1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46 * Possible values '1' for enable , '0' for disable.
47 * Default is '2' - which means disable in promisc mode
48 * and enable in non-promiscuous mode.
49 * multiq: This parameter used to enable/disable MULTIQUEUE support.
50 * Possible values '1' for enable and '0' for disable. Default is '0'
51 ************************************************************************/
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
78 #include <linux/slab.h>
79 #include <linux/prefetch.h>
81 #include <net/checksum.h>
83 #include <asm/div64.h>
88 #include "s2io-regs.h"
90 #define DRV_VERSION "2.0.26.28"
92 /* S2io Driver name & version. */
93 static const char s2io_driver_name
[] = "Neterion";
94 static const char s2io_driver_version
[] = DRV_VERSION
;
96 static const int rxd_size
[2] = {32, 48};
97 static const int rxd_count
[2] = {127, 85};
99 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
103 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
104 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
110 * Cards with following subsystem_id have a link state indication
111 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112 * macro below identifies these cards given the subsystem_id.
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115 (dev_type == XFRAME_I_DEVICE) ? \
116 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
124 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
127 /* Ethtool related variables and Macros. */
128 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
129 "Register test\t(offline)",
130 "Eeprom test\t(offline)",
131 "Link test\t(online)",
132 "RLDRAM test\t(offline)",
133 "BIST Test\t(offline)"
136 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
138 {"tmac_data_octets"},
142 {"tmac_pause_ctrl_frms"},
146 {"tmac_any_err_frms"},
147 {"tmac_ttl_less_fb_octets"},
148 {"tmac_vld_ip_octets"},
156 {"rmac_data_octets"},
157 {"rmac_fcs_err_frms"},
159 {"rmac_vld_mcst_frms"},
160 {"rmac_vld_bcst_frms"},
161 {"rmac_in_rng_len_err_frms"},
162 {"rmac_out_rng_len_err_frms"},
164 {"rmac_pause_ctrl_frms"},
165 {"rmac_unsup_ctrl_frms"},
167 {"rmac_accepted_ucst_frms"},
168 {"rmac_accepted_nucst_frms"},
169 {"rmac_discarded_frms"},
170 {"rmac_drop_events"},
171 {"rmac_ttl_less_fb_octets"},
173 {"rmac_usized_frms"},
174 {"rmac_osized_frms"},
176 {"rmac_jabber_frms"},
177 {"rmac_ttl_64_frms"},
178 {"rmac_ttl_65_127_frms"},
179 {"rmac_ttl_128_255_frms"},
180 {"rmac_ttl_256_511_frms"},
181 {"rmac_ttl_512_1023_frms"},
182 {"rmac_ttl_1024_1518_frms"},
190 {"rmac_err_drp_udp"},
191 {"rmac_xgmii_err_sym"},
209 {"rmac_xgmii_data_err_cnt"},
210 {"rmac_xgmii_ctrl_err_cnt"},
211 {"rmac_accepted_ip"},
215 {"new_rd_req_rtry_cnt"},
217 {"wr_rtry_rd_ack_cnt"},
220 {"new_wr_req_rtry_cnt"},
223 {"rd_rtry_wr_ack_cnt"},
233 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
234 {"rmac_ttl_1519_4095_frms"},
235 {"rmac_ttl_4096_8191_frms"},
236 {"rmac_ttl_8192_max_frms"},
237 {"rmac_ttl_gt_max_frms"},
238 {"rmac_osized_alt_frms"},
239 {"rmac_jabber_alt_frms"},
240 {"rmac_gt_max_alt_frms"},
242 {"rmac_len_discard"},
243 {"rmac_fcs_discard"},
246 {"rmac_red_discard"},
247 {"rmac_rts_discard"},
248 {"rmac_ingm_full_discard"},
252 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
253 {"\n DRIVER STATISTICS"},
254 {"single_bit_ecc_errs"},
255 {"double_bit_ecc_errs"},
268 {"alarm_transceiver_temp_high"},
269 {"alarm_transceiver_temp_low"},
270 {"alarm_laser_bias_current_high"},
271 {"alarm_laser_bias_current_low"},
272 {"alarm_laser_output_power_high"},
273 {"alarm_laser_output_power_low"},
274 {"warn_transceiver_temp_high"},
275 {"warn_transceiver_temp_low"},
276 {"warn_laser_bias_current_high"},
277 {"warn_laser_bias_current_low"},
278 {"warn_laser_output_power_high"},
279 {"warn_laser_output_power_low"},
280 {"lro_aggregated_pkts"},
281 {"lro_flush_both_count"},
282 {"lro_out_of_sequence_pkts"},
283 {"lro_flush_due_to_max_pkts"},
284 {"lro_avg_aggr_pkts"},
285 {"mem_alloc_fail_cnt"},
286 {"pci_map_fail_cnt"},
287 {"watchdog_timer_cnt"},
294 {"tx_tcode_buf_abort_cnt"},
295 {"tx_tcode_desc_abort_cnt"},
296 {"tx_tcode_parity_err_cnt"},
297 {"tx_tcode_link_loss_cnt"},
298 {"tx_tcode_list_proc_err_cnt"},
299 {"rx_tcode_parity_err_cnt"},
300 {"rx_tcode_abort_cnt"},
301 {"rx_tcode_parity_abort_cnt"},
302 {"rx_tcode_rda_fail_cnt"},
303 {"rx_tcode_unkn_prot_cnt"},
304 {"rx_tcode_fcs_err_cnt"},
305 {"rx_tcode_buf_size_err_cnt"},
306 {"rx_tcode_rxd_corrupt_cnt"},
307 {"rx_tcode_unkn_err_cnt"},
315 {"mac_tmac_err_cnt"},
316 {"mac_rmac_err_cnt"},
317 {"xgxs_txgxs_err_cnt"},
318 {"xgxs_rxgxs_err_cnt"},
320 {"prc_pcix_err_cnt"},
327 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
335 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340 /* copy mac addr to def_mac_addr array */
341 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
343 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
344 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
345 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
346 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
347 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
348 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
352 * Constants to be programmed into the Xena's registers, to configure
357 static const u64 herc_act_dtx_cfg
[] = {
359 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
361 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
363 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
365 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
367 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
369 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
371 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
373 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
378 static const u64 xena_dtx_cfg
[] = {
380 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
382 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
384 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
386 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
388 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
390 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
395 * Constants for Fixing the MacAddress problem seen mostly on
398 static const u64 fix_mac
[] = {
399 0x0060000000000000ULL
, 0x0060600000000000ULL
,
400 0x0040600000000000ULL
, 0x0000600000000000ULL
,
401 0x0020600000000000ULL
, 0x0060600000000000ULL
,
402 0x0020600000000000ULL
, 0x0060600000000000ULL
,
403 0x0020600000000000ULL
, 0x0060600000000000ULL
,
404 0x0020600000000000ULL
, 0x0060600000000000ULL
,
405 0x0020600000000000ULL
, 0x0060600000000000ULL
,
406 0x0020600000000000ULL
, 0x0060600000000000ULL
,
407 0x0020600000000000ULL
, 0x0060600000000000ULL
,
408 0x0020600000000000ULL
, 0x0060600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0000600000000000ULL
,
412 0x0040600000000000ULL
, 0x0060600000000000ULL
,
416 MODULE_LICENSE("GPL");
417 MODULE_VERSION(DRV_VERSION
);
420 /* Module Loadable parameters. */
421 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
422 S2IO_PARM_INT(rx_ring_num
, 1);
423 S2IO_PARM_INT(multiq
, 0);
424 S2IO_PARM_INT(rx_ring_mode
, 1);
425 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
426 S2IO_PARM_INT(rmac_pause_time
, 0x100);
427 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
428 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
429 S2IO_PARM_INT(shared_splits
, 0);
430 S2IO_PARM_INT(tmac_util_period
, 5);
431 S2IO_PARM_INT(rmac_util_period
, 5);
432 S2IO_PARM_INT(l3l4hdr_size
, 128);
433 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
434 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
435 /* Frequency of Rx desc syncs expressed as power of 2 */
436 S2IO_PARM_INT(rxsync_frequency
, 3);
437 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
438 S2IO_PARM_INT(intr_type
, 2);
439 /* Large receive offload feature */
441 /* Max pkts to be aggregated by LRO at one time. If not specified,
442 * aggregation happens until we hit max IP pkt size(64K)
444 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
445 S2IO_PARM_INT(indicate_max_pkts
, 0);
447 S2IO_PARM_INT(napi
, 1);
448 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
450 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
451 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
452 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
453 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
454 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
455 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
457 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
458 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
459 module_param_array(rts_frm_len
, uint
, NULL
, 0);
463 * This table lists all the devices that this driver supports.
465 static const struct pci_device_id s2io_tbl
[] = {
466 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
467 PCI_ANY_ID
, PCI_ANY_ID
},
468 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
469 PCI_ANY_ID
, PCI_ANY_ID
},
470 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
471 PCI_ANY_ID
, PCI_ANY_ID
},
472 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
473 PCI_ANY_ID
, PCI_ANY_ID
},
477 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
479 static const struct pci_error_handlers s2io_err_handler
= {
480 .error_detected
= s2io_io_error_detected
,
481 .slot_reset
= s2io_io_slot_reset
,
482 .resume
= s2io_io_resume
,
485 static struct pci_driver s2io_driver
= {
487 .id_table
= s2io_tbl
,
488 .probe
= s2io_init_nic
,
489 .remove
= s2io_rem_nic
,
490 .err_handler
= &s2io_err_handler
,
493 /* A simplifier macro used both by init and free shared_mem Fns(). */
494 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
496 /* netqueue manipulation helper functions */
497 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
499 if (!sp
->config
.multiq
) {
502 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
503 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
505 netif_tx_stop_all_queues(sp
->dev
);
508 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
510 if (!sp
->config
.multiq
)
511 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
514 netif_tx_stop_all_queues(sp
->dev
);
517 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
519 if (!sp
->config
.multiq
) {
522 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
523 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
525 netif_tx_start_all_queues(sp
->dev
);
528 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
530 if (!sp
->config
.multiq
) {
533 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
534 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
536 netif_tx_wake_all_queues(sp
->dev
);
539 static inline void s2io_wake_tx_queue(
540 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
544 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
545 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
546 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
547 if (netif_queue_stopped(fifo
->dev
)) {
548 fifo
->queue_state
= FIFO_QUEUE_START
;
549 netif_wake_queue(fifo
->dev
);
555 * init_shared_mem - Allocation and Initialization of Memory
556 * @nic: Device private variable.
557 * Description: The function allocates all the memory areas shared
558 * between the NIC and the driver. This includes Tx descriptors,
559 * Rx descriptors and the statistics block.
562 static int init_shared_mem(struct s2io_nic
*nic
)
565 void *tmp_v_addr
, *tmp_v_addr_next
;
566 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
567 struct RxD_block
*pre_rxd_blk
= NULL
;
569 int lst_size
, lst_per_page
;
570 struct net_device
*dev
= nic
->dev
;
573 struct config_param
*config
= &nic
->config
;
574 struct mac_info
*mac_control
= &nic
->mac_control
;
575 unsigned long long mem_allocated
= 0;
577 /* Allocation and initialization of TXDLs in FIFOs */
579 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
580 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
582 size
+= tx_cfg
->fifo_len
;
584 if (size
> MAX_AVAILABLE_TXDS
) {
586 "Too many TxDs requested: %d, max supported: %d\n",
587 size
, MAX_AVAILABLE_TXDS
);
592 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
593 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
595 size
= tx_cfg
->fifo_len
;
597 * Legal values are from 2 to 8192
600 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
601 "Valid lengths are 2 through 8192\n",
607 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
608 lst_per_page
= PAGE_SIZE
/ lst_size
;
610 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
611 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
612 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
613 int fifo_len
= tx_cfg
->fifo_len
;
614 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
616 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
617 if (!fifo
->list_info
) {
618 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
621 mem_allocated
+= list_holder_size
;
623 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
624 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
626 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
627 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
629 fifo
->tx_curr_put_info
.offset
= 0;
630 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
631 fifo
->tx_curr_get_info
.offset
= 0;
632 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
635 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
638 for (j
= 0; j
< page_num
; j
++) {
642 tmp_v
= pci_alloc_consistent(nic
->pdev
,
646 "pci_alloc_consistent failed for TxDL\n");
649 /* If we got a zero DMA address(can happen on
650 * certain platforms like PPC), reallocate.
651 * Store virtual address of page we don't want,
655 mac_control
->zerodma_virt_addr
= tmp_v
;
657 "%s: Zero DMA address for TxDL. "
658 "Virtual address %p\n",
660 tmp_v
= pci_alloc_consistent(nic
->pdev
,
664 "pci_alloc_consistent failed for TxDL\n");
667 mem_allocated
+= PAGE_SIZE
;
669 while (k
< lst_per_page
) {
670 int l
= (j
* lst_per_page
) + k
;
671 if (l
== tx_cfg
->fifo_len
)
673 fifo
->list_info
[l
].list_virt_addr
=
674 tmp_v
+ (k
* lst_size
);
675 fifo
->list_info
[l
].list_phy_addr
=
676 tmp_p
+ (k
* lst_size
);
682 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
683 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
684 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
686 size
= tx_cfg
->fifo_len
;
687 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
688 if (!fifo
->ufo_in_band_v
)
690 mem_allocated
+= (size
* sizeof(u64
));
693 /* Allocation and initialization of RXDs in Rings */
695 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
696 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
697 struct ring_info
*ring
= &mac_control
->rings
[i
];
699 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
700 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
701 "multiple of RxDs per Block\n",
705 size
+= rx_cfg
->num_rxd
;
706 ring
->block_count
= rx_cfg
->num_rxd
/
707 (rxd_count
[nic
->rxd_mode
] + 1);
708 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
710 if (nic
->rxd_mode
== RXD_MODE_1
)
711 size
= (size
* (sizeof(struct RxD1
)));
713 size
= (size
* (sizeof(struct RxD3
)));
715 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
716 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
717 struct ring_info
*ring
= &mac_control
->rings
[i
];
719 ring
->rx_curr_get_info
.block_index
= 0;
720 ring
->rx_curr_get_info
.offset
= 0;
721 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
722 ring
->rx_curr_put_info
.block_index
= 0;
723 ring
->rx_curr_put_info
.offset
= 0;
724 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
728 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
729 /* Allocating all the Rx blocks */
730 for (j
= 0; j
< blk_cnt
; j
++) {
731 struct rx_block_info
*rx_blocks
;
734 rx_blocks
= &ring
->rx_blocks
[j
];
735 size
= SIZE_OF_BLOCK
; /* size is always page size */
736 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
738 if (tmp_v_addr
== NULL
) {
740 * In case of failure, free_shared_mem()
741 * is called, which should free any
742 * memory that was alloced till the
745 rx_blocks
->block_virt_addr
= tmp_v_addr
;
748 mem_allocated
+= size
;
749 memset(tmp_v_addr
, 0, size
);
751 size
= sizeof(struct rxd_info
) *
752 rxd_count
[nic
->rxd_mode
];
753 rx_blocks
->block_virt_addr
= tmp_v_addr
;
754 rx_blocks
->block_dma_addr
= tmp_p_addr
;
755 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
756 if (!rx_blocks
->rxds
)
758 mem_allocated
+= size
;
759 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
760 rx_blocks
->rxds
[l
].virt_addr
=
761 rx_blocks
->block_virt_addr
+
762 (rxd_size
[nic
->rxd_mode
] * l
);
763 rx_blocks
->rxds
[l
].dma_addr
=
764 rx_blocks
->block_dma_addr
+
765 (rxd_size
[nic
->rxd_mode
] * l
);
768 /* Interlinking all Rx Blocks */
769 for (j
= 0; j
< blk_cnt
; j
++) {
770 int next
= (j
+ 1) % blk_cnt
;
771 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
772 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
773 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
774 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
776 pre_rxd_blk
= tmp_v_addr
;
777 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
778 (unsigned long)tmp_v_addr_next
;
779 pre_rxd_blk
->pNext_RxD_Blk_physical
=
780 (u64
)tmp_p_addr_next
;
783 if (nic
->rxd_mode
== RXD_MODE_3B
) {
785 * Allocation of Storages for buffer addresses in 2BUFF mode
786 * and the buffers as well.
788 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
789 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
790 struct ring_info
*ring
= &mac_control
->rings
[i
];
792 blk_cnt
= rx_cfg
->num_rxd
/
793 (rxd_count
[nic
->rxd_mode
] + 1);
794 size
= sizeof(struct buffAdd
*) * blk_cnt
;
795 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
798 mem_allocated
+= size
;
799 for (j
= 0; j
< blk_cnt
; j
++) {
802 size
= sizeof(struct buffAdd
) *
803 (rxd_count
[nic
->rxd_mode
] + 1);
804 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
807 mem_allocated
+= size
;
808 while (k
!= rxd_count
[nic
->rxd_mode
]) {
809 ba
= &ring
->ba
[j
][k
];
810 size
= BUF0_LEN
+ ALIGN_SIZE
;
811 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
814 mem_allocated
+= size
;
815 tmp
= (unsigned long)ba
->ba_0_org
;
817 tmp
&= ~((unsigned long)ALIGN_SIZE
);
818 ba
->ba_0
= (void *)tmp
;
820 size
= BUF1_LEN
+ ALIGN_SIZE
;
821 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
824 mem_allocated
+= size
;
825 tmp
= (unsigned long)ba
->ba_1_org
;
827 tmp
&= ~((unsigned long)ALIGN_SIZE
);
828 ba
->ba_1
= (void *)tmp
;
835 /* Allocation and initialization of Statistics block */
836 size
= sizeof(struct stat_block
);
837 mac_control
->stats_mem
=
838 pci_alloc_consistent(nic
->pdev
, size
,
839 &mac_control
->stats_mem_phy
);
841 if (!mac_control
->stats_mem
) {
843 * In case of failure, free_shared_mem() is called, which
844 * should free any memory that was alloced till the
849 mem_allocated
+= size
;
850 mac_control
->stats_mem_sz
= size
;
852 tmp_v_addr
= mac_control
->stats_mem
;
853 mac_control
->stats_info
= tmp_v_addr
;
854 memset(tmp_v_addr
, 0, size
);
855 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
856 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
857 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
862 * free_shared_mem - Free the allocated Memory
863 * @nic: Device private variable.
864 * Description: This function is to free all memory locations allocated by
865 * the init_shared_mem() function and return it to the kernel.
868 static void free_shared_mem(struct s2io_nic
*nic
)
870 int i
, j
, blk_cnt
, size
;
872 dma_addr_t tmp_p_addr
;
873 int lst_size
, lst_per_page
;
874 struct net_device
*dev
;
876 struct config_param
*config
;
877 struct mac_info
*mac_control
;
878 struct stat_block
*stats
;
879 struct swStat
*swstats
;
886 config
= &nic
->config
;
887 mac_control
= &nic
->mac_control
;
888 stats
= mac_control
->stats_info
;
889 swstats
= &stats
->sw_stat
;
891 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
892 lst_per_page
= PAGE_SIZE
/ lst_size
;
894 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
895 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
896 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
898 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
899 for (j
= 0; j
< page_num
; j
++) {
900 int mem_blks
= (j
* lst_per_page
);
901 struct list_info_hold
*fli
;
903 if (!fifo
->list_info
)
906 fli
= &fifo
->list_info
[mem_blks
];
907 if (!fli
->list_virt_addr
)
909 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
912 swstats
->mem_freed
+= PAGE_SIZE
;
914 /* If we got a zero DMA address during allocation,
917 if (mac_control
->zerodma_virt_addr
) {
918 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
919 mac_control
->zerodma_virt_addr
,
922 "%s: Freeing TxDL with zero DMA address. "
923 "Virtual address %p\n",
924 dev
->name
, mac_control
->zerodma_virt_addr
);
925 swstats
->mem_freed
+= PAGE_SIZE
;
927 kfree(fifo
->list_info
);
928 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
929 sizeof(struct list_info_hold
);
932 size
= SIZE_OF_BLOCK
;
933 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
934 struct ring_info
*ring
= &mac_control
->rings
[i
];
936 blk_cnt
= ring
->block_count
;
937 for (j
= 0; j
< blk_cnt
; j
++) {
938 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
939 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
940 if (tmp_v_addr
== NULL
)
942 pci_free_consistent(nic
->pdev
, size
,
943 tmp_v_addr
, tmp_p_addr
);
944 swstats
->mem_freed
+= size
;
945 kfree(ring
->rx_blocks
[j
].rxds
);
946 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
947 rxd_count
[nic
->rxd_mode
];
951 if (nic
->rxd_mode
== RXD_MODE_3B
) {
952 /* Freeing buffer storage addresses in 2BUFF mode. */
953 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
954 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
955 struct ring_info
*ring
= &mac_control
->rings
[i
];
957 blk_cnt
= rx_cfg
->num_rxd
/
958 (rxd_count
[nic
->rxd_mode
] + 1);
959 for (j
= 0; j
< blk_cnt
; j
++) {
963 while (k
!= rxd_count
[nic
->rxd_mode
]) {
964 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
966 swstats
->mem_freed
+=
967 BUF0_LEN
+ ALIGN_SIZE
;
969 swstats
->mem_freed
+=
970 BUF1_LEN
+ ALIGN_SIZE
;
974 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
975 (rxd_count
[nic
->rxd_mode
] + 1);
978 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
983 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
984 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
985 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
987 if (fifo
->ufo_in_band_v
) {
988 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
990 kfree(fifo
->ufo_in_band_v
);
994 if (mac_control
->stats_mem
) {
995 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
996 pci_free_consistent(nic
->pdev
,
997 mac_control
->stats_mem_sz
,
998 mac_control
->stats_mem
,
999 mac_control
->stats_mem_phy
);
1004 * s2io_verify_pci_mode -
1007 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1009 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1010 register u64 val64
= 0;
1013 val64
= readq(&bar0
->pci_mode
);
1014 mode
= (u8
)GET_PCI_MODE(val64
);
1016 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1017 return -1; /* Unknown PCI mode */
1021 #define NEC_VENID 0x1033
1022 #define NEC_DEVID 0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1025 struct pci_dev
*tdev
= NULL
;
1026 for_each_pci_dev(tdev
) {
1027 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1028 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1037 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1039 * s2io_print_pci_mode -
1041 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1043 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1044 register u64 val64
= 0;
1046 struct config_param
*config
= &nic
->config
;
1047 const char *pcimode
;
1049 val64
= readq(&bar0
->pci_mode
);
1050 mode
= (u8
)GET_PCI_MODE(val64
);
1052 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1053 return -1; /* Unknown PCI mode */
1055 config
->bus_speed
= bus_speed
[mode
];
1057 if (s2io_on_nec_bridge(nic
->pdev
)) {
1058 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1064 case PCI_MODE_PCI_33
:
1065 pcimode
= "33MHz PCI bus";
1067 case PCI_MODE_PCI_66
:
1068 pcimode
= "66MHz PCI bus";
1070 case PCI_MODE_PCIX_M1_66
:
1071 pcimode
= "66MHz PCIX(M1) bus";
1073 case PCI_MODE_PCIX_M1_100
:
1074 pcimode
= "100MHz PCIX(M1) bus";
1076 case PCI_MODE_PCIX_M1_133
:
1077 pcimode
= "133MHz PCIX(M1) bus";
1079 case PCI_MODE_PCIX_M2_66
:
1080 pcimode
= "133MHz PCIX(M2) bus";
1082 case PCI_MODE_PCIX_M2_100
:
1083 pcimode
= "200MHz PCIX(M2) bus";
1085 case PCI_MODE_PCIX_M2_133
:
1086 pcimode
= "266MHz PCIX(M2) bus";
1089 pcimode
= "unsupported bus!";
1093 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1094 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1100 * init_tti - Initialization transmit traffic interrupt scheme
1101 * @nic: device private variable
1102 * @link: link status (UP/DOWN) used to enable/disable continuous
1103 * transmit interrupts
1104 * Description: The function configures transmit traffic interrupts
1105 * Return Value: SUCCESS on success and
1109 static int init_tti(struct s2io_nic
*nic
, int link
)
1111 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1112 register u64 val64
= 0;
1114 struct config_param
*config
= &nic
->config
;
1116 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1118 * TTI Initialization. Default Tx timer gets us about
1119 * 250 interrupts per sec. Continuous interrupts are enabled
1122 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1123 int count
= (nic
->config
.bus_speed
* 125)/2;
1124 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1126 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1128 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1129 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1130 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1131 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1133 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1134 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1135 writeq(val64
, &bar0
->tti_data1_mem
);
1137 if (nic
->config
.intr_type
== MSI_X
) {
1138 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1139 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1140 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1141 TTI_DATA2_MEM_TX_UFC_D(0x300);
1143 if ((nic
->config
.tx_steering_type
==
1144 TX_DEFAULT_STEERING
) &&
1145 (config
->tx_fifo_num
> 1) &&
1146 (i
>= nic
->udp_fifo_idx
) &&
1147 (i
< (nic
->udp_fifo_idx
+
1148 nic
->total_udp_fifos
)))
1149 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1150 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1151 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1152 TTI_DATA2_MEM_TX_UFC_D(0x120);
1154 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1155 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1156 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1157 TTI_DATA2_MEM_TX_UFC_D(0x80);
1160 writeq(val64
, &bar0
->tti_data2_mem
);
1162 val64
= TTI_CMD_MEM_WE
|
1163 TTI_CMD_MEM_STROBE_NEW_CMD
|
1164 TTI_CMD_MEM_OFFSET(i
);
1165 writeq(val64
, &bar0
->tti_command_mem
);
1167 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1168 TTI_CMD_MEM_STROBE_NEW_CMD
,
1169 S2IO_BIT_RESET
) != SUCCESS
)
1177 * init_nic - Initialization of hardware
1178 * @nic: device private variable
1179 * Description: The function sequentially configures every block
1180 * of the H/W from their reset values.
