Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
blobd7c98e807ca880ab3ba51758355e5cdf6526d0c0
1 /* bnx2x_cmn.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
43 int i;
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
52 static void bnx2x_add_all_napi(struct bnx2x *bp)
54 int i;
56 /* Add NAPI objects */
57 for_each_eth_queue(bp, i) {
58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 bnx2x_poll, NAPI_POLL_WEIGHT);
63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
69 nq = 1;
71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 return nq;
75 /**
76 * bnx2x_move_fp - move content of the fastpath structure.
78 * @bp: driver handle
79 * @from: source FP index
80 * @to: destination FP index
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
86 * content.
88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
90 struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 int old_max_eth_txqs, new_max_eth_txqs;
97 int old_txdata_index = 0, new_txdata_index = 0;
98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp->napi = to_fp->napi;
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp, from_fp, sizeof(*to_fp));
105 to_fp->index = to;
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
110 to_fp->tpa_info = old_tpa_info;
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 (bp)->max_cos;
126 if (from == FCOE_IDX(bp)) {
127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
131 memcpy(&bp->bnx2x_txq[new_txdata_index],
132 &bp->bnx2x_txq[old_txdata_index],
133 sizeof(struct bnx2x_fp_txdata));
134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
140 * @bp: driver handle
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
147 if (IS_PF(bp)) {
148 u8 phy_fw_ver[PHY_FW_VER_LEN];
150 phy_fw_ver[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 phy_fw_ver, PHY_FW_VER_LEN);
153 strlcpy(buf, bp->fw_ver, buf_len);
154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 "bc %d.%d.%d%s%s",
156 (bp->common.bc_ver & 0xff0000) >> 16,
157 (bp->common.bc_ver & 0xff00) >> 8,
158 (bp->common.bc_ver & 0xff),
159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 } else {
161 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
168 * @bp: driver handle
169 * @delta: number of eth queues which were not allocated
171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
178 for (cos = 1; cos < bp->max_cos; cos++) {
179 for (i = 0; i < old_eth_num - delta; i++) {
180 struct bnx2x_fastpath *fp = &bp->fp[i];
181 int new_idx = cos * (old_eth_num - delta) + i;
183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 sizeof(struct bnx2x_fp_txdata));
185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 u16 idx, unsigned int *pkts_compl,
197 unsigned int *bytes_compl)
199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 struct eth_tx_start_bd *tx_start_bd;
201 struct eth_tx_bd *tx_data_bd;
202 struct sk_buff *skb = tx_buf->skb;
203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 int nbd;
205 u16 split_bd_len = 0;
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
208 prefetch(&skb->end);
210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata->txq_index, idx, tx_buf, skb);
213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 BNX2X_ERR("BAD nbd!\n");
219 bnx2x_panic();
221 #endif
222 new_cons = nbd + tx_buf->first_bd;
224 /* Get the next bd */
225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
227 /* Skip a parse bd... */
228 --nbd;
229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 /* Skip second parse bd... */
233 --nbd;
234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 --nbd;
242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
245 /* unmap first bd */
246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 DMA_TO_DEVICE);
250 /* now free frags */
251 while (nbd > 0) {
253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 if (--nbd)
257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
260 /* release skb */
261 WARN_ON(!skb);
262 if (likely(skb)) {
263 (*pkts_compl)++;
264 (*bytes_compl) += skb->len;
265 dev_kfree_skb_any(skb);
268 tx_buf->first_bd = 0;
269 tx_buf->skb = NULL;
271 return new_cons;
274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
276 struct netdev_queue *txq;
277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 unsigned int pkts_compl = 0, bytes_compl = 0;
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp->panic))
282 return -1;
283 #endif
285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 sw_cons = txdata->tx_pkt_cons;
289 while (sw_cons != hw_cons) {
290 u16 pkt_cons;
292 pkt_cons = TX_BD(sw_cons);
294 DP(NETIF_MSG_TX_DONE,
295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
296 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
299 &pkts_compl, &bytes_compl);
301 sw_cons++;
304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
306 txdata->tx_pkt_cons = sw_cons;
307 txdata->tx_bd_cons = bd_cons;
309 /* Need to make the tx_bd_cons update visible to start_xmit()
310 * before checking for netif_tx_queue_stopped(). Without the
311 * memory barrier, there is a small possibility that
312 * start_xmit() will miss it and cause the queue to be stopped
313 * forever.
314 * On the other hand we need an rmb() here to ensure the proper
315 * ordering of bit testing in the following
316 * netif_tx_queue_stopped(txq) call.
318 smp_mb();
320 if (unlikely(netif_tx_queue_stopped(txq))) {
321 /* Taking tx_lock() is needed to prevent re-enabling the queue
322 * while it's empty. This could have happen if rx_action() gets
323 * suspended in bnx2x_tx_int() after the condition before
324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
326 * stops the queue->sees fresh tx_bd_cons->releases the queue->
327 * sends some packets consuming the whole queue again->
328 * stops the queue
331 __netif_tx_lock(txq, smp_processor_id());
333 if ((netif_tx_queue_stopped(txq)) &&
334 (bp->state == BNX2X_STATE_OPEN) &&
335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
336 netif_tx_wake_queue(txq);
338 __netif_tx_unlock(txq);
340 return 0;
343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
344 u16 idx)
346 u16 last_max = fp->last_max_sge;
348 if (SUB_S16(idx, last_max) > 0)
349 fp->last_max_sge = idx;
352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
353 u16 sge_len,
354 struct eth_end_agg_rx_cqe *cqe)
356 struct bnx2x *bp = fp->bp;
357 u16 last_max, last_elem, first_elem;
358 u16 delta = 0;
359 u16 i;
361 if (!sge_len)
362 return;
364 /* First mark all used pages */
365 for (i = 0; i < sge_len; i++)
366 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
372 /* Here we assume that the last SGE index is the biggest */
373 prefetch((void *)(fp->sge_mask));
374 bnx2x_update_last_max_sge(fp,
375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
377 last_max = RX_SGE(fp->last_max_sge);
378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
381 /* If ring is not full */
382 if (last_elem + 1 != first_elem)
383 last_elem++;
385 /* Now update the prod */
386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
387 if (likely(fp->sge_mask[i]))
388 break;
390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
391 delta += BIT_VEC64_ELEM_SZ;
394 if (delta > 0) {
395 fp->rx_sge_prod += delta;
396 /* clear page-end entries */
397 bnx2x_clear_sge_mask_next_elems(fp);
400 DP(NETIF_MSG_RX_STATUS,
401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
402 fp->last_max_sge, fp->rx_sge_prod);
405 /* Get Toeplitz hash value in the skb using the value from the
406 * CQE (calculated by HW).
408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
409 const struct eth_fast_path_rx_cqe *cqe,
410 enum pkt_hash_types *rxhash_type)
412 /* Get Toeplitz hash from CQE */
413 if ((bp->dev->features & NETIF_F_RXHASH) &&
414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
415 enum eth_rss_hash_type htype;
417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
419 (htype == TCP_IPV6_HASH_TYPE)) ?
420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
422 return le32_to_cpu(cqe->rss_hash_result);
424 *rxhash_type = PKT_HASH_TYPE_NONE;
425 return 0;
428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
429 u16 cons, u16 prod,
430 struct eth_fast_path_rx_cqe *cqe)
432 struct bnx2x *bp = fp->bp;
433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
436 dma_addr_t mapping;
437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
438 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
440 /* print error if current state != stop */
441 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
442 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
444 /* Try to map an empty data buffer from the aggregation info */
445 mapping = dma_map_single(&bp->pdev->dev,
446 first_buf->data + NET_SKB_PAD,
447 fp->rx_buf_size, DMA_FROM_DEVICE);
449 * ...if it fails - move the skb from the consumer to the producer
450 * and set the current aggregation state as ERROR to drop it
451 * when TPA_STOP arrives.
454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
455 /* Move the BD from the consumer to the producer */
456 bnx2x_reuse_rx_data(fp, cons, prod);
457 tpa_info->tpa_state = BNX2X_TPA_ERROR;
458 return;
461 /* move empty data from pool to prod */
462 prod_rx_buf->data = first_buf->data;
463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
464 /* point prod_bd to new data */
465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
468 /* move partial skb from cons to pool (don't unmap yet) */
469 *first_buf = *cons_rx_buf;
471 /* mark bin state as START */
472 tpa_info->parsing_flags =
473 le16_to_cpu(cqe->pars_flags.flags);
474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
475 tpa_info->tpa_state = BNX2X_TPA_START;
476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
477 tpa_info->placement_offset = cqe->placement_offset;
478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
479 if (fp->mode == TPA_MODE_GRO) {
480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
482 tpa_info->gro_size = gro_size;
485 #ifdef BNX2X_STOP_ON_ERROR
486 fp->tpa_queue_used |= (1 << queue);
487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
488 fp->tpa_queue_used);
489 #endif
492 /* Timestamp option length allowed for TPA aggregation:
494 * nop nop kind length echo val
496 #define TPA_TSTAMP_OPT_LEN 12
498 * bnx2x_set_gro_params - compute GRO values
500 * @skb: packet skb
501 * @parsing_flags: parsing flags from the START CQE
502 * @len_on_bd: total length of the first packet for the
503 * aggregation.
504 * @pkt_len: length of all segments
506 * Approximate value of the MSS for this aggregation calculated using
507 * the first packet of it.
508 * Compute number of aggregated segments, and gso_type.
510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
511 u16 len_on_bd, unsigned int pkt_len,
512 u16 num_of_coalesced_segs)
514 /* TPA aggregation won't have either IP options or TCP options
515 * other than timestamp or IPv6 extension headers.
517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
520 PRS_FLAG_OVERETH_IPV6) {
521 hdrs_len += sizeof(struct ipv6hdr);
522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
523 } else {
524 hdrs_len += sizeof(struct iphdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 /* Check if there was a TCP timestamp, if there is it's will
529 * always be 12 bytes length: nop nop kind length echo val.
531 * Otherwise FW would close the aggregation.
533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
534 hdrs_len += TPA_TSTAMP_OPT_LEN;
536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
539 * to skb_shinfo(skb)->gso_segs
541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
545 u16 index, gfp_t gfp_mask)
547 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
548 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
549 struct bnx2x_alloc_pool *pool = &fp->page_pool;
550 dma_addr_t mapping;
552 if (!pool->page) {
553 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
554 if (unlikely(!pool->page))
555 return -ENOMEM;
557 pool->offset = 0;
560 mapping = dma_map_page(&bp->pdev->dev, pool->page,
561 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
562 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
563 BNX2X_ERR("Can't map sge\n");
564 return -ENOMEM;
567 sw_buf->page = pool->page;
568 sw_buf->offset = pool->offset;
570 dma_unmap_addr_set(sw_buf, mapping, mapping);
572 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
573 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
575 pool->offset += SGE_PAGE_SIZE;
576 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
577 get_page(pool->page);
578 else
579 pool->page = NULL;
580 return 0;
583 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
584 struct bnx2x_agg_info *tpa_info,
585 u16 pages,
586 struct sk_buff *skb,
587 struct eth_end_agg_rx_cqe *cqe,
588 u16 cqe_idx)
590 struct sw_rx_page *rx_pg, old_rx_pg;
591 u32 i, frag_len, frag_size;
592 int err, j, frag_id = 0;
593 u16 len_on_bd = tpa_info->len_on_bd;
594 u16 full_page = 0, gro_size = 0;
596 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
598 if (fp->mode == TPA_MODE_GRO) {
599 gro_size = tpa_info->gro_size;
600 full_page = tpa_info->full_page;
603 /* This is needed in order to enable forwarding support */
604 if (frag_size)
605 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
606 le16_to_cpu(cqe->pkt_len),
607 le16_to_cpu(cqe->num_of_coalesced_segs));
609 #ifdef BNX2X_STOP_ON_ERROR
610 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
611 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
612 pages, cqe_idx);
613 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
614 bnx2x_panic();
615 return -EINVAL;
617 #endif
619 /* Run through the SGL and compose the fragmented skb */
620 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
621 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
623 /* FW gives the indices of the SGE as if the ring is an array
624 (meaning that "next" element will consume 2 indices) */
625 if (fp->mode == TPA_MODE_GRO)
626 frag_len = min_t(u32, frag_size, (u32)full_page);
627 else /* LRO */
628 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
630 rx_pg = &fp->rx_page_ring[sge_idx];
631 old_rx_pg = *rx_pg;
633 /* If we fail to allocate a substitute page, we simply stop
634 where we are and drop the whole packet */
635 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
636 if (unlikely(err)) {
637 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
638 return err;
641 dma_unmap_page(&bp->pdev->dev,
642 dma_unmap_addr(&old_rx_pg, mapping),
643 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
644 /* Add one frag and update the appropriate fields in the skb */
645 if (fp->mode == TPA_MODE_LRO)
646 skb_fill_page_desc(skb, j, old_rx_pg.page,
647 old_rx_pg.offset, frag_len);
648 else { /* GRO */
649 int rem;
650 int offset = 0;
651 for (rem = frag_len; rem > 0; rem -= gro_size) {
652 int len = rem > gro_size ? gro_size : rem;
653 skb_fill_page_desc(skb, frag_id++,
654 old_rx_pg.page,
655 old_rx_pg.offset + offset,
656 len);
657 if (offset)
658 get_page(old_rx_pg.page);
659 offset += len;
663 skb->data_len += frag_len;
664 skb->truesize += SGE_PAGES;
665 skb->len += frag_len;
667 frag_size -= frag_len;
670 return 0;
673 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
675 if (fp->rx_frag_size)
676 skb_free_frag(data);
677 else
678 kfree(data);
681 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
683 if (fp->rx_frag_size) {
684 /* GFP_KERNEL allocations are used only during initialization */
685 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
686 return (void *)__get_free_page(gfp_mask);
688 return netdev_alloc_frag(fp->rx_frag_size);
691 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 #ifdef CONFIG_INET
695 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
697 const struct iphdr *iph = ip_hdr(skb);
698 struct tcphdr *th;
700 skb_set_transport_header(skb, sizeof(struct iphdr));
701 th = tcp_hdr(skb);
703 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
704 iph->saddr, iph->daddr, 0);
707 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
709 struct ipv6hdr *iph = ipv6_hdr(skb);
710 struct tcphdr *th;
712 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
713 th = tcp_hdr(skb);
715 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
716 &iph->saddr, &iph->daddr, 0);
719 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
720 void (*gro_func)(struct bnx2x*, struct sk_buff*))
722 skb_reset_network_header(skb);
723 gro_func(bp, skb);
724 tcp_gro_complete(skb);
726 #endif
728 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
729 struct sk_buff *skb)
731 #ifdef CONFIG_INET
732 if (skb_shinfo(skb)->gso_size) {
733 switch (be16_to_cpu(skb->protocol)) {
734 case ETH_P_IP:
735 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
736 break;
737 case ETH_P_IPV6:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
739 break;
740 default:
741 netdev_WARN_ONCE(bp->dev,
742 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
743 be16_to_cpu(skb->protocol));
746 #endif
747 skb_record_rx_queue(skb, fp->rx_queue);
748 napi_gro_receive(&fp->napi, skb);
751 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
752 struct bnx2x_agg_info *tpa_info,
753 u16 pages,
754 struct eth_end_agg_rx_cqe *cqe,
755 u16 cqe_idx)
757 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
758 u8 pad = tpa_info->placement_offset;
759 u16 len = tpa_info->len_on_bd;
760 struct sk_buff *skb = NULL;
761 u8 *new_data, *data = rx_buf->data;
762 u8 old_tpa_state = tpa_info->tpa_state;
764 tpa_info->tpa_state = BNX2X_TPA_STOP;
766 /* If we there was an error during the handling of the TPA_START -
767 * drop this aggregation.
