1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 /* Theory of operation:
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
33 * Receive: the packet's reception time is converted to an appropriate
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
47 #include "mcdi_pcol.h"
49 #include "farch_regs.h"
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
83 #define PTP_DPORT_OFFSET 22
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
97 #define PTP_V1_MIN_LENGTH 64
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
119 #define PTP_V2_MIN_LENGTH 63
121 #define PTP_MIN_LENGTH 63
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
130 #define PTP_VERSION_V1 1
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
135 enum ptp_packet_state
{
136 PTP_PACKET_STATE_UNMATCHED
= 0,
137 PTP_PACKET_STATE_MATCHED
,
138 PTP_PACKET_STATE_TIMED_OUT
,
139 PTP_PACKET_STATE_MATCH_UNWANTED
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
152 /* Precalculate scale word to avoid long long division at runtime */
153 /* This is equivalent to 2^66 / 10^9. */
154 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
156 /* How much to shift down after scaling to convert to FP40 */
157 #define PPB_SHIFT_FP40 26
159 #define PPB_SHIFT_FP44 22
161 #define PTP_SYNC_ATTEMPTS 4
164 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
165 * @words: UUID and (partial) sequence number
166 * @expiry: Time after which the packet should be delivered irrespective of
168 * @state: The state of the packet - whether it is ready for processing or
169 * whether that is of no interest.
171 struct efx_ptp_match
{
172 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
173 unsigned long expiry
;
174 enum ptp_packet_state state
;
178 * struct efx_ptp_event_rx - A PTP receive event (from MC)
179 * @seq0: First part of (PTP) UUID
180 * @seq1: Second part of (PTP) UUID and sequence number
181 * @hwtimestamp: Event timestamp
183 struct efx_ptp_event_rx
{
184 struct list_head link
;
188 unsigned long expiry
;
192 * struct efx_ptp_timeset - Synchronisation between host and MC
193 * @host_start: Host time immediately before hardware timestamp taken
194 * @major: Hardware timestamp, major
195 * @minor: Hardware timestamp, minor
196 * @host_end: Host time immediately after hardware timestamp taken
197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
198 * host end time being seen
199 * @window: Difference of host_end and host_start
200 * @valid: Whether this timeset is valid
202 struct efx_ptp_timeset
{
208 u32 window
; /* Derived: end - start, allowing for wrap */
212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
213 * @efx: The NIC context
214 * @channel: The PTP channel (Siena only)
215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
217 * @rxq: Receive SKB queue (awaiting timestamps)
218 * @txq: Transmit SKB queue
219 * @evt_list: List of MC receive events awaiting packets
220 * @evt_free_list: List of free events
221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223 * @workwq: Work queue for processing pending PTP operations
225 * @reset_required: A serious error has occurred and the PTP task needs to be
226 * reset (disable, enable).
227 * @rxfilter_event: Receive filter when operating
228 * @rxfilter_general: Receive filter when operating
229 * @config: Current timestamp configuration
230 * @enabled: PTP operation enabled
231 * @mode: Mode in which PTP operating (PTP version)
232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
234 * @nic_time.minor_max: Wrap point for NIC minor times
235 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
236 * in packet prefix and last MCDI time sync event i.e. how much earlier than
237 * the last sync event time a packet timestamp can be.
238 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
239 * in packet prefix and last MCDI time sync event i.e. how much later than
240 * the last sync event time a packet timestamp can be.
241 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
242 * field in MCDI time sync event.
243 * @min_synchronisation_ns: Minimum acceptable corrected sync window
244 * @capabilities: Capabilities flags from the NIC
245 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
247 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
249 * @ts_corrections.pps_out: PPS output error (information only)
250 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
251 * @ts_corrections.general_tx: Required driver correction of general packet
252 * transmit timestamps
253 * @ts_corrections.general_rx: Required driver correction of general packet
255 * @evt_frags: Partly assembled PTP events
256 * @evt_frag_idx: Current fragment number
257 * @evt_code: Last event code
258 * @start: Address at which MC indicates ready for synchronisation
259 * @host_time_pps: Host time at last PPS
260 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
261 * frequency adjustment into a fixed point fractional nanosecond format.
262 * @current_adjfreq: Current ppb adjustment.
263 * @phc_clock: Pointer to registered phc device (if primary function)
264 * @phc_clock_info: Registration structure for phc device
265 * @pps_work: pps work task for handling pps events
266 * @pps_workwq: pps work queue
267 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
268 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
269 * allocations in main data path).
270 * @good_syncs: Number of successful synchronisations.
271 * @fast_syncs: Number of synchronisations requiring short delay
272 * @bad_syncs: Number of failed synchronisations.
273 * @sync_timeouts: Number of synchronisation timeouts
274 * @no_time_syncs: Number of synchronisations with no good times.
275 * @invalid_sync_windows: Number of sync windows with bad durations.
276 * @undersize_sync_windows: Number of corrected sync windows that are too small
277 * @oversize_sync_windows: Number of corrected sync windows that are too large
278 * @rx_no_timestamp: Number of packets received without a timestamp.
279 * @timeset: Last set of synchronisation statistics.
280 * @xmit_skb: Transmit SKB function.
