Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
blob8baf9d3eb4b1c1a1dd84abe031b7c19c8dbb7370
1 /* bnx2x_sp.c: Qlogic Everest network driver.
3 * Copyright 2011-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
7 * Unless you and Qlogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other Qlogic software provided under a
14 * license other than the GPL, without Qlogic's express prior written
15 * consent.
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Vladislav Zolotarov
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
33 #define BNX2X_MAX_EMUL_MULTI 16
35 /**** Exe Queue interfaces ****/
37 /**
38 * bnx2x_exe_queue_init - init the Exe Queue object
40 * @o: pointer to the object
41 * @exe_len: length
42 * @owner: pointer to the owner
43 * @validate: validate function pointer
44 * @optimize: optimize function pointer
45 * @exec: execute function pointer
46 * @get: get function pointer
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 struct bnx2x_exe_queue_obj *o,
50 int exe_len,
51 union bnx2x_qable_obj *owner,
52 exe_q_validate validate,
53 exe_q_remove remove,
54 exe_q_optimize optimize,
55 exe_q_execute exec,
56 exe_q_get get)
58 memset(o, 0, sizeof(*o));
60 INIT_LIST_HEAD(&o->exe_queue);
61 INIT_LIST_HEAD(&o->pending_comp);
63 spin_lock_init(&o->lock);
65 o->exe_chunk_len = exe_len;
66 o->owner = owner;
68 /* Owner specific callbacks */
69 o->validate = validate;
70 o->remove = remove;
71 o->optimize = optimize;
72 o->execute = exec;
73 o->get = get;
75 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 exe_len);
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 struct bnx2x_exeq_elem *elem)
82 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 kfree(elem);
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
88 struct bnx2x_exeq_elem *elem;
89 int cnt = 0;
91 spin_lock_bh(&o->lock);
93 list_for_each_entry(elem, &o->exe_queue, link)
94 cnt++;
96 spin_unlock_bh(&o->lock);
98 return cnt;
102 * bnx2x_exe_queue_add - add a new element to the execution queue
104 * @bp: driver handle
105 * @o: queue
106 * @cmd: new command to add
107 * @restore: true - do not optimize the command
109 * If the element is optimized or is illegal, frees it.
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 struct bnx2x_exe_queue_obj *o,
113 struct bnx2x_exeq_elem *elem,
114 bool restore)
116 int rc;
118 spin_lock_bh(&o->lock);
120 if (!restore) {
121 /* Try to cancel this element queue */
122 rc = o->optimize(bp, o->owner, elem);
123 if (rc)
124 goto free_and_exit;
126 /* Check if this request is ok */
127 rc = o->validate(bp, o->owner, elem);
128 if (rc) {
129 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
130 goto free_and_exit;
134 /* If so, add it to the execution queue */
135 list_add_tail(&elem->link, &o->exe_queue);
137 spin_unlock_bh(&o->lock);
139 return 0;
141 free_and_exit:
142 bnx2x_exe_queue_free_elem(bp, elem);
144 spin_unlock_bh(&o->lock);
146 return rc;
149 static inline void __bnx2x_exe_queue_reset_pending(
150 struct bnx2x *bp,
151 struct bnx2x_exe_queue_obj *o)
153 struct bnx2x_exeq_elem *elem;
155 while (!list_empty(&o->pending_comp)) {
156 elem = list_first_entry(&o->pending_comp,
157 struct bnx2x_exeq_elem, link);
159 list_del(&elem->link);
160 bnx2x_exe_queue_free_elem(bp, elem);
165 * bnx2x_exe_queue_step - execute one execution chunk atomically
167 * @bp: driver handle
168 * @o: queue
169 * @ramrod_flags: flags
171 * (Should be called while holding the exe_queue->lock).
173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
174 struct bnx2x_exe_queue_obj *o,
175 unsigned long *ramrod_flags)
177 struct bnx2x_exeq_elem *elem, spacer;
178 int cur_len = 0, rc;
180 memset(&spacer, 0, sizeof(spacer));
182 /* Next step should not be performed until the current is finished,
183 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
184 * properly clear object internals without sending any command to the FW
185 * which also implies there won't be any completion to clear the
186 * 'pending' list.
188 if (!list_empty(&o->pending_comp)) {
189 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
190 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
191 __bnx2x_exe_queue_reset_pending(bp, o);
192 } else {
193 return 1;
197 /* Run through the pending commands list and create a next
198 * execution chunk.
200 while (!list_empty(&o->exe_queue)) {
201 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
202 link);
203 WARN_ON(!elem->cmd_len);
205 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
206 cur_len += elem->cmd_len;
207 /* Prevent from both lists being empty when moving an
208 * element. This will allow the call of
209 * bnx2x_exe_queue_empty() without locking.
211 list_add_tail(&spacer.link, &o->pending_comp);
212 mb();
213 list_move_tail(&elem->link, &o->pending_comp);
214 list_del(&spacer.link);
215 } else
216 break;
219 /* Sanity check */
220 if (!cur_len)
221 return 0;
223 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
224 if (rc < 0)
225 /* In case of an error return the commands back to the queue
226 * and reset the pending_comp.
228 list_splice_init(&o->pending_comp, &o->exe_queue);
229 else if (!rc)
230 /* If zero is returned, means there are no outstanding pending
231 * completions and we may dismiss the pending list.
233 __bnx2x_exe_queue_reset_pending(bp, o);
235 return rc;
238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
240 bool empty = list_empty(&o->exe_queue);
242 /* Don't reorder!!! */
243 mb();
245 return empty && list_empty(&o->pending_comp);
248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
249 struct bnx2x *bp)
251 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
252 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
255 /************************ raw_obj functions ***********************************/
256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
258 return !!test_bit(o->state, o->pstate);
261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
263 smp_mb__before_atomic();
264 clear_bit(o->state, o->pstate);
265 smp_mb__after_atomic();
268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
270 smp_mb__before_atomic();
271 set_bit(o->state, o->pstate);
272 smp_mb__after_atomic();
276 * bnx2x_state_wait - wait until the given bit(state) is cleared
278 * @bp: device handle
279 * @state: state which is to be cleared
280 * @state_p: state buffer
283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
284 unsigned long *pstate)
286 /* can take a while if any port is running */
287 int cnt = 5000;
289 if (CHIP_REV_IS_EMUL(bp))
290 cnt *= 20;
292 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
294 might_sleep();
295 while (cnt--) {
296 if (!test_bit(state, pstate)) {
297 #ifdef BNX2X_STOP_ON_ERROR
298 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
299 #endif
300 return 0;
303 usleep_range(1000, 2000);
305 if (bp->panic)
306 return -EIO;
309 /* timeout! */
310 BNX2X_ERR("timeout waiting for state %d\n", state);
311 #ifdef BNX2X_STOP_ON_ERROR
312 bnx2x_panic();
313 #endif
315 return -EBUSY;
318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
320 return bnx2x_state_wait(bp, raw->state, raw->pstate);
323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
324 /* credit handling callbacks */
325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
327 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
329 WARN_ON(!mp);
331 return mp->get_entry(mp, offset);
334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
336 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
338 WARN_ON(!mp);
340 return mp->get(mp, 1);
343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
345 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
347 WARN_ON(!vp);
349 return vp->get_entry(vp, offset);
352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
354 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
356 WARN_ON(!vp);
358 return vp->get(vp, 1);
361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
363 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
364 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
366 if (!mp->get(mp, 1))
367 return false;
369 if (!vp->get(vp, 1)) {
370 mp->put(mp, 1);
371 return false;
374 return true;
377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
379 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
381 return mp->put_entry(mp, offset);
384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
386 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
388 return mp->put(mp, 1);
391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
393 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
395 return vp->put_entry(vp, offset);
398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
400 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
402 return vp->put(vp, 1);
405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
407 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
408 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
410 if (!mp->put(mp, 1))
411 return false;
413 if (!vp->put(vp, 1)) {
414 mp->get(mp, 1);
415 return false;
418 return true;
422 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
424 * @bp: device handle
425 * @o: vlan_mac object
427 * @details: Non-blocking implementation; should be called under execution
428 * queue lock.
430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
431 struct bnx2x_vlan_mac_obj *o)
433 if (o->head_reader) {
434 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
435 return -EBUSY;
438 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
439 return 0;
443 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
445 * @bp: device handle
446 * @o: vlan_mac object
448 * @details Should be called under execution queue lock; notice it might release
449 * and reclaim it during its run.
451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
452 struct bnx2x_vlan_mac_obj *o)
454 int rc;
455 unsigned long ramrod_flags = o->saved_ramrod_flags;
457 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
458 ramrod_flags);
459 o->head_exe_request = false;
460 o->saved_ramrod_flags = 0;
461 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
462 if ((rc != 0) && (rc != 1)) {
463 BNX2X_ERR("execution of pending commands failed with rc %d\n",
464 rc);
465 #ifdef BNX2X_STOP_ON_ERROR
466 bnx2x_panic();
467 #endif
472 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
474 * @bp: device handle
475 * @o: vlan_mac object
476 * @ramrod_flags: ramrod flags of missed execution
478 * @details Should be called under execution queue lock.
480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
481 struct bnx2x_vlan_mac_obj *o,
482 unsigned long ramrod_flags)
484 o->head_exe_request = true;
485 o->saved_ramrod_flags = ramrod_flags;
486 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
487 ramrod_flags);
491 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
493 * @bp: device handle
494 * @o: vlan_mac object
496 * @details Should be called under execution queue lock. Notice if a pending
497 * execution exists, it would perform it - possibly releasing and
498 * reclaiming the execution queue lock.
500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
501 struct bnx2x_vlan_mac_obj *o)
503 /* It's possible a new pending execution was added since this writer
504 * executed. If so, execute again. [Ad infinitum]
506 while (o->head_exe_request) {
507 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
508 __bnx2x_vlan_mac_h_exec_pending(bp, o);
514 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
516 * @bp: device handle
517 * @o: vlan_mac object
519 * @details Should be called under the execution queue lock. May sleep. May
520 * release and reclaim execution queue lock during its run.
522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
523 struct bnx2x_vlan_mac_obj *o)
525 /* If we got here, we're holding lock --> no WRITER exists */
526 o->head_reader++;
527 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
528 o->head_reader);
530 return 0;
534 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
536 * @bp: device handle
537 * @o: vlan_mac object
539 * @details May sleep. Claims and releases execution queue lock during its run.
541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
542 struct bnx2x_vlan_mac_obj *o)
544 int rc;
546 spin_lock_bh(&o->exe_queue.lock);
547 rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
548 spin_unlock_bh(&o->exe_queue.lock);
550 return rc;
554 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
556 * @bp: device handle
557 * @o: vlan_mac object
559 * @details Should be called under execution queue lock. Notice if a pending
560 * execution exists, it would be performed if this was the last
561 * reader. possibly releasing and reclaiming the execution queue lock.
563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564 struct bnx2x_vlan_mac_obj *o)
566 if (!o->head_reader) {
567 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
568 #ifdef BNX2X_STOP_ON_ERROR
569 bnx2x_panic();
570 #endif
571 } else {
572 o->head_reader--;
573 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
574 o->head_reader);
577 /* It's possible a new pending execution was added, and that this reader
578 * was last - if so we need to execute the command.
580 if (!o->head_reader && o->head_exe_request) {
581 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
583 /* Writer release will do the trick */
584 __bnx2x_vlan_mac_h_write_unlock(bp, o);
589 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
591 * @bp: device handle
592 * @o: vlan_mac object
594 * @details Notice if a pending execution exists, it would be performed if this
595 * was the last reader. Claims and releases the execution queue lock
596 * during its run.
598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
599 struct bnx2x_vlan_mac_obj *o)
601 spin_lock_bh(&o->exe_queue.lock);
602 __bnx2x_vlan_mac_h_read_unlock(bp, o);
603 spin_unlock_bh(&o->exe_queue.lock);
606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
607 int n, u8 *base, u8 stride, u8 size)
609 struct bnx2x_vlan_mac_registry_elem *pos;
610 u8 *next = base;
611 int counter = 0;
612 int read_lock;
614 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
615 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
616 if (read_lock != 0)
617 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
619 /* traverse list */
620 list_for_each_entry(pos, &o->head, link) {
621 if (counter < n) {
622 memcpy(next, &pos->u, size);
623 counter++;
624 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
625 counter, next);
626 next += stride + size;
630 if (read_lock == 0) {
631 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
632 bnx2x_vlan_mac_h_read_unlock(bp, o);
635 return counter * ETH_ALEN;
638 /* check_add() callbacks */
639 static int bnx2x_check_mac_add(struct bnx2x *bp,
640 struct bnx2x_vlan_mac_obj *o,
641 union bnx2x_classification_ramrod_data *data)
643 struct bnx2x_vlan_mac_registry_elem *pos;
645 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
647 if (!is_valid_ether_addr(data->mac.mac))
648 return -EINVAL;
650 /* Check if a requested MAC already exists */
651 list_for_each_entry(pos, &o->head, link)
652 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
653 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
654 return -EEXIST;
656 return 0;
659 static int bnx2x_check_vlan_add(struct bnx2x *bp,
660 struct bnx2x_vlan_mac_obj *o,
661 union bnx2x_classification_ramrod_data *data)
663 struct bnx2x_vlan_mac_registry_elem *pos;
665 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
667 list_for_each_entry(pos, &o->head, link)
668 if (data->vlan.vlan == pos->u.vlan.vlan)
669 return -EEXIST;
671 return 0;
674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
675 struct bnx2x_vlan_mac_obj *o,
676 union bnx2x_classification_ramrod_data *data)
678 struct bnx2x_vlan_mac_registry_elem *pos;
680 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
681 data->vlan_mac.mac, data->vlan_mac.vlan);
683 list_for_each_entry(pos, &o->head, link)
684 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
685 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
686 ETH_ALEN)) &&
687 (data->vlan_mac.is_inner_mac ==
688 pos->u.vlan_mac.is_inner_mac))
689 return -EEXIST;
691 return 0;
694 /* check_del() callbacks */
695 static struct bnx2x_vlan_mac_registry_elem *
696 bnx2x_check_mac_del(struct bnx2x *bp,
697 struct bnx2x_vlan_mac_obj *o,
698 union bnx2x_classification_ramrod_data *data)
700 struct bnx2x_vlan_mac_registry_elem *pos;
702 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
704 list_for_each_entry(pos, &o->head, link)
705 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
706 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
707 return pos;
709 return NULL;
712 static struct bnx2x_vlan_mac_registry_elem *
713 bnx2x_check_vlan_del(struct bnx2x *bp,
714 struct bnx2x_vlan_mac_obj *o,
715 union bnx2x_classification_ramrod_data *data)
717 struct bnx2x_vlan_mac_registry_elem *pos;
719 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
721 list_for_each_entry(pos, &o->head, link)
722 if (data->vlan.vlan == pos->u.vlan.vlan)
723 return pos;
725 return NULL;
728 static struct bnx2x_vlan_mac_registry_elem *
729 bnx2x_check_vlan_mac_del(struct bnx2x *bp,
730 struct bnx2x_vlan_mac_obj *o,
731 union bnx2x_classification_ramrod_data *data)
733 struct bnx2x_vlan_mac_registry_elem *pos;
735 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
736 data->vlan_mac.mac, data->vlan_mac.vlan);
738 list_for_each_entry(pos, &o->head, link)
739 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
740 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
741 ETH_ALEN)) &&
742 (data->vlan_mac.is_inner_mac ==
743 pos->u.vlan_mac.is_inner_mac))
744 return pos;
746 return NULL;
749 /* check_move() callback */
750 static bool bnx2x_check_move(struct bnx2x *bp,
751 struct bnx2x_vlan_mac_obj *src_o,
752 struct bnx2x_vlan_mac_obj *dst_o,
753 union bnx2x_classification_ramrod_data *data)
755 struct bnx2x_vlan_mac_registry_elem *pos;
756 int rc;
758 /* Check if we can delete the requested configuration from the first
759 * object.
761 pos = src_o->check_del(bp, src_o, data);
763 /* check if configuration can be added */
764 rc = dst_o->check_add(bp, dst_o, data);
766 /* If this classification can not be added (is already set)
767 * or can't be deleted - return an error.
769 if (rc || !pos)
770 return false;
772 return true;
775 static bool bnx2x_check_move_always_err(
776 struct bnx2x *bp,
777 struct bnx2x_vlan_mac_obj *src_o,
778 struct bnx2x_vlan_mac_obj *dst_o,
779 union bnx2x_classification_ramrod_data *data)
781 return false;
784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
786 struct bnx2x_raw_obj *raw = &o->raw;
787 u8 rx_tx_flag = 0;
789 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
790 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
791 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
793 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
794 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
795 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
797 return rx_tx_flag;
800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
801 bool add, unsigned char *dev_addr, int index)
803 u32 wb_data[2];
804 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
805 NIG_REG_LLH0_FUNC_MEM;
807 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
808 return;
810 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
811 return;
813 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
814 (add ? "ADD" : "DELETE"), index);
816 if (add) {
817 /* LLH_FUNC_MEM is a u64 WB register */
818 reg_offset += 8*index;
820 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
821 (dev_addr[4] << 8) | dev_addr[5]);
822 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
824 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
827 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
828 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
832 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
834 * @bp: device handle
835 * @o: queue for which we want to configure this rule
836 * @add: if true the command is an ADD command, DEL otherwise
837 * @opcode: CLASSIFY_RULE_OPCODE_XXX
838 * @hdr: pointer to a header to setup
841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
842 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
843 struct eth_classify_cmd_header *hdr)
845 struct bnx2x_raw_obj *raw = &o->raw;
847 hdr->client_id = raw->cl_id;
848 hdr->func_id = raw->func_id;
850 /* Rx or/and Tx (internal switching) configuration ? */
851 hdr->cmd_general_data |=
852 bnx2x_vlan_mac_get_rx_tx_flag(o);
854 if (add)
855 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
857 hdr->cmd_general_data |=
858 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
862 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
864 * @cid: connection id
865 * @type: BNX2X_FILTER_XXX_PENDING
866 * @hdr: pointer to header to setup
867 * @rule_cnt:
869 * currently we always configure one rule and echo field to contain a CID and an
870 * opcode type.
872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
873 struct eth_classify_header *hdr, int rule_cnt)
875 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
876 (type << BNX2X_SWCID_SHIFT));
877 hdr->rule_cnt = (u8)rule_cnt;
880 /* hw_config() callbacks */
881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
882 struct bnx2x_vlan_mac_obj *o,
883 struct bnx2x_exeq_elem *elem, int rule_idx,
884 int cam_offset)
886 struct bnx2x_raw_obj *raw = &o->raw;
887 struct eth_classify_rules_ramrod_data *data =
888 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
889 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
890 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
891 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
892 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
893 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
895 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
896 * relevant. In addition, current implementation is tuned for a
897 * single ETH MAC.
899 * When multiple unicast ETH MACs PF configuration in switch
900 * independent mode is required (NetQ, multiple netdev MACs,
901 * etc.), consider better utilisation of 8 per function MAC
902 * entries in the LLH register. There is also
903 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
904 * total number of CAM entries to 16.
906 * Currently we won't configure NIG for MACs other than a primary ETH
907 * MAC and iSCSI L2 MAC.
909 * If this MAC is moving from one Queue to another, no need to change
910 * NIG configuration.
912 if (cmd != BNX2X_VLAN_MAC_MOVE) {
913 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
914 bnx2x_set_mac_in_nig(bp, add, mac,
915 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
916 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
917 bnx2x_set_mac_in_nig(bp, add, mac,
918 BNX2X_LLH_CAM_ETH_LINE);
921 /* Reset the ramrod data buffer for the first rule */
922 if (rule_idx == 0)
923 memset(data, 0, sizeof(*data));
925 /* Setup a command header */
926 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
927 &rule_entry->mac.header);
929 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
930 (add ? "add" : "delete"), mac, raw->cl_id);
932 /* Set a MAC itself */
933 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
934 &rule_entry->mac.mac_mid,
935 &rule_entry->mac.mac_lsb, mac);
936 rule_entry->mac.inner_mac =
937 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
939 /* MOVE: Add a rule that will add this MAC to the target Queue */
940 if (cmd == BNX2X_VLAN_MAC_MOVE) {
941 rule_entry++;
942 rule_cnt++;
944 /* Setup ramrod data */
945 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
946 elem->cmd_data.vlan_mac.target_obj,
947 true, CLASSIFY_RULE_OPCODE_MAC,
948 &rule_entry->mac.header);
950 /* Set a MAC itself */
951 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
952 &rule_entry->mac.mac_mid,
953 &rule_entry->mac.mac_lsb, mac);
954 rule_entry->mac.inner_mac =
955 cpu_to_le16(elem->cmd_data.vlan_mac.