769 if (old_tpa_state == BNX2X_TPA_ERROR)
770 goto drop;
772 /* Try to allocate the new data */
773 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
774 /* Unmap skb in the pool anyway, as we are going to change
775 pool entry status to BNX2X_TPA_STOP even if new skb allocation
776 fails. */
777 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
778 fp->rx_buf_size, DMA_FROM_DEVICE);
779 if (likely(new_data))
780 skb = build_skb(data, fp->rx_frag_size);
782 if (likely(skb)) {
783 #ifdef BNX2X_STOP_ON_ERROR
784 if (pad + len > fp->rx_buf_size) {
785 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
786 pad, len, fp->rx_buf_size);
787 bnx2x_panic();
788 return;
790 #endif
792 skb_reserve(skb, pad + NET_SKB_PAD);
793 skb_put(skb, len);
794 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
796 skb->protocol = eth_type_trans(skb, bp->dev);
797 skb->ip_summed = CHECKSUM_UNNECESSARY;
799 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
800 skb, cqe, cqe_idx)) {
801 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
803 bnx2x_gro_receive(bp, fp, skb);
804 } else {
805 DP(NETIF_MSG_RX_STATUS,
806 "Failed to allocate new pages - dropping packet!\n");
807 dev_kfree_skb_any(skb);
810 /* put new data in bin */
811 rx_buf->data = new_data;
813 return;
815 if (new_data)
816 bnx2x_frag_free(fp, new_data);
817 drop:
818 /* drop the packet and keep the buffer in the bin */
819 DP(NETIF_MSG_RX_STATUS,
820 "Failed to allocate or map a new skb - dropping packet!\n");
821 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
825 u16 index, gfp_t gfp_mask)
827 u8 *data;
828 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
829 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
830 dma_addr_t mapping;
832 data = bnx2x_frag_alloc(fp, gfp_mask);
833 if (unlikely(data == NULL))
834 return -ENOMEM;
836 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
837 fp->rx_buf_size,
838 DMA_FROM_DEVICE);
839 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
840 bnx2x_frag_free(fp, data);
841 BNX2X_ERR("Can't map rx data\n");
842 return -ENOMEM;
845 rx_buf->data = data;
846 dma_unmap_addr_set(rx_buf, mapping, mapping);
848 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
849 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
851 return 0;
854 static
855 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
856 struct bnx2x_fastpath *fp,
857 struct bnx2x_eth_q_stats *qstats)
859 /* Do nothing if no L4 csum validation was done.
860 * We do not check whether IP csum was validated. For IPv4 we assume
861 * that if the card got as far as validating the L4 csum, it also
862 * validated the IP csum. IPv6 has no IP csum.
864 if (cqe->fast_path_cqe.status_flags &
865 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
866 return;
868 /* If L4 validation was done, check if an error was found. */
870 if (cqe->fast_path_cqe.type_error_flags &
871 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
872 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
873 qstats->hw_csum_err++;
874 else
875 skb->ip_summed = CHECKSUM_UNNECESSARY;
878 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
880 struct bnx2x *bp = fp->bp;
881 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
882 u16 sw_comp_cons, sw_comp_prod;
883 int rx_pkt = 0;
884 union eth_rx_cqe *cqe;
885 struct eth_fast_path_rx_cqe *cqe_fp;
887 #ifdef BNX2X_STOP_ON_ERROR
888 if (unlikely(bp->panic))
889 return 0;
890 #endif
891 if (budget <= 0)
892 return rx_pkt;
894 bd_cons = fp->rx_bd_cons;
895 bd_prod = fp->rx_bd_prod;
896 bd_prod_fw = bd_prod;
897 sw_comp_cons = fp->rx_comp_cons;
898 sw_comp_prod = fp->rx_comp_prod;
900 comp_ring_cons = RCQ_BD(sw_comp_cons);
901 cqe = &fp->rx_comp_ring[comp_ring_cons];
902 cqe_fp = &cqe->fast_path_cqe;
904 DP(NETIF_MSG_RX_STATUS,
905 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
907 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
908 struct sw_rx_bd *rx_buf = NULL;
909 struct sk_buff *skb;
910 u8 cqe_fp_flags;
911 enum eth_rx_cqe_type cqe_fp_type;
912 u16 len, pad, queue;
913 u8 *data;
914 u32 rxhash;
915 enum pkt_hash_types rxhash_type;
917 #ifdef BNX2X_STOP_ON_ERROR
918 if (unlikely(bp->panic))
919 return 0;
920 #endif
922 bd_prod = RX_BD(bd_prod);
923 bd_cons = RX_BD(bd_cons);
925 /* A rmb() is required to ensure that the CQE is not read
926 * before it is written by the adapter DMA. PCI ordering
927 * rules will make sure the other fields are written before
928 * the marker at the end of struct eth_fast_path_rx_cqe
929 * but without rmb() a weakly ordered processor can process
930 * stale data. Without the barrier TPA state-machine might
931 * enter inconsistent state and kernel stack might be
932 * provided with incorrect packet description - these lead
933 * to various kernel crashed.
935 rmb();
937 cqe_fp_flags = cqe_fp->type_error_flags;
938 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
940 DP(NETIF_MSG_RX_STATUS,
941 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
942 CQE_TYPE(cqe_fp_flags),
943 cqe_fp_flags, cqe_fp->status_flags,
944 le32_to_cpu(cqe_fp->rss_hash_result),
945 le16_to_cpu(cqe_fp->vlan_tag),
946 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
948 /* is this a slowpath msg? */
949 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
950 bnx2x_sp_event(fp, cqe);
951 goto next_cqe;
954 rx_buf = &fp->rx_buf_ring[bd_cons];
955 data = rx_buf->data;
957 if (!CQE_TYPE_FAST(cqe_fp_type)) {
958 struct bnx2x_agg_info *tpa_info;
959 u16 frag_size, pages;
960 #ifdef BNX2X_STOP_ON_ERROR
961 /* sanity check */
962 if (fp->mode == TPA_MODE_DISABLED &&
963 (CQE_TYPE_START(cqe_fp_type) ||
964 CQE_TYPE_STOP(cqe_fp_type)))
965 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
966 CQE_TYPE(cqe_fp_type));
967 #endif
969 if (CQE_TYPE_START(cqe_fp_type)) {
970 u16 queue = cqe_fp->queue_index;
971 DP(NETIF_MSG_RX_STATUS,
972 "calling tpa_start on queue %d\n",
973 queue);
975 bnx2x_tpa_start(fp, queue,
976 bd_cons, bd_prod,
977 cqe_fp);
979 goto next_rx;
981 queue = cqe->end_agg_cqe.queue_index;
982 tpa_info = &fp->tpa_info[queue];
983 DP(NETIF_MSG_RX_STATUS,
984 "calling tpa_stop on queue %d\n",
985 queue);
987 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
988 tpa_info->len_on_bd;
990 if (fp->mode == TPA_MODE_GRO)
991 pages = (frag_size + tpa_info->full_page - 1) /
992 tpa_info->full_page;
993 else
994 pages = SGE_PAGE_ALIGN(frag_size) >>
995 SGE_PAGE_SHIFT;
997 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
998 &cqe->end_agg_cqe, comp_ring_cons);
999 #ifdef BNX2X_STOP_ON_ERROR
1000 if (bp->panic)
1001 return 0;
1002 #endif
1004 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1005 goto next_cqe;
1007 /* non TPA */
1008 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1009 pad = cqe_fp->placement_offset;
1010 dma_sync_single_for_cpu(&bp->pdev->dev,
1011 dma_unmap_addr(rx_buf, mapping),
1012 pad + RX_COPY_THRESH,
1013 DMA_FROM_DEVICE);
1014 pad += NET_SKB_PAD;
1015 prefetch(data + pad); /* speedup eth_type_trans() */
1016 /* is this an error packet? */
1017 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1018 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1019 "ERROR flags %x rx packet %u\n",
1020 cqe_fp_flags, sw_comp_cons);
1021 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1022 goto reuse_rx;
1025 /* Since we don't have a jumbo ring
1026 * copy small packets if mtu > 1500
1028 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1029 (len <= RX_COPY_THRESH)) {
1030 skb = napi_alloc_skb(&fp->napi, len);
1031 if (skb == NULL) {
1032 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1033 "ERROR packet dropped because of alloc failure\n");
1034 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1035 goto reuse_rx;
1037 memcpy(skb->data, data + pad, len);
1038 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1039 } else {
1040 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1041 GFP_ATOMIC) == 0)) {
1042 dma_unmap_single(&bp->pdev->dev,
1043 dma_unmap_addr(rx_buf, mapping),
1044 fp->rx_buf_size,
1045 DMA_FROM_DEVICE);
1046 skb = build_skb(data, fp->rx_frag_size);
1047 if (unlikely(!skb)) {
1048 bnx2x_frag_free(fp, data);
1049 bnx2x_fp_qstats(bp, fp)->
1050 rx_skb_alloc_failed++;
1051 goto next_rx;
1053 skb_reserve(skb, pad);
1054 } else {
1055 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1056 "ERROR packet dropped because of alloc failure\n");
1057 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1058 reuse_rx:
1059 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1060 goto next_rx;
1064 skb_put(skb, len);
1065 skb->protocol = eth_type_trans(skb, bp->dev);
1067 /* Set Toeplitz hash for a none-LRO skb */
1068 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1069 skb_set_hash(skb, rxhash, rxhash_type);
1071 skb_checksum_none_assert(skb);
1073 if (bp->dev->features & NETIF_F_RXCSUM)
1074 bnx2x_csum_validate(skb, cqe, fp,
1075 bnx2x_fp_qstats(bp, fp));
1077 skb_record_rx_queue(skb, fp->rx_queue);
1079 /* Check if this packet was timestamped */
1080 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1081 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1082 bnx2x_set_rx_ts(bp, skb);
1084 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1085 PARSING_FLAGS_VLAN)
1086 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1087 le16_to_cpu(cqe_fp->vlan_tag));
1089 napi_gro_receive(&fp->napi, skb);
1090 next_rx:
1091 rx_buf->data = NULL;
1093 bd_cons = NEXT_RX_IDX(bd_cons);
1094 bd_prod = NEXT_RX_IDX(bd_prod);
1095 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1096 rx_pkt++;
1097 next_cqe:
1098 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1099 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1101 /* mark CQE as free */
1102 BNX2X_SEED_CQE(cqe_fp);
1104 if (rx_pkt == budget)
1105 break;
1107 comp_ring_cons = RCQ_BD(sw_comp_cons);
1108 cqe = &fp->rx_comp_ring[comp_ring_cons];
1109 cqe_fp = &cqe->fast_path_cqe;
1110 } /* while */
1112 fp->rx_bd_cons = bd_cons;
1113 fp->rx_bd_prod = bd_prod_fw;
1114 fp->rx_comp_cons = sw_comp_cons;
1115 fp->rx_comp_prod = sw_comp_prod;
1117 /* Update producers */
1118 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1119 fp->rx_sge_prod);
1121 return rx_pkt;
1124 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1126 struct bnx2x_fastpath *fp = fp_cookie;
1127 struct bnx2x *bp = fp->bp;
1128 u8 cos;
1130 DP(NETIF_MSG_INTR,
1131 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1132 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1134 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1136 #ifdef BNX2X_STOP_ON_ERROR
1137 if (unlikely(bp->panic))
1138 return IRQ_HANDLED;
1139 #endif
1141 /* Handle Rx and Tx according to MSI-X vector */
1142 for_each_cos_in_tx_queue(fp, cos)
1143 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1145 prefetch(&fp->sb_running_index[SM_RX_ID]);
1146 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1148 return IRQ_HANDLED;
1151 /* HW Lock for shared dual port PHYs */
1152 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1154 mutex_lock(&bp->port.phy_mutex);
1156 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 void bnx2x_release_phy_lock(struct bnx2x *bp)
1161 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1163 mutex_unlock(&bp->port.phy_mutex);
1166 /* calculates MF speed according to current linespeed and MF configuration */
1167 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1169 u16 line_speed = bp->link_vars.line_speed;
1170 if (IS_MF(bp)) {
1171 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1172 bp->mf_config[BP_VN(bp)]);
1174 /* Calculate the current MAX line speed limit for the MF
1175 * devices
1177 if (IS_MF_PERCENT_BW(bp))
1178 line_speed = (line_speed * maxCfg) / 100;
1179 else { /* SD mode */
1180 u16 vn_max_rate = maxCfg * 100;
1182 if (vn_max_rate < line_speed)
1183 line_speed = vn_max_rate;
1187 return line_speed;
1191 * bnx2x_fill_report_data - fill link report data to report
1193 * @bp: driver handle
1194 * @data: link state to update
1196 * It uses a none-atomic bit operations because is called under the mutex.
1198 static void bnx2x_fill_report_data(struct bnx2x *bp,
1199 struct bnx2x_link_report_data *data)
1201 memset(data, 0, sizeof(*data));
1203 if (IS_PF(bp)) {
1204 /* Fill the report data: effective line speed */
1205 data->line_speed = bnx2x_get_mf_speed(bp);
1207 /* Link is down */
1208 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1209 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1210 &data->link_report_flags);
1212 if (!BNX2X_NUM_ETH_QUEUES(bp))
1213 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 &data->link_report_flags);
1216 /* Full DUPLEX */
1217 if (bp->link_vars.duplex == DUPLEX_FULL)
1218 __set_bit(BNX2X_LINK_REPORT_FD,
1219 &data->link_report_flags);
1221 /* Rx Flow Control is ON */
1222 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1223 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1224 &data->link_report_flags);
1226 /* Tx Flow Control is ON */
1227 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1228 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1229 &data->link_report_flags);
1230 } else { /* VF */
1231 *data = bp->vf_link_vars;
1236 * bnx2x_link_report - report link status to OS.
1238 * @bp: driver handle
1240 * Calls the __bnx2x_link_report() under the same locking scheme
1241 * as a link/PHY state managing code to ensure a consistent link
1242 * reporting.
1245 void bnx2x_link_report(struct bnx2x *bp)
1247 bnx2x_acquire_phy_lock(bp);
1248 __bnx2x_link_report(bp);
1249 bnx2x_release_phy_lock(bp);
1253 * __bnx2x_link_report - report link status to OS.
1255 * @bp: driver handle
1257 * None atomic implementation.
1258 * Should be called under the phy_lock.
1260 void __bnx2x_link_report(struct bnx2x *bp)
1262 struct bnx2x_link_report_data cur_data;
1264 /* reread mf_cfg */
1265 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1266 bnx2x_read_mf_cfg(bp);
1268 /* Read the current link report info */
1269 bnx2x_fill_report_data(bp, &cur_data);
1271 /* Don't report link down or exactly the same link status twice */
1272 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1273 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1274 &bp->last_reported_link.link_report_flags) &&
1275 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1276 &cur_data.link_report_flags)))
1277 return;
1279 bp->link_cnt++;
1281 /* We are going to report a new link parameters now -
1282 * remember the current data for the next time.
1284 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1286 /* propagate status to VFs */
1287 if (IS_PF(bp))
1288 bnx2x_iov_link_update(bp);
1290 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1291 &cur_data.link_report_flags)) {
1292 netif_carrier_off(bp->dev);
1293 netdev_err(bp->dev, "NIC Link is Down\n");
1294 return;
1295 } else {
1296 const char *duplex;
1297 const char *flow;
1299 netif_carrier_on(bp->dev);
1301 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1302 &cur_data.link_report_flags))
1303 duplex = "full";
1304 else
1305 duplex = "half";
1307 /* Handle the FC at the end so that only these flags would be
1308 * possibly set. This way we may easily check if there is no FC
1309 * enabled.
1311 if (cur_data.link_report_flags) {
1312 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1313 &cur_data.link_report_flags)) {
1314 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1315 &cur_data.link_report_flags))
1316 flow = "ON - receive & transmit";
1317 else
1318 flow = "ON - receive";
1319 } else {
1320 flow = "ON - transmit";
1322 } else {
1323 flow = "none";
1325 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1326 cur_data.line_speed, duplex, flow);
1330 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1332 int i;
1334 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1335 struct eth_rx_sge *sge;
1337 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1338 sge->addr_hi =
1339 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1340 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1342 sge->addr_lo =
1343 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1344 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1349 struct bnx2x_fastpath *fp, int last)
1351 int i;
1353 for (i = 0; i < last; i++) {
1354 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1355 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1356 u8 *data = first_buf->data;
1358 if (data == NULL) {
1359 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1360 continue;
1362 if (tpa_info->tpa_state == BNX2X_TPA_START)
1363 dma_unmap_single(&bp->pdev->dev,
1364 dma_unmap_addr(first_buf, mapping),
1365 fp->rx_buf_size, DMA_FROM_DEVICE);
1366 bnx2x_frag_free(fp, data);
1367 first_buf->data = NULL;
1371 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1373 int j;
1375 for_each_rx_queue_cnic(bp, j) {
1376 struct bnx2x_fastpath *fp = &bp->fp[j];
1378 fp->rx_bd_cons = 0;
1380 /* Activate BD ring */
1381 /* Warning!