282 struct efx_ptp_data
{
284 struct efx_channel
*channel
;
286 struct sk_buff_head rxq
;
287 struct sk_buff_head txq
;
288 struct list_head evt_list
;
289 struct list_head evt_free_list
;
291 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
292 struct workqueue_struct
*workwq
;
293 struct work_struct work
;
296 u32 rxfilter_general
;
297 bool rxfilter_installed
;
298 struct hwtstamp_config config
;
301 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
302 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
306 u32 sync_event_diff_min
;
307 u32 sync_event_diff_max
;
308 unsigned int sync_event_minor_shift
;
310 unsigned int min_synchronisation_ns
;
311 unsigned int capabilities
;
320 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
323 struct efx_buffer start
;
324 struct pps_event_time host_time_pps
;
325 unsigned int adjfreq_ppb_shift
;
327 struct ptp_clock
*phc_clock
;
328 struct ptp_clock_info phc_clock_info
;
329 struct work_struct pps_work
;
330 struct workqueue_struct
*pps_workwq
;
332 _MCDI_DECLARE_BUF(txbuf
, MC_CMD_PTP_IN_TRANSMIT_LENMAX
);
334 unsigned int good_syncs
;
335 unsigned int fast_syncs
;
336 unsigned int bad_syncs
;
337 unsigned int sync_timeouts
;
338 unsigned int no_time_syncs
;
339 unsigned int invalid_sync_windows
;
340 unsigned int undersize_sync_windows
;
341 unsigned int oversize_sync_windows
;
342 unsigned int rx_no_timestamp
;
343 struct efx_ptp_timeset
344 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
345 void (*xmit_skb
)(struct efx_nic
*efx
, struct sk_buff
*skb
);
348 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
349 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
350 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
);
351 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
352 const struct timespec64
*e_ts
);
353 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
354 struct ptp_clock_request
*request
, int on
);
356 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic
*efx
)
358 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
360 return ((efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) &&
361 (nic_data
->datapath_caps2
&
362 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN
)
366 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
367 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
369 static bool efx_ptp_want_txqs(struct efx_channel
*channel
)
371 return efx_ptp_use_mac_tx_timestamps(channel
->efx
);
374 #define PTP_SW_STAT(ext_name, field_name) \
375 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
376 #define PTP_MC_STAT(ext_name, mcdi_name) \
377 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
378 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
379 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
380 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
381 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
382 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
383 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
384 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
385 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
386 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
387 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
388 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
389 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
390 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
391 PTP_MC_STAT(ptp_filter_matches
, FM
),
392 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
394 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
395 static const unsigned long efx_ptp_stat_mask
[] = {
396 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
399 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
)
404 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
405 efx_ptp_stat_mask
, strings
);
408 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
410 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
411 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
418 /* Copy software statistics */
419 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
420 if (efx_ptp_stat_desc
[i
].dma_width
)
422 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
423 efx_ptp_stat_desc
[i
].offset
);
426 /* Fetch MC statistics. We *must* fill in all statistics or
427 * risk leaking kernel memory to userland, so if the MCDI
428 * request fails we pretend we got zeroes.
430 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
431 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
432 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
433 outbuf
, sizeof(outbuf
), NULL
);
435 memset(outbuf
, 0, sizeof(outbuf
));
436 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
438 stats
, _MCDI_PTR(outbuf
, 0), false);
440 return PTP_STAT_COUNT
;
443 /* For Siena platforms NIC time is s and ns */
444 static void efx_ptp_ns_to_s_ns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
446 struct timespec64 ts
= ns_to_timespec64(ns
);
447 *nic_major
= (u32
)ts
.tv_sec
;
448 *nic_minor
= ts
.tv_nsec
;
451 static ktime_t
efx_ptp_s_ns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
454 ktime_t kt
= ktime_set(nic_major
, nic_minor
);
456 kt
= ktime_add_ns(kt
, (u64
)correction
);
458 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
462 /* To convert from s27 format to ns we multiply then divide by a power of 2.
463 * For the conversion from ns to s27, the operation is also converted to a
464 * multiply and shift.
466 #define S27_TO_NS_SHIFT (27)
467 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
468 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
469 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
471 /* For Huntington platforms NIC time is in seconds and fractions of a second
472 * where the minor register only uses 27 bits in units of 2^-27s.
474 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
476 struct timespec64 ts
= ns_to_timespec64(ns
);
477 u32 maj
= (u32
)ts
.tv_sec
;
478 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
479 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
481 /* The conversion can result in the minor value exceeding the maximum.
482 * In this case, round up to the next second.
484 if (min
>= S27_MINOR_MAX
) {
485 min
-= S27_MINOR_MAX
;
493 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
495 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
496 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
497 return ktime_set(nic_major
, ns
);
500 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
503 /* Apply the correction and deal with carry */
504 nic_minor
+= correction
;
505 if ((s32
)nic_minor
< 0) {
506 nic_minor
+= S27_MINOR_MAX
;
508 } else if (nic_minor
>= S27_MINOR_MAX
) {
509 nic_minor
-= S27_MINOR_MAX
;
513 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
516 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
517 static void efx_ptp_ns_to_s_qns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
519 struct timespec64 ts
= ns_to_timespec64(ns
);
521 *nic_major
= (u32
)ts
.tv_sec
;
522 *nic_minor
= ts
.tv_nsec
* 4;
525 static ktime_t
efx_ptp_s_qns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
530 nic_minor
= DIV_ROUND_CLOSEST(nic_minor
, 4);
531 correction
= DIV_ROUND_CLOSEST(correction
, 4);
533 kt
= ktime_set(nic_major
, nic_minor
);
536 kt
= ktime_add_ns(kt
, (u64
)correction
);
538 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
542 struct efx_channel
*efx_ptp_channel(struct efx_nic
*efx
)
544 return efx
->ptp_data
? efx
->ptp_data
->channel
: NULL
;
547 static u32
last_sync_timestamp_major(struct efx_nic
*efx
)
549 struct efx_channel
*channel
= efx_ptp_channel(efx
);
553 major
= channel
->sync_timestamp_major
;
557 /* The 8000 series and later can provide the time from the MAC, which is only
558 * 48 bits long and provides meta-information in the top 2 bits.
561 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic
*efx
,
562 struct efx_ptp_data
*ptp
,
563 u32 nic_major
, u32 nic_minor
,
568 if (!(nic_major
& 0x80000000)) {
569 WARN_ON_ONCE(nic_major
>> 16);
570 /* Use the top bits from the latest sync event. */
572 nic_major
|= (last_sync_timestamp_major(efx
) & 0xffff0000);
574 kt
= ptp
->nic_to_kernel_time(nic_major
, nic_minor
,
580 ktime_t
efx_ptp_nic_to_kernel_time(struct efx_tx_queue
*tx_queue
)
582 struct efx_nic
*efx
= tx_queue
->efx
;
583 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
586 if (efx_ptp_use_mac_tx_timestamps(efx
))
587 kt
= efx_ptp_mac_nic_to_ktime_correction(efx
, ptp
,
588 tx_queue
->completed_timestamp_major
,
589 tx_queue
->completed_timestamp_minor
,
590 ptp
->ts_corrections
.general_tx
);
592 kt
= ptp
->nic_to_kernel_time(
593 tx_queue
->completed_timestamp_major
,
594 tx_queue
->completed_timestamp_minor
,
595 ptp
->ts_corrections
.general_tx
);
599 /* Get PTP attributes and set up time conversions */
600 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
602 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
603 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
604 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
609 /* Get the PTP attributes. If the NIC doesn't support the operation we
610 * use the default format for compatibility with older NICs i.e.