956 u.mac.is_inner_mac);
959 /* Set the ramrod data header */
960 /* TODO: take this to the higher level in order to prevent multiple
961 writing */
962 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
963 rule_cnt);
967 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
969 * @bp: device handle
970 * @o: queue
971 * @type:
972 * @cam_offset: offset in cam memory
973 * @hdr: pointer to a header to setup
975 * E1/E1H
977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
978 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
979 struct mac_configuration_hdr *hdr)
981 struct bnx2x_raw_obj *r = &o->raw;
983 hdr->length = 1;
984 hdr->offset = (u8)cam_offset;
985 hdr->client_id = cpu_to_le16(0xff);
986 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
987 (type << BNX2X_SWCID_SHIFT));
990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
991 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
992 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
994 struct bnx2x_raw_obj *r = &o->raw;
995 u32 cl_bit_vec = (1 << r->cl_id);
997 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
998 cfg_entry->pf_id = r->func_id;
999 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1001 if (add) {
1002 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1003 T_ETH_MAC_COMMAND_SET);
1004 SET_FLAG(cfg_entry->flags,
1005 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1007 /* Set a MAC in a ramrod data */
1008 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1009 &cfg_entry->middle_mac_addr,
1010 &cfg_entry->lsb_mac_addr, mac);
1011 } else
1012 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1013 T_ETH_MAC_COMMAND_INVALIDATE);
1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1017 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1018 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1020 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1021 struct bnx2x_raw_obj *raw = &o->raw;
1023 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1024 &config->hdr);
1025 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1026 cfg_entry);
1028 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1029 (add ? "setting" : "clearing"),
1030 mac, raw->cl_id, cam_offset);
1034 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1036 * @bp: device handle
1037 * @o: bnx2x_vlan_mac_obj
1038 * @elem: bnx2x_exeq_elem
1039 * @rule_idx: rule_idx
1040 * @cam_offset: cam_offset
1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1043 struct bnx2x_vlan_mac_obj *o,
1044 struct bnx2x_exeq_elem *elem, int rule_idx,
1045 int cam_offset)
1047 struct bnx2x_raw_obj *raw = &o->raw;
1048 struct mac_configuration_cmd *config =
1049 (struct mac_configuration_cmd *)(raw->rdata);
1050 /* 57710 and 57711 do not support MOVE command,
1051 * so it's either ADD or DEL
1053 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1054 true : false;
1056 /* Reset the ramrod data buffer */
1057 memset(config, 0, sizeof(*config));
1059 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1060 cam_offset, add,
1061 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1062 ETH_VLAN_FILTER_ANY_VLAN, config);
1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1066 struct bnx2x_vlan_mac_obj *o,
1067 struct bnx2x_exeq_elem *elem, int rule_idx,
1068 int cam_offset)
1070 struct bnx2x_raw_obj *raw = &o->raw;
1071 struct eth_classify_rules_ramrod_data *data =
1072 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1073 int rule_cnt = rule_idx + 1;
1074 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1075 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1076 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1077 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1079 /* Reset the ramrod data buffer for the first rule */
1080 if (rule_idx == 0)
1081 memset(data, 0, sizeof(*data));
1083 /* Set a rule header */
1084 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1085 &rule_entry->vlan.header);
1087 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1088 vlan);
1090 /* Set a VLAN itself */
1091 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1093 /* MOVE: Add a rule that will add this MAC to the target Queue */
1094 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1095 rule_entry++;
1096 rule_cnt++;
1098 /* Setup ramrod data */
1099 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1100 elem->cmd_data.vlan_mac.target_obj,
1101 true, CLASSIFY_RULE_OPCODE_VLAN,
1102 &rule_entry->vlan.header);
1104 /* Set a VLAN itself */
1105 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1108 /* Set the ramrod data header */
1109 /* TODO: take this to the higher level in order to prevent multiple
1110 writing */
1111 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1112 rule_cnt);
1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1116 struct bnx2x_vlan_mac_obj *o,
1117 struct bnx2x_exeq_elem *elem,
1118 int rule_idx, int cam_offset)
1120 struct bnx2x_raw_obj *raw = &o->raw;
1121 struct eth_classify_rules_ramrod_data *data =
1122 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1123 int rule_cnt = rule_idx + 1;
1124 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1125 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1126 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1127 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1128 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1129 u16 inner_mac;
1131 /* Reset the ramrod data buffer for the first rule */
1132 if (rule_idx == 0)
1133 memset(data, 0, sizeof(*data));
1135 /* Set a rule header */
1136 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1137 &rule_entry->pair.header);
1139 /* Set VLAN and MAC themselves */
1140 rule_entry->pair.vlan = cpu_to_le16(vlan);
1141 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1142 &rule_entry->pair.mac_mid,
1143 &rule_entry->pair.mac_lsb, mac);
1144 inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1145 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1146 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1147 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1148 struct bnx2x_vlan_mac_obj *target_obj;
1150 rule_entry++;
1151 rule_cnt++;
1153 /* Setup ramrod data */
1154 target_obj = elem->cmd_data.vlan_mac.target_obj;
1155 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1156 true, CLASSIFY_RULE_OPCODE_PAIR,
1157 &rule_entry->pair.header);
1159 /* Set a VLAN itself */
1160 rule_entry->pair.vlan = cpu_to_le16(vlan);
1161 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1162 &rule_entry->pair.mac_mid,
1163 &rule_entry->pair.mac_lsb, mac);
1164 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1167 /* Set the ramrod data header */
1168 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169 rule_cnt);
1173 * bnx2x_set_one_vlan_mac_e1h -
1175 * @bp: device handle
1176 * @o: bnx2x_vlan_mac_obj
1177 * @elem: bnx2x_exeq_elem
1178 * @rule_idx: rule_idx
1179 * @cam_offset: cam_offset
1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1182 struct bnx2x_vlan_mac_obj *o,
1183 struct bnx2x_exeq_elem *elem,
1184 int rule_idx, int cam_offset)
1186 struct bnx2x_raw_obj *raw = &o->raw;
1187 struct mac_configuration_cmd *config =
1188 (struct mac_configuration_cmd *)(raw->rdata);
1189 /* 57710 and 57711 do not support MOVE command,
1190 * so it's either ADD or DEL
1192 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1193 true : false;
1195 /* Reset the ramrod data buffer */
1196 memset(config, 0, sizeof(*config));
1198 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1199 cam_offset, add,
1200 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1201 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1202 ETH_VLAN_FILTER_CLASSIFY, config);
1206 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1208 * @bp: device handle
1209 * @p: command parameters
1210 * @ppos: pointer to the cookie
1212 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1213 * previously configured elements list.
1215 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1216 * into an account
1218 * pointer to the cookie - that should be given back in the next call to make
1219 * function handle the next element. If *ppos is set to NULL it will restart the
1220 * iterator. If returned *ppos == NULL this means that the last element has been
1221 * handled.
1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1225 struct bnx2x_vlan_mac_ramrod_params *p,
1226 struct bnx2x_vlan_mac_registry_elem **ppos)
1228 struct bnx2x_vlan_mac_registry_elem *pos;
1229 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1231 /* If list is empty - there is nothing to do here */
1232 if (list_empty(&o->head)) {
1233 *ppos = NULL;
1234 return 0;
1237 /* make a step... */
1238 if (*ppos == NULL)
1239 *ppos = list_first_entry(&o->head,
1240 struct bnx2x_vlan_mac_registry_elem,
1241 link);
1242 else
1243 *ppos = list_next_entry(*ppos, link);
1245 pos = *ppos;
1247 /* If it's the last step - return NULL */
1248 if (list_is_last(&pos->link, &o->head))
1249 *ppos = NULL;
1251 /* Prepare a 'user_req' */
1252 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1254 /* Set the command */
1255 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1257 /* Set vlan_mac_flags */
1258 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1260 /* Set a restore bit */
1261 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1263 return bnx2x_config_vlan_mac(bp, p);
1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1267 * pointer to an element with a specific criteria and NULL if such an element
1268 * hasn't been found.
1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1271 struct bnx2x_exe_queue_obj *o,
1272 struct bnx2x_exeq_elem *elem)
1274 struct bnx2x_exeq_elem *pos;
1275 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1277 /* Check pending for execution commands */
1278 list_for_each_entry(pos, &o->exe_queue, link)
1279 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1280 sizeof(*data)) &&
1281 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1282 return pos;
1284 return NULL;
1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1288 struct bnx2x_exe_queue_obj *o,
1289 struct bnx2x_exeq_elem *elem)
1291 struct bnx2x_exeq_elem *pos;
1292 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1294 /* Check pending for execution commands */
1295 list_for_each_entry(pos, &o->exe_queue, link)
1296 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1297 sizeof(*data)) &&
1298 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1299 return pos;
1301 return NULL;
1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1305 struct bnx2x_exe_queue_obj *o,
1306 struct bnx2x_exeq_elem *elem)
1308 struct bnx2x_exeq_elem *pos;
1309 struct bnx2x_vlan_mac_ramrod_data *data =
1310 &elem->cmd_data.vlan_mac.u.vlan_mac;
1312 /* Check pending for execution commands */
1313 list_for_each_entry(pos, &o->exe_queue, link)
1314 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1315 sizeof(*data)) &&
1316 (pos->cmd_data.vlan_mac.cmd ==
1317 elem->cmd_data.vlan_mac.cmd))
1318 return pos;
1320 return NULL;
1324 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1326 * @bp: device handle
1327 * @qo: bnx2x_qable_obj
1328 * @elem: bnx2x_exeq_elem
1330 * Checks that the requested configuration can be added. If yes and if
1331 * requested, consume CAM credit.
1333 * The 'validate' is run after the 'optimize'.
1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1337 union bnx2x_qable_obj *qo,
1338 struct bnx2x_exeq_elem *elem)
1340 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1341 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1342 int rc;
1344 /* Check the registry */
1345 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1346 if (rc) {
1347 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1348 return rc;
1351 /* Check if there is a pending ADD command for this
1352 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1354 if (exeq->get(exeq, elem)) {
1355 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1356 return -EEXIST;
1359 /* TODO: Check the pending MOVE from other objects where this
1360 * object is a destination object.
1363 /* Consume the credit if not requested not to */
1364 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1366 o->get_credit(o)))
1367 return -EINVAL;
1369 return 0;
1373 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1375 * @bp: device handle
1376 * @qo: quable object to check
1377 * @elem: element that needs to be deleted
1379 * Checks that the requested configuration can be deleted. If yes and if
1380 * requested, returns a CAM credit.
1382 * The 'validate' is run after the 'optimize'.
1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1385 union bnx2x_qable_obj *qo,
1386 struct bnx2x_exeq_elem *elem)
1388 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1389 struct bnx2x_vlan_mac_registry_elem *pos;
1390 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1391 struct bnx2x_exeq_elem query_elem;
1393 /* If this classification can not be deleted (doesn't exist)
1394 * - return a BNX2X_EXIST.
1396 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1397 if (!pos) {
1398 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1399 return -EEXIST;
1402 /* Check if there are pending DEL or MOVE commands for this
1403 * MAC/VLAN/VLAN-MAC. Return an error if so.
1405 memcpy(&query_elem, elem, sizeof(query_elem));
1407 /* Check for MOVE commands */
1408 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1409 if (exeq->get(exeq, &query_elem)) {
1410 BNX2X_ERR("There is a pending MOVE command already\n");
1411 return -EINVAL;
1414 /* Check for DEL commands */
1415 if (exeq->get(exeq, elem)) {
1416 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1417 return -EEXIST;
1420 /* Return the credit to the credit pool if not requested not to */
1421 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1422 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1423 o->put_credit(o))) {
1424 BNX2X_ERR("Failed to return a credit\n");
1425 return -EINVAL;
1428 return 0;
1432 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1434 * @bp: device handle
1435 * @qo: quable object to check (source)
1436 * @elem: element that needs to be moved
1438 * Checks that the requested configuration can be moved. If yes and if
1439 * requested, returns a CAM credit.
1441 * The 'validate' is run after the 'optimize'.
1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1444 union bnx2x_qable_obj *qo,
1445 struct bnx2x_exeq_elem *elem)
1447 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1448 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1449 struct bnx2x_exeq_elem query_elem;
1450 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1451 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1453 /* Check if we can perform this operation based on the current registry
1454 * state.
1456 if (!src_o->check_move(bp, src_o, dest_o,
1457 &elem->cmd_data.vlan_mac.u)) {
1458 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1459 return -EINVAL;
1462 /* Check if there is an already pending DEL or MOVE command for the
1463 * source object or ADD command for a destination object. Return an
1464 * error if so.
1466 memcpy(&query_elem, elem, sizeof(query_elem));
1468 /* Check DEL on source */
1469 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1470 if (src_exeq->get(src_exeq, &query_elem)) {
1471 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1472 return -EINVAL;
1475 /* Check MOVE on source */
1476 if (src_exeq->get(src_exeq, elem)) {
1477 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1478 return -EEXIST;
1481 /* Check ADD on destination */
1482 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483 if (dest_exeq->get(dest_exeq, &query_elem)) {
1484 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1485 return -EINVAL;
1488 /* Consume the credit if not requested not to */
1489 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1490 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1491 dest_o->get_credit(dest_o)))
1492 return -EINVAL;
1494 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1496 src_o->put_credit(src_o))) {
1497 /* return the credit taken from dest... */
1498 dest_o->put_credit(dest_o);
1499 return -EINVAL;
1502 return 0;
1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1506 union bnx2x_qable_obj *qo,
1507 struct bnx2x_exeq_elem *elem)
1509 switch (elem->cmd_data.vlan_mac.cmd) {
1510 case BNX2X_VLAN_MAC_ADD:
1511 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1512 case BNX2X_VLAN_MAC_DEL:
1513 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1514 case BNX2X_VLAN_MAC_MOVE:
1515 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1516 default:
1517 return -EINVAL;
1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1522 union bnx2x_qable_obj *qo,
1523 struct bnx2x_exeq_elem *elem)
1525 int rc = 0;
1527 /* If consumption wasn't required, nothing to do */
1528 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1529 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1530 return 0;
1532 switch (elem->cmd_data.vlan_mac.cmd) {
1533 case BNX2X_VLAN_MAC_ADD:
1534 case BNX2X_VLAN_MAC_MOVE:
1535 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1536 break;
1537 case BNX2X_VLAN_MAC_DEL:
1538 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1539 break;
1540 default:
1541 return -EINVAL;
1544 if (rc != true)
1545 return -EINVAL;
1547 return 0;
1551 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1553 * @bp: device handle
1554 * @o: bnx2x_vlan_mac_obj
1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1558 struct bnx2x_vlan_mac_obj *o)
1560 int cnt = 5000, rc;
1561 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1562 struct bnx2x_raw_obj *raw = &o->raw;
1564 while (cnt--) {
1565 /* Wait for the current command to complete */
1566 rc = raw->wait_comp(bp, raw);
1567 if (rc)
1568 return rc;
1570 /* Wait until there are no pending commands */
1571 if (!bnx2x_exe_queue_empty(exeq))
1572 usleep_range(1000, 2000);
1573 else
1574 return 0;
1577 return -EBUSY;
1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1581 struct bnx2x_vlan_mac_obj *o,
1582 unsigned long *ramrod_flags)
1584 int rc = 0;
1586 spin_lock_bh(&o->exe_queue.lock);
1588 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1589 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1591 if (rc != 0) {
1592 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1594 /* Calling function should not differentiate between this case
1595 * and the case in which there is already a pending ramrod
1597 rc = 1;
1598 } else {
1599 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1601 spin_unlock_bh(&o->exe_queue.lock);
1603 return rc;
1607 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1609 * @bp: device handle
1610 * @o: bnx2x_vlan_mac_obj
1611 * @cqe:
1612 * @cont: if true schedule next execution chunk
1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1616 struct bnx2x_vlan_mac_obj *o,
1617 union event_ring_elem *cqe,
1618 unsigned long *ramrod_flags)
1620 struct bnx2x_raw_obj *r = &o->raw;
1621 int rc;
1623 /* Clearing the pending list & raw state should be made
1624 * atomically (as execution flow assumes they represent the same).
1626 spin_lock_bh(&o->exe_queue.lock);
1628 /* Reset pending list */
1629 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1631 /* Clear pending */
1632 r->clear_pending(r);
1634 spin_unlock_bh(&o->exe_queue.lock);
1636 /* If ramrod failed this is most likely a SW bug */
1637 if (cqe->message.error)
1638 return -EINVAL;
1640 /* Run the next bulk of pending commands if requested */
1641 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1642 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1644 if (rc < 0)
1645 return rc;
1648 /* If there is more work to do return PENDING */
1649 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1650 return 1;
1652 return 0;
1656 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1658 * @bp: device handle
1659 * @o: bnx2x_qable_obj
1660 * @elem: bnx2x_exeq_elem
1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1663 union bnx2x_qable_obj *qo,
1664 struct bnx2x_exeq_elem *elem)
1666 struct bnx2x_exeq_elem query, *pos;
1667 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1668 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1670 memcpy(&query, elem, sizeof(query));
1672 switch (elem->cmd_data.vlan_mac.cmd) {
1673 case BNX2X_VLAN_MAC_ADD:
1674 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1675 break;
1676 case BNX2X_VLAN_MAC_DEL:
1677 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1678 break;
1679 default:
1680 /* Don't handle anything other than ADD or DEL */
1681 return 0;
1684 /* If we found the appropriate element - delete it */
1685 pos = exeq->get(exeq, &query);
1686 if (pos) {
1688 /* Return the credit of the optimized command */
1689 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1690 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1691 if ((query.cmd_data.vlan_mac.cmd ==
1692 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1693 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1694 return -EINVAL;
1695 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1696 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1697 return -EINVAL;
1701 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1702 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1703 "ADD" : "DEL");
1705 list_del(&pos->link);
1706 bnx2x_exe_queue_free_elem(bp, pos);
1707 return 1;
1710 return 0;
1714 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1716 * @bp: device handle
1717 * @o:
1718 * @elem:
1719 * @restore:
1720 * @re:
1722 * prepare a registry element according to the current command request.
1724 static inline int bnx2x_vlan_mac_get_registry_elem(
1725 struct bnx2x *bp,
1726 struct bnx2x_vlan_mac_obj *o,
1727 struct bnx2x_exeq_elem *elem,
1728 bool restore,
1729 struct bnx2x_vlan_mac_registry_elem **re)
1731 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1732 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1734 /* Allocate a new registry element if needed. */
1735 if (!restore &&
1736 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1737 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1738 if (!reg_elem)
1739 return -ENOMEM;
1741 /* Get a new CAM offset */
1742 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1743 /* This shall never happen, because we have checked the
1744 * CAM availability in the 'validate'.
1746 WARN_ON(1);
1747 kfree(reg_elem);
1748 return -EINVAL;
1751 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1753 /* Set a VLAN-MAC data */
1754 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1755 sizeof(reg_elem->u));
1757 /* Copy the flags (needed for DEL and RESTORE flows) */
1758 reg_elem->vlan_mac_flags =
1759 elem->cmd_data.vlan_mac.vlan_mac_flags;
1760 } else /* DEL, RESTORE */
1761 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1763 *re = reg_elem;
1764 return 0;
1768 * bnx2x_execute_vlan_mac - execute vlan mac command
1770 * @bp: device handle
1771 * @qo:
1772 * @exe_chunk:
1773 * @ramrod_flags:
1775 * go and send a ramrod!
1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1778 union bnx2x_qable_obj *qo,
1779 struct list_head *exe_chunk,
1780 unsigned long *ramrod_flags)
1782 struct bnx2x_exeq_elem *elem;
1783 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1784 struct bnx2x_raw_obj *r = &o->raw;
1785 int rc, idx = 0;
1786 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1787 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1788 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1789 enum bnx2x_vlan_mac_cmd cmd;
1791 /* If DRIVER_ONLY execution is requested, cleanup a registry
1792 * and exit. Otherwise send a ramrod to FW.
1794 if (!drv_only) {
1795 WARN_ON(r->check_pending(r));
1797 /* Set pending */
1798 r->set_pending(r);
1800 /* Fill the ramrod data */
1801 list_for_each_entry(elem, exe_chunk, link) {
1802 cmd = elem->cmd_data.vlan_mac.cmd;
1803 /* We will add to the target object in MOVE command, so
1804 * change the object for a CAM search.
1806 if (cmd == BNX2X_VLAN_MAC_MOVE)
1807 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1808 else
1809 cam_obj = o;
1811 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1812 elem, restore,
1813 &reg_elem);
1814 if (rc)
1815 goto error_exit;
1817 WARN_ON(!reg_elem);
1819 /* Push a new entry into the registry */
1820 if (!restore &&
1821 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1822 (cmd == BNX2X_VLAN_MAC_MOVE)))
1823 list_add(&reg_elem->link, &cam_obj->head);
1825 /* Configure a single command in a ramrod data buffer */
1826 o->set_one_rule(bp, o, elem, idx,
1827 reg_elem->cam_offset);
1829 /* MOVE command consumes 2 entries in the ramrod data */
1830 if (cmd == BNX2X_VLAN_MAC_MOVE)
1831 idx += 2;
1832 else
1833 idx++;
1836 /* No need for an explicit memory barrier here as long we would
1837 * need to ensure the ordering of writing to the SPQ element
1838 * and updating of the SPQ producer which involves a memory
1839 * read and we will have to put a full memory barrier there
1840 * (inside bnx2x_sp_post()).