1382 * this will generate an interrupt (to the TSTORM)
1383 * must only be done after chip is initialized
1385 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1386 fp->rx_sge_prod);
1390 void bnx2x_init_rx_rings(struct bnx2x *bp)
1392 int func = BP_FUNC(bp);
1393 u16 ring_prod;
1394 int i, j;
1396 /* Allocate TPA resources */
1397 for_each_eth_queue(bp, j) {
1398 struct bnx2x_fastpath *fp = &bp->fp[j];
1400 DP(NETIF_MSG_IFUP,
1401 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1403 if (fp->mode != TPA_MODE_DISABLED) {
1404 /* Fill the per-aggregation pool */
1405 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1406 struct bnx2x_agg_info *tpa_info =
1407 &fp->tpa_info[i];
1408 struct sw_rx_bd *first_buf =
1409 &tpa_info->first_buf;
1411 first_buf->data =
1412 bnx2x_frag_alloc(fp, GFP_KERNEL);
1413 if (!first_buf->data) {
1414 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1416 bnx2x_free_tpa_pool(bp, fp, i);
1417 fp->mode = TPA_MODE_DISABLED;
1418 break;
1420 dma_unmap_addr_set(first_buf, mapping, 0);
1421 tpa_info->tpa_state = BNX2X_TPA_STOP;
1424 /* "next page" elements initialization */
1425 bnx2x_set_next_page_sgl(fp);
1427 /* set SGEs bit mask */
1428 bnx2x_init_sge_ring_bit_mask(fp);
1430 /* Allocate SGEs and initialize the ring elements */
1431 for (i = 0, ring_prod = 0;
1432 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1434 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1435 GFP_KERNEL) < 0) {
1436 BNX2X_ERR("was only able to allocate %d rx sges\n",
1438 BNX2X_ERR("disabling TPA for queue[%d]\n",
1440 /* Cleanup already allocated elements */
1441 bnx2x_free_rx_sge_range(bp, fp,
1442 ring_prod);
1443 bnx2x_free_tpa_pool(bp, fp,
1444 MAX_AGG_QS(bp));
1445 fp->mode = TPA_MODE_DISABLED;
1446 ring_prod = 0;
1447 break;
1449 ring_prod = NEXT_SGE_IDX(ring_prod);
1452 fp->rx_sge_prod = ring_prod;
1456 for_each_eth_queue(bp, j) {
1457 struct bnx2x_fastpath *fp = &bp->fp[j];
1459 fp->rx_bd_cons = 0;
1461 /* Activate BD ring */
1462 /* Warning!
1463 * this will generate an interrupt (to the TSTORM)
1464 * must only be done after chip is initialized
1466 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1467 fp->rx_sge_prod);
1469 if (j != 0)
1470 continue;
1472 if (CHIP_IS_E1(bp)) {
1473 REG_WR(bp, BAR_USTRORM_INTMEM +
1474 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1475 U64_LO(fp->rx_comp_mapping));
1476 REG_WR(bp, BAR_USTRORM_INTMEM +
1477 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1478 U64_HI(fp->rx_comp_mapping));
1483 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1485 u8 cos;
1486 struct bnx2x *bp = fp->bp;
1488 for_each_cos_in_tx_queue(fp, cos) {
1489 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1490 unsigned pkts_compl = 0, bytes_compl = 0;
1492 u16 sw_prod = txdata->tx_pkt_prod;
1493 u16 sw_cons = txdata->tx_pkt_cons;
1495 while (sw_cons != sw_prod) {
1496 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1497 &pkts_compl, &bytes_compl);
1498 sw_cons++;
1501 netdev_tx_reset_queue(
1502 netdev_get_tx_queue(bp->dev,
1503 txdata->txq_index));
1507 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1509 int i;
1511 for_each_tx_queue_cnic(bp, i) {
1512 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1516 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1518 int i;
1520 for_each_eth_queue(bp, i) {
1521 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1525 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1527 struct bnx2x *bp = fp->bp;
1528 int i;
1530 /* ring wasn't allocated */
1531 if (fp->rx_buf_ring == NULL)
1532 return;
1534 for (i = 0; i < NUM_RX_BD; i++) {
1535 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1536 u8 *data = rx_buf->data;
1538 if (data == NULL)
1539 continue;
1540 dma_unmap_single(&bp->pdev->dev,
1541 dma_unmap_addr(rx_buf, mapping),
1542 fp->rx_buf_size, DMA_FROM_DEVICE);
1544 rx_buf->data = NULL;
1545 bnx2x_frag_free(fp, data);
1549 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1551 int j;
1553 for_each_rx_queue_cnic(bp, j) {
1554 bnx2x_free_rx_bds(&bp->fp[j]);
1558 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1560 int j;
1562 for_each_eth_queue(bp, j) {
1563 struct bnx2x_fastpath *fp = &bp->fp[j];
1565 bnx2x_free_rx_bds(fp);
1567 if (fp->mode != TPA_MODE_DISABLED)
1568 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1572 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1574 bnx2x_free_tx_skbs_cnic(bp);
1575 bnx2x_free_rx_skbs_cnic(bp);
1578 void bnx2x_free_skbs(struct bnx2x *bp)
1580 bnx2x_free_tx_skbs(bp);
1581 bnx2x_free_rx_skbs(bp);
1584 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1586 /* load old values */
1587 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1589 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1590 /* leave all but MAX value */
1591 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1593 /* set new MAX value */
1594 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1595 & FUNC_MF_CFG_MAX_BW_MASK;
1597 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1604 * @bp: driver handle
1605 * @nvecs: number of vectors to be released
1607 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1609 int i, offset = 0;
1611 if (nvecs == offset)
1612 return;
1614 /* VFs don't have a default SB */
1615 if (IS_PF(bp)) {
1616 free_irq(bp->msix_table[offset].vector, bp->dev);
1617 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1618 bp->msix_table[offset].vector);
1619 offset++;
1622 if (CNIC_SUPPORT(bp)) {
1623 if (nvecs == offset)
1624 return;
1625 offset++;
1628 for_each_eth_queue(bp, i) {
1629 if (nvecs == offset)
1630 return;
1631 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1632 i, bp->msix_table[offset].vector);
1634 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1638 void bnx2x_free_irq(struct bnx2x *bp)
1640 if (bp->flags & USING_MSIX_FLAG &&
1641 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1642 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1644 /* vfs don't have a default status block */
1645 if (IS_PF(bp))
1646 nvecs++;
1648 bnx2x_free_msix_irqs(bp, nvecs);
1649 } else {
1650 free_irq(bp->dev->irq, bp->dev);
1654 int bnx2x_enable_msix(struct bnx2x *bp)
1656 int msix_vec = 0, i, rc;
1658 /* VFs don't have a default status block */
1659 if (IS_PF(bp)) {
1660 bp->msix_table[msix_vec].entry = msix_vec;
1661 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1662 bp->msix_table[0].entry);
1663 msix_vec++;
1666 /* Cnic requires an msix vector for itself */
1667 if (CNIC_SUPPORT(bp)) {
1668 bp->msix_table[msix_vec].entry = msix_vec;
1669 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1670 msix_vec, bp->msix_table[msix_vec].entry);
1671 msix_vec++;
1674 /* We need separate vectors for ETH queues only (not FCoE) */
1675 for_each_eth_queue(bp, i) {
1676 bp->msix_table[msix_vec].entry = msix_vec;
1677 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1678 msix_vec, msix_vec, i);
1679 msix_vec++;
1682 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1683 msix_vec);
1685 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1686 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1688 * reconfigure number of tx/rx queues according to available
1689 * MSI-X vectors
1691 if (rc == -ENOSPC) {
1692 /* Get by with single vector */
1693 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1694 if (rc < 0) {
1695 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1696 rc);
1697 goto no_msix;
1700 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1701 bp->flags |= USING_SINGLE_MSIX_FLAG;
1703 BNX2X_DEV_INFO("set number of queues to 1\n");
1704 bp->num_ethernet_queues = 1;
1705 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1706 } else if (rc < 0) {
1707 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1708 goto no_msix;
1709 } else if (rc < msix_vec) {
1710 /* how less vectors we will have? */
1711 int diff = msix_vec - rc;
1713 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1716 * decrease number of queues by number of unallocated entries
1718 bp->num_ethernet_queues -= diff;
1719 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1721 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1722 bp->num_queues);
1725 bp->flags |= USING_MSIX_FLAG;
1727 return 0;
1729 no_msix:
1730 /* fall to INTx if not enough memory */
1731 if (rc == -ENOMEM)
1732 bp->flags |= DISABLE_MSI_FLAG;
1734 return rc;
1737 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1739 int i, rc, offset = 0;
1741 /* no default status block for vf */
1742 if (IS_PF(bp)) {
1743 rc = request_irq(bp->msix_table[offset++].vector,
1744 bnx2x_msix_sp_int, 0,
1745 bp->dev->name, bp->dev);
1746 if (rc) {
1747 BNX2X_ERR("request sp irq failed\n");
1748 return -EBUSY;
1752 if (CNIC_SUPPORT(bp))
1753 offset++;
1755 for_each_eth_queue(bp, i) {
1756 struct bnx2x_fastpath *fp = &bp->fp[i];
1757 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1758 bp->dev->name, i);
1760 rc = request_irq(bp->msix_table[offset].vector,
1761 bnx2x_msix_fp_int, 0, fp->name, fp);
1762 if (rc) {
1763 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1764 bp->msix_table[offset].vector, rc);
1765 bnx2x_free_msix_irqs(bp, offset);
1766 return -EBUSY;
1769 offset++;
1772 i = BNX2X_NUM_ETH_QUEUES(bp);
1773 if (IS_PF(bp)) {
1774 offset = 1 + CNIC_SUPPORT(bp);
1775 netdev_info(bp->dev,
1776 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1777 bp->msix_table[0].vector,
1778 0, bp->msix_table[offset].vector,
1779 i - 1, bp->msix_table[offset + i - 1].vector);
1780 } else {
1781 offset = CNIC_SUPPORT(bp);
1782 netdev_info(bp->dev,
1783 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1784 0, bp->msix_table[offset].vector,
1785 i - 1, bp->msix_table[offset + i - 1].vector);
1787 return 0;
1790 int bnx2x_enable_msi(struct bnx2x *bp)
1792 int rc;
1794 rc = pci_enable_msi(bp->pdev);
1795 if (rc) {
1796 BNX2X_DEV_INFO("MSI is not attainable\n");
1797 return -1;
1799 bp->flags |= USING_MSI_FLAG;
1801 return 0;
1804 static int bnx2x_req_irq(struct bnx2x *bp)
1806 unsigned long flags;
1807 unsigned int irq;
1809 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1810 flags = 0;
1811 else
1812 flags = IRQF_SHARED;
1814 if (bp->flags & USING_MSIX_FLAG)
1815 irq = bp->msix_table[0].vector;
1816 else
1817 irq = bp->pdev->irq;
1819 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1822 static int bnx2x_setup_irqs(struct bnx2x *bp)
1824 int rc = 0;
1825 if (bp->flags & USING_MSIX_FLAG &&
1826 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1827 rc = bnx2x_req_msix_irqs(bp);
1828 if (rc)
1829 return rc;
1830 } else {
1831 rc = bnx2x_req_irq(bp);
1832 if (rc) {
1833 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1834 return rc;
1836 if (bp->flags & USING_MSI_FLAG) {
1837 bp->dev->irq = bp->pdev->irq;
1838 netdev_info(bp->dev, "using MSI IRQ %d\n",
1839 bp->dev->irq);
1841 if (bp->flags & USING_MSIX_FLAG) {
1842 bp->dev->irq = bp->msix_table[0].vector;
1843 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1844 bp->dev->irq);
1848 return 0;
1851 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1853 int i;
1855 for_each_rx_queue_cnic(bp, i) {
1856 napi_enable(&bnx2x_fp(bp, i, napi));
1860 static void bnx2x_napi_enable(struct bnx2x *bp)
1862 int i;
1864 for_each_eth_queue(bp, i) {
1865 napi_enable(&bnx2x_fp(bp, i, napi));
1869 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1871 int i;
1873 for_each_rx_queue_cnic(bp, i) {
1874 napi_disable(&bnx2x_fp(bp, i, napi));
1878 static void bnx2x_napi_disable(struct bnx2x *bp)
1880 int i;
1882 for_each_eth_queue(bp, i) {
1883 napi_disable(&bnx2x_fp(bp, i, napi));
1887 void bnx2x_netif_start(struct bnx2x *bp)
1889 if (netif_running(bp->dev)) {
1890 bnx2x_napi_enable(bp);
1891 if (CNIC_LOADED(bp))
1892 bnx2x_napi_enable_cnic(bp);
1893 bnx2x_int_enable(bp);
1894 if (bp->state == BNX2X_STATE_OPEN)
1895 netif_tx_wake_all_queues(bp->dev);
1899 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1901 bnx2x_int_disable_sync(bp, disable_hw);
1902 bnx2x_napi_disable(bp);
1903 if (CNIC_LOADED(bp))
1904 bnx2x_napi_disable_cnic(bp);
1907 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1908 void *accel_priv, select_queue_fallback_t fallback)
1910 struct bnx2x *bp = netdev_priv(dev);
1912 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1913 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1914 u16 ether_type = ntohs(hdr->h_proto);
1916 /* Skip VLAN tag if present */
1917 if (ether_type == ETH_P_8021Q) {
1918 struct vlan_ethhdr *vhdr =
1919 (struct vlan_ethhdr *)skb->data;
1921 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1924 /* If ethertype is FCoE or FIP - use FCoE ring */
1925 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1926 return bnx2x_fcoe_tx(bp, txq_index);
1929 /* select a non-FCoE queue */
1930 return fallback(dev, skb) % (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1933 void bnx2x_set_num_queues(struct bnx2x *bp)
1935 /* RSS queues */
1936 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1938 /* override in STORAGE SD modes */
1939 if (IS_MF_STORAGE_ONLY(bp))
1940 bp->num_ethernet_queues = 1;
1942 /* Add special queues */
1943 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1944 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1946 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1950 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1952 * @bp: Driver handle
1954 * We currently support for at most 16 Tx queues for each CoS thus we will
1955 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1956 * bp->max_cos.
1958 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1959 * index after all ETH L2 indices.
1961 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1962 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1963 * 16..31,...) with indices that are not coupled with any real Tx queue.
1965 * The proper configuration of skb->queue_mapping is handled by
1966 * bnx2x_select_queue() and __skb_tx_hash().
1968 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1969 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1971 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1973 int rc, tx, rx;
1975 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1976 rx = BNX2X_NUM_ETH_QUEUES(bp);
1978 /* account for fcoe queue */
1979 if (include_cnic && !NO_FCOE(bp)) {
1980 rx++;
1981 tx++;
1984 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1985 if (rc) {
1986 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1987 return rc;
1989 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1990 if (rc) {
1991 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1992 return rc;
1995 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1996 tx, rx);
1998 return rc;
2001 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2003 int i;
2005 for_each_queue(bp, i) {
2006 struct bnx2x_fastpath *fp = &bp->fp[i];
2007 u32 mtu;
2009 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2010 if (IS_FCOE_IDX(i))
2012 * Although there are no IP frames expected to arrive to
2013 * this ring we still want to add an
2014 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2015 * overrun attack.
2017 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2018 else
2019 mtu = bp->dev->mtu;
2020 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2021 IP_HEADER_ALIGNMENT_PADDING +
2022 ETH_OVERHEAD +
2023 mtu +
2024 BNX2X_FW_RX_ALIGN_END;
2025 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2026 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2027 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2028 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2029 else
2030 fp->rx_frag_size = 0;
2034 static int bnx2x_init_rss(struct bnx2x *bp)
2036 int i;
2037 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2039 /* Prepare the initial contents for the indirection table if RSS is
2040 * enabled
2042 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2043 bp->rss_conf_obj.ind_table[i] =
2044 bp->fp->cl_id +
2045 ethtool_rxfh_indir_default(i, num_eth_queues);
2048 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2049 * per-port, so if explicit configuration is needed , do it only
2050 * for a PMF.
