2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION
);
77 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
78 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
81 static int debug
= -1; /* defaults above */
82 module_param(debug
, int, 0);
83 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
85 static const struct pci_device_id skge_id_table
[] = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
102 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
104 static int skge_up(struct net_device
*dev
);
105 static int skge_down(struct net_device
*dev
);
106 static void skge_phy_reset(struct skge_port
*skge
);
107 static void skge_tx_clean(struct net_device
*dev
);
108 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
109 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
110 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
111 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
112 static void yukon_init(struct skge_hw
*hw
, int port
);
113 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
114 static void genesis_link_up(struct skge_port
*skge
);
115 static void skge_set_multicast(struct net_device
*dev
);
116 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
118 /* Avoid conditionals by using array */
119 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
120 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
121 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
122 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
123 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
124 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
126 static inline bool is_genesis(const struct skge_hw
*hw
)
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw
->chip_id
== CHIP_ID_GENESIS
;
135 static int skge_get_regs_len(struct net_device
*dev
)
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
145 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
148 const struct skge_port
*skge
= netdev_priv(dev
);
149 const void __iomem
*io
= skge
->hw
->regs
;
152 memset(p
, 0, regs
->len
);
153 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
155 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
156 regs
->len
- B3_RI_WTO_R1
);
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32
wol_supported(const struct skge_hw
*hw
)
165 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
168 return WAKE_MAGIC
| WAKE_PHY
;
171 static void skge_wol_init(struct skge_port
*skge
)
173 struct skge_hw
*hw
= skge
->hw
;
174 int port
= skge
->port
;
177 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
178 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
181 skge_write8(hw
, B0_POWER_CTRL
,
182 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
184 /* WA code for COMA mode -- clear PHY reset */
185 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
186 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
187 u32 reg
= skge_read32(hw
, B2_GP_IO
);
190 skge_write32(hw
, B2_GP_IO
, reg
);
193 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
195 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
196 GPC_ANEG_1
| GPC_RST_SET
);
198 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
200 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
201 GPC_ANEG_1
| GPC_RST_CLR
);
203 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
205 /* Force to 10/100 skge_reset will re-enable on resume */
206 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
207 (PHY_AN_100FULL
| PHY_AN_100HALF
|
208 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
210 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
211 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
212 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
213 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
216 /* Set GMAC to no flow control and auto update for speed/duplex */
217 gma_write16(hw
, port
, GM_GP_CTRL
,
218 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
219 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
221 /* Set WOL address */
222 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
223 skge
->netdev
->dev_addr
, ETH_ALEN
);
225 /* Turn on appropriate WOL control bits */
226 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
228 if (skge
->wol
& WAKE_PHY
)
229 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
231 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
233 if (skge
->wol
& WAKE_MAGIC
)
234 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
236 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
238 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
239 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
242 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
245 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
247 struct skge_port
*skge
= netdev_priv(dev
);
249 wol
->supported
= wol_supported(skge
->hw
);
250 wol
->wolopts
= skge
->wol
;
253 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
255 struct skge_port
*skge
= netdev_priv(dev
);
256 struct skge_hw
*hw
= skge
->hw
;
258 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
259 !device_can_wakeup(&hw
->pdev
->dev
))
262 skge
->wol
= wol
->wolopts
;
264 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
269 /* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
272 static u32
skge_supported_modes(const struct skge_hw
*hw
)
277 supported
= (SUPPORTED_10baseT_Half
|
278 SUPPORTED_10baseT_Full
|
279 SUPPORTED_100baseT_Half
|
280 SUPPORTED_100baseT_Full
|
281 SUPPORTED_1000baseT_Half
|
282 SUPPORTED_1000baseT_Full
|
287 supported
&= ~(SUPPORTED_10baseT_Half
|
288 SUPPORTED_10baseT_Full
|
289 SUPPORTED_100baseT_Half
|
290 SUPPORTED_100baseT_Full
);
292 else if (hw
->chip_id
== CHIP_ID_YUKON
)
293 supported
&= ~SUPPORTED_1000baseT_Half
;
295 supported
= (SUPPORTED_1000baseT_Full
|
296 SUPPORTED_1000baseT_Half
|
303 static int skge_get_link_ksettings(struct net_device
*dev
,
304 struct ethtool_link_ksettings
*cmd
)
306 struct skge_port
*skge
= netdev_priv(dev
);
307 struct skge_hw
*hw
= skge
->hw
;
308 u32 supported
, advertising
;
310 supported
= skge_supported_modes(hw
);
313 cmd
->base
.port
= PORT_TP
;
314 cmd
->base
.phy_address
= hw
->phy_addr
;
316 cmd
->base
.port
= PORT_FIBRE
;
318 advertising
= skge
->advertising
;
319 cmd
->base
.autoneg
= skge
->autoneg
;
320 cmd
->base
.speed
= skge
->speed
;
321 cmd
->base
.duplex
= skge
->duplex
;
323 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
325 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
331 static int skge_set_link_ksettings(struct net_device
*dev
,
332 const struct ethtool_link_ksettings
*cmd
)
334 struct skge_port
*skge
= netdev_priv(dev
);
335 const struct skge_hw
*hw
= skge
->hw
;
336 u32 supported
= skge_supported_modes(hw
);
340 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
341 cmd
->link_modes
.advertising
);
343 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
344 advertising
= supported
;
349 u32 speed
= cmd
->base
.speed
;
353 if (cmd
->base
.duplex
== DUPLEX_FULL
)
354 setting
= SUPPORTED_1000baseT_Full
;
355 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
356 setting
= SUPPORTED_1000baseT_Half
;
361 if (cmd
->base
.duplex
== DUPLEX_FULL
)
362 setting
= SUPPORTED_100baseT_Full
;
363 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
364 setting
= SUPPORTED_100baseT_Half
;
370 if (cmd
->base
.duplex
== DUPLEX_FULL
)
371 setting
= SUPPORTED_10baseT_Full
;
372 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
373 setting
= SUPPORTED_10baseT_Half
;
381 if ((setting
& supported
) == 0)
385 skge
->duplex
= cmd
->base
.duplex
;
388 skge
->autoneg
= cmd
->base
.autoneg
;
389 skge
->advertising
= advertising
;
391 if (netif_running(dev
)) {
403 static void skge_get_drvinfo(struct net_device
*dev
,
404 struct ethtool_drvinfo
*info
)
406 struct skge_port
*skge
= netdev_priv(dev
);
408 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
409 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
410 strlcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
),
411 sizeof(info
->bus_info
));
414 static const struct skge_stat
{
415 char name
[ETH_GSTRING_LEN
];
419 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
420 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
422 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
423 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
424 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
425 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
426 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
427 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
428 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
429 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
431 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
432 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
433 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
434 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
435 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
436 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
438 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
439 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
440 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
441 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
442 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
445 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
449 return ARRAY_SIZE(skge_stats
);
455 static void skge_get_ethtool_stats(struct net_device
*dev
,
456 struct ethtool_stats
*stats
, u64
*data
)
458 struct skge_port
*skge
= netdev_priv(dev
);
460 if (is_genesis(skge
->hw
))
461 genesis_get_stats(skge
, data
);
463 yukon_get_stats(skge
, data
);
466 /* Use hardware MIB variables for critical path statistics and
467 * transmit feedback not reported at interrupt.
468 * Other errors are accounted for in interrupt handler.
470 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
472 struct skge_port
*skge
= netdev_priv(dev
);
473 u64 data
[ARRAY_SIZE(skge_stats
)];
475 if (is_genesis(skge
->hw
))
476 genesis_get_stats(skge
, data
);
478 yukon_get_stats(skge
, data
);
480 dev
->stats
.tx_bytes
= data
[0];
481 dev
->stats
.rx_bytes
= data
[1];
482 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
483 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
484 dev
->stats
.multicast
= data
[3] + data
[5];
485 dev
->stats
.collisions
= data
[10];
486 dev
->stats
.tx_aborted_errors
= data
[12];
491 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
497 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
498 memcpy(data
+ i
* ETH_GSTRING_LEN
,
499 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
504 static void skge_get_ring_param(struct net_device
*dev
,
505 struct ethtool_ringparam
*p
)
507 struct skge_port
*skge
= netdev_priv(dev
);
509 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
510 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
512 p
->rx_pending
= skge
->rx_ring
.count
;
513 p
->tx_pending
= skge
->tx_ring
.count
;
516 static int skge_set_ring_param(struct net_device
*dev
,
517 struct ethtool_ringparam
*p
)
519 struct skge_port
*skge
= netdev_priv(dev
);
522 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
523 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
526 skge
->rx_ring
.count
= p
->rx_pending
;
527 skge
->tx_ring
.count
= p
->tx_pending
;
529 if (netif_running(dev
)) {
539 static u32
skge_get_msglevel(struct net_device
*netdev
)
541 struct skge_port
*skge
= netdev_priv(netdev
);
542 return skge
->msg_enable
;
545 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
547 struct skge_port
*skge
= netdev_priv(netdev
);
548 skge
->msg_enable
= value
;
551 static int skge_nway_reset(struct net_device
*dev
)
553 struct skge_port
*skge
= netdev_priv(dev
);
555 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
558 skge_phy_reset(skge
);
562 static void skge_get_pauseparam(struct net_device
*dev
,
563 struct ethtool_pauseparam
*ecmd
)
565 struct skge_port
*skge
= netdev_priv(dev
);
567 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
568 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
569 ecmd
->tx_pause
= (ecmd
->rx_pause
||
570 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
572 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
575 static int skge_set_pauseparam(struct net_device
*dev
,
576 struct ethtool_pauseparam
*ecmd
)
578 struct skge_port
*skge
= netdev_priv(dev
);
579 struct ethtool_pauseparam old
;
582 skge_get_pauseparam(dev
, &old
);
584 if (ecmd
->autoneg
!= old
.autoneg
)
585 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
587 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
588 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
589 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
590 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
591 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
592 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
594 skge
->flow_control
= FLOW_MODE_NONE
;
597 if (netif_running(dev
)) {
609 /* Chip internal frequency for clock calculations */
610 static inline u32
hwkhz(const struct skge_hw
*hw
)
612 return is_genesis(hw
) ? 53125 : 78125;
615 /* Chip HZ to microseconds */
616 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
618 return (ticks
* 1000) / hwkhz(hw
);
621 /* Microseconds to chip HZ */
622 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
624 return hwkhz(hw
) * usec
/ 1000;
627 static int skge_get_coalesce(struct net_device
*dev
,
628 struct ethtool_coalesce
*ecmd
)
630 struct skge_port
*skge
= netdev_priv(dev
);
631 struct skge_hw
*hw
= skge
->hw
;
632 int port
= skge
->port
;
634 ecmd
->rx_coalesce_usecs
= 0;
635 ecmd
->tx_coalesce_usecs
= 0;
637 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
638 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
639 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
641 if (msk
& rxirqmask
[port
])
642 ecmd
->rx_coalesce_usecs
= delay
;
643 if (msk
& txirqmask
[port
])
644 ecmd
->tx_coalesce_usecs
= delay
;
650 /* Note: interrupt timer is per board, but can turn on/off per port */
651 static int skge_set_coalesce(struct net_device
*dev
,
652 struct ethtool_coalesce
*ecmd
)
654 struct skge_port
*skge
= netdev_priv(dev
);
655 struct skge_hw
*hw
= skge
->hw
;
656 int port
= skge
->port
;
657 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
660 if (ecmd
->rx_coalesce_usecs
== 0)
661 msk
&= ~rxirqmask
[port
];
662 else if (ecmd
->rx_coalesce_usecs
< 25 ||
663 ecmd
->rx_coalesce_usecs
> 33333)
666 msk
|= rxirqmask
[port
];
667 delay
= ecmd
->rx_coalesce_usecs
;
670 if (ecmd
->tx_coalesce_usecs
== 0)
671 msk
&= ~txirqmask
[port
];
672 else if (ecmd
->tx_coalesce_usecs
< 25 ||
673 ecmd
->tx_coalesce_usecs
> 33333)
676 msk
|= txirqmask
[port
];
677 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
680 skge_write32(hw
, B2_IRQM_MSK
, msk
);
682 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
684 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
685 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
690 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
691 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
693 struct skge_hw
*hw
= skge
->hw
;
694 int port
= skge
->port
;
696 spin_lock_bh(&hw
->phy_lock
);
697 if (is_genesis(hw
)) {
700 if (hw
->phy_type
== SK_PHY_BCOM
)
701 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
703 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
704 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
706 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
707 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
708 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
712 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
713 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
715 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
716 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
721 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
722 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
723 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
725 if (hw
->phy_type
== SK_PHY_BCOM
)
726 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
728 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
729 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
730 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
737 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
738 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
739 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
740 PHY_M_LED_MO_10(MO_LED_OFF
) |
741 PHY_M_LED_MO_100(MO_LED_OFF
) |
742 PHY_M_LED_MO_1000(MO_LED_OFF
) |
743 PHY_M_LED_MO_RX(MO_LED_OFF
));
746 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
747 PHY_M_LED_PULS_DUR(PULS_170MS
) |
748 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
752 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
753 PHY_M_LED_MO_RX(MO_LED_OFF
) |
754 (skge
->speed
== SPEED_100
?