1843 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1844 U64_HI(r->rdata_mapping),
1845 U64_LO(r->rdata_mapping),
1846 ETH_CONNECTION_TYPE);
1847 if (rc)
1848 goto error_exit;
1851 /* Now, when we are done with the ramrod - clean up the registry */
1852 list_for_each_entry(elem, exe_chunk, link) {
1853 cmd = elem->cmd_data.vlan_mac.cmd;
1854 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1855 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1856 reg_elem = o->check_del(bp, o,
1857 &elem->cmd_data.vlan_mac.u);
1859 WARN_ON(!reg_elem);
1861 o->put_cam_offset(o, reg_elem->cam_offset);
1862 list_del(&reg_elem->link);
1863 kfree(reg_elem);
1867 if (!drv_only)
1868 return 1;
1869 else
1870 return 0;
1872 error_exit:
1873 r->clear_pending(r);
1875 /* Cleanup a registry in case of a failure */
1876 list_for_each_entry(elem, exe_chunk, link) {
1877 cmd = elem->cmd_data.vlan_mac.cmd;
1879 if (cmd == BNX2X_VLAN_MAC_MOVE)
1880 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1881 else
1882 cam_obj = o;
1884 /* Delete all newly added above entries */
1885 if (!restore &&
1886 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1887 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1888 reg_elem = o->check_del(bp, cam_obj,
1889 &elem->cmd_data.vlan_mac.u);
1890 if (reg_elem) {
1891 list_del(&reg_elem->link);
1892 kfree(reg_elem);
1897 return rc;
1900 static inline int bnx2x_vlan_mac_push_new_cmd(
1901 struct bnx2x *bp,
1902 struct bnx2x_vlan_mac_ramrod_params *p)
1904 struct bnx2x_exeq_elem *elem;
1905 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1906 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1908 /* Allocate the execution queue element */
1909 elem = bnx2x_exe_queue_alloc_elem(bp);
1910 if (!elem)
1911 return -ENOMEM;
1913 /* Set the command 'length' */
1914 switch (p->user_req.cmd) {
1915 case BNX2X_VLAN_MAC_MOVE:
1916 elem->cmd_len = 2;
1917 break;
1918 default:
1919 elem->cmd_len = 1;
1922 /* Fill the object specific info */
1923 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1925 /* Try to add a new command to the pending list */
1926 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1930 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1932 * @bp: device handle
1933 * @p:
1936 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1937 struct bnx2x_vlan_mac_ramrod_params *p)
1939 int rc = 0;
1940 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1941 unsigned long *ramrod_flags = &p->ramrod_flags;
1942 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1943 struct bnx2x_raw_obj *raw = &o->raw;
1946 * Add new elements to the execution list for commands that require it.
1948 if (!cont) {
1949 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1950 if (rc)
1951 return rc;
1954 /* If nothing will be executed further in this iteration we want to
1955 * return PENDING if there are pending commands
1957 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1958 rc = 1;
1960 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1961 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1962 raw->clear_pending(raw);
1965 /* Execute commands if required */
1966 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1967 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1968 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1969 &p->ramrod_flags);
1970 if (rc < 0)
1971 return rc;
1974 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1975 * then user want to wait until the last command is done.
1977 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1978 /* Wait maximum for the current exe_queue length iterations plus
1979 * one (for the current pending command).
1981 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1983 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1984 max_iterations--) {
1986 /* Wait for the current command to complete */
1987 rc = raw->wait_comp(bp, raw);
1988 if (rc)
1989 return rc;
1991 /* Make a next step */
1992 rc = __bnx2x_vlan_mac_execute_step(bp,
1993 p->vlan_mac_obj,
1994 &p->ramrod_flags);
1995 if (rc < 0)
1996 return rc;
1999 return 0;
2002 return rc;
2006 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2008 * @bp: device handle
2009 * @o:
2010 * @vlan_mac_flags:
2011 * @ramrod_flags: execution flags to be used for this deletion
2013 * if the last operation has completed successfully and there are no
2014 * more elements left, positive value if the last operation has completed
2015 * successfully and there are more previously configured elements, negative
2016 * value is current operation has failed.
2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2019 struct bnx2x_vlan_mac_obj *o,
2020 unsigned long *vlan_mac_flags,
2021 unsigned long *ramrod_flags)
2023 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2024 struct bnx2x_vlan_mac_ramrod_params p;
2025 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2026 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2027 unsigned long flags;
2028 int read_lock;
2029 int rc = 0;
2031 /* Clear pending commands first */
2033 spin_lock_bh(&exeq->lock);
2035 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2036 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2037 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2038 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2039 rc = exeq->remove(bp, exeq->owner, exeq_pos);
2040 if (rc) {
2041 BNX2X_ERR("Failed to remove command\n");
2042 spin_unlock_bh(&exeq->lock);
2043 return rc;
2045 list_del(&exeq_pos->link);
2046 bnx2x_exe_queue_free_elem(bp, exeq_pos);
2050 spin_unlock_bh(&exeq->lock);
2052 /* Prepare a command request */
2053 memset(&p, 0, sizeof(p));
2054 p.vlan_mac_obj = o;
2055 p.ramrod_flags = *ramrod_flags;
2056 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2058 /* Add all but the last VLAN-MAC to the execution queue without actually
2059 * execution anything.
2061 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2062 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2063 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2065 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2066 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2067 if (read_lock != 0)
2068 return read_lock;
2070 list_for_each_entry(pos, &o->head, link) {
2071 flags = pos->vlan_mac_flags;
2072 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2073 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2074 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2075 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2076 rc = bnx2x_config_vlan_mac(bp, &p);
2077 if (rc < 0) {
2078 BNX2X_ERR("Failed to add a new DEL command\n");
2079 bnx2x_vlan_mac_h_read_unlock(bp, o);
2080 return rc;
2085 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2086 bnx2x_vlan_mac_h_read_unlock(bp, o);
2088 p.ramrod_flags = *ramrod_flags;
2089 __set_bit(RAMROD_CONT, &p.ramrod_flags);
2091 return bnx2x_config_vlan_mac(bp, &p);
2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2095 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2096 unsigned long *pstate, bnx2x_obj_type type)
2098 raw->func_id = func_id;
2099 raw->cid = cid;
2100 raw->cl_id = cl_id;
2101 raw->rdata = rdata;
2102 raw->rdata_mapping = rdata_mapping;
2103 raw->state = state;
2104 raw->pstate = pstate;
2105 raw->obj_type = type;
2106 raw->check_pending = bnx2x_raw_check_pending;
2107 raw->clear_pending = bnx2x_raw_clear_pending;
2108 raw->set_pending = bnx2x_raw_set_pending;
2109 raw->wait_comp = bnx2x_raw_wait;
2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2113 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2114 int state, unsigned long *pstate, bnx2x_obj_type type,
2115 struct bnx2x_credit_pool_obj *macs_pool,
2116 struct bnx2x_credit_pool_obj *vlans_pool)
2118 INIT_LIST_HEAD(&o->head);
2119 o->head_reader = 0;
2120 o->head_exe_request = false;
2121 o->saved_ramrod_flags = 0;
2123 o->macs_pool = macs_pool;
2124 o->vlans_pool = vlans_pool;
2126 o->delete_all = bnx2x_vlan_mac_del_all;
2127 o->restore = bnx2x_vlan_mac_restore;
2128 o->complete = bnx2x_complete_vlan_mac;
2129 o->wait = bnx2x_wait_vlan_mac;
2131 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2132 state, pstate, type);
2135 void bnx2x_init_mac_obj(struct bnx2x *bp,
2136 struct bnx2x_vlan_mac_obj *mac_obj,
2137 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2138 dma_addr_t rdata_mapping, int state,
2139 unsigned long *pstate, bnx2x_obj_type type,
2140 struct bnx2x_credit_pool_obj *macs_pool)
2142 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2144 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2145 rdata_mapping, state, pstate, type,
2146 macs_pool, NULL);
2148 /* CAM credit pool handling */
2149 mac_obj->get_credit = bnx2x_get_credit_mac;
2150 mac_obj->put_credit = bnx2x_put_credit_mac;
2151 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2152 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2154 if (CHIP_IS_E1x(bp)) {
2155 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
2156 mac_obj->check_del = bnx2x_check_mac_del;
2157 mac_obj->check_add = bnx2x_check_mac_add;
2158 mac_obj->check_move = bnx2x_check_move_always_err;
2159 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2161 /* Exe Queue */
2162 bnx2x_exe_queue_init(bp,
2163 &mac_obj->exe_queue, 1, qable_obj,
2164 bnx2x_validate_vlan_mac,
2165 bnx2x_remove_vlan_mac,
2166 bnx2x_optimize_vlan_mac,
2167 bnx2x_execute_vlan_mac,
2168 bnx2x_exeq_get_mac);
2169 } else {
2170 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
2171 mac_obj->check_del = bnx2x_check_mac_del;
2172 mac_obj->check_add = bnx2x_check_mac_add;
2173 mac_obj->check_move = bnx2x_check_move;
2174 mac_obj->ramrod_cmd =
2175 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2176 mac_obj->get_n_elements = bnx2x_get_n_elements;
2178 /* Exe Queue */
2179 bnx2x_exe_queue_init(bp,
2180 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2181 qable_obj, bnx2x_validate_vlan_mac,
2182 bnx2x_remove_vlan_mac,
2183 bnx2x_optimize_vlan_mac,
2184 bnx2x_execute_vlan_mac,
2185 bnx2x_exeq_get_mac);
2189 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2190 struct bnx2x_vlan_mac_obj *vlan_obj,
2191 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2192 dma_addr_t rdata_mapping, int state,
2193 unsigned long *pstate, bnx2x_obj_type type,
2194 struct bnx2x_credit_pool_obj *vlans_pool)
2196 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2198 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2199 rdata_mapping, state, pstate, type, NULL,
2200 vlans_pool);
2202 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2203 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2204 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2205 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2207 if (CHIP_IS_E1x(bp)) {
2208 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2209 BUG();
2210 } else {
2211 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2212 vlan_obj->check_del = bnx2x_check_vlan_del;
2213 vlan_obj->check_add = bnx2x_check_vlan_add;
2214 vlan_obj->check_move = bnx2x_check_move;
2215 vlan_obj->ramrod_cmd =
2216 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2217 vlan_obj->get_n_elements = bnx2x_get_n_elements;
2219 /* Exe Queue */
2220 bnx2x_exe_queue_init(bp,
2221 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2222 qable_obj, bnx2x_validate_vlan_mac,
2223 bnx2x_remove_vlan_mac,
2224 bnx2x_optimize_vlan_mac,
2225 bnx2x_execute_vlan_mac,
2226 bnx2x_exeq_get_vlan);
2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2231 struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2232 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2233 dma_addr_t rdata_mapping, int state,
2234 unsigned long *pstate, bnx2x_obj_type type,
2235 struct bnx2x_credit_pool_obj *macs_pool,
2236 struct bnx2x_credit_pool_obj *vlans_pool)
2238 union bnx2x_qable_obj *qable_obj =
2239 (union bnx2x_qable_obj *)vlan_mac_obj;
2241 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2242 rdata_mapping, state, pstate, type,
2243 macs_pool, vlans_pool);
2245 /* CAM pool handling */
2246 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2247 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2248 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2249 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2250 * will be taken from MACs' pool object only.
2252 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2253 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2255 if (CHIP_IS_E1(bp)) {
2256 BNX2X_ERR("Do not support chips others than E2\n");
2257 BUG();
2258 } else if (CHIP_IS_E1H(bp)) {
2259 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
2260 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2261 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2262 vlan_mac_obj->check_move = bnx2x_check_move_always_err;
2263 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2265 /* Exe Queue */
2266 bnx2x_exe_queue_init(bp,
2267 &vlan_mac_obj->exe_queue, 1, qable_obj,
2268 bnx2x_validate_vlan_mac,
2269 bnx2x_remove_vlan_mac,
2270 bnx2x_optimize_vlan_mac,
2271 bnx2x_execute_vlan_mac,
2272 bnx2x_exeq_get_vlan_mac);
2273 } else {
2274 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
2275 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2276 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2277 vlan_mac_obj->check_move = bnx2x_check_move;
2278 vlan_mac_obj->ramrod_cmd =
2279 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2281 /* Exe Queue */
2282 bnx2x_exe_queue_init(bp,
2283 &vlan_mac_obj->exe_queue,
2284 CLASSIFY_RULES_COUNT,
2285 qable_obj, bnx2x_validate_vlan_mac,
2286 bnx2x_remove_vlan_mac,
2287 bnx2x_optimize_vlan_mac,
2288 bnx2x_execute_vlan_mac,
2289 bnx2x_exeq_get_vlan_mac);
2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2294 struct tstorm_eth_mac_filter_config *mac_filters,
2295 u16 pf_id)
2297 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2299 u32 addr = BAR_TSTRORM_INTMEM +
2300 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2302 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2306 struct bnx2x_rx_mode_ramrod_params *p)
2308 /* update the bp MAC filter structure */
2309 u32 mask = (1 << p->cl_id);
2311 struct tstorm_eth_mac_filter_config *mac_filters =
2312 (struct tstorm_eth_mac_filter_config *)p->rdata;
2314 /* initial setting is drop-all */
2315 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2316 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2317 u8 unmatched_unicast = 0;
2319 /* In e1x there we only take into account rx accept flag since tx switching
2320 * isn't enabled. */
2321 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2322 /* accept matched ucast */
2323 drop_all_ucast = 0;
2325 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2326 /* accept matched mcast */
2327 drop_all_mcast = 0;
2329 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2330 /* accept all mcast */
2331 drop_all_ucast = 0;
2332 accp_all_ucast = 1;
2334 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2335 /* accept all mcast */
2336 drop_all_mcast = 0;
2337 accp_all_mcast = 1;
2339 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2340 /* accept (all) bcast */
2341 accp_all_bcast = 1;
2342 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2343 /* accept unmatched unicasts */
2344 unmatched_unicast = 1;
2346 mac_filters->ucast_drop_all = drop_all_ucast ?
2347 mac_filters->ucast_drop_all | mask :
2348 mac_filters->ucast_drop_all & ~mask;
2350 mac_filters->mcast_drop_all = drop_all_mcast ?
2351 mac_filters->mcast_drop_all | mask :
2352 mac_filters->mcast_drop_all & ~mask;
2354 mac_filters->ucast_accept_all = accp_all_ucast ?
2355 mac_filters->ucast_accept_all | mask :
2356 mac_filters->ucast_accept_all & ~mask;
2358 mac_filters->mcast_accept_all = accp_all_mcast ?
2359 mac_filters->mcast_accept_all | mask :
2360 mac_filters->mcast_accept_all & ~mask;
2362 mac_filters->bcast_accept_all = accp_all_bcast ?
2363 mac_filters->bcast_accept_all | mask :
2364 mac_filters->bcast_accept_all & ~mask;
2366 mac_filters->unmatched_unicast = unmatched_unicast ?
2367 mac_filters->unmatched_unicast | mask :
2368 mac_filters->unmatched_unicast & ~mask;
2370 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2371 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2372 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2373 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2374 mac_filters->bcast_accept_all);
2376 /* write the MAC filter structure*/
2377 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2379 /* The operation is completed */
2380 clear_bit(p->state, p->pstate);
2381 smp_mb__after_atomic();
2383 return 0;
2386 /* Setup ramrod data */
2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2388 struct eth_classify_header *hdr,
2389 u8 rule_cnt)
2391 hdr->echo = cpu_to_le32(cid);
2392 hdr->rule_cnt = rule_cnt;
2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2396 unsigned long *accept_flags,
2397 struct eth_filter_rules_cmd *cmd,
2398 bool clear_accept_all)
2400 u16 state;
2402 /* start with 'drop-all' */
2403 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2404 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2406 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2407 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2409 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2410 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2412 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2413 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2414 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2417 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2418 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2419 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2422 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2423 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2425 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2426 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2427 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2430 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2431 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2433 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2434 if (clear_accept_all) {
2435 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2436 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2437 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2438 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2441 cmd->state = cpu_to_le16(state);
2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2445 struct bnx2x_rx_mode_ramrod_params *p)
2447 struct eth_filter_rules_ramrod_data *data = p->rdata;
2448 int rc;
2449 u8 rule_idx = 0;
2451 /* Reset the ramrod data buffer */
2452 memset(data, 0, sizeof(*data));
2454 /* Setup ramrod data */
2456 /* Tx (internal switching) */
2457 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2458 data->rules[rule_idx].client_id = p->cl_id;
2459 data->rules[rule_idx].func_id = p->func_id;
2461 data->rules[rule_idx].cmd_general_data =
2462 ETH_FILTER_RULES_CMD_TX_CMD;
2464 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2465 &(data->rules[rule_idx++]),
2466 false);
2469 /* Rx */
2470 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2471 data->rules[rule_idx].client_id = p->cl_id;
2472 data->rules[rule_idx].func_id = p->func_id;
2474 data->rules[rule_idx].cmd_general_data =
2475 ETH_FILTER_RULES_CMD_RX_CMD;
2477 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2478 &(data->rules[rule_idx++]),
2479 false);
2482 /* If FCoE Queue configuration has been requested configure the Rx and
2483 * internal switching modes for this queue in separate rules.
2485 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2486 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2488 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2489 /* Tx (internal switching) */
2490 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2491 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2492 data->rules[rule_idx].func_id = p->func_id;
2494 data->rules[rule_idx].cmd_general_data =
2495 ETH_FILTER_RULES_CMD_TX_CMD;
2497 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2498 &(data->rules[rule_idx]),
2499 true);
2500 rule_idx++;
2503 /* Rx */
2504 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2505 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506 data->rules[rule_idx].func_id = p->func_id;
2508 data->rules[rule_idx].cmd_general_data =
2509 ETH_FILTER_RULES_CMD_RX_CMD;
2511 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2512 &(data->rules[rule_idx]),
2513 true);
2514 rule_idx++;
2518 /* Set the ramrod header (most importantly - number of rules to
2519 * configure).
2521 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2523 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2524 data->header.rule_cnt, p->rx_accept_flags,
2525 p->tx_accept_flags);
2527 /* No need for an explicit memory barrier here as long as we
2528 * ensure the ordering of writing to the SPQ element
2529 * and updating of the SPQ producer which involves a memory
2530 * read. If the memory read is removed we will have to put a
2531 * full memory barrier there (inside bnx2x_sp_post()).
2534 /* Send a ramrod */
2535 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2536 U64_HI(p->rdata_mapping),
2537 U64_LO(p->rdata_mapping),
2538 ETH_CONNECTION_TYPE);
2539 if (rc)
2540 return rc;
2542 /* Ramrod completion is pending */
2543 return 1;
2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2547 struct bnx2x_rx_mode_ramrod_params *p)
2549 return bnx2x_state_wait(bp, p->state, p->pstate);
2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2553 struct bnx2x_rx_mode_ramrod_params *p)
2555 /* Do nothing */
2556 return 0;
2559 int bnx2x_config_rx_mode(struct bnx2x *bp,
2560 struct bnx2x_rx_mode_ramrod_params *p)
2562 int rc;
2564 /* Configure the new classification in the chip */
2565 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2566 if (rc < 0)
2567 return rc;
2569 /* Wait for a ramrod completion if was requested */
2570 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2571 rc = p->rx_mode_obj->wait_comp(bp, p);
2572 if (rc)
2573 return rc;
2576 return rc;
2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2580 struct bnx2x_rx_mode_obj *o)
2582 if (CHIP_IS_E1x(bp)) {
2583 o->wait_comp = bnx2x_empty_rx_mode_wait;
2584 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2585 } else {
2586 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2587 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2591 /********************* Multicast verbs: SET, CLEAR ****************************/
2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2594 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2597 struct bnx2x_mcast_mac_elem {
2598 struct list_head link;
2599 u8 mac[ETH_ALEN];
2600 u8 pad[2]; /* For a natural alignment of the following buffer */
2603 struct bnx2x_mcast_bin_elem {
2604 struct list_head link;
2605 int bin;
2606 int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2609 union bnx2x_mcast_elem {
2610 struct bnx2x_mcast_bin_elem bin_elem;
2611 struct bnx2x_mcast_mac_elem mac_elem;
2614 struct bnx2x_mcast_elem_group {
2615 struct list_head mcast_group_link;
2616 union bnx2x_mcast_elem mcast_elems[];
2619 #define MCAST_MAC_ELEMS_PER_PG \
2620 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2621 sizeof(union bnx2x_mcast_elem))
2623 struct bnx2x_pending_mcast_cmd {
2624 struct list_head link;
2625 struct list_head group_head;
2626 int type; /* BNX2X_MCAST_CMD_X */
2627 union {
2628 struct list_head macs_head;
2629 u32 macs_num; /* Needed for DEL command */
2630 int next_bin; /* Needed for RESTORE flow with aprox match */
2631 } data;
2633 bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2634 * when macs_head had been converted to a list of
2635 * bnx2x_mcast_bin_elem.
2638 bool done; /* set to true, when the command has been handled,
2639 * practically used in 57712 handling only, where one pending
2640 * command may be handled in a few operations. As long as for
2641 * other chips every operation handling is completed in a
2642 * single ramrod, there is no need to utilize this field.