2052 * For 57712 and newer on the other hand it's a per-function
2053 * configuration.
2055 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2058 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2059 bool config_hash, bool enable)
2061 struct bnx2x_config_rss_params params = {NULL};
2063 /* Although RSS is meaningless when there is a single HW queue we
2064 * still need it enabled in order to have HW Rx hash generated.
2066 * if (!is_eth_multi(bp))
2067 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2070 params.rss_obj = rss_obj;
2072 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2074 if (enable) {
2075 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2077 /* RSS configuration */
2078 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2079 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2080 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2081 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2082 if (rss_obj->udp_rss_v4)
2083 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2084 if (rss_obj->udp_rss_v6)
2085 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2087 if (!CHIP_IS_E1x(bp)) {
2088 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2089 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2092 /* valid only for TUNN_MODE_GRE tunnel mode */
2093 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2095 } else {
2096 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2099 /* Hash bits */
2100 params.rss_result_mask = MULTI_MASK;
2102 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2104 if (config_hash) {
2105 /* RSS keys */
2106 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2107 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2110 if (IS_PF(bp))
2111 return bnx2x_config_rss(bp, &params);
2112 else
2113 return bnx2x_vfpf_config_rss(bp, &params);
2116 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2118 struct bnx2x_func_state_params func_params = {NULL};
2120 /* Prepare parameters for function state transitions */
2121 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2123 func_params.f_obj = &bp->func_obj;
2124 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2126 func_params.params.hw_init.load_phase = load_code;
2128 return bnx2x_func_state_change(bp, &func_params);
2132 * Cleans the object that have internal lists without sending
2133 * ramrods. Should be run when interrupts are disabled.
2135 void bnx2x_squeeze_objects(struct bnx2x *bp)
2137 int rc;
2138 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2139 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2140 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2142 /***************** Cleanup MACs' object first *************************/
2144 /* Wait for completion of requested */
2145 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2146 /* Perform a dry cleanup */
2147 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2149 /* Clean ETH primary MAC */
2150 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2151 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2152 &ramrod_flags);
2153 if (rc != 0)
2154 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2156 /* Cleanup UC list */
2157 vlan_mac_flags = 0;
2158 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2159 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2160 &ramrod_flags);
2161 if (rc != 0)
2162 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2164 /***************** Now clean mcast object *****************************/
2165 rparam.mcast_obj = &bp->mcast_obj;
2166 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2168 /* Add a DEL command... - Since we're doing a driver cleanup only,
2169 * we take a lock surrounding both the initial send and the CONTs,
2170 * as we don't want a true completion to disrupt us in the middle.
2172 netif_addr_lock_bh(bp->dev);
2173 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2174 if (rc < 0)
2175 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2176 rc);
2178 /* ...and wait until all pending commands are cleared */
2179 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2180 while (rc != 0) {
2181 if (rc < 0) {
2182 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2183 rc);
2184 netif_addr_unlock_bh(bp->dev);
2185 return;
2188 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2190 netif_addr_unlock_bh(bp->dev);
2193 #ifndef BNX2X_STOP_ON_ERROR
2194 #define LOAD_ERROR_EXIT(bp, label) \
2195 do { \
2196 (bp)->state = BNX2X_STATE_ERROR; \
2197 goto label; \
2198 } while (0)
2200 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2201 do { \
2202 bp->cnic_loaded = false; \
2203 goto label; \
2204 } while (0)
2205 #else /*BNX2X_STOP_ON_ERROR*/
2206 #define LOAD_ERROR_EXIT(bp, label) \
2207 do { \
2208 (bp)->state = BNX2X_STATE_ERROR; \
2209 (bp)->panic = 1; \
2210 return -EBUSY; \
2211 } while (0)
2212 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2213 do { \
2214 bp->cnic_loaded = false; \
2215 (bp)->panic = 1; \
2216 return -EBUSY; \
2217 } while (0)
2218 #endif /*BNX2X_STOP_ON_ERROR*/
2220 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2222 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2223 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2224 return;
2227 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2229 int num_groups, vf_headroom = 0;
2230 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2232 /* number of queues for statistics is number of eth queues + FCoE */
2233 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2235 /* Total number of FW statistics requests =
2236 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2237 * and fcoe l2 queue) stats + num of queues (which includes another 1
2238 * for fcoe l2 queue if applicable)
2240 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2242 /* vf stats appear in the request list, but their data is allocated by
2243 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2244 * it is used to determine where to place the vf stats queries in the
2245 * request struct
2247 if (IS_SRIOV(bp))
2248 vf_headroom = bnx2x_vf_headroom(bp);
2250 /* Request is built from stats_query_header and an array of
2251 * stats_query_cmd_group each of which contains
2252 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2253 * configured in the stats_query_header.
2255 num_groups =
2256 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2257 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2258 1 : 0));
2260 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2261 bp->fw_stats_num, vf_headroom, num_groups);
2262 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2263 num_groups * sizeof(struct stats_query_cmd_group);
2265 /* Data for statistics requests + stats_counter
2266 * stats_counter holds per-STORM counters that are incremented
2267 * when STORM has finished with the current request.
2268 * memory for FCoE offloaded statistics are counted anyway,
2269 * even if they will not be sent.
2270 * VF stats are not accounted for here as the data of VF stats is stored
2271 * in memory allocated by the VF, not here.
2273 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2274 sizeof(struct per_pf_stats) +
2275 sizeof(struct fcoe_statistics_params) +
2276 sizeof(struct per_queue_stats) * num_queue_stats +
2277 sizeof(struct stats_counter);
2279 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2280 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2281 if (!bp->fw_stats)
2282 goto alloc_mem_err;
2284 /* Set shortcuts */
2285 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2286 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2287 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2288 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2289 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2290 bp->fw_stats_req_sz;
2292 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2293 U64_HI(bp->fw_stats_req_mapping),
2294 U64_LO(bp->fw_stats_req_mapping));
2295 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2296 U64_HI(bp->fw_stats_data_mapping),
2297 U64_LO(bp->fw_stats_data_mapping));
2298 return 0;
2300 alloc_mem_err:
2301 bnx2x_free_fw_stats_mem(bp);
2302 BNX2X_ERR("Can't allocate FW stats memory\n");
2303 return -ENOMEM;
2306 /* send load request to mcp and analyze response */
2307 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2309 u32 param;
2311 /* init fw_seq */
2312 bp->fw_seq =
2313 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2314 DRV_MSG_SEQ_NUMBER_MASK);
2315 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2317 /* Get current FW pulse sequence */
2318 bp->fw_drv_pulse_wr_seq =
2319 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2320 DRV_PULSE_SEQ_MASK);
2321 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2323 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2325 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2326 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2328 /* load request */
2329 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2331 /* if mcp fails to respond we must abort */
2332 if (!(*load_code)) {
2333 BNX2X_ERR("MCP response failure, aborting\n");
2334 return -EBUSY;
2337 /* If mcp refused (e.g. other port is in diagnostic mode) we
2338 * must abort
2340 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2341 BNX2X_ERR("MCP refused load request, aborting\n");
2342 return -EBUSY;
2344 return 0;
2347 /* check whether another PF has already loaded FW to chip. In
2348 * virtualized environments a pf from another VM may have already
2349 * initialized the device including loading FW
2351 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2353 /* is another pf loaded on this engine? */
2354 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2355 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2356 /* build my FW version dword */
2357 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2358 (BCM_5710_FW_MINOR_VERSION << 8) +
2359 (BCM_5710_FW_REVISION_VERSION << 16) +
2360 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2362 /* read loaded FW from chip */
2363 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2365 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2366 loaded_fw, my_fw);
2368 /* abort nic load if version mismatch */
2369 if (my_fw != loaded_fw) {
2370 if (print_err)
2371 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2372 loaded_fw, my_fw);
2373 else
2374 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2375 loaded_fw, my_fw);
2376 return -EBUSY;
2379 return 0;
2382 /* returns the "mcp load_code" according to global load_count array */
2383 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2385 int path = BP_PATH(bp);
2387 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2388 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2389 bnx2x_load_count[path][2]);
2390 bnx2x_load_count[path][0]++;
2391 bnx2x_load_count[path][1 + port]++;
2392 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2393 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2394 bnx2x_load_count[path][2]);
2395 if (bnx2x_load_count[path][0] == 1)
2396 return FW_MSG_CODE_DRV_LOAD_COMMON;
2397 else if (bnx2x_load_count[path][1 + port] == 1)
2398 return FW_MSG_CODE_DRV_LOAD_PORT;
2399 else
2400 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2403 /* mark PMF if applicable */
2404 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2406 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2407 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2408 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2409 bp->port.pmf = 1;
2410 /* We need the barrier to ensure the ordering between the
2411 * writing to bp->port.pmf here and reading it from the
2412 * bnx2x_periodic_task().
2414 smp_mb();
2415 } else {
2416 bp->port.pmf = 0;
2419 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2422 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2424 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2425 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2426 (bp->common.shmem2_base)) {
2427 if (SHMEM2_HAS(bp, dcc_support))
2428 SHMEM2_WR(bp, dcc_support,
2429 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2430 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2431 if (SHMEM2_HAS(bp, afex_driver_support))
2432 SHMEM2_WR(bp, afex_driver_support,
2433 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2436 /* Set AFEX default VLAN tag to an invalid value */
2437 bp->afex_def_vlan_tag = -1;
2441 * bnx2x_bz_fp - zero content of the fastpath structure.
2443 * @bp: driver handle
2444 * @index: fastpath index to be zeroed
2446 * Makes sure the contents of the bp->fp[index].napi is kept
2447 * intact.
2449 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2451 struct bnx2x_fastpath *fp = &bp->fp[index];
2452 int cos;
2453 struct napi_struct orig_napi = fp->napi;
2454 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2456 /* bzero bnx2x_fastpath contents */
2457 if (fp->tpa_info)
2458 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2459 sizeof(struct bnx2x_agg_info));
2460 memset(fp, 0, sizeof(*fp));
2462 /* Restore the NAPI object as it has been already initialized */
2463 fp->napi = orig_napi;
2464 fp->tpa_info = orig_tpa_info;
2465 fp->bp = bp;
2466 fp->index = index;
2467 if (IS_ETH_FP(fp))
2468 fp->max_cos = bp->max_cos;
2469 else
2470 /* Special queues support only one CoS */
2471 fp->max_cos = 1;
2473 /* Init txdata pointers */
2474 if (IS_FCOE_FP(fp))
2475 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2476 if (IS_ETH_FP(fp))
2477 for_each_cos_in_tx_queue(fp, cos)
2478 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2479 BNX2X_NUM_ETH_QUEUES(bp) + index];
2481 /* set the tpa flag for each queue. The tpa flag determines the queue
2482 * minimal size so it must be set prior to queue memory allocation
2484 if (bp->dev->features & NETIF_F_LRO)
2485 fp->mode = TPA_MODE_LRO;
2486 else if (bp->dev->features & NETIF_F_GRO_HW)
2487 fp->mode = TPA_MODE_GRO;
2488 else
2489 fp->mode = TPA_MODE_DISABLED;
2491 /* We don't want TPA if it's disabled in bp
2492 * or if this is an FCoE L2 ring.
2494 if (bp->disable_tpa || IS_FCOE_FP(fp))
2495 fp->mode = TPA_MODE_DISABLED;
2498 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2500 u32 cur;
2502 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2503 return;
2505 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2506 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2507 cur, state);
2509 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2512 int bnx2x_load_cnic(struct bnx2x *bp)
2514 int i, rc, port = BP_PORT(bp);
2516 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2518 mutex_init(&bp->cnic_mutex);
2520 if (IS_PF(bp)) {
2521 rc = bnx2x_alloc_mem_cnic(bp);
2522 if (rc) {
2523 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2524 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2528 rc = bnx2x_alloc_fp_mem_cnic(bp);
2529 if (rc) {
2530 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2531 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2534 /* Update the number of queues with the cnic queues */
2535 rc = bnx2x_set_real_num_queues(bp, 1);
2536 if (rc) {
2537 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2538 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2541 /* Add all CNIC NAPI objects */
2542 bnx2x_add_all_napi_cnic(bp);
2543 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2544 bnx2x_napi_enable_cnic(bp);
2546 rc = bnx2x_init_hw_func_cnic(bp);
2547 if (rc)
2548 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2550 bnx2x_nic_init_cnic(bp);
2552 if (IS_PF(bp)) {
2553 /* Enable Timer scan */
2554 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2556 /* setup cnic queues */
2557 for_each_cnic_queue(bp, i) {
2558 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2559 if (rc) {
2560 BNX2X_ERR("Queue setup failed\n");
2561 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2566 /* Initialize Rx filter. */
2567 bnx2x_set_rx_mode_inner(bp);
2569 /* re-read iscsi info */
2570 bnx2x_get_iscsi_info(bp);
2571 bnx2x_setup_cnic_irq_info(bp);
2572 bnx2x_setup_cnic_info(bp);
2573 bp->cnic_loaded = true;
2574 if (bp->state == BNX2X_STATE_OPEN)
2575 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2577 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2579 return 0;
2581 #ifndef BNX2X_STOP_ON_ERROR
2582 load_error_cnic2:
2583 /* Disable Timer scan */
2584 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2586 load_error_cnic1:
2587 bnx2x_napi_disable_cnic(bp);
2588 /* Update the number of queues without the cnic queues */
2589 if (bnx2x_set_real_num_queues(bp, 0))
2590 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2591 load_error_cnic0:
2592 BNX2X_ERR("CNIC-related load failed\n");
2593 bnx2x_free_fp_mem_cnic(bp);
2594 bnx2x_free_mem_cnic(bp);
2595 return rc;
2596 #endif /* ! BNX2X_STOP_ON_ERROR */
2599 /* must be called with rtnl_lock */
2600 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2602 int port = BP_PORT(bp);
2603 int i, rc = 0, load_code = 0;
2605 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2606 DP(NETIF_MSG_IFUP,
2607 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2609 #ifdef BNX2X_STOP_ON_ERROR
2610 if (unlikely(bp->panic)) {
2611 BNX2X_ERR("Can't load NIC when there is panic\n");
2612 return -EPERM;
2614 #endif
2616 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2618 /* zero the structure w/o any lock, before SP handler is initialized */
2619 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2620 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2621 &bp->last_reported_link.link_report_flags);
2623 if (IS_PF(bp))
2624 /* must be called before memory allocation and HW init */
2625 bnx2x_ilt_set_info(bp);
2628 * Zero fastpath structures preserving invariants like napi, which are
2629 * allocated only once, fp index, max_cos, bp pointer.
2630 * Also set fp->mode and txdata_ptr.
2632 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2633 for_each_queue(bp, i)
2634 bnx2x_bz_fp(bp, i);
2635 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2636 bp->num_cnic_queues) *
2637 sizeof(struct bnx2x_fp_txdata));
2639 bp->fcoe_init = false;
2641 /* Set the receive queues buffer size */
2642 bnx2x_set_rx_buf_size(bp);
2644 if (IS_PF(bp)) {
2645 rc = bnx2x_alloc_mem(bp);
2646 if (rc) {
2647 BNX2X_ERR("Unable to allocate bp memory\n");
2648 return rc;
2652 /* need to be done after alloc mem, since it's self adjusting to amount
2653 * of memory available for RSS queues
2655 rc = bnx2x_alloc_fp_mem(bp);
2656 if (rc) {
2657 BNX2X_ERR("Unable to allocate memory for fps\n");
2658 LOAD_ERROR_EXIT(bp, load_error0);
2661 /* Allocated memory for FW statistics */
2662 if (bnx2x_alloc_fw_stats_mem(bp))
2663 LOAD_ERROR_EXIT(bp, load_error0);
2665 /* request pf to initialize status blocks */
2666 if (IS_VF(bp)) {
2667 rc = bnx2x_vfpf_init(bp);
2668 if (rc)
2669 LOAD_ERROR_EXIT(bp, load_error0);
2672 /* As long as bnx2x_alloc_mem() may possibly update
2673 * bp->num_queues, bnx2x_set_real_num_queues() should always
2674 * come after it. At this stage cnic queues are not counted.