1181 * Return Value: SUCCESS on success and
1182 * '-1' on failure (endian settings incorrect).
1185 static int init_nic(struct s2io_nic
*nic
)
1187 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1188 struct net_device
*dev
= nic
->dev
;
1189 register u64 val64
= 0;
1194 unsigned long long mem_share
;
1196 struct config_param
*config
= &nic
->config
;
1197 struct mac_info
*mac_control
= &nic
->mac_control
;
1199 /* to set the swapper controle on the card */
1200 if (s2io_set_swapper(nic
)) {
1201 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1206 * Herc requires EOI to be removed from reset before XGXS, so..
1208 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1209 val64
= 0xA500000000ULL
;
1210 writeq(val64
, &bar0
->sw_reset
);
1212 val64
= readq(&bar0
->sw_reset
);
1215 /* Remove XGXS from reset state */
1217 writeq(val64
, &bar0
->sw_reset
);
1219 val64
= readq(&bar0
->sw_reset
);
1221 /* Ensure that it's safe to access registers by checking
1222 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1224 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1225 for (i
= 0; i
< 50; i
++) {
1226 val64
= readq(&bar0
->adapter_status
);
1227 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1235 /* Enable Receiving broadcasts */
1236 add
= &bar0
->mac_cfg
;
1237 val64
= readq(&bar0
->mac_cfg
);
1238 val64
|= MAC_RMAC_BCAST_ENABLE
;
1239 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1240 writel((u32
)val64
, add
);
1241 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1242 writel((u32
) (val64
>> 32), (add
+ 4));
1244 /* Read registers in all blocks */
1245 val64
= readq(&bar0
->mac_int_mask
);
1246 val64
= readq(&bar0
->mc_int_mask
);
1247 val64
= readq(&bar0
->xgxs_int_mask
);
1251 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1253 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1254 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1255 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1256 &bar0
->dtx_control
, UF
);
1258 msleep(1); /* Necessary!! */
1262 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1263 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1264 &bar0
->dtx_control
, UF
);
1265 val64
= readq(&bar0
->dtx_control
);
1270 /* Tx DMA Initialization */
1272 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1273 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1274 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1275 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1277 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1278 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1280 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1281 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1283 if (i
== (config
->tx_fifo_num
- 1)) {
1290 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1295 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1300 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1305 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1316 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1317 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1319 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1320 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1322 val64
= readq(&bar0
->tx_fifo_partition_0
);
1323 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1324 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1327 * Initialization of Tx_PA_CONFIG register to ignore packet
1328 * integrity checking.
1330 val64
= readq(&bar0
->tx_pa_cfg
);
1331 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1332 TX_PA_CFG_IGNORE_SNAP_OUI
|
1333 TX_PA_CFG_IGNORE_LLC_CTRL
|
1334 TX_PA_CFG_IGNORE_L2_ERR
;
1335 writeq(val64
, &bar0
->tx_pa_cfg
);
1337 /* Rx DMA initialization. */
1339 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1340 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1342 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1344 writeq(val64
, &bar0
->rx_queue_priority
);
1347 * Allocating equal share of memory to all the
1351 if (nic
->device_type
& XFRAME_II_DEVICE
)
1356 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1359 mem_share
= (mem_size
/ config
->rx_ring_num
+
1360 mem_size
% config
->rx_ring_num
);
1361 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1364 mem_share
= (mem_size
/ config
->rx_ring_num
);
1365 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1368 mem_share
= (mem_size
/ config
->rx_ring_num
);
1369 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1372 mem_share
= (mem_size
/ config
->rx_ring_num
);
1373 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1376 mem_share
= (mem_size
/ config
->rx_ring_num
);
1377 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1380 mem_share
= (mem_size
/ config
->rx_ring_num
);
1381 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1384 mem_share
= (mem_size
/ config
->rx_ring_num
);
1385 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1388 mem_share
= (mem_size
/ config
->rx_ring_num
);
1389 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1393 writeq(val64
, &bar0
->rx_queue_cfg
);
1396 * Filling Tx round robin registers
1397 * as per the number of FIFOs for equal scheduling priority
1399 switch (config
->tx_fifo_num
) {
1402 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1403 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1404 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1405 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1406 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1409 val64
= 0x0001000100010001ULL
;
1410 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1411 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1412 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1413 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1414 val64
= 0x0001000100000000ULL
;
1415 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1418 val64
= 0x0001020001020001ULL
;
1419 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1420 val64
= 0x0200010200010200ULL
;
1421 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1422 val64
= 0x0102000102000102ULL
;
1423 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1424 val64
= 0x0001020001020001ULL
;
1425 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1426 val64
= 0x0200010200000000ULL
;
1427 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1430 val64
= 0x0001020300010203ULL
;
1431 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1432 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1433 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1434 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1435 val64
= 0x0001020300000000ULL
;
1436 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1439 val64
= 0x0001020304000102ULL
;
1440 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1441 val64
= 0x0304000102030400ULL
;
1442 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1443 val64
= 0x0102030400010203ULL
;
1444 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1445 val64
= 0x0400010203040001ULL
;
1446 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1447 val64
= 0x0203040000000000ULL
;
1448 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1451 val64
= 0x0001020304050001ULL
;
1452 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1453 val64
= 0x0203040500010203ULL
;
1454 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1455 val64
= 0x0405000102030405ULL
;
1456 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1457 val64
= 0x0001020304050001ULL
;
1458 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1459 val64
= 0x0203040500000000ULL
;
1460 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1463 val64
= 0x0001020304050600ULL
;
1464 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1465 val64
= 0x0102030405060001ULL
;
1466 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1467 val64
= 0x0203040506000102ULL
;
1468 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1469 val64
= 0x0304050600010203ULL
;
1470 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1471 val64
= 0x0405060000000000ULL
;
1472 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1475 val64
= 0x0001020304050607ULL
;
1476 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1480 val64
= 0x0001020300000000ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1485 /* Enable all configured Tx FIFO partitions */
1486 val64
= readq(&bar0
->tx_fifo_partition_0
);
1487 val64
|= (TX_FIFO_PARTITION_EN
);
1488 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1490 /* Filling the Rx round robin registers as per the
1491 * number of Rings and steering based on QoS with
1494 switch (config
->rx_ring_num
) {
1497 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1498 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1499 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1500 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1501 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1503 val64
= 0x8080808080808080ULL
;
1504 writeq(val64
, &bar0
->rts_qos_steering
);
1507 val64
= 0x0001000100010001ULL
;
1508 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1509 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1510 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1511 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1512 val64
= 0x0001000100000000ULL
;
1513 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1515 val64
= 0x8080808040404040ULL
;
1516 writeq(val64
, &bar0
->rts_qos_steering
);
1519 val64
= 0x0001020001020001ULL
;
1520 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1521 val64
= 0x0200010200010200ULL
;
1522 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1523 val64
= 0x0102000102000102ULL
;
1524 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1525 val64
= 0x0001020001020001ULL
;
1526 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1527 val64
= 0x0200010200000000ULL
;
1528 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1530 val64
= 0x8080804040402020ULL
;
1531 writeq(val64
, &bar0
->rts_qos_steering
);
1534 val64
= 0x0001020300010203ULL
;
1535 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1536 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1537 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1538 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1539 val64
= 0x0001020300000000ULL
;
1540 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1542 val64
= 0x8080404020201010ULL
;
1543 writeq(val64
, &bar0
->rts_qos_steering
);
1546 val64
= 0x0001020304000102ULL
;
1547 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1548 val64
= 0x0304000102030400ULL
;
1549 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1550 val64
= 0x0102030400010203ULL
;
1551 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1552 val64
= 0x0400010203040001ULL
;
1553 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1554 val64
= 0x0203040000000000ULL
;
1555 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1557 val64
= 0x8080404020201008ULL
;
1558 writeq(val64
, &bar0
->rts_qos_steering
);
1561 val64
= 0x0001020304050001ULL
;
1562 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1563 val64
= 0x0203040500010203ULL
;
1564 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1565 val64
= 0x0405000102030405ULL
;
1566 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1567 val64
= 0x0001020304050001ULL
;
1568 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1569 val64
= 0x0203040500000000ULL
;
1570 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1572 val64
= 0x8080404020100804ULL
;
1573 writeq(val64
, &bar0
->rts_qos_steering
);
1576 val64
= 0x0001020304050600ULL
;
1577 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1578 val64
= 0x0102030405060001ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1580 val64
= 0x0203040506000102ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1582 val64
= 0x0304050600010203ULL
;
1583 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1584 val64
= 0x0405060000000000ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1587 val64
= 0x8080402010080402ULL
;
1588 writeq(val64
, &bar0
->rts_qos_steering
);
1591 val64
= 0x0001020304050607ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1593 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1594 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1595 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1596 val64
= 0x0001020300000000ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1599 val64
= 0x8040201008040201ULL
;
1600 writeq(val64
, &bar0
->rts_qos_steering
);
1606 for (i
= 0; i
< 8; i
++)
1607 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1609 /* Set the default rts frame length for the rings configured */
1610 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1611 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1612 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1614 /* Set the frame length for the configured rings
1615 * desired by the user
1617 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1618 /* If rts_frm_len[i] == 0 then it is assumed that user not
1619 * specified frame length steering.
1620 * If the user provides the frame length then program
1621 * the rts_frm_len register for those values or else
1622 * leave it as it is.
1624 if (rts_frm_len
[i
] != 0) {
1625 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1626 &bar0
->rts_frm_len_n
[i
]);
1630 /* Disable differentiated services steering logic */
1631 for (i
= 0; i
< 64; i
++) {
1632 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1634 "%s: rts_ds_steer failed on codepoint %d\n",
1640 /* Program statistics memory */
1641 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1643 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1644 val64
= STAT_BC(0x320);
1645 writeq(val64
, &bar0
->stat_byte_cnt
);
1649 * Initializing the sampling rate for the device to calculate the
1650 * bandwidth utilization.
1652 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1653 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1654 writeq(val64
, &bar0
->mac_link_util
);
1657 * Initializing the Transmit and Receive Traffic Interrupt
1661 /* Initialize TTI */
1662 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1665 /* RTI Initialization */
1666 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1668 * Programmed to generate Apprx 500 Intrs per
1671 int count
= (nic
->config
.bus_speed
* 125)/4;
1672 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1674 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1675 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1676 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1677 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1678 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1680 writeq(val64
, &bar0
->rti_data1_mem
);
1682 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1683 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1684 if (nic
->config
.intr_type
== MSI_X
)
1685 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1686 RTI_DATA2_MEM_RX_UFC_D(0x40));
1688 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1689 RTI_DATA2_MEM_RX_UFC_D(0x80));
1690 writeq(val64
, &bar0
->rti_data2_mem
);
1692 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1693 val64
= RTI_CMD_MEM_WE
|
1694 RTI_CMD_MEM_STROBE_NEW_CMD
|
1695 RTI_CMD_MEM_OFFSET(i
);
1696 writeq(val64
, &bar0
->rti_command_mem
);
1699 * Once the operation completes, the Strobe bit of the
1700 * command register will be reset. We poll for this
1701 * particular condition. We wait for a maximum of 500ms
1702 * for the operation to complete, if it's not complete
1703 * by then we return error.
1707 val64
= readq(&bar0
->rti_command_mem
);
1708 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1712 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1722 * Initializing proper values as Pause threshold into all
1723 * the 8 Queues on Rx side.
1725 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1726 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1728 /* Disable RMAC PAD STRIPPING */
1729 add
= &bar0
->mac_cfg
;
1730 val64
= readq(&bar0
->mac_cfg
);
1731 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1732 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1733 writel((u32
) (val64
), add
);
1734 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1735 writel((u32
) (val64
>> 32), (add
+ 4));
1736 val64
= readq(&bar0
->mac_cfg
);
1738 /* Enable FCS stripping by adapter */
1739 add
= &bar0
->mac_cfg
;
1740 val64
= readq(&bar0
->mac_cfg
);
1741 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1742 if (nic
->device_type
== XFRAME_II_DEVICE
)
1743 writeq(val64
, &bar0
->mac_cfg
);
1745 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1746 writel((u32
) (val64
), add
);
1747 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1748 writel((u32
) (val64
>> 32), (add
+ 4));
1752 * Set the time value to be inserted in the pause frame
1753 * generated by xena.
1755 val64
= readq(&bar0
->rmac_pause_cfg
);
1756 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1757 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1758 writeq(val64
, &bar0
->rmac_pause_cfg
);
1761 * Set the Threshold Limit for Generating the pause frame
1762 * If the amount of data in any Queue exceeds ratio of
1763 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1764 * pause frame is generated
1767 for (i
= 0; i
< 4; i
++) {
1768 val64
|= (((u64
)0xFF00 |
1769 nic
->mac_control
.mc_pause_threshold_q0q3
)
1772 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1775 for (i
= 0; i
< 4; i
++) {
1776 val64
|= (((u64
)0xFF00 |
1777 nic
->mac_control
.mc_pause_threshold_q4q7
)
1780 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1783 * TxDMA will stop Read request if the number of read split has
1784 * exceeded the limit pointed by shared_splits
1786 val64
= readq(&bar0
->pic_control
);
1787 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1788 writeq(val64
, &bar0
->pic_control
);
1790 if (nic
->config
.bus_speed
== 266) {
1791 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1792 writeq(0x0, &bar0
->read_retry_delay
);
1793 writeq(0x0, &bar0
->write_retry_delay
);
1797 * Programming the Herc to split every write transaction
1798 * that does not start on an ADB to reduce disconnects.
1800 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1801 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1802 MISC_LINK_STABILITY_PRD(3);
1803 writeq(val64
, &bar0
->misc_control
);
1804 val64
= readq(&bar0
->pic_control2
);
1805 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1806 writeq(val64
, &bar0
->pic_control2
);
1808 if (strstr(nic
->product_name
, "CX4")) {
1809 val64
= TMAC_AVG_IPG(0x17);
1810 writeq(val64
, &bar0
->tmac_avg_ipg
);
1815 #define LINK_UP_DOWN_INTERRUPT 1
1816 #define MAC_RMAC_ERR_TIMER 2
1818 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1820 if (nic
->device_type
== XFRAME_II_DEVICE
)
1821 return LINK_UP_DOWN_INTERRUPT
;
1823 return MAC_RMAC_ERR_TIMER
;
1827 * do_s2io_write_bits - update alarm bits in alarm register
1828 * @value: alarm bits
1829 * @flag: interrupt status
1830 * @addr: address value
1831 * Description: update alarm bits in alarm register
1835 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1839 temp64
= readq(addr
);
1841 if (flag
== ENABLE_INTRS
)
1842 temp64
&= ~((u64
)value
);
1844 temp64
|= ((u64
)value
);
1845 writeq(temp64
, addr
);
1848 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1850 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1851 register u64 gen_int_mask
= 0;
1854 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1855 if (mask
& TX_DMA_INTR
) {
1856 gen_int_mask
|= TXDMA_INT_M
;
1858 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1859 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1860 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1861 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1863 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1864 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1865 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1866 &bar0
->pfc_err_mask
);
1868 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1869 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1870 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1872 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1873 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1874 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1875 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1876 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1878 flag
, &bar0
->pcc_err_mask
);
1880 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1881 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1883 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1884 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1885 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1886 flag
, &bar0
->lso_err_mask
);
1888 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1889 flag
, &bar0
->tpa_err_mask
);
1891 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1894 if (mask
& TX_MAC_INTR
) {
1895 gen_int_mask
|= TXMAC_INT_M
;
1896 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1897 &bar0
->mac_int_mask
);
1898 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1899 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1900 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1901 flag
, &bar0
->mac_tmac_err_mask
);
1904 if (mask
& TX_XGXS_INTR
) {
1905 gen_int_mask
|= TXXGXS_INT_M
;
1906 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1907 &bar0
->xgxs_int_mask
);
1908 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1909 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1910 flag
, &bar0
->xgxs_txgxs_err_mask
);
1913 if (mask
& RX_DMA_INTR
) {
1914 gen_int_mask
|= RXDMA_INT_M
;
1915 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1916 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1917 flag
, &bar0
->rxdma_int_mask
);
1918 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1919 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1920 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1921 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1922 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1923 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1924 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1925 &bar0
->prc_pcix_err_mask
);
1926 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1927 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1928 &bar0
->rpa_err_mask
);
1929 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1930 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1931 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1932 RDA_FRM_ECC_SG_ERR
|
1933 RDA_MISC_ERR
|RDA_PCIX_ERR
,
1934 flag
, &bar0
->rda_err_mask
);
1935 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1936 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1937 flag
, &bar0
->rti_err_mask
);
1940 if (mask
& RX_MAC_INTR
) {
1941 gen_int_mask
|= RXMAC_INT_M
;
1942 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1943 &bar0
->mac_int_mask
);
1944 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1945 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1946 RMAC_DOUBLE_ECC_ERR
);
1947 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
1948 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
1949 do_s2io_write_bits(interruptible
,
1950 flag
, &bar0
->mac_rmac_err_mask
);
1953 if (mask
& RX_XGXS_INTR
) {
1954 gen_int_mask
|= RXXGXS_INT_M
;
1955 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1956 &bar0
->xgxs_int_mask
);
1957 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1958 &bar0
->xgxs_rxgxs_err_mask
);
1961 if (mask
& MC_INTR
) {
1962 gen_int_mask
|= MC_INT_M
;
1963 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
1964 flag
, &bar0
->mc_int_mask
);
1965 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1966 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1967 &bar0
->mc_err_mask
);
1969 nic
->general_int_mask
= gen_int_mask
;
1971 /* Remove this line when alarm interrupts are enabled */
1972 nic
->general_int_mask
= 0;
1976 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1977 * @nic: device private variable,
1978 * @mask: A mask indicating which Intr block must be modified and,
1979 * @flag: A flag indicating whether to enable or disable the Intrs.
1980 * Description: This function will either disable or enable the interrupts
1981 * depending on the flag argument. The mask argument can be used to
1982 * enable/disable any Intr block.
1983 * Return Value: NONE.
1986 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1988 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1989 register u64 temp64
= 0, intr_mask
= 0;
1991 intr_mask
= nic
->general_int_mask
;
1993 /* Top level interrupt classification */
1994 /* PIC Interrupts */
1995 if (mask
& TX_PIC_INTR
) {
1996 /* Enable PIC Intrs in the general intr mask register */
1997 intr_mask
|= TXPIC_INT_M
;
1998 if (flag
== ENABLE_INTRS
) {
2000 * If Hercules adapter enable GPIO otherwise
2001 * disable all PCIX, Flash, MDIO, IIC and GPIO
2002 * interrupts for now.
2005 if (s2io_link_fault_indication(nic
) ==
2006 LINK_UP_DOWN_INTERRUPT
) {
2007 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2008 &bar0
->pic_int_mask
);
2009 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2010 &bar0
->gpio_int_mask
);
2012 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2013 } else if (flag
== DISABLE_INTRS
) {
2015 * Disable PIC Intrs in the general
2016 * intr mask register
2018 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2022 /* Tx traffic interrupts */
2023 if (mask
& TX_TRAFFIC_INTR
) {
2024 intr_mask
|= TXTRAFFIC_INT_M
;
2025 if (flag
== ENABLE_INTRS
) {
2027 * Enable all the Tx side interrupts
2028 * writing 0 Enables all 64 TX interrupt levels
2030 writeq(0x0, &bar0
->tx_traffic_mask
);
2031 } else if (flag
== DISABLE_INTRS
) {
2033 * Disable Tx Traffic Intrs in the general intr mask
2036 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2040 /* Rx traffic interrupts */
2041 if (mask
& RX_TRAFFIC_INTR
) {
2042 intr_mask
|= RXTRAFFIC_INT_M
;
2043 if (flag
== ENABLE_INTRS
) {
2044 /* writing 0 Enables all 8 RX interrupt levels */
2045 writeq(0x0, &bar0
->rx_traffic_mask
);
2046 } else if (flag
== DISABLE_INTRS
) {
2048 * Disable Rx Traffic Intrs in the general intr mask
2051 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2055 temp64
= readq(&bar0
->general_int_mask
);
2056 if (flag
== ENABLE_INTRS
)
2057 temp64
&= ~((u64
)intr_mask
);
2059 temp64
= DISABLE_ALL_INTRS
;
2060 writeq(temp64
, &bar0
->general_int_mask
);
2062 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2066 * verify_pcc_quiescent- Checks for PCC quiescent state
2067 * Return: 1 If PCC is quiescence
2068 * 0 If PCC is not quiescence
2070 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2073 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2074 u64 val64
= readq(&bar0
->adapter_status
);
2076 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2078 if (flag
== false) {
2079 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2080 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2083 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2087 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2088 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2089 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2092 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2093 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2101 * verify_xena_quiescence - Checks whether the H/W is ready
2102 * Description: Returns whether the H/W is ready to go or not. Depending
2103 * on whether adapter enable bit was written or not the comparison
2104 * differs and the calling function passes the input argument flag to
2106 * Return: 1 If xena is quiescence
2107 * 0 If Xena is not quiescence
2110 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2113 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2114 u64 val64
= readq(&bar0
->adapter_status
);
2115 mode
= s2io_verify_pci_mode(sp
);
2117 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2118 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2121 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2122 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2125 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2126 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2129 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2130 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2133 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2134 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2137 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2138 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2141 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2142 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2145 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2146 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2151 * In PCI 33 mode, the P_PLL is not used, and therefore,
2152 * the the P_PLL_LOCK bit in the adapter_status register will
2155 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2156 sp
->device_type
== XFRAME_II_DEVICE
&&
2157 mode
!= PCI_MODE_PCI_33
) {
2158 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2161 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2162 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2163 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2170 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2171 * @sp: Pointer to device specifc structure
2173 * New procedure to clear mac address reading problems on Alpha platforms
2177 static void fix_mac_address(struct s2io_nic
*sp
)
2179 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2182 while (fix_mac
[i
] != END_SIGN
) {
2183 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2185 (void) readq(&bar0
->gpio_control
);
2190 * start_nic - Turns the device on
2191 * @nic : device private variable.
2193 * This function actually turns the device on. Before this function is
2194 * called,all Registers are configured from their reset states
2195 * and shared memory is allocated but the NIC is still quiescent. On
2196 * calling this function, the device interrupts are cleared and the NIC is
2197 * literally switched on by writing into the adapter control register.
2199 * SUCCESS on success and -1 on failure.