2646 static int bnx2x_mcast_wait(struct bnx2x *bp,
2647 struct bnx2x_mcast_obj *o)
2649 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2650 o->raw.wait_comp(bp, &o->raw))
2651 return -EBUSY;
2653 return 0;
2656 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2658 struct bnx2x_mcast_elem_group *current_mcast_group;
2660 while (!list_empty(mcast_group_list)) {
2661 current_mcast_group = list_first_entry(mcast_group_list,
2662 struct bnx2x_mcast_elem_group,
2663 mcast_group_link);
2664 list_del(&current_mcast_group->mcast_group_link);
2665 free_page((unsigned long)current_mcast_group);
2669 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2670 struct bnx2x_mcast_obj *o,
2671 struct bnx2x_mcast_ramrod_params *p,
2672 enum bnx2x_mcast_cmd cmd)
2674 struct bnx2x_pending_mcast_cmd *new_cmd;
2675 struct bnx2x_mcast_list_elem *pos;
2676 struct bnx2x_mcast_elem_group *elem_group;
2677 struct bnx2x_mcast_mac_elem *mac_elem;
2678 int total_elems = 0, macs_list_len = 0, offset = 0;
2680 /* When adding MACs we'll need to store their values */
2681 if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2682 macs_list_len = p->mcast_list_len;
2684 /* If the command is empty ("handle pending commands only"), break */
2685 if (!p->mcast_list_len)
2686 return 0;
2688 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2689 new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2690 if (!new_cmd)
2691 return -ENOMEM;
2693 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2694 INIT_LIST_HEAD(&new_cmd->group_head);
2695 new_cmd->type = cmd;
2696 new_cmd->done = false;
2698 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2699 cmd, macs_list_len);
2701 switch (cmd) {
2702 case BNX2X_MCAST_CMD_ADD:
2703 case BNX2X_MCAST_CMD_SET:
2704 /* For a set command, we need to allocate sufficient memory for
2705 * all the bins, since we can't analyze at this point how much
2706 * memory would be required.
2708 total_elems = macs_list_len;
2709 if (cmd == BNX2X_MCAST_CMD_SET) {
2710 if (total_elems < BNX2X_MCAST_BINS_NUM)
2711 total_elems = BNX2X_MCAST_BINS_NUM;
2713 while (total_elems > 0) {
2714 elem_group = (struct bnx2x_mcast_elem_group *)
2715 __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2716 if (!elem_group) {
2717 bnx2x_free_groups(&new_cmd->group_head);
2718 kfree(new_cmd);
2719 return -ENOMEM;
2721 total_elems -= MCAST_MAC_ELEMS_PER_PG;
2722 list_add_tail(&elem_group->mcast_group_link,
2723 &new_cmd->group_head);
2725 elem_group = list_first_entry(&new_cmd->group_head,
2726 struct bnx2x_mcast_elem_group,
2727 mcast_group_link);
2728 list_for_each_entry(pos, &p->mcast_list, link) {
2729 mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2730 memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2731 /* Push the MACs of the current command into the pending
2732 * command MACs list: FIFO
2734 list_add_tail(&mac_elem->link,
2735 &new_cmd->data.macs_head);
2736 offset++;
2737 if (offset == MCAST_MAC_ELEMS_PER_PG) {
2738 offset = 0;
2739 elem_group = list_next_entry(elem_group,
2740 mcast_group_link);
2743 break;
2745 case BNX2X_MCAST_CMD_DEL:
2746 new_cmd->data.macs_num = p->mcast_list_len;
2747 break;
2749 case BNX2X_MCAST_CMD_RESTORE:
2750 new_cmd->data.next_bin = 0;
2751 break;
2753 default:
2754 kfree(new_cmd);
2755 BNX2X_ERR("Unknown command: %d\n", cmd);
2756 return -EINVAL;
2759 /* Push the new pending command to the tail of the pending list: FIFO */
2760 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2762 o->set_sched(o);
2764 return 1;
2768 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2770 * @o:
2771 * @last: index to start looking from (including)
2773 * returns the next found (set) bin or a negative value if none is found.
2775 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2777 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2779 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2780 if (o->registry.aprox_match.vec[i])
2781 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2782 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2783 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2784 vec, cur_bit)) {
2785 return cur_bit;
2788 inner_start = 0;
2791 /* None found */
2792 return -1;
2796 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2798 * @o:
2800 * returns the index of the found bin or -1 if none is found
2802 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2804 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2806 if (cur_bit >= 0)
2807 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2809 return cur_bit;
2812 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2814 struct bnx2x_raw_obj *raw = &o->raw;
2815 u8 rx_tx_flag = 0;
2817 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2818 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2819 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2821 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2822 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2823 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2825 return rx_tx_flag;
2828 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2829 struct bnx2x_mcast_obj *o, int idx,
2830 union bnx2x_mcast_config_data *cfg_data,
2831 enum bnx2x_mcast_cmd cmd)
2833 struct bnx2x_raw_obj *r = &o->raw;
2834 struct eth_multicast_rules_ramrod_data *data =
2835 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2836 u8 func_id = r->func_id;
2837 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2838 int bin;
2840 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2841 (cmd == BNX2X_MCAST_CMD_SET_ADD))
2842 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2844 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2846 /* Get a bin and update a bins' vector */
2847 switch (cmd) {
2848 case BNX2X_MCAST_CMD_ADD:
2849 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2850 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2851 break;
2853 case BNX2X_MCAST_CMD_DEL:
2854 /* If there were no more bins to clear
2855 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2856 * clear any (0xff) bin.
2857 * See bnx2x_mcast_validate_e2() for explanation when it may
2858 * happen.
2860 bin = bnx2x_mcast_clear_first_bin(o);
2861 break;
2863 case BNX2X_MCAST_CMD_RESTORE:
2864 bin = cfg_data->bin;
2865 break;
2867 case BNX2X_MCAST_CMD_SET_ADD:
2868 bin = cfg_data->bin;
2869 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2870 break;
2872 case BNX2X_MCAST_CMD_SET_DEL:
2873 bin = cfg_data->bin;
2874 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2875 break;
2877 default:
2878 BNX2X_ERR("Unknown command: %d\n", cmd);
2879 return;
2882 DP(BNX2X_MSG_SP, "%s bin %d\n",
2883 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2884 "Setting" : "Clearing"), bin);
2886 data->rules[idx].bin_id = (u8)bin;
2887 data->rules[idx].func_id = func_id;
2888 data->rules[idx].engine_id = o->engine_id;
2892 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2894 * @bp: device handle
2895 * @o:
2896 * @start_bin: index in the registry to start from (including)
2897 * @rdata_idx: index in the ramrod data to start from
2899 * returns last handled bin index or -1 if all bins have been handled
2901 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2902 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2903 int *rdata_idx)
2905 int cur_bin, cnt = *rdata_idx;
2906 union bnx2x_mcast_config_data cfg_data = {NULL};
2908 /* go through the registry and configure the bins from it */
2909 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2910 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2912 cfg_data.bin = (u8)cur_bin;
2913 o->set_one_rule(bp, o, cnt, &cfg_data,
2914 BNX2X_MCAST_CMD_RESTORE);
2916 cnt++;
2918 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2920 /* Break if we reached the maximum number
2921 * of rules.
2923 if (cnt >= o->max_cmd_len)
2924 break;
2927 *rdata_idx = cnt;
2929 return cur_bin;
2932 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2933 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2934 int *line_idx)
2936 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2937 int cnt = *line_idx;
2938 union bnx2x_mcast_config_data cfg_data = {NULL};
2940 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2941 link) {
2943 cfg_data.mac = &pmac_pos->mac[0];
2944 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2946 cnt++;
2948 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2949 pmac_pos->mac);
2951 list_del(&pmac_pos->link);
2953 /* Break if we reached the maximum number
2954 * of rules.
2956 if (cnt >= o->max_cmd_len)
2957 break;
2960 *line_idx = cnt;
2962 /* if no more MACs to configure - we are done */
2963 if (list_empty(&cmd_pos->data.macs_head))
2964 cmd_pos->done = true;
2967 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2968 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2969 int *line_idx)
2971 int cnt = *line_idx;
2973 while (cmd_pos->data.macs_num) {
2974 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2976 cnt++;
2978 cmd_pos->data.macs_num--;
2980 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2981 cmd_pos->data.macs_num, cnt);
2983 /* Break if we reached the maximum
2984 * number of rules.
2986 if (cnt >= o->max_cmd_len)
2987 break;
2990 *line_idx = cnt;
2992 /* If we cleared all bins - we are done */
2993 if (!cmd_pos->data.macs_num)
2994 cmd_pos->done = true;
2997 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2998 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2999 int *line_idx)
3001 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3002 line_idx);
3004 if (cmd_pos->data.next_bin < 0)
3005 /* If o->set_restore returned -1 we are done */
3006 cmd_pos->done = true;
3007 else
3008 /* Start from the next bin next time */
3009 cmd_pos->data.next_bin++;
3012 static void
3013 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3014 struct bnx2x_mcast_obj *o,
3015 struct bnx2x_pending_mcast_cmd *cmd_pos)
3017 u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3018 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3019 struct bnx2x_mcast_bin_elem *p_item;
3020 struct bnx2x_mcast_elem_group *elem_group;
3021 int cnt = 0, mac_cnt = 0, offset = 0, i;
3023 memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3024 memcpy(cur, o->registry.aprox_match.vec,
3025 sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3027 /* Fill `current' with the required set of bins to configure */
3028 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3029 link) {
3030 int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3032 DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3033 pmac_pos->mac);
3035 BIT_VEC64_SET_BIT(req, bin);
3036 list_del(&pmac_pos->link);
3037 mac_cnt++;
3040 /* We no longer have use for the MACs; Need to re-use memory for
3041 * a list that will be used to configure bins.
3043 cmd_pos->set_convert = true;
3044 INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3045 elem_group = list_first_entry(&cmd_pos->group_head,
3046 struct bnx2x_mcast_elem_group,
3047 mcast_group_link);
3048 for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3049 bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3050 bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3052 if (b_current == b_required)
3053 continue;
3055 p_item = &elem_group->mcast_elems[offset].bin_elem;
3056 p_item->bin = i;
3057 p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3058 : BNX2X_MCAST_CMD_SET_DEL;
3059 list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3060 cnt++;
3061 offset++;
3062 if (offset == MCAST_MAC_ELEMS_PER_PG) {
3063 offset = 0;
3064 elem_group = list_next_entry(elem_group,
3065 mcast_group_link);
3069 /* We now definitely know how many commands are hiding here.
3070 * Also need to correct the disruption we've added to guarantee this
3071 * would be enqueued.
3073 o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3074 o->total_pending_num += cnt;
3076 DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3079 static void
3080 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3081 struct bnx2x_mcast_obj *o,
3082 struct bnx2x_pending_mcast_cmd *cmd_pos,
3083 int *cnt)
3085 union bnx2x_mcast_config_data cfg_data = {NULL};
3086 struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3088 /* This is actually a 2-part scheme - it starts by converting the MACs
3089 * into a list of bins to be added/removed, and correcting the numbers
3090 * on the object. this is now allowed, as we're now sure that all
3091 * previous configured requests have already applied.
3092 * The second part is actually adding rules for the newly introduced
3093 * entries [like all the rest of the hdl_pending functions].
3095 if (!cmd_pos->set_convert)
3096 bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3098 list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3099 link) {
3100 cfg_data.bin = (u8)p_item->bin;
3101 o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3102 (*cnt)++;
3104 list_del(&p_item->link);
3106 /* Break if we reached the maximum number of rules. */
3107 if (*cnt >= o->max_cmd_len)
3108 break;
3111 /* if no more MACs to configure - we are done */
3112 if (list_empty(&cmd_pos->data.macs_head))
3113 cmd_pos->done = true;
3116 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3117 struct bnx2x_mcast_ramrod_params *p)
3119 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3120 int cnt = 0;
3121 struct bnx2x_mcast_obj *o = p->mcast_obj;
3123 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3124 link) {
3125 switch (cmd_pos->type) {
3126 case BNX2X_MCAST_CMD_ADD:
3127 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3128 break;
3130 case BNX2X_MCAST_CMD_DEL:
3131 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3132 break;
3134 case BNX2X_MCAST_CMD_RESTORE:
3135 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3136 &cnt);
3137 break;
3139 case BNX2X_MCAST_CMD_SET:
3140 bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3141 break;
3143 default:
3144 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3145 return -EINVAL;
3148 /* If the command has been completed - remove it from the list
3149 * and free the memory
3151 if (cmd_pos->done) {
3152 list_del(&cmd_pos->link);
3153 bnx2x_free_groups(&cmd_pos->group_head);
3154 kfree(cmd_pos);
3157 /* Break if we reached the maximum number of rules */
3158 if (cnt >= o->max_cmd_len)
3159 break;
3162 return cnt;
3165 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3166 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3167 int *line_idx)
3169 struct bnx2x_mcast_list_elem *mlist_pos;
3170 union bnx2x_mcast_config_data cfg_data = {NULL};
3171 int cnt = *line_idx;
3173 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3174 cfg_data.mac = mlist_pos->mac;
3175 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3177 cnt++;
3179 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3180 mlist_pos->mac);
3183 *line_idx = cnt;
3186 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3187 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3188 int *line_idx)
3190 int cnt = *line_idx, i;
3192 for (i = 0; i < p->mcast_list_len; i++) {
3193 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3195 cnt++;
3197 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3198 p->mcast_list_len - i - 1);
3201 *line_idx = cnt;
3205 * bnx2x_mcast_handle_current_cmd -
3207 * @bp: device handle
3208 * @p:
3209 * @cmd:
3210 * @start_cnt: first line in the ramrod data that may be used
3212 * This function is called iff there is enough place for the current command in
3213 * the ramrod data.
3214 * Returns number of lines filled in the ramrod data in total.
3216 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3217 struct bnx2x_mcast_ramrod_params *p,
3218 enum bnx2x_mcast_cmd cmd,
3219 int start_cnt)
3221 struct bnx2x_mcast_obj *o = p->mcast_obj;
3222 int cnt = start_cnt;
3224 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3226 switch (cmd) {
3227 case BNX2X_MCAST_CMD_ADD:
3228 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3229 break;
3231 case BNX2X_MCAST_CMD_DEL:
3232 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3233 break;
3235 case BNX2X_MCAST_CMD_RESTORE:
3236 o->hdl_restore(bp, o, 0, &cnt);
3237 break;
3239 default:
3240 BNX2X_ERR("Unknown command: %d\n", cmd);
3241 return -EINVAL;
3244 /* The current command has been handled */
3245 p->mcast_list_len = 0;
3247 return cnt;
3250 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3251 struct bnx2x_mcast_ramrod_params *p,
3252 enum bnx2x_mcast_cmd cmd)
3254 struct bnx2x_mcast_obj *o = p->mcast_obj;
3255 int reg_sz = o->get_registry_size(o);
3257 switch (cmd) {
3258 /* DEL command deletes all currently configured MACs */
3259 case BNX2X_MCAST_CMD_DEL:
3260 o->set_registry_size(o, 0);
3261 /* Don't break */
3263 /* RESTORE command will restore the entire multicast configuration */
3264 case BNX2X_MCAST_CMD_RESTORE:
3265 /* Here we set the approximate amount of work to do, which in
3266 * fact may be only less as some MACs in postponed ADD
3267 * command(s) scheduled before this command may fall into
3268 * the same bin and the actual number of bins set in the
3269 * registry would be less than we estimated here. See
3270 * bnx2x_mcast_set_one_rule_e2() for further details.
3272 p->mcast_list_len = reg_sz;
3273 break;
3275 case BNX2X_MCAST_CMD_ADD:
3276 case BNX2X_MCAST_CMD_CONT:
3277 /* Here we assume that all new MACs will fall into new bins.
3278 * However we will correct the real registry size after we
3279 * handle all pending commands.
3281 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3282 break;
3284 case BNX2X_MCAST_CMD_SET:
3285 /* We can only learn how many commands would actually be used
3286 * when this is being configured. So for now, simply guarantee
3287 * the command will be enqueued [to refrain from adding logic
3288 * that handles this and THEN learns it needs several ramrods].
3289 * Just like for ADD/Cont, the mcast_list_len might be an over
3290 * estimation; or even more so, since we don't take into
3291 * account the possibility of removal of existing bins.
3293 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3294 o->total_pending_num += o->max_cmd_len;
3295 break;
3297 default:
3298 BNX2X_ERR("Unknown command: %d\n", cmd);
3299 return -EINVAL;
3302 /* Increase the total number of MACs pending to be configured */
3303 o->total_pending_num += p->mcast_list_len;
3305 return 0;
3308 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3309 struct bnx2x_mcast_ramrod_params *p,
3310 int old_num_bins,
3311 enum bnx2x_mcast_cmd cmd)
3313 struct bnx2x_mcast_obj *o = p->mcast_obj;
3315 o->set_registry_size(o, old_num_bins);
3316 o->total_pending_num -= p->mcast_list_len;
3318 if (cmd == BNX2X_MCAST_CMD_SET)
3319 o->total_pending_num -= o->max_cmd_len;
3323 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3325 * @bp: device handle
3326 * @p:
3327 * @len: number of rules to handle
3329 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3330 struct bnx2x_mcast_ramrod_params *p,
3331 u8 len)
3333 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3334 struct eth_multicast_rules_ramrod_data *data =
3335 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3337 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3338 (BNX2X_FILTER_MCAST_PENDING <<
3339 BNX2X_SWCID_SHIFT));
3340 data->header.rule_cnt = len;
3344 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3346 * @bp: device handle
3347 * @o:
3349 * Recalculate the actual number of set bins in the registry using Brian
3350 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3352 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3354 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3355 struct bnx2x_mcast_obj *o)
3357 int i, cnt = 0;
3358 u64 elem;
3360 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3361 elem = o->registry.aprox_match.vec[i];
3362 for (; elem; cnt++)
3363 elem &= elem - 1;
3366 o->set_registry_size(o, cnt);
3368 return 0;
3371 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3372 struct bnx2x_mcast_ramrod_params *p,
3373 enum bnx2x_mcast_cmd cmd)
3375 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3376 struct bnx2x_mcast_obj *o = p->mcast_obj;
3377 struct eth_multicast_rules_ramrod_data *data =
3378 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3379 int cnt = 0, rc;
3381 /* Reset the ramrod data buffer */
3382 memset(data, 0, sizeof(*data));
3384 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3386 /* If there are no more pending commands - clear SCHEDULED state */
3387 if (list_empty(&o->pending_cmds_head))
3388 o->clear_sched(o);
3390 /* The below may be true iff there was enough room in ramrod
3391 * data for all pending commands and for the current
3392 * command. Otherwise the current command would have been added
3393 * to the pending commands and p->mcast_list_len would have been
3394 * zeroed.
3396 if (p->mcast_list_len > 0)
3397 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3399 /* We've pulled out some MACs - update the total number of
3400 * outstanding.
3402 o->total_pending_num -= cnt;
3404 /* send a ramrod */
3405 WARN_ON(o->total_pending_num < 0);
3406 WARN_ON(cnt > o->max_cmd_len);
3408 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3410 /* Update a registry size if there are no more pending operations.
3412 * We don't want to change the value of the registry size if there are
3413 * pending operations because we want it to always be equal to the
3414 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3415 * set bins after the last requested operation in order to properly
3416 * evaluate the size of the next DEL/RESTORE operation.
3418 * Note that we update the registry itself during command(s) handling
3419 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3420 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3421 * with a limited amount of update commands (per MAC/bin) and we don't
3422 * know in this scope what the actual state of bins configuration is
3423 * going to be after this ramrod.
3425 if (!o->total_pending_num)
3426 bnx2x_mcast_refresh_registry_e2(bp, o);
3428 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3429 * RAMROD_PENDING status immediately. due to the SET option, it's also
3430 * possible that after evaluating the differences there's no need for
3431 * a ramrod. In that case, we can skip it as well.
3433 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3434 raw->clear_pending(raw);
3435 return 0;
3436 } else {
3437 /* No need for an explicit memory barrier here as long as we
3438 * ensure the ordering of writing to the SPQ element
3439 * and updating of the SPQ producer which involves a memory
3440 * read. If the memory read is removed we will have to put a
3441 * full memory barrier there (inside bnx2x_sp_post()).
3444 /* Send a ramrod */
3445 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3446 raw->cid, U64_HI(raw->rdata_mapping),
3447 U64_LO(raw->rdata_mapping),
3448 ETH_CONNECTION_TYPE);
3449 if (rc)
3450 return rc;
3452 /* Ramrod completion is pending */
3453 return 1;
3457 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3458 struct bnx2x_mcast_ramrod_params *p,
3459 enum bnx2x_mcast_cmd cmd)
3461 if (cmd == BNX2X_MCAST_CMD_SET) {
3462 BNX2X_ERR("Can't use `set' command on e1h!\n");
3463 return -EINVAL;
3466 /* Mark, that there is a work to do */
3467 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3468 p->mcast_list_len = 1;
3470 return 0;
3473 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3474 struct bnx2x_mcast_ramrod_params *p,
3475 int old_num_bins,
3476 enum bnx2x_mcast_cmd cmd)
3478 /* Do nothing */
3481 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3482 do { \
3483 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3484 } while (0)
3486 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3487 struct bnx2x_mcast_obj *o,
3488 struct bnx2x_mcast_ramrod_params *p,
3489 u32 *mc_filter)
3491 struct bnx2x_mcast_list_elem *mlist_pos;
3492 int bit;
3494 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3495 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3496 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3498 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3499 mlist_pos->mac, bit);
3501 /* bookkeeping... */
3502 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3503 bit);
3507 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3508 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3509 u32 *mc_filter)
3511 int bit;
3513 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3514 bit >= 0;
3515 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3516 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3517 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3521 /* On 57711 we write the multicast MACs' approximate match
3522 * table by directly into the TSTORM's internal RAM. So we don't
3523 * really need to handle any tricks to make it work.