2676 rc = bnx2x_set_real_num_queues(bp, 0);
2677 if (rc) {
2678 BNX2X_ERR("Unable to set real_num_queues\n");
2679 LOAD_ERROR_EXIT(bp, load_error0);
2682 /* configure multi cos mappings in kernel.
2683 * this configuration may be overridden by a multi class queue
2684 * discipline or by a dcbx negotiation result.
2686 bnx2x_setup_tc(bp->dev, bp->max_cos);
2688 /* Add all NAPI objects */
2689 bnx2x_add_all_napi(bp);
2690 DP(NETIF_MSG_IFUP, "napi added\n");
2691 bnx2x_napi_enable(bp);
2693 if (IS_PF(bp)) {
2694 /* set pf load just before approaching the MCP */
2695 bnx2x_set_pf_load(bp);
2697 /* if mcp exists send load request and analyze response */
2698 if (!BP_NOMCP(bp)) {
2699 /* attempt to load pf */
2700 rc = bnx2x_nic_load_request(bp, &load_code);
2701 if (rc)
2702 LOAD_ERROR_EXIT(bp, load_error1);
2704 /* what did mcp say? */
2705 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2706 if (rc) {
2707 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2708 LOAD_ERROR_EXIT(bp, load_error2);
2710 } else {
2711 load_code = bnx2x_nic_load_no_mcp(bp, port);
2714 /* mark pmf if applicable */
2715 bnx2x_nic_load_pmf(bp, load_code);
2717 /* Init Function state controlling object */
2718 bnx2x__init_func_obj(bp);
2720 /* Initialize HW */
2721 rc = bnx2x_init_hw(bp, load_code);
2722 if (rc) {
2723 BNX2X_ERR("HW init failed, aborting\n");
2724 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2725 LOAD_ERROR_EXIT(bp, load_error2);
2729 bnx2x_pre_irq_nic_init(bp);
2731 /* Connect to IRQs */
2732 rc = bnx2x_setup_irqs(bp);
2733 if (rc) {
2734 BNX2X_ERR("setup irqs failed\n");
2735 if (IS_PF(bp))
2736 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2737 LOAD_ERROR_EXIT(bp, load_error2);
2740 /* Init per-function objects */
2741 if (IS_PF(bp)) {
2742 /* Setup NIC internals and enable interrupts */
2743 bnx2x_post_irq_nic_init(bp, load_code);
2745 bnx2x_init_bp_objs(bp);
2746 bnx2x_iov_nic_init(bp);
2748 /* Set AFEX default VLAN tag to an invalid value */
2749 bp->afex_def_vlan_tag = -1;
2750 bnx2x_nic_load_afex_dcc(bp, load_code);
2751 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2752 rc = bnx2x_func_start(bp);
2753 if (rc) {
2754 BNX2X_ERR("Function start failed!\n");
2755 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2757 LOAD_ERROR_EXIT(bp, load_error3);
2760 /* Send LOAD_DONE command to MCP */
2761 if (!BP_NOMCP(bp)) {
2762 load_code = bnx2x_fw_command(bp,
2763 DRV_MSG_CODE_LOAD_DONE, 0);
2764 if (!load_code) {
2765 BNX2X_ERR("MCP response failure, aborting\n");
2766 rc = -EBUSY;
2767 LOAD_ERROR_EXIT(bp, load_error3);
2771 /* initialize FW coalescing state machines in RAM */
2772 bnx2x_update_coalesce(bp);
2775 /* setup the leading queue */
2776 rc = bnx2x_setup_leading(bp);
2777 if (rc) {
2778 BNX2X_ERR("Setup leading failed!\n");
2779 LOAD_ERROR_EXIT(bp, load_error3);
2782 /* set up the rest of the queues */
2783 for_each_nondefault_eth_queue(bp, i) {
2784 if (IS_PF(bp))
2785 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2786 else /* VF */
2787 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2788 if (rc) {
2789 BNX2X_ERR("Queue %d setup failed\n", i);
2790 LOAD_ERROR_EXIT(bp, load_error3);
2794 /* setup rss */
2795 rc = bnx2x_init_rss(bp);
2796 if (rc) {
2797 BNX2X_ERR("PF RSS init failed\n");
2798 LOAD_ERROR_EXIT(bp, load_error3);
2801 /* Now when Clients are configured we are ready to work */
2802 bp->state = BNX2X_STATE_OPEN;
2804 /* Configure a ucast MAC */
2805 if (IS_PF(bp))
2806 rc = bnx2x_set_eth_mac(bp, true);
2807 else /* vf */
2808 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2809 true);
2810 if (rc) {
2811 BNX2X_ERR("Setting Ethernet MAC failed\n");
2812 LOAD_ERROR_EXIT(bp, load_error3);
2815 if (IS_PF(bp) && bp->pending_max) {
2816 bnx2x_update_max_mf_config(bp, bp->pending_max);
2817 bp->pending_max = 0;
2820 if (bp->port.pmf) {
2821 rc = bnx2x_initial_phy_init(bp, load_mode);
2822 if (rc)
2823 LOAD_ERROR_EXIT(bp, load_error3);
2825 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2827 /* Start fast path */
2829 /* Re-configure vlan filters */
2830 rc = bnx2x_vlan_reconfigure_vid(bp);
2831 if (rc)
2832 LOAD_ERROR_EXIT(bp, load_error3);
2834 /* Initialize Rx filter. */
2835 bnx2x_set_rx_mode_inner(bp);
2837 if (bp->flags & PTP_SUPPORTED) {
2838 bnx2x_init_ptp(bp);
2839 bnx2x_configure_ptp_filters(bp);
2841 /* Start Tx */
2842 switch (load_mode) {
2843 case LOAD_NORMAL:
2844 /* Tx queue should be only re-enabled */
2845 netif_tx_wake_all_queues(bp->dev);
2846 break;
2848 case LOAD_OPEN:
2849 netif_tx_start_all_queues(bp->dev);
2850 smp_mb__after_atomic();
2851 break;
2853 case LOAD_DIAG:
2854 case LOAD_LOOPBACK_EXT:
2855 bp->state = BNX2X_STATE_DIAG;
2856 break;
2858 default:
2859 break;
2862 if (bp->port.pmf)
2863 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2864 else
2865 bnx2x__link_status_update(bp);
2867 /* start the timer */
2868 mod_timer(&bp->timer, jiffies + bp->current_interval);
2870 if (CNIC_ENABLED(bp))
2871 bnx2x_load_cnic(bp);
2873 if (IS_PF(bp))
2874 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2876 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2877 /* mark driver is loaded in shmem2 */
2878 u32 val;
2879 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2880 val &= ~DRV_FLAGS_MTU_MASK;
2881 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2882 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2883 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2884 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2887 /* Wait for all pending SP commands to complete */
2888 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2889 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2890 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2891 return -EBUSY;
2894 /* Update driver data for On-Chip MFW dump. */
2895 if (IS_PF(bp))
2896 bnx2x_update_mfw_dump(bp);
2898 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2899 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2900 bnx2x_dcbx_init(bp, false);
2902 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2903 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2905 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2907 return 0;
2909 #ifndef BNX2X_STOP_ON_ERROR
2910 load_error3:
2911 if (IS_PF(bp)) {
2912 bnx2x_int_disable_sync(bp, 1);
2914 /* Clean queueable objects */
2915 bnx2x_squeeze_objects(bp);
2918 /* Free SKBs, SGEs, TPA pool and driver internals */
2919 bnx2x_free_skbs(bp);
2920 for_each_rx_queue(bp, i)
2921 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2923 /* Release IRQs */
2924 bnx2x_free_irq(bp);
2925 load_error2:
2926 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2927 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2928 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2931 bp->port.pmf = 0;
2932 load_error1:
2933 bnx2x_napi_disable(bp);
2934 bnx2x_del_all_napi(bp);
2936 /* clear pf_load status, as it was already set */
2937 if (IS_PF(bp))
2938 bnx2x_clear_pf_load(bp);
2939 load_error0:
2940 bnx2x_free_fw_stats_mem(bp);
2941 bnx2x_free_fp_mem(bp);
2942 bnx2x_free_mem(bp);
2944 return rc;
2945 #endif /* ! BNX2X_STOP_ON_ERROR */
2948 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2950 u8 rc = 0, cos, i;
2952 /* Wait until tx fastpath tasks complete */
2953 for_each_tx_queue(bp, i) {
2954 struct bnx2x_fastpath *fp = &bp->fp[i];
2956 for_each_cos_in_tx_queue(fp, cos)
2957 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2958 if (rc)
2959 return rc;
2961 return 0;
2964 /* must be called with rtnl_lock */
2965 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2967 int i;
2968 bool global = false;
2970 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2972 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2973 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2975 /* mark driver is unloaded in shmem2 */
2976 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2977 u32 val;
2978 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2979 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2980 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2983 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2984 (bp->state == BNX2X_STATE_CLOSED ||
2985 bp->state == BNX2X_STATE_ERROR)) {
2986 /* We can get here if the driver has been unloaded
2987 * during parity error recovery and is either waiting for a
2988 * leader to complete or for other functions to unload and
2989 * then ifdown has been issued. In this case we want to
2990 * unload and let other functions to complete a recovery
2991 * process.
2993 bp->recovery_state = BNX2X_RECOVERY_DONE;
2994 bp->is_leader = 0;
2995 bnx2x_release_leader_lock(bp);
2996 smp_mb();
2998 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2999 BNX2X_ERR("Can't unload in closed or error state\n");
3000 return -EINVAL;
3003 /* Nothing to do during unload if previous bnx2x_nic_load()
3004 * have not completed successfully - all resources are released.
3006 * we can get here only after unsuccessful ndo_* callback, during which
3007 * dev->IFF_UP flag is still on.
3009 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3010 return 0;
3012 /* It's important to set the bp->state to the value different from
3013 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3014 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3016 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3017 smp_mb();
3019 /* indicate to VFs that the PF is going down */
3020 bnx2x_iov_channel_down(bp);
3022 if (CNIC_LOADED(bp))
3023 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3025 /* Stop Tx */
3026 bnx2x_tx_disable(bp);
3027 netdev_reset_tc(bp->dev);
3029 bp->rx_mode = BNX2X_RX_MODE_NONE;
3031 del_timer_sync(&bp->timer);
3033 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3034 /* Set ALWAYS_ALIVE bit in shmem */
3035 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3036 bnx2x_drv_pulse(bp);
3037 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3038 bnx2x_save_statistics(bp);
3041 /* wait till consumers catch up with producers in all queues.
3042 * If we're recovering, FW can't write to host so no reason
3043 * to wait for the queues to complete all Tx.
3045 if (unload_mode != UNLOAD_RECOVERY)
3046 bnx2x_drain_tx_queues(bp);
3048 /* if VF indicate to PF this function is going down (PF will delete sp
3049 * elements and clear initializations
3051 if (IS_VF(bp))
3052 bnx2x_vfpf_close_vf(bp);
3053 else if (unload_mode != UNLOAD_RECOVERY)
3054 /* if this is a normal/close unload need to clean up chip*/
3055 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3056 else {
3057 /* Send the UNLOAD_REQUEST to the MCP */
3058 bnx2x_send_unload_req(bp, unload_mode);
3060 /* Prevent transactions to host from the functions on the
3061 * engine that doesn't reset global blocks in case of global
3062 * attention once global blocks are reset and gates are opened
3063 * (the engine which leader will perform the recovery
3064 * last).
3066 if (!CHIP_IS_E1x(bp))
3067 bnx2x_pf_disable(bp);
3069 /* Disable HW interrupts, NAPI */
3070 bnx2x_netif_stop(bp, 1);
3071 /* Delete all NAPI objects */
3072 bnx2x_del_all_napi(bp);
3073 if (CNIC_LOADED(bp))
3074 bnx2x_del_all_napi_cnic(bp);
3075 /* Release IRQs */
3076 bnx2x_free_irq(bp);
3078 /* Report UNLOAD_DONE to MCP */
3079 bnx2x_send_unload_done(bp, false);
3083 * At this stage no more interrupts will arrive so we may safely clean
3084 * the queueable objects here in case they failed to get cleaned so far.
3086 if (IS_PF(bp))
3087 bnx2x_squeeze_objects(bp);
3089 /* There should be no more pending SP commands at this stage */
3090 bp->sp_state = 0;
3092 bp->port.pmf = 0;
3094 /* clear pending work in rtnl task */
3095 bp->sp_rtnl_state = 0;
3096 smp_mb();
3098 /* Free SKBs, SGEs, TPA pool and driver internals */
3099 bnx2x_free_skbs(bp);
3100 if (CNIC_LOADED(bp))
3101 bnx2x_free_skbs_cnic(bp);
3102 for_each_rx_queue(bp, i)
3103 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3105 bnx2x_free_fp_mem(bp);
3106 if (CNIC_LOADED(bp))
3107 bnx2x_free_fp_mem_cnic(bp);
3109 if (IS_PF(bp)) {
3110 if (CNIC_LOADED(bp))
3111 bnx2x_free_mem_cnic(bp);
3113 bnx2x_free_mem(bp);
3115 bp->state = BNX2X_STATE_CLOSED;
3116 bp->cnic_loaded = false;
3118 /* Clear driver version indication in shmem */
3119 if (IS_PF(bp) && !BP_NOMCP(bp))
3120 bnx2x_update_mng_version(bp);
3122 /* Check if there are pending parity attentions. If there are - set
3123 * RECOVERY_IN_PROGRESS.
3125 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3126 bnx2x_set_reset_in_progress(bp);
3128 /* Set RESET_IS_GLOBAL if needed */
3129 if (global)
3130 bnx2x_set_reset_global(bp);
3133 /* The last driver must disable a "close the gate" if there is no
3134 * parity attention or "process kill" pending.
3136 if (IS_PF(bp) &&
3137 !bnx2x_clear_pf_load(bp) &&
3138 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3139 bnx2x_disable_close_the_gate(bp);
3141 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3143 return 0;
3146 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3148 u16 pmcsr;
3150 /* If there is no power capability, silently succeed */
3151 if (!bp->pdev->pm_cap) {
3152 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3153 return 0;
3156 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3158 switch (state) {
3159 case PCI_D0:
3160 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3161 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3162 PCI_PM_CTRL_PME_STATUS));
3164 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3165 /* delay required during transition out of D3hot */
3166 msleep(20);
3167 break;
3169 case PCI_D3hot:
3170 /* If there are other clients above don't
3171 shut down the power */
3172 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3173 return 0;
3174 /* Don't shut down the power for emulation and FPGA */
3175 if (CHIP_REV_IS_SLOW(bp))
3176 return 0;
3178 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3179 pmcsr |= 3;
3181 if (bp->wol)
3182 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3184 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3185 pmcsr);
3187 /* No more memory access after this point until
3188 * device is brought back to D0.
3190 break;
3192 default:
3193 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3194 return -EINVAL;
3196 return 0;
3200 * net_device service functions
3202 static int bnx2x_poll(struct napi_struct *napi, int budget)
3204 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3205 napi);
3206 struct bnx2x *bp = fp->bp;
3207 int rx_work_done;
3208 u8 cos;
3210 #ifdef BNX2X_STOP_ON_ERROR
3211 if (unlikely(bp->panic)) {
3212 napi_complete(napi);
3213 return 0;
3215 #endif
3216 for_each_cos_in_tx_queue(fp, cos)
3217 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3218 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3220 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3222 if (rx_work_done < budget) {
3223 /* No need to update SB for FCoE L2 ring as long as
3224 * it's connected to the default SB and the SB
3225 * has been updated when NAPI was scheduled.
3227 if (IS_FCOE_FP(fp)) {
3228 napi_complete_done(napi, rx_work_done);
3229 } else {
3230 bnx2x_update_fpsb_idx(fp);
3231 /* bnx2x_has_rx_work() reads the status block,
3232 * thus we need to ensure that status block indices
3233 * have been actually read (bnx2x_update_fpsb_idx)
3234 * prior to this check (bnx2x_has_rx_work) so that
3235 * we won't write the "newer" value of the status block
3236 * to IGU (if there was a DMA right after
3237 * bnx2x_has_rx_work and if there is no rmb, the memory
3238 * reading (bnx2x_update_fpsb_idx) may be postponed
3239 * to right before bnx2x_ack_sb). In this case there
3240 * will never be another interrupt until there is
3241 * another update of the status block, while there
3242 * is still unhandled work.
