Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / hippi / rrunner.c
blob1ab97d99b9bae9f9dde6227dacff606256e66c72
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <net/sock.h>
45 #include <asm/cache.h>
46 #include <asm/byteorder.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <linux/uaccess.h>
51 #define rr_if_busy(dev) netif_queue_stopped(dev)
52 #define rr_if_running(dev) netif_running(dev)
54 #include "rrunner.h"
56 #define RUN_AT(x) (jiffies + (x))
59 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61 MODULE_LICENSE("GPL");
63 static const char version[] =
64 "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 static const struct net_device_ops rr_netdev_ops = {
68 .ndo_open = rr_open,
69 .ndo_stop = rr_close,
70 .ndo_do_ioctl = rr_ioctl,
71 .ndo_start_xmit = rr_start_xmit,
72 .ndo_set_mac_address = hippi_mac_addr,
76 * Implementation notes:
78 * The DMA engine only allows for DMA within physical 64KB chunks of
79 * memory. The current approach of the driver (and stack) is to use
80 * linear blocks of memory for the skbuffs. However, as the data block
81 * is always the first part of the skb and skbs are 2^n aligned so we
82 * are guarantted to get the whole block within one 64KB align 64KB
83 * chunk.
85 * On the long term, relying on being able to allocate 64KB linear
86 * chunks of memory is not feasible and the skb handling code and the
87 * stack will need to know about I/O vectors or something similar.
90 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
92 struct net_device *dev;
93 static int version_disp;
94 u8 pci_latency;
95 struct rr_private *rrpriv;
96 void *tmpptr;
97 dma_addr_t ring_dma;
98 int ret = -ENOMEM;
100 dev = alloc_hippi_dev(sizeof(struct rr_private));
101 if (!dev)
102 goto out3;
104 ret = pci_enable_device(pdev);
105 if (ret) {
106 ret = -ENODEV;
107 goto out2;
110 rrpriv = netdev_priv(dev);
112 SET_NETDEV_DEV(dev, &pdev->dev);
114 ret = pci_request_regions(pdev, "rrunner");
115 if (ret < 0)
116 goto out;
118 pci_set_drvdata(pdev, dev);
120 rrpriv->pci_dev = pdev;
122 spin_lock_init(&rrpriv->lock);
124 dev->netdev_ops = &rr_netdev_ops;
126 /* display version info if adapter is found */
127 if (!version_disp) {
128 /* set display flag to TRUE so that */
129 /* we only display this string ONCE */
130 version_disp = 1;
131 printk(version);
134 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
135 if (pci_latency <= 0x58){
136 pci_latency = 0x58;
137 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
140 pci_set_master(pdev);
142 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
143 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
144 (unsigned long long)pci_resource_start(pdev, 0),
145 pdev->irq, pci_latency);
148 * Remap the MMIO regs into kernel space.
150 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
151 if (!rrpriv->regs) {
152 printk(KERN_ERR "%s: Unable to map I/O register, "
153 "RoadRunner will be disabled.\n", dev->name);