611 * seconds and nanoseconds.
613 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
614 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
615 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
616 outbuf
, sizeof(outbuf
), &out_len
);
618 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
619 } else if (rc
== -EINVAL
) {
620 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
621 } else if (rc
== -EPERM
) {
622 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
625 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
),
626 outbuf
, sizeof(outbuf
), rc
);
631 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
:
632 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
633 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
634 ptp
->nic_time
.minor_max
= 1 << 27;
635 ptp
->nic_time
.sync_event_minor_shift
= 19;
637 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
:
638 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_ns
;
639 ptp
->nic_to_kernel_time
= efx_ptp_s_ns_to_ktime_correction
;
640 ptp
->nic_time
.minor_max
= 1000000000;
641 ptp
->nic_time
.sync_event_minor_shift
= 22;
643 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS
:
644 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_qns
;
645 ptp
->nic_to_kernel_time
= efx_ptp_s_qns_to_ktime_correction
;
646 ptp
->nic_time
.minor_max
= 4000000000UL;
647 ptp
->nic_time
.sync_event_minor_shift
= 24;
653 /* Precalculate acceptable difference between the minor time in the
654 * packet prefix and the last MCDI time sync event. We expect the
655 * packet prefix timestamp to be after of sync event by up to one
656 * sync event interval (0.25s) but we allow it to exceed this by a
657 * fuzz factor of (0.1s)
659 ptp
->nic_time
.sync_event_diff_min
= ptp
->nic_time
.minor_max
660 - (ptp
->nic_time
.minor_max
/ 10);
661 ptp
->nic_time
.sync_event_diff_max
= (ptp
->nic_time
.minor_max
/ 4)
662 + (ptp
->nic_time
.minor_max
/ 10);
664 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
665 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
666 * a value to use for the minimum acceptable corrected synchronization
667 * window and may return further capabilities.
668 * If we have the extra information store it. For older firmware that
669 * does not implement the extended command use the default value.
672 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST
)
673 ptp
->min_synchronisation_ns
=
675 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
677 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
680 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
681 ptp
->capabilities
= MCDI_DWORD(outbuf
,
682 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES
);
684 ptp
->capabilities
= 0;
686 /* Set up the shift for conversion between frequency
687 * adjustments in parts-per-billion and the fixed-point
688 * fractional ns format that the adapter uses.
690 if (ptp
->capabilities
& (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN
))
691 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP44
;
693 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP40
;
698 /* Get PTP timestamp corrections */
699 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
701 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
702 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
);
706 /* Get the timestamp corrections from the NIC. If this operation is
707 * not supported (older NICs) then no correction is required.
709 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
710 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
711 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
713 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
714 outbuf
, sizeof(outbuf
), &out_len
);
716 efx
->ptp_data
->ts_corrections
.ptp_tx
= MCDI_DWORD(outbuf
,
717 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
718 efx
->ptp_data
->ts_corrections
.ptp_rx
= MCDI_DWORD(outbuf
,
719 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
720 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
721 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
722 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
723 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
725 if (out_len
>= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
) {
726 efx
->ptp_data
->ts_corrections
.general_tx
= MCDI_DWORD(
728 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX
);
729 efx
->ptp_data
->ts_corrections
.general_rx
= MCDI_DWORD(
731 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX
);
733 efx
->ptp_data
->ts_corrections
.general_tx
=
734 efx
->ptp_data
->ts_corrections
.ptp_tx
;
735 efx
->ptp_data
->ts_corrections
.general_rx
=
736 efx
->ptp_data
->ts_corrections
.ptp_rx
;
738 } else if (rc
== -EINVAL
) {
739 efx
->ptp_data
->ts_corrections
.ptp_tx
= 0;
740 efx
->ptp_data
->ts_corrections
.ptp_rx
= 0;
741 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
742 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
743 efx
->ptp_data
->ts_corrections
.general_tx
= 0;
744 efx
->ptp_data
->ts_corrections
.general_rx
= 0;
746 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
), outbuf
,
754 /* Enable MCDI PTP support. */
755 static int efx_ptp_enable(struct efx_nic
*efx
)
757 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
758 MCDI_DECLARE_BUF_ERR(outbuf
);
761 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
762 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
763 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
764 efx
->ptp_data
->channel
?
765 efx
->ptp_data
->channel
->channel
: 0);
766 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
768 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
769 outbuf
, sizeof(outbuf
), NULL
);
770 rc
= (rc
== -EALREADY
) ? 0 : rc
;
772 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
773 MC_CMD_PTP_IN_ENABLE_LEN
,
774 outbuf
, sizeof(outbuf
), rc
);
778 /* Disable MCDI PTP support.
780 * Note that this function should never rely on the presence of ptp_data -
781 * may be called before that exists.
783 static int efx_ptp_disable(struct efx_nic
*efx
)
785 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
786 MCDI_DECLARE_BUF_ERR(outbuf
);
789 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
790 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
791 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
792 outbuf
, sizeof(outbuf
), NULL
);
793 rc
= (rc
== -EALREADY
) ? 0 : rc
;
794 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
795 * should only have been called during probe.
797 if (rc
== -ENOSYS
|| rc
== -EPERM
)
798 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
800 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
801 MC_CMD_PTP_IN_DISABLE_LEN
,
802 outbuf
, sizeof(outbuf
), rc
);
806 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
810 while ((skb
= skb_dequeue(q
))) {
812 netif_receive_skb(skb
);
817 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
819 netif_err(efx
, drv
, efx
->net_dev
,
820 "ERROR: PTP requires MSI-X and 1 additional interrupt"
821 "vector. PTP disabled\n");
824 /* Repeatedly send the host time to the MC which will capture the hardware
827 static void efx_ptp_send_times(struct efx_nic
*efx
,
828 struct pps_event_time
*last_time
)
830 struct pps_event_time now
;
831 struct timespec64 limit
;
832 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
833 int *mc_running
= ptp
->start
.addr
;
837 timespec64_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
839 /* Write host time for specified period or until MC is done */
840 while ((timespec64_compare(&now
.ts_real
, &limit
) < 0) &&
841 READ_ONCE(*mc_running
)) {
842 struct timespec64 update_time
;
843 unsigned int host_time
;
845 /* Don't update continuously to avoid saturating the PCIe bus */
846 update_time
= now
.ts_real
;
847 timespec64_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
850 } while ((timespec64_compare(&now
.ts_real
, &update_time
) < 0) &&
851 READ_ONCE(*mc_running
));
853 /* Synchronise NIC with single word of time only */
854 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
855 now
.ts_real
.tv_nsec
);
856 /* Update host time in NIC memory */
857 efx
->type
->ptp_write_host_time(efx
, host_time
);
862 /* Read a timeset from the MC's results and partial process. */
863 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
864 struct efx_ptp_timeset
*timeset
)
866 unsigned start_ns
, end_ns
;
868 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
869 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
870 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
871 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
872 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
875 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
876 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
877 /* Allow for rollover */
878 if (end_ns
< start_ns
)
879 end_ns
+= NSEC_PER_SEC
;
880 /* Determine duration of operation */
881 timeset
->window
= end_ns
- start_ns
;
884 /* Process times received from MC.