3244 rmb();
3246 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3247 if (napi_complete_done(napi, rx_work_done)) {
3248 /* Re-enable interrupts */
3249 DP(NETIF_MSG_RX_STATUS,
3250 "Update index to %d\n", fp->fp_hc_idx);
3251 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3252 le16_to_cpu(fp->fp_hc_idx),
3253 IGU_INT_ENABLE, 1);
3255 } else {
3256 rx_work_done = budget;
3261 return rx_work_done;
3264 /* we split the first BD into headers and data BDs
3265 * to ease the pain of our fellow microcode engineers
3266 * we use one mapping for both BDs
3268 static u16 bnx2x_tx_split(struct bnx2x *bp,
3269 struct bnx2x_fp_txdata *txdata,
3270 struct sw_tx_bd *tx_buf,
3271 struct eth_tx_start_bd **tx_bd, u16 hlen,
3272 u16 bd_prod)
3274 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3275 struct eth_tx_bd *d_tx_bd;
3276 dma_addr_t mapping;
3277 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3279 /* first fix first BD */
3280 h_tx_bd->nbytes = cpu_to_le16(hlen);
3282 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3283 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3285 /* now get a new data BD
3286 * (after the pbd) and fill it */
3287 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3288 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3290 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3291 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3293 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3294 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3295 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3297 /* this marks the BD as one that has no individual mapping */
3298 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3300 DP(NETIF_MSG_TX_QUEUED,
3301 "TSO split data size is %d (%x:%x)\n",
3302 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3304 /* update tx_bd */
3305 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3307 return bd_prod;
3310 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3311 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3312 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3314 __sum16 tsum = (__force __sum16) csum;
3316 if (fix > 0)
3317 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3318 csum_partial(t_header - fix, fix, 0)));
3320 else if (fix < 0)
3321 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3322 csum_partial(t_header, -fix, 0)));
3324 return bswab16(tsum);
3327 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3329 u32 rc;
3330 __u8 prot = 0;
3331 __be16 protocol;
3333 if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 return XMIT_PLAIN;
3336 protocol = vlan_get_protocol(skb);
3337 if (protocol == htons(ETH_P_IPV6)) {
3338 rc = XMIT_CSUM_V6;
3339 prot = ipv6_hdr(skb)->nexthdr;
3340 } else {
3341 rc = XMIT_CSUM_V4;
3342 prot = ip_hdr(skb)->protocol;
3345 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3346 if (inner_ip_hdr(skb)->version == 6) {
3347 rc |= XMIT_CSUM_ENC_V6;
3348 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3349 rc |= XMIT_CSUM_TCP;
3350 } else {
3351 rc |= XMIT_CSUM_ENC_V4;
3352 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3353 rc |= XMIT_CSUM_TCP;
3356 if (prot == IPPROTO_TCP)
3357 rc |= XMIT_CSUM_TCP;
3359 if (skb_is_gso(skb)) {
3360 if (skb_is_gso_v6(skb)) {
3361 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3362 if (rc & XMIT_CSUM_ENC)
3363 rc |= XMIT_GSO_ENC_V6;
3364 } else {
3365 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3366 if (rc & XMIT_CSUM_ENC)
3367 rc |= XMIT_GSO_ENC_V4;
3371 return rc;
3374 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3375 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3377 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3378 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3380 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3381 /* check if packet requires linearization (packet is too fragmented)
3382 no need to check fragmentation if page size > 8K (there will be no
3383 violation to FW restrictions) */
3384 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3385 u32 xmit_type)
3387 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3388 int to_copy = 0, hlen = 0;
3390 if (xmit_type & XMIT_GSO_ENC)
3391 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3393 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3394 if (xmit_type & XMIT_GSO) {
3395 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3396 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3397 /* Number of windows to check */
3398 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3399 int wnd_idx = 0;
3400 int frag_idx = 0;
3401 u32 wnd_sum = 0;
3403 /* Headers length */
3404 if (xmit_type & XMIT_GSO_ENC)
3405 hlen = (int)(skb_inner_transport_header(skb) -
3406 skb->data) +
3407 inner_tcp_hdrlen(skb);
3408 else
3409 hlen = (int)(skb_transport_header(skb) -
3410 skb->data) + tcp_hdrlen(skb);
3412 /* Amount of data (w/o headers) on linear part of SKB*/
3413 first_bd_sz = skb_headlen(skb) - hlen;
3415 wnd_sum = first_bd_sz;
3417 /* Calculate the first sum - it's special */
3418 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3419 wnd_sum +=
3420 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3422 /* If there was data on linear skb data - check it */
3423 if (first_bd_sz > 0) {
3424 if (unlikely(wnd_sum < lso_mss)) {
3425 to_copy = 1;
3426 goto exit_lbl;
3429 wnd_sum -= first_bd_sz;
3432 /* Others are easier: run through the frag list and
3433 check all windows */
3434 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3435 wnd_sum +=
3436 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3438 if (unlikely(wnd_sum < lso_mss)) {
3439 to_copy = 1;
3440 break;
3442 wnd_sum -=
3443 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3445 } else {
3446 /* in non-LSO too fragmented packet should always
3447 be linearized */
3448 to_copy = 1;
3452 exit_lbl:
3453 if (unlikely(to_copy))
3454 DP(NETIF_MSG_TX_QUEUED,
3455 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3456 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3457 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3459 return to_copy;
3461 #endif
3464 * bnx2x_set_pbd_gso - update PBD in GSO case.
3466 * @skb: packet skb
3467 * @pbd: parse BD
3468 * @xmit_type: xmit flags
3470 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3471 struct eth_tx_parse_bd_e1x *pbd,
3472 u32 xmit_type)
3474 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3475 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3476 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3478 if (xmit_type & XMIT_GSO_V4) {
3479 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3480 pbd->tcp_pseudo_csum =
3481 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3482 ip_hdr(skb)->daddr,
3483 0, IPPROTO_TCP, 0));
3484 } else {
3485 pbd->tcp_pseudo_csum =
3486 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3487 &ipv6_hdr(skb)->daddr,
3488 0, IPPROTO_TCP, 0));
3491 pbd->global_data |=
3492 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3496 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3498 * @bp: driver handle
3499 * @skb: packet skb
3500 * @parsing_data: data to be updated
3501 * @xmit_type: xmit flags
3503 * 57712/578xx related, when skb has encapsulation
3505 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3506 u32 *parsing_data, u32 xmit_type)
3508 *parsing_data |=
3509 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3510 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3511 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3513 if (xmit_type & XMIT_CSUM_TCP) {
3514 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3515 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3516 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3518 return skb_inner_transport_header(skb) +
3519 inner_tcp_hdrlen(skb) - skb->data;
3522 /* We support checksum offload for TCP and UDP only.
3523 * No need to pass the UDP header length - it's a constant.
3525 return skb_inner_transport_header(skb) +
3526 sizeof(struct udphdr) - skb->data;
3530 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3532 * @bp: driver handle
3533 * @skb: packet skb
3534 * @parsing_data: data to be updated
3535 * @xmit_type: xmit flags
3537 * 57712/578xx related
3539 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3540 u32 *parsing_data, u32 xmit_type)
3542 *parsing_data |=
3543 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3544 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3545 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3547 if (xmit_type & XMIT_CSUM_TCP) {
3548 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3549 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3550 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3552 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3554 /* We support checksum offload for TCP and UDP only.
3555 * No need to pass the UDP header length - it's a constant.
3557 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3560 /* set FW indication according to inner or outer protocols if tunneled */
3561 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3562 struct eth_tx_start_bd *tx_start_bd,
3563 u32 xmit_type)
3565 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3567 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3568 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3570 if (!(xmit_type & XMIT_CSUM_TCP))
3571 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3575 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3577 * @bp: driver handle
3578 * @skb: packet skb
3579 * @pbd: parse BD to be updated
3580 * @xmit_type: xmit flags
3582 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3583 struct eth_tx_parse_bd_e1x *pbd,
3584 u32 xmit_type)
3586 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3588 /* for now NS flag is not used in Linux */
3589 pbd->global_data =
3590 cpu_to_le16(hlen |
3591 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3592 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3594 pbd->ip_hlen_w = (skb_transport_header(skb) -
3595 skb_network_header(skb)) >> 1;
3597 hlen += pbd->ip_hlen_w;
3599 /* We support checksum offload for TCP and UDP only */
3600 if (xmit_type & XMIT_CSUM_TCP)
3601 hlen += tcp_hdrlen(skb) / 2;
3602 else
3603 hlen += sizeof(struct udphdr) / 2;
3605 pbd->total_hlen_w = cpu_to_le16(hlen);
3606 hlen = hlen*2;
3608 if (xmit_type & XMIT_CSUM_TCP) {
3609 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3611 } else {
3612 s8 fix = SKB_CS_OFF(skb); /* signed! */
3614 DP(NETIF_MSG_TX_QUEUED,
3615 "hlen %d fix %d csum before fix %x\n",
3616 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3618 /* HW bug: fixup the CSUM */
3619 pbd->tcp_pseudo_csum =
3620 bnx2x_csum_fix(skb_transport_header(skb),
3621 SKB_CS(skb), fix);
3623 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3624 pbd->tcp_pseudo_csum);
3627 return hlen;
3630 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3631 struct eth_tx_parse_bd_e2 *pbd_e2,
3632 struct eth_tx_parse_2nd_bd *pbd2,
3633 u16 *global_data,
3634 u32 xmit_type)
3636 u16 hlen_w = 0;
3637 u8 outerip_off, outerip_len = 0;
3639 /* from outer IP to transport */
3640 hlen_w = (skb_inner_transport_header(skb) -
3641 skb_network_header(skb)) >> 1;
3643 /* transport len */
3644 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3646 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3648 /* outer IP header info */
3649 if (xmit_type & XMIT_CSUM_V4) {
3650 struct iphdr *iph = ip_hdr(skb);
3651 u32 csum = (__force u32)(~iph->check) -
3652 (__force u32)iph->tot_len -
3653 (__force u32)iph->frag_off;
3655 outerip_len = iph->ihl << 1;
3657 pbd2->fw_ip_csum_wo_len_flags_frag =
3658 bswab16(csum_fold((__force __wsum)csum));
3659 } else {
3660 pbd2->fw_ip_hdr_to_payload_w =
3661 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3662 pbd_e2->data.tunnel_data.flags |=
3663 ETH_TUNNEL_DATA_IPV6_OUTER;
3666 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3668 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3670 /* inner IP header info */
3671 if (xmit_type & XMIT_CSUM_ENC_V4) {
3672 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3674 pbd_e2->data.tunnel_data.pseudo_csum =
3675 bswab16(~csum_tcpudp_magic(
3676 inner_ip_hdr(skb)->saddr,
3677 inner_ip_hdr(skb)->daddr,
3678 0, IPPROTO_TCP, 0));
3679 } else {
3680 pbd_e2->data.tunnel_data.pseudo_csum =
3681 bswab16(~csum_ipv6_magic(
3682 &inner_ipv6_hdr(skb)->saddr,
3683 &inner_ipv6_hdr(skb)->daddr,
3684 0, IPPROTO_TCP, 0));
3687 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3689 *global_data |=
3690 outerip_off |
3691 (outerip_len <<
3692 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3693 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3694 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3696 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3697 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3698 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3702 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3703 u32 xmit_type)
3705 struct ipv6hdr *ipv6;
3707 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3708 return;
3710 if (xmit_type & XMIT_GSO_ENC_V6)
3711 ipv6 = inner_ipv6_hdr(skb);
3712 else /* XMIT_GSO_V6 */
3713 ipv6 = ipv6_hdr(skb);
3715 if (ipv6->nexthdr == NEXTHDR_IPV6)
3716 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3719 /* called with netif_tx_lock
3720 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3721 * netif_wake_queue()
3723 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3725 struct bnx2x *bp = netdev_priv(dev);
3727 struct netdev_queue *txq;
3728 struct bnx2x_fp_txdata *txdata;
3729 struct sw_tx_bd *tx_buf;
3730 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3731 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3732 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3733 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3734 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3735 u32 pbd_e2_parsing_data = 0;
3736 u16 pkt_prod, bd_prod;
3737 int nbd, txq_index;
3738 dma_addr_t mapping;
3739 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3740 int i;
3741 u8 hlen = 0;
3742 __le16 pkt_size = 0;
3743 struct ethhdr *eth;
3744 u8 mac_type = UNICAST_ADDRESS;
3746 #ifdef BNX2X_STOP_ON_ERROR
3747 if (unlikely(bp->panic))
3748 return NETDEV_TX_BUSY;
3749 #endif
3751 txq_index = skb_get_queue_mapping(skb);
3752 txq = netdev_get_tx_queue(dev, txq_index);
3754 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3756 txdata = &bp->bnx2x_txq[txq_index];
3758 /* enable this debug print to view the transmission queue being used
3759 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3760 txq_index, fp_index, txdata_index); */
3762 /* enable this debug print to view the transmission details
3763 DP(NETIF_MSG_TX_QUEUED,
3764 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3765 txdata->cid, fp_index, txdata_index, txdata, fp); */
3767 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3768 skb_shinfo(skb)->nr_frags +
3769 BDS_PER_TX_PKT +
3770 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3771 /* Handle special storage cases separately */
3772 if (txdata->tx_ring_size == 0) {
3773 struct bnx2x_eth_q_stats *q_stats =
3774 bnx2x_fp_qstats(bp, txdata->parent_fp);
3775 q_stats->driver_filtered_tx_pkt++;
3776 dev_kfree_skb(skb);
3777 return NETDEV_TX_OK;
3779 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3780 netif_tx_stop_queue(txq);
3781 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3783 return NETDEV_TX_BUSY;
3786 DP(NETIF_MSG_TX_QUEUED,
3787 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3788 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3789 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3790 skb->len);
3792 eth = (struct ethhdr *)skb->data;
3794 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3795 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3796 if (is_broadcast_ether_addr(eth->h_dest))
3797 mac_type = BROADCAST_ADDRESS;
3798 else
3799 mac_type = MULTICAST_ADDRESS;
3802 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3803 /* First, check if we need to linearize the skb (due to FW
3804 restrictions). No need to check fragmentation if page size > 8K
3805 (there will be no violation to FW restrictions) */
3806 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3807 /* Statistics of linearization */
3808 bp->lin_cnt++;
3809 if (skb_linearize(skb) != 0) {
3810 DP(NETIF_MSG_TX_QUEUED,
3811 "SKB linearization failed - silently dropping this SKB\n");
3812 dev_kfree_skb_any(skb);
3813 return NETDEV_TX_OK;
3816 #endif
3817 /* Map skb linear data for DMA */
3818 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3819 skb_headlen(skb), DMA_TO_DEVICE);
3820 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3821 DP(NETIF_MSG_TX_QUEUED,
3822 "SKB mapping failed - silently dropping this SKB\n");
3823 dev_kfree_skb_any(skb);
3824 return NETDEV_TX_OK;
3827 Please read carefully. First we use one BD which we mark as start,
3828 then we have a parsing info BD (used for TSO or xsum),
3829 and only then we have the rest of the TSO BDs.
3830 (don't forget to mark the last one as last,
3831 and to unmap only AFTER you write to the BD ...)