2202 static int start_nic(struct s2io_nic
*nic
)
2204 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2205 struct net_device
*dev
= nic
->dev
;
2206 register u64 val64
= 0;
2208 struct config_param
*config
= &nic
->config
;
2209 struct mac_info
*mac_control
= &nic
->mac_control
;
2211 /* PRC Initialization and configuration */
2212 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2213 struct ring_info
*ring
= &mac_control
->rings
[i
];
2215 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2216 &bar0
->prc_rxd0_n
[i
]);
2218 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2219 if (nic
->rxd_mode
== RXD_MODE_1
)
2220 val64
|= PRC_CTRL_RC_ENABLED
;
2222 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2223 if (nic
->device_type
== XFRAME_II_DEVICE
)
2224 val64
|= PRC_CTRL_GROUP_READS
;
2225 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2226 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2227 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2230 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2231 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2232 val64
= readq(&bar0
->rx_pa_cfg
);
2233 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2234 writeq(val64
, &bar0
->rx_pa_cfg
);
2237 if (vlan_tag_strip
== 0) {
2238 val64
= readq(&bar0
->rx_pa_cfg
);
2239 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2240 writeq(val64
, &bar0
->rx_pa_cfg
);
2241 nic
->vlan_strip_flag
= 0;
2245 * Enabling MC-RLDRAM. After enabling the device, we timeout
2246 * for around 100ms, which is approximately the time required
2247 * for the device to be ready for operation.
2249 val64
= readq(&bar0
->mc_rldram_mrs
);
2250 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2251 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2252 val64
= readq(&bar0
->mc_rldram_mrs
);
2254 msleep(100); /* Delay by around 100 ms. */
2256 /* Enabling ECC Protection. */
2257 val64
= readq(&bar0
->adapter_control
);
2258 val64
&= ~ADAPTER_ECC_EN
;
2259 writeq(val64
, &bar0
->adapter_control
);
2262 * Verify if the device is ready to be enabled, if so enable
2265 val64
= readq(&bar0
->adapter_status
);
2266 if (!verify_xena_quiescence(nic
)) {
2267 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2268 "Adapter status reads: 0x%llx\n",
2269 dev
->name
, (unsigned long long)val64
);
2274 * With some switches, link might be already up at this point.
2275 * Because of this weird behavior, when we enable laser,
2276 * we may not get link. We need to handle this. We cannot
2277 * figure out which switch is misbehaving. So we are forced to
2278 * make a global change.
2281 /* Enabling Laser. */
2282 val64
= readq(&bar0
->adapter_control
);
2283 val64
|= ADAPTER_EOI_TX_ON
;
2284 writeq(val64
, &bar0
->adapter_control
);
2286 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2288 * Dont see link state interrupts initially on some switches,
2289 * so directly scheduling the link state task here.
2291 schedule_work(&nic
->set_link_task
);
2293 /* SXE-002: Initialize link and activity LED */
2294 subid
= nic
->pdev
->subsystem_device
;
2295 if (((subid
& 0xFF) >= 0x07) &&
2296 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2297 val64
= readq(&bar0
->gpio_control
);
2298 val64
|= 0x0000800000000000ULL
;
2299 writeq(val64
, &bar0
->gpio_control
);
2300 val64
= 0x0411040400000000ULL
;
2301 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2307 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2309 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2310 struct TxD
*txdlp
, int get_off
)
2312 struct s2io_nic
*nic
= fifo_data
->nic
;
2313 struct sk_buff
*skb
;
2318 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2319 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2320 sizeof(u64
), PCI_DMA_TODEVICE
);
2324 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2326 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2329 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2330 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2331 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2334 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2335 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2336 if (!txds
->Buffer_Pointer
)
2338 pci_unmap_page(nic
->pdev
,
2339 (dma_addr_t
)txds
->Buffer_Pointer
,
2340 skb_frag_size(frag
), PCI_DMA_TODEVICE
);
2343 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2348 * free_tx_buffers - Free all queued Tx buffers
2349 * @nic : device private variable.
2351 * Free all queued Tx buffers.
2352 * Return Value: void
2355 static void free_tx_buffers(struct s2io_nic
*nic
)
2357 struct net_device
*dev
= nic
->dev
;
2358 struct sk_buff
*skb
;
2362 struct config_param
*config
= &nic
->config
;
2363 struct mac_info
*mac_control
= &nic
->mac_control
;
2364 struct stat_block
*stats
= mac_control
->stats_info
;
2365 struct swStat
*swstats
= &stats
->sw_stat
;
2367 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2368 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2369 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2370 unsigned long flags
;
2372 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2373 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2374 txdp
= fifo
->list_info
[j
].list_virt_addr
;
2375 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2377 swstats
->mem_freed
+= skb
->truesize
;
2383 "%s: forcibly freeing %d skbs on FIFO%d\n",
2385 fifo
->tx_curr_get_info
.offset
= 0;
2386 fifo
->tx_curr_put_info
.offset
= 0;
2387 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2392 * stop_nic - To stop the nic
2393 * @nic ; device private variable.
2395 * This function does exactly the opposite of what the start_nic()
2396 * function does. This function is called to stop the device.
2401 static void stop_nic(struct s2io_nic
*nic
)
2403 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2404 register u64 val64
= 0;
2407 /* Disable all interrupts */
2408 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2409 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2410 interruptible
|= TX_PIC_INTR
;
2411 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2413 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2414 val64
= readq(&bar0
->adapter_control
);
2415 val64
&= ~(ADAPTER_CNTL_EN
);
2416 writeq(val64
, &bar0
->adapter_control
);
2420 * fill_rx_buffers - Allocates the Rx side skbs
2421 * @ring_info: per ring structure
2422 * @from_card_up: If this is true, we will map the buffer to get
2423 * the dma address for buf0 and buf1 to give it to the card.
2424 * Else we will sync the already mapped buffer to give it to the card.
2426 * The function allocates Rx side skbs and puts the physical
2427 * address of these buffers into the RxD buffer pointers, so that the NIC
2428 * can DMA the received frame into these locations.
2429 * The NIC supports 3 receive modes, viz
2431 * 2. three buffer and
2432 * 3. Five buffer modes.
2433 * Each mode defines how many fragments the received frame will be split
2434 * up into by the NIC. The frame is split into L3 header, L4 Header,
2435 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2436 * is split into 3 fragments. As of now only single buffer mode is
2439 * SUCCESS on success or an appropriate -ve value on failure.
2441 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2444 struct sk_buff
*skb
;
2446 int off
, size
, block_no
, block_no1
;
2451 struct RxD_t
*first_rxdp
= NULL
;
2452 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2455 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2457 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2459 block_no1
= ring
->rx_curr_get_info
.block_index
;
2460 while (alloc_tab
< alloc_cnt
) {
2461 block_no
= ring
->rx_curr_put_info
.block_index
;
2463 off
= ring
->rx_curr_put_info
.offset
;
2465 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2467 if ((block_no
== block_no1
) &&
2468 (off
== ring
->rx_curr_get_info
.offset
) &&
2469 (rxdp
->Host_Control
)) {
2470 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2474 if (off
&& (off
== ring
->rxd_count
)) {
2475 ring
->rx_curr_put_info
.block_index
++;
2476 if (ring
->rx_curr_put_info
.block_index
==
2478 ring
->rx_curr_put_info
.block_index
= 0;
2479 block_no
= ring
->rx_curr_put_info
.block_index
;
2481 ring
->rx_curr_put_info
.offset
= off
;
2482 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2483 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2484 ring
->dev
->name
, rxdp
);
2488 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2489 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2490 (rxdp
->Control_2
& s2BIT(0)))) {
2491 ring
->rx_curr_put_info
.offset
= off
;
2494 /* calculate size of skb based on ring mode */
2496 HEADER_ETHERNET_II_802_3_SIZE
+
2497 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2498 if (ring
->rxd_mode
== RXD_MODE_1
)
2499 size
+= NET_IP_ALIGN
;
2501 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2504 skb
= netdev_alloc_skb(nic
->dev
, size
);
2506 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2510 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2512 swstats
->mem_alloc_fail_cnt
++;
2516 swstats
->mem_allocated
+= skb
->truesize
;
2518 if (ring
->rxd_mode
== RXD_MODE_1
) {
2519 /* 1 buffer mode - normal operation mode */
2520 rxdp1
= (struct RxD1
*)rxdp
;
2521 memset(rxdp
, 0, sizeof(struct RxD1
));
2522 skb_reserve(skb
, NET_IP_ALIGN
);
2523 rxdp1
->Buffer0_ptr
=
2524 pci_map_single(ring
->pdev
, skb
->data
,
2525 size
- NET_IP_ALIGN
,
2526 PCI_DMA_FROMDEVICE
);
2527 if (pci_dma_mapping_error(nic
->pdev
,
2528 rxdp1
->Buffer0_ptr
))
2529 goto pci_map_failed
;
2532 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2533 rxdp
->Host_Control
= (unsigned long)skb
;
2534 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2537 * 2 buffer mode provides 128
2538 * byte aligned receive buffers.
2541 rxdp3
= (struct RxD3
*)rxdp
;
2542 /* save buffer pointers to avoid frequent dma mapping */
2543 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2544 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2545 memset(rxdp
, 0, sizeof(struct RxD3
));
2546 /* restore the buffer pointers for dma sync*/
2547 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2548 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2550 ba
= &ring
->ba
[block_no
][off
];
2551 skb_reserve(skb
, BUF0_LEN
);
2552 tmp
= (u64
)(unsigned long)skb
->data
;
2555 skb
->data
= (void *) (unsigned long)tmp
;
2556 skb_reset_tail_pointer(skb
);
2559 rxdp3
->Buffer0_ptr
=
2560 pci_map_single(ring
->pdev
, ba
->ba_0
,
2562 PCI_DMA_FROMDEVICE
);
2563 if (pci_dma_mapping_error(nic
->pdev
,
2564 rxdp3
->Buffer0_ptr
))
2565 goto pci_map_failed
;
2567 pci_dma_sync_single_for_device(ring
->pdev
,
2568 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2570 PCI_DMA_FROMDEVICE
);
2572 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2573 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2574 /* Two buffer mode */
2577 * Buffer2 will have L3/L4 header plus
2580 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2583 PCI_DMA_FROMDEVICE
);
2585 if (pci_dma_mapping_error(nic
->pdev
,
2586 rxdp3
->Buffer2_ptr
))
2587 goto pci_map_failed
;
2590 rxdp3
->Buffer1_ptr
=
2591 pci_map_single(ring
->pdev
,
2594 PCI_DMA_FROMDEVICE
);
2596 if (pci_dma_mapping_error(nic
->pdev
,
2597 rxdp3
->Buffer1_ptr
)) {
2598 pci_unmap_single(ring
->pdev
,
2599 (dma_addr_t
)(unsigned long)
2602 PCI_DMA_FROMDEVICE
);
2603 goto pci_map_failed
;
2606 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2607 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2610 rxdp
->Control_2
|= s2BIT(0);
2611 rxdp
->Host_Control
= (unsigned long) (skb
);
2613 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2614 rxdp
->Control_1
|= RXD_OWN_XENA
;
2616 if (off
== (ring
->rxd_count
+ 1))
2618 ring
->rx_curr_put_info
.offset
= off
;
2620 rxdp
->Control_2
|= SET_RXD_MARKER
;
2621 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2624 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2628 ring
->rx_bufs_left
+= 1;
2633 /* Transfer ownership of first descriptor to adapter just before
2634 * exiting. Before that, use memory barrier so that ownership
2635 * and other fields are seen by adapter correctly.
2639 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2645 swstats
->pci_map_fail_cnt
++;
2646 swstats
->mem_freed
+= skb
->truesize
;
2647 dev_kfree_skb_irq(skb
);
2651 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2653 struct net_device
*dev
= sp
->dev
;
2655 struct sk_buff
*skb
;
2659 struct mac_info
*mac_control
= &sp
->mac_control
;
2660 struct stat_block
*stats
= mac_control
->stats_info
;
2661 struct swStat
*swstats
= &stats
->sw_stat
;
2663 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2664 rxdp
= mac_control
->rings
[ring_no
].
2665 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2666 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2669 if (sp
->rxd_mode
== RXD_MODE_1
) {
2670 rxdp1
= (struct RxD1
*)rxdp
;
2671 pci_unmap_single(sp
->pdev
,
2672 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2674 HEADER_ETHERNET_II_802_3_SIZE
+
2675 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2676 PCI_DMA_FROMDEVICE
);
2677 memset(rxdp
, 0, sizeof(struct RxD1
));
2678 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2679 rxdp3
= (struct RxD3
*)rxdp
;
2680 pci_unmap_single(sp
->pdev
,
2681 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2683 PCI_DMA_FROMDEVICE
);
2684 pci_unmap_single(sp
->pdev
,
2685 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2687 PCI_DMA_FROMDEVICE
);
2688 pci_unmap_single(sp
->pdev
,
2689 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2691 PCI_DMA_FROMDEVICE
);
2692 memset(rxdp
, 0, sizeof(struct RxD3
));
2694 swstats
->mem_freed
+= skb
->truesize
;
2696 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2701 * free_rx_buffers - Frees all Rx buffers
2702 * @sp: device private variable.
2704 * This function will free all Rx buffers allocated by host.
2709 static void free_rx_buffers(struct s2io_nic
*sp
)
2711 struct net_device
*dev
= sp
->dev
;
2712 int i
, blk
= 0, buf_cnt
= 0;
2713 struct config_param
*config
= &sp
->config
;
2714 struct mac_info
*mac_control
= &sp
->mac_control
;
2716 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2717 struct ring_info
*ring
= &mac_control
->rings
[i
];
2719 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2720 free_rxd_blk(sp
, i
, blk
);
2722 ring
->rx_curr_put_info
.block_index
= 0;
2723 ring
->rx_curr_get_info
.block_index
= 0;
2724 ring
->rx_curr_put_info
.offset
= 0;
2725 ring
->rx_curr_get_info
.offset
= 0;
2726 ring
->rx_bufs_left
= 0;
2727 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2728 dev
->name
, buf_cnt
, i
);
2732 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2734 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2735 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2742 * s2io_poll - Rx interrupt handler for NAPI support
2743 * @napi : pointer to the napi structure.
2744 * @budget : The number of packets that were budgeted to be processed
2745 * during one pass through the 'Poll" function.
2747 * Comes into picture only if NAPI support has been incorporated. It does
2748 * the same thing that rx_intr_handler does, but not in a interrupt context
2749 * also It will process only a given number of packets.
2751 * 0 on success and 1 if there are No Rx packets to be processed.
2754 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2756 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2757 struct net_device
*dev
= ring
->dev
;
2758 int pkts_processed
= 0;
2759 u8 __iomem
*addr
= NULL
;
2761 struct s2io_nic
*nic
= netdev_priv(dev
);
2762 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2763 int budget_org
= budget
;
2765 if (unlikely(!is_s2io_card_up(nic
)))
2768 pkts_processed
= rx_intr_handler(ring
, budget
);
2769 s2io_chk_rx_buffers(nic
, ring
);
2771 if (pkts_processed
< budget_org
) {
2772 napi_complete_done(napi
, pkts_processed
);
2773 /*Re Enable MSI-Rx Vector*/
2774 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2775 addr
+= 7 - ring
->ring_no
;
2776 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2780 return pkts_processed
;
2783 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2785 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2786 int pkts_processed
= 0;
2787 int ring_pkts_processed
, i
;
2788 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2789 int budget_org
= budget
;
2790 struct config_param
*config
= &nic
->config
;
2791 struct mac_info
*mac_control
= &nic
->mac_control
;
2793 if (unlikely(!is_s2io_card_up(nic
)))
2796 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2797 struct ring_info
*ring
= &mac_control
->rings
[i
];
2798 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2799 s2io_chk_rx_buffers(nic
, ring
);
2800 pkts_processed
+= ring_pkts_processed
;
2801 budget
-= ring_pkts_processed
;
2805 if (pkts_processed
< budget_org
) {
2806 napi_complete_done(napi
, pkts_processed
);
2807 /* Re enable the Rx interrupts for the ring */
2808 writeq(0, &bar0
->rx_traffic_mask
);
2809 readl(&bar0
->rx_traffic_mask
);
2811 return pkts_processed
;
2814 #ifdef CONFIG_NET_POLL_CONTROLLER
2816 * s2io_netpoll - netpoll event handler entry point
2817 * @dev : pointer to the device structure.
2819 * This function will be called by upper layer to check for events on the
2820 * interface in situations where interrupts are disabled. It is used for
2821 * specific in-kernel networking tasks, such as remote consoles and kernel
2822 * debugging over the network (example netdump in RedHat).
2824 static void s2io_netpoll(struct net_device
*dev
)
2826 struct s2io_nic
*nic
= netdev_priv(dev
);
2827 const int irq
= nic
->pdev
->irq
;
2828 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2829 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2831 struct config_param
*config
= &nic
->config
;
2832 struct mac_info
*mac_control
= &nic
->mac_control
;
2834 if (pci_channel_offline(nic
->pdev
))
2839 writeq(val64
, &bar0
->rx_traffic_int
);
2840 writeq(val64
, &bar0
->tx_traffic_int
);
2842 /* we need to free up the transmitted skbufs or else netpoll will
2843 * run out of skbs and will fail and eventually netpoll application such
2844 * as netdump will fail.
2846 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2847 tx_intr_handler(&mac_control
->fifos
[i
]);
2849 /* check for received packet and indicate up to network */
2850 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2851 struct ring_info
*ring
= &mac_control
->rings
[i
];
2853 rx_intr_handler(ring
, 0);
2856 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2857 struct ring_info
*ring
= &mac_control
->rings
[i
];
2859 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2861 "%s: Out of memory in Rx Netpoll!!\n",
2871 * rx_intr_handler - Rx interrupt handler
2872 * @ring_info: per ring structure.
2873 * @budget: budget for napi processing.
2875 * If the interrupt is because of a received frame or if the
2876 * receive ring contains fresh as yet un-processed frames,this function is
2877 * called. It picks out the RxD at which place the last Rx processing had
2878 * stopped and sends the skb to the OSM's Rx handler and then increments
2881 * No. of napi packets processed.
2883 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2885 int get_block
, put_block
;
2886 struct rx_curr_get_info get_info
, put_info
;
2888 struct sk_buff
*skb
;
2889 int pkt_cnt
= 0, napi_pkts
= 0;
2897 get_info
= ring_data
->rx_curr_get_info
;
2898 get_block
= get_info
.block_index
;
2899 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2900 put_block
= put_info
.block_index
;
2901 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2903 while (RXD_IS_UP2DT(rxdp
)) {
2905 * If your are next to put index then it's
2906 * FIFO full condition
2908 if ((get_block
== put_block
) &&
2909 (get_info
.offset
+ 1) == put_info
.offset
) {
2910 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2911 ring_data
->dev
->name
);
2914 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2916 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2917 ring_data
->dev
->name
);
2920 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2921 rxdp1
= (struct RxD1
*)rxdp
;
2922 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2925 HEADER_ETHERNET_II_802_3_SIZE
+
2928 PCI_DMA_FROMDEVICE
);
2929 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2930 rxdp3
= (struct RxD3
*)rxdp
;
2931 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
2932 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2934 PCI_DMA_FROMDEVICE
);
2935 pci_unmap_single(ring_data
->pdev
,
2936 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2938 PCI_DMA_FROMDEVICE
);
2940 prefetch(skb
->data
);
2941 rx_osm_handler(ring_data
, rxdp
);
2943 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2944 rxdp
= ring_data
->rx_blocks
[get_block
].
2945 rxds
[get_info
.offset
].virt_addr
;
2946 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
2947 get_info
.offset
= 0;
2948 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2950 if (get_block
== ring_data
->block_count
)
2952 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2953 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2956 if (ring_data
->nic
->config
.napi
) {
2963 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2966 if (ring_data
->lro
) {
2967 /* Clear all LRO sessions before exiting */
2968 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
2969 struct lro
*lro
= &ring_data
->lro0_n
[i
];
2971 update_L3L4_header(ring_data
->nic
, lro
);
2972 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
2973 clear_lro_session(lro
);
2981 * tx_intr_handler - Transmit interrupt handler
2982 * @nic : device private variable
2984 * If an interrupt was raised to indicate DMA complete of the
2985 * Tx packet, this function is called. It identifies the last TxD
2986 * whose buffer was freed and frees all skbs whose data have already
2987 * DMA'ed into the NICs internal memory.
2992 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2994 struct s2io_nic
*nic
= fifo_data
->nic
;
2995 struct tx_curr_get_info get_info
, put_info
;
2996 struct sk_buff
*skb
= NULL
;
2999 unsigned long flags
= 0;
3001 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3002 struct swStat
*swstats
= &stats
->sw_stat
;
3004 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3007 get_info
= fifo_data
->tx_curr_get_info
;
3008 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3009 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3010 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3011 (get_info
.offset
!= put_info
.offset
) &&
3012 (txdlp
->Host_Control
)) {
3013 /* Check for TxD errors */
3014 if (txdlp
->Control_1
& TXD_T_CODE
) {
3015 unsigned long long err
;
3016 err
= txdlp
->Control_1
& TXD_T_CODE
;
3018 swstats
->parity_err_cnt
++;
3021 /* update t_code statistics */
3022 err_mask
= err
>> 48;
3025 swstats
->tx_buf_abort_cnt
++;
3029 swstats
->tx_desc_abort_cnt
++;
3033 swstats
->tx_parity_err_cnt
++;
3037 swstats
->tx_link_loss_cnt
++;
3041 swstats
->tx_list_proc_err_cnt
++;
3046 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3048 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3049 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3055 /* Updating the statistics block */
3056 swstats
->mem_freed
+= skb
->truesize
;
3057 dev_kfree_skb_irq(skb
);
3060 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3061 get_info
.offset
= 0;
3062 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3063 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3066 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3068 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3072 * s2io_mdio_write - Function to write in to MDIO registers
3073 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3074 * @addr : address value
3075 * @value : data value
3076 * @dev : pointer to net_device structure
3078 * This function is used to write values to the MDIO registers
3081 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3082 struct net_device
*dev
)
3085 struct s2io_nic
*sp
= netdev_priv(dev
);
3086 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3088 /* address transaction */
3089 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3090 MDIO_MMD_DEV_ADDR(mmd_type
) |
3091 MDIO_MMS_PRT_ADDR(0x0);
3092 writeq(val64
, &bar0
->mdio_control
);
3093 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64
, &bar0
->mdio_control
);
3097 /* Data transaction */
3098 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3099 MDIO_MMD_DEV_ADDR(mmd_type
) |
3100 MDIO_MMS_PRT_ADDR(0x0) |
3101 MDIO_MDIO_DATA(value
) |
3102 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3103 writeq(val64
, &bar0
->mdio_control
);
3104 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3105 writeq(val64
, &bar0
->mdio_control
);
3108 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3109 MDIO_MMD_DEV_ADDR(mmd_type
) |
3110 MDIO_MMS_PRT_ADDR(0x0) |
3111 MDIO_OP(MDIO_OP_READ_TRANS
);
3112 writeq(val64
, &bar0
->mdio_control
);
3113 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3114 writeq(val64
, &bar0
->mdio_control
);
3119 * s2io_mdio_read - Function to write in to MDIO registers
3120 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3121 * @addr : address value
3122 * @dev : pointer to net_device structure
3124 * This function is used to read values to the MDIO registers
3127 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3131 struct s2io_nic
*sp
= netdev_priv(dev
);
3132 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3134 /* address transaction */
3135 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3136 | MDIO_MMD_DEV_ADDR(mmd_type
)
3137 | MDIO_MMS_PRT_ADDR(0x0));
3138 writeq(val64
, &bar0
->mdio_control
);
3139 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3140 writeq(val64
, &bar0
->mdio_control
);
3143 /* Data transaction */
3144 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3145 MDIO_MMD_DEV_ADDR(mmd_type
) |
3146 MDIO_MMS_PRT_ADDR(0x0) |
3147 MDIO_OP(MDIO_OP_READ_TRANS
);
3148 writeq(val64
, &bar0
->mdio_control
);
3149 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3150 writeq(val64
, &bar0
->mdio_control
);
3153 /* Read the value from regs */
3154 rval64
= readq(&bar0
->mdio_control
);
3155 rval64
= rval64
& 0xFFFF0000;
3156 rval64
= rval64
>> 16;
3161 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3162 * @counter : counter value to be updated
3163 * @flag : flag to indicate the status
3164 * @type : counter type
3166 * This function is to check the status of the xpak counters value
3170 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3176 for (i
= 0; i
< index
; i
++)
3180 *counter
= *counter
+ 1;
3181 val64
= *regs_stat
& mask
;
3182 val64
= val64
>> (index
* 0x2);
3188 "Take Xframe NIC out of service.\n");
3190 "Excessive temperatures may result in premature transceiver failure.\n");
3194 "Take Xframe NIC out of service.\n");
3196 "Excessive bias currents may indicate imminent laser diode failure.\n");
3200 "Take Xframe NIC out of service.\n");
3202 "Excessive laser output power may saturate far-end receiver.\n");
3206 "Incorrect XPAK Alarm type\n");
3210 val64
= val64
<< (index
* 0x2);
3211 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3214 *regs_stat
= *regs_stat
& (~mask
);
3219 * s2io_updt_xpak_counter - Function to update the xpak counters
3220 * @dev : pointer to net_device struct
3222 * This function is to upate the status of the xpak counters value
3225 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3233 struct s2io_nic
*sp
= netdev_priv(dev
);
3234 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3235 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3237 /* Check the communication with the MDIO slave */
3240 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3241 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3243 "ERR: MDIO slave access failed - Returned %llx\n",
3244 (unsigned long long)val64
);
3248 /* Check for the expected value of control reg 1 */
3249 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3250 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3251 "Returned: %llx- Expected: 0x%x\n",
3252 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3256 /* Loading the DOM register to MDIO register */
3258 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3259 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3261 /* Reading the Alarm flags */
3264 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3266 flag
= CHECKBIT(val64
, 0x7);
3268 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3269 &xstats
->xpak_regs_stat
,
3272 if (CHECKBIT(val64
, 0x6))
3273 xstats
->alarm_transceiver_temp_low
++;
3275 flag
= CHECKBIT(val64
, 0x3);
3277 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3278 &xstats
->xpak_regs_stat
,
3281 if (CHECKBIT(val64
, 0x2))
3282 xstats
->alarm_laser_bias_current_low
++;
3284 flag
= CHECKBIT(val64
, 0x1);
3286 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3287 &xstats
->xpak_regs_stat
,
3290 if (CHECKBIT(val64
, 0x0))
3291 xstats
->alarm_laser_output_power_low
++;
3293 /* Reading the Warning flags */
3296 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3298 if (CHECKBIT(val64
, 0x7))
3299 xstats
->warn_transceiver_temp_high
++;
3301 if (CHECKBIT(val64
, 0x6))
3302 xstats
->warn_transceiver_temp_low
++;
3304 if (CHECKBIT(val64
, 0x3))
3305 xstats
->warn_laser_bias_current_high
++;
3307 if (CHECKBIT(val64
, 0x2))
3308 xstats
->warn_laser_bias_current_low
++;
3310 if (CHECKBIT(val64
, 0x1))
3311 xstats
->warn_laser_output_power_high
++;
3313 if (CHECKBIT(val64
, 0x0))
3314 xstats
->warn_laser_output_power_low
++;
3318 * wait_for_cmd_complete - waits for a command to complete.