886 * Extract times from returned results, and establish the minimum value
887 * seen. The minimum value represents the "best" possible time and events
888 * too much greater than this are rejected - the machine is, perhaps, too
889 * busy. A number of readings are taken so that, hopefully, at least one good
890 * synchronisation will be seen in the results.
893 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
894 size_t response_length
,
895 const struct pps_event_time
*last_time
)
897 unsigned number_readings
=
898 MCDI_VAR_ARRAY_LEN(response_length
,
899 PTP_OUT_SYNCHRONIZE_TIMESET
);
902 unsigned last_good
= 0;
903 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
906 struct timespec64 delta
;
909 if (number_readings
== 0)
912 /* Read the set of results and find the last good host-MC
913 * synchronization result. The MC times when it finishes reading the
914 * host time so the corrected window time should be fairly constant
915 * for a given platform. Increment stats for any results that appear
918 for (i
= 0; i
< number_readings
; i
++) {
919 s32 window
, corrected
;
920 struct timespec64 wait
;
922 efx_ptp_read_timeset(
923 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
924 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
927 wait
= ktime_to_timespec64(
928 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
929 window
= ptp
->timeset
[i
].window
;
930 corrected
= window
- wait
.tv_nsec
;
932 /* We expect the uncorrected synchronization window to be at
933 * least as large as the interval between host start and end
934 * times. If it is smaller than this then this is mostly likely
935 * to be a consequence of the host's time being adjusted.
936 * Check that the corrected sync window is in a reasonable
937 * range. If it is out of range it is likely to be because an
938 * interrupt or other delay occurred between reading the system
939 * time and writing it to MC memory.
941 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
942 ++ptp
->invalid_sync_windows
;
943 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
944 ++ptp
->oversize_sync_windows
;
945 } else if (corrected
< ptp
->min_synchronisation_ns
) {
946 ++ptp
->undersize_sync_windows
;
954 netif_warn(efx
, drv
, efx
->net_dev
,
955 "PTP no suitable synchronisations\n");
959 /* Calculate delay from last good sync (host time) to last_time.
960 * It is possible that the seconds rolled over between taking
961 * the start reading and the last value written by the host. The
962 * timescales are such that a gap of more than one second is never
963 * expected. delta is *not* normalised.
965 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
966 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
967 if (start_sec
!= last_sec
&&
968 ((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
969 netif_warn(efx
, hw
, efx
->net_dev
,
970 "PTP bad synchronisation seconds\n");
973 delta
.tv_sec
= (last_sec
- start_sec
) & 1;
975 last_time
->ts_real
.tv_nsec
-
976 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
978 /* Convert the NIC time at last good sync into kernel time.
979 * No correction is required - this time is the output of a
982 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
983 ptp
->timeset
[last_good
].minor
, 0);
985 /* Calculate delay from NIC top of second to last_time */
986 delta
.tv_nsec
+= ktime_to_timespec64(mc_time
).tv_nsec
;
988 /* Set PPS timestamp to match NIC top of second */
989 ptp
->host_time_pps
= *last_time
;
990 pps_sub_ts(&ptp
->host_time_pps
, delta
);
995 /* Synchronize times between the host and the MC */
996 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
998 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
999 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
1000 size_t response_length
;
1002 unsigned long timeout
;
1003 struct pps_event_time last_time
= {};
1004 unsigned int loops
= 0;
1005 int *start
= ptp
->start
.addr
;
1007 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
1008 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
1009 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
1011 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
1012 ptp
->start
.dma_addr
);
1014 /* Clear flag that signals MC ready */
1015 WRITE_ONCE(*start
, 0);
1016 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
1017 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
1018 EFX_WARN_ON_ONCE_PARANOID(rc
);
1020 /* Wait for start from MCDI (or timeout) */
1021 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
1022 while (!READ_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
1023 udelay(20); /* Usually start MCDI execution quickly */
1029 if (!time_before(jiffies
, timeout
))
1030 ++ptp
->sync_timeouts
;
1032 if (READ_ONCE(*start
))
1033 efx_ptp_send_times(efx
, &last_time
);
1035 /* Collect results */
1036 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
1037 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
1038 synch_buf
, sizeof(synch_buf
),
1041 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
1046 ++ptp
->no_time_syncs
;
1049 /* Increment the bad syncs counter if the synchronize fails, whatever
1058 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1059 static void efx_ptp_xmit_skb_queue(struct efx_nic
*efx
, struct sk_buff
*skb
)
1061 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1062 struct efx_tx_queue
*tx_queue
;
1063 u8 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
1065 tx_queue
= &ptp_data
->channel
->tx_queue
[type
];
1066 if (tx_queue
&& tx_queue
->timestamping
) {
1067 efx_enqueue_skb(tx_queue
, skb
);
1069 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1070 dev_kfree_skb_any(skb
);
1074 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1075 static void efx_ptp_xmit_skb_mc(struct efx_nic
*efx
, struct sk_buff
*skb
)
1077 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1078 struct skb_shared_hwtstamps timestamps
;
1080 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
1083 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
1084 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
1085 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
1086 if (skb_shinfo(skb
)->nr_frags
!= 0) {
1087 rc
= skb_linearize(skb
);
1092 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1093 rc
= skb_checksum_help(skb
);
1097 skb_copy_from_linear_data(skb
,
1098 MCDI_PTR(ptp_data
->txbuf
,
1099 PTP_IN_TRANSMIT_PACKET
),
1101 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
1102 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