755 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
758 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
759 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
760 PHY_M_LED_MO_DUP(MO_LED_ON
) |
761 PHY_M_LED_MO_10(MO_LED_ON
) |
762 PHY_M_LED_MO_100(MO_LED_ON
) |
763 PHY_M_LED_MO_1000(MO_LED_ON
) |
764 PHY_M_LED_MO_RX(MO_LED_ON
));
767 spin_unlock_bh(&hw
->phy_lock
);
770 /* blink LED's for finding board */
771 static int skge_set_phys_id(struct net_device
*dev
,
772 enum ethtool_phys_id_state state
)
774 struct skge_port
*skge
= netdev_priv(dev
);
777 case ETHTOOL_ID_ACTIVE
:
778 return 2; /* cycle on/off twice per second */
781 skge_led(skge
, LED_MODE_TST
);
785 skge_led(skge
, LED_MODE_OFF
);
788 case ETHTOOL_ID_INACTIVE
:
789 /* back to regular LED state */
790 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
796 static int skge_get_eeprom_len(struct net_device
*dev
)
798 struct skge_port
*skge
= netdev_priv(dev
);
801 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
802 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
805 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
809 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
812 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
813 } while (!(offset
& PCI_VPD_ADDR_F
));
815 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
819 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
821 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
822 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
823 offset
| PCI_VPD_ADDR_F
);
826 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
827 } while (offset
& PCI_VPD_ADDR_F
);
830 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
833 struct skge_port
*skge
= netdev_priv(dev
);
834 struct pci_dev
*pdev
= skge
->hw
->pdev
;
835 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
836 int length
= eeprom
->len
;
837 u16 offset
= eeprom
->offset
;
842 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
845 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
846 int n
= min_t(int, length
, sizeof(val
));
848 memcpy(data
, &val
, n
);
856 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
859 struct skge_port
*skge
= netdev_priv(dev
);
860 struct pci_dev
*pdev
= skge
->hw
->pdev
;
861 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
862 int length
= eeprom
->len
;
863 u16 offset
= eeprom
->offset
;
868 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
873 int n
= min_t(int, length
, sizeof(val
));
876 val
= skge_vpd_read(pdev
, cap
, offset
);
877 memcpy(&val
, data
, n
);
879 skge_vpd_write(pdev
, cap
, offset
, val
);
888 static const struct ethtool_ops skge_ethtool_ops
= {
889 .get_drvinfo
= skge_get_drvinfo
,
890 .get_regs_len
= skge_get_regs_len
,
891 .get_regs
= skge_get_regs
,
892 .get_wol
= skge_get_wol
,
893 .set_wol
= skge_set_wol
,
894 .get_msglevel
= skge_get_msglevel
,
895 .set_msglevel
= skge_set_msglevel
,
896 .nway_reset
= skge_nway_reset
,
897 .get_link
= ethtool_op_get_link
,
898 .get_eeprom_len
= skge_get_eeprom_len
,
899 .get_eeprom
= skge_get_eeprom
,
900 .set_eeprom
= skge_set_eeprom
,
901 .get_ringparam
= skge_get_ring_param
,
902 .set_ringparam
= skge_set_ring_param
,
903 .get_pauseparam
= skge_get_pauseparam
,
904 .set_pauseparam
= skge_set_pauseparam
,
905 .get_coalesce
= skge_get_coalesce
,
906 .set_coalesce
= skge_set_coalesce
,
907 .get_strings
= skge_get_strings
,
908 .set_phys_id
= skge_set_phys_id
,
909 .get_sset_count
= skge_get_sset_count
,
910 .get_ethtool_stats
= skge_get_ethtool_stats
,
911 .get_link_ksettings
= skge_get_link_ksettings
,
912 .set_link_ksettings
= skge_set_link_ksettings
,
916 * Allocate ring elements and chain them together
917 * One-to-one association of board descriptors with ring elements
919 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
921 struct skge_tx_desc
*d
;
922 struct skge_element
*e
;
925 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
929 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
931 if (i
== ring
->count
- 1) {
932 e
->next
= ring
->start
;
933 d
->next_offset
= base
;
936 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
939 ring
->to_use
= ring
->to_clean
= ring
->start
;
944 /* Allocate and setup a new buffer for receiving */
945 static int skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
946 struct sk_buff
*skb
, unsigned int bufsize
)
948 struct skge_rx_desc
*rd
= e
->desc
;
951 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
954 if (pci_dma_mapping_error(skge
->hw
->pdev
, map
))
957 rd
->dma_lo
= lower_32_bits(map
);
958 rd
->dma_hi
= upper_32_bits(map
);
960 rd
->csum1_start
= ETH_HLEN
;
961 rd
->csum2_start
= ETH_HLEN
;
967 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
968 dma_unmap_addr_set(e
, mapaddr
, map
);
969 dma_unmap_len_set(e
, maplen
, bufsize
);
973 /* Resume receiving using existing skb,
974 * Note: DMA address is not changed by chip.
975 * MTU not changed while receiver active.
977 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
979 struct skge_rx_desc
*rd
= e
->desc
;
982 rd
->csum2_start
= ETH_HLEN
;
986 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
990 /* Free all buffers in receive ring, assumes receiver stopped */
991 static void skge_rx_clean(struct skge_port
*skge
)
993 struct skge_hw
*hw
= skge
->hw
;
994 struct skge_ring
*ring
= &skge
->rx_ring
;
995 struct skge_element
*e
;
999 struct skge_rx_desc
*rd
= e
->desc
;
1002 pci_unmap_single(hw
->pdev
,
1003 dma_unmap_addr(e
, mapaddr
),
1004 dma_unmap_len(e
, maplen
),
1005 PCI_DMA_FROMDEVICE
);
1006 dev_kfree_skb(e
->skb
);
1009 } while ((e
= e
->next
) != ring
->start
);
1013 /* Allocate buffers for receive ring
1014 * For receive: to_clean is next received frame.