3319 * @sp : private member of the device structure, which is a pointer to the
3320 * s2io_nic structure.
3321 * Description: Function that waits for a command to Write into RMAC
3322 * ADDR DATA registers to be completed and returns either success or
3323 * error depending on whether the command was complete or not.
3325 * SUCCESS on success and FAILURE on failure.
3328 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3331 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3334 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3338 val64
= readq(addr
);
3339 if (bit_state
== S2IO_BIT_RESET
) {
3340 if (!(val64
& busy_bit
)) {
3345 if (val64
& busy_bit
) {
3362 * check_pci_device_id - Checks if the device id is supported
3364 * Description: Function to check if the pci device id is supported by driver.
3365 * Return value: Actual device id if supported else PCI_ANY_ID
3367 static u16
check_pci_device_id(u16 id
)
3370 case PCI_DEVICE_ID_HERC_WIN
:
3371 case PCI_DEVICE_ID_HERC_UNI
:
3372 return XFRAME_II_DEVICE
;
3373 case PCI_DEVICE_ID_S2IO_UNI
:
3374 case PCI_DEVICE_ID_S2IO_WIN
:
3375 return XFRAME_I_DEVICE
;
3382 * s2io_reset - Resets the card.
3383 * @sp : private member of the device structure.
3384 * Description: Function to Reset the card. This function then also
3385 * restores the previously saved PCI configuration space registers as
3386 * the card reset also resets the configuration space.
3391 static void s2io_reset(struct s2io_nic
*sp
)
3393 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3398 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3399 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3400 struct stat_block
*stats
;
3401 struct swStat
*swstats
;
3403 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3404 __func__
, pci_name(sp
->pdev
));
3406 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3407 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3409 val64
= SW_RESET_ALL
;
3410 writeq(val64
, &bar0
->sw_reset
);
3411 if (strstr(sp
->product_name
, "CX4"))
3414 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3416 /* Restore the PCI state saved during initialization. */
3417 pci_restore_state(sp
->pdev
);
3418 pci_save_state(sp
->pdev
);
3419 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3420 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3425 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3426 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3428 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3432 /* Set swapper to enable I/O register access */
3433 s2io_set_swapper(sp
);
3435 /* restore mac_addr entries */
3436 do_s2io_restore_unicast_mc(sp
);
3438 /* Restore the MSIX table entries from local variables */
3439 restore_xmsi_data(sp
);
3441 /* Clear certain PCI/PCI-X fields after reset */
3442 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3443 /* Clear "detected parity error" bit */
3444 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3446 /* Clearing PCIX Ecc status register */
3447 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3449 /* Clearing PCI_STATUS error reflected here */
3450 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3453 /* Reset device statistics maintained by OS */
3454 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3456 stats
= sp
->mac_control
.stats_info
;
3457 swstats
= &stats
->sw_stat
;
3459 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3460 up_cnt
= swstats
->link_up_cnt
;
3461 down_cnt
= swstats
->link_down_cnt
;
3462 up_time
= swstats
->link_up_time
;
3463 down_time
= swstats
->link_down_time
;
3464 reset_cnt
= swstats
->soft_reset_cnt
;
3465 mem_alloc_cnt
= swstats
->mem_allocated
;
3466 mem_free_cnt
= swstats
->mem_freed
;
3467 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3469 memset(stats
, 0, sizeof(struct stat_block
));
3471 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3472 swstats
->link_up_cnt
= up_cnt
;
3473 swstats
->link_down_cnt
= down_cnt
;
3474 swstats
->link_up_time
= up_time
;
3475 swstats
->link_down_time
= down_time
;
3476 swstats
->soft_reset_cnt
= reset_cnt
;
3477 swstats
->mem_allocated
= mem_alloc_cnt
;
3478 swstats
->mem_freed
= mem_free_cnt
;
3479 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3481 /* SXE-002: Configure link and activity LED to turn it off */
3482 subid
= sp
->pdev
->subsystem_device
;
3483 if (((subid
& 0xFF) >= 0x07) &&
3484 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3485 val64
= readq(&bar0
->gpio_control
);
3486 val64
|= 0x0000800000000000ULL
;
3487 writeq(val64
, &bar0
->gpio_control
);
3488 val64
= 0x0411040400000000ULL
;
3489 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3493 * Clear spurious ECC interrupts that would have occurred on
3494 * XFRAME II cards after reset.
3496 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3497 val64
= readq(&bar0
->pcc_err_reg
);
3498 writeq(val64
, &bar0
->pcc_err_reg
);
3501 sp
->device_enabled_once
= false;
3505 * s2io_set_swapper - to set the swapper controle on the card
3506 * @sp : private member of the device structure,
3507 * pointer to the s2io_nic structure.
3508 * Description: Function to set the swapper control on the card
3509 * correctly depending on the 'endianness' of the system.
3511 * SUCCESS on success and FAILURE on failure.
3514 static int s2io_set_swapper(struct s2io_nic
*sp
)
3516 struct net_device
*dev
= sp
->dev
;
3517 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3518 u64 val64
, valt
, valr
;
3521 * Set proper endian settings and verify the same by reading
3522 * the PIF Feed-back register.
3525 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3526 if (val64
!= 0x0123456789ABCDEFULL
) {
3528 static const u64 value
[] = {
3529 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3530 0x8100008181000081ULL
, /* FE=1, SE=0 */
3531 0x4200004242000042ULL
, /* FE=0, SE=1 */
3536 writeq(value
[i
], &bar0
->swapper_ctrl
);
3537 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3538 if (val64
== 0x0123456789ABCDEFULL
)
3543 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3544 "feedback read %llx\n",
3545 dev
->name
, (unsigned long long)val64
);
3550 valr
= readq(&bar0
->swapper_ctrl
);
3553 valt
= 0x0123456789ABCDEFULL
;
3554 writeq(valt
, &bar0
->xmsi_address
);
3555 val64
= readq(&bar0
->xmsi_address
);
3557 if (val64
!= valt
) {
3559 static const u64 value
[] = {
3560 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3561 0x0081810000818100ULL
, /* FE=1, SE=0 */
3562 0x0042420000424200ULL
, /* FE=0, SE=1 */
3567 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3568 writeq(valt
, &bar0
->xmsi_address
);
3569 val64
= readq(&bar0
->xmsi_address
);
3575 unsigned long long x
= val64
;
3577 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3581 val64
= readq(&bar0
->swapper_ctrl
);
3582 val64
&= 0xFFFF000000000000ULL
;
3586 * The device by default set to a big endian format, so a
3587 * big endian driver need not set anything.
3589 val64
|= (SWAPPER_CTRL_TXP_FE
|
3590 SWAPPER_CTRL_TXP_SE
|
3591 SWAPPER_CTRL_TXD_R_FE
|
3592 SWAPPER_CTRL_TXD_W_FE
|
3593 SWAPPER_CTRL_TXF_R_FE
|
3594 SWAPPER_CTRL_RXD_R_FE
|
3595 SWAPPER_CTRL_RXD_W_FE
|
3596 SWAPPER_CTRL_RXF_W_FE
|
3597 SWAPPER_CTRL_XMSI_FE
|
3598 SWAPPER_CTRL_STATS_FE
|
3599 SWAPPER_CTRL_STATS_SE
);
3600 if (sp
->config
.intr_type
== INTA
)
3601 val64
|= SWAPPER_CTRL_XMSI_SE
;
3602 writeq(val64
, &bar0
->swapper_ctrl
);
3605 * Initially we enable all bits to make it accessible by the
3606 * driver, then we selectively enable only those bits that
3609 val64
|= (SWAPPER_CTRL_TXP_FE
|
3610 SWAPPER_CTRL_TXP_SE
|
3611 SWAPPER_CTRL_TXD_R_FE
|
3612 SWAPPER_CTRL_TXD_R_SE
|
3613 SWAPPER_CTRL_TXD_W_FE
|
3614 SWAPPER_CTRL_TXD_W_SE
|
3615 SWAPPER_CTRL_TXF_R_FE
|
3616 SWAPPER_CTRL_RXD_R_FE
|
3617 SWAPPER_CTRL_RXD_R_SE
|
3618 SWAPPER_CTRL_RXD_W_FE
|
3619 SWAPPER_CTRL_RXD_W_SE
|
3620 SWAPPER_CTRL_RXF_W_FE
|
3621 SWAPPER_CTRL_XMSI_FE
|
3622 SWAPPER_CTRL_STATS_FE
|
3623 SWAPPER_CTRL_STATS_SE
);
3624 if (sp
->config
.intr_type
== INTA
)
3625 val64
|= SWAPPER_CTRL_XMSI_SE
;
3626 writeq(val64
, &bar0
->swapper_ctrl
);
3628 val64
= readq(&bar0
->swapper_ctrl
);
3631 * Verifying if endian settings are accurate by reading a
3632 * feedback register.
3634 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3635 if (val64
!= 0x0123456789ABCDEFULL
) {
3636 /* Endian settings are incorrect, calls for another dekko. */
3638 "%s: Endian settings are wrong, feedback read %llx\n",
3639 dev
->name
, (unsigned long long)val64
);
3646 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3648 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3650 int ret
= 0, cnt
= 0;
3653 val64
= readq(&bar0
->xmsi_access
);
3654 if (!(val64
& s2BIT(15)))
3660 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3667 static void restore_xmsi_data(struct s2io_nic
*nic
)
3669 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3673 if (nic
->device_type
== XFRAME_I_DEVICE
)
3676 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3677 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3678 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3679 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3680 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3681 writeq(val64
, &bar0
->xmsi_access
);
3682 if (wait_for_msix_trans(nic
, msix_index
)) {
3683 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3684 __func__
, msix_index
);
3690 static void store_xmsi_data(struct s2io_nic
*nic
)
3692 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3693 u64 val64
, addr
, data
;
3696 if (nic
->device_type
== XFRAME_I_DEVICE
)
3699 /* Store and display */
3700 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3701 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3702 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3703 writeq(val64
, &bar0
->xmsi_access
);
3704 if (wait_for_msix_trans(nic
, msix_index
)) {
3705 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3706 __func__
, msix_index
);
3709 addr
= readq(&bar0
->xmsi_address
);
3710 data
= readq(&bar0
->xmsi_data
);
3712 nic
->msix_info
[i
].addr
= addr
;
3713 nic
->msix_info
[i
].data
= data
;
3718 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3720 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3722 u16 msi_control
; /* Temp variable */
3723 int ret
, i
, j
, msix_indx
= 1;
3725 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3726 struct swStat
*swstats
= &stats
->sw_stat
;
3728 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3729 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3730 if (!nic
->entries
) {
3731 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3733 swstats
->mem_alloc_fail_cnt
++;
3736 swstats
->mem_allocated
+= size
;
3738 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3739 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3740 if (!nic
->s2io_entries
) {
3741 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3743 swstats
->mem_alloc_fail_cnt
++;
3744 kfree(nic
->entries
);
3746 += (nic
->num_entries
* sizeof(struct msix_entry
));
3749 swstats
->mem_allocated
+= size
;
3751 nic
->entries
[0].entry
= 0;
3752 nic
->s2io_entries
[0].entry
= 0;
3753 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3754 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3755 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3757 for (i
= 1; i
< nic
->num_entries
; i
++) {
3758 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3759 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3760 nic
->s2io_entries
[i
].arg
= NULL
;
3761 nic
->s2io_entries
[i
].in_use
= 0;
3764 rx_mat
= readq(&bar0
->rx_mat
);
3765 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3766 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3767 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3768 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3769 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3772 writeq(rx_mat
, &bar0
->rx_mat
);
3773 readq(&bar0
->rx_mat
);
3775 ret
= pci_enable_msix_range(nic
->pdev
, nic
->entries
,
3776 nic
->num_entries
, nic
->num_entries
);
3777 /* We fail init if error or we get less vectors than min required */
3779 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3780 kfree(nic
->entries
);
3781 swstats
->mem_freed
+= nic
->num_entries
*
3782 sizeof(struct msix_entry
);
3783 kfree(nic
->s2io_entries
);
3784 swstats
->mem_freed
+= nic
->num_entries
*
3785 sizeof(struct s2io_msix_entry
);
3786 nic
->entries
= NULL
;
3787 nic
->s2io_entries
= NULL
;
3792 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3793 * in the herc NIC. (Temp change, needs to be removed later)
3795 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3796 msi_control
|= 0x1; /* Enable MSI */
3797 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3802 /* Handle software interrupt used during MSI(X) test */
3803 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3805 struct s2io_nic
*sp
= dev_id
;
3807 sp
->msi_detected
= 1;
3808 wake_up(&sp
->msi_wait
);
3813 /* Test interrupt path by forcing a a software IRQ */
3814 static int s2io_test_msi(struct s2io_nic
*sp
)
3816 struct pci_dev
*pdev
= sp
->pdev
;
3817 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3821 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3824 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3825 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3829 init_waitqueue_head(&sp
->msi_wait
);
3830 sp
->msi_detected
= 0;
3832 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3833 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3834 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3835 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3836 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3838 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3840 if (!sp
->msi_detected
) {
3841 /* MSI(X) test failed, go back to INTx mode */
3842 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3843 "using MSI(X) during test\n",
3844 sp
->dev
->name
, pci_name(pdev
));
3849 free_irq(sp
->entries
[1].vector
, sp
);
3851 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3856 static void remove_msix_isr(struct s2io_nic
*sp
)
3861 for (i
= 0; i
< sp
->num_entries
; i
++) {
3862 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3863 int vector
= sp
->entries
[i
].vector
;
3864 void *arg
= sp
->s2io_entries
[i
].arg
;
3865 free_irq(vector
, arg
);
3870 kfree(sp
->s2io_entries
);
3872 sp
->s2io_entries
= NULL
;
3874 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3875 msi_control
&= 0xFFFE; /* Disable MSI */
3876 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3878 pci_disable_msix(sp
->pdev
);
3881 static void remove_inta_isr(struct s2io_nic
*sp
)
3883 free_irq(sp
->pdev
->irq
, sp
->dev
);
3886 /* ********************************************************* *
3887 * Functions defined below concern the OS part of the driver *
3888 * ********************************************************* */
3891 * s2io_open - open entry point of the driver
3892 * @dev : pointer to the device structure.
3894 * This function is the open entry point of the driver. It mainly calls a
3895 * function to allocate Rx buffers and inserts them into the buffer
3896 * descriptors and then enables the Rx part of the NIC.
3898 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3902 static int s2io_open(struct net_device
*dev
)
3904 struct s2io_nic
*sp
= netdev_priv(dev
);
3905 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3909 * Make sure you have link off by default every time
3910 * Nic is initialized
3912 netif_carrier_off(dev
);
3913 sp
->last_link_state
= 0;
3915 /* Initialize H/W and enable interrupts */
3916 err
= s2io_card_up(sp
);
3918 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3920 goto hw_init_failed
;
3923 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3924 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3927 goto hw_init_failed
;
3929 s2io_start_all_tx_queue(sp
);
3933 if (sp
->config
.intr_type
== MSI_X
) {
3936 swstats
->mem_freed
+= sp
->num_entries
*
3937 sizeof(struct msix_entry
);
3939 if (sp
->s2io_entries
) {
3940 kfree(sp
->s2io_entries
);
3941 swstats
->mem_freed
+= sp
->num_entries
*
3942 sizeof(struct s2io_msix_entry
);
3949 * s2io_close -close entry point of the driver
3950 * @dev : device pointer.
3952 * This is the stop entry point of the driver. It needs to undo exactly
3953 * whatever was done by the open entry point,thus it's usually referred to
3954 * as the close function.Among other things this function mainly stops the
3955 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3957 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3961 static int s2io_close(struct net_device
*dev
)
3963 struct s2io_nic
*sp
= netdev_priv(dev
);
3964 struct config_param
*config
= &sp
->config
;
3968 /* Return if the device is already closed *
3969 * Can happen when s2io_card_up failed in change_mtu *
3971 if (!is_s2io_card_up(sp
))
3974 s2io_stop_all_tx_queue(sp
);
3975 /* delete all populated mac entries */
3976 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3977 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3978 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3979 do_s2io_delete_unicast_mc(sp
, tmp64
);
3988 * s2io_xmit - Tx entry point of te driver
3989 * @skb : the socket buffer containing the Tx data.
3990 * @dev : device pointer.
3992 * This function is the Tx entry point of the driver. S2IO NIC supports
3993 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3994 * NOTE: when device can't queue the pkt,just the trans_start variable will
3997 * 0 on success & 1 on failure.
4000 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4002 struct s2io_nic
*sp
= netdev_priv(dev
);
4003 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4006 struct TxFIFO_element __iomem
*tx_fifo
;
4007 unsigned long flags
= 0;
4009 struct fifo_info
*fifo
= NULL
;
4011 int enable_per_list_interrupt
= 0;
4012 struct config_param
*config
= &sp
->config
;
4013 struct mac_info
*mac_control
= &sp
->mac_control
;
4014 struct stat_block
*stats
= mac_control
->stats_info
;
4015 struct swStat
*swstats
= &stats
->sw_stat
;
4017 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4019 if (unlikely(skb
->len
<= 0)) {
4020 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4021 dev_kfree_skb_any(skb
);
4022 return NETDEV_TX_OK
;
4025 if (!is_s2io_card_up(sp
)) {
4026 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4028 dev_kfree_skb_any(skb
);
4029 return NETDEV_TX_OK
;
4033 if (skb_vlan_tag_present(skb
))
4034 vlan_tag
= skb_vlan_tag_get(skb
);
4035 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4036 if (skb
->protocol
== htons(ETH_P_IP
)) {
4041 if (!ip_is_fragment(ip
)) {
4042 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4045 if (ip
->protocol
== IPPROTO_TCP
) {
4046 queue_len
= sp
->total_tcp_fifos
;
4047 queue
= (ntohs(th
->source
) +
4049 sp
->fifo_selector
[queue_len
- 1];
4050 if (queue
>= queue_len
)
4051 queue
= queue_len
- 1;
4052 } else if (ip
->protocol
== IPPROTO_UDP
) {
4053 queue_len
= sp
->total_udp_fifos
;
4054 queue
= (ntohs(th
->source
) +
4056 sp
->fifo_selector
[queue_len
- 1];
4057 if (queue
>= queue_len
)
4058 queue
= queue_len
- 1;
4059 queue
+= sp
->udp_fifo_idx
;
4060 if (skb
->len
> 1024)
4061 enable_per_list_interrupt
= 1;
4065 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4066 /* get fifo number based on skb->priority value */
4067 queue
= config
->fifo_mapping
4068 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4069 fifo
= &mac_control
->fifos
[queue
];
4071 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4073 if (sp
->config
.multiq
) {
4074 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4075 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4076 return NETDEV_TX_BUSY
;
4078 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4079 if (netif_queue_stopped(dev
)) {
4080 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4081 return NETDEV_TX_BUSY
;
4085 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4086 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4087 txdp
= fifo
->list_info
[put_off
].list_virt_addr
;
4089 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4090 /* Avoid "put" pointer going beyond "get" pointer */
4091 if (txdp
->Host_Control
||
4092 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4093 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4094 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4095 dev_kfree_skb_any(skb
);
4096 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4097 return NETDEV_TX_OK
;
4100 offload_type
= s2io_offload_type(skb
);
4101 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4102 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4103 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4105 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4106 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4110 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4111 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4112 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4113 if (enable_per_list_interrupt
)
4114 if (put_off
& (queue_len
>> 5))
4115 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4117 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4118 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4121 frg_len
= skb_headlen(skb
);
4122 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4123 frg_len
, PCI_DMA_TODEVICE
);
4124 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4125 goto pci_map_failed
;
4127 txdp
->Host_Control
= (unsigned long)skb
;
4128 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4130 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4131 /* For fragmented SKB. */
4132 for (i
= 0; i
< frg_cnt
; i
++) {
4133 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4134 /* A '0' length fragment will be ignored */
4135 if (!skb_frag_size(frag
))
4138 txdp
->Buffer_Pointer
= (u64
)skb_frag_dma_map(&sp
->pdev
->dev
,
4140 skb_frag_size(frag
),
4142 txdp
->Control_1
= TXD_BUFFER0_SIZE(skb_frag_size(frag
));
4144 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4146 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4147 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4148 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4150 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4153 val64
|= TX_FIFO_SPECIAL_FUNC
;
4155 writeq(val64
, &tx_fifo
->List_Control
);
4160 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4162 fifo
->tx_curr_put_info
.offset
= put_off
;
4164 /* Avoid "put" pointer going beyond "get" pointer */
4165 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4166 swstats
->fifo_full_cnt
++;
4168 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4170 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4172 swstats
->mem_allocated
+= skb
->truesize
;
4173 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4175 if (sp
->config
.intr_type
== MSI_X
)
4176 tx_intr_handler(fifo
);
4178 return NETDEV_TX_OK
;
4181 swstats
->pci_map_fail_cnt
++;
4182 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4183 swstats
->mem_freed
+= skb
->truesize
;
4184 dev_kfree_skb_any(skb
);
4185 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4186 return NETDEV_TX_OK
;
4190 s2io_alarm_handle(struct timer_list
*t
)
4192 struct s2io_nic
*sp
= from_timer(sp
, t
, alarm_timer
);
4193 struct net_device
*dev
= sp
->dev
;
4195 s2io_handle_errors(dev
);
4196 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4199 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4201 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4202 struct s2io_nic
*sp
= ring
->nic
;
4203 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4205 if (unlikely(!is_s2io_card_up(sp
)))
4208 if (sp
->config
.napi
) {
4209 u8 __iomem
*addr
= NULL
;
4212 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4213 addr
+= (7 - ring
->ring_no
);
4214 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4217 napi_schedule(&ring
->napi
);
4219 rx_intr_handler(ring
, 0);
4220 s2io_chk_rx_buffers(sp
, ring
);
4226 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4229 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4230 struct s2io_nic
*sp
= fifos
->nic
;
4231 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4232 struct config_param
*config
= &sp
->config
;
4235 if (unlikely(!is_s2io_card_up(sp
)))
4238 reason
= readq(&bar0
->general_int_status
);
4239 if (unlikely(reason
== S2IO_MINUS_ONE
))
4240 /* Nothing much can be done. Get out */
4243 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4244 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4246 if (reason
& GEN_INTR_TXPIC
)
4247 s2io_txpic_intr_handle(sp
);
4249 if (reason
& GEN_INTR_TXTRAFFIC
)
4250 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4252 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4253 tx_intr_handler(&fifos
[i
]);
4255 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4256 readl(&bar0
->general_int_status
);
4259 /* The interrupt was not raised by us */
4263 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4265 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4268 val64
= readq(&bar0
->pic_int_status
);
4269 if (val64
& PIC_INT_GPIO
) {
4270 val64
= readq(&bar0
->gpio_int_reg
);
4271 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4272 (val64
& GPIO_INT_REG_LINK_UP
)) {
4274 * This is unstable state so clear both up/down
4275 * interrupt and adapter to re-evaluate the link state.