1103 txtime
, sizeof(txtime
), &len
);
1107 memset(×tamps
, 0, sizeof(timestamps
));
1108 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
1109 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
1110 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
1111 ptp_data
->ts_corrections
.ptp_tx
);
1113 skb_tstamp_tx(skb
, ×tamps
);
1118 dev_kfree_skb_any(skb
);
1123 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
1125 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1126 struct list_head
*cursor
;
1127 struct list_head
*next
;
1129 if (ptp
->rx_ts_inline
)
1132 /* Drop time-expired events */
1133 spin_lock_bh(&ptp
->evt_lock
);
1134 if (!list_empty(&ptp
->evt_list
)) {
1135 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1136 struct efx_ptp_event_rx
*evt
;
1138 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
1140 if (time_after(jiffies
, evt
->expiry
)) {
1141 list_move(&evt
->link
, &ptp
->evt_free_list
);
1142 netif_warn(efx
, hw
, efx
->net_dev
,
1143 "PTP rx event dropped\n");
1147 spin_unlock_bh(&ptp
->evt_lock
);
1150 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
1151 struct sk_buff
*skb
)
1153 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1155 struct list_head
*cursor
;
1156 struct list_head
*next
;
1157 struct efx_ptp_match
*match
;
1158 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
1160 WARN_ON_ONCE(ptp
->rx_ts_inline
);
1162 spin_lock_bh(&ptp
->evt_lock
);
1163 evts_waiting
= !list_empty(&ptp
->evt_list
);
1164 spin_unlock_bh(&ptp
->evt_lock
);
1167 return PTP_PACKET_STATE_UNMATCHED
;
1169 match
= (struct efx_ptp_match
*)skb
->cb
;
1170 /* Look for a matching timestamp in the event queue */
1171 spin_lock_bh(&ptp
->evt_lock
);
1172 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1173 struct efx_ptp_event_rx
*evt
;
1175 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
1176 if ((evt
->seq0
== match
->words
[0]) &&
1177 (evt
->seq1
== match
->words
[1])) {
1178 struct skb_shared_hwtstamps
*timestamps
;
1180 /* Match - add in hardware timestamp */
1181 timestamps
= skb_hwtstamps(skb
);
1182 timestamps
->hwtstamp
= evt
->hwtimestamp
;
1184 match
->state
= PTP_PACKET_STATE_MATCHED
;
1185 rc
= PTP_PACKET_STATE_MATCHED
;
1186 list_move(&evt
->link
, &ptp
->evt_free_list
);
1190 spin_unlock_bh(&ptp
->evt_lock
);
1195 /* Process any queued receive events and corresponding packets
1197 * q is returned with all the packets that are ready for delivery.
1199 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
1201 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1202 struct sk_buff
*skb
;
1204 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
1205 struct efx_ptp_match
*match
;
1207 match
= (struct efx_ptp_match
*)skb
->cb
;
1208 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1209 __skb_queue_tail(q
, skb
);
1210 } else if (efx_ptp_match_rx(efx
, skb
) ==
1211 PTP_PACKET_STATE_MATCHED
) {
1212 __skb_queue_tail(q
, skb
);
1213 } else if (time_after(jiffies
, match
->expiry
)) {
1214 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1215 ++ptp
->rx_no_timestamp
;
1216 __skb_queue_tail(q
, skb
);
1218 /* Replace unprocessed entry and stop */
1219 skb_queue_head(&ptp
->rxq
, skb
);
1225 /* Complete processing of a received packet */
1226 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1229 netif_receive_skb(skb
);
1233 static void efx_ptp_remove_multicast_filters(struct efx_nic
*efx
)
1235 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1237 if (ptp
->rxfilter_installed
) {
1238 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1239 ptp
->rxfilter_general
);
1240 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1241 ptp
->rxfilter_event
);
1242 ptp
->rxfilter_installed
= false;
1246 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1248 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1249 struct efx_filter_spec rxfilter
;
1252 if (!ptp
->channel
|| ptp
->rxfilter_installed
)
1255 /* Must filter on both event and general ports to ensure
1256 * that there is no packet re-ordering.
1258 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1260 efx_channel_get_rx_queue(ptp
->channel
)));
1261 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1263 htons(PTP_EVENT_PORT
));
1267 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1270 ptp
->rxfilter_event
= rc
;
1272 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1274 efx_channel_get_rx_queue(ptp
->channel
)));
1275 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1277 htons(PTP_GENERAL_PORT
));
1281 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1284 ptp
->rxfilter_general
= rc
;
1286 ptp
->rxfilter_installed
= true;
1290 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1291 ptp
->rxfilter_event
);
1295 static int efx_ptp_start(struct efx_nic
*efx
)
1297 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1300 ptp
->reset_required
= false;
1302 rc
= efx_ptp_insert_multicast_filters(efx
);
1306 rc
= efx_ptp_enable(efx
);
1310 ptp
->evt_frag_idx
= 0;
1311 ptp
->current_adjfreq
= 0;
1316 efx_ptp_remove_multicast_filters(efx
);
1320 static int efx_ptp_stop(struct efx_nic
*efx
)
1322 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1323 struct list_head
*cursor
;
1324 struct list_head
*next
;
1330 rc
= efx_ptp_disable(efx
);
1332 efx_ptp_remove_multicast_filters(efx
);
1334 /* Make sure RX packets are really delivered */
1335 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1336 skb_queue_purge(&efx
->ptp_data
->txq
);
1338 /* Drop any pending receive events */
1339 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
1340 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
1341 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
1343 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
1348 static int efx_ptp_restart(struct efx_nic
*efx
)
1350 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1351 return efx_ptp_start(efx
);
1355 static void efx_ptp_pps_worker(struct work_struct
*work
)
1357 struct efx_ptp_data
*ptp
=
1358 container_of(work
, struct efx_ptp_data
, pps_work
);
1359 struct efx_nic
*efx
= ptp
->efx
;
1360 struct ptp_clock_event ptp_evt
;
1362 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1365 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1366 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1367 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1370 static void efx_ptp_worker(struct work_struct
*work
)
1372 struct efx_ptp_data
*ptp_data
=
1373 container_of(work
, struct efx_ptp_data
, work
);