3832 And above all, all pdb sizes are in words - NOT DWORDS!
3835 /* get current pkt produced now - advance it just before sending packet
3836 * since mapping of pages may fail and cause packet to be dropped
3838 pkt_prod = txdata->tx_pkt_prod;
3839 bd_prod = TX_BD(txdata->tx_bd_prod);
3841 /* get a tx_buf and first BD
3842 * tx_start_bd may be changed during SPLIT,
3843 * but first_bd will always stay first
3845 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3846 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3847 first_bd = tx_start_bd;
3849 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3851 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3852 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3853 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3854 } else if (bp->ptp_tx_skb) {
3855 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3856 } else {
3857 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3858 /* schedule check for Tx timestamp */
3859 bp->ptp_tx_skb = skb_get(skb);
3860 bp->ptp_tx_start = jiffies;
3861 schedule_work(&bp->ptp_task);
3865 /* header nbd: indirectly zero other flags! */
3866 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3868 /* remember the first BD of the packet */
3869 tx_buf->first_bd = txdata->tx_bd_prod;
3870 tx_buf->skb = skb;
3871 tx_buf->flags = 0;
3873 DP(NETIF_MSG_TX_QUEUED,
3874 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3875 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3877 if (skb_vlan_tag_present(skb)) {
3878 tx_start_bd->vlan_or_ethertype =
3879 cpu_to_le16(skb_vlan_tag_get(skb));
3880 tx_start_bd->bd_flags.as_bitfield |=
3881 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3882 } else {
3883 /* when transmitting in a vf, start bd must hold the ethertype
3884 * for fw to enforce it
3886 u16 vlan_tci = 0;
3887 #ifndef BNX2X_STOP_ON_ERROR
3888 if (IS_VF(bp)) {
3889 #endif
3890 /* Still need to consider inband vlan for enforced */
3891 if (__vlan_get_tag(skb, &vlan_tci)) {
3892 tx_start_bd->vlan_or_ethertype =
3893 cpu_to_le16(ntohs(eth->h_proto));
3894 } else {
3895 tx_start_bd->bd_flags.as_bitfield |=
3896 (X_ETH_INBAND_VLAN <<
3897 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3898 tx_start_bd->vlan_or_ethertype =
3899 cpu_to_le16(vlan_tci);
3901 #ifndef BNX2X_STOP_ON_ERROR
3902 } else {
3903 /* used by FW for packet accounting */
3904 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3906 #endif
3909 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3911 /* turn on parsing and get a BD */
3912 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3914 if (xmit_type & XMIT_CSUM)
3915 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3917 if (!CHIP_IS_E1x(bp)) {
3918 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3919 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3921 if (xmit_type & XMIT_CSUM_ENC) {
3922 u16 global_data = 0;
3924 /* Set PBD in enc checksum offload case */
3925 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3926 &pbd_e2_parsing_data,
3927 xmit_type);
3929 /* turn on 2nd parsing and get a BD */
3930 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3932 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3934 memset(pbd2, 0, sizeof(*pbd2));
3936 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3937 (skb_inner_network_header(skb) -
3938 skb->data) >> 1;
3940 if (xmit_type & XMIT_GSO_ENC)
3941 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3942 &global_data,
3943 xmit_type);
3945 pbd2->global_data = cpu_to_le16(global_data);
3947 /* add addition parse BD indication to start BD */
3948 SET_FLAG(tx_start_bd->general_data,
3949 ETH_TX_START_BD_PARSE_NBDS, 1);
3950 /* set encapsulation flag in start BD */
3951 SET_FLAG(tx_start_bd->general_data,
3952 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3954 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3956 nbd++;
3957 } else if (xmit_type & XMIT_CSUM) {
3958 /* Set PBD in checksum offload case w/o encapsulation */
3959 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3960 &pbd_e2_parsing_data,
3961 xmit_type);
3964 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3965 /* Add the macs to the parsing BD if this is a vf or if
3966 * Tx Switching is enabled.
3968 if (IS_VF(bp)) {
3969 /* override GRE parameters in BD */
3970 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3971 &pbd_e2->data.mac_addr.src_mid,
3972 &pbd_e2->data.mac_addr.src_lo,
3973 eth->h_source);
3975 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3976 &pbd_e2->data.mac_addr.dst_mid,
3977 &pbd_e2->data.mac_addr.dst_lo,
3978 eth->h_dest);
3979 } else {
3980 if (bp->flags & TX_SWITCHING)
3981 bnx2x_set_fw_mac_addr(
3982 &pbd_e2->data.mac_addr.dst_hi,
3983 &pbd_e2->data.mac_addr.dst_mid,
3984 &pbd_e2->data.mac_addr.dst_lo,
3985 eth->h_dest);
3986 #ifdef BNX2X_STOP_ON_ERROR
3987 /* Enforce security is always set in Stop on Error -
3988 * source mac should be present in the parsing BD
3990 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3991 &pbd_e2->data.mac_addr.src_mid,
3992 &pbd_e2->data.mac_addr.src_lo,
3993 eth->h_source);
3994 #endif
3997 SET_FLAG(pbd_e2_parsing_data,
3998 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3999 } else {
4000 u16 global_data = 0;
4001 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4002 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4003 /* Set PBD in checksum offload case */
4004 if (xmit_type & XMIT_CSUM)
4005 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4007 SET_FLAG(global_data,
4008 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4009 pbd_e1x->global_data |= cpu_to_le16(global_data);
4012 /* Setup the data pointer of the first BD of the packet */
4013 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4014 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4015 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4016 pkt_size = tx_start_bd->nbytes;
4018 DP(NETIF_MSG_TX_QUEUED,
4019 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4020 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4021 le16_to_cpu(tx_start_bd->nbytes),
4022 tx_start_bd->bd_flags.as_bitfield,
4023 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4025 if (xmit_type & XMIT_GSO) {
4027 DP(NETIF_MSG_TX_QUEUED,
4028 "TSO packet len %d hlen %d total len %d tso size %d\n",
4029 skb->len, hlen, skb_headlen(skb),
4030 skb_shinfo(skb)->gso_size);
4032 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4034 if (unlikely(skb_headlen(skb) > hlen)) {
4035 nbd++;
4036 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4037 &tx_start_bd, hlen,
4038 bd_prod);
4040 if (!CHIP_IS_E1x(bp))
4041 pbd_e2_parsing_data |=
4042 (skb_shinfo(skb)->gso_size <<
4043 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4044 ETH_TX_PARSE_BD_E2_LSO_MSS;
4045 else
4046 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4049 /* Set the PBD's parsing_data field if not zero
4050 * (for the chips newer than 57711).
4052 if (pbd_e2_parsing_data)
4053 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4055 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4057 /* Handle fragmented skb */
4058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4061 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4062 skb_frag_size(frag), DMA_TO_DEVICE);
4063 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4064 unsigned int pkts_compl = 0, bytes_compl = 0;
4066 DP(NETIF_MSG_TX_QUEUED,
4067 "Unable to map page - dropping packet...\n");
4069 /* we need unmap all buffers already mapped
4070 * for this SKB;
4071 * first_bd->nbd need to be properly updated
4072 * before call to bnx2x_free_tx_pkt
4074 first_bd->nbd = cpu_to_le16(nbd);
4075 bnx2x_free_tx_pkt(bp, txdata,
4076 TX_BD(txdata->tx_pkt_prod),
4077 &pkts_compl, &bytes_compl);
4078 return NETDEV_TX_OK;
4081 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4082 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4083 if (total_pkt_bd == NULL)
4084 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4086 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4087 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4088 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4089 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4090 nbd++;
4092 DP(NETIF_MSG_TX_QUEUED,
4093 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4094 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4095 le16_to_cpu(tx_data_bd->nbytes));
4098 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4100 /* update with actual num BDs */
4101 first_bd->nbd = cpu_to_le16(nbd);
4103 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4105 /* now send a tx doorbell, counting the next BD
4106 * if the packet contains or ends with it
4108 if (TX_BD_POFF(bd_prod) < nbd)
4109 nbd++;
4111 /* total_pkt_bytes should be set on the first data BD if
4112 * it's not an LSO packet and there is more than one
4113 * data BD. In this case pkt_size is limited by an MTU value.
4114 * However we prefer to set it for an LSO packet (while we don't
4115 * have to) in order to save some CPU cycles in a none-LSO
4116 * case, when we much more care about them.
4118 if (total_pkt_bd != NULL)
4119 total_pkt_bd->total_pkt_bytes = pkt_size;
4121 if (pbd_e1x)
4122 DP(NETIF_MSG_TX_QUEUED,
4123 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4124 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4125 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4126 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4127 le16_to_cpu(pbd_e1x->total_hlen_w));
4128 if (pbd_e2)
4129 DP(NETIF_MSG_TX_QUEUED,
4130 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4131 pbd_e2,
4132 pbd_e2->data.mac_addr.dst_hi,
4133 pbd_e2->data.mac_addr.dst_mid,
4134 pbd_e2->data.mac_addr.dst_lo,
4135 pbd_e2->data.mac_addr.src_hi,
4136 pbd_e2->data.mac_addr.src_mid,
4137 pbd_e2->data.mac_addr.src_lo,
4138 pbd_e2->parsing_data);
4139 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4141 netdev_tx_sent_queue(txq, skb->len);
4143 skb_tx_timestamp(skb);
4145 txdata->tx_pkt_prod++;
4147 * Make sure that the BD data is updated before updating the producer
4148 * since FW might read the BD right after the producer is updated.
4149 * This is only applicable for weak-ordered memory model archs such
4150 * as IA-64. The following barrier is also mandatory since FW will
4151 * assumes packets must have BDs.
4153 wmb();
4155 txdata->tx_db.data.prod += nbd;
4156 barrier();
4158 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4160 mmiowb();
4162 txdata->tx_bd_prod += nbd;
4164 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4165 netif_tx_stop_queue(txq);
4167 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4168 * ordering of set_bit() in netif_tx_stop_queue() and read of
4169 * fp->bd_tx_cons */
4170 smp_mb();
4172 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4173 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4174 netif_tx_wake_queue(txq);
4176 txdata->tx_pkt++;
4178 return NETDEV_TX_OK;
4181 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4183 int mfw_vn = BP_FW_MB_IDX(bp);
4184 u32 tmp;
4186 /* If the shmem shouldn't affect configuration, reflect */
4187 if (!IS_MF_BD(bp)) {
4188 int i;
4190 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4191 c2s_map[i] = i;
4192 *c2s_default = 0;
4194 return;
4197 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4198 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4199 c2s_map[0] = tmp & 0xff;
4200 c2s_map[1] = (tmp >> 8) & 0xff;
4201 c2s_map[2] = (tmp >> 16) & 0xff;
4202 c2s_map[3] = (tmp >> 24) & 0xff;
4204 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4205 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4206 c2s_map[4] = tmp & 0xff;
4207 c2s_map[5] = (tmp >> 8) & 0xff;
4208 c2s_map[6] = (tmp >> 16) & 0xff;
4209 c2s_map[7] = (tmp >> 24) & 0xff;
4211 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4212 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4213 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4217 * bnx2x_setup_tc - routine to configure net_device for multi tc
4219 * @netdev: net device to configure
4220 * @tc: number of traffic classes to enable
4222 * callback connected to the ndo_setup_tc function pointer
4224 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4226 struct bnx2x *bp = netdev_priv(dev);
4227 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4228 int cos, prio, count, offset;
4230 /* setup tc must be called under rtnl lock */
4231 ASSERT_RTNL();
4233 /* no traffic classes requested. Aborting */
4234 if (!num_tc) {
4235 netdev_reset_tc(dev);
4236 return 0;
4239 /* requested to support too many traffic classes */
4240 if (num_tc > bp->max_cos) {
4241 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4242 num_tc, bp->max_cos);
4243 return -EINVAL;
4246 /* declare amount of supported traffic classes */
4247 if (netdev_set_num_tc(dev, num_tc)) {
4248 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4249 return -EINVAL;
4252 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4254 /* configure priority to traffic class mapping */
4255 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4256 int outer_prio = c2s_map[prio];
4258 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4259 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4260 "mapping priority %d to tc %d\n",
4261 outer_prio, bp->prio_to_cos[outer_prio]);
4264 /* Use this configuration to differentiate tc0 from other COSes
4265 This can be used for ets or pfc, and save the effort of setting
4266 up a multio class queue disc or negotiating DCBX with a switch
4267 netdev_set_prio_tc_map(dev, 0, 0);
4268 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4269 for (prio = 1; prio < 16; prio++) {
4270 netdev_set_prio_tc_map(dev, prio, 1);
4271 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4272 } */
4274 /* configure traffic class to transmission queue mapping */
4275 for (cos = 0; cos < bp->max_cos; cos++) {
4276 count = BNX2X_NUM_ETH_QUEUES(bp);
4277 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4278 netdev_set_tc_queue(dev, cos, count, offset);
4279 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4280 "mapping tc %d to offset %d count %d\n",
4281 cos, offset, count);
4284 return 0;
4287 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4288 void *type_data)
4290 struct tc_mqprio_qopt *mqprio = type_data;
4292 if (type != TC_SETUP_QDISC_MQPRIO)
4293 return -EOPNOTSUPP;
4295 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4297 return bnx2x_setup_tc(dev, mqprio->num_tc);
4300 /* called with rtnl_lock */
4301 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4303 struct sockaddr *addr = p;
4304 struct bnx2x *bp = netdev_priv(dev);
4305 int rc = 0;
4307 if (!is_valid_ether_addr(addr->sa_data)) {
4308 BNX2X_ERR("Requested MAC address is not valid\n");
4309 return -EINVAL;
4312 if (IS_MF_STORAGE_ONLY(bp)) {
4313 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4314 return -EINVAL;
4317 if (netif_running(dev)) {
4318 rc = bnx2x_set_eth_mac(bp, false);
4319 if (rc)
4320 return rc;
4323 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4325 if (netif_running(dev))
4326 rc = bnx2x_set_eth_mac(bp, true);
4328 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4329 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4331 return rc;
4334 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4336 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4337 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4338 u8 cos;
4340 /* Common */
4342 if (IS_FCOE_IDX(fp_index)) {
4343 memset(sb, 0, sizeof(union host_hc_status_block));
4344 fp->status_blk_mapping = 0;
4345 } else {
4346 /* status blocks */
4347 if (!CHIP_IS_E1x(bp))
4348 BNX2X_PCI_FREE(sb->e2_sb,
4349 bnx2x_fp(bp, fp_index,
4350 status_blk_mapping),
4351 sizeof(struct host_hc_status_block_e2));
4352 else
4353 BNX2X_PCI_FREE(sb->e1x_sb,
4354 bnx2x_fp(bp, fp_index,
4355 status_blk_mapping),
4356 sizeof(struct host_hc_status_block_e1x));
4359 /* Rx */
4360 if (!skip_rx_queue(bp, fp_index)) {
4361 bnx2x_free_rx_bds(fp);
4363 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4364 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4365 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4366 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4367 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4369 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4370 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4371 sizeof(struct eth_fast_path_rx_cqe) *
4372 NUM_RCQ_BD);
4374 /* SGE ring */
4375 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4376 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4377 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4378 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4381 /* Tx */
4382 if (!skip_tx_queue(bp, fp_index)) {
4383 /* fastpath tx rings: tx_buf tx_desc */
4384 for_each_cos_in_tx_queue(fp, cos) {
4385 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4387 DP(NETIF_MSG_IFDOWN,
4388 "freeing tx memory of fp %d cos %d cid %d\n",
4389 fp_index, cos, txdata->cid);
4391 BNX2X_FREE(txdata->tx_buf_ring);
4392 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4393 txdata->tx_desc_mapping,
4394 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4397 /* end of fastpath */
4400 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4402 int i;
4403 for_each_cnic_queue(bp, i)
4404 bnx2x_free_fp_mem_at(bp, i);
4407 void bnx2x_free_fp_mem(struct bnx2x *bp)
4409 int i;
4410 for_each_eth_queue(bp, i)
4411 bnx2x_free_fp_mem_at(bp, i);
4414 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4416 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4417 if (!CHIP_IS_E1x(bp)) {
4418 bnx2x_fp(bp, index, sb_index_values) =
4419 (__le16 *)status_blk.e2_sb->sb.index_values;
4420 bnx2x_fp(bp, index, sb_running_index) =
4421 (__le16 *)status_blk.e2_sb->sb.running_index;
4422 } else {
4423 bnx2x_fp(bp, index, sb_index_values) =
4424 (__le16 *)status_blk.e1x_sb->sb.index_values;
4425 bnx2x_fp(bp, index, sb_running_index) =
4426 (__le16 *)status_blk.e1x_sb->sb.running_index;
4430 /* Returns the number of actually allocated BDs */
4431 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4432 int rx_ring_size)
4434 struct bnx2x *bp = fp->bp;
4435 u16 ring_prod, cqe_ring_prod;
4436 int i, failure_cnt = 0;
4438 fp->rx_comp_cons = 0;
4439 cqe_ring_prod = ring_prod = 0;
4441 /* This routine is called only during fo init so
4442 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4444 for (i = 0; i < rx_ring_size; i++) {
4445 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4446 failure_cnt++;
4447 continue;
4449 ring_prod = NEXT_RX_IDX(ring_prod);
4450 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4451 WARN_ON(ring_prod <= (i - failure_cnt));
4454 if (failure_cnt)
4455 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4456 i - failure_cnt, fp->index);
4458 fp->rx_bd_prod = ring_prod;
4459 /* Limit the CQE producer by the CQE ring size */
4460 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4461 cqe_ring_prod);
4463 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4465 return i - failure_cnt;
4468 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4470 int i;
4472 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4473 struct eth_rx_cqe_next_page *nextpg;
4475 nextpg = (struct eth_rx_cqe_next_page *)
4476 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4477 nextpg->addr_hi =
4478 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4479 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4480 nextpg->addr_lo =
4481 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4482 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4486 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4488 union host_hc_status_block *sb;
4489 struct bnx2x_fastpath *fp = &bp->fp[index];
4490 int ring_size = 0;
4491 u8 cos;
4492 int rx_ring_size = 0;
4494 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4495 rx_ring_size = MIN_RX_SIZE_NONTPA;
4496 bp->rx_ring_size = rx_ring_size;
4497 } else if (!bp->rx_ring_size) {
4498 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4500 if (CHIP_IS_E3(bp)) {
4501 u32 cfg = SHMEM_RD(bp,
4502 dev_info.port_hw_config[BP_PORT(bp)].