4277 val64
|= GPIO_INT_REG_LINK_DOWN
;
4278 val64
|= GPIO_INT_REG_LINK_UP
;
4279 writeq(val64
, &bar0
->gpio_int_reg
);
4280 val64
= readq(&bar0
->gpio_int_mask
);
4281 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4282 GPIO_INT_MASK_LINK_DOWN
);
4283 writeq(val64
, &bar0
->gpio_int_mask
);
4284 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4285 val64
= readq(&bar0
->adapter_status
);
4286 /* Enable Adapter */
4287 val64
= readq(&bar0
->adapter_control
);
4288 val64
|= ADAPTER_CNTL_EN
;
4289 writeq(val64
, &bar0
->adapter_control
);
4290 val64
|= ADAPTER_LED_ON
;
4291 writeq(val64
, &bar0
->adapter_control
);
4292 if (!sp
->device_enabled_once
)
4293 sp
->device_enabled_once
= 1;
4295 s2io_link(sp
, LINK_UP
);
4297 * unmask link down interrupt and mask link-up
4300 val64
= readq(&bar0
->gpio_int_mask
);
4301 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4302 val64
|= GPIO_INT_MASK_LINK_UP
;
4303 writeq(val64
, &bar0
->gpio_int_mask
);
4305 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4306 val64
= readq(&bar0
->adapter_status
);
4307 s2io_link(sp
, LINK_DOWN
);
4308 /* Link is down so unmaks link up interrupt */
4309 val64
= readq(&bar0
->gpio_int_mask
);
4310 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4311 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4312 writeq(val64
, &bar0
->gpio_int_mask
);
4315 val64
= readq(&bar0
->adapter_control
);
4316 val64
= val64
& (~ADAPTER_LED_ON
);
4317 writeq(val64
, &bar0
->adapter_control
);
4320 val64
= readq(&bar0
->gpio_int_mask
);
4324 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4325 * @value: alarm bits
4326 * @addr: address value
4327 * @cnt: counter variable
4328 * Description: Check for alarm and increment the counter
4330 * 1 - if alarm bit set
4331 * 0 - if alarm bit is not set
4333 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4334 unsigned long long *cnt
)
4337 val64
= readq(addr
);
4338 if (val64
& value
) {
4339 writeq(val64
, addr
);
4348 * s2io_handle_errors - Xframe error indication handler
4349 * @nic: device private variable
4350 * Description: Handle alarms such as loss of link, single or
4351 * double ECC errors, critical and serious errors.
4355 static void s2io_handle_errors(void *dev_id
)
4357 struct net_device
*dev
= (struct net_device
*)dev_id
;
4358 struct s2io_nic
*sp
= netdev_priv(dev
);
4359 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4360 u64 temp64
= 0, val64
= 0;
4363 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4364 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4366 if (!is_s2io_card_up(sp
))
4369 if (pci_channel_offline(sp
->pdev
))
4372 memset(&sw_stat
->ring_full_cnt
, 0,
4373 sizeof(sw_stat
->ring_full_cnt
));
4375 /* Handling the XPAK counters update */
4376 if (stats
->xpak_timer_count
< 72000) {
4377 /* waiting for an hour */
4378 stats
->xpak_timer_count
++;
4380 s2io_updt_xpak_counter(dev
);
4381 /* reset the count to zero */
4382 stats
->xpak_timer_count
= 0;
4385 /* Handling link status change error Intr */
4386 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4387 val64
= readq(&bar0
->mac_rmac_err_reg
);
4388 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4389 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4390 schedule_work(&sp
->set_link_task
);
4393 /* In case of a serious error, the device will be Reset. */
4394 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4395 &sw_stat
->serious_err_cnt
))
4398 /* Check for data parity error */
4399 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4400 &sw_stat
->parity_err_cnt
))
4403 /* Check for ring full counter */
4404 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4405 val64
= readq(&bar0
->ring_bump_counter1
);
4406 for (i
= 0; i
< 4; i
++) {
4407 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4408 temp64
>>= 64 - ((i
+1)*16);
4409 sw_stat
->ring_full_cnt
[i
] += temp64
;
4412 val64
= readq(&bar0
->ring_bump_counter2
);
4413 for (i
= 0; i
< 4; i
++) {
4414 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4415 temp64
>>= 64 - ((i
+1)*16);
4416 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4420 val64
= readq(&bar0
->txdma_int_status
);
4421 /*check for pfc_err*/
4422 if (val64
& TXDMA_PFC_INT
) {
4423 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4424 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4427 &sw_stat
->pfc_err_cnt
))
4429 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4431 &sw_stat
->pfc_err_cnt
);
4434 /*check for tda_err*/
4435 if (val64
& TXDMA_TDA_INT
) {
4436 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4440 &sw_stat
->tda_err_cnt
))
4442 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4444 &sw_stat
->tda_err_cnt
);
4446 /*check for pcc_err*/
4447 if (val64
& TXDMA_PCC_INT
) {
4448 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4449 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4450 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4451 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4454 &sw_stat
->pcc_err_cnt
))
4456 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4458 &sw_stat
->pcc_err_cnt
);
4461 /*check for tti_err*/
4462 if (val64
& TXDMA_TTI_INT
) {
4463 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4465 &sw_stat
->tti_err_cnt
))
4467 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4469 &sw_stat
->tti_err_cnt
);
4472 /*check for lso_err*/
4473 if (val64
& TXDMA_LSO_INT
) {
4474 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4475 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4477 &sw_stat
->lso_err_cnt
))
4479 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4481 &sw_stat
->lso_err_cnt
);
4484 /*check for tpa_err*/
4485 if (val64
& TXDMA_TPA_INT
) {
4486 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4488 &sw_stat
->tpa_err_cnt
))
4490 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4492 &sw_stat
->tpa_err_cnt
);
4495 /*check for sm_err*/
4496 if (val64
& TXDMA_SM_INT
) {
4497 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4499 &sw_stat
->sm_err_cnt
))
4503 val64
= readq(&bar0
->mac_int_status
);
4504 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4505 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4506 &bar0
->mac_tmac_err_reg
,
4507 &sw_stat
->mac_tmac_err_cnt
))
4509 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4510 TMAC_DESC_ECC_SG_ERR
|
4511 TMAC_DESC_ECC_DB_ERR
,
4512 &bar0
->mac_tmac_err_reg
,
4513 &sw_stat
->mac_tmac_err_cnt
);
4516 val64
= readq(&bar0
->xgxs_int_status
);
4517 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4518 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4519 &bar0
->xgxs_txgxs_err_reg
,
4520 &sw_stat
->xgxs_txgxs_err_cnt
))
4522 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4523 &bar0
->xgxs_txgxs_err_reg
,
4524 &sw_stat
->xgxs_txgxs_err_cnt
);
4527 val64
= readq(&bar0
->rxdma_int_status
);
4528 if (val64
& RXDMA_INT_RC_INT_M
) {
4529 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4531 RC_PRCn_SM_ERR_ALARM
|
4532 RC_FTC_SM_ERR_ALARM
,
4534 &sw_stat
->rc_err_cnt
))
4536 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4538 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4539 &sw_stat
->rc_err_cnt
);
4540 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4543 &bar0
->prc_pcix_err_reg
,
4544 &sw_stat
->prc_pcix_err_cnt
))
4546 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4549 &bar0
->prc_pcix_err_reg
,
4550 &sw_stat
->prc_pcix_err_cnt
);
4553 if (val64
& RXDMA_INT_RPA_INT_M
) {
4554 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4556 &sw_stat
->rpa_err_cnt
))
4558 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4560 &sw_stat
->rpa_err_cnt
);
4563 if (val64
& RXDMA_INT_RDA_INT_M
) {
4564 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4565 RDA_FRM_ECC_DB_N_AERR
|
4568 RDA_RXD_ECC_DB_SERR
,
4570 &sw_stat
->rda_err_cnt
))
4572 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4573 RDA_FRM_ECC_SG_ERR
|
4577 &sw_stat
->rda_err_cnt
);
4580 if (val64
& RXDMA_INT_RTI_INT_M
) {
4581 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4583 &sw_stat
->rti_err_cnt
))
4585 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4587 &sw_stat
->rti_err_cnt
);
4590 val64
= readq(&bar0
->mac_int_status
);
4591 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4592 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4593 &bar0
->mac_rmac_err_reg
,
4594 &sw_stat
->mac_rmac_err_cnt
))
4596 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4597 RMAC_SINGLE_ECC_ERR
|
4598 RMAC_DOUBLE_ECC_ERR
,
4599 &bar0
->mac_rmac_err_reg
,
4600 &sw_stat
->mac_rmac_err_cnt
);
4603 val64
= readq(&bar0
->xgxs_int_status
);
4604 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4605 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4606 &bar0
->xgxs_rxgxs_err_reg
,
4607 &sw_stat
->xgxs_rxgxs_err_cnt
))
4611 val64
= readq(&bar0
->mc_int_status
);
4612 if (val64
& MC_INT_STATUS_MC_INT
) {
4613 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4615 &sw_stat
->mc_err_cnt
))
4618 /* Handling Ecc errors */
4619 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4620 writeq(val64
, &bar0
->mc_err_reg
);
4621 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4622 sw_stat
->double_ecc_errs
++;
4623 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4625 * Reset XframeI only if critical error
4628 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4629 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4633 sw_stat
->single_ecc_errs
++;
4639 s2io_stop_all_tx_queue(sp
);
4640 schedule_work(&sp
->rst_timer_task
);
4641 sw_stat
->soft_reset_cnt
++;
4645 * s2io_isr - ISR handler of the device .
4646 * @irq: the irq of the device.
4647 * @dev_id: a void pointer to the dev structure of the NIC.
4648 * Description: This function is the ISR handler of the device. It
4649 * identifies the reason for the interrupt and calls the relevant
4650 * service routines. As a contongency measure, this ISR allocates the
4651 * recv buffers, if their numbers are below the panic value which is
4652 * presently set to 25% of the original number of rcv buffers allocated.
4654 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4655 * IRQ_NONE: will be returned if interrupt is not from our device
4657 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4659 struct net_device
*dev
= (struct net_device
*)dev_id
;
4660 struct s2io_nic
*sp
= netdev_priv(dev
);
4661 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4664 struct mac_info
*mac_control
;
4665 struct config_param
*config
;
4667 /* Pretend we handled any irq's from a disconnected card */
4668 if (pci_channel_offline(sp
->pdev
))
4671 if (!is_s2io_card_up(sp
))
4674 config
= &sp
->config
;
4675 mac_control
= &sp
->mac_control
;
4678 * Identify the cause for interrupt and call the appropriate
4679 * interrupt handler. Causes for the interrupt could be;
4684 reason
= readq(&bar0
->general_int_status
);
4686 if (unlikely(reason
== S2IO_MINUS_ONE
))
4687 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4690 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4691 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4694 if (reason
& GEN_INTR_RXTRAFFIC
) {
4695 napi_schedule(&sp
->napi
);
4696 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4697 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4698 readl(&bar0
->rx_traffic_int
);
4702 * rx_traffic_int reg is an R1 register, writing all 1's
4703 * will ensure that the actual interrupt causing bit
4704 * get's cleared and hence a read can be avoided.
4706 if (reason
& GEN_INTR_RXTRAFFIC
)
4707 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4709 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4710 struct ring_info
*ring
= &mac_control
->rings
[i
];
4712 rx_intr_handler(ring
, 0);
4717 * tx_traffic_int reg is an R1 register, writing all 1's
4718 * will ensure that the actual interrupt causing bit get's
4719 * cleared and hence a read can be avoided.
4721 if (reason
& GEN_INTR_TXTRAFFIC
)
4722 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4724 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4725 tx_intr_handler(&mac_control
->fifos
[i
]);
4727 if (reason
& GEN_INTR_TXPIC
)
4728 s2io_txpic_intr_handle(sp
);
4731 * Reallocate the buffers from the interrupt handler itself.
4733 if (!config
->napi
) {
4734 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4735 struct ring_info
*ring
= &mac_control
->rings
[i
];
4737 s2io_chk_rx_buffers(sp
, ring
);
4740 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4741 readl(&bar0
->general_int_status
);
4745 } else if (!reason
) {
4746 /* The interrupt was not raised by us */
4756 static void s2io_updt_stats(struct s2io_nic
*sp
)
4758 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4762 if (is_s2io_card_up(sp
)) {
4763 /* Apprx 30us on a 133 MHz bus */
4764 val64
= SET_UPDT_CLICKS(10) |
4765 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4766 writeq(val64
, &bar0
->stat_cfg
);
4769 val64
= readq(&bar0
->stat_cfg
);
4770 if (!(val64
& s2BIT(0)))
4774 break; /* Updt failed */
4780 * s2io_get_stats - Updates the device statistics structure.
4781 * @dev : pointer to the device structure.
4783 * This function updates the device statistics structure in the s2io_nic
4784 * structure and returns a pointer to the same.
4786 * pointer to the updated net_device_stats structure.
4788 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4790 struct s2io_nic
*sp
= netdev_priv(dev
);
4791 struct mac_info
*mac_control
= &sp
->mac_control
;
4792 struct stat_block
*stats
= mac_control
->stats_info
;
4795 /* Configure Stats for immediate updt */
4796 s2io_updt_stats(sp
);
4798 /* A device reset will cause the on-adapter statistics to be zero'ed.
4799 * This can be done while running by changing the MTU. To prevent the
4800 * system from having the stats zero'ed, the driver keeps a copy of the
4801 * last update to the system (which is also zero'ed on reset). This
4802 * enables the driver to accurately know the delta between the last
4803 * update and the current update.
4805 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4806 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4807 sp
->stats
.rx_packets
+= delta
;
4808 dev
->stats
.rx_packets
+= delta
;
4810 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4811 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4812 sp
->stats
.tx_packets
+= delta
;
4813 dev
->stats
.tx_packets
+= delta
;
4815 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4816 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4817 sp
->stats
.rx_bytes
+= delta
;
4818 dev
->stats
.rx_bytes
+= delta
;
4820 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4821 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4822 sp
->stats
.tx_bytes
+= delta
;
4823 dev
->stats
.tx_bytes
+= delta
;
4825 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4826 sp
->stats
.rx_errors
+= delta
;
4827 dev
->stats
.rx_errors
+= delta
;
4829 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4830 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4831 sp
->stats
.tx_errors
+= delta
;
4832 dev
->stats
.tx_errors
+= delta
;
4834 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4835 sp
->stats
.rx_dropped
+= delta
;
4836 dev
->stats
.rx_dropped
+= delta
;
4838 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4839 sp
->stats
.tx_dropped
+= delta
;
4840 dev
->stats
.tx_dropped
+= delta
;
4842 /* The adapter MAC interprets pause frames as multicast packets, but
4843 * does not pass them up. This erroneously increases the multicast
4844 * packet count and needs to be deducted when the multicast frame count
4847 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4848 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4849 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4850 delta
-= sp
->stats
.multicast
;
4851 sp
->stats
.multicast
+= delta
;
4852 dev
->stats
.multicast
+= delta
;
4854 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4855 le32_to_cpu(stats
->rmac_usized_frms
)) +
4856 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4857 sp
->stats
.rx_length_errors
+= delta
;
4858 dev
->stats
.rx_length_errors
+= delta
;
4860 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4861 sp
->stats
.rx_crc_errors
+= delta
;
4862 dev
->stats
.rx_crc_errors
+= delta
;
4868 * s2io_set_multicast - entry point for multicast address enable/disable.
4869 * @dev : pointer to the device structure
4871 * This function is a driver entry point which gets called by the kernel
4872 * whenever multicast addresses must be enabled/disabled. This also gets
4873 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4874 * determine, if multicast address must be enabled or if promiscuous mode
4875 * is to be disabled etc.
4880 static void s2io_set_multicast(struct net_device
*dev
)
4883 struct netdev_hw_addr
*ha
;
4884 struct s2io_nic
*sp
= netdev_priv(dev
);
4885 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4886 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4888 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4890 struct config_param
*config
= &sp
->config
;
4892 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4893 /* Enable all Multicast addresses */
4894 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4895 &bar0
->rmac_addr_data0_mem
);
4896 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4897 &bar0
->rmac_addr_data1_mem
);
4898 val64
= RMAC_ADDR_CMD_MEM_WE
|
4899 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4900 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4901 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4902 /* Wait till command completes */
4903 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4904 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4908 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4909 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4910 /* Disable all Multicast addresses */
4911 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4912 &bar0
->rmac_addr_data0_mem
);
4913 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4914 &bar0
->rmac_addr_data1_mem
);
4915 val64
= RMAC_ADDR_CMD_MEM_WE
|
4916 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4917 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4918 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4919 /* Wait till command completes */
4920 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4921 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4925 sp
->all_multi_pos
= 0;
4928 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4929 /* Put the NIC into promiscuous mode */
4930 add
= &bar0
->mac_cfg
;
4931 val64
= readq(&bar0
->mac_cfg
);
4932 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4934 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4935 writel((u32
)val64
, add
);
4936 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4937 writel((u32
) (val64
>> 32), (add
+ 4));
4939 if (vlan_tag_strip
!= 1) {
4940 val64
= readq(&bar0
->rx_pa_cfg
);
4941 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4942 writeq(val64
, &bar0
->rx_pa_cfg
);
4943 sp
->vlan_strip_flag
= 0;
4946 val64
= readq(&bar0
->mac_cfg
);
4947 sp
->promisc_flg
= 1;
4948 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4950 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4951 /* Remove the NIC from promiscuous mode */
4952 add
= &bar0
->mac_cfg
;
4953 val64
= readq(&bar0
->mac_cfg
);
4954 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4956 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4957 writel((u32
)val64
, add
);
4958 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4959 writel((u32
) (val64
>> 32), (add
+ 4));
4961 if (vlan_tag_strip
!= 0) {
4962 val64
= readq(&bar0
->rx_pa_cfg
);
4963 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4964 writeq(val64
, &bar0
->rx_pa_cfg
);
4965 sp
->vlan_strip_flag
= 1;
4968 val64
= readq(&bar0
->mac_cfg
);
4969 sp
->promisc_flg
= 0;
4970 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
4973 /* Update individual M_CAST address list */
4974 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
4975 if (netdev_mc_count(dev
) >
4976 (config
->max_mc_addr
- config
->max_mac_addr
)) {
4978 "%s: No more Rx filters can be added - "
4979 "please enable ALL_MULTI instead\n",
4984 prev_cnt
= sp
->mc_addr_count
;
4985 sp
->mc_addr_count
= netdev_mc_count(dev
);
4987 /* Clear out the previous list of Mc in the H/W. */
4988 for (i
= 0; i
< prev_cnt
; i
++) {
4989 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4990 &bar0
->rmac_addr_data0_mem
);
4991 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4992 &bar0
->rmac_addr_data1_mem
);
4993 val64
= RMAC_ADDR_CMD_MEM_WE
|
4994 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4995 RMAC_ADDR_CMD_MEM_OFFSET
4996 (config
->mc_start_offset
+ i
);
4997 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4999 /* Wait for command completes */
5000 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5001 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5004 "%s: Adding Multicasts failed\n",
5010 /* Create the new Rx filter list and update the same in H/W. */
5012 netdev_for_each_mc_addr(ha
, dev
) {
5014 for (j
= 0; j
< ETH_ALEN
; j
++) {
5015 mac_addr
|= ha
->addr
[j
];
5019 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5020 &bar0
->rmac_addr_data0_mem
);
5021 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5022 &bar0
->rmac_addr_data1_mem
);
5023 val64
= RMAC_ADDR_CMD_MEM_WE
|
5024 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5025 RMAC_ADDR_CMD_MEM_OFFSET
5026 (i
+ config
->mc_start_offset
);
5027 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5029 /* Wait for command completes */
5030 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5031 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5034 "%s: Adding Multicasts failed\n",
5043 /* read from CAM unicast & multicast addresses and store it in
5044 * def_mac_addr structure
5046 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5050 struct config_param
*config
= &sp
->config
;
5052 /* store unicast & multicast mac addresses */
5053 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5054 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5055 /* if read fails disable the entry */
5056 if (mac_addr
== FAILURE
)
5057 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5058 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5062 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5063 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5066 struct config_param
*config
= &sp
->config
;
5067 /* restore unicast mac address */
5068 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5069 do_s2io_prog_unicast(sp
->dev
,
5070 sp
->def_mac_addr
[offset
].mac_addr
);
5072 /* restore multicast mac address */
5073 for (offset
= config
->mc_start_offset
;
5074 offset
< config
->max_mc_addr
; offset
++)
5075 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5078 /* add a multicast MAC address to CAM */
5079 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5083 struct config_param
*config
= &sp
->config
;
5085 for (i
= 0; i
< ETH_ALEN
; i
++) {
5087 mac_addr
|= addr
[i
];
5089 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5092 /* check if the multicast mac already preset in CAM */
5093 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5095 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5096 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5099 if (tmp64
== mac_addr
)
5102 if (i
== config
->max_mc_addr
) {
5104 "CAM full no space left for multicast MAC\n");
5107 /* Update the internal structure with this new mac address */
5108 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5110 return do_s2io_add_mac(sp
, mac_addr
, i
);
5113 /* add MAC address to CAM */
5114 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5117 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5119 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5120 &bar0
->rmac_addr_data0_mem
);
5122 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5123 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5124 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5126 /* Wait till command completes */
5127 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5128 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5130 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5135 /* deletes a specified unicast/multicast mac entry from CAM */
5136 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5139 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5140 struct config_param
*config
= &sp
->config
;
5143 offset
< config
->max_mc_addr
; offset
++) {
5144 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5145 if (tmp64
== addr
) {
5146 /* disable the entry by writing 0xffffffffffffULL */
5147 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5149 /* store the new mac list from CAM */
5150 do_s2io_store_unicast_mc(sp
);
5154 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5155 (unsigned long long)addr
);
5159 /* read mac entries from CAM */
5160 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5162 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5163 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5166 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5167 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5168 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5170 /* Wait till command completes */
5171 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5172 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5174 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5177 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5183 * s2io_set_mac_addr - driver entry point
5186 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5188 struct sockaddr
*addr
= p
;
5190 if (!is_valid_ether_addr(addr
->sa_data
))
5191 return -EADDRNOTAVAIL
;
5193 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5195 /* store the MAC address in CAM */
5196 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5199 * do_s2io_prog_unicast - Programs the Xframe mac address
5200 * @dev : pointer to the device structure.