1374 struct efx_nic
*efx
= ptp_data
->efx
;
1375 struct sk_buff
*skb
;
1376 struct sk_buff_head tempq
;
1378 if (ptp_data
->reset_required
) {
1384 efx_ptp_drop_time_expired_events(efx
);
1386 __skb_queue_head_init(&tempq
);
1387 efx_ptp_process_events(efx
, &tempq
);
1389 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1390 ptp_data
->xmit_skb(efx
, skb
);
1392 while ((skb
= __skb_dequeue(&tempq
)))
1393 efx_ptp_process_rx(efx
, skb
);
1396 static const struct ptp_clock_info efx_phc_clock_info
= {
1397 .owner
= THIS_MODULE
,
1405 .adjfreq
= efx_phc_adjfreq
,
1406 .adjtime
= efx_phc_adjtime
,
1407 .gettime64
= efx_phc_gettime
,
1408 .settime64
= efx_phc_settime
,
1409 .enable
= efx_phc_enable
,
1412 /* Initialise PTP state. */
1413 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1415 struct efx_ptp_data
*ptp
;
1419 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1420 efx
->ptp_data
= ptp
;
1425 ptp
->channel
= channel
;
1426 ptp
->rx_ts_inline
= efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
;
1428 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1432 skb_queue_head_init(&ptp
->rxq
);
1433 skb_queue_head_init(&ptp
->txq
);
1434 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1440 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1441 ptp
->xmit_skb
= efx_ptp_xmit_skb_queue
;
1442 /* Request sync events on this channel. */
1443 channel
->sync_events_state
= SYNC_EVENTS_QUIESCENT
;
1445 ptp
->xmit_skb
= efx_ptp_xmit_skb_mc
;
1448 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1449 ptp
->config
.flags
= 0;
1450 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1451 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1452 INIT_LIST_HEAD(&ptp
->evt_list
);
1453 INIT_LIST_HEAD(&ptp
->evt_free_list
);
1454 spin_lock_init(&ptp
->evt_lock
);
1455 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
1456 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
1458 /* Get the NIC PTP attributes and set up time conversions */
1459 rc
= efx_ptp_get_attributes(efx
);
1463 /* Get the timestamp corrections */
1464 rc
= efx_ptp_get_timestamp_corrections(efx
);
1468 if (efx
->mcdi
->fn_flags
&
1469 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1470 ptp
->phc_clock_info
= efx_phc_clock_info
;
1471 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1472 &efx
->pci_dev
->dev
);
1473 if (IS_ERR(ptp
->phc_clock
)) {
1474 rc
= PTR_ERR(ptp
->phc_clock
);
1476 } else if (ptp
->phc_clock
) {
1477 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1478 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1479 if (!ptp
->pps_workwq
) {
1485 ptp
->nic_ts_enabled
= false;
1489 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1492 destroy_workqueue(efx
->ptp_data
->workwq
);
1495 efx_nic_free_buffer(efx
, &ptp
->start
);
1498 kfree(efx
->ptp_data
);
1499 efx
->ptp_data
= NULL
;
1504 /* Initialise PTP channel.
1506 * Setting core_index to zero causes the queue to be initialised and doesn't
1507 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1509 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1511 struct efx_nic
*efx
= channel
->efx
;
1514 channel
->irq_moderation_us
= 0;
1515 channel
->rx_queue
.core_index
= 0;
1517 rc
= efx_ptp_probe(efx
, channel
);
1518 /* Failure to probe PTP is not fatal; this channel will just not be
1519 * used for anything.
1520 * In the case of EPERM, efx_ptp_probe will print its own message (in
1521 * efx_ptp_get_attributes()), so we don't need to.
1523 if (rc
&& rc
!= -EPERM
)
1524 netif_warn(efx
, drv
, efx
->net_dev
,
1525 "Failed to probe PTP, rc=%d\n", rc
);
1529 void efx_ptp_remove(struct efx_nic
*efx
)
1534 (void)efx_ptp_disable(efx
);
1536 cancel_work_sync(&efx
->ptp_data
->work
);
1537 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1539 skb_queue_purge(&efx
->ptp_data
->rxq
);
1540 skb_queue_purge(&efx
->ptp_data
->txq
);
1542 if (efx
->ptp_data
->phc_clock
) {
1543 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1544 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1547 destroy_workqueue(efx
->ptp_data
->workwq
);
1549 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1550 kfree(efx
->ptp_data
);
1551 efx
->ptp_data
= NULL
;
1554 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1556 efx_ptp_remove(channel
->efx
);
1559 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1560 char *buf
, size_t len
)
1562 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1565 /* Determine whether this packet should be processed by the PTP module
1566 * or transmitted conventionally.
1568 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1570 return efx
->ptp_data
&&
1571 efx
->ptp_data
->enabled
&&
1572 skb
->len
>= PTP_MIN_LENGTH
&&
1573 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1574 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1575 skb_transport_header_was_set(skb
) &&
1576 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1577 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1579 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1580 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1583 /* Receive a PTP packet. Packets are queued until the arrival of
1584 * the receive timestamp from the MC - this will probably occur after the
1585 * packet arrival because of the processing in the MC.
1587 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1589 struct efx_nic
*efx
= channel
->efx
;
1590 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1591 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1592 u8
*match_data_012
, *match_data_345
;
1593 unsigned int version
;
1596 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1598 /* Correct version? */
1599 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1600 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1604 version
= ntohs(*(__be16
*)&data
[PTP_V1_VERSION_OFFSET
]);
1605 if (version
!= PTP_VERSION_V1
) {
1609 /* PTP V1 uses all six bytes of the UUID to match the packet
1612 match_data_012
= data
+ PTP_V1_UUID_OFFSET
;
1613 match_data_345
= data
+ PTP_V1_UUID_OFFSET
+ 3;
1615 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1619 version
= data
[PTP_V2_VERSION_OFFSET
];
1620 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1624 /* The original V2 implementation uses bytes 2-7 of
1625 * the UUID to match the packet to the timestamp. This
1626 * discards two of the bytes of the MAC address used
1627 * to create the UUID (SF bug 33070). The PTP V2
1628 * enhanced mode fixes this issue and uses bytes 0-2
1629 * and byte 5-7 of the UUID.