3525 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3526 struct bnx2x_mcast_ramrod_params *p,
3527 enum bnx2x_mcast_cmd cmd)
3529 int i;
3530 struct bnx2x_mcast_obj *o = p->mcast_obj;
3531 struct bnx2x_raw_obj *r = &o->raw;
3533 /* If CLEAR_ONLY has been requested - clear the registry
3534 * and clear a pending bit.
3536 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3537 u32 mc_filter[MC_HASH_SIZE] = {0};
3539 /* Set the multicast filter bits before writing it into
3540 * the internal memory.
3542 switch (cmd) {
3543 case BNX2X_MCAST_CMD_ADD:
3544 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3545 break;
3547 case BNX2X_MCAST_CMD_DEL:
3548 DP(BNX2X_MSG_SP,
3549 "Invalidating multicast MACs configuration\n");
3551 /* clear the registry */
3552 memset(o->registry.aprox_match.vec, 0,
3553 sizeof(o->registry.aprox_match.vec));
3554 break;
3556 case BNX2X_MCAST_CMD_RESTORE:
3557 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3558 break;
3560 default:
3561 BNX2X_ERR("Unknown command: %d\n", cmd);
3562 return -EINVAL;
3565 /* Set the mcast filter in the internal memory */
3566 for (i = 0; i < MC_HASH_SIZE; i++)
3567 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3568 } else
3569 /* clear the registry */
3570 memset(o->registry.aprox_match.vec, 0,
3571 sizeof(o->registry.aprox_match.vec));
3573 /* We are done */
3574 r->clear_pending(r);
3576 return 0;
3579 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3580 struct bnx2x_mcast_ramrod_params *p,
3581 enum bnx2x_mcast_cmd cmd)
3583 struct bnx2x_mcast_obj *o = p->mcast_obj;
3584 int reg_sz = o->get_registry_size(o);
3586 if (cmd == BNX2X_MCAST_CMD_SET) {
3587 BNX2X_ERR("Can't use `set' command on e1!\n");
3588 return -EINVAL;
3591 switch (cmd) {
3592 /* DEL command deletes all currently configured MACs */
3593 case BNX2X_MCAST_CMD_DEL:
3594 o->set_registry_size(o, 0);
3595 /* Don't break */
3597 /* RESTORE command will restore the entire multicast configuration */
3598 case BNX2X_MCAST_CMD_RESTORE:
3599 p->mcast_list_len = reg_sz;
3600 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3601 cmd, p->mcast_list_len);
3602 break;
3604 case BNX2X_MCAST_CMD_ADD:
3605 case BNX2X_MCAST_CMD_CONT:
3606 /* Multicast MACs on 57710 are configured as unicast MACs and
3607 * there is only a limited number of CAM entries for that
3608 * matter.
3610 if (p->mcast_list_len > o->max_cmd_len) {
3611 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3612 o->max_cmd_len);
3613 return -EINVAL;
3615 /* Every configured MAC should be cleared if DEL command is
3616 * called. Only the last ADD command is relevant as long as
3617 * every ADD commands overrides the previous configuration.
3619 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3620 if (p->mcast_list_len > 0)
3621 o->set_registry_size(o, p->mcast_list_len);
3623 break;
3625 default:
3626 BNX2X_ERR("Unknown command: %d\n", cmd);
3627 return -EINVAL;
3630 /* We want to ensure that commands are executed one by one for 57710.
3631 * Therefore each none-empty command will consume o->max_cmd_len.
3633 if (p->mcast_list_len)
3634 o->total_pending_num += o->max_cmd_len;
3636 return 0;
3639 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3640 struct bnx2x_mcast_ramrod_params *p,
3641 int old_num_macs,
3642 enum bnx2x_mcast_cmd cmd)
3644 struct bnx2x_mcast_obj *o = p->mcast_obj;
3646 o->set_registry_size(o, old_num_macs);
3648 /* If current command hasn't been handled yet and we are
3649 * here means that it's meant to be dropped and we have to
3650 * update the number of outstanding MACs accordingly.
3652 if (p->mcast_list_len)
3653 o->total_pending_num -= o->max_cmd_len;
3656 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3657 struct bnx2x_mcast_obj *o, int idx,
3658 union bnx2x_mcast_config_data *cfg_data,
3659 enum bnx2x_mcast_cmd cmd)
3661 struct bnx2x_raw_obj *r = &o->raw;
3662 struct mac_configuration_cmd *data =
3663 (struct mac_configuration_cmd *)(r->rdata);
3665 /* copy mac */
3666 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3667 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3668 &data->config_table[idx].middle_mac_addr,
3669 &data->config_table[idx].lsb_mac_addr,
3670 cfg_data->mac);
3672 data->config_table[idx].vlan_id = 0;
3673 data->config_table[idx].pf_id = r->func_id;
3674 data->config_table[idx].clients_bit_vector =
3675 cpu_to_le32(1 << r->cl_id);
3677 SET_FLAG(data->config_table[idx].flags,
3678 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3679 T_ETH_MAC_COMMAND_SET);
3684 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3686 * @bp: device handle
3687 * @p:
3688 * @len: number of rules to handle
3690 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3691 struct bnx2x_mcast_ramrod_params *p,
3692 u8 len)
3694 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3695 struct mac_configuration_cmd *data =
3696 (struct mac_configuration_cmd *)(r->rdata);
3698 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3699 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3700 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3702 data->hdr.offset = offset;
3703 data->hdr.client_id = cpu_to_le16(0xff);
3704 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3705 (BNX2X_FILTER_MCAST_PENDING <<
3706 BNX2X_SWCID_SHIFT));
3707 data->hdr.length = len;
3711 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3713 * @bp: device handle
3714 * @o:
3715 * @start_idx: index in the registry to start from
3716 * @rdata_idx: index in the ramrod data to start from
3718 * restore command for 57710 is like all other commands - always a stand alone
3719 * command - start_idx and rdata_idx will always be 0. This function will always
3720 * succeed.
3721 * returns -1 to comply with 57712 variant.
3723 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3724 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3725 int *rdata_idx)
3727 struct bnx2x_mcast_mac_elem *elem;
3728 int i = 0;
3729 union bnx2x_mcast_config_data cfg_data = {NULL};
3731 /* go through the registry and configure the MACs from it. */
3732 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3733 cfg_data.mac = &elem->mac[0];
3734 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3736 i++;
3738 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3739 cfg_data.mac);
3742 *rdata_idx = i;
3744 return -1;
3747 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3748 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3750 struct bnx2x_pending_mcast_cmd *cmd_pos;
3751 struct bnx2x_mcast_mac_elem *pmac_pos;
3752 struct bnx2x_mcast_obj *o = p->mcast_obj;
3753 union bnx2x_mcast_config_data cfg_data = {NULL};
3754 int cnt = 0;
3756 /* If nothing to be done - return */
3757 if (list_empty(&o->pending_cmds_head))
3758 return 0;
3760 /* Handle the first command */
3761 cmd_pos = list_first_entry(&o->pending_cmds_head,
3762 struct bnx2x_pending_mcast_cmd, link);
3764 switch (cmd_pos->type) {
3765 case BNX2X_MCAST_CMD_ADD:
3766 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3767 cfg_data.mac = &pmac_pos->mac[0];
3768 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3770 cnt++;
3772 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3773 pmac_pos->mac);
3775 break;
3777 case BNX2X_MCAST_CMD_DEL:
3778 cnt = cmd_pos->data.macs_num;
3779 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3780 break;
3782 case BNX2X_MCAST_CMD_RESTORE:
3783 o->hdl_restore(bp, o, 0, &cnt);
3784 break;
3786 default:
3787 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3788 return -EINVAL;
3791 list_del(&cmd_pos->link);
3792 bnx2x_free_groups(&cmd_pos->group_head);
3793 kfree(cmd_pos);
3795 return cnt;
3799 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3801 * @fw_hi:
3802 * @fw_mid:
3803 * @fw_lo:
3804 * @mac:
3806 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3807 __le16 *fw_lo, u8 *mac)
3809 mac[1] = ((u8 *)fw_hi)[0];
3810 mac[0] = ((u8 *)fw_hi)[1];
3811 mac[3] = ((u8 *)fw_mid)[0];
3812 mac[2] = ((u8 *)fw_mid)[1];
3813 mac[5] = ((u8 *)fw_lo)[0];
3814 mac[4] = ((u8 *)fw_lo)[1];
3818 * bnx2x_mcast_refresh_registry_e1 -
3820 * @bp: device handle
3821 * @cnt:
3823 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3824 * and update the registry correspondingly: if ADD - allocate a memory and add
3825 * the entries to the registry (list), if DELETE - clear the registry and free
3826 * the memory.
3828 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3829 struct bnx2x_mcast_obj *o)
3831 struct bnx2x_raw_obj *raw = &o->raw;
3832 struct bnx2x_mcast_mac_elem *elem;
3833 struct mac_configuration_cmd *data =
3834 (struct mac_configuration_cmd *)(raw->rdata);
3836 /* If first entry contains a SET bit - the command was ADD,
3837 * otherwise - DEL_ALL
3839 if (GET_FLAG(data->config_table[0].flags,
3840 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3841 int i, len = data->hdr.length;
3843 /* Break if it was a RESTORE command */
3844 if (!list_empty(&o->registry.exact_match.macs))
3845 return 0;
3847 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3848 if (!elem) {
3849 BNX2X_ERR("Failed to allocate registry memory\n");
3850 return -ENOMEM;
3853 for (i = 0; i < len; i++, elem++) {
3854 bnx2x_get_fw_mac_addr(
3855 &data->config_table[i].msb_mac_addr,
3856 &data->config_table[i].middle_mac_addr,
3857 &data->config_table[i].lsb_mac_addr,
3858 elem->mac);
3859 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3860 elem->mac);
3861 list_add_tail(&elem->link,
3862 &o->registry.exact_match.macs);
3864 } else {
3865 elem = list_first_entry(&o->registry.exact_match.macs,
3866 struct bnx2x_mcast_mac_elem, link);
3867 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3868 kfree(elem);
3869 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3872 return 0;
3875 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3876 struct bnx2x_mcast_ramrod_params *p,
3877 enum bnx2x_mcast_cmd cmd)
3879 struct bnx2x_mcast_obj *o = p->mcast_obj;
3880 struct bnx2x_raw_obj *raw = &o->raw;
3881 struct mac_configuration_cmd *data =
3882 (struct mac_configuration_cmd *)(raw->rdata);
3883 int cnt = 0, i, rc;
3885 /* Reset the ramrod data buffer */
3886 memset(data, 0, sizeof(*data));
3888 /* First set all entries as invalid */
3889 for (i = 0; i < o->max_cmd_len ; i++)
3890 SET_FLAG(data->config_table[i].flags,
3891 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3892 T_ETH_MAC_COMMAND_INVALIDATE);
3894 /* Handle pending commands first */
3895 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3897 /* If there are no more pending commands - clear SCHEDULED state */
3898 if (list_empty(&o->pending_cmds_head))
3899 o->clear_sched(o);
3901 /* The below may be true iff there were no pending commands */
3902 if (!cnt)
3903 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3905 /* For 57710 every command has o->max_cmd_len length to ensure that
3906 * commands are done one at a time.
3908 o->total_pending_num -= o->max_cmd_len;
3910 /* send a ramrod */
3912 WARN_ON(cnt > o->max_cmd_len);
3914 /* Set ramrod header (in particular, a number of entries to update) */
3915 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3917 /* update a registry: we need the registry contents to be always up
3918 * to date in order to be able to execute a RESTORE opcode. Here
3919 * we use the fact that for 57710 we sent one command at a time
3920 * hence we may take the registry update out of the command handling
3921 * and do it in a simpler way here.
3923 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3924 if (rc)
3925 return rc;
3927 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3928 * RAMROD_PENDING status immediately.
3930 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3931 raw->clear_pending(raw);
3932 return 0;
3933 } else {
3934 /* No need for an explicit memory barrier here as long as we
3935 * ensure the ordering of writing to the SPQ element
3936 * and updating of the SPQ producer which involves a memory
3937 * read. If the memory read is removed we will have to put a
3938 * full memory barrier there (inside bnx2x_sp_post()).
3941 /* Send a ramrod */
3942 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3943 U64_HI(raw->rdata_mapping),
3944 U64_LO(raw->rdata_mapping),
3945 ETH_CONNECTION_TYPE);
3946 if (rc)
3947 return rc;
3949 /* Ramrod completion is pending */
3950 return 1;
3954 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3956 return o->registry.exact_match.num_macs_set;
3959 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3961 return o->registry.aprox_match.num_bins_set;
3964 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3965 int n)
3967 o->registry.exact_match.num_macs_set = n;
3970 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3971 int n)
3973 o->registry.aprox_match.num_bins_set = n;
3976 int bnx2x_config_mcast(struct bnx2x *bp,
3977 struct bnx2x_mcast_ramrod_params *p,
3978 enum bnx2x_mcast_cmd cmd)
3980 struct bnx2x_mcast_obj *o = p->mcast_obj;
3981 struct bnx2x_raw_obj *r = &o->raw;
3982 int rc = 0, old_reg_size;
3984 /* This is needed to recover number of currently configured mcast macs
3985 * in case of failure.
3987 old_reg_size = o->get_registry_size(o);
3989 /* Do some calculations and checks */
3990 rc = o->validate(bp, p, cmd);
3991 if (rc)
3992 return rc;
3994 /* Return if there is no work to do */
3995 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3996 return 0;
3998 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3999 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4001 /* Enqueue the current command to the pending list if we can't complete
4002 * it in the current iteration
4004 if (r->check_pending(r) ||
4005 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4006 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4007 if (rc < 0)
4008 goto error_exit1;
4010 /* As long as the current command is in a command list we
4011 * don't need to handle it separately.
4013 p->mcast_list_len = 0;
4016 if (!r->check_pending(r)) {
4018 /* Set 'pending' state */
4019 r->set_pending(r);
4021 /* Configure the new classification in the chip */
4022 rc = o->config_mcast(bp, p, cmd);
4023 if (rc < 0)
4024 goto error_exit2;
4026 /* Wait for a ramrod completion if was requested */
4027 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4028 rc = o->wait_comp(bp, o);
4031 return rc;
4033 error_exit2:
4034 r->clear_pending(r);
4036 error_exit1:
4037 o->revert(bp, p, old_reg_size, cmd);
4039 return rc;
4042 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4044 smp_mb__before_atomic();
4045 clear_bit(o->sched_state, o->raw.pstate);
4046 smp_mb__after_atomic();
4049 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4051 smp_mb__before_atomic();
4052 set_bit(o->sched_state, o->raw.pstate);
4053 smp_mb__after_atomic();
4056 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4058 return !!test_bit(o->sched_state, o->raw.pstate);
4061 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4063 return o->raw.check_pending(&o->raw) || o->check_sched(o);
4066 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4067 struct bnx2x_mcast_obj *mcast_obj,
4068 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4069 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4070 int state, unsigned long *pstate, bnx2x_obj_type type)
4072 memset(mcast_obj, 0, sizeof(*mcast_obj));
4074 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4075 rdata, rdata_mapping, state, pstate, type);
4077 mcast_obj->engine_id = engine_id;
4079 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4081 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4082 mcast_obj->check_sched = bnx2x_mcast_check_sched;
4083 mcast_obj->set_sched = bnx2x_mcast_set_sched;
4084 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4086 if (CHIP_IS_E1(bp)) {
4087 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
4088 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4089 mcast_obj->hdl_restore =
4090 bnx2x_mcast_handle_restore_cmd_e1;
4091 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4093 if (CHIP_REV_IS_SLOW(bp))
4094 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4095 else
4096 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4098 mcast_obj->wait_comp = bnx2x_mcast_wait;
4099 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
4100 mcast_obj->validate = bnx2x_mcast_validate_e1;
4101 mcast_obj->revert = bnx2x_mcast_revert_e1;
4102 mcast_obj->get_registry_size =
4103 bnx2x_mcast_get_registry_size_exact;
4104 mcast_obj->set_registry_size =
4105 bnx2x_mcast_set_registry_size_exact;
4107 /* 57710 is the only chip that uses the exact match for mcast
4108 * at the moment.
4110 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4112 } else if (CHIP_IS_E1H(bp)) {
4113 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
4114 mcast_obj->enqueue_cmd = NULL;
4115 mcast_obj->hdl_restore = NULL;
4116 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4118 /* 57711 doesn't send a ramrod, so it has unlimited credit
4119 * for one command.
4121 mcast_obj->max_cmd_len = -1;
4122 mcast_obj->wait_comp = bnx2x_mcast_wait;
4123 mcast_obj->set_one_rule = NULL;
4124 mcast_obj->validate = bnx2x_mcast_validate_e1h;
4125 mcast_obj->revert = bnx2x_mcast_revert_e1h;
4126 mcast_obj->get_registry_size =
4127 bnx2x_mcast_get_registry_size_aprox;
4128 mcast_obj->set_registry_size =
4129 bnx2x_mcast_set_registry_size_aprox;
4130 } else {
4131 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
4132 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4133 mcast_obj->hdl_restore =
4134 bnx2x_mcast_handle_restore_cmd_e2;
4135 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4136 /* TODO: There should be a proper HSI define for this number!!!
4138 mcast_obj->max_cmd_len = 16;
4139 mcast_obj->wait_comp = bnx2x_mcast_wait;
4140 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
4141 mcast_obj->validate = bnx2x_mcast_validate_e2;
4142 mcast_obj->revert = bnx2x_mcast_revert_e2;
4143 mcast_obj->get_registry_size =
4144 bnx2x_mcast_get_registry_size_aprox;
4145 mcast_obj->set_registry_size =
4146 bnx2x_mcast_set_registry_size_aprox;
4150 /*************************** Credit handling **********************************/
4153 * atomic_add_ifless - add if the result is less than a given value.
4155 * @v: pointer of type atomic_t
4156 * @a: the amount to add to v...
4157 * @u: ...if (v + a) is less than u.
4159 * returns true if (v + a) was less than u, and false otherwise.
4162 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4164 int c, old;
4166 c = atomic_read(v);
4167 for (;;) {
4168 if (unlikely(c + a >= u))
4169 return false;
4171 old = atomic_cmpxchg((v), c, c + a);
4172 if (likely(old == c))
4173 break;
4174 c = old;
4177 return true;
4181 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4183 * @v: pointer of type atomic_t
4184 * @a: the amount to dec from v...
4185 * @u: ...if (v - a) is more or equal than u.
4187 * returns true if (v - a) was more or equal than u, and false
4188 * otherwise.
4190 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4192 int c, old;
4194 c = atomic_read(v);
4195 for (;;) {
4196 if (unlikely(c - a < u))
4197 return false;
4199 old = atomic_cmpxchg((v), c, c - a);
4200 if (likely(old == c))
4201 break;
4202 c = old;
4205 return true;
4208 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4210 bool rc;
4212 smp_mb();
4213 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4214 smp_mb();
4216 return rc;
4219 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4221 bool rc;
4223 smp_mb();
4225 /* Don't let to refill if credit + cnt > pool_sz */
4226 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4228 smp_mb();
4230 return rc;
4233 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4235 int cur_credit;
4237 smp_mb();
4238 cur_credit = atomic_read(&o->credit);
4240 return cur_credit;
4243 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4244 int cnt)
4246 return true;
4249 static bool bnx2x_credit_pool_get_entry(
4250 struct bnx2x_credit_pool_obj *o,
4251 int *offset)
4253 int idx, vec, i;
4255 *offset = -1;
4257 /* Find "internal cam-offset" then add to base for this object... */
4258 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4260 /* Skip the current vector if there are no free entries in it */
4261 if (!o->pool_mirror[vec])
4262 continue;
4264 /* If we've got here we are going to find a free entry */
4265 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4266 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4268 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4269 /* Got one!! */
4270 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4271 *offset = o->base_pool_offset + idx;
4272 return true;
4276 return false;
4279 static bool bnx2x_credit_pool_put_entry(
4280 struct bnx2x_credit_pool_obj *o,
4281 int offset)
4283 if (offset < o->base_pool_offset)
4284 return false;
4286 offset -= o->base_pool_offset;
4288 if (offset >= o->pool_sz)
4289 return false;
4291 /* Return the entry to the pool */
4292 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4294 return true;
4297 static bool bnx2x_credit_pool_put_entry_always_true(
4298 struct bnx2x_credit_pool_obj *o,
4299 int offset)
4301 return true;
4304 static bool bnx2x_credit_pool_get_entry_always_true(
4305 struct bnx2x_credit_pool_obj *o,
4306 int *offset)
4308 *offset = -1;
4309 return true;
4312 * bnx2x_init_credit_pool - initialize credit pool internals.