1016 static int skge_rx_fill(struct net_device
*dev
)
1018 struct skge_port
*skge
= netdev_priv(dev
);
1019 struct skge_ring
*ring
= &skge
->rx_ring
;
1020 struct skge_element
*e
;
1024 struct sk_buff
*skb
;
1026 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1031 skb_reserve(skb
, NET_IP_ALIGN
);
1032 if (skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
) < 0) {
1036 } while ((e
= e
->next
) != ring
->start
);
1038 ring
->to_clean
= ring
->start
;
1042 static const char *skge_pause(enum pause_status status
)
1045 case FLOW_STAT_NONE
:
1047 case FLOW_STAT_REM_SEND
:
1049 case FLOW_STAT_LOC_SEND
:
1051 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1054 return "indeterminated";
1059 static void skge_link_up(struct skge_port
*skge
)
1061 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1062 LED_BLK_OFF
|LED_SYNC_OFF
|LED_REG_ON
);
1064 netif_carrier_on(skge
->netdev
);
1065 netif_wake_queue(skge
->netdev
);
1067 netif_info(skge
, link
, skge
->netdev
,
1068 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1070 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1071 skge_pause(skge
->flow_status
));
1074 static void skge_link_down(struct skge_port
*skge
)
1076 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
1077 netif_carrier_off(skge
->netdev
);
1078 netif_stop_queue(skge
->netdev
);
1080 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1083 static void xm_link_down(struct skge_hw
*hw
, int port
)
1085 struct net_device
*dev
= hw
->dev
[port
];
1086 struct skge_port
*skge
= netdev_priv(dev
);
1088 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1090 if (netif_carrier_ok(dev
))
1091 skge_link_down(skge
);
1094 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1098 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1099 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1101 if (hw
->phy_type
== SK_PHY_XMAC
)
1104 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1105 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1112 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1117 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1120 if (__xm_phy_read(hw
, port
, reg
, &v
))
1121 pr_warn("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1125 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1129 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1130 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1131 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1138 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1139 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1140 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1147 static void genesis_init(struct skge_hw
*hw
)
1149 /* set blink source counter */
1150 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1151 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1153 /* configure mac arbiter */
1154 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1156 /* configure mac arbiter timeout values */
1157 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1158 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1159 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1160 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1162 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1163 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1164 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1165 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1167 /* configure packet arbiter timeout */
1168 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1169 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1170 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1171 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1172 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1175 static void genesis_reset(struct skge_hw
*hw
, int port
)
1177 static const u8 zero
[8] = { 0 };
1180 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1182 /* reset the statistics module */
1183 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1184 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1185 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1186 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1187 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1189 /* disable Broadcom PHY IRQ */
1190 if (hw
->phy_type
== SK_PHY_BCOM
)
1191 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1193 xm_outhash(hw
, port
, XM_HSM
, zero
);
1195 /* Flush TX and RX fifo */
1196 reg
= xm_read32(hw
, port
, XM_MODE
);
1197 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1198 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1201 /* Convert mode to MII values */
1202 static const u16 phy_pause_map
[] = {
1203 [FLOW_MODE_NONE
] = 0,
1204 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1205 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1206 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1209 /* special defines for FIBER (88E1011S only) */
1210 static const u16 fiber_pause_map
[] = {
1211 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1212 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1213 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1214 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1218 /* Check status of Broadcom phy link */
1219 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1221 struct net_device
*dev
= hw
->dev
[port
];
1222 struct skge_port
*skge
= netdev_priv(dev
);
1225 /* read twice because of latch */
1226 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1227 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1229 if ((status
& PHY_ST_LSYNC
) == 0) {
1230 xm_link_down(hw
, port
);
1234 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1237 if (!(status
& PHY_ST_AN_OVER
))
1240 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1241 if (lpa
& PHY_B_AN_RF
) {
1242 netdev_notice(dev
, "remote fault\n");
1246 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1248 /* Check Duplex mismatch */
1249 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1250 case PHY_B_RES_1000FD
:
1251 skge
->duplex
= DUPLEX_FULL
;
1253 case PHY_B_RES_1000HD
:
1254 skge
->duplex
= DUPLEX_HALF
;
1257 netdev_notice(dev
, "duplex mismatch\n");
1261 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1262 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1263 case PHY_B_AS_PAUSE_MSK
:
1264 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1267 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1270 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1273 skge
->flow_status
= FLOW_STAT_NONE
;
1275 skge
->speed
= SPEED_1000
;
1278 if (!netif_carrier_ok(dev
))
1279 genesis_link_up(skge
);
1282 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1283 * Phy on for 100 or 10Mbit operation
1285 static void bcom_phy_init(struct skge_port
*skge
)
1287 struct skge_hw
*hw
= skge
->hw
;
1288 int port
= skge
->port
;
1290 u16 id1
, r
, ext
, ctl
;
1292 /* magic workaround patterns for Broadcom */
1293 static const struct {
1297 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1298 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1299 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1300 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1302 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1303 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1306 /* read Id from external PHY (all have the same address) */
1307 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1309 /* Optimize MDIO transfer by suppressing preamble. */
1310 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1312 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1315 case PHY_BCOM_ID1_C0
:
1317 * Workaround BCOM Errata for the C0 type.
1318 * Write magic patterns to reserved registers.
1320 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1321 xm_phy_write(hw
, port
,
1322 C0hack
[i
].reg
, C0hack
[i
].val
);
1325 case PHY_BCOM_ID1_A1
:
1327 * Workaround BCOM Errata for the A1 type.
1328 * Write magic patterns to reserved registers.
1330 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1331 xm_phy_write(hw
, port
,
1332 A1hack
[i
].reg
, A1hack
[i
].val
);
1337 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1338 * Disable Power Management after reset.
1340 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1341 r
|= PHY_B_AC_DIS_PM
;
1342 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1345 xm_read16(hw
, port
, XM_ISRC
);
1347 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1348 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1350 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1352 * Workaround BCOM Errata #1 for the C5 type.
1353 * 1000Base-T Link Acquisition Failure in Slave Mode
1354 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1356 u16 adv
= PHY_B_1000C_RD
;
1357 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1358 adv
|= PHY_B_1000C_AHD
;
1359 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1360 adv
|= PHY_B_1000C_AFD
;
1361 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1363 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1365 if (skge
->duplex
== DUPLEX_FULL
)
1366 ctl
|= PHY_CT_DUP_MD
;
1367 /* Force to slave */
1368 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1371 /* Set autonegotiation pause parameters */
1372 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1373 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1375 /* Handle Jumbo frames */
1376 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1377 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1378 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1380 ext
|= PHY_B_PEC_HIGH_LA
;
1384 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1385 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1387 /* Use link status change interrupt */
1388 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1391 static void xm_phy_init(struct skge_port
*skge
)
1393 struct skge_hw
*hw
= skge
->hw
;
1394 int port
= skge
->port
;
1397 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1398 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1399 ctrl
|= PHY_X_AN_HD
;
1400 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1401 ctrl
|= PHY_X_AN_FD
;
1403 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1405 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1407 /* Restart Auto-negotiation */
1408 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1410 /* Set DuplexMode in Config register */
1411 if (skge
->duplex
== DUPLEX_FULL
)
1412 ctrl
|= PHY_CT_DUP_MD
;
1414 * Do NOT enable Auto-negotiation here. This would hold
1415 * the link down because no IDLEs are transmitted
1419 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1421 /* Poll PHY for status changes */
1422 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1425 static int xm_check_link(struct net_device
*dev
)
1427 struct skge_port
*skge
= netdev_priv(dev
);
1428 struct skge_hw
*hw
= skge
->hw
;
1429 int port
= skge
->port
;
1432 /* read twice because of latch */
1433 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1434 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1436 if ((status
& PHY_ST_LSYNC
) == 0) {
1437 xm_link_down(hw
, port
);
1441 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1444 if (!(status
& PHY_ST_AN_OVER
))
1447 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1448 if (lpa
& PHY_B_AN_RF
) {
1449 netdev_notice(dev
, "remote fault\n");
1453 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1455 /* Check Duplex mismatch */
1456 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1458 skge
->duplex
= DUPLEX_FULL
;
1461 skge
->duplex
= DUPLEX_HALF
;
1464 netdev_notice(dev
, "duplex mismatch\n");
1468 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1469 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1470 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1471 (lpa
& PHY_X_P_SYM_MD
))
1472 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1473 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1474 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1475 /* Enable PAUSE receive, disable PAUSE transmit */
1476 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1477 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1478 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1479 /* Disable PAUSE receive, enable PAUSE transmit */
1480 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1482 skge
->flow_status
= FLOW_STAT_NONE
;
1484 skge
->speed
= SPEED_1000
;
1487 if (!netif_carrier_ok(dev
))
1488 genesis_link_up(skge
);
1492 /* Poll to check for link coming up.
1494 * Since internal PHY is wired to a level triggered pin, can't
1495 * get an interrupt when carrier is detected, need to poll for
1498 static void xm_link_timer(struct timer_list
*t
)
1500 struct skge_port
*skge
= from_timer(skge
, t
, link_timer
);
1501 struct net_device
*dev
= skge
->netdev
;
1502 struct skge_hw
*hw
= skge
->hw
;
1503 int port
= skge
->port
;
1505 unsigned long flags
;
1507 if (!netif_running(dev
))
1510 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1513 * Verify that the link by checking GPIO register three times.
1514 * This pin has the signal from the link_sync pin connected to it.
1516 for (i
= 0; i
< 3; i
++) {
1517 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1521 /* Re-enable interrupt to detect link down */
1522 if (xm_check_link(dev
)) {
1523 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1524 msk
&= ~XM_IS_INP_ASS
;
1525 xm_write16(hw
, port
, XM_IMSK
, msk
);
1526 xm_read16(hw
, port
, XM_ISRC
);
1529 mod_timer(&skge
->link_timer
,
1530 round_jiffies(jiffies
+ LINK_HZ
));
1532 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1535 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1537 struct net_device
*dev
= hw
->dev
[port
];
1538 struct skge_port
*skge
= netdev_priv(dev
);
1539 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1542 static const u8 zero
[6] = { 0 };
1544 for (i
= 0; i
< 10; i
++) {
1545 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1547 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1552 netdev_warn(dev
, "genesis reset failed\n");
1555 /* Unreset the XMAC. */
1556 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1559 * Perform additional initialization for external PHYs,
1560 * namely for the 1000baseTX cards that use the XMAC's
1563 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1564 /* Take external Phy out of reset */
1565 r
= skge_read32(hw
, B2_GP_IO
);
1567 r
|= GP_DIR_0
|GP_IO_0
;
1569 r
|= GP_DIR_2
|GP_IO_2
;
1571 skge_write32(hw
, B2_GP_IO
, r
);
1573 /* Enable GMII interface */
1574 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1578 switch (hw
->phy_type
) {
1583 bcom_phy_init(skge
);
1584 bcom_check_link(hw
, port
);
1587 /* Set Station Address */
1588 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1590 /* We don't use match addresses so clear */
1591 for (i
= 1; i
< 16; i
++)
1592 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1594 /* Clear MIB counters */
1595 xm_write16(hw
, port
, XM_STAT_CMD
,
1596 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1597 /* Clear two times according to Errata #3 */
1598 xm_write16(hw
, port
, XM_STAT_CMD
,
1599 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1601 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1602 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1604 /* We don't need the FCS appended to the packet. */
1605 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1607 r
|= XM_RX_BIG_PK_OK
;
1609 if (skge
->duplex
== DUPLEX_HALF
) {
1611 * If in manual half duplex mode the other side might be in
1612 * full duplex mode, so ignore if a carrier extension is not seen
1613 * on frames received
1615 r
|= XM_RX_DIS_CEXT
;
1617 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1619 /* We want short frames padded to 60 bytes. */
1620 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1622 /* Increase threshold for jumbo frames on dual port */
1623 if (hw
->ports
> 1 && jumbo
)
1624 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1626 xm_write16(hw
, port
, XM_TX_THR
, 512);
1629 * Enable the reception of all error frames. This is is
1630 * a necessary evil due to the design of the XMAC. The
1631 * XMAC's receive FIFO is only 8K in size, however jumbo
1632 * frames can be up to 9000 bytes in length. When bad
1633 * frame filtering is enabled, the XMAC's RX FIFO operates
1634 * in 'store and forward' mode. For this to work, the
1635 * entire frame has to fit into the FIFO, but that means
1636 * that jumbo frames larger than 8192 bytes will be
1637 * truncated. Disabling all bad frame filtering causes
1638 * the RX FIFO to operate in streaming mode, in which
1639 * case the XMAC will start transferring frames out of the
1640 * RX FIFO as soon as the FIFO threshold is reached.
1642 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1646 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1647 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1648 * and 'Octets Rx OK Hi Cnt Ov'.
1650 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1653 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1654 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1655 * and 'Octets Tx OK Hi Cnt Ov'.