5201 * @addr: a uchar pointer to the new mac address which is to be set.
5202 * Description : This procedure will program the Xframe to receive
5203 * frames with new Mac Address
5204 * Return value: SUCCESS on success and an appropriate (-)ve integer
5205 * as defined in errno.h file on failure.
5208 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5210 struct s2io_nic
*sp
= netdev_priv(dev
);
5211 register u64 mac_addr
= 0, perm_addr
= 0;
5214 struct config_param
*config
= &sp
->config
;
5217 * Set the new MAC address as the new unicast filter and reflect this
5218 * change on the device address registered with the OS. It will be
5221 for (i
= 0; i
< ETH_ALEN
; i
++) {
5223 mac_addr
|= addr
[i
];
5225 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5228 /* check if the dev_addr is different than perm_addr */
5229 if (mac_addr
== perm_addr
)
5232 /* check if the mac already preset in CAM */
5233 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5234 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5235 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5238 if (tmp64
== mac_addr
) {
5240 "MAC addr:0x%llx already present in CAM\n",
5241 (unsigned long long)mac_addr
);
5245 if (i
== config
->max_mac_addr
) {
5246 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5249 /* Update the internal structure with this new mac address */
5250 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5252 return do_s2io_add_mac(sp
, mac_addr
, i
);
5256 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5257 * @sp : private member of the device structure, which is a pointer to the
5258 * s2io_nic structure.
5259 * @cmd: pointer to the structure with parameters given by ethtool to set
5262 * The function sets different link parameters provided by the user onto
5269 s2io_ethtool_set_link_ksettings(struct net_device
*dev
,
5270 const struct ethtool_link_ksettings
*cmd
)
5272 struct s2io_nic
*sp
= netdev_priv(dev
);
5273 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) ||
5274 (cmd
->base
.speed
!= SPEED_10000
) ||
5275 (cmd
->base
.duplex
!= DUPLEX_FULL
))
5278 s2io_close(sp
->dev
);
5286 * s2io_ethtol_get_link_ksettings - Return link specific information.
5287 * @sp : private member of the device structure, pointer to the
5288 * s2io_nic structure.
5289 * @cmd : pointer to the structure with parameters given by ethtool
5290 * to return link information.
5292 * Returns link specific information like speed, duplex etc.. to ethtool.
5294 * return 0 on success.
5298 s2io_ethtool_get_link_ksettings(struct net_device
*dev
,
5299 struct ethtool_link_ksettings
*cmd
)
5301 struct s2io_nic
*sp
= netdev_priv(dev
);
5303 ethtool_link_ksettings_zero_link_mode(cmd
, supported
);
5304 ethtool_link_ksettings_add_link_mode(cmd
, supported
, 10000baseT_Full
);
5305 ethtool_link_ksettings_add_link_mode(cmd
, supported
, FIBRE
);
5307 ethtool_link_ksettings_zero_link_mode(cmd
, advertising
);
5308 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, 10000baseT_Full
);
5309 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, FIBRE
);
5311 cmd
->base
.port
= PORT_FIBRE
;
5313 if (netif_carrier_ok(sp
->dev
)) {
5314 cmd
->base
.speed
= SPEED_10000
;
5315 cmd
->base
.duplex
= DUPLEX_FULL
;
5317 cmd
->base
.speed
= SPEED_UNKNOWN
;
5318 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
5321 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
5326 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5327 * @sp : private member of the device structure, which is a pointer to the
5328 * s2io_nic structure.
5329 * @info : pointer to the structure with parameters given by ethtool to
5330 * return driver information.
5332 * Returns driver specefic information like name, version etc.. to ethtool.
5337 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5338 struct ethtool_drvinfo
*info
)
5340 struct s2io_nic
*sp
= netdev_priv(dev
);
5342 strlcpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5343 strlcpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5344 strlcpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5348 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5349 * @sp: private member of the device structure, which is a pointer to the
5350 * s2io_nic structure.
5351 * @regs : pointer to the structure with parameters given by ethtool for
5352 * dumping the registers.
5353 * @reg_space: The input argument into which all the registers are dumped.
5355 * Dumps the entire register space of xFrame NIC into the user given
5361 static void s2io_ethtool_gregs(struct net_device
*dev
,
5362 struct ethtool_regs
*regs
, void *space
)
5366 u8
*reg_space
= (u8
*)space
;
5367 struct s2io_nic
*sp
= netdev_priv(dev
);
5369 regs
->len
= XENA_REG_SPACE
;
5370 regs
->version
= sp
->pdev
->subsystem_device
;
5372 for (i
= 0; i
< regs
->len
; i
+= 8) {
5373 reg
= readq(sp
->bar0
+ i
);
5374 memcpy((reg_space
+ i
), ®
, 8);
5379 * s2io_set_led - control NIC led
5381 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5383 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5384 u16 subid
= sp
->pdev
->subsystem_device
;
5387 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5388 ((subid
& 0xFF) >= 0x07)) {
5389 val64
= readq(&bar0
->gpio_control
);
5391 val64
|= GPIO_CTRL_GPIO_0
;
5393 val64
&= ~GPIO_CTRL_GPIO_0
;
5395 writeq(val64
, &bar0
->gpio_control
);
5397 val64
= readq(&bar0
->adapter_control
);
5399 val64
|= ADAPTER_LED_ON
;
5401 val64
&= ~ADAPTER_LED_ON
;
5403 writeq(val64
, &bar0
->adapter_control
);
5409 * s2io_ethtool_set_led - To physically identify the nic on the system.
5410 * @dev : network device
5411 * @state: led setting
5413 * Description: Used to physically identify the NIC on the system.
5414 * The Link LED will blink for a time specified by the user for
5416 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5417 * identification is possible only if it's link is up.
5420 static int s2io_ethtool_set_led(struct net_device
*dev
,
5421 enum ethtool_phys_id_state state
)
5423 struct s2io_nic
*sp
= netdev_priv(dev
);
5424 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5425 u16 subid
= sp
->pdev
->subsystem_device
;
5427 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5428 u64 val64
= readq(&bar0
->adapter_control
);
5429 if (!(val64
& ADAPTER_CNTL_EN
)) {
5430 pr_err("Adapter Link down, cannot blink LED\n");
5436 case ETHTOOL_ID_ACTIVE
:
5437 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5438 return 1; /* cycle on/off once per second */
5441 s2io_set_led(sp
, true);
5444 case ETHTOOL_ID_OFF
:
5445 s2io_set_led(sp
, false);
5448 case ETHTOOL_ID_INACTIVE
:
5449 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5450 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5456 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5457 struct ethtool_ringparam
*ering
)
5459 struct s2io_nic
*sp
= netdev_priv(dev
);
5460 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5462 if (sp
->rxd_mode
== RXD_MODE_1
) {
5463 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5464 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5466 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5467 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5470 ering
->tx_max_pending
= MAX_TX_DESC
;
5472 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5473 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5474 ering
->rx_pending
= rx_desc_count
;
5475 ering
->rx_jumbo_pending
= rx_desc_count
;
5477 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5478 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5479 ering
->tx_pending
= tx_desc_count
;
5480 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5484 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5485 * @sp : private member of the device structure, which is a pointer to the
5486 * s2io_nic structure.
5487 * @ep : pointer to the structure with pause parameters given by ethtool.
5489 * Returns the Pause frame generation and reception capability of the NIC.
5493 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5494 struct ethtool_pauseparam
*ep
)
5497 struct s2io_nic
*sp
= netdev_priv(dev
);
5498 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5500 val64
= readq(&bar0
->rmac_pause_cfg
);
5501 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5502 ep
->tx_pause
= true;
5503 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5504 ep
->rx_pause
= true;
5505 ep
->autoneg
= false;
5509 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5510 * @sp : private member of the device structure, which is a pointer to the
5511 * s2io_nic structure.
5512 * @ep : pointer to the structure with pause parameters given by ethtool.
5514 * It can be used to set or reset Pause frame generation or reception
5515 * support of the NIC.
5517 * int, returns 0 on Success
5520 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5521 struct ethtool_pauseparam
*ep
)
5524 struct s2io_nic
*sp
= netdev_priv(dev
);
5525 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5527 val64
= readq(&bar0
->rmac_pause_cfg
);
5529 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5531 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5533 val64
|= RMAC_PAUSE_RX_ENABLE
;
5535 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5536 writeq(val64
, &bar0
->rmac_pause_cfg
);
5541 * read_eeprom - reads 4 bytes of data from user given offset.
5542 * @sp : private member of the device structure, which is a pointer to the
5543 * s2io_nic structure.
5544 * @off : offset at which the data must be written
5545 * @data : Its an output parameter where the data read at the given
5548 * Will read 4 bytes of data from the user given offset and return the
5550 * NOTE: Will allow to read only part of the EEPROM visible through the
5553 * -1 on failure and 0 on success.
5556 #define S2IO_DEV_ID 5
5557 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5562 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5564 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5565 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5566 I2C_CONTROL_ADDR(off
) |
5567 I2C_CONTROL_BYTE_CNT(0x3) |
5569 I2C_CONTROL_CNTL_START
;
5570 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5572 while (exit_cnt
< 5) {
5573 val64
= readq(&bar0
->i2c_control
);
5574 if (I2C_CONTROL_CNTL_END(val64
)) {
5575 *data
= I2C_CONTROL_GET_DATA(val64
);
5584 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5585 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5586 SPI_CONTROL_BYTECNT(0x3) |
5587 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5588 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5589 val64
|= SPI_CONTROL_REQ
;
5590 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5591 while (exit_cnt
< 5) {
5592 val64
= readq(&bar0
->spi_control
);
5593 if (val64
& SPI_CONTROL_NACK
) {
5596 } else if (val64
& SPI_CONTROL_DONE
) {
5597 *data
= readq(&bar0
->spi_data
);
5610 * write_eeprom - actually writes the relevant part of the data value.
5611 * @sp : private member of the device structure, which is a pointer to the
5612 * s2io_nic structure.
5613 * @off : offset at which the data must be written
5614 * @data : The data that is to be written
5615 * @cnt : Number of bytes of the data that are actually to be written into
5616 * the Eeprom. (max of 3)
5618 * Actually writes the relevant part of the data value into the Eeprom
5619 * through the I2C bus.
5621 * 0 on success, -1 on failure.
5624 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5626 int exit_cnt
= 0, ret
= -1;
5628 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5630 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5631 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5632 I2C_CONTROL_ADDR(off
) |
5633 I2C_CONTROL_BYTE_CNT(cnt
) |
5634 I2C_CONTROL_SET_DATA((u32
)data
) |
5635 I2C_CONTROL_CNTL_START
;
5636 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5638 while (exit_cnt
< 5) {
5639 val64
= readq(&bar0
->i2c_control
);
5640 if (I2C_CONTROL_CNTL_END(val64
)) {
5641 if (!(val64
& I2C_CONTROL_NACK
))
5650 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5651 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5652 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5654 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5655 SPI_CONTROL_BYTECNT(write_cnt
) |
5656 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5657 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5658 val64
|= SPI_CONTROL_REQ
;
5659 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5660 while (exit_cnt
< 5) {
5661 val64
= readq(&bar0
->spi_control
);
5662 if (val64
& SPI_CONTROL_NACK
) {
5665 } else if (val64
& SPI_CONTROL_DONE
) {
5675 static void s2io_vpd_read(struct s2io_nic
*nic
)
5679 int i
= 0, cnt
, len
, fail
= 0;
5680 int vpd_addr
= 0x80;
5681 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5683 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5684 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5687 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5690 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5692 vpd_data
= kmalloc(256, GFP_KERNEL
);
5694 swstats
->mem_alloc_fail_cnt
++;
5697 swstats
->mem_allocated
+= 256;
5699 for (i
= 0; i
< 256; i
+= 4) {
5700 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5701 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5702 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5703 for (cnt
= 0; cnt
< 5; cnt
++) {
5705 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5710 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5714 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5715 (u32
*)&vpd_data
[i
]);
5719 /* read serial number of adapter */
5720 for (cnt
= 0; cnt
< 252; cnt
++) {
5721 if ((vpd_data
[cnt
] == 'S') &&
5722 (vpd_data
[cnt
+1] == 'N')) {
5723 len
= vpd_data
[cnt
+2];
5724 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5725 memcpy(nic
->serial_num
,
5728 memset(nic
->serial_num
+len
,
5730 VPD_STRING_LEN
-len
);
5737 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5739 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5740 nic
->product_name
[len
] = 0;
5743 swstats
->mem_freed
+= 256;
5747 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5748 * @sp : private member of the device structure, which is a pointer to the
5749 * s2io_nic structure.
5750 * @eeprom : pointer to the user level structure provided by ethtool,
5751 * containing all relevant information.
5752 * @data_buf : user defined value to be written into Eeprom.
5753 * Description: Reads the values stored in the Eeprom at given offset
5754 * for a given length. Stores these values int the input argument data
5755 * buffer 'data_buf' and returns these to the caller (ethtool.)
5760 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5761 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5765 struct s2io_nic
*sp
= netdev_priv(dev
);
5767 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5769 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5770 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5772 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5773 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5774 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5778 memcpy((data_buf
+ i
), &valid
, 4);
5784 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5785 * @sp : private member of the device structure, which is a pointer to the
5786 * s2io_nic structure.
5787 * @eeprom : pointer to the user level structure provided by ethtool,
5788 * containing all relevant information.
5789 * @data_buf ; user defined value to be written into Eeprom.
5791 * Tries to write the user provided value in the Eeprom, at the offset
5792 * given by the user.
5794 * 0 on success, -EFAULT on failure.
5797 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5798 struct ethtool_eeprom
*eeprom
,
5801 int len
= eeprom
->len
, cnt
= 0;
5802 u64 valid
= 0, data
;
5803 struct s2io_nic
*sp
= netdev_priv(dev
);
5805 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5807 "ETHTOOL_WRITE_EEPROM Err: "
5808 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5809 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5815 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5817 valid
= (u32
)(data
<< 24);
5821 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5823 "ETHTOOL_WRITE_EEPROM Err: "
5824 "Cannot write into the specified offset\n");
5835 * s2io_register_test - reads and writes into all clock domains.
5836 * @sp : private member of the device structure, which is a pointer to the
5837 * s2io_nic structure.
5838 * @data : variable that returns the result of each of the test conducted b
5841 * Read and write into all clock domains. The NIC has 3 clock domains,
5842 * see that registers in all the three regions are accessible.
5847 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5849 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5850 u64 val64
= 0, exp_val
;
5853 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5854 if (val64
!= 0x123456789abcdefULL
) {
5856 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5859 val64
= readq(&bar0
->rmac_pause_cfg
);
5860 if (val64
!= 0xc000ffff00000000ULL
) {
5862 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5865 val64
= readq(&bar0
->rx_queue_cfg
);
5866 if (sp
->device_type
== XFRAME_II_DEVICE
)
5867 exp_val
= 0x0404040404040404ULL
;
5869 exp_val
= 0x0808080808080808ULL
;
5870 if (val64
!= exp_val
) {
5872 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5875 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5876 if (val64
!= 0x000000001923141EULL
) {
5878 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5881 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5882 writeq(val64
, &bar0
->xmsi_data
);
5883 val64
= readq(&bar0
->xmsi_data
);
5884 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5886 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5889 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5890 writeq(val64
, &bar0
->xmsi_data
);
5891 val64
= readq(&bar0
->xmsi_data
);
5892 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5894 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5902 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5903 * @sp : private member of the device structure, which is a pointer to the
5904 * s2io_nic structure.
5905 * @data:variable that returns the result of each of the test conducted by
5908 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5914 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5917 u64 ret_data
, org_4F0
, org_7F0
;
5918 u8 saved_4F0
= 0, saved_7F0
= 0;
5919 struct net_device
*dev
= sp
->dev
;
5921 /* Test Write Error at offset 0 */
5922 /* Note that SPI interface allows write access to all areas
5923 * of EEPROM. Hence doing all negative testing only for Xframe I.
5925 if (sp
->device_type
== XFRAME_I_DEVICE
)
5926 if (!write_eeprom(sp
, 0, 0, 3))
5929 /* Save current values at offsets 0x4F0 and 0x7F0 */
5930 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5932 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5935 /* Test Write at offset 4f0 */
5936 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5938 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5941 if (ret_data
!= 0x012345) {
5942 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5943 "Data written %llx Data read %llx\n",
5944 dev
->name
, (unsigned long long)0x12345,
5945 (unsigned long long)ret_data
);
5949 /* Reset the EEPROM data go FFFF */
5950 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5952 /* Test Write Request Error at offset 0x7c */
5953 if (sp
->device_type
== XFRAME_I_DEVICE
)
5954 if (!write_eeprom(sp
, 0x07C, 0, 3))
5957 /* Test Write Request at offset 0x7f0 */
5958 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5960 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5963 if (ret_data
!= 0x012345) {
5964 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5965 "Data written %llx Data read %llx\n",
5966 dev
->name
, (unsigned long long)0x12345,
5967 (unsigned long long)ret_data
);
5971 /* Reset the EEPROM data go FFFF */
5972 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5974 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5975 /* Test Write Error at offset 0x80 */
5976 if (!write_eeprom(sp
, 0x080, 0, 3))
5979 /* Test Write Error at offset 0xfc */
5980 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5983 /* Test Write Error at offset 0x100 */
5984 if (!write_eeprom(sp
, 0x100, 0, 3))
5987 /* Test Write Error at offset 4ec */
5988 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5992 /* Restore values at offsets 0x4F0 and 0x7F0 */
5994 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5996 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6003 * s2io_bist_test - invokes the MemBist test of the card .
6004 * @sp : private member of the device structure, which is a pointer to the
6005 * s2io_nic structure.
6006 * @data:variable that returns the result of each of the test conducted by
6009 * This invokes the MemBist test of the card. We give around
6010 * 2 secs time for the Test to complete. If it's still not complete
6011 * within this peiod, we consider that the test failed.
6013 * 0 on success and -1 on failure.
6016 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6019 int cnt
= 0, ret
= -1;
6021 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6022 bist
|= PCI_BIST_START
;
6023 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6026 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6027 if (!(bist
& PCI_BIST_START
)) {
6028 *data
= (bist
& PCI_BIST_CODE_MASK
);
6040 * s2io_link_test - verifies the link state of the nic
6041 * @sp ; private member of the device structure, which is a pointer to the
6042 * s2io_nic structure.
6043 * @data: variable that returns the result of each of the test conducted by
6046 * The function verifies the link state of the NIC and updates the input
6047 * argument 'data' appropriately.
6052 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6054 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6057 val64
= readq(&bar0
->adapter_status
);
6058 if (!(LINK_IS_UP(val64
)))
6067 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6068 * @sp: private member of the device structure, which is a pointer to the
6069 * s2io_nic structure.
6070 * @data: variable that returns the result of each of the test
6071 * conducted by the driver.
6073 * This is one of the offline test that tests the read and write
6074 * access to the RldRam chip on the NIC.
6079 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6081 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6083 int cnt
, iteration
= 0, test_fail
= 0;
6085 val64
= readq(&bar0
->adapter_control
);
6086 val64
&= ~ADAPTER_ECC_EN
;
6087 writeq(val64
, &bar0
->adapter_control
);
6089 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6090 val64
|= MC_RLDRAM_TEST_MODE
;
6091 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6093 val64
= readq(&bar0
->mc_rldram_mrs
);
6094 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6095 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6097 val64
|= MC_RLDRAM_MRS_ENABLE
;
6098 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6100 while (iteration
< 2) {
6101 val64
= 0x55555555aaaa0000ULL
;
6103 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6104 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6106 val64
= 0xaaaa5a5555550000ULL
;
6108 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6109 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6111 val64
= 0x55aaaaaaaa5a0000ULL
;
6113 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6114 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6116 val64
= (u64
) (0x0000003ffffe0100ULL
);
6117 writeq(val64
, &bar0
->mc_rldram_test_add
);
6119 val64
= MC_RLDRAM_TEST_MODE
|
6120 MC_RLDRAM_TEST_WRITE
|
6122 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6124 for (cnt
= 0; cnt
< 5; cnt
++) {
6125 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6126 if (val64
& MC_RLDRAM_TEST_DONE
)
6134 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6135 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6137 for (cnt
= 0; cnt
< 5; cnt
++) {
6138 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6139 if (val64
& MC_RLDRAM_TEST_DONE
)
6147 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6148 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6156 /* Bring the adapter out of test mode */
6157 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6163 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6164 * @sp : private member of the device structure, which is a pointer to the
6165 * s2io_nic structure.
6166 * @ethtest : pointer to a ethtool command specific structure that will be
6167 * returned to the user.
6168 * @data : variable that returns the result of each of the test
6169 * conducted by the driver.
6171 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6172 * the health of the card.
6177 static void s2io_ethtool_test(struct net_device
*dev
,
6178 struct ethtool_test
*ethtest
,
6181 struct s2io_nic
*sp
= netdev_priv(dev
);
6182 int orig_state
= netif_running(sp
->dev
);
6184 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6185 /* Offline Tests. */
6187 s2io_close(sp
->dev
);
6189 if (s2io_register_test(sp
, &data
[0]))
6190 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6194 if (s2io_rldram_test(sp
, &data
[3]))
6195 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6199 if (s2io_eeprom_test(sp
, &data
[1]))
6200 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6202 if (s2io_bist_test(sp
, &data
[4]))
6203 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6212 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6221 if (s2io_link_test(sp
, &data
[2]))
6222 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6231 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6232 struct ethtool_stats
*estats
,
6236 struct s2io_nic
*sp
= netdev_priv(dev
);
6237 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6238 struct swStat
*swstats
= &stats
->sw_stat
;
6239 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6241 s2io_updt_stats(sp
);
6243 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6244 le32_to_cpu(stats
->tmac_frms
);
6246 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6247 le32_to_cpu(stats
->tmac_data_octets
);
6248 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6250 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6251 le32_to_cpu(stats
->tmac_mcst_frms
);
6253 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6254 le32_to_cpu(stats
->tmac_bcst_frms
);
6255 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6257 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6258 le32_to_cpu(stats
->tmac_ttl_octets
);
6260 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6261 le32_to_cpu(stats
->tmac_ucst_frms
);
6263 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6264 le32_to_cpu(stats
->tmac_nucst_frms
);
6266 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6267 le32_to_cpu(stats
->tmac_any_err_frms
);
6268 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6269 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6271 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6272 le32_to_cpu(stats
->tmac_vld_ip
);
6274 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6275 le32_to_cpu(stats
->tmac_drop_ip
);
6277 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6278 le32_to_cpu(stats
->tmac_icmp
);
6280 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6281 le32_to_cpu(stats
->tmac_rst_tcp
);
6282 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6283 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6284 le32_to_cpu(stats
->tmac_udp
);
6286 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6287 le32_to_cpu(stats
->rmac_vld_frms
);
6289 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6290 le32_to_cpu(stats
->rmac_data_octets
);
6291 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6292 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6294 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6295 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6297 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6298 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6299 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6300 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6301 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6302 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6303 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6305 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6306 le32_to_cpu(stats
->rmac_ttl_octets
);
6308 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6309 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6311 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6312 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6314 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6315 le32_to_cpu(stats
->rmac_discarded_frms
);
6317 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6318 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6319 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6320 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6322 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6323 le32_to_cpu(stats
->rmac_usized_frms
);
6325 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6326 le32_to_cpu(stats
->rmac_osized_frms
);
6328 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6329 le32_to_cpu(stats
->rmac_frag_frms
);
6331 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6332 le32_to_cpu(stats
->rmac_jabber_frms
);
6333 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6334 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6335 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6336 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6337 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6338 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6340 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6341 le32_to_cpu(stats
->rmac_ip
);
6342 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6343 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6345 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6346 le32_to_cpu(stats
->rmac_drop_ip
);
6348 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6349 le32_to_cpu(stats
->rmac_icmp
);
6350 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6352 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6353 le32_to_cpu(stats
->rmac_udp
);
6355 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6356 le32_to_cpu(stats
->rmac_err_drp_udp
);
6357 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6358 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6359 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6360 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6361 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6362 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6363 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6364 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6365 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6366 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6367 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6368 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6369 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6370 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6371 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6372 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6373 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6375 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6376 le32_to_cpu(stats
->rmac_pause_cnt
);
6377 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6378 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6380 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6381 le32_to_cpu(stats
->rmac_accepted_ip
);
6382 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6383 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6384 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6385 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6386 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6387 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6388 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6389 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6390 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6391 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6392 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6393 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6394 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6395 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6396 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6397 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6398 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6399 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6400 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6402 /* Enhanced statistics exist only for Hercules */
6403 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6405 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6407 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6409 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6412 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6413 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6414 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6415 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6416 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6417 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6418 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6419 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6420 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6421 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6422 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6426 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6427 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6428 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6429 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6430 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6431 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6432 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6433 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6434 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6435 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6436 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6437 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6438 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6439 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6440 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6441 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6442 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6443 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6444 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6445 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6446 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6447 tmp_stats
[i
++] = swstats
->sending_both
;
6448 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6449 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6450 if (swstats
->num_aggregations
) {
6451 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6454 * Since 64-bit divide does not work on all platforms,
6455 * do repeated subtraction.