4314 * @p:
4315 * @base: Base entry in the CAM to use.
4316 * @credit: pool size.
4318 * If base is negative no CAM entries handling will be performed.
4319 * If credit is negative pool operations will always succeed (unlimited pool).
4322 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4323 int base, int credit)
4325 /* Zero the object first */
4326 memset(p, 0, sizeof(*p));
4328 /* Set the table to all 1s */
4329 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4331 /* Init a pool as full */
4332 atomic_set(&p->credit, credit);
4334 /* The total poll size */
4335 p->pool_sz = credit;
4337 p->base_pool_offset = base;
4339 /* Commit the change */
4340 smp_mb();
4342 p->check = bnx2x_credit_pool_check;
4344 /* if pool credit is negative - disable the checks */
4345 if (credit >= 0) {
4346 p->put = bnx2x_credit_pool_put;
4347 p->get = bnx2x_credit_pool_get;
4348 p->put_entry = bnx2x_credit_pool_put_entry;
4349 p->get_entry = bnx2x_credit_pool_get_entry;
4350 } else {
4351 p->put = bnx2x_credit_pool_always_true;
4352 p->get = bnx2x_credit_pool_always_true;
4353 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4354 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4357 /* If base is negative - disable entries handling */
4358 if (base < 0) {
4359 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4360 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4364 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4365 struct bnx2x_credit_pool_obj *p, u8 func_id,
4366 u8 func_num)
4368 /* TODO: this will be defined in consts as well... */
4369 #define BNX2X_CAM_SIZE_EMUL 5
4371 int cam_sz;
4373 if (CHIP_IS_E1(bp)) {
4374 /* In E1, Multicast is saved in cam... */
4375 if (!CHIP_REV_IS_SLOW(bp))
4376 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4377 else
4378 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4380 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4382 } else if (CHIP_IS_E1H(bp)) {
4383 /* CAM credit is equaly divided between all active functions
4384 * on the PORT!.
4386 if ((func_num > 0)) {
4387 if (!CHIP_REV_IS_SLOW(bp))
4388 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4389 else
4390 cam_sz = BNX2X_CAM_SIZE_EMUL;
4391 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4392 } else {
4393 /* this should never happen! Block MAC operations. */
4394 bnx2x_init_credit_pool(p, 0, 0);
4397 } else {
4399 /* CAM credit is equaly divided between all active functions
4400 * on the PATH.
4402 if (func_num > 0) {
4403 if (!CHIP_REV_IS_SLOW(bp))
4404 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4405 else
4406 cam_sz = BNX2X_CAM_SIZE_EMUL;
4408 /* No need for CAM entries handling for 57712 and
4409 * newer.
4411 bnx2x_init_credit_pool(p, -1, cam_sz);
4412 } else {
4413 /* this should never happen! Block MAC operations. */
4414 bnx2x_init_credit_pool(p, 0, 0);
4419 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4420 struct bnx2x_credit_pool_obj *p,
4421 u8 func_id,
4422 u8 func_num)
4424 if (CHIP_IS_E1x(bp)) {
4425 /* There is no VLAN credit in HW on 57710 and 57711 only
4426 * MAC / MAC-VLAN can be set
4428 bnx2x_init_credit_pool(p, 0, -1);
4429 } else {
4430 /* CAM credit is equally divided between all active functions
4431 * on the PATH.
4433 if (func_num > 0) {
4434 int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4436 bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4437 } else
4438 /* this should never happen! Block VLAN operations. */
4439 bnx2x_init_credit_pool(p, 0, 0);
4443 /****************** RSS Configuration ******************/
4445 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4447 * @bp: driver handle
4448 * @p: pointer to rss configuration
4450 * Prints it when NETIF_MSG_IFUP debug level is configured.
4452 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4453 struct bnx2x_config_rss_params *p)
4455 int i;
4457 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4458 DP(BNX2X_MSG_SP, "0x0000: ");
4459 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4460 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4462 /* Print 4 bytes in a line */
4463 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4464 (((i + 1) & 0x3) == 0)) {
4465 DP_CONT(BNX2X_MSG_SP, "\n");
4466 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4470 DP_CONT(BNX2X_MSG_SP, "\n");
4474 * bnx2x_setup_rss - configure RSS
4476 * @bp: device handle
4477 * @p: rss configuration
4479 * sends on UPDATE ramrod for that matter.
4481 static int bnx2x_setup_rss(struct bnx2x *bp,
4482 struct bnx2x_config_rss_params *p)
4484 struct bnx2x_rss_config_obj *o = p->rss_obj;
4485 struct bnx2x_raw_obj *r = &o->raw;
4486 struct eth_rss_update_ramrod_data *data =
4487 (struct eth_rss_update_ramrod_data *)(r->rdata);
4488 u16 caps = 0;
4489 u8 rss_mode = 0;
4490 int rc;
4492 memset(data, 0, sizeof(*data));
4494 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4496 /* Set an echo field */
4497 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4498 (r->state << BNX2X_SWCID_SHIFT));
4500 /* RSS mode */
4501 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4502 rss_mode = ETH_RSS_MODE_DISABLED;
4503 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4504 rss_mode = ETH_RSS_MODE_REGULAR;
4506 data->rss_mode = rss_mode;
4508 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4510 /* RSS capabilities */
4511 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4512 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4514 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4515 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4517 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4518 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4520 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4521 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4523 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4524 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4526 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4527 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4529 if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4530 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4532 if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4533 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4535 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4536 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4538 /* RSS keys */
4539 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4540 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4541 const u8 *src = (const u8 *)p->rss_key;
4542 int i;
4544 /* Apparently, bnx2x reads this array in reverse order
4545 * We need to byte swap rss_key to comply with Toeplitz specs.
4547 for (i = 0; i < sizeof(data->rss_key); i++)
4548 *--dst = *src++;
4550 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4553 data->capabilities = cpu_to_le16(caps);
4555 /* Hashing mask */
4556 data->rss_result_mask = p->rss_result_mask;
4558 /* RSS engine ID */
4559 data->rss_engine_id = o->engine_id;
4561 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4563 /* Indirection table */
4564 memcpy(data->indirection_table, p->ind_table,
4565 T_ETH_INDIRECTION_TABLE_SIZE);
4567 /* Remember the last configuration */
4568 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4570 /* Print the indirection table */
4571 if (netif_msg_ifup(bp))
4572 bnx2x_debug_print_ind_table(bp, p);
4574 /* No need for an explicit memory barrier here as long as we
4575 * ensure the ordering of writing to the SPQ element
4576 * and updating of the SPQ producer which involves a memory
4577 * read. If the memory read is removed we will have to put a
4578 * full memory barrier there (inside bnx2x_sp_post()).
4581 /* Send a ramrod */
4582 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4583 U64_HI(r->rdata_mapping),
4584 U64_LO(r->rdata_mapping),
4585 ETH_CONNECTION_TYPE);
4587 if (rc < 0)
4588 return rc;
4590 return 1;
4593 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4594 u8 *ind_table)
4596 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4599 int bnx2x_config_rss(struct bnx2x *bp,
4600 struct bnx2x_config_rss_params *p)
4602 int rc;
4603 struct bnx2x_rss_config_obj *o = p->rss_obj;
4604 struct bnx2x_raw_obj *r = &o->raw;
4606 /* Do nothing if only driver cleanup was requested */
4607 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4608 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4609 p->ramrod_flags);
4610 return 0;
4613 r->set_pending(r);
4615 rc = o->config_rss(bp, p);
4616 if (rc < 0) {
4617 r->clear_pending(r);
4618 return rc;
4621 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4622 rc = r->wait_comp(bp, r);
4624 return rc;
4627 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4628 struct bnx2x_rss_config_obj *rss_obj,
4629 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4630 void *rdata, dma_addr_t rdata_mapping,
4631 int state, unsigned long *pstate,
4632 bnx2x_obj_type type)
4634 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4635 rdata_mapping, state, pstate, type);
4637 rss_obj->engine_id = engine_id;
4638 rss_obj->config_rss = bnx2x_setup_rss;
4641 /********************** Queue state object ***********************************/
4644 * bnx2x_queue_state_change - perform Queue state change transition
4646 * @bp: device handle
4647 * @params: parameters to perform the transition
4649 * returns 0 in case of successfully completed transition, negative error
4650 * code in case of failure, positive (EBUSY) value if there is a completion
4651 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4652 * not set in params->ramrod_flags for asynchronous commands).
4655 int bnx2x_queue_state_change(struct bnx2x *bp,
4656 struct bnx2x_queue_state_params *params)
4658 struct bnx2x_queue_sp_obj *o = params->q_obj;
4659 int rc, pending_bit;
4660 unsigned long *pending = &o->pending;
4662 /* Check that the requested transition is legal */
4663 rc = o->check_transition(bp, o, params);
4664 if (rc) {
4665 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4666 return -EINVAL;
4669 /* Set "pending" bit */
4670 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4671 pending_bit = o->set_pending(o, params);
4672 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4674 /* Don't send a command if only driver cleanup was requested */
4675 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4676 o->complete_cmd(bp, o, pending_bit);
4677 else {
4678 /* Send a ramrod */
4679 rc = o->send_cmd(bp, params);
4680 if (rc) {
4681 o->next_state = BNX2X_Q_STATE_MAX;
4682 clear_bit(pending_bit, pending);
4683 smp_mb__after_atomic();
4684 return rc;
4687 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4688 rc = o->wait_comp(bp, o, pending_bit);
4689 if (rc)
4690 return rc;
4692 return 0;
4696 return !!test_bit(pending_bit, pending);
4699 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4700 struct bnx2x_queue_state_params *params)
4702 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4704 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4705 * UPDATE command.
4707 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4708 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4709 bit = BNX2X_Q_CMD_UPDATE;
4710 else
4711 bit = cmd;
4713 set_bit(bit, &obj->pending);
4714 return bit;
4717 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4718 struct bnx2x_queue_sp_obj *o,
4719 enum bnx2x_queue_cmd cmd)
4721 return bnx2x_state_wait(bp, cmd, &o->pending);
4725 * bnx2x_queue_comp_cmd - complete the state change command.
4727 * @bp: device handle
4728 * @o:
4729 * @cmd:
4731 * Checks that the arrived completion is expected.
4733 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4734 struct bnx2x_queue_sp_obj *o,
4735 enum bnx2x_queue_cmd cmd)
4737 unsigned long cur_pending = o->pending;
4739 if (!test_and_clear_bit(cmd, &cur_pending)) {
4740 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4741 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4742 o->state, cur_pending, o->next_state);
4743 return -EINVAL;
4746 if (o->next_tx_only >= o->max_cos)
4747 /* >= because tx only must always be smaller than cos since the
4748 * primary connection supports COS 0
4750 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4751 o->next_tx_only, o->max_cos);
4753 DP(BNX2X_MSG_SP,
4754 "Completing command %d for queue %d, setting state to %d\n",
4755 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4757 if (o->next_tx_only) /* print num tx-only if any exist */
4758 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4759 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4761 o->state = o->next_state;
4762 o->num_tx_only = o->next_tx_only;
4763 o->next_state = BNX2X_Q_STATE_MAX;
4765 /* It's important that o->state and o->next_state are
4766 * updated before o->pending.
4768 wmb();
4770 clear_bit(cmd, &o->pending);
4771 smp_mb__after_atomic();
4773 return 0;
4776 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4777 struct bnx2x_queue_state_params *cmd_params,
4778 struct client_init_ramrod_data *data)
4780 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4782 /* Rx data */
4784 /* IPv6 TPA supported for E2 and above only */
4785 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4786 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4789 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4790 struct bnx2x_queue_sp_obj *o,
4791 struct bnx2x_general_setup_params *params,
4792 struct client_init_general_data *gen_data,
4793 unsigned long *flags)
4795 gen_data->client_id = o->cl_id;
4797 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4798 gen_data->statistics_counter_id =
4799 params->stat_id;
4800 gen_data->statistics_en_flg = 1;
4801 gen_data->statistics_zero_flg =
4802 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4803 } else
4804 gen_data->statistics_counter_id =
4805 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4807 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4808 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4809 gen_data->sp_client_id = params->spcl_id;
4810 gen_data->mtu = cpu_to_le16(params->mtu);
4811 gen_data->func_id = o->func_id;
4813 gen_data->cos = params->cos;
4815 gen_data->traffic_type =
4816 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4817 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4819 gen_data->fp_hsi_ver = params->fp_hsi;
4821 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4822 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4825 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4826 struct bnx2x_txq_setup_params *params,
4827 struct client_init_tx_data *tx_data,
4828 unsigned long *flags)
4830 tx_data->enforce_security_flg =
4831 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4832 tx_data->default_vlan =
4833 cpu_to_le16(params->default_vlan);
4834 tx_data->default_vlan_flg =
4835 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4836 tx_data->tx_switching_flg =
4837 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4838 tx_data->anti_spoofing_flg =
4839 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4840 tx_data->force_default_pri_flg =
4841 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4842 tx_data->refuse_outband_vlan_flg =
4843 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4844 tx_data->tunnel_lso_inc_ip_id =
4845 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4846 tx_data->tunnel_non_lso_pcsum_location =
4847 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4848 CSUM_ON_BD;
4850 tx_data->tx_status_block_id = params->fw_sb_id;
4851 tx_data->tx_sb_index_number = params->sb_cq_index;
4852 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4854 tx_data->tx_bd_page_base.lo =
4855 cpu_to_le32(U64_LO(params->dscr_map));
4856 tx_data->tx_bd_page_base.hi =
4857 cpu_to_le32(U64_HI(params->dscr_map));
4859 /* Don't configure any Tx switching mode during queue SETUP */
4860 tx_data->state = 0;
4863 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4864 struct rxq_pause_params *params,
4865 struct client_init_rx_data *rx_data)
4867 /* flow control data */
4868 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4869 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4870 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4871 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4872 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4873 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4874 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4877 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4878 struct bnx2x_rxq_setup_params *params,
4879 struct client_init_rx_data *rx_data,
4880 unsigned long *flags)
4882 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4883 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4884 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4885 CLIENT_INIT_RX_DATA_TPA_MODE;
4886 rx_data->vmqueue_mode_en_flg = 0;
4888 rx_data->cache_line_alignment_log_size =
4889 params->cache_line_log;
4890 rx_data->enable_dynamic_hc =
4891 test_bit(BNX2X_Q_FLG_DHC, flags);
4892 rx_data->max_sges_for_packet = params->max_sges_pkt;
4893 rx_data->client_qzone_id = params->cl_qzone_id;
4894 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4896 /* Always start in DROP_ALL mode */
4897 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4898 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4900 /* We don't set drop flags */
4901 rx_data->drop_ip_cs_err_flg = 0;
4902 rx_data->drop_tcp_cs_err_flg = 0;
4903 rx_data->drop_ttl0_flg = 0;
4904 rx_data->drop_udp_cs_err_flg = 0;
4905 rx_data->inner_vlan_removal_enable_flg =
4906 test_bit(BNX2X_Q_FLG_VLAN, flags);
4907 rx_data->outer_vlan_removal_enable_flg =
4908 test_bit(BNX2X_Q_FLG_OV, flags);
4909 rx_data->status_block_id = params->fw_sb_id;
4910 rx_data->rx_sb_index_number = params->sb_cq_index;
4911 rx_data->max_tpa_queues = params->max_tpa_queues;
4912 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4913 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4914 rx_data->bd_page_base.lo =
4915 cpu_to_le32(U64_LO(params->dscr_map));
4916 rx_data->bd_page_base.hi =
4917 cpu_to_le32(U64_HI(params->dscr_map));
4918 rx_data->sge_page_base.lo =
4919 cpu_to_le32(U64_LO(params->sge_map));
4920 rx_data->sge_page_base.hi =
4921 cpu_to_le32(U64_HI(params->sge_map));
4922 rx_data->cqe_page_base.lo =
4923 cpu_to_le32(U64_LO(params->rcq_map));
4924 rx_data->cqe_page_base.hi =
4925 cpu_to_le32(U64_HI(params->rcq_map));
4926 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4928 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4929 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4930 rx_data->is_approx_mcast = 1;
4933 rx_data->rss_engine_id = params->rss_engine_id;
4935 /* silent vlan removal */
4936 rx_data->silent_vlan_removal_flg =
4937 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4938 rx_data->silent_vlan_value =
4939 cpu_to_le16(params->silent_removal_value);
4940 rx_data->silent_vlan_mask =
4941 cpu_to_le16(params->silent_removal_mask);
4944 /* initialize the general, tx and rx parts of a queue object */
4945 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4946 struct bnx2x_queue_state_params *cmd_params,
4947 struct client_init_ramrod_data *data)
4949 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4950 &cmd_params->params.setup.gen_params,
4951 &data->general,
4952 &cmd_params->params.setup.flags);
4954 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4955 &cmd_params->params.setup.txq_params,
4956 &data->tx,
4957 &cmd_params->params.setup.flags);
4959 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4960 &cmd_params->params.setup.rxq_params,
4961 &data->rx,
4962 &cmd_params->params.setup.flags);
4964 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4965 &cmd_params->params.setup.pause_params,
4966 &data->rx);
4969 /* initialize the general and tx parts of a tx-only queue object */
4970 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4971 struct bnx2x_queue_state_params *cmd_params,
4972 struct tx_queue_init_ramrod_data *data)
4974 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4975 &cmd_params->params.tx_only.gen_params,
4976 &data->general,
4977 &cmd_params->params.tx_only.flags);
4979 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4980 &cmd_params->params.tx_only.txq_params,
4981 &data->tx,
4982 &cmd_params->params.tx_only.flags);
4984 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4985 cmd_params->q_obj->cids[0],
4986 data->tx.tx_bd_page_base.lo,
4987 data->tx.tx_bd_page_base.hi);
4991 * bnx2x_q_init - init HW/FW queue
4993 * @bp: device handle
4994 * @params:
4996 * HW/FW initial Queue configuration:
4997 * - HC: Rx and Tx
4998 * - CDU context validation
5001 static inline int bnx2x_q_init(struct bnx2x *bp,
5002 struct bnx2x_queue_state_params *params)
5004 struct bnx2x_queue_sp_obj *o = params->q_obj;
5005 struct bnx2x_queue_init_params *init = &params->params.init;
5006 u16 hc_usec;
5007 u8 cos;
5009 /* Tx HC configuration */
5010 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5011 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5012 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5014 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5015 init->tx.sb_cq_index,
5016 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5017 hc_usec);
5020 /* Rx HC configuration */
5021 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5022 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5023 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5025 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5026 init->rx.sb_cq_index,
5027 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5028 hc_usec);
5031 /* Set CDU context validation values */
5032 for (cos = 0; cos < o->max_cos; cos++) {
5033 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5034 o->cids[cos], cos);
5035 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5036 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5039 /* As no ramrod is sent, complete the command immediately */
5040 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5042 mmiowb();
5043 smp_mb();
5045 return 0;
5048 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5049 struct bnx2x_queue_state_params *params)
5051 struct bnx2x_queue_sp_obj *o = params->q_obj;
5052 struct client_init_ramrod_data *rdata =
5053 (struct client_init_ramrod_data *)o->rdata;
5054 dma_addr_t data_mapping = o->rdata_mapping;
5055 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5057 /* Clear the ramrod data */
5058 memset(rdata, 0, sizeof(*rdata));
5060 /* Fill the ramrod data */
5061 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5063 /* No need for an explicit memory barrier here as long as we
5064 * ensure the ordering of writing to the SPQ element
5065 * and updating of the SPQ producer which involves a memory
5066 * read. If the memory read is removed we will have to put a
5067 * full memory barrier there (inside bnx2x_sp_post()).
5069 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5070 U64_HI(data_mapping),
5071 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5074 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5075 struct bnx2x_queue_state_params *params)
5077 struct bnx2x_queue_sp_obj *o = params->q_obj;
5078 struct client_init_ramrod_data *rdata =
5079 (struct client_init_ramrod_data *)o->rdata;
5080 dma_addr_t data_mapping = o->rdata_mapping;
5081 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5083 /* Clear the ramrod data */
5084 memset(rdata, 0, sizeof(*rdata));
5086 /* Fill the ramrod data */
5087 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5088 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5090 /* No need for an explicit memory barrier here as long as we
5091 * ensure the ordering of writing to the SPQ element
5092 * and updating of the SPQ producer which involves a memory
5093 * read. If the memory read is removed we will have to put a
5094 * full memory barrier there (inside bnx2x_sp_post()).
