vol_id
, lnum
);
1261 dbg_wl("contention on LEB %d:%d, cancel", vol_id
, lnum
);
1266 * The LEB might have been put meanwhile, and the task which put it is
1267 * probably waiting on @ubi->move_mutex. No need to continue the work,
1270 if (vol
->eba_tbl
->entries
[lnum
].pnum
!= from
) {
1271 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1272 vol_id
, lnum
, from
, vol
->eba_tbl
->entries
[lnum
].pnum
);
1273 err
= MOVE_CANCEL_RACE
;
1274 goto out_unlock_leb
;
1278 * OK, now the LEB is locked and we can safely start moving it. Since
1279 * this function utilizes the @ubi->peb_buf buffer which is shared
1280 * with some other functions - we lock the buffer by taking the
1283 mutex_lock(&ubi
->buf_mutex
);
1284 dbg_wl("read %d bytes of data", aldata_size
);
1285 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, from
, 0, aldata_size
);
1286 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1287 ubi_warn(ubi
, "error %d while reading data from PEB %d",
1289 err
= MOVE_SOURCE_RD_ERR
;
1290 goto out_unlock_buf
;
1294 * Now we have got to calculate how much data we have to copy. In
1295 * case of a static volume it is fairly easy - the VID header contains
1296 * the data size. In case of a dynamic volume it is more difficult - we
1297 * have to read the contents, cut 0xFF bytes from the end and copy only
1298 * the first part. We must do this to avoid writing 0xFF bytes as it
1299 * may have some side-effects. And not only this. It is important not
1300 * to include those 0xFFs to CRC because later the they may be filled
1303 if (vid_hdr
->vol_type
== UBI_VID_DYNAMIC
)
1304 aldata_size
= data_size
=
1305 ubi_calc_data_len(ubi
, ubi
->peb_buf
, data_size
);
1308 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
1312 * It may turn out to be that the whole @from physical eraseblock
1313 * contains only 0xFF bytes. Then we have to only write the VID header
1314 * and do not write any data. This also means we should not set
1315 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1317 if (data_size
> 0) {
1318 vid_hdr
->copy_flag
= 1;
1319 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1320 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1322 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1324 err
= ubi_io_write_vid_hdr(ubi
, to
, vidb
);
1327 err
= MOVE_TARGET_WR_ERR
;
1328 goto out_unlock_buf
;
1333 /* Read the VID header back and check if it was written correctly */
1334 err
= ubi_io_read_vid_hdr(ubi
, to
, vidb
, 1);
1336 if (err
!= UBI_IO_BITFLIPS
) {
1337 ubi_warn(ubi
, "error %d while reading VID header back from PEB %d",
1339 if (is_error_sane(err
))
1340 err
= MOVE_TARGET_RD_ERR
;
1342 err
= MOVE_TARGET_BITFLIPS
;
1343 goto out_unlock_buf
;
1346 if (data_size
> 0) {
1347 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, to
, 0, aldata_size
);
1350 err
= MOVE_TARGET_WR_ERR
;
1351 goto out_unlock_buf
;
1357 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
== from
);
1358 vol
->eba_tbl
->entries
[lnum
].pnum
= to
;
1361 mutex_unlock(&ubi
->buf_mutex
);
1363 leb_write_unlock(ubi
, vol_id
, lnum
);
1368 * print_rsvd_warning - warn about not having enough reserved PEBs.
1369 * @ubi: UBI device description object
1371 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1372 * cannot reserve enough PEBs for bad block handling. This function makes a
1373 * decision whether we have to print a warning or not. The algorithm is as
1375 * o if this is a new UBI image, then just print the warning
1376 * o if this is an UBI image which has already been used for some time, print
1377 * a warning only if we can reserve less than 10% of the expected amount of
1380 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1381 * of PEBs becomes smaller, which is normal and we do not want to scare users
1382 * with a warning every time they attach the MTD device. This was an issue
1383 * reported by real users.
1385 static void print_rsvd_warning(struct ubi_device
*ubi
,
1386 struct ubi_attach_info
*ai
)
1389 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1390 * large number to distinguish between newly flashed and used images.
1392 if (ai
->max_sqnum
> (1 << 18)) {
1393 int min
= ubi
->beb_rsvd_level
/ 10;
1397 if (ubi
->beb_rsvd_pebs
> min
)
1401 ubi_warn(ubi
, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1402 ubi
->beb_rsvd_pebs
, ubi
->beb_rsvd_level
);
1403 if (ubi
->corr_peb_count
)
1404 ubi_warn(ubi
, "%d PEBs are corrupted and not used",
1405 ubi
->corr_peb_count
);
1409 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1410 * @ubi: UBI device description object
1411 * @ai_fastmap: UBI attach info object created by fastmap
1412 * @ai_scan: UBI attach info object created by scanning
1414 * Returns < 0 in case of an internal error, 0 otherwise.
1415 * If a bad EBA table entry was found it will be printed out and
1416 * ubi_assert() triggers.