1657 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1659 /* Configure MAC arbiter */
1660 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1662 /* configure timeout values */
1663 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1664 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1665 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1666 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1668 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1669 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1670 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1671 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1673 /* Configure Rx MAC FIFO */
1674 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1675 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1676 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1678 /* Configure Tx MAC FIFO */
1679 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1680 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1681 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1684 /* Enable frame flushing if jumbo frames used */
1685 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1687 /* enable timeout timers if normal frames */
1688 skge_write16(hw
, B3_PA_CTRL
,
1689 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1693 static void genesis_stop(struct skge_port
*skge
)
1695 struct skge_hw
*hw
= skge
->hw
;
1696 int port
= skge
->port
;
1697 unsigned retries
= 1000;
1700 /* Disable Tx and Rx */
1701 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1702 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1703 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1705 genesis_reset(hw
, port
);
1707 /* Clear Tx packet arbiter timeout IRQ */
1708 skge_write16(hw
, B3_PA_CTRL
,
1709 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1712 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1714 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1715 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1717 } while (--retries
> 0);
1719 /* For external PHYs there must be special handling */
1720 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1721 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1729 skge_write32(hw
, B2_GP_IO
, reg
);
1730 skge_read32(hw
, B2_GP_IO
);
1733 xm_write16(hw
, port
, XM_MMU_CMD
,
1734 xm_read16(hw
, port
, XM_MMU_CMD
)
1735 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1737 xm_read16(hw
, port
, XM_MMU_CMD
);
1741 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1743 struct skge_hw
*hw
= skge
->hw
;
1744 int port
= skge
->port
;
1746 unsigned long timeout
= jiffies
+ HZ
;
1748 xm_write16(hw
, port
,
1749 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1751 /* wait for update to complete */
1752 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1753 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1754 if (time_after(jiffies
, timeout
))
1759 /* special case for 64 bit octet counter */
1760 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1761 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1762 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1763 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1765 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1766 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1769 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1771 struct net_device
*dev
= hw
->dev
[port
];
1772 struct skge_port
*skge
= netdev_priv(dev
);
1773 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1775 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1776 "mac interrupt status 0x%x\n", status
);
1778 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1779 xm_link_down(hw
, port
);
1780 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1783 if (status
& XM_IS_TXF_UR
) {
1784 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1785 ++dev
->stats
.tx_fifo_errors
;
1789 static void genesis_link_up(struct skge_port
*skge
)
1791 struct skge_hw
*hw
= skge
->hw
;
1792 int port
= skge
->port
;
1796 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1799 * enabling pause frame reception is required for 1000BT
1800 * because the XMAC is not reset if the link is going down
1802 if (skge
->flow_status
== FLOW_STAT_NONE
||
1803 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1804 /* Disable Pause Frame Reception */
1805 cmd
|= XM_MMU_IGN_PF
;
1807 /* Enable Pause Frame Reception */
1808 cmd
&= ~XM_MMU_IGN_PF
;
1810 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1812 mode
= xm_read32(hw
, port
, XM_MODE
);
1813 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1814 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1816 * Configure Pause Frame Generation
1817 * Use internal and external Pause Frame Generation.
1818 * Sending pause frames is edge triggered.
1819 * Send a Pause frame with the maximum pause time if
1820 * internal oder external FIFO full condition occurs.
1821 * Send a zero pause time frame to re-start transmission.
1823 /* XM_PAUSE_DA = '010000C28001' (default) */
1824 /* XM_MAC_PTIME = 0xffff (maximum) */
1825 /* remember this value is defined in big endian (!) */
1826 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1828 mode
|= XM_PAUSE_MODE
;
1829 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1832 * disable pause frame generation is required for 1000BT
1833 * because the XMAC is not reset if the link is going down
1835 /* Disable Pause Mode in Mode Register */
1836 mode
&= ~XM_PAUSE_MODE
;
1838 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1841 xm_write32(hw
, port
, XM_MODE
, mode
);
1843 /* Turn on detection of Tx underrun */
1844 msk
= xm_read16(hw
, port
, XM_IMSK
);
1845 msk
&= ~XM_IS_TXF_UR
;
1846 xm_write16(hw
, port
, XM_IMSK
, msk
);
1848 xm_read16(hw
, port
, XM_ISRC
);
1850 /* get MMU Command Reg. */
1851 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1852 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1853 cmd
|= XM_MMU_GMII_FD
;
1856 * Workaround BCOM Errata (#10523) for all BCom Phys
1857 * Enable Power Management after link up
1859 if (hw
->phy_type
== SK_PHY_BCOM
) {
1860 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1861 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1862 & ~PHY_B_AC_DIS_PM
);
1863 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1867 xm_write16(hw
, port
, XM_MMU_CMD
,
1868 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1873 static inline void bcom_phy_intr(struct skge_port
*skge
)
1875 struct skge_hw
*hw
= skge
->hw
;
1876 int port
= skge
->port
;
1879 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1880 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1881 "phy interrupt status 0x%x\n", isrc
);
1883 if (isrc
& PHY_B_IS_PSE
)
1884 pr_err("%s: uncorrectable pair swap error\n",
1885 hw
->dev
[port
]->name
);
1887 /* Workaround BCom Errata:
1888 * enable and disable loopback mode if "NO HCD" occurs.
1890 if (isrc
& PHY_B_IS_NO_HDCL
) {
1891 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1892 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1893 ctrl
| PHY_CT_LOOP
);
1894 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1895 ctrl
& ~PHY_CT_LOOP
);
1898 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1899 bcom_check_link(hw
, port
);
1903 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1907 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1908 gma_write16(hw
, port
, GM_SMI_CTRL
,
1909 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1910 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1913 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1917 pr_warn("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1921 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1925 gma_write16(hw
, port
, GM_SMI_CTRL
,
1926 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1927 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1929 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1931 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1937 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1941 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1944 if (__gm_phy_read(hw
, port
, reg
, &v
))
1945 pr_warn("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1949 /* Marvell Phy Initialization */
1950 static void yukon_init(struct skge_hw
*hw
, int port
)
1952 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1953 u16 ctrl
, ct1000
, adv
;
1955 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1956 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1958 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1959 PHY_M_EC_MAC_S_MSK
);
1960 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1962 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1964 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1967 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1968 if (skge
->autoneg
== AUTONEG_DISABLE
)
1969 ctrl
&= ~PHY_CT_ANE
;
1971 ctrl
|= PHY_CT_RESET
;
1972 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1978 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1980 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1981 ct1000
|= PHY_M_1000C_AFD
;
1982 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1983 ct1000
|= PHY_M_1000C_AHD
;
1984 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1985 adv
|= PHY_M_AN_100_FD
;
1986 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1987 adv
|= PHY_M_AN_100_HD
;
1988 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1989 adv
|= PHY_M_AN_10_FD
;
1990 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1991 adv
|= PHY_M_AN_10_HD
;
1993 /* Set Flow-control capabilities */
1994 adv
|= phy_pause_map
[skge
->flow_control
];
1996 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1997 adv
|= PHY_M_AN_1000X_AFD
;
1998 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1999 adv
|= PHY_M_AN_1000X_AHD
;
2001 adv
|= fiber_pause_map
[skge
->flow_control
];
2004 /* Restart Auto-negotiation */
2005 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2007 /* forced speed/duplex settings */
2008 ct1000
= PHY_M_1000C_MSE
;
2010 if (skge
->duplex
== DUPLEX_FULL
)
2011 ctrl
|= PHY_CT_DUP_MD
;
2013 switch (skge
->speed
) {
2015 ctrl
|= PHY_CT_SP1000
;
2018 ctrl
|= PHY_CT_SP100
;
2022 ctrl
|= PHY_CT_RESET
;
2025 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2027 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2028 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2030 /* Enable phy interrupt on autonegotiation complete (or link up) */
2031 if (skge
->autoneg
== AUTONEG_ENABLE
)
2032 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2034 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2037 static void yukon_reset(struct skge_hw
*hw
, int port
)
2039 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2040 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2041 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2042 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2043 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2045 gma_write16(hw
, port
, GM_RX_CTRL
,
2046 gma_read16(hw
, port
, GM_RX_CTRL
)
2047 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2050 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2051 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2056 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2059 reg
= skge_read32(hw
, B2_FAR
);
2060 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2061 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2062 skge_write32(hw
, B2_FAR
, reg
);
2066 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2068 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2071 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2073 /* WA code for COMA mode -- set PHY reset */
2074 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2075 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2076 reg
= skge_read32(hw
, B2_GP_IO
);
2077 reg
|= GP_DIR_9
| GP_IO_9
;
2078 skge_write32(hw
, B2_GP_IO
, reg
);
2082 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2083 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2085 /* WA code for COMA mode -- clear PHY reset */
2086 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2087 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2088 reg
= skge_read32(hw
, B2_GP_IO
);
2091 skge_write32(hw
, B2_GP_IO
, reg
);
2094 /* Set hardware config mode */
2095 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2096 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2097 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2099 /* Clear GMC reset */
2100 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2101 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2102 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2104 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2105 reg
= GM_GPCR_AU_ALL_DIS
;
2106 gma_write16(hw
, port
, GM_GP_CTRL
,
2107 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2109 switch (skge
->speed
) {
2111 reg
&= ~GM_GPCR_SPEED_100
;
2112 reg
|= GM_GPCR_SPEED_1000
;
2115 reg
&= ~GM_GPCR_SPEED_1000
;
2116 reg
|= GM_GPCR_SPEED_100
;
2119 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2123 if (skge
->duplex
== DUPLEX_FULL
)
2124 reg
|= GM_GPCR_DUP_FULL
;
2126 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2128 switch (skge
->flow_control
) {
2129 case FLOW_MODE_NONE
:
2130 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2131 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2133 case FLOW_MODE_LOC_SEND
:
2134 /* disable Rx flow-control */
2135 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2137 case FLOW_MODE_SYMMETRIC
:
2138 case FLOW_MODE_SYM_OR_REM
:
2139 /* enable Tx & Rx flow-control */
2143 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2144 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2146 yukon_init(hw
, port
);
2149 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2150 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2152 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2153 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2154 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2156 /* transmit control */
2157 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2159 /* receive control reg: unicast + multicast + no FCS */
2160 gma_write16(hw
, port
, GM_RX_CTRL
,
2161 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2163 /* transmit flow control */
2164 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2166 /* transmit parameter */
2167 gma_write16(hw
, port
, GM_TX_PARAM
,
2168 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2169 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2170 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2172 /* configure the Serial Mode Register */
2173 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2175 | IPG_DATA_VAL(IPG_DATA_DEF
);
2177 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2178 reg
|= GM_SMOD_JUMBO_ENA
;
2180 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2182 /* physical address: used for pause frames */
2183 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2184 /* virtual address for data */