5096 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5097 U64_HI(data_mapping),
5098 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5101 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5102 struct bnx2x_queue_state_params *params)
5104 struct bnx2x_queue_sp_obj *o = params->q_obj;
5105 struct tx_queue_init_ramrod_data *rdata =
5106 (struct tx_queue_init_ramrod_data *)o->rdata;
5107 dma_addr_t data_mapping = o->rdata_mapping;
5108 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5109 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5110 &params->params.tx_only;
5111 u8 cid_index = tx_only_params->cid_index;
5113 if (cid_index >= o->max_cos) {
5114 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5115 o->cl_id, cid_index);
5116 return -EINVAL;
5119 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5120 tx_only_params->gen_params.cos,
5121 tx_only_params->gen_params.spcl_id);
5123 /* Clear the ramrod data */
5124 memset(rdata, 0, sizeof(*rdata));
5126 /* Fill the ramrod data */
5127 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5129 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5130 o->cids[cid_index], rdata->general.client_id,
5131 rdata->general.sp_client_id, rdata->general.cos);
5133 /* No need for an explicit memory barrier here as long as we
5134 * ensure the ordering of writing to the SPQ element
5135 * and updating of the SPQ producer which involves a memory
5136 * read. If the memory read is removed we will have to put a
5137 * full memory barrier there (inside bnx2x_sp_post()).
5139 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5140 U64_HI(data_mapping),
5141 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5144 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5145 struct bnx2x_queue_sp_obj *obj,
5146 struct bnx2x_queue_update_params *params,
5147 struct client_update_ramrod_data *data)
5149 /* Client ID of the client to update */
5150 data->client_id = obj->cl_id;
5152 /* Function ID of the client to update */
5153 data->func_id = obj->func_id;
5155 /* Default VLAN value */
5156 data->default_vlan = cpu_to_le16(params->def_vlan);
5158 /* Inner VLAN stripping */
5159 data->inner_vlan_removal_enable_flg =
5160 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5161 data->inner_vlan_removal_change_flg =
5162 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5163 &params->update_flags);
5165 /* Outer VLAN stripping */
5166 data->outer_vlan_removal_enable_flg =
5167 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5168 data->outer_vlan_removal_change_flg =
5169 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5170 &params->update_flags);
5172 /* Drop packets that have source MAC that doesn't belong to this
5173 * Queue.
5175 data->anti_spoofing_enable_flg =
5176 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5177 data->anti_spoofing_change_flg =
5178 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5180 /* Activate/Deactivate */
5181 data->activate_flg =
5182 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5183 data->activate_change_flg =
5184 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5186 /* Enable default VLAN */
5187 data->default_vlan_enable_flg =
5188 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5189 data->default_vlan_change_flg =
5190 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5191 &params->update_flags);
5193 /* silent vlan removal */
5194 data->silent_vlan_change_flg =
5195 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5196 &params->update_flags);
5197 data->silent_vlan_removal_flg =
5198 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5199 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5200 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5202 /* tx switching */
5203 data->tx_switching_flg =
5204 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5205 data->tx_switching_change_flg =
5206 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5207 &params->update_flags);
5209 /* PTP */
5210 data->handle_ptp_pkts_flg =
5211 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5212 data->handle_ptp_pkts_change_flg =
5213 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5216 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5217 struct bnx2x_queue_state_params *params)
5219 struct bnx2x_queue_sp_obj *o = params->q_obj;
5220 struct client_update_ramrod_data *rdata =
5221 (struct client_update_ramrod_data *)o->rdata;
5222 dma_addr_t data_mapping = o->rdata_mapping;
5223 struct bnx2x_queue_update_params *update_params =
5224 &params->params.update;
5225 u8 cid_index = update_params->cid_index;
5227 if (cid_index >= o->max_cos) {
5228 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5229 o->cl_id, cid_index);
5230 return -EINVAL;
5233 /* Clear the ramrod data */
5234 memset(rdata, 0, sizeof(*rdata));
5236 /* Fill the ramrod data */
5237 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5239 /* No need for an explicit memory barrier here as long as we
5240 * ensure the ordering of writing to the SPQ element
5241 * and updating of the SPQ producer which involves a memory
5242 * read. If the memory read is removed we will have to put a
5243 * full memory barrier there (inside bnx2x_sp_post()).
5245 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5246 o->cids[cid_index], U64_HI(data_mapping),
5247 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5251 * bnx2x_q_send_deactivate - send DEACTIVATE command
5253 * @bp: device handle
5254 * @params:
5256 * implemented using the UPDATE command.
5258 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5259 struct bnx2x_queue_state_params *params)
5261 struct bnx2x_queue_update_params *update = &params->params.update;
5263 memset(update, 0, sizeof(*update));
5265 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5267 return bnx2x_q_send_update(bp, params);
5271 * bnx2x_q_send_activate - send ACTIVATE command
5273 * @bp: device handle
5274 * @params:
5276 * implemented using the UPDATE command.
5278 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5279 struct bnx2x_queue_state_params *params)
5281 struct bnx2x_queue_update_params *update = &params->params.update;
5283 memset(update, 0, sizeof(*update));
5285 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5286 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5288 return bnx2x_q_send_update(bp, params);
5291 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5292 struct bnx2x_queue_sp_obj *obj,
5293 struct bnx2x_queue_update_tpa_params *params,
5294 struct tpa_update_ramrod_data *data)
5296 data->client_id = obj->cl_id;
5297 data->complete_on_both_clients = params->complete_on_both_clients;
5298 data->dont_verify_rings_pause_thr_flg =
5299 params->dont_verify_thr;
5300 data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5301 data->max_sges_for_packet = params->max_sges_pkt;
5302 data->max_tpa_queues = params->max_tpa_queues;
5303 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5304 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5305 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5306 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5307 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5308 data->tpa_mode = params->tpa_mode;
5309 data->update_ipv4 = params->update_ipv4;
5310 data->update_ipv6 = params->update_ipv6;
5313 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5314 struct bnx2x_queue_state_params *params)
5316 struct bnx2x_queue_sp_obj *o = params->q_obj;
5317 struct tpa_update_ramrod_data *rdata =
5318 (struct tpa_update_ramrod_data *)o->rdata;
5319 dma_addr_t data_mapping = o->rdata_mapping;
5320 struct bnx2x_queue_update_tpa_params *update_tpa_params =
5321 &params->params.update_tpa;
5322 u16 type;
5324 /* Clear the ramrod data */
5325 memset(rdata, 0, sizeof(*rdata));
5327 /* Fill the ramrod data */
5328 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5330 /* Add the function id inside the type, so that sp post function
5331 * doesn't automatically add the PF func-id, this is required
5332 * for operations done by PFs on behalf of their VFs
5334 type = ETH_CONNECTION_TYPE |
5335 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5337 /* No need for an explicit memory barrier here as long as we
5338 * ensure the ordering of writing to the SPQ element
5339 * and updating of the SPQ producer which involves a memory
5340 * read. If the memory read is removed we will have to put a
5341 * full memory barrier there (inside bnx2x_sp_post()).
5343 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5344 o->cids[BNX2X_PRIMARY_CID_INDEX],
5345 U64_HI(data_mapping),
5346 U64_LO(data_mapping), type);
5349 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5350 struct bnx2x_queue_state_params *params)
5352 struct bnx2x_queue_sp_obj *o = params->q_obj;
5354 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5355 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5356 ETH_CONNECTION_TYPE);
5359 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5360 struct bnx2x_queue_state_params *params)
5362 struct bnx2x_queue_sp_obj *o = params->q_obj;
5363 u8 cid_idx = params->params.cfc_del.cid_index;
5365 if (cid_idx >= o->max_cos) {
5366 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5367 o->cl_id, cid_idx);
5368 return -EINVAL;
5371 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5372 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5375 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5376 struct bnx2x_queue_state_params *params)
5378 struct bnx2x_queue_sp_obj *o = params->q_obj;
5379 u8 cid_index = params->params.terminate.cid_index;
5381 if (cid_index >= o->max_cos) {
5382 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5383 o->cl_id, cid_index);
5384 return -EINVAL;
5387 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5388 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5391 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5392 struct bnx2x_queue_state_params *params)
5394 struct bnx2x_queue_sp_obj *o = params->q_obj;
5396 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5397 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5398 ETH_CONNECTION_TYPE);
5401 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5402 struct bnx2x_queue_state_params *params)
5404 switch (params->cmd) {
5405 case BNX2X_Q_CMD_INIT:
5406 return bnx2x_q_init(bp, params);
5407 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5408 return bnx2x_q_send_setup_tx_only(bp, params);
5409 case BNX2X_Q_CMD_DEACTIVATE:
5410 return bnx2x_q_send_deactivate(bp, params);
5411 case BNX2X_Q_CMD_ACTIVATE:
5412 return bnx2x_q_send_activate(bp, params);
5413 case BNX2X_Q_CMD_UPDATE:
5414 return bnx2x_q_send_update(bp, params);
5415 case BNX2X_Q_CMD_UPDATE_TPA:
5416 return bnx2x_q_send_update_tpa(bp, params);
5417 case BNX2X_Q_CMD_HALT:
5418 return bnx2x_q_send_halt(bp, params);
5419 case BNX2X_Q_CMD_CFC_DEL:
5420 return bnx2x_q_send_cfc_del(bp, params);
5421 case BNX2X_Q_CMD_TERMINATE:
5422 return bnx2x_q_send_terminate(bp, params);
5423 case BNX2X_Q_CMD_EMPTY:
5424 return bnx2x_q_send_empty(bp, params);
5425 default:
5426 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5427 return -EINVAL;
5431 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5432 struct bnx2x_queue_state_params *params)
5434 switch (params->cmd) {
5435 case BNX2X_Q_CMD_SETUP:
5436 return bnx2x_q_send_setup_e1x(bp, params);
5437 case BNX2X_Q_CMD_INIT:
5438 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5439 case BNX2X_Q_CMD_DEACTIVATE:
5440 case BNX2X_Q_CMD_ACTIVATE:
5441 case BNX2X_Q_CMD_UPDATE:
5442 case BNX2X_Q_CMD_UPDATE_TPA:
5443 case BNX2X_Q_CMD_HALT:
5444 case BNX2X_Q_CMD_CFC_DEL:
5445 case BNX2X_Q_CMD_TERMINATE:
5446 case BNX2X_Q_CMD_EMPTY:
5447 return bnx2x_queue_send_cmd_cmn(bp, params);
5448 default:
5449 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5450 return -EINVAL;
5454 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5455 struct bnx2x_queue_state_params *params)
5457 switch (params->cmd) {
5458 case BNX2X_Q_CMD_SETUP:
5459 return bnx2x_q_send_setup_e2(bp, params);
5460 case BNX2X_Q_CMD_INIT:
5461 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5462 case BNX2X_Q_CMD_DEACTIVATE:
5463 case BNX2X_Q_CMD_ACTIVATE:
5464 case BNX2X_Q_CMD_UPDATE:
5465 case BNX2X_Q_CMD_UPDATE_TPA:
5466 case BNX2X_Q_CMD_HALT:
5467 case BNX2X_Q_CMD_CFC_DEL:
5468 case BNX2X_Q_CMD_TERMINATE:
5469 case BNX2X_Q_CMD_EMPTY:
5470 return bnx2x_queue_send_cmd_cmn(bp, params);
5471 default:
5472 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5473 return -EINVAL;
5478 * bnx2x_queue_chk_transition - check state machine of a regular Queue
5480 * @bp: device handle
5481 * @o:
5482 * @params:
5484 * (not Forwarding)
5485 * It both checks if the requested command is legal in a current
5486 * state and, if it's legal, sets a `next_state' in the object
5487 * that will be used in the completion flow to set the `state'
5488 * of the object.
5490 * returns 0 if a requested command is a legal transition,
5491 * -EINVAL otherwise.
5493 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5494 struct bnx2x_queue_sp_obj *o,
5495 struct bnx2x_queue_state_params *params)
5497 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5498 enum bnx2x_queue_cmd cmd = params->cmd;
5499 struct bnx2x_queue_update_params *update_params =
5500 &params->params.update;
5501 u8 next_tx_only = o->num_tx_only;
5503 /* Forget all pending for completion commands if a driver only state
5504 * transition has been requested.
5506 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5507 o->pending = 0;
5508 o->next_state = BNX2X_Q_STATE_MAX;
5511 /* Don't allow a next state transition if we are in the middle of
5512 * the previous one.
5514 if (o->pending) {
5515 BNX2X_ERR("Blocking transition since pending was %lx\n",
5516 o->pending);
5517 return -EBUSY;
5520 switch (state) {
5521 case BNX2X_Q_STATE_RESET:
5522 if (cmd == BNX2X_Q_CMD_INIT)
5523 next_state = BNX2X_Q_STATE_INITIALIZED;
5525 break;
5526 case BNX2X_Q_STATE_INITIALIZED:
5527 if (cmd == BNX2X_Q_CMD_SETUP) {
5528 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5529 &params->params.setup.flags))
5530 next_state = BNX2X_Q_STATE_ACTIVE;
5531 else
5532 next_state = BNX2X_Q_STATE_INACTIVE;
5535 break;
5536 case BNX2X_Q_STATE_ACTIVE:
5537 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5538 next_state = BNX2X_Q_STATE_INACTIVE;
5540 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5541 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5542 next_state = BNX2X_Q_STATE_ACTIVE;
5544 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5545 next_state = BNX2X_Q_STATE_MULTI_COS;
5546 next_tx_only = 1;
5549 else if (cmd == BNX2X_Q_CMD_HALT)
5550 next_state = BNX2X_Q_STATE_STOPPED;
5552 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5553 /* If "active" state change is requested, update the
5554 * state accordingly.
5556 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5557 &update_params->update_flags) &&
5558 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5559 &update_params->update_flags))
5560 next_state = BNX2X_Q_STATE_INACTIVE;
5561 else
5562 next_state = BNX2X_Q_STATE_ACTIVE;
5565 break;
5566 case BNX2X_Q_STATE_MULTI_COS:
5567 if (cmd == BNX2X_Q_CMD_TERMINATE)
5568 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5570 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5571 next_state = BNX2X_Q_STATE_MULTI_COS;
5572 next_tx_only = o->num_tx_only + 1;
5575 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5576 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5577 next_state = BNX2X_Q_STATE_MULTI_COS;
5579 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5580 /* If "active" state change is requested, update the
5581 * state accordingly.
5583 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5584 &update_params->update_flags) &&
5585 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5586 &update_params->update_flags))
5587 next_state = BNX2X_Q_STATE_INACTIVE;
5588 else
5589 next_state = BNX2X_Q_STATE_MULTI_COS;
5592 break;
5593 case BNX2X_Q_STATE_MCOS_TERMINATED:
5594 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5595 next_tx_only = o->num_tx_only - 1;
5596 if (next_tx_only == 0)
5597 next_state = BNX2X_Q_STATE_ACTIVE;
5598 else
5599 next_state = BNX2X_Q_STATE_MULTI_COS;
5602 break;
5603 case BNX2X_Q_STATE_INACTIVE:
5604 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5605 next_state = BNX2X_Q_STATE_ACTIVE;
5607 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5608 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5609 next_state = BNX2X_Q_STATE_INACTIVE;
5611 else if (cmd == BNX2X_Q_CMD_HALT)
5612 next_state = BNX2X_Q_STATE_STOPPED;
5614 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5615 /* If "active" state change is requested, update the
5616 * state accordingly.
5618 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5619 &update_params->update_flags) &&
5620 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5621 &update_params->update_flags)){
5622 if (o->num_tx_only == 0)
5623 next_state = BNX2X_Q_STATE_ACTIVE;
5624 else /* tx only queues exist for this queue */
5625 next_state = BNX2X_Q_STATE_MULTI_COS;
5626 } else
5627 next_state = BNX2X_Q_STATE_INACTIVE;
5630 break;
5631 case BNX2X_Q_STATE_STOPPED:
5632 if (cmd == BNX2X_Q_CMD_TERMINATE)
5633 next_state = BNX2X_Q_STATE_TERMINATED;
5635 break;
5636 case BNX2X_Q_STATE_TERMINATED:
5637 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5638 next_state = BNX2X_Q_STATE_RESET;
5640 break;
5641 default:
5642 BNX2X_ERR("Illegal state: %d\n", state);
5645 /* Transition is assured */
5646 if (next_state != BNX2X_Q_STATE_MAX) {
5647 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5648 state, cmd, next_state);
5649 o->next_state = next_state;
5650 o->next_tx_only = next_tx_only;
5651 return 0;
5654 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5656 return -EINVAL;
5659 void bnx2x_init_queue_obj(struct bnx2x *bp,
5660 struct bnx2x_queue_sp_obj *obj,
5661 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5662 void *rdata,
5663 dma_addr_t rdata_mapping, unsigned long type)
5665 memset(obj, 0, sizeof(*obj));
5667 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5668 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5670 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5671 obj->max_cos = cid_cnt;
5672 obj->cl_id = cl_id;
5673 obj->func_id = func_id;
5674 obj->rdata = rdata;
5675 obj->rdata_mapping = rdata_mapping;
5676 obj->type = type;
5677 obj->next_state = BNX2X_Q_STATE_MAX;
5679 if (CHIP_IS_E1x(bp))
5680 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5681 else
5682 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5684 obj->check_transition = bnx2x_queue_chk_transition;
5686 obj->complete_cmd = bnx2x_queue_comp_cmd;
5687 obj->wait_comp = bnx2x_queue_wait_comp;
5688 obj->set_pending = bnx2x_queue_set_pending;
5691 /* return a queue object's logical state*/
5692 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5693 struct bnx2x_queue_sp_obj *obj)
5695 switch (obj->state) {
5696 case BNX2X_Q_STATE_ACTIVE:
5697 case BNX2X_Q_STATE_MULTI_COS:
5698 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5699 case BNX2X_Q_STATE_RESET:
5700 case BNX2X_Q_STATE_INITIALIZED:
5701 case BNX2X_Q_STATE_MCOS_TERMINATED:
5702 case BNX2X_Q_STATE_INACTIVE:
5703 case BNX2X_Q_STATE_STOPPED:
5704 case BNX2X_Q_STATE_TERMINATED:
5705 case BNX2X_Q_STATE_FLRED:
5706 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5707 default:
5708 return -EINVAL;
5712 /********************** Function state object *********************************/
5713 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5714 struct bnx2x_func_sp_obj *o)
5716 /* in the middle of transaction - return INVALID state */
5717 if (o->pending)
5718 return BNX2X_F_STATE_MAX;
5720 /* unsure the order of reading of o->pending and o->state
5721 * o->pending should be read first
5723 rmb();
5725 return o->state;
5728 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5729 struct bnx2x_func_sp_obj *o,
5730 enum bnx2x_func_cmd cmd)
5732 return bnx2x_state_wait(bp, cmd, &o->pending);
5736 * bnx2x_func_state_change_comp - complete the state machine transition
5738 * @bp: device handle
5739 * @o:
5740 * @cmd:
5742 * Called on state change transition. Completes the state
5743 * machine transition only - no HW interaction.
5745 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5746 struct bnx2x_func_sp_obj *o,
5747 enum bnx2x_func_cmd cmd)
5749 unsigned long cur_pending = o->pending;
5751 if (!test_and_clear_bit(cmd, &cur_pending)) {
5752 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5753 cmd, BP_FUNC(bp), o->state,
5754 cur_pending, o->next_state);
5755 return -EINVAL;
5758 DP(BNX2X_MSG_SP,
5759 "Completing command %d for func %d, setting state to %d\n",
5760 cmd, BP_FUNC(bp), o->next_state);
5762 o->state = o->next_state;
5763 o->next_state = BNX2X_F_STATE_MAX;
5765 /* It's important that o->state and o->next_state are
5766 * updated before o->pending.
5768 wmb();
5770 clear_bit(cmd, &o->pending);
5771 smp_mb__after_atomic();
5773 return 0;
5777 * bnx2x_func_comp_cmd - complete the state change command
5779 * @bp: device handle
5780 * @o:
5781 * @cmd:
5783 * Checks that the arrived completion is expected.
5785 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5786 struct bnx2x_func_sp_obj *o,
5787 enum bnx2x_func_cmd cmd)
5789 /* Complete the state machine part first, check if it's a
5790 * legal completion.
5792 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5793 return rc;
5797 * bnx2x_func_chk_transition - perform function state machine transition
5799 * @bp: device handle
5800 * @o:
5801 * @params:
5803 * It both checks if the requested command is legal in a current
5804 * state and, if it's legal, sets a `next_state' in the object
5805 * that will be used in the completion flow to set the `state'
5806 * of the object.
5808 * returns 0 if a requested command is a legal transition,
5809 * -EINVAL otherwise.
5811 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5812 struct bnx2x_func_sp_obj *o,
5813 struct bnx2x_func_state_params *params)
5815 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5816 enum bnx2x_func_cmd cmd = params->cmd;
5818 /* Forget all pending for completion commands if a driver only state
5819 * transition has been requested.
5821 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5822 o->pending = 0;
5823 o->next_state = BNX2X_F_STATE_MAX;
5826 /* Don't allow a next state transition if we are in the middle of
5827 * the previous one.
5829 if (o->pending)
5830 return -EBUSY;
5832 switch (state) {
5833 case BNX2X_F_STATE_RESET:
5834 if (cmd == BNX2X_F_CMD_HW_INIT)
5835 next_state = BNX2X_F_STATE_INITIALIZED;
5837 break;
5838 case BNX2X_F_STATE_INITIALIZED:
5839 if (cmd == BNX2X_F_CMD_START)
5840 next_state = BNX2X_F_STATE_STARTED;
5842 else if (cmd == BNX2X_F_CMD_HW_RESET)
5843 next_state = BNX2X_F_STATE_RESET;
5845 break;
5846 case BNX2X_F_STATE_STARTED:
5847 if (cmd == BNX2X_F_CMD_STOP)
5848 next_state = BNX2X_F_STATE_INITIALIZED;
5849 /* afex ramrods can be sent only in started mode, and only
5850 * if not pending for function_stop ramrod completion
5851 * for these events - next state remained STARTED.