4503 default_cfg);
4505 /* Decrease ring size for 1G functions */
4506 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4507 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4508 rx_ring_size /= 10;
4511 /* allocate at least number of buffers required by FW */
4512 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4513 MIN_RX_SIZE_TPA, rx_ring_size);
4515 bp->rx_ring_size = rx_ring_size;
4516 } else /* if rx_ring_size specified - use it */
4517 rx_ring_size = bp->rx_ring_size;
4519 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4521 /* Common */
4522 sb = &bnx2x_fp(bp, index, status_blk);
4524 if (!IS_FCOE_IDX(index)) {
4525 /* status blocks */
4526 if (!CHIP_IS_E1x(bp)) {
4527 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4528 sizeof(struct host_hc_status_block_e2));
4529 if (!sb->e2_sb)
4530 goto alloc_mem_err;
4531 } else {
4532 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4533 sizeof(struct host_hc_status_block_e1x));
4534 if (!sb->e1x_sb)
4535 goto alloc_mem_err;
4539 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4540 * set shortcuts for it.
4542 if (!IS_FCOE_IDX(index))
4543 set_sb_shortcuts(bp, index);
4545 /* Tx */
4546 if (!skip_tx_queue(bp, index)) {
4547 /* fastpath tx rings: tx_buf tx_desc */
4548 for_each_cos_in_tx_queue(fp, cos) {
4549 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4551 DP(NETIF_MSG_IFUP,
4552 "allocating tx memory of fp %d cos %d\n",
4553 index, cos);
4555 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4556 sizeof(struct sw_tx_bd),
4557 GFP_KERNEL);
4558 if (!txdata->tx_buf_ring)
4559 goto alloc_mem_err;
4560 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4561 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4562 if (!txdata->tx_desc_ring)
4563 goto alloc_mem_err;
4567 /* Rx */
4568 if (!skip_rx_queue(bp, index)) {
4569 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4570 bnx2x_fp(bp, index, rx_buf_ring) =
4571 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4572 if (!bnx2x_fp(bp, index, rx_buf_ring))
4573 goto alloc_mem_err;
4574 bnx2x_fp(bp, index, rx_desc_ring) =
4575 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4576 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4577 if (!bnx2x_fp(bp, index, rx_desc_ring))
4578 goto alloc_mem_err;
4580 /* Seed all CQEs by 1s */
4581 bnx2x_fp(bp, index, rx_comp_ring) =
4582 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4583 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4584 if (!bnx2x_fp(bp, index, rx_comp_ring))
4585 goto alloc_mem_err;
4587 /* SGE ring */
4588 bnx2x_fp(bp, index, rx_page_ring) =
4589 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4590 GFP_KERNEL);
4591 if (!bnx2x_fp(bp, index, rx_page_ring))
4592 goto alloc_mem_err;
4593 bnx2x_fp(bp, index, rx_sge_ring) =
4594 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4595 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4596 if (!bnx2x_fp(bp, index, rx_sge_ring))
4597 goto alloc_mem_err;
4598 /* RX BD ring */
4599 bnx2x_set_next_page_rx_bd(fp);
4601 /* CQ ring */
4602 bnx2x_set_next_page_rx_cq(fp);
4604 /* BDs */
4605 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4606 if (ring_size < rx_ring_size)
4607 goto alloc_mem_err;
4610 return 0;
4612 /* handles low memory cases */
4613 alloc_mem_err:
4614 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4615 index, ring_size);
4616 /* FW will drop all packets if queue is not big enough,
4617 * In these cases we disable the queue
4618 * Min size is different for OOO, TPA and non-TPA queues
4620 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4621 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4622 /* release memory allocated for this queue */
4623 bnx2x_free_fp_mem_at(bp, index);
4624 return -ENOMEM;
4626 return 0;
4629 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4631 if (!NO_FCOE(bp))
4632 /* FCoE */
4633 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4634 /* we will fail load process instead of mark
4635 * NO_FCOE_FLAG
4637 return -ENOMEM;
4639 return 0;
4642 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4644 int i;
4646 /* 1. Allocate FP for leading - fatal if error
4647 * 2. Allocate RSS - fix number of queues if error
4650 /* leading */
4651 if (bnx2x_alloc_fp_mem_at(bp, 0))
4652 return -ENOMEM;
4654 /* RSS */
4655 for_each_nondefault_eth_queue(bp, i)
4656 if (bnx2x_alloc_fp_mem_at(bp, i))
4657 break;
4659 /* handle memory failures */
4660 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4661 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4663 WARN_ON(delta < 0);
4664 bnx2x_shrink_eth_fp(bp, delta);
4665 if (CNIC_SUPPORT(bp))
4666 /* move non eth FPs next to last eth FP
4667 * must be done in that order
4668 * FCOE_IDX < FWD_IDX < OOO_IDX
4671 /* move FCoE fp even NO_FCOE_FLAG is on */
4672 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4673 bp->num_ethernet_queues -= delta;
4674 bp->num_queues = bp->num_ethernet_queues +
4675 bp->num_cnic_queues;
4676 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4677 bp->num_queues + delta, bp->num_queues);
4680 return 0;
4683 void bnx2x_free_mem_bp(struct bnx2x *bp)
4685 int i;
4687 for (i = 0; i < bp->fp_array_size; i++)
4688 kfree(bp->fp[i].tpa_info);
4689 kfree(bp->fp);
4690 kfree(bp->sp_objs);
4691 kfree(bp->fp_stats);
4692 kfree(bp->bnx2x_txq);
4693 kfree(bp->msix_table);
4694 kfree(bp->ilt);
4697 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4699 struct bnx2x_fastpath *fp;
4700 struct msix_entry *tbl;
4701 struct bnx2x_ilt *ilt;
4702 int msix_table_size = 0;
4703 int fp_array_size, txq_array_size;
4704 int i;
4707 * The biggest MSI-X table we might need is as a maximum number of fast
4708 * path IGU SBs plus default SB (for PF only).
4710 msix_table_size = bp->igu_sb_cnt;
4711 if (IS_PF(bp))
4712 msix_table_size++;
4713 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4715 /* fp array: RSS plus CNIC related L2 queues */
4716 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4717 bp->fp_array_size = fp_array_size;
4718 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4720 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4721 if (!fp)
4722 goto alloc_err;
4723 for (i = 0; i < bp->fp_array_size; i++) {
4724 fp[i].tpa_info =
4725 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4726 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4727 if (!(fp[i].tpa_info))
4728 goto alloc_err;
4731 bp->fp = fp;
4733 /* allocate sp objs */
4734 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4735 GFP_KERNEL);
4736 if (!bp->sp_objs)
4737 goto alloc_err;
4739 /* allocate fp_stats */
4740 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4741 GFP_KERNEL);
4742 if (!bp->fp_stats)
4743 goto alloc_err;
4745 /* Allocate memory for the transmission queues array */
4746 txq_array_size =
4747 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4748 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4750 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4751 GFP_KERNEL);
4752 if (!bp->bnx2x_txq)
4753 goto alloc_err;
4755 /* msix table */
4756 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4757 if (!tbl)
4758 goto alloc_err;
4759 bp->msix_table = tbl;
4761 /* ilt */
4762 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4763 if (!ilt)
4764 goto alloc_err;
4765 bp->ilt = ilt;
4767 return 0;
4768 alloc_err:
4769 bnx2x_free_mem_bp(bp);
4770 return -ENOMEM;
4773 int bnx2x_reload_if_running(struct net_device *dev)
4775 struct bnx2x *bp = netdev_priv(dev);
4777 if (unlikely(!netif_running(dev)))
4778 return 0;
4780 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4781 return bnx2x_nic_load(bp, LOAD_NORMAL);
4784 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4786 u32 sel_phy_idx = 0;
4787 if (bp->link_params.num_phys <= 1)
4788 return INT_PHY;
4790 if (bp->link_vars.link_up) {
4791 sel_phy_idx = EXT_PHY1;
4792 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4793 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4794 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4795 sel_phy_idx = EXT_PHY2;
4796 } else {
4798 switch (bnx2x_phy_selection(&bp->link_params)) {
4799 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4800 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4801 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4802 sel_phy_idx = EXT_PHY1;
4803 break;
4804 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4805 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4806 sel_phy_idx = EXT_PHY2;
4807 break;
4811 return sel_phy_idx;
4813 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4815 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4817 * The selected activated PHY is always after swapping (in case PHY
4818 * swapping is enabled). So when swapping is enabled, we need to reverse
4819 * the configuration
4822 if (bp->link_params.multi_phy_config &
4823 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4824 if (sel_phy_idx == EXT_PHY1)
4825 sel_phy_idx = EXT_PHY2;
4826 else if (sel_phy_idx == EXT_PHY2)
4827 sel_phy_idx = EXT_PHY1;
4829 return LINK_CONFIG_IDX(sel_phy_idx);
4832 #ifdef NETDEV_FCOE_WWNN
4833 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4835 struct bnx2x *bp = netdev_priv(dev);
4836 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4838 switch (type) {
4839 case NETDEV_FCOE_WWNN:
4840 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4841 cp->fcoe_wwn_node_name_lo);
4842 break;
4843 case NETDEV_FCOE_WWPN:
4844 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4845 cp->fcoe_wwn_port_name_lo);
4846 break;
4847 default:
4848 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4849 return -EINVAL;
4852 return 0;
4854 #endif
4856 /* called with rtnl_lock */
4857 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4859 struct bnx2x *bp = netdev_priv(dev);
4861 if (pci_num_vf(bp->pdev)) {
4862 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4863 return -EPERM;
4866 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4867 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4868 return -EAGAIN;
4871 /* This does not race with packet allocation
4872 * because the actual alloc size is
4873 * only updated as part of load
4875 dev->mtu = new_mtu;
4877 if (!bnx2x_mtu_allows_gro(new_mtu))
4878 dev->features &= ~NETIF_F_GRO_HW;
4880 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4881 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4883 return bnx2x_reload_if_running(dev);
4886 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4887 netdev_features_t features)
4889 struct bnx2x *bp = netdev_priv(dev);
4891 if (pci_num_vf(bp->pdev)) {
4892 netdev_features_t changed = dev->features ^ features;
4894 /* Revert the requested changes in features if they
4895 * would require internal reload of PF in bnx2x_set_features().
4897 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4898 features &= ~NETIF_F_RXCSUM;
4899 features |= dev->features & NETIF_F_RXCSUM;
4902 if (changed & NETIF_F_LOOPBACK) {
4903 features &= ~NETIF_F_LOOPBACK;
4904 features |= dev->features & NETIF_F_LOOPBACK;
4908 /* TPA requires Rx CSUM offloading */
4909 if (!(features & NETIF_F_RXCSUM))
4910 features &= ~NETIF_F_LRO;
4912 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4913 features &= ~NETIF_F_GRO_HW;
4914 if (features & NETIF_F_GRO_HW)
4915 features &= ~NETIF_F_LRO;
4917 return features;
4920 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4922 struct bnx2x *bp = netdev_priv(dev);
4923 netdev_features_t changes = features ^ dev->features;
4924 bool bnx2x_reload = false;
4925 int rc;
4927 /* VFs or non SRIOV PFs should be able to change loopback feature */
4928 if (!pci_num_vf(bp->pdev)) {
4929 if (features & NETIF_F_LOOPBACK) {
4930 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4931 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4932 bnx2x_reload = true;
4934 } else {
4935 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4936 bp->link_params.loopback_mode = LOOPBACK_NONE;
4937 bnx2x_reload = true;
4942 /* Don't care about GRO changes */
4943 changes &= ~NETIF_F_GRO;
4945 if (changes)
4946 bnx2x_reload = true;
4948 if (bnx2x_reload) {
4949 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4950 dev->features = features;
4951 rc = bnx2x_reload_if_running(dev);
4952 return rc ? rc : 1;
4954 /* else: bnx2x_nic_load() will be called at end of recovery */
4957 return 0;
4960 void bnx2x_tx_timeout(struct net_device *dev)
4962 struct bnx2x *bp = netdev_priv(dev);
4964 #ifdef BNX2X_STOP_ON_ERROR
4965 if (!bp->panic)
4966 bnx2x_panic();
4967 #endif
4969 /* This allows the netif to be shutdown gracefully before resetting */
4970 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4973 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4975 struct net_device *dev = pci_get_drvdata(pdev);
4976 struct bnx2x *bp;
4978 if (!dev) {
4979 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4980 return -ENODEV;
4982 bp = netdev_priv(dev);
4984 rtnl_lock();
4986 pci_save_state(pdev);
4988 if (!netif_running(dev)) {
4989 rtnl_unlock();
4990 return 0;
4993 netif_device_detach(dev);
4995 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4997 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4999 rtnl_unlock();
5001 return 0;
5004 int bnx2x_resume(struct pci_dev *pdev)
5006 struct net_device *dev = pci_get_drvdata(pdev);
5007 struct bnx2x *bp;
5008 int rc;
5010 if (!dev) {
5011 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5012 return -ENODEV;
5014 bp = netdev_priv(dev);
5016 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5017 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5018 return -EAGAIN;
5021 rtnl_lock();
5023 pci_restore_state(pdev);
5025 if (!netif_running(dev)) {
5026 rtnl_unlock();
5027 return 0;
5030 bnx2x_set_power_state(bp, PCI_D0);
5031 netif_device_attach(dev);
5033 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5035 rtnl_unlock();
5037 return rc;
5040 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5041 u32 cid)
5043 if (!cxt) {
5044 BNX2X_ERR("bad context pointer %p\n", cxt);
5045 return;
5048 /* ustorm cxt validation */
5049 cxt->ustorm_ag_context.cdu_usage =
5050 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5051 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5052 /* xcontext validation */
5053 cxt->xstorm_ag_context.cdu_reserved =
5054 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5055 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5058 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5059 u8 fw_sb_id, u8 sb_index,
5060 u8 ticks)
5062 u32 addr = BAR_CSTRORM_INTMEM +
5063 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5064 REG_WR8(bp, addr, ticks);
5065 DP(NETIF_MSG_IFUP,
5066 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5067 port, fw_sb_id, sb_index, ticks);
5070 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5071 u16 fw_sb_id, u8 sb_index,
5072 u8 disable)
5074 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5075 u32 addr = BAR_CSTRORM_INTMEM +
5076 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5077 u8 flags = REG_RD8(bp, addr);
5078 /* clear and set */
5079 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5080 flags |= enable_flag;
5081 REG_WR8(bp, addr, flags);
5082 DP(NETIF_MSG_IFUP,
5083 "port %x fw_sb_id %d sb_index %d disable %d\n",
5084 port, fw_sb_id, sb_index, disable);
5087 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5088 u8 sb_index, u8 disable, u16 usec)
5090 int port = BP_PORT(bp);
5091 u8 ticks = usec / BNX2X_BTR;
5093 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5095 disable = disable ? 1 : (usec ? 0 : 1);
5096 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5099 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5100 u32 verbose)
5102 smp_mb__before_atomic();
5103 set_bit(flag, &bp->sp_rtnl_state);
5104 smp_mb__after_atomic();
5105 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5106 flag);
5107 schedule_delayed_work(&bp->sp_rtnl_task, 0);