2185 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2187 /* enable interrupt mask for counter overflows */
2188 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2189 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2190 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2192 /* Initialize Mac Fifo */
2194 /* Configure Rx MAC FIFO */
2195 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2196 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2198 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2199 if (is_yukon_lite_a0(hw
))
2200 reg
&= ~GMF_RX_F_FL_ON
;
2202 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2203 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2205 * because Pause Packet Truncation in GMAC is not working
2206 * we have to increase the Flush Threshold to 64 bytes
2207 * in order to flush pause packets in Rx FIFO on Yukon-1
2209 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2211 /* Configure Tx MAC FIFO */
2212 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2213 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2216 /* Go into power down mode */
2217 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2221 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2222 ctrl
|= PHY_M_PC_POL_R_DIS
;
2223 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2225 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2226 ctrl
|= PHY_CT_RESET
;
2227 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2229 /* switch IEEE compatible power down mode on */
2230 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2231 ctrl
|= PHY_CT_PDOWN
;
2232 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2235 static void yukon_stop(struct skge_port
*skge
)
2237 struct skge_hw
*hw
= skge
->hw
;
2238 int port
= skge
->port
;
2240 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2241 yukon_reset(hw
, port
);
2243 gma_write16(hw
, port
, GM_GP_CTRL
,
2244 gma_read16(hw
, port
, GM_GP_CTRL
)
2245 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2246 gma_read16(hw
, port
, GM_GP_CTRL
);
2248 yukon_suspend(hw
, port
);
2250 /* set GPHY Control reset */
2251 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2252 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2255 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2257 struct skge_hw
*hw
= skge
->hw
;
2258 int port
= skge
->port
;
2261 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2262 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2263 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2264 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2266 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2267 data
[i
] = gma_read32(hw
, port
,
2268 skge_stats
[i
].gma_offset
);
2271 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2273 struct net_device
*dev
= hw
->dev
[port
];
2274 struct skge_port
*skge
= netdev_priv(dev
);
2275 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2277 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2278 "mac interrupt status 0x%x\n", status
);
2280 if (status
& GM_IS_RX_FF_OR
) {
2281 ++dev
->stats
.rx_fifo_errors
;
2282 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2285 if (status
& GM_IS_TX_FF_UR
) {
2286 ++dev
->stats
.tx_fifo_errors
;
2287 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2292 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2294 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2295 case PHY_M_PS_SPEED_1000
:
2297 case PHY_M_PS_SPEED_100
:
2304 static void yukon_link_up(struct skge_port
*skge
)
2306 struct skge_hw
*hw
= skge
->hw
;
2307 int port
= skge
->port
;
2310 /* Enable Transmit FIFO Underrun */
2311 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2313 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2314 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2315 reg
|= GM_GPCR_DUP_FULL
;
2318 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2319 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2321 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2325 static void yukon_link_down(struct skge_port
*skge
)
2327 struct skge_hw
*hw
= skge
->hw
;
2328 int port
= skge
->port
;
2331 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2332 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2333 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2335 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2336 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2337 ctrl
|= PHY_M_AN_ASP
;
2338 /* restore Asymmetric Pause bit */
2339 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2342 skge_link_down(skge
);
2344 yukon_init(hw
, port
);
2347 static void yukon_phy_intr(struct skge_port
*skge
)
2349 struct skge_hw
*hw
= skge
->hw
;
2350 int port
= skge
->port
;
2351 const char *reason
= NULL
;
2352 u16 istatus
, phystat
;
2354 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2355 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2357 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2358 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2360 if (istatus
& PHY_M_IS_AN_COMPL
) {
2361 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2363 reason
= "remote fault";
2367 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2368 reason
= "master/slave fault";
2372 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2373 reason
= "speed/duplex";
2377 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2378 ? DUPLEX_FULL
: DUPLEX_HALF
;
2379 skge
->speed
= yukon_speed(hw
, phystat
);
2381 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2382 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2383 case PHY_M_PS_PAUSE_MSK
:
2384 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2386 case PHY_M_PS_RX_P_EN
:
2387 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2389 case PHY_M_PS_TX_P_EN
:
2390 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2393 skge
->flow_status
= FLOW_STAT_NONE
;
2396 if (skge
->flow_status
== FLOW_STAT_NONE
||
2397 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2398 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2400 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2401 yukon_link_up(skge
);
2405 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2406 skge
->speed
= yukon_speed(hw
, phystat
);
2408 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2409 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2410 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2411 if (phystat
& PHY_M_PS_LINK_UP
)
2412 yukon_link_up(skge
);
2414 yukon_link_down(skge
);
2418 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2420 /* XXX restart autonegotiation? */
2423 static void skge_phy_reset(struct skge_port
*skge
)
2425 struct skge_hw
*hw
= skge
->hw
;
2426 int port
= skge
->port
;
2427 struct net_device
*dev
= hw
->dev
[port
];
2429 netif_stop_queue(skge
->netdev
);
2430 netif_carrier_off(skge
->netdev
);
2432 spin_lock_bh(&hw
->phy_lock
);
2433 if (is_genesis(hw
)) {
2434 genesis_reset(hw
, port
);
2435 genesis_mac_init(hw
, port
);
2437 yukon_reset(hw
, port
);
2438 yukon_init(hw
, port
);
2440 spin_unlock_bh(&hw
->phy_lock
);
2442 skge_set_multicast(dev
);
2445 /* Basic MII support */
2446 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2448 struct mii_ioctl_data
*data
= if_mii(ifr
);
2449 struct skge_port
*skge
= netdev_priv(dev
);
2450 struct skge_hw
*hw
= skge
->hw
;
2451 int err
= -EOPNOTSUPP
;
2453 if (!netif_running(dev
))
2454 return -ENODEV
; /* Phy still in reset */
2458 data
->phy_id
= hw
->phy_addr
;
2463 spin_lock_bh(&hw
->phy_lock
);
2466 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2468 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2469 spin_unlock_bh(&hw
->phy_lock
);
2470 data
->val_out
= val
;
2475 spin_lock_bh(&hw
->phy_lock
);
2477 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2480 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2482 spin_unlock_bh(&hw
->phy_lock
);
2488 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2494 end
= start
+ len
- 1;
2496 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2497 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2498 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2499 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2500 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2502 if (q
== Q_R1
|| q
== Q_R2
) {
2503 /* Set thresholds on receive queue's */
2504 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2506 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2509 /* Enable store & forward on Tx queue's because
2510 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2512 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2515 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2518 /* Setup Bus Memory Interface */
2519 static void skge_qset(struct skge_port
*skge
, u16 q
,
2520 const struct skge_element
*e
)
2522 struct skge_hw
*hw
= skge
->hw
;
2523 u32 watermark
= 0x600;
2524 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2526 /* optimization to reduce window on 32bit/33mhz */
2527 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2530 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2531 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2532 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2533 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2536 static int skge_up(struct net_device
*dev
)
2538 struct skge_port
*skge
= netdev_priv(dev
);
2539 struct skge_hw
*hw
= skge
->hw
;
2540 int port
= skge
->port
;
2541 u32 chunk
, ram_addr
;
2542 size_t rx_size
, tx_size
;
2545 if (!is_valid_ether_addr(dev
->dev_addr
))
2548 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2550 if (dev
->mtu
> RX_BUF_SIZE
)
2551 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2553 skge
->rx_buf_size
= RX_BUF_SIZE
;
2556 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2557 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2558 skge
->mem_size
= tx_size
+ rx_size
;
2559 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2563 BUG_ON(skge
->dma
& 7);
2565 if (upper_32_bits(skge
->dma
) != upper_32_bits(skge
->dma
+ skge
->mem_size
)) {
2566 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2571 memset(skge
->mem
, 0, skge
->mem_size
);
2573 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2577 err
= skge_rx_fill(dev
);
2581 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2582 skge
->dma
+ rx_size
);
2586 if (hw
->ports
== 1) {
2587 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2590 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2591 hw
->pdev
->irq
, err
);
2596 /* Initialize MAC */
2597 netif_carrier_off(dev
);
2598 spin_lock_bh(&hw
->phy_lock
);
2600 genesis_mac_init(hw
, port
);
2602 yukon_mac_init(hw
, port
);
2603 spin_unlock_bh(&hw
->phy_lock
);
2605 /* Configure RAMbuffers - equally between ports and tx/rx */
2606 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2607 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2609 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2610 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2612 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2613 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2614 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2616 /* Start receiver BMU */
2618 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2619 skge_led(skge
, LED_MODE_ON
);
2621 spin_lock_irq(&hw
->hw_lock
);
2622 hw
->intr_mask
|= portmask
[port
];
2623 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2624 skge_read32(hw
, B0_IMSK
);
2625 spin_unlock_irq(&hw
->hw_lock
);
2627 napi_enable(&skge
->napi
);
2629 skge_set_multicast(dev
);
2634 kfree(skge
->tx_ring
.start
);
2636 skge_rx_clean(skge
);
2637 kfree(skge
->rx_ring
.start
);
2639 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2646 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2648 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2649 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2650 RB_RST_SET
|RB_DIS_OP_MD
);
2651 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2654 static int skge_down(struct net_device
*dev
)
2656 struct skge_port
*skge
= netdev_priv(dev
);
2657 struct skge_hw
*hw
= skge
->hw
;
2658 int port
= skge
->port
;
2663 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2665 netif_tx_disable(dev
);
2667 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2668 del_timer_sync(&skge
->link_timer
);
2670 napi_disable(&skge
->napi
);
2671 netif_carrier_off(dev
);
2673 spin_lock_irq(&hw
->hw_lock
);
2674 hw
->intr_mask
&= ~portmask
[port
];
2675 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2676 skge_read32(hw
, B0_IMSK
);
2677 spin_unlock_irq(&hw
->hw_lock
);
2680 free_irq(hw
->pdev
->irq
, hw
);
2682 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
2688 /* Stop transmitter */
2689 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2690 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2691 RB_RST_SET
|RB_DIS_OP_MD
);
2694 /* Disable Force Sync bit and Enable Alloc bit */
2695 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2696 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2698 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2699 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2700 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2702 /* Reset PCI FIFO */
2703 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2704 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2706 /* Reset the RAM Buffer async Tx queue */
2707 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2709 skge_rx_stop(hw
, port
);
2711 if (is_genesis(hw
)) {
2712 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2713 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2715 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2716 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2719 skge_led(skge
, LED_MODE_OFF
);
2721 netif_tx_lock_bh(dev
);
2723 netif_tx_unlock_bh(dev
);
2725 skge_rx_clean(skge
);
2727 kfree(skge
->rx_ring
.start
);
2728 kfree(skge
->tx_ring
.start
);
2729 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2734 static inline int skge_avail(const struct skge_ring
*ring
)
2737 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2738 + (ring
->to_clean
- ring
->to_use
) - 1;
2741 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2742 struct net_device
*dev
)
2744 struct skge_port
*skge
= netdev_priv(dev
);
2745 struct skge_hw
*hw
= skge
->hw
;
2746 struct skge_element
*e
;
2747 struct skge_tx_desc
*td
;
2752 if (skb_padto(skb
, ETH_ZLEN
))
2753 return NETDEV_TX_OK
;
2755 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2756 return NETDEV_TX_BUSY
;
2758 e
= skge
->tx_ring
.to_use
;
2760 BUG_ON(td
->control
& BMU_OWN
);
2762 len
= skb_headlen(skb
);
2763 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2764 if (pci_dma_mapping_error(hw
->pdev
, map
))
2767 dma_unmap_addr_set(e
, mapaddr
, map
);
2768 dma_unmap_len_set(e
, maplen
, len
);
2770 td
->dma_lo
= lower_32_bits(map
);
2771 td
->dma_hi
= upper_32_bits(map
);
2773 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2774 const int offset
= skb_checksum_start_offset(skb
);
2776 /* This seems backwards, but it is what the sk98lin
2777 * does. Looks like hardware is wrong?