1631 match_data_345
= data
+ PTP_V2_UUID_OFFSET
+ 5;
1632 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1633 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 2;
1635 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 0;
1636 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1640 /* Does this packet require timestamping? */
1641 if (ntohs(*(__be16
*)&data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1642 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1644 /* We expect the sequence number to be in the same position in
1645 * the packet for PTP V1 and V2
1647 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1648 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1650 /* Extract UUID/Sequence information */
1651 match
->words
[0] = (match_data_012
[0] |
1652 (match_data_012
[1] << 8) |
1653 (match_data_012
[2] << 16) |
1654 (match_data_345
[0] << 24));
1655 match
->words
[1] = (match_data_345
[1] |
1656 (match_data_345
[2] << 8) |
1657 (data
[PTP_V1_SEQUENCE_OFFSET
+
1658 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1661 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1664 skb_queue_tail(&ptp
->rxq
, skb
);
1665 queue_work(ptp
->workwq
, &ptp
->work
);
1670 /* Transmit a PTP packet. This has to be transmitted by the MC
1671 * itself, through an MCDI call. MCDI calls aren't permitted
1672 * in the transmit path so defer the actual transmission to a suitable worker.
1674 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1676 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1678 skb_queue_tail(&ptp
->txq
, skb
);
1680 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1681 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1682 efx_xmit_hwtstamp_pending(skb
);
1683 queue_work(ptp
->workwq
, &ptp
->work
);
1685 return NETDEV_TX_OK
;
1688 int efx_ptp_get_mode(struct efx_nic
*efx
)
1690 return efx
->ptp_data
->mode
;
1693 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1694 unsigned int new_mode
)
1696 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1697 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1700 if (enable_wanted
) {
1701 /* Change of mode requires disable */
1702 if (efx
->ptp_data
->enabled
&&
1703 (efx
->ptp_data
->mode
!= new_mode
)) {
1704 efx
->ptp_data
->enabled
= false;
1705 rc
= efx_ptp_stop(efx
);
1710 /* Set new operating mode and establish
1711 * baseline synchronisation, which must
1714 efx
->ptp_data
->mode
= new_mode
;
1715 if (netif_running(efx
->net_dev
))
1716 rc
= efx_ptp_start(efx
);
1718 rc
= efx_ptp_synchronize(efx
,
1719 PTP_SYNC_ATTEMPTS
* 2);
1724 rc
= efx_ptp_stop(efx
);
1730 efx
->ptp_data
->enabled
= enable_wanted
;
1736 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1743 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1744 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1747 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1751 efx
->ptp_data
->config
= *init
;
1755 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1757 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1758 struct efx_nic
*primary
= efx
->primary
;
1765 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1766 SOF_TIMESTAMPING_RX_HARDWARE
|
1767 SOF_TIMESTAMPING_RAW_HARDWARE
);
1768 /* Check licensed features. If we don't have the license for TX
1769 * timestamps, the NIC will not support them.
1771 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1772 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1774 if (!(nic_data
->licensed_features
&
1775 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
)))
1776 ts_info
->so_timestamping
&=
1777 ~SOF_TIMESTAMPING_TX_HARDWARE
;
1779 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1780 ts_info
->phc_index
=
1781 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1782 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1783 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1786 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1788 struct hwtstamp_config config
;
1791 /* Not a PTP enabled port */
1795 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1798 rc
= efx_ptp_ts_init(efx
, &config
);
1802 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1806 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1811 return copy_to_user(ifr
->ifr_data
, &efx
->ptp_data
->config
,
1812 sizeof(efx
->ptp_data
->config
)) ? -EFAULT
: 0;
1815 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1817 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1819 netif_err(efx
, hw
, efx
->net_dev
,
1820 "PTP unexpected event length: got %d expected %d\n",
1821 ptp
->evt_frag_idx
, expected_frag_len
);
1822 ptp
->reset_required
= true;
1823 queue_work(ptp
->workwq
, &ptp
->work
);
1826 /* Process a completed receive event. Put it on the event queue and
1827 * start worker thread. This is required because event and their
1828 * correspoding packets may come in either order.
1830 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1832 struct efx_ptp_event_rx
*evt
= NULL
;
1834 if (WARN_ON_ONCE(ptp
->rx_ts_inline
))
1837 if (ptp
->evt_frag_idx
!= 3) {
1838 ptp_event_failure(efx
, 3);
1842 spin_lock_bh(&ptp
->evt_lock
);
1843 if (!list_empty(&ptp
->evt_free_list
)) {
1844 evt
= list_first_entry(&ptp
->evt_free_list
,
1845 struct efx_ptp_event_rx
, link
);
1846 list_del(&evt
->link
);
1848 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1849 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1851 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1852 MCDI_EVENT_SRC
) << 8) |
1853 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1854 MCDI_EVENT_SRC
) << 16));
1855 evt
->hwtimestamp
= efx
->ptp_data
->nic_to_kernel_time(
1856 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1857 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
),
1858 ptp
->ts_corrections
.ptp_rx
);
1859 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1860 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1862 queue_work(ptp
->workwq
, &ptp
->work
);
1863 } else if (net_ratelimit()) {
1864 /* Log a rate-limited warning message. */
1865 netif_err(efx
, rx_err
, efx
->net_dev
, "PTP event queue overflow\n");
1867 spin_unlock_bh(&ptp
->evt_lock
);
1870 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1872 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1873 if (ptp
->evt_frag_idx
!= 1) {
1874 ptp_event_failure(efx
, 1);
1878 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1881 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1883 if (ptp
->nic_ts_enabled
)
1884 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1887 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1889 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1890 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1893 if (!efx
->ptp_warned
) {
1894 netif_warn(efx
, drv
, efx
->net_dev
,
1895 "Received PTP event but PTP not set up\n");
1896 efx
->ptp_warned
= true;
1904 if (ptp
->evt_frag_idx
== 0) {
1905 ptp
->evt_code
= code
;
1906 } else if (ptp
->evt_code
!= code
) {
1907 netif_err(efx
, hw
, efx
->net_dev
,
1908 "PTP out of sequence event %d\n", code
);
1909 ptp
->evt_frag_idx
= 0;
1912 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1913 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1914 /* Process resulting event */
1916 case MCDI_EVENT_CODE_PTP_RX
:
1917 ptp_event_rx(efx
, ptp
);
1919 case MCDI_EVENT_CODE_PTP_FAULT
:
1920 ptp_event_fault(efx
, ptp
);
1922 case MCDI_EVENT_CODE_PTP_PPS
:
1923 ptp_event_pps(efx
, ptp
);
1926 netif_err(efx
, hw
, efx
->net_dev
,
1927 "PTP unknown event %d\n", code
);
1930 ptp
->evt_frag_idx
= 0;
1931 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1932 netif_err(efx
, hw
, efx
->net_dev
,
1933 "PTP too many event fragments\n");
1934 ptp
->evt_frag_idx
= 0;
1938 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1940 struct efx_nic
*efx
= channel
->efx
;
1941 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1943 /* When extracting the sync timestamp minor value, we should discard
1944 * the least significant two bits. These are not required in order
1945 * to reconstruct full-range timestamps and they are optionally used
1946 * to report status depending on the options supplied when subscribing
1949 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
1950 channel
->sync_timestamp_minor
=
1951 (MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_MS_8BITS
) & 0xFC)
1952 << ptp
->nic_time
.sync_event_minor_shift
;
1954 /* if sync events have been disabled then we want to silently ignore
1955 * this event, so throw away result.