5853 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5854 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5855 next_state = BNX2X_F_STATE_STARTED;
5857 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5858 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5859 next_state = BNX2X_F_STATE_STARTED;
5861 /* Switch_update ramrod can be sent in either started or
5862 * tx_stopped state, and it doesn't change the state.
5864 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5865 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5866 next_state = BNX2X_F_STATE_STARTED;
5868 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5869 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5870 next_state = BNX2X_F_STATE_STARTED;
5872 else if (cmd == BNX2X_F_CMD_TX_STOP)
5873 next_state = BNX2X_F_STATE_TX_STOPPED;
5875 break;
5876 case BNX2X_F_STATE_TX_STOPPED:
5877 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5878 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5879 next_state = BNX2X_F_STATE_TX_STOPPED;
5881 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5882 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5883 next_state = BNX2X_F_STATE_TX_STOPPED;
5885 else if (cmd == BNX2X_F_CMD_TX_START)
5886 next_state = BNX2X_F_STATE_STARTED;
5888 break;
5889 default:
5890 BNX2X_ERR("Unknown state: %d\n", state);
5893 /* Transition is assured */
5894 if (next_state != BNX2X_F_STATE_MAX) {
5895 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5896 state, cmd, next_state);
5897 o->next_state = next_state;
5898 return 0;
5901 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5902 state, cmd);
5904 return -EINVAL;
5908 * bnx2x_func_init_func - performs HW init at function stage
5910 * @bp: device handle
5911 * @drv:
5913 * Init HW when the current phase is
5914 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5915 * HW blocks.
5917 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5918 const struct bnx2x_func_sp_drv_ops *drv)
5920 return drv->init_hw_func(bp);
5924 * bnx2x_func_init_port - performs HW init at port stage
5926 * @bp: device handle
5927 * @drv:
5929 * Init HW when the current phase is
5930 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5931 * FUNCTION-only HW blocks.
5934 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5935 const struct bnx2x_func_sp_drv_ops *drv)
5937 int rc = drv->init_hw_port(bp);
5938 if (rc)
5939 return rc;
5941 return bnx2x_func_init_func(bp, drv);
5945 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5947 * @bp: device handle
5948 * @drv:
5950 * Init HW when the current phase is
5951 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5952 * PORT-only and FUNCTION-only HW blocks.
5954 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5955 const struct bnx2x_func_sp_drv_ops *drv)
5957 int rc = drv->init_hw_cmn_chip(bp);
5958 if (rc)
5959 return rc;
5961 return bnx2x_func_init_port(bp, drv);
5965 * bnx2x_func_init_cmn - performs HW init at common stage
5967 * @bp: device handle
5968 * @drv:
5970 * Init HW when the current phase is
5971 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5972 * PORT-only and FUNCTION-only HW blocks.
5974 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5975 const struct bnx2x_func_sp_drv_ops *drv)
5977 int rc = drv->init_hw_cmn(bp);
5978 if (rc)
5979 return rc;
5981 return bnx2x_func_init_port(bp, drv);
5984 static int bnx2x_func_hw_init(struct bnx2x *bp,
5985 struct bnx2x_func_state_params *params)
5987 u32 load_code = params->params.hw_init.load_phase;
5988 struct bnx2x_func_sp_obj *o = params->f_obj;
5989 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5990 int rc = 0;
5992 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5993 BP_ABS_FUNC(bp), load_code);
5995 /* Prepare buffers for unzipping the FW */
5996 rc = drv->gunzip_init(bp);
5997 if (rc)
5998 return rc;
6000 /* Prepare FW */
6001 rc = drv->init_fw(bp);
6002 if (rc) {
6003 BNX2X_ERR("Error loading firmware\n");
6004 goto init_err;
6007 /* Handle the beginning of COMMON_XXX pases separately... */
6008 switch (load_code) {
6009 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6010 rc = bnx2x_func_init_cmn_chip(bp, drv);
6011 if (rc)
6012 goto init_err;
6014 break;
6015 case FW_MSG_CODE_DRV_LOAD_COMMON:
6016 rc = bnx2x_func_init_cmn(bp, drv);
6017 if (rc)
6018 goto init_err;
6020 break;
6021 case FW_MSG_CODE_DRV_LOAD_PORT:
6022 rc = bnx2x_func_init_port(bp, drv);
6023 if (rc)
6024 goto init_err;
6026 break;
6027 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6028 rc = bnx2x_func_init_func(bp, drv);
6029 if (rc)
6030 goto init_err;
6032 break;
6033 default:
6034 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6035 rc = -EINVAL;
6038 init_err:
6039 drv->gunzip_end(bp);
6041 /* In case of success, complete the command immediately: no ramrods
6042 * have been sent.
6044 if (!rc)
6045 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6047 return rc;
6051 * bnx2x_func_reset_func - reset HW at function stage
6053 * @bp: device handle
6054 * @drv:
6056 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6057 * FUNCTION-only HW blocks.
6059 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6060 const struct bnx2x_func_sp_drv_ops *drv)
6062 drv->reset_hw_func(bp);
6066 * bnx2x_func_reset_port - reset HW at port stage
6068 * @bp: device handle
6069 * @drv:
6071 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6072 * FUNCTION-only and PORT-only HW blocks.
6074 * !!!IMPORTANT!!!
6076 * It's important to call reset_port before reset_func() as the last thing
6077 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6078 * makes impossible any DMAE transactions.
6080 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6081 const struct bnx2x_func_sp_drv_ops *drv)
6083 drv->reset_hw_port(bp);
6084 bnx2x_func_reset_func(bp, drv);
6088 * bnx2x_func_reset_cmn - reset HW at common stage
6090 * @bp: device handle
6091 * @drv:
6093 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6094 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6095 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6097 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6098 const struct bnx2x_func_sp_drv_ops *drv)
6100 bnx2x_func_reset_port(bp, drv);
6101 drv->reset_hw_cmn(bp);
6104 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6105 struct bnx2x_func_state_params *params)
6107 u32 reset_phase = params->params.hw_reset.reset_phase;
6108 struct bnx2x_func_sp_obj *o = params->f_obj;
6109 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6111 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
6112 reset_phase);
6114 switch (reset_phase) {
6115 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6116 bnx2x_func_reset_cmn(bp, drv);
6117 break;
6118 case FW_MSG_CODE_DRV_UNLOAD_PORT:
6119 bnx2x_func_reset_port(bp, drv);
6120 break;
6121 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6122 bnx2x_func_reset_func(bp, drv);
6123 break;
6124 default:
6125 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6126 reset_phase);
6127 break;
6130 /* Complete the command immediately: no ramrods have been sent. */
6131 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6133 return 0;
6136 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6137 struct bnx2x_func_state_params *params)
6139 struct bnx2x_func_sp_obj *o = params->f_obj;
6140 struct function_start_data *rdata =
6141 (struct function_start_data *)o->rdata;
6142 dma_addr_t data_mapping = o->rdata_mapping;
6143 struct bnx2x_func_start_params *start_params = &params->params.start;
6145 memset(rdata, 0, sizeof(*rdata));
6147 /* Fill the ramrod data with provided parameters */
6148 rdata->function_mode = (u8)start_params->mf_mode;
6149 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
6150 rdata->path_id = BP_PATH(bp);
6151 rdata->network_cos_mode = start_params->network_cos_mode;
6153 rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port);
6154 rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port);
6155 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6156 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6157 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6158 rdata->inner_rss = start_params->inner_rss;
6160 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6161 if (start_params->class_fail_ethtype) {
6162 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6163 rdata->sd_accept_mf_clss_fail_ethtype =
6164 cpu_to_le16(start_params->class_fail_ethtype);
6167 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6168 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6169 if (start_params->sd_vlan_eth_type)
6170 rdata->sd_vlan_eth_type =
6171 cpu_to_le16(start_params->sd_vlan_eth_type);
6172 else
6173 rdata->sd_vlan_eth_type =
6174 cpu_to_le16(0x8100);
6176 rdata->no_added_tags = start_params->no_added_tags;
6178 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6179 if (rdata->c2s_pri_tt_valid) {
6180 memcpy(rdata->c2s_pri_trans_table.val,
6181 start_params->c2s_pri,
6182 MAX_VLAN_PRIORITIES);
6183 rdata->c2s_pri_default = start_params->c2s_pri_default;
6185 /* No need for an explicit memory barrier here as long we would
6186 * need to ensure the ordering of writing to the SPQ element
6187 * and updating of the SPQ producer which involves a memory
6188 * read and we will have to put a full memory barrier there
6189 * (inside bnx2x_sp_post()).
6192 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6193 U64_HI(data_mapping),
6194 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6197 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6198 struct bnx2x_func_state_params *params)
6200 struct bnx2x_func_sp_obj *o = params->f_obj;
6201 struct function_update_data *rdata =
6202 (struct function_update_data *)o->rdata;
6203 dma_addr_t data_mapping = o->rdata_mapping;
6204 struct bnx2x_func_switch_update_params *switch_update_params =
6205 &params->params.switch_update;
6207 memset(rdata, 0, sizeof(*rdata));
6209 /* Fill the ramrod data with provided parameters */
6210 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6211 &switch_update_params->changes)) {
6212 rdata->tx_switch_suspend_change_flg = 1;
6213 rdata->tx_switch_suspend =
6214 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6215 &switch_update_params->changes);
6218 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6219 &switch_update_params->changes)) {
6220 rdata->sd_vlan_tag_change_flg = 1;
6221 rdata->sd_vlan_tag =
6222 cpu_to_le16(switch_update_params->vlan);
6225 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6226 &switch_update_params->changes)) {
6227 rdata->sd_vlan_eth_type_change_flg = 1;
6228 rdata->sd_vlan_eth_type =
6229 cpu_to_le16(switch_update_params->vlan_eth_type);
6232 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6233 &switch_update_params->changes)) {
6234 rdata->sd_vlan_force_pri_change_flg = 1;
6235 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6236 &switch_update_params->changes))
6237 rdata->sd_vlan_force_pri_flg = 1;
6238 rdata->sd_vlan_force_pri_flg =
6239 switch_update_params->vlan_force_prio;
6242 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6243 &switch_update_params->changes)) {
6244 rdata->update_tunn_cfg_flg = 1;
6245 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6246 &switch_update_params->changes))
6247 rdata->inner_clss_l2gre = 1;
6248 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6249 &switch_update_params->changes))
6250 rdata->inner_clss_vxlan = 1;
6251 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6252 &switch_update_params->changes))
6253 rdata->inner_clss_l2geneve = 1;
6254 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6255 &switch_update_params->changes))
6256 rdata->inner_rss = 1;
6257 rdata->vxlan_dst_port =
6258 cpu_to_le16(switch_update_params->vxlan_dst_port);
6259 rdata->geneve_dst_port =
6260 cpu_to_le16(switch_update_params->geneve_dst_port);
6263 rdata->echo = SWITCH_UPDATE;
6265 /* No need for an explicit memory barrier here as long as we
6266 * ensure the ordering of writing to the SPQ element
6267 * and updating of the SPQ producer which involves a memory
6268 * read. If the memory read is removed we will have to put a
6269 * full memory barrier there (inside bnx2x_sp_post()).
6271 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6272 U64_HI(data_mapping),
6273 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6276 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6277 struct bnx2x_func_state_params *params)
6279 struct bnx2x_func_sp_obj *o = params->f_obj;
6280 struct function_update_data *rdata =
6281 (struct function_update_data *)o->afex_rdata;
6282 dma_addr_t data_mapping = o->afex_rdata_mapping;
6283 struct bnx2x_func_afex_update_params *afex_update_params =
6284 &params->params.afex_update;
6286 memset(rdata, 0, sizeof(*rdata));
6288 /* Fill the ramrod data with provided parameters */
6289 rdata->vif_id_change_flg = 1;
6290 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6291 rdata->afex_default_vlan_change_flg = 1;
6292 rdata->afex_default_vlan =
6293 cpu_to_le16(afex_update_params->afex_default_vlan);
6294 rdata->allowed_priorities_change_flg = 1;
6295 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6296 rdata->echo = AFEX_UPDATE;
6298 /* No need for an explicit memory barrier here as long as we
6299 * ensure the ordering of writing to the SPQ element
6300 * and updating of the SPQ producer which involves a memory
6301 * read. If the memory read is removed we will have to put a
6302 * full memory barrier there (inside bnx2x_sp_post()).
6304 DP(BNX2X_MSG_SP,
6305 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6306 rdata->vif_id,
6307 rdata->afex_default_vlan, rdata->allowed_priorities);
6309 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6310 U64_HI(data_mapping),
6311 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6314 static
6315 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6316 struct bnx2x_func_state_params *params)
6318 struct bnx2x_func_sp_obj *o = params->f_obj;
6319 struct afex_vif_list_ramrod_data *rdata =
6320 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6321 struct bnx2x_func_afex_viflists_params *afex_vif_params =
6322 &params->params.afex_viflists;
6323 u64 *p_rdata = (u64 *)rdata;
6325 memset(rdata, 0, sizeof(*rdata));
6327 /* Fill the ramrod data with provided parameters */
6328 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6329 rdata->func_bit_map = afex_vif_params->func_bit_map;
6330 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6331 rdata->func_to_clear = afex_vif_params->func_to_clear;
6333 /* send in echo type of sub command */
6334 rdata->echo = afex_vif_params->afex_vif_list_command;
6336 /* No need for an explicit memory barrier here as long we would
6337 * need to ensure the ordering of writing to the SPQ element
6338 * and updating of the SPQ producer which involves a memory
6339 * read and we will have to put a full memory barrier there
6340 * (inside bnx2x_sp_post()).
6343 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6344 rdata->afex_vif_list_command, rdata->vif_list_index,
6345 rdata->func_bit_map, rdata->func_to_clear);
6347 /* this ramrod sends data directly and not through DMA mapping */
6348 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6349 U64_HI(*p_rdata), U64_LO(*p_rdata),
6350 NONE_CONNECTION_TYPE);
6353 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6354 struct bnx2x_func_state_params *params)
6356 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6357 NONE_CONNECTION_TYPE);
6360 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6361 struct bnx2x_func_state_params *params)
6363 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6364 NONE_CONNECTION_TYPE);
6366 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6367 struct bnx2x_func_state_params *params)
6369 struct bnx2x_func_sp_obj *o = params->f_obj;
6370 struct flow_control_configuration *rdata =
6371 (struct flow_control_configuration *)o->rdata;
6372 dma_addr_t data_mapping = o->rdata_mapping;
6373 struct bnx2x_func_tx_start_params *tx_start_params =
6374 &params->params.tx_start;
6375 int i;
6377 memset(rdata, 0, sizeof(*rdata));
6379 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6380 rdata->dcb_version = tx_start_params->dcb_version;
6381 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6383 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6384 rdata->traffic_type_to_priority_cos[i] =
6385 tx_start_params->traffic_type_to_priority_cos[i];
6387 for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6388 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6389 /* No need for an explicit memory barrier here as long as we
6390 * ensure the ordering of writing to the SPQ element
6391 * and updating of the SPQ producer which involves a memory
6392 * read. If the memory read is removed we will have to put a
6393 * full memory barrier there (inside bnx2x_sp_post()).
6395 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6396 U64_HI(data_mapping),
6397 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6400 static inline
6401 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6402 struct bnx2x_func_state_params *params)
6404 struct bnx2x_func_sp_obj *o = params->f_obj;
6405 struct set_timesync_ramrod_data *rdata =
6406 (struct set_timesync_ramrod_data *)o->rdata;
6407 dma_addr_t data_mapping = o->rdata_mapping;
6408 struct bnx2x_func_set_timesync_params *set_timesync_params =
6409 &params->params.set_timesync;
6411 memset(rdata, 0, sizeof(*rdata));
6413 /* Fill the ramrod data with provided parameters */
6414 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6415 rdata->offset_cmd = set_timesync_params->offset_cmd;
6416 rdata->add_sub_drift_adjust_value =
6417 set_timesync_params->add_sub_drift_adjust_value;
6418 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6419 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6420 rdata->offset_delta.lo =
6421 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6422 rdata->offset_delta.hi =
6423 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6425 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6426 rdata->drift_adjust_cmd, rdata->offset_cmd,
6427 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6428 rdata->drift_adjust_period, rdata->offset_delta.lo,
6429 rdata->offset_delta.hi);
6431 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6432 U64_HI(data_mapping),
6433 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6436 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6437 struct bnx2x_func_state_params *params)
6439 switch (params->cmd) {
6440 case BNX2X_F_CMD_HW_INIT:
6441 return bnx2x_func_hw_init(bp, params);
6442 case BNX2X_F_CMD_START:
6443 return bnx2x_func_send_start(bp, params);
6444 case BNX2X_F_CMD_STOP:
6445 return bnx2x_func_send_stop(bp, params);
6446 case BNX2X_F_CMD_HW_RESET:
6447 return bnx2x_func_hw_reset(bp, params);
6448 case BNX2X_F_CMD_AFEX_UPDATE:
6449 return bnx2x_func_send_afex_update(bp, params);
6450 case BNX2X_F_CMD_AFEX_VIFLISTS:
6451 return bnx2x_func_send_afex_viflists(bp, params);
6452 case BNX2X_F_CMD_TX_STOP:
6453 return bnx2x_func_send_tx_stop(bp, params);
6454 case BNX2X_F_CMD_TX_START:
6455 return bnx2x_func_send_tx_start(bp, params);
6456 case BNX2X_F_CMD_SWITCH_UPDATE:
6457 return bnx2x_func_send_switch_update(bp, params);
6458 case BNX2X_F_CMD_SET_TIMESYNC:
6459 return bnx2x_func_send_set_timesync(bp, params);
6460 default:
6461 BNX2X_ERR("Unknown command: %d\n", params->cmd);
6462 return -EINVAL;
6466 void bnx2x_init_func_obj(struct bnx2x *bp,
6467 struct bnx2x_func_sp_obj *obj,
6468 void *rdata, dma_addr_t rdata_mapping,
6469 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6470 struct bnx2x_func_sp_drv_ops *drv_iface)
6472 memset(obj, 0, sizeof(*obj));
6474 mutex_init(&obj->one_pending_mutex);
6476 obj->rdata = rdata;
6477 obj->rdata_mapping = rdata_mapping;
6478 obj->afex_rdata = afex_rdata;
6479 obj->afex_rdata_mapping = afex_rdata_mapping;
6480 obj->send_cmd = bnx2x_func_send_cmd;
6481 obj->check_transition = bnx2x_func_chk_transition;
6482 obj->complete_cmd = bnx2x_func_comp_cmd;
6483 obj->wait_comp = bnx2x_func_wait_comp;
6485 obj->drv = drv_iface;
6489 * bnx2x_func_state_change - perform Function state change transition
6491 * @bp: device handle
6492 * @params: parameters to perform the transaction
6494 * returns 0 in case of successfully completed transition,
6495 * negative error code in case of failure, positive
6496 * (EBUSY) value if there is a completion to that is
6497 * still pending (possible only if RAMROD_COMP_WAIT is
6498 * not set in params->ramrod_flags for asynchronous
6499 * commands).
6501 int bnx2x_func_state_change(struct bnx2x *bp,
6502 struct bnx2x_func_state_params *params)
6504 struct bnx2x_func_sp_obj *o = params->f_obj;
6505 int rc, cnt = 300;
6506 enum bnx2x_func_cmd cmd = params->cmd;
6507 unsigned long *pending = &o->pending;
6509 mutex_lock(&o->one_pending_mutex);
6511 /* Check that the requested transition is legal */
6512 rc = o->check_transition(bp, o, params);
6513 if ((rc == -EBUSY) &&
6514 (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6515 while ((rc == -EBUSY) && (--cnt > 0)) {
6516 mutex_unlock(&o->one_pending_mutex);
6517 msleep(10);
6518 mutex_lock(&o->one_pending_mutex);
6519 rc = o->check_transition(bp, o, params);
6521 if (rc == -EBUSY) {
6522 mutex_unlock(&o->one_pending_mutex);
6523 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6524 return rc;
6526 } else if (rc) {
6527 mutex_unlock(&o->one_pending_mutex);
6528 return rc;
6531 /* Set "pending" bit */
6532 set_bit(cmd, pending);
6534 /* Don't send a command if only driver cleanup was requested */
6535 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6536 bnx2x_func_state_change_comp(bp, o, cmd);
6537 mutex_unlock(&o->one_pending_mutex);
6538 } else {
6539 /* Send a ramrod */
6540 rc = o->send_cmd(bp, params);
6542 mutex_unlock(&o->one_pending_mutex);
6544 if (rc) {
6545 o->next_state = BNX2X_F_STATE_MAX;
6546 clear_bit(cmd, pending);
6547 smp_mb__after_atomic();
6548 return rc;
6551 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6552 rc = o->wait_comp(bp, o, cmd);
6553 if (rc)
6554 return rc;
6556 return 0;
6560 return !!test_bit(cmd, pending);