2779 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2780 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2781 control
= BMU_TCP_CHECK
;
2783 control
= BMU_UDP_CHECK
;
2786 td
->csum_start
= offset
;
2787 td
->csum_write
= offset
+ skb
->csum_offset
;
2789 control
= BMU_CHECK
;
2791 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2792 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2794 struct skge_tx_desc
*tf
= td
;
2796 control
|= BMU_STFWD
;
2797 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2798 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2800 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2801 skb_frag_size(frag
), DMA_TO_DEVICE
);
2802 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2803 goto mapping_unwind
;
2808 BUG_ON(tf
->control
& BMU_OWN
);
2810 tf
->dma_lo
= lower_32_bits(map
);
2811 tf
->dma_hi
= upper_32_bits(map
);
2812 dma_unmap_addr_set(e
, mapaddr
, map
);
2813 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2815 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2817 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2819 /* Make sure all the descriptors written */
2821 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2824 netdev_sent_queue(dev
, skb
->len
);
2826 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2828 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2829 "tx queued, slot %td, len %d\n",
2830 e
- skge
->tx_ring
.start
, skb
->len
);
2832 skge
->tx_ring
.to_use
= e
->next
;
2835 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2836 netdev_dbg(dev
, "transmit queue full\n");
2837 netif_stop_queue(dev
);
2840 return NETDEV_TX_OK
;
2843 e
= skge
->tx_ring
.to_use
;
2844 pci_unmap_single(hw
->pdev
,
2845 dma_unmap_addr(e
, mapaddr
),
2846 dma_unmap_len(e
, maplen
),
2850 pci_unmap_page(hw
->pdev
,
2851 dma_unmap_addr(e
, mapaddr
),
2852 dma_unmap_len(e
, maplen
),
2857 if (net_ratelimit())
2858 dev_warn(&hw
->pdev
->dev
, "%s: tx mapping error\n", dev
->name
);
2859 dev_kfree_skb_any(skb
);
2860 return NETDEV_TX_OK
;
2864 /* Free resources associated with this reing element */
2865 static inline void skge_tx_unmap(struct pci_dev
*pdev
, struct skge_element
*e
,
2868 /* skb header vs. fragment */
2869 if (control
& BMU_STF
)
2870 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2871 dma_unmap_len(e
, maplen
),
2874 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2875 dma_unmap_len(e
, maplen
),
2879 /* Free all buffers in transmit ring */
2880 static void skge_tx_clean(struct net_device
*dev
)
2882 struct skge_port
*skge
= netdev_priv(dev
);
2883 struct skge_element
*e
;
2885 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2886 struct skge_tx_desc
*td
= e
->desc
;
2888 skge_tx_unmap(skge
->hw
->pdev
, e
, td
->control
);
2890 if (td
->control
& BMU_EOF
)
2891 dev_kfree_skb(e
->skb
);
2895 netdev_reset_queue(dev
);
2896 skge
->tx_ring
.to_clean
= e
;
2899 static void skge_tx_timeout(struct net_device
*dev
)
2901 struct skge_port
*skge
= netdev_priv(dev
);
2903 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2905 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2907 netif_wake_queue(dev
);
2910 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2914 if (!netif_running(dev
)) {
2930 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2932 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2936 crc
= ether_crc_le(ETH_ALEN
, addr
);
2938 filter
[bit
/8] |= 1 << (bit
%8);
2941 static void genesis_set_multicast(struct net_device
*dev
)
2943 struct skge_port
*skge
= netdev_priv(dev
);
2944 struct skge_hw
*hw
= skge
->hw
;
2945 int port
= skge
->port
;
2946 struct netdev_hw_addr
*ha
;
2950 mode
= xm_read32(hw
, port
, XM_MODE
);
2951 mode
|= XM_MD_ENA_HASH
;
2952 if (dev
->flags
& IFF_PROMISC
)
2953 mode
|= XM_MD_ENA_PROM
;
2955 mode
&= ~XM_MD_ENA_PROM
;
2957 if (dev
->flags
& IFF_ALLMULTI
)
2958 memset(filter
, 0xff, sizeof(filter
));
2960 memset(filter
, 0, sizeof(filter
));
2962 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2963 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2964 genesis_add_filter(filter
, pause_mc_addr
);
2966 netdev_for_each_mc_addr(ha
, dev
)
2967 genesis_add_filter(filter
, ha
->addr
);
2970 xm_write32(hw
, port
, XM_MODE
, mode
);
2971 xm_outhash(hw
, port
, XM_HSM
, filter
);
2974 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2976 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2977 filter
[bit
/8] |= 1 << (bit
%8);
2980 static void yukon_set_multicast(struct net_device
*dev
)
2982 struct skge_port
*skge
= netdev_priv(dev
);
2983 struct skge_hw
*hw
= skge
->hw
;
2984 int port
= skge
->port
;
2985 struct netdev_hw_addr
*ha
;
2986 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2987 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2991 memset(filter
, 0, sizeof(filter
));
2993 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2994 reg
|= GM_RXCR_UCF_ENA
;
2996 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2997 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2998 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2999 memset(filter
, 0xff, sizeof(filter
));
3000 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
3001 reg
&= ~GM_RXCR_MCF_ENA
;
3003 reg
|= GM_RXCR_MCF_ENA
;
3006 yukon_add_filter(filter
, pause_mc_addr
);
3008 netdev_for_each_mc_addr(ha
, dev
)
3009 yukon_add_filter(filter
, ha
->addr
);
3013 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3014 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3015 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3016 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3017 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3018 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3019 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3020 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3022 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3025 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3028 return status
>> XMR_FS_LEN_SHIFT
;
3030 return status
>> GMR_FS_LEN_SHIFT
;
3033 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3036 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3038 return (status
& GMR_FS_ANY_ERR
) ||
3039 (status
& GMR_FS_RX_OK
) == 0;
3042 static void skge_set_multicast(struct net_device
*dev
)
3044 struct skge_port
*skge
= netdev_priv(dev
);
3046 if (is_genesis(skge
->hw
))
3047 genesis_set_multicast(dev
);
3049 yukon_set_multicast(dev
);
3054 /* Get receive buffer from descriptor.
3055 * Handles copy of small buffers and reallocation failures
3057 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3058 struct skge_element
*e
,
3059 u32 control
, u32 status
, u16 csum
)
3061 struct skge_port
*skge
= netdev_priv(dev
);
3062 struct sk_buff
*skb
;
3063 u16 len
= control
& BMU_BBC
;
3065 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3066 "rx slot %td status 0x%x len %d\n",
3067 e
- skge
->rx_ring
.start
, status
, len
);
3069 if (len
> skge
->rx_buf_size
)
3072 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3075 if (bad_phy_status(skge
->hw
, status
))
3078 if (phy_length(skge
->hw
, status
) != len
)
3081 if (len
< RX_COPY_THRESHOLD
) {
3082 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3086 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3087 dma_unmap_addr(e
, mapaddr
),
3088 dma_unmap_len(e
, maplen
),
3089 PCI_DMA_FROMDEVICE
);
3090 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3091 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3092 dma_unmap_addr(e
, mapaddr
),
3093 dma_unmap_len(e
, maplen
),
3094 PCI_DMA_FROMDEVICE
);
3095 skge_rx_reuse(e
, skge
->rx_buf_size
);
3097 struct skge_element ee
;
3098 struct sk_buff
*nskb
;
3100 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3107 prefetch(skb
->data
);
3109 if (skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
) < 0) {
3110 dev_kfree_skb(nskb
);
3114 pci_unmap_single(skge
->hw
->pdev
,
3115 dma_unmap_addr(&ee
, mapaddr
),
3116 dma_unmap_len(&ee
, maplen
),
3117 PCI_DMA_FROMDEVICE
);
3122 if (dev
->features
& NETIF_F_RXCSUM
) {
3124 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3127 skb
->protocol
= eth_type_trans(skb
, dev
);
3132 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3133 "rx err, slot %td control 0x%x status 0x%x\n",
3134 e
- skge
->rx_ring
.start
, control
, status
);
3136 if (is_genesis(skge
->hw
)) {
3137 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3138 dev
->stats
.rx_length_errors
++;
3139 if (status
& XMR_FS_FRA_ERR
)
3140 dev
->stats
.rx_frame_errors
++;
3141 if (status
& XMR_FS_FCS_ERR
)
3142 dev
->stats
.rx_crc_errors
++;
3144 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3145 dev
->stats
.rx_length_errors
++;
3146 if (status
& GMR_FS_FRAGMENT
)
3147 dev
->stats
.rx_frame_errors
++;
3148 if (status
& GMR_FS_CRC_ERR
)
3149 dev
->stats
.rx_crc_errors
++;
3153 skge_rx_reuse(e
, skge
->rx_buf_size
);
3157 /* Free all buffers in Tx ring which are no longer owned by device */
3158 static void skge_tx_done(struct net_device
*dev
)
3160 struct skge_port
*skge
= netdev_priv(dev
);
3161 struct skge_ring
*ring
= &skge
->tx_ring
;
3162 struct skge_element
*e
;
3163 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3165 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3167 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3168 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3170 if (control
& BMU_OWN
)
3173 skge_tx_unmap(skge
->hw
->pdev
, e
, control
);
3175 if (control
& BMU_EOF
) {
3176 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
3177 "tx done slot %td\n",
3178 e
- skge
->tx_ring
.start
);
3181 bytes_compl
+= e
->skb
->len
;
3183 dev_consume_skb_any(e
->skb
);
3186 netdev_completed_queue(dev
, pkts_compl
, bytes_compl
);
3187 skge
->tx_ring
.to_clean
= e
;
3189 /* Can run lockless until we need to synchronize to restart queue. */
3192 if (unlikely(netif_queue_stopped(dev
) &&
3193 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3195 if (unlikely(netif_queue_stopped(dev
) &&
3196 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3197 netif_wake_queue(dev
);
3200 netif_tx_unlock(dev
);
3204 static int skge_poll(struct napi_struct
*napi
, int budget
)
3206 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3207 struct net_device
*dev
= skge
->netdev
;
3208 struct skge_hw
*hw
= skge
->hw
;
3209 struct skge_ring
*ring
= &skge
->rx_ring
;
3210 struct skge_element
*e
;
3215 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3217 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< budget
; e
= e
->next
) {
3218 struct skge_rx_desc
*rd
= e
->desc
;
3219 struct sk_buff
*skb
;
3223 control
= rd
->control
;
3224 if (control
& BMU_OWN
)
3227 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3229 napi_gro_receive(napi
, skb
);
3235 /* restart receiver */
3237 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3239 if (work_done
< budget
&& napi_complete_done(napi
, work_done
)) {
3240 unsigned long flags
;
3242 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3243 hw
->intr_mask
|= napimask
[skge
->port
];
3244 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3245 skge_read32(hw
, B0_IMSK
);
3246 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3252 /* Parity errors seem to happen when Genesis is connected to a switch
3253 * with no other ports present. Heartbeat error??
3255 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3257 struct net_device
*dev
= hw
->dev
[port
];
3259 ++dev
->stats
.tx_heartbeat_errors
;
3262 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3265 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3266 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3267 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3268 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3271 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3274 genesis_mac_intr(hw
, port
);
3276 yukon_mac_intr(hw
, port
);
3279 /* Handle device specific framing and timeout interrupts */
3280 static void skge_error_irq(struct skge_hw
*hw
)
3282 struct pci_dev
*pdev
= hw
->pdev
;
3283 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3285 if (is_genesis(hw
)) {
3286 /* clear xmac errors */
3287 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3288 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3289 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3290 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3292 /* Timestamp (unused) overflow */
3293 if (hwstatus
& IS_IRQ_TIST_OV
)
3294 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3297 if (hwstatus
& IS_RAM_RD_PAR
) {
3298 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3299 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3302 if (hwstatus
& IS_RAM_WR_PAR
) {
3303 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3304 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3307 if (hwstatus
& IS_M1_PAR_ERR
)
3308 skge_mac_parity(hw
, 0);
3310 if (hwstatus
& IS_M2_PAR_ERR
)
3311 skge_mac_parity(hw
, 1);
3313 if (hwstatus
& IS_R1_PAR_ERR
) {
3314 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3316 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3319 if (hwstatus
& IS_R2_PAR_ERR
) {
3320 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3322 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3325 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3326 u16 pci_status
, pci_cmd
;
3328 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3329 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3331 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3332 pci_cmd
, pci_status
);
3334 /* Write the error bits back to clear them. */
3335 pci_status
&= PCI_STATUS_ERROR_BITS
;
3336 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3337 pci_write_config_word(pdev
, PCI_COMMAND
,
3338 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3339 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3340 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3342 /* if error still set then just ignore it */
3343 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3344 if (hwstatus
& IS_IRQ_STAT
) {
3345 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3346 hw
->intr_mask
&= ~IS_HW_ERR
;
3352 * Interrupt from PHY are handled in tasklet (softirq)
3353 * because accessing phy registers requires spin wait which might
3354 * cause excess interrupt latency.
3356 static void skge_extirq(unsigned long arg
)
3358 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3361 for (port
= 0; port
< hw
->ports
; port
++) {
3362 struct net_device
*dev
= hw
->dev
[port
];
3364 if (netif_running(dev
)) {
3365 struct skge_port
*skge
= netdev_priv(dev
);
3367 spin_lock(&hw
->phy_lock
);
3368 if (!is_genesis(hw
))
3369 yukon_phy_intr(skge
);
3370 else if (hw
->phy_type
== SK_PHY_BCOM
)
3371 bcom_phy_intr(skge
);
3372 spin_unlock(&hw
->phy_lock
);
3376 spin_lock_irq(&hw
->hw_lock
);
3377 hw
->intr_mask
|= IS_EXT_REG
;
3378 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3379 skge_read32(hw
, B0_IMSK
);
3380 spin_unlock_irq(&hw
->hw_lock
);
3383 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3385 struct skge_hw
*hw
= dev_id
;
3389 spin_lock(&hw
->hw_lock
);
3390 /* Reading this register masks IRQ */
3391 status
= skge_read32(hw
, B0_SP_ISRC
);
3392 if (status
== 0 || status
== ~0)
3396 status
&= hw
->intr_mask
;
3397 if (status
& IS_EXT_REG
) {
3398 hw
->intr_mask
&= ~IS_EXT_REG
;
3399 tasklet_schedule(&hw
->phy_task
);
3402 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3403 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3404 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3405 napi_schedule(&skge
->napi
);
3408 if (status
& IS_PA_TO_TX1
)
3409 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3411 if (status
& IS_PA_TO_RX1
) {
3412 ++hw
->dev
[0]->stats
.rx_over_errors
;
3413 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3417 if (status
& IS_MAC1
)
3418 skge_mac_intr(hw
, 0);
3421 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3423 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3424 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3425 napi_schedule(&skge
->napi
);
3428 if (status
& IS_PA_TO_RX2
) {
3429 ++hw
->dev
[1]->stats
.rx_over_errors
;
3430 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3433 if (status
& IS_PA_TO_TX2
)
3434 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3436 if (status
& IS_MAC2
)
3437 skge_mac_intr(hw
, 1);
3440 if (status
& IS_HW_ERR
)
3443 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3444 skge_read32(hw
, B0_IMSK
);
3445 spin_unlock(&hw
->hw_lock
);
3447 return IRQ_RETVAL(handled
);
3450 #ifdef CONFIG_NET_POLL_CONTROLLER
3451 static void skge_netpoll(struct net_device
*dev
)
3453 struct skge_port
*skge
= netdev_priv(dev
);
3455 disable_irq(dev
->irq
);
3456 skge_intr(dev
->irq
, skge
->hw
);
3457 enable_irq(dev
->irq
);
3461 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3463 struct skge_port
*skge
= netdev_priv(dev
);
3464 struct skge_hw
*hw
= skge
->hw
;
3465 unsigned port
= skge
->port
;
3466 const struct sockaddr
*addr
= p
;
3469 if (!is_valid_ether_addr(addr
->sa_data
))
3470 return -EADDRNOTAVAIL
;
3472 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3474 if (!netif_running(dev
)) {
3475 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3476 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3479 spin_lock_bh(&hw
->phy_lock
);
3480 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3481 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3483 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3484 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3487 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3489 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3490 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3493 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3494 spin_unlock_bh(&hw
->phy_lock
);
3500 static const struct {
3504 { CHIP_ID_GENESIS
, "Genesis" },
3505 { CHIP_ID_YUKON
, "Yukon" },
3506 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3507 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3510 static const char *skge_board_name(const struct skge_hw
*hw
)
3513 static char buf
[16];
3515 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3516 if (skge_chips
[i
].id
== hw
->chip_id
)
3517 return skge_chips
[i
].name
;
3519 snprintf(buf
, sizeof(buf
), "chipid 0x%x", hw
->chip_id
);
3525 * Setup the board data structure, but don't bring up
3528 static int skge_reset(struct skge_hw
*hw
)
3531 u16 ctst
, pci_status
;
3532 u8 t8
, mac_cfg
, pmd_type
;
3535 ctst
= skge_read16(hw
, B0_CTST
);
3538 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3539 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3541 /* clear PCI errors, if any */
3542 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3543 skge_write8(hw
, B2_TST_CTRL2
, 0);
3545 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3546 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3547 pci_status
| PCI_STATUS_ERROR_BITS
);
3548 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3549 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3551 /* restore CLK_RUN bits (for Yukon-Lite) */
3552 skge_write16(hw
, B0_CTST
,
3553 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3555 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3556 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3557 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3558 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3560 switch (hw
->chip_id
) {
3561 case CHIP_ID_GENESIS
:
3562 #ifdef CONFIG_SKGE_GENESIS
3563 switch (hw
->phy_type
) {
3565 hw
->phy_addr
= PHY_ADDR_XMAC
;
3568 hw
->phy_addr
= PHY_ADDR_BCOM
;
3571 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3577 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3582 case CHIP_ID_YUKON_LITE
:
3583 case CHIP_ID_YUKON_LP
:
3584 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3587 hw
->phy_addr
= PHY_ADDR_MARV
;
3591 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3596 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3597 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3598 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3600 /* read the adapters RAM size */
3601 t8
= skge_read8(hw
, B2_E_0
);
3602 if (is_genesis(hw
)) {
3604 /* special case: 4 x 64k x 36, offset = 0x80000 */
3605 hw
->ram_size
= 0x100000;
3606 hw
->ram_offset
= 0x80000;
3608 hw
->ram_size
= t8
* 512;
3610 hw
->ram_size
= 0x20000;
3612 hw
->ram_size
= t8
* 4096;
3614 hw
->intr_mask
= IS_HW_ERR
;
3616 /* Use PHY IRQ for all but fiber based Genesis board */
3617 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3618 hw
->intr_mask
|= IS_EXT_REG
;
3623 /* switch power to VCC (WA for VAUX problem) */
3624 skge_write8(hw
, B0_POWER_CTRL
,
3625 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3627 /* avoid boards with stuck Hardware error bits */
3628 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3629 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3630 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3631 hw
->intr_mask
&= ~IS_HW_ERR
;
3634 /* Clear PHY COMA */
3635 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3636 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3637 reg
&= ~PCI_PHY_COMA
;
3638 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3639 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3642 for (i
= 0; i
< hw
->ports
; i
++) {
3643 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3644 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3648 /* turn off hardware timer (unused) */
3649 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3650 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3651 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3653 /* enable the Tx Arbiters */
3654 for (i
= 0; i
< hw
->ports
; i
++)
3655 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3657 /* Initialize ram interface */
3658 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3660 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3661 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3662 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3663 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3664 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3665 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3666 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3667 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3668 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3669 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3670 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3671 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3673 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3675 /* Set interrupt moderation for Transmit only
3676 * Receive interrupts avoided by NAPI
3678 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3679 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3680 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3682 /* Leave irq disabled until first port is brought up. */
3683 skge_write32(hw
, B0_IMSK
, 0);
3685 for (i
= 0; i
< hw
->ports
; i
++) {
3687 genesis_reset(hw
, i
);
3696 #ifdef CONFIG_SKGE_DEBUG
3698 static struct dentry
*skge_debug
;
3700 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3702 struct net_device
*dev
= seq
->private;
3703 const struct skge_port
*skge
= netdev_priv(dev
);
3704 const struct skge_hw
*hw
= skge
->hw
;
3705 const struct skge_element
*e
;
3707 if (!netif_running(dev
))
3710 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3711 skge_read32(hw
, B0_IMSK
));
3713 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3714 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3715 const struct skge_tx_desc
*t
= e
->desc
;
3716 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3717 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3718 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3721 seq_puts(seq
, "\nRx Ring:\n");
3722 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3723 const struct skge_rx_desc
*r
= e
->desc
;
3725 if (r
->control
& BMU_OWN
)
3728 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3729 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3730 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3736 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3738 return single_open(file
, skge_debug_show
, inode
->i_private
);
3741 static const struct file_operations skge_debug_fops
= {
3742 .owner
= THIS_MODULE
,
3743 .open
= skge_debug_open
,
3745 .llseek
= seq_lseek
,
3746 .release
= single_release
,
3750 * Use network device events to create/remove/rename
3751 * debugfs file entries
3753 static int skge_device_event(struct notifier_block
*unused
,
3754 unsigned long event
, void *ptr
)
3756 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
3757 struct skge_port
*skge
;
3760 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3763 skge
= netdev_priv(dev
);
3765 case NETDEV_CHANGENAME
:
3766 if (skge
->debugfs
) {
3767 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3768 skge_debug
, dev
->name
);
3772 netdev_info(dev
, "rename failed\n");
3773 debugfs_remove(skge
->debugfs
);
3778 case NETDEV_GOING_DOWN
:
3779 if (skge
->debugfs
) {
3780 debugfs_remove(skge
->debugfs
);
3781 skge
->debugfs
= NULL
;
3786 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3789 if (!d
|| IS_ERR(d
))
3790 netdev_info(dev
, "debugfs create failed\n");
3800 static struct notifier_block skge_notifier
= {
3801 .notifier_call
= skge_device_event
,
3805 static __init
void skge_debug_init(void)
3809 ent
= debugfs_create_dir("skge", NULL
);
3810 if (!ent
|| IS_ERR(ent
)) {
3811 pr_info("debugfs create directory failed\n");
3816 register_netdevice_notifier(&skge_notifier
);
3819 static __exit
void skge_debug_cleanup(void)
3822 unregister_netdevice_notifier(&skge_notifier
);
3823 debugfs_remove(skge_debug
);
3829 #define skge_debug_init()
3830 #define skge_debug_cleanup()
3833 static const struct net_device_ops skge_netdev_ops
= {
3834 .ndo_open
= skge_up
,
3835 .ndo_stop
= skge_down
,
3836 .ndo_start_xmit
= skge_xmit_frame
,
3837 .ndo_do_ioctl
= skge_ioctl
,
3838 .ndo_get_stats
= skge_get_stats
,
3839 .ndo_tx_timeout
= skge_tx_timeout
,
3840 .ndo_change_mtu
= skge_change_mtu
,
3841 .ndo_validate_addr
= eth_validate_addr
,
3842 .ndo_set_rx_mode
= skge_set_multicast
,
3843 .ndo_set_mac_address
= skge_set_mac_address
,
3844 #ifdef CONFIG_NET_POLL_CONTROLLER
3845 .ndo_poll_controller
= skge_netpoll
,
3850 /* Initialize network device */
3851 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3854 struct skge_port
*skge
;
3855 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3860 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3861 dev
->netdev_ops
= &skge_netdev_ops
;
3862 dev
->ethtool_ops
= &skge_ethtool_ops
;
3863 dev
->watchdog_timeo
= TX_WATCHDOG
;
3864 dev
->irq
= hw
->pdev
->irq
;
3866 /* MTU range: 60 - 9000 */
3867 dev
->min_mtu
= ETH_ZLEN
;
3868 dev
->max_mtu
= ETH_JUMBO_MTU
;
3871 dev
->features
|= NETIF_F_HIGHDMA
;
3873 skge
= netdev_priv(dev
);
3874 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3877 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3879 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3880 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3882 /* Auto speed and flow control */
3883 skge
->autoneg
= AUTONEG_ENABLE
;
3884 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3887 skge
->advertising
= skge_supported_modes(hw
);
3889 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3890 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3891 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3894 hw
->dev
[port
] = dev
;
3898 /* Only used for Genesis XMAC */
3900 timer_setup(&skge
->link_timer
, xm_link_timer
, 0);
3902 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3904 dev
->features
|= dev
->hw_features
;
3907 /* read the mac address */
3908 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3913 static void skge_show_addr(struct net_device
*dev
)
3915 const struct skge_port
*skge
= netdev_priv(dev
);
3917 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3920 static int only_32bit_dma
;
3922 static int skge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3924 struct net_device
*dev
, *dev1
;
3926 int err
, using_dac
= 0;
3928 err
= pci_enable_device(pdev
);
3930 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3934 err
= pci_request_regions(pdev
, DRV_NAME
);
3936 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3937 goto err_out_disable_pdev
;
3940 pci_set_master(pdev
);
3942 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3944 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3945 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3947 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3951 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3952 goto err_out_free_regions
;
3956 /* byte swap descriptors in hardware */
3960 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3961 reg
|= PCI_REV_DESC
;
3962 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3967 /* space for skge@pci:0000:04:00.0 */
3968 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3969 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3971 goto err_out_free_regions
;
3973 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3976 spin_lock_init(&hw
->hw_lock
);
3977 spin_lock_init(&hw
->phy_lock
);
3978 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3980 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3982 dev_err(&pdev
->dev
, "cannot map device registers\n");
3983 goto err_out_free_hw
;
3986 err
= skge_reset(hw
);
3988 goto err_out_iounmap
;
3990 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3992 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3993 skge_board_name(hw
), hw
->chip_rev
);
3995 dev
= skge_devinit(hw
, 0, using_dac
);
3998 goto err_out_led_off
;
4001 /* Some motherboards are broken and has zero in ROM. */
4002 if (!is_valid_ether_addr(dev
->dev_addr
))
4003 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
4005 err
= register_netdev(dev
);
4007 dev_err(&pdev
->dev
, "cannot register net device\n");
4008 goto err_out_free_netdev
;
4011 skge_show_addr(dev
);
4013 if (hw
->ports
> 1) {
4014 dev1
= skge_devinit(hw
, 1, using_dac
);
4017 goto err_out_unregister
;
4020 err
= register_netdev(dev1
);
4022 dev_err(&pdev
->dev
, "cannot register second net device\n");
4023 goto err_out_free_dev1
;
4026 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
4029 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
4031 goto err_out_unregister_dev1
;
4034 skge_show_addr(dev1
);
4036 pci_set_drvdata(pdev
, hw
);
4040 err_out_unregister_dev1
:
4041 unregister_netdev(dev1
);
4045 unregister_netdev(dev
);
4046 err_out_free_netdev
:
4049 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4054 err_out_free_regions
:
4055 pci_release_regions(pdev
);
4056 err_out_disable_pdev
:
4057 pci_disable_device(pdev
);
4062 static void skge_remove(struct pci_dev
*pdev
)
4064 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4065 struct net_device
*dev0
, *dev1
;
4072 unregister_netdev(dev1
);
4074 unregister_netdev(dev0
);
4076 tasklet_kill(&hw
->phy_task
);
4078 spin_lock_irq(&hw
->hw_lock
);
4081 if (hw
->ports
> 1) {
4082 skge_write32(hw
, B0_IMSK
, 0);
4083 skge_read32(hw
, B0_IMSK
);
4085 spin_unlock_irq(&hw
->hw_lock
);
4087 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4088 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4091 free_irq(pdev
->irq
, hw
);
4092 pci_release_regions(pdev
);
4093 pci_disable_device(pdev
);
4102 #ifdef CONFIG_PM_SLEEP
4103 static int skge_suspend(struct device
*dev
)
4105 struct pci_dev
*pdev
= to_pci_dev(dev
);
4106 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4112 for (i
= 0; i
< hw
->ports
; i
++) {
4113 struct net_device
*dev
= hw
->dev
[i
];
4114 struct skge_port
*skge
= netdev_priv(dev
);
4116 if (netif_running(dev
))
4120 skge_wol_init(skge
);
4123 skge_write32(hw
, B0_IMSK
, 0);
4128 static int skge_resume(struct device
*dev
)
4130 struct pci_dev
*pdev
= to_pci_dev(dev
);
4131 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4137 err
= skge_reset(hw
);
4141 for (i
= 0; i
< hw
->ports
; i
++) {
4142 struct net_device
*dev
= hw
->dev
[i
];
4144 if (netif_running(dev
)) {
4148 netdev_err(dev
, "could not up: %d\n", err
);
4158 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4159 #define SKGE_PM_OPS (&skge_pm_ops)
4163 #define SKGE_PM_OPS NULL
4164 #endif /* CONFIG_PM_SLEEP */
4166 static void skge_shutdown(struct pci_dev
*pdev
)
4168 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4174 for (i
= 0; i
< hw
->ports
; i
++) {
4175 struct net_device
*dev
= hw
->dev
[i
];
4176 struct skge_port
*skge
= netdev_priv(dev
);
4179 skge_wol_init(skge
);
4182 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4183 pci_set_power_state(pdev
, PCI_D3hot
);
4186 static struct pci_driver skge_driver
= {
4188 .id_table
= skge_id_table
,
4189 .probe
= skge_probe
,
4190 .remove
= skge_remove
,
4191 .shutdown
= skge_shutdown
,
4192 .driver
.pm
= SKGE_PM_OPS
,
4195 static const struct dmi_system_id skge_32bit_dma_boards
[] = {
4197 .ident
= "Gigabyte nForce boards",
4199 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4200 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4204 .ident
= "ASUS P5NSLI",
4206 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTeK Computer INC."),
4207 DMI_MATCH(DMI_BOARD_NAME
, "P5NSLI")
4211 .ident
= "FUJITSU SIEMENS A8NE-FM",
4213 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTek Computer INC."),
4214 DMI_MATCH(DMI_BOARD_NAME
, "A8NE-FM")
4220 static int __init
skge_init_module(void)
4222 if (dmi_check_system(skge_32bit_dma_boards
))
4225 return pci_register_driver(&skge_driver
);
4228 static void __exit
skge_cleanup_module(void)
4230 pci_unregister_driver(&skge_driver
);
4231 skge_debug_cleanup();
4234 module_init(skge_init_module
);
4235 module_exit(skge_cleanup_module
);