1957 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
1961 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
1963 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1964 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
1966 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
1967 return (u32
)data
[0] |
1969 (u32
)data
[2] << 16 |
1974 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
1975 struct sk_buff
*skb
)
1977 struct efx_nic
*efx
= channel
->efx
;
1978 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1979 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
1981 struct skb_shared_hwtstamps
*timestamps
;
1983 if (channel
->sync_events_state
!= SYNC_EVENTS_VALID
)
1986 pkt_timestamp_minor
= efx_rx_buf_timestamp_minor(efx
, skb_mac_header(skb
));
1988 /* get the difference between the packet and sync timestamps,
1991 diff
= pkt_timestamp_minor
- channel
->sync_timestamp_minor
;
1992 if (pkt_timestamp_minor
< channel
->sync_timestamp_minor
)
1993 diff
+= ptp
->nic_time
.minor_max
;
1995 /* do we roll over a second boundary and need to carry the one? */
1996 carry
= (channel
->sync_timestamp_minor
>= ptp
->nic_time
.minor_max
- diff
) ?
1999 if (diff
<= ptp
->nic_time
.sync_event_diff_max
) {
2000 /* packet is ahead of the sync event by a quarter of a second or
2001 * less (allowing for fuzz)
2003 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
2004 } else if (diff
>= ptp
->nic_time
.sync_event_diff_min
) {
2005 /* packet is behind the sync event but within the fuzz factor.
2006 * This means the RX packet and sync event crossed as they were
2007 * placed on the event queue, which can sometimes happen.
2009 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
2011 /* it's outside tolerance in both directions. this might be
2012 * indicative of us missing sync events for some reason, so
2013 * we'll call it an error rather than risk giving a bogus
2016 netif_vdbg(efx
, drv
, efx
->net_dev
,
2017 "packet timestamp %x too far from sync event %x:%x\n",
2018 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
2019 channel
->sync_timestamp_minor
);
2023 /* attach the timestamps to the skb */
2024 timestamps
= skb_hwtstamps(skb
);
2025 timestamps
->hwtstamp
=
2026 ptp
->nic_to_kernel_time(pkt_timestamp_major
,
2027 pkt_timestamp_minor
,
2028 ptp
->ts_corrections
.general_rx
);
2031 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
2033 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2034 struct efx_ptp_data
,
2036 struct efx_nic
*efx
= ptp_data
->efx
;
2037 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
2041 if (delta
> MAX_PPB
)
2043 else if (delta
< -MAX_PPB
)
2046 /* Convert ppb to fixed point ns taking care to round correctly. */
2047 adjustment_ns
= ((s64
)delta
* PPB_SCALE_WORD
+
2048 (1 << (ptp_data
->adjfreq_ppb_shift
- 1))) >>
2049 ptp_data
->adjfreq_ppb_shift
;
2051 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2052 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
2053 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
2054 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
2055 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
2056 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
2061 ptp_data
->current_adjfreq
= adjustment_ns
;
2065 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
2067 u32 nic_major
, nic_minor
;
2068 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2069 struct efx_ptp_data
,
2071 struct efx_nic
*efx
= ptp_data
->efx
;
2072 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
2074 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
2076 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2077 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2078 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
2079 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
2080 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
2081 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2085 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
2087 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2088 struct efx_ptp_data
,
2090 struct efx_nic
*efx
= ptp_data
->efx
;
2091 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
2092 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
2096 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
2097 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2099 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2100 outbuf
, sizeof(outbuf
), NULL
);
2104 kt
= ptp_data
->nic_to_kernel_time(
2105 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
2106 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
2107 *ts
= ktime_to_timespec64(kt
);
2111 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
2112 const struct timespec64
*e_ts
)
2114 /* Get the current NIC time, efx_phc_gettime.
2115 * Subtract from the desired time to get the offset
2116 * call efx_phc_adjtime with the offset
2119 struct timespec64 time_now
;
2120 struct timespec64 delta
;
2122 rc
= efx_phc_gettime(ptp
, &time_now
);
2126 delta
= timespec64_sub(*e_ts
, time_now
);
2128 rc
= efx_phc_adjtime(ptp
, timespec64_to_ns(&delta
));
2135 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
2136 struct ptp_clock_request
*request
,
2139 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2140 struct efx_ptp_data
,
2142 if (request
->type
!= PTP_CLK_REQ_PPS
)
2145 ptp_data
->nic_ts_enabled
= !!enable
;
2149 static const struct efx_channel_type efx_ptp_channel_type
= {
2150 .handle_no_channel
= efx_ptp_handle_no_channel
,
2151 .pre_probe
= efx_ptp_probe_channel
,
2152 .post_remove
= efx_ptp_remove_channel
,
2153 .get_name
= efx_ptp_get_channel_name
,
2154 /* no copy operation; there is no need to reallocate this channel */
2155 .receive_skb
= efx_ptp_rx
,
2156 .want_txqs
= efx_ptp_want_txqs
,
2157 .keep_eventq
= false,
2160 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
2162 /* Check whether PTP is implemented on this NIC. The DISABLE
2163 * operation will succeed if and only if it is implemented.
2165 if (efx_ptp_disable(efx
) == 0)
2166 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
2167 &efx_ptp_channel_type
;
2170 void efx_ptp_start_datapath(struct efx_nic
*efx
)
2172 if (efx_ptp_restart(efx
))
2173 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
2174 /* re-enable timestamping if it was previously enabled */
2175 if (efx
->type
->ptp_set_ts_sync_events
)
2176 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
2179 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
2181 /* temporarily disable timestamping */
2182 if (efx
->type
->ptp_set_ts_sync_events
)
2183 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);