1418 int self_check_eba(struct ubi_device
*ubi
, struct ubi_attach_info
*ai_fastmap
,
1419 struct ubi_attach_info
*ai_scan
)
1421 int i
, j
, num_volumes
, ret
= 0;
1422 int **scan_eba
, **fm_eba
;
1423 struct ubi_ainf_volume
*av
;
1424 struct ubi_volume
*vol
;
1425 struct ubi_ainf_peb
*aeb
;
1428 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1430 scan_eba
= kmalloc(sizeof(*scan_eba
) * num_volumes
, GFP_KERNEL
);
1434 fm_eba
= kmalloc(sizeof(*fm_eba
) * num_volumes
, GFP_KERNEL
);
1440 for (i
= 0; i
< num_volumes
; i
++) {
1441 vol
= ubi
->volumes
[i
];
1445 scan_eba
[i
] = kmalloc(vol
->reserved_pebs
* sizeof(**scan_eba
),
1452 fm_eba
[i
] = kmalloc(vol
->reserved_pebs
* sizeof(**fm_eba
),
1459 for (j
= 0; j
< vol
->reserved_pebs
; j
++)
1460 scan_eba
[i
][j
] = fm_eba
[i
][j
] = UBI_LEB_UNMAPPED
;
1462 av
= ubi_find_av(ai_scan
, idx2vol_id(ubi
, i
));
1466 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1467 scan_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1469 av
= ubi_find_av(ai_fastmap
, idx2vol_id(ubi
, i
));
1473 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1474 fm_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1476 for (j
= 0; j
< vol
->reserved_pebs
; j
++) {
1477 if (scan_eba
[i
][j
] != fm_eba
[i
][j
]) {
1478 if (scan_eba
[i
][j
] == UBI_LEB_UNMAPPED
||
1479 fm_eba
[i
][j
] == UBI_LEB_UNMAPPED
)
1482 ubi_err(ubi
, "LEB:%i:%i is PEB:%i instead of %i!",
1483 vol
->vol_id
, j
, fm_eba
[i
][j
],
1491 for (i
= 0; i
< num_volumes
; i
++) {
1492 if (!ubi
->volumes
[i
])
1505 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1506 * @ubi: UBI device description object
1507 * @ai: attaching information
1509 * This function returns zero in case of success and a negative error code in
1512 int ubi_eba_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1514 int i
, err
, num_volumes
;
1515 struct ubi_ainf_volume
*av
;
1516 struct ubi_volume
*vol
;
1517 struct ubi_ainf_peb
*aeb
;
1520 dbg_eba("initialize EBA sub-system");
1522 spin_lock_init(&ubi
->ltree_lock
);
1523 mutex_init(&ubi
->alc_mutex
);
1524 ubi
->ltree
= RB_ROOT
;
1526 ubi
->global_sqnum
= ai
->max_sqnum
+ 1;
1527 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1529 for (i
= 0; i
< num_volumes
; i
++) {
1530 struct ubi_eba_table
*tbl
;
1532 vol
= ubi
->volumes
[i
];
1538 tbl
= ubi_eba_create_table(vol
, vol
->reserved_pebs
);
1544 ubi_eba_replace_table(vol
, tbl
);
1546 av
= ubi_find_av(ai
, idx2vol_id(ubi
, i
));
1550 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
1551 if (aeb
->lnum
>= vol
->reserved_pebs
) {
1553 * This may happen in case of an unclean reboot
1556 ubi_move_aeb_to_list(av
, aeb
, &ai
->erase
);
1558 struct ubi_eba_entry
*entry
;
1560 entry
= &vol
->eba_tbl
->entries
[aeb
->lnum
];
1561 entry
->pnum
= aeb
->pnum
;
1566 if (ubi
->avail_pebs
< EBA_RESERVED_PEBS
) {
1567 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1568 ubi
->avail_pebs
, EBA_RESERVED_PEBS
);
1569 if (ubi
->corr_peb_count
)
1570 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1571 ubi
->corr_peb_count
);
1575 ubi
->avail_pebs
-= EBA_RESERVED_PEBS
;
1576 ubi
->rsvd_pebs
+= EBA_RESERVED_PEBS
;
1578 if (ubi
->bad_allowed
) {
1579 ubi_calculate_reserved(ubi
);
1581 if (ubi
->avail_pebs
< ubi
->beb_rsvd_level
) {
1582 /* No enough free physical eraseblocks */
1583 ubi
->beb_rsvd_pebs
= ubi
->avail_pebs
;
1584 print_rsvd_warning(ubi
, ai
);
1586 ubi
->beb_rsvd_pebs
= ubi
->beb_rsvd_level
;
1588 ubi
->avail_pebs
-= ubi
->beb_rsvd_pebs
;
1589 ubi
->rsvd_pebs
+= ubi
->beb_rsvd_pebs
;
1592 dbg_eba("EBA sub-system is initialized");
1596 for (i
= 0; i
< num_volumes
; i
++) {
1597 if (!ubi
->volumes
[i
])
1599 ubi_eba_replace_table(ubi
->volumes
[i
], NULL
);