6457 while (tmp
>= swstats
->num_aggregations
) {
6458 tmp
-= swstats
->num_aggregations
;
6461 tmp_stats
[i
++] = count
;
6464 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6465 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6466 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6467 tmp_stats
[i
++] = swstats
->mem_allocated
;
6468 tmp_stats
[i
++] = swstats
->mem_freed
;
6469 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6470 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6471 tmp_stats
[i
++] = swstats
->link_up_time
;
6472 tmp_stats
[i
++] = swstats
->link_down_time
;
6474 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6475 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6476 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6477 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6478 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6480 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6481 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6482 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6483 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6484 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6485 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6486 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6487 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6488 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6489 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6490 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6491 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6492 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6493 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6494 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6495 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6496 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6497 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6498 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6499 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6500 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6501 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6502 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6503 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6504 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6505 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6508 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6510 return XENA_REG_SPACE
;
6514 static int s2io_get_eeprom_len(struct net_device
*dev
)
6516 return XENA_EEPROM_SPACE
;
6519 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6521 struct s2io_nic
*sp
= netdev_priv(dev
);
6525 return S2IO_TEST_LEN
;
6527 switch (sp
->device_type
) {
6528 case XFRAME_I_DEVICE
:
6529 return XFRAME_I_STAT_LEN
;
6530 case XFRAME_II_DEVICE
:
6531 return XFRAME_II_STAT_LEN
;
6540 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6541 u32 stringset
, u8
*data
)
6544 struct s2io_nic
*sp
= netdev_priv(dev
);
6546 switch (stringset
) {
6548 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6551 stat_size
= sizeof(ethtool_xena_stats_keys
);
6552 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6553 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6554 memcpy(data
+ stat_size
,
6555 ðtool_enhanced_stats_keys
,
6556 sizeof(ethtool_enhanced_stats_keys
));
6557 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6560 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6561 sizeof(ethtool_driver_stats_keys
));
6565 static int s2io_set_features(struct net_device
*dev
, netdev_features_t features
)
6567 struct s2io_nic
*sp
= netdev_priv(dev
);
6568 netdev_features_t changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6570 if (changed
&& netif_running(dev
)) {
6573 s2io_stop_all_tx_queue(sp
);
6575 dev
->features
= features
;
6576 rc
= s2io_card_up(sp
);
6580 s2io_start_all_tx_queue(sp
);
6588 static const struct ethtool_ops netdev_ethtool_ops
= {
6589 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6590 .get_regs_len
= s2io_ethtool_get_regs_len
,
6591 .get_regs
= s2io_ethtool_gregs
,
6592 .get_link
= ethtool_op_get_link
,
6593 .get_eeprom_len
= s2io_get_eeprom_len
,
6594 .get_eeprom
= s2io_ethtool_geeprom
,
6595 .set_eeprom
= s2io_ethtool_seeprom
,
6596 .get_ringparam
= s2io_ethtool_gringparam
,
6597 .get_pauseparam
= s2io_ethtool_getpause_data
,
6598 .set_pauseparam
= s2io_ethtool_setpause_data
,
6599 .self_test
= s2io_ethtool_test
,
6600 .get_strings
= s2io_ethtool_get_strings
,
6601 .set_phys_id
= s2io_ethtool_set_led
,
6602 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6603 .get_sset_count
= s2io_get_sset_count
,
6604 .get_link_ksettings
= s2io_ethtool_get_link_ksettings
,
6605 .set_link_ksettings
= s2io_ethtool_set_link_ksettings
,
6609 * s2io_ioctl - Entry point for the Ioctl
6610 * @dev : Device pointer.
6611 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6612 * a proprietary structure used to pass information to the driver.
6613 * @cmd : This is used to distinguish between the different commands that
6614 * can be passed to the IOCTL functions.
6616 * Currently there are no special functionality supported in IOCTL, hence
6617 * function always return EOPNOTSUPPORTED
6620 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6626 * s2io_change_mtu - entry point to change MTU size for the device.
6627 * @dev : device pointer.
6628 * @new_mtu : the new MTU size for the device.
6629 * Description: A driver entry point to change MTU size for the device.
6630 * Before changing the MTU the device must be stopped.
6632 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6636 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6638 struct s2io_nic
*sp
= netdev_priv(dev
);
6642 if (netif_running(dev
)) {
6643 s2io_stop_all_tx_queue(sp
);
6645 ret
= s2io_card_up(sp
);
6647 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6651 s2io_wake_all_tx_queue(sp
);
6652 } else { /* Device is down */
6653 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6654 u64 val64
= new_mtu
;
6656 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6663 * s2io_set_link - Set the LInk status
6664 * @data: long pointer to device private structue
6665 * Description: Sets the link status for the adapter
6668 static void s2io_set_link(struct work_struct
*work
)
6670 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6672 struct net_device
*dev
= nic
->dev
;
6673 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6679 if (!netif_running(dev
))
6682 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6683 /* The card is being reset, no point doing anything */
6687 subid
= nic
->pdev
->subsystem_device
;
6688 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6690 * Allow a small delay for the NICs self initiated
6691 * cleanup to complete.
6696 val64
= readq(&bar0
->adapter_status
);
6697 if (LINK_IS_UP(val64
)) {
6698 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6699 if (verify_xena_quiescence(nic
)) {
6700 val64
= readq(&bar0
->adapter_control
);
6701 val64
|= ADAPTER_CNTL_EN
;
6702 writeq(val64
, &bar0
->adapter_control
);
6703 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6704 nic
->device_type
, subid
)) {
6705 val64
= readq(&bar0
->gpio_control
);
6706 val64
|= GPIO_CTRL_GPIO_0
;
6707 writeq(val64
, &bar0
->gpio_control
);
6708 val64
= readq(&bar0
->gpio_control
);
6710 val64
|= ADAPTER_LED_ON
;
6711 writeq(val64
, &bar0
->adapter_control
);
6713 nic
->device_enabled_once
= true;
6716 "%s: Error: device is not Quiescent\n",
6718 s2io_stop_all_tx_queue(nic
);
6721 val64
= readq(&bar0
->adapter_control
);
6722 val64
|= ADAPTER_LED_ON
;
6723 writeq(val64
, &bar0
->adapter_control
);
6724 s2io_link(nic
, LINK_UP
);
6726 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6728 val64
= readq(&bar0
->gpio_control
);
6729 val64
&= ~GPIO_CTRL_GPIO_0
;
6730 writeq(val64
, &bar0
->gpio_control
);
6731 val64
= readq(&bar0
->gpio_control
);
6734 val64
= readq(&bar0
->adapter_control
);
6735 val64
= val64
& (~ADAPTER_LED_ON
);
6736 writeq(val64
, &bar0
->adapter_control
);
6737 s2io_link(nic
, LINK_DOWN
);
6739 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6745 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6747 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6748 u64
*temp2
, int size
)
6750 struct net_device
*dev
= sp
->dev
;
6751 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6753 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6754 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6757 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6759 * As Rx frame are not going to be processed,
6760 * using same mapped address for the Rxd
6763 rxdp1
->Buffer0_ptr
= *temp0
;
6765 *skb
= netdev_alloc_skb(dev
, size
);
6768 "%s: Out of memory to allocate %s\n",
6769 dev
->name
, "1 buf mode SKBs");
6770 stats
->mem_alloc_fail_cnt
++;
6773 stats
->mem_allocated
+= (*skb
)->truesize
;
6774 /* storing the mapped addr in a temp variable
6775 * such it will be used for next rxd whose
6776 * Host Control is NULL
6778 rxdp1
->Buffer0_ptr
= *temp0
=
6779 pci_map_single(sp
->pdev
, (*skb
)->data
,
6780 size
- NET_IP_ALIGN
,
6781 PCI_DMA_FROMDEVICE
);
6782 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6783 goto memalloc_failed
;
6784 rxdp
->Host_Control
= (unsigned long) (*skb
);
6786 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6787 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6788 /* Two buffer Mode */
6790 rxdp3
->Buffer2_ptr
= *temp2
;
6791 rxdp3
->Buffer0_ptr
= *temp0
;
6792 rxdp3
->Buffer1_ptr
= *temp1
;
6794 *skb
= netdev_alloc_skb(dev
, size
);
6797 "%s: Out of memory to allocate %s\n",
6800 stats
->mem_alloc_fail_cnt
++;
6803 stats
->mem_allocated
+= (*skb
)->truesize
;
6804 rxdp3
->Buffer2_ptr
= *temp2
=
6805 pci_map_single(sp
->pdev
, (*skb
)->data
,
6807 PCI_DMA_FROMDEVICE
);
6808 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6809 goto memalloc_failed
;
6810 rxdp3
->Buffer0_ptr
= *temp0
=
6811 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6812 PCI_DMA_FROMDEVICE
);
6813 if (pci_dma_mapping_error(sp
->pdev
,
6814 rxdp3
->Buffer0_ptr
)) {
6815 pci_unmap_single(sp
->pdev
,
6816 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6818 PCI_DMA_FROMDEVICE
);
6819 goto memalloc_failed
;
6821 rxdp
->Host_Control
= (unsigned long) (*skb
);
6823 /* Buffer-1 will be dummy buffer not used */
6824 rxdp3
->Buffer1_ptr
= *temp1
=
6825 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6826 PCI_DMA_FROMDEVICE
);
6827 if (pci_dma_mapping_error(sp
->pdev
,
6828 rxdp3
->Buffer1_ptr
)) {
6829 pci_unmap_single(sp
->pdev
,
6830 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6831 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6832 pci_unmap_single(sp
->pdev
,
6833 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6835 PCI_DMA_FROMDEVICE
);
6836 goto memalloc_failed
;
6843 stats
->pci_map_fail_cnt
++;
6844 stats
->mem_freed
+= (*skb
)->truesize
;
6845 dev_kfree_skb(*skb
);
6849 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6852 struct net_device
*dev
= sp
->dev
;
6853 if (sp
->rxd_mode
== RXD_MODE_1
) {
6854 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6855 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6856 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6857 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6858 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6862 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6864 int i
, j
, k
, blk_cnt
= 0, size
;
6865 struct config_param
*config
= &sp
->config
;
6866 struct mac_info
*mac_control
= &sp
->mac_control
;
6867 struct net_device
*dev
= sp
->dev
;
6868 struct RxD_t
*rxdp
= NULL
;
6869 struct sk_buff
*skb
= NULL
;
6870 struct buffAdd
*ba
= NULL
;
6871 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6873 /* Calculate the size based on ring mode */
6874 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6875 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6876 if (sp
->rxd_mode
== RXD_MODE_1
)
6877 size
+= NET_IP_ALIGN
;
6878 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6879 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6881 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6882 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6883 struct ring_info
*ring
= &mac_control
->rings
[i
];
6885 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6887 for (j
= 0; j
< blk_cnt
; j
++) {
6888 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6889 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
6890 if (sp
->rxd_mode
== RXD_MODE_3B
)
6891 ba
= &ring
->ba
[j
][k
];
6892 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
6900 set_rxd_buffer_size(sp
, rxdp
, size
);
6902 /* flip the Ownership bit to Hardware */
6903 rxdp
->Control_1
|= RXD_OWN_XENA
;
6911 static int s2io_add_isr(struct s2io_nic
*sp
)
6914 struct net_device
*dev
= sp
->dev
;
6917 if (sp
->config
.intr_type
== MSI_X
)
6918 ret
= s2io_enable_msi_x(sp
);
6920 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6921 sp
->config
.intr_type
= INTA
;
6925 * Store the values of the MSIX table in
6926 * the struct s2io_nic structure
6928 store_xmsi_data(sp
);
6930 /* After proper initialization of H/W, register ISR */
6931 if (sp
->config
.intr_type
== MSI_X
) {
6932 int i
, msix_rx_cnt
= 0;
6934 for (i
= 0; i
< sp
->num_entries
; i
++) {
6935 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
6936 if (sp
->s2io_entries
[i
].type
==
6938 snprintf(sp
->desc
[i
],
6939 sizeof(sp
->desc
[i
]),
6942 err
= request_irq(sp
->entries
[i
].vector
,
6943 s2io_msix_ring_handle
,
6946 sp
->s2io_entries
[i
].arg
);
6947 } else if (sp
->s2io_entries
[i
].type
==
6949 snprintf(sp
->desc
[i
],
6950 sizeof(sp
->desc
[i
]),
6953 err
= request_irq(sp
->entries
[i
].vector
,
6954 s2io_msix_fifo_handle
,
6957 sp
->s2io_entries
[i
].arg
);
6960 /* if either data or addr is zero print it. */
6961 if (!(sp
->msix_info
[i
].addr
&&
6962 sp
->msix_info
[i
].data
)) {
6964 "%s @Addr:0x%llx Data:0x%llx\n",
6966 (unsigned long long)
6967 sp
->msix_info
[i
].addr
,
6968 (unsigned long long)
6969 ntohl(sp
->msix_info
[i
].data
));
6973 remove_msix_isr(sp
);
6976 "%s:MSI-X-%d registration "
6977 "failed\n", dev
->name
, i
);
6980 "%s: Defaulting to INTA\n",
6982 sp
->config
.intr_type
= INTA
;
6985 sp
->s2io_entries
[i
].in_use
=
6986 MSIX_REGISTERED_SUCCESS
;
6990 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
6992 "MSI-X-TX entries enabled through alarm vector\n");
6995 if (sp
->config
.intr_type
== INTA
) {
6996 err
= request_irq(sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6999 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7007 static void s2io_rem_isr(struct s2io_nic
*sp
)
7009 if (sp
->config
.intr_type
== MSI_X
)
7010 remove_msix_isr(sp
);
7012 remove_inta_isr(sp
);
7015 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7018 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7019 register u64 val64
= 0;
7020 struct config_param
*config
;
7021 config
= &sp
->config
;
7023 if (!is_s2io_card_up(sp
))
7026 del_timer_sync(&sp
->alarm_timer
);
7027 /* If s2io_set_link task is executing, wait till it completes. */
7028 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7030 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7033 if (sp
->config
.napi
) {
7035 if (config
->intr_type
== MSI_X
) {
7036 for (; off
< sp
->config
.rx_ring_num
; off
++)
7037 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7040 napi_disable(&sp
->napi
);
7043 /* disable Tx and Rx traffic on the NIC */
7049 /* stop the tx queue, indicate link down */
7050 s2io_link(sp
, LINK_DOWN
);
7052 /* Check if the device is Quiescent and then Reset the NIC */
7054 /* As per the HW requirement we need to replenish the
7055 * receive buffer to avoid the ring bump. Since there is
7056 * no intention of processing the Rx frame at this pointwe are
7057 * just setting the ownership bit of rxd in Each Rx
7058 * ring to HW and set the appropriate buffer size
7059 * based on the ring mode
7061 rxd_owner_bit_reset(sp
);
7063 val64
= readq(&bar0
->adapter_status
);
7064 if (verify_xena_quiescence(sp
)) {
7065 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7072 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7073 "adapter status reads 0x%llx\n",
7074 (unsigned long long)val64
);
7081 /* Free all Tx buffers */
7082 free_tx_buffers(sp
);
7084 /* Free all Rx buffers */
7085 free_rx_buffers(sp
);
7087 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7090 static void s2io_card_down(struct s2io_nic
*sp
)
7092 do_s2io_card_down(sp
, 1);
7095 static int s2io_card_up(struct s2io_nic
*sp
)
7098 struct config_param
*config
;
7099 struct mac_info
*mac_control
;
7100 struct net_device
*dev
= sp
->dev
;
7103 /* Initialize the H/W I/O registers */
7106 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7114 * Initializing the Rx buffers. For now we are considering only 1
7115 * Rx ring and initializing buffers into 30 Rx blocks
7117 config
= &sp
->config
;
7118 mac_control
= &sp
->mac_control
;
7120 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7121 struct ring_info
*ring
= &mac_control
->rings
[i
];
7123 ring
->mtu
= dev
->mtu
;
7124 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7125 ret
= fill_rx_buffers(sp
, ring
, 1);
7127 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7130 free_rx_buffers(sp
);
7133 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7134 ring
->rx_bufs_left
);
7137 /* Initialise napi */
7139 if (config
->intr_type
== MSI_X
) {
7140 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7141 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7143 napi_enable(&sp
->napi
);
7147 /* Maintain the state prior to the open */
7148 if (sp
->promisc_flg
)
7149 sp
->promisc_flg
= 0;
7150 if (sp
->m_cast_flg
) {
7152 sp
->all_multi_pos
= 0;
7155 /* Setting its receive mode */
7156 s2io_set_multicast(dev
);
7158 if (dev
->features
& NETIF_F_LRO
) {
7159 /* Initialize max aggregatable pkts per session based on MTU */
7160 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7161 /* Check if we can use (if specified) user provided value */
7162 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7163 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7166 /* Enable Rx Traffic and interrupts on the NIC */
7167 if (start_nic(sp
)) {
7168 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7170 free_rx_buffers(sp
);
7174 /* Add interrupt service routine */
7175 if (s2io_add_isr(sp
) != 0) {
7176 if (sp
->config
.intr_type
== MSI_X
)
7179 free_rx_buffers(sp
);
7183 timer_setup(&sp
->alarm_timer
, s2io_alarm_handle
, 0);
7184 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
7186 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7188 /* Enable select interrupts */
7189 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7190 if (sp
->config
.intr_type
!= INTA
) {
7191 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7192 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7194 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7195 interruptible
|= TX_PIC_INTR
;
7196 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7203 * s2io_restart_nic - Resets the NIC.
7204 * @data : long pointer to the device private structure
7206 * This function is scheduled to be run by the s2io_tx_watchdog
7207 * function after 0.5 secs to reset the NIC. The idea is to reduce
7208 * the run time of the watch dog routine which is run holding a
7212 static void s2io_restart_nic(struct work_struct
*work
)
7214 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7215 struct net_device
*dev
= sp
->dev
;
7219 if (!netif_running(dev
))
7223 if (s2io_card_up(sp
)) {
7224 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7226 s2io_wake_all_tx_queue(sp
);
7227 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7233 * s2io_tx_watchdog - Watchdog for transmit side.
7234 * @dev : Pointer to net device structure
7236 * This function is triggered if the Tx Queue is stopped
7237 * for a pre-defined amount of time when the Interface is still up.
7238 * If the Interface is jammed in such a situation, the hardware is
7239 * reset (by s2io_close) and restarted again (by s2io_open) to
7240 * overcome any problem that might have been caused in the hardware.
7245 static void s2io_tx_watchdog(struct net_device
*dev
)
7247 struct s2io_nic
*sp
= netdev_priv(dev
);
7248 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7250 if (netif_carrier_ok(dev
)) {
7251 swstats
->watchdog_timer_cnt
++;
7252 schedule_work(&sp
->rst_timer_task
);
7253 swstats
->soft_reset_cnt
++;
7258 * rx_osm_handler - To perform some OS related operations on SKB.
7259 * @sp: private member of the device structure,pointer to s2io_nic structure.
7260 * @skb : the socket buffer pointer.
7261 * @len : length of the packet
7262 * @cksum : FCS checksum of the frame.
7263 * @ring_no : the ring from which this RxD was extracted.
7265 * This function is called by the Rx interrupt serivce routine to perform
7266 * some OS related operations on the SKB before passing it to the upper
7267 * layers. It mainly checks if the checksum is OK, if so adds it to the
7268 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7269 * to the upper layer. If the checksum is wrong, it increments the Rx
7270 * packet error count, frees the SKB and returns error.
7272 * SUCCESS on success and -1 on failure.
7274 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7276 struct s2io_nic
*sp
= ring_data
->nic
;
7277 struct net_device
*dev
= ring_data
->dev
;
7278 struct sk_buff
*skb
= (struct sk_buff
*)
7279 ((unsigned long)rxdp
->Host_Control
);
7280 int ring_no
= ring_data
->ring_no
;
7281 u16 l3_csum
, l4_csum
;
7282 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7283 struct lro
*uninitialized_var(lro
);
7285 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7290 /* Check for parity error */
7292 swstats
->parity_err_cnt
++;
7294 err_mask
= err
>> 48;
7297 swstats
->rx_parity_err_cnt
++;
7301 swstats
->rx_abort_cnt
++;
7305 swstats
->rx_parity_abort_cnt
++;
7309 swstats
->rx_rda_fail_cnt
++;
7313 swstats
->rx_unkn_prot_cnt
++;
7317 swstats
->rx_fcs_err_cnt
++;
7321 swstats
->rx_buf_size_err_cnt
++;
7325 swstats
->rx_rxd_corrupt_cnt
++;
7329 swstats
->rx_unkn_err_cnt
++;
7333 * Drop the packet if bad transfer code. Exception being
7334 * 0x5, which could be due to unsupported IPv6 extension header.
7335 * In this case, we let stack handle the packet.
7336 * Note that in this case, since checksum will be incorrect,
7337 * stack will validate the same.
7339 if (err_mask
!= 0x5) {
7340 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7341 dev
->name
, err_mask
);
7342 dev
->stats
.rx_crc_errors
++;
7346 ring_data
->rx_bufs_left
-= 1;
7347 rxdp
->Host_Control
= 0;
7352 rxdp
->Host_Control
= 0;
7353 if (sp
->rxd_mode
== RXD_MODE_1
) {
7354 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7357 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7358 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7359 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7360 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7361 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7362 unsigned char *buff
= skb_push(skb
, buf0_len
);
7364 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7365 memcpy(buff
, ba
->ba_0
, buf0_len
);
7366 skb_put(skb
, buf2_len
);
7369 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7370 ((!ring_data
->lro
) ||
7371 (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
))) &&
7372 (dev
->features
& NETIF_F_RXCSUM
)) {
7373 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7374 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7375 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7377 * NIC verifies if the Checksum of the received
7378 * frame is Ok or not and accordingly returns
7379 * a flag in the RxD.
7381 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7382 if (ring_data
->lro
) {
7387 ret
= s2io_club_tcp_session(ring_data
,
7392 case 3: /* Begin anew */
7395 case 1: /* Aggregate */
7396 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7398 case 4: /* Flush session */
7399 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7400 queue_rx_frame(lro
->parent
,
7402 clear_lro_session(lro
);
7403 swstats
->flush_max_pkts
++;
7405 case 2: /* Flush both */
7406 lro
->parent
->data_len
= lro
->frags_len
;
7407 swstats
->sending_both
++;
7408 queue_rx_frame(lro
->parent
,
7410 clear_lro_session(lro
);
7412 case 0: /* sessions exceeded */
7413 case -1: /* non-TCP or not L2 aggregatable */
7415 * First pkt in session not
7416 * L3/L4 aggregatable
7421 "%s: Samadhana!!\n",
7428 * Packet with erroneous checksum, let the
7429 * upper layers deal with it.
7431 skb_checksum_none_assert(skb
);
7434 skb_checksum_none_assert(skb
);
7436 swstats
->mem_freed
+= skb
->truesize
;
7438 skb_record_rx_queue(skb
, ring_no
);
7439 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7441 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7446 * s2io_link - stops/starts the Tx queue.
7447 * @sp : private member of the device structure, which is a pointer to the
7448 * s2io_nic structure.
7449 * @link : inidicates whether link is UP/DOWN.
7451 * This function stops/starts the Tx queue depending on whether the link
7452 * status of the NIC is is down or up. This is called by the Alarm
7453 * interrupt handler whenever a link change interrupt comes up.
7458 static void s2io_link(struct s2io_nic
*sp
, int link
)
7460 struct net_device
*dev
= sp
->dev
;
7461 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7463 if (link
!= sp
->last_link_state
) {
7465 if (link
== LINK_DOWN
) {
7466 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7467 s2io_stop_all_tx_queue(sp
);
7468 netif_carrier_off(dev
);
7469 if (swstats
->link_up_cnt
)
7470 swstats
->link_up_time
=
7471 jiffies
- sp
->start_time
;
7472 swstats
->link_down_cnt
++;
7474 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7475 if (swstats
->link_down_cnt
)
7476 swstats
->link_down_time
=
7477 jiffies
- sp
->start_time
;
7478 swstats
->link_up_cnt
++;
7479 netif_carrier_on(dev
);
7480 s2io_wake_all_tx_queue(sp
);
7483 sp
->last_link_state
= link
;
7484 sp
->start_time
= jiffies
;
7488 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7489 * @sp : private member of the device structure, which is a pointer to the
7490 * s2io_nic structure.
7492 * This function initializes a few of the PCI and PCI-X configuration registers
7493 * with recommended values.
7498 static void s2io_init_pci(struct s2io_nic
*sp
)
7500 u16 pci_cmd
= 0, pcix_cmd
= 0;
7502 /* Enable Data Parity Error Recovery in PCI-X command register. */
7503 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7505 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7507 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7510 /* Set the PErr Response bit in PCI command register. */
7511 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7512 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7513 (pci_cmd
| PCI_COMMAND_PARITY
));
7514 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7517 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7522 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7523 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7524 "(%d) not supported\n", tx_fifo_num
);
7526 if (tx_fifo_num
< 1)
7529 tx_fifo_num
= MAX_TX_FIFOS
;
7531 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7535 *dev_multiq
= multiq
;
7537 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7538 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7540 "Tx steering is not supported with "
7541 "one fifo. Disabling Tx steering.\n");
7542 tx_steering_type
= NO_STEERING
;
7545 if ((tx_steering_type
< NO_STEERING
) ||
7546 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7548 "Requested transmit steering not supported\n");
7549 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7550 tx_steering_type
= NO_STEERING
;
7553 if (rx_ring_num
> MAX_RX_RINGS
) {
7555 "Requested number of rx rings not supported\n");
7556 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7558 rx_ring_num
= MAX_RX_RINGS
;
7561 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7562 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7563 "Defaulting to INTA\n");
7564 *dev_intr_type
= INTA
;
7567 if ((*dev_intr_type
== MSI_X
) &&
7568 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7569 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7570 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7571 "Defaulting to INTA\n");
7572 *dev_intr_type
= INTA
;
7575 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7576 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7577 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7581 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7582 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7583 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7584 "supported\nDefaulting to %d\n",
7585 MAX_RX_BLOCKS_PER_RING
);
7586 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7593 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7594 * or Traffic class respectively.
7595 * @nic: device private variable
7596 * Description: The function configures the receive steering to
7597 * desired receive ring.
7598 * Return Value: SUCCESS on success and
7599 * '-1' on failure (endian settings incorrect).
7601 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7603 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7604 register u64 val64
= 0;
7606 if (ds_codepoint
> 63)
7609 val64
= RTS_DS_MEM_DATA(ring
);
7610 writeq(val64
, &bar0
->rts_ds_mem_data
);
7612 val64
= RTS_DS_MEM_CTRL_WE
|
7613 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7614 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7616 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7618 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7619 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7623 static const struct net_device_ops s2io_netdev_ops
= {
7624 .ndo_open
= s2io_open
,
7625 .ndo_stop
= s2io_close
,
7626 .ndo_get_stats
= s2io_get_stats
,
7627 .ndo_start_xmit
= s2io_xmit
,
7628 .ndo_validate_addr
= eth_validate_addr
,
7629 .ndo_set_rx_mode
= s2io_set_multicast
,
7630 .ndo_do_ioctl
= s2io_ioctl
,
7631 .ndo_set_mac_address
= s2io_set_mac_addr
,
7632 .ndo_change_mtu
= s2io_change_mtu
,
7633 .ndo_set_features
= s2io_set_features
,
7634 .ndo_tx_timeout
= s2io_tx_watchdog
,
7635 #ifdef CONFIG_NET_POLL_CONTROLLER
7636 .ndo_poll_controller
= s2io_netpoll
,
7641 * s2io_init_nic - Initialization of the adapter .
7642 * @pdev : structure containing the PCI related information of the device.
7643 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7645 * The function initializes an adapter identified by the pci_dec structure.
7646 * All OS related initialization including memory and device structure and
7647 * initlaization of the device private variable is done. Also the swapper
7648 * control register is initialized to enable read and write into the I/O
7649 * registers of the device.
7651 * returns 0 on success and negative on failure.
7655 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7657 struct s2io_nic
*sp
;
7658 struct net_device
*dev
;
7660 int dma_flag
= false;
7661 u32 mac_up
, mac_down
;
7662 u64 val64
= 0, tmp64
= 0;
7663 struct XENA_dev_config __iomem
*bar0
= NULL
;
7665 struct config_param
*config
;
7666 struct mac_info
*mac_control
;
7668 u8 dev_intr_type
= intr_type
;
7671 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7675 ret
= pci_enable_device(pdev
);
7678 "%s: pci_enable_device failed\n", __func__
);
7682 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7683 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7685 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7687 "Unable to obtain 64bit DMA "
7688 "for consistent allocations\n");
7689 pci_disable_device(pdev
);
7692 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7693 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7695 pci_disable_device(pdev
);
7698 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7700 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7702 pci_disable_device(pdev
);
7706 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7708 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7710 pci_disable_device(pdev
);
7711 pci_release_regions(pdev
);
7715 pci_set_master(pdev
);
7716 pci_set_drvdata(pdev
, dev
);
7717 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7719 /* Private member variable initialized to s2io NIC structure */
7720 sp
= netdev_priv(dev
);
7723 sp
->high_dma_flag
= dma_flag
;
7724 sp
->device_enabled_once
= false;
7725 if (rx_ring_mode
== 1)
7726 sp
->rxd_mode
= RXD_MODE_1
;
7727 if (rx_ring_mode
== 2)
7728 sp
->rxd_mode
= RXD_MODE_3B
;
7730 sp
->config
.intr_type
= dev_intr_type
;
7732 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7733 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7734 sp
->device_type
= XFRAME_II_DEVICE
;
7736 sp
->device_type
= XFRAME_I_DEVICE
;
7739 /* Initialize some PCI/PCI-X fields of the NIC. */
7743 * Setting the device configuration parameters.
7744 * Most of these parameters can be specified by the user during
7745 * module insertion as they are module loadable parameters. If
7746 * these parameters are not not specified during load time, they
7747 * are initialized with default values.
7749 config
= &sp
->config
;
7750 mac_control
= &sp
->mac_control
;
7752 config
->napi
= napi
;
7753 config
->tx_steering_type
= tx_steering_type
;
7755 /* Tx side parameters. */
7756 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7757 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7759 config
->tx_fifo_num
= tx_fifo_num
;
7761 /* Initialize the fifos used for tx steering */
7762 if (config
->tx_fifo_num
< 5) {
7763 if (config
->tx_fifo_num
== 1)
7764 sp
->total_tcp_fifos
= 1;
7766 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7767 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7768 sp
->total_udp_fifos
= 1;
7769 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7771 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7772 FIFO_OTHER_MAX_NUM
);
7773 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7774 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7775 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7778 config
->multiq
= dev_multiq
;
7779 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7780 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7782 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7783 tx_cfg
->fifo_priority
= i
;
7786 /* mapping the QoS priority to the configured fifos */
7787 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7788 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7790 /* map the hashing selector table to the configured fifos */
7791 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7792 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7795 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7796 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7797 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7799 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7800 if (tx_cfg
->fifo_len
< 65) {
7801 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7805 /* + 2 because one Txd for skb->data and one Txd for UFO */
7806 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7808 /* Rx side parameters. */
7809 config
->rx_ring_num
= rx_ring_num
;
7810 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7811 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7812 struct ring_info
*ring
= &mac_control
->rings
[i
];
7814 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7815 rx_cfg
->ring_priority
= i
;
7816 ring
->rx_bufs_left
= 0;
7817 ring
->rxd_mode
= sp
->rxd_mode
;
7818 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7819 ring
->pdev
= sp
->pdev
;
7820 ring
->dev
= sp
->dev
;
7823 for (i
= 0; i
< rx_ring_num
; i
++) {
7824 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7826 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7827 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7830 /* Setting Mac Control parameters */
7831 mac_control
->rmac_pause_time
= rmac_pause_time
;
7832 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7833 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7836 /* initialize the shared memory used by the NIC and the host */
7837 if (init_shared_mem(sp
)) {
7838 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7840 goto mem_alloc_failed
;
7843 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7845 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7848 goto bar0_remap_failed
;
7851 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7853 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7856 goto bar1_remap_failed
;
7859 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7860 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7861 mac_control
->tx_FIFO_start
[j
] = sp
->bar1
+ (j
* 0x00020000);
7864 /* Driver entry points */
7865 dev
->netdev_ops
= &s2io_netdev_ops
;
7866 dev
->ethtool_ops
= &netdev_ethtool_ops
;
7867 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7868 NETIF_F_TSO
| NETIF_F_TSO6
|
7869 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7870 dev
->features
|= dev
->hw_features
|
7871 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
7872 if (sp
->high_dma_flag
== true)
7873 dev
->features
|= NETIF_F_HIGHDMA
;
7874 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7875 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7876 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7878 pci_save_state(sp
->pdev
);
7880 /* Setting swapper control on the NIC, for proper reset operation */
7881 if (s2io_set_swapper(sp
)) {
7882 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7885 goto set_swap_failed
;
7888 /* Verify if the Herc works on the slot its placed into */
7889 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7890 mode
= s2io_verify_pci_mode(sp
);
7892 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
7895 goto set_swap_failed
;
7899 if (sp
->config
.intr_type
== MSI_X
) {
7900 sp
->num_entries
= config
->rx_ring_num
+ 1;
7901 ret
= s2io_enable_msi_x(sp
);
7904 ret
= s2io_test_msi(sp
);
7905 /* rollback MSI-X, will re-enable during add_isr() */
7906 remove_msix_isr(sp
);
7911 "MSI-X requested but failed to enable\n");
7912 sp
->config
.intr_type
= INTA
;
7916 if (config
->intr_type
== MSI_X
) {
7917 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7918 struct ring_info
*ring
= &mac_control
->rings
[i
];
7920 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
7923 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
7926 /* Not needed for Herc */
7927 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7929 * Fix for all "FFs" MAC address problems observed on
7932 fix_mac_address(sp
);
7937 * MAC address initialization.
7938 * For now only one mac address will be read and used.
7941 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7942 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7943 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7944 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7945 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
7947 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7948 mac_down
= (u32
)tmp64
;
7949 mac_up
= (u32
) (tmp64
>> 32);
7951 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7952 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7953 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7954 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7955 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7956 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7958 /* Set the factory defined MAC address initially */
7959 dev
->addr_len
= ETH_ALEN
;
7960 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7962 /* initialize number of multicast & unicast MAC entries variables */
7963 if (sp
->device_type
== XFRAME_I_DEVICE
) {
7964 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
7965 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
7966 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
7967 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
7968 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
7969 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
7970 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
7973 /* MTU range: 46 - 9600 */
7974 dev
->min_mtu
= MIN_MTU
;
7975 dev
->max_mtu
= S2IO_JUMBO_SIZE
;
7977 /* store mac addresses from CAM to s2io_nic structure */
7978 do_s2io_store_unicast_mc(sp
);
7980 /* Configure MSIX vector for number of rings configured plus one */
7981 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
7982 (config
->intr_type
== MSI_X
))
7983 sp
->num_entries
= config
->rx_ring_num
+ 1;
7985 /* Store the values of the MSIX table in the s2io_nic structure */
7986 store_xmsi_data(sp
);
7987 /* reset Nic and bring it to known state */
7991 * Initialize link state flags
7992 * and the card state parameter
7996 /* Initialize spinlocks */
7997 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
7998 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8000 spin_lock_init(&fifo
->tx_lock
);
8004 * SXE-002: Configure link and activity LED to init state
8007 subid
= sp
->pdev
->subsystem_device
;
8008 if ((subid
& 0xFF) >= 0x07) {
8009 val64
= readq(&bar0
->gpio_control
);
8010 val64
|= 0x0000800000000000ULL
;
8011 writeq(val64
, &bar0
->gpio_control
);
8012 val64
= 0x0411040400000000ULL
;
8013 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8014 val64
= readq(&bar0
->gpio_control
);
8017 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8019 if (register_netdev(dev
)) {
8020 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8022 goto register_failed
;
8025 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8026 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8027 sp
->product_name
, pdev
->revision
);
8028 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8029 s2io_driver_version
);
8030 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8031 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8032 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8033 mode
= s2io_print_pci_mode(sp
);
8036 unregister_netdev(dev
);
8037 goto set_swap_failed
;
8040 switch (sp
->rxd_mode
) {
8042 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8046 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8051 switch (sp
->config
.napi
) {
8053 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8056 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8060 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8061 sp
->config
.tx_fifo_num
);
8063 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8064 sp
->config
.rx_ring_num
);
8066 switch (sp
->config
.intr_type
) {
8068 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8071 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8074 if (sp
->config
.multiq
) {
8075 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8076 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8078 fifo
->multiq
= config
->multiq
;
8080 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8083 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8086 switch (sp
->config
.tx_steering_type
) {
8088 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8091 case TX_PRIORITY_STEERING
:
8093 "%s: Priority steering enabled for transmit\n",
8096 case TX_DEFAULT_STEERING
:
8098 "%s: Default steering enabled for transmit\n",
8102 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8104 /* Initialize device name */
8105 snprintf(sp
->name
, sizeof(sp
->name
), "%s Neterion %s", dev
->name
,
8109 sp
->vlan_strip_flag
= 1;
8111 sp
->vlan_strip_flag
= 0;
8114 * Make Link state as off at this point, when the Link change
8115 * interrupt comes the state will be automatically changed to
8118 netif_carrier_off(dev
);
8129 free_shared_mem(sp
);
8130 pci_disable_device(pdev
);
8131 pci_release_regions(pdev
);
8138 * s2io_rem_nic - Free the PCI device
8139 * @pdev: structure containing the PCI related information of the device.
8140 * Description: This function is called by the Pci subsystem to release a
8141 * PCI device and free up all resource held up by the device. This could
8142 * be in response to a Hot plug event or when the driver is to be removed
8146 static void s2io_rem_nic(struct pci_dev
*pdev
)
8148 struct net_device
*dev
= pci_get_drvdata(pdev
);
8149 struct s2io_nic
*sp
;
8152 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8156 sp
= netdev_priv(dev
);
8158 cancel_work_sync(&sp
->rst_timer_task
);
8159 cancel_work_sync(&sp
->set_link_task
);
8161 unregister_netdev(dev
);
8163 free_shared_mem(sp
);
8166 pci_release_regions(pdev
);
8168 pci_disable_device(pdev
);
8171 module_pci_driver(s2io_driver
);
8173 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8174 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8175 struct s2io_nic
*sp
)
8178 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8180 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8182 "%s: Non-TCP frames not supported for LRO\n",
8187 /* Checking for DIX type or DIX type with VLAN */
8188 if ((l2_type
== 0) || (l2_type
== 4)) {
8189 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8191 * If vlan stripping is disabled and the frame is VLAN tagged,
8192 * shift the offset by the VLAN header size bytes.
8194 if ((!sp
->vlan_strip_flag
) &&
8195 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8196 ip_off
+= HEADER_VLAN_SIZE
;
8198 /* LLC, SNAP etc are considered non-mergeable */
8202 *ip
= (struct iphdr
*)(buffer
+ ip_off
);
8203 ip_len
= (u8
)((*ip
)->ihl
);
8205 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8210 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8213 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8214 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8215 (lro
->iph
->daddr
!= ip
->daddr
) ||
8216 (lro
->tcph
->source
!= tcp
->source
) ||
8217 (lro
->tcph
->dest
!= tcp
->dest
))
8222 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8224 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8227 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8228 struct iphdr
*ip
, struct tcphdr
*tcp
,
8229 u32 tcp_pyld_len
, u16 vlan_tag
)
8231 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8235 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8236 lro
->tcp_ack
= tcp
->ack_seq
;
8238 lro
->total_len
= ntohs(ip
->tot_len
);
8240 lro
->vlan_tag
= vlan_tag
;
8242 * Check if we saw TCP timestamp.
8243 * Other consistency checks have already been done.
8245 if (tcp
->doff
== 8) {
8247 ptr
= (__be32
*)(tcp
+1);
8249 lro
->cur_tsval
= ntohl(*(ptr
+1));
8250 lro
->cur_tsecr
= *(ptr
+2);
8255 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8257 struct iphdr
*ip
= lro
->iph
;
8258 struct tcphdr
*tcp
= lro
->tcph
;
8259 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8261 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8263 /* Update L3 header */
8264 csum_replace2(&ip
->check
, ip
->tot_len
, htons(lro
->total_len
));
8265 ip
->tot_len
= htons(lro
->total_len
);
8267 /* Update L4 header */
8268 tcp
->ack_seq
= lro
->tcp_ack
;
8269 tcp
->window
= lro
->window
;
8271 /* Update tsecr field if this session has timestamps enabled */
8273 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8274 *(ptr
+2) = lro
->cur_tsecr
;
8277 /* Update counters required for calculation of
8278 * average no. of packets aggregated.
8280 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8281 swstats
->num_aggregations
++;
8284 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8285 struct tcphdr
*tcp
, u32 l4_pyld
)
8287 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8288 lro
->total_len
+= l4_pyld
;
8289 lro
->frags_len
+= l4_pyld
;
8290 lro
->tcp_next_seq
+= l4_pyld
;
8293 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8294 lro
->tcp_ack
= tcp
->ack_seq
;
8295 lro
->window
= tcp
->window
;
8299 /* Update tsecr and tsval from this packet */
8300 ptr
= (__be32
*)(tcp
+1);
8301 lro
->cur_tsval
= ntohl(*(ptr
+1));
8302 lro
->cur_tsecr
= *(ptr
+ 2);
8306 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8307 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8311 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8313 if (!tcp_pyld_len
) {
8314 /* Runt frame or a pure ack */
8318 if (ip
->ihl
!= 5) /* IP has options */
8321 /* If we see CE codepoint in IP header, packet is not mergeable */
8322 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8325 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8326 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8327 tcp
->syn
|| tcp
->fin
||
8328 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8330 * Currently recognize only the ack control word and
8331 * any other control field being set would result in
8332 * flushing the LRO session
8338 * Allow only one TCP timestamp option. Don't aggregate if
8339 * any other options are detected.
8341 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8344 if (tcp
->doff
== 8) {
8345 ptr
= (u8
*)(tcp
+ 1);
8346 while (*ptr
== TCPOPT_NOP
)
8348 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8351 /* Ensure timestamp value increases monotonically */
8353 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8356 /* timestamp echo reply should be non-zero */
8357 if (*((__be32
*)(ptr
+6)) == 0)
8364 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8365 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8366 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8369 struct tcphdr
*tcph
;
8372 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8374 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8379 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8381 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8382 tcph
= (struct tcphdr
*)*tcp
;
8383 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8384 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8385 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8386 if (l_lro
->in_use
) {
8387 if (check_for_socket_match(l_lro
, ip
, tcph
))
8389 /* Sock pair matched */
8392 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8393 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8394 "expected 0x%x, actual 0x%x\n",
8396 (*lro
)->tcp_next_seq
,
8399 swstats
->outof_sequence_pkts
++;
8404 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8406 ret
= 1; /* Aggregate */
8408 ret
= 2; /* Flush both */
8414 /* Before searching for available LRO objects,
8415 * check if the pkt is L3/L4 aggregatable. If not
8416 * don't create new LRO session. Just send this
8419 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8422 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8423 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8424 if (!(l_lro
->in_use
)) {
8426 ret
= 3; /* Begin anew */
8432 if (ret
== 0) { /* sessions exceeded */
8433 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8441 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8445 update_L3L4_header(sp
, *lro
);
8448 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8449 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8450 update_L3L4_header(sp
, *lro
);
8451 ret
= 4; /* Flush the LRO */
8455 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8462 static void clear_lro_session(struct lro
*lro
)
8464 static u16 lro_struct_size
= sizeof(struct lro
);
8466 memset(lro
, 0, lro_struct_size
);
8469 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8471 struct net_device
*dev
= skb
->dev
;
8472 struct s2io_nic
*sp
= netdev_priv(dev
);
8474 skb
->protocol
= eth_type_trans(skb
, dev
);
8475 if (vlan_tag
&& sp
->vlan_strip_flag
)
8476 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
8477 if (sp
->config
.napi
)
8478 netif_receive_skb(skb
);
8483 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8484 struct sk_buff
*skb
, u32 tcp_len
)
8486 struct sk_buff
*first
= lro
->parent
;
8487 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8489 first
->len
+= tcp_len
;
8490 first
->data_len
= lro
->frags_len
;
8491 skb_pull(skb
, (skb
->len
- tcp_len
));
8492 if (skb_shinfo(first
)->frag_list
)
8493 lro
->last_frag
->next
= skb
;
8495 skb_shinfo(first
)->frag_list
= skb
;
8496 first
->truesize
+= skb
->truesize
;
8497 lro
->last_frag
= skb
;
8498 swstats
->clubbed_frms_cnt
++;
8502 * s2io_io_error_detected - called when PCI error is detected
8503 * @pdev: Pointer to PCI device
8504 * @state: The current pci connection state
8506 * This function is called after a PCI bus error affecting
8507 * this device has been detected.
8509 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8510 pci_channel_state_t state
)
8512 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8513 struct s2io_nic
*sp
= netdev_priv(netdev
);
8515 netif_device_detach(netdev
);
8517 if (state
== pci_channel_io_perm_failure
)
8518 return PCI_ERS_RESULT_DISCONNECT
;
8520 if (netif_running(netdev
)) {
8521 /* Bring down the card, while avoiding PCI I/O */
8522 do_s2io_card_down(sp
, 0);
8524 pci_disable_device(pdev
);
8526 return PCI_ERS_RESULT_NEED_RESET
;
8530 * s2io_io_slot_reset - called after the pci bus has been reset.
8531 * @pdev: Pointer to PCI device
8533 * Restart the card from scratch, as if from a cold-boot.
8534 * At this point, the card has exprienced a hard reset,
8535 * followed by fixups by BIOS, and has its config space
8536 * set up identically to what it was at cold boot.
8538 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8540 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8541 struct s2io_nic
*sp
= netdev_priv(netdev
);
8543 if (pci_enable_device(pdev
)) {
8544 pr_err("Cannot re-enable PCI device after reset.\n");
8545 return PCI_ERS_RESULT_DISCONNECT
;
8548 pci_set_master(pdev
);
8551 return PCI_ERS_RESULT_RECOVERED
;
8555 * s2io_io_resume - called when traffic can start flowing again.
8556 * @pdev: Pointer to PCI device
8558 * This callback is called when the error recovery driver tells
8559 * us that its OK to resume normal operation.
8561 static void s2io_io_resume(struct pci_dev
*pdev
)
8563 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8564 struct s2io_nic
*sp
= netdev_priv(netdev
);
8566 if (netif_running(netdev
)) {
8567 if (s2io_card_up(sp
)) {
8568 pr_err("Can't bring device back up after reset.\n");
8572 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8574 pr_err("Can't restore mac addr after reset.\n");
8579 netif_device_attach(netdev
);
8580 netif_tx_wake_all_queues(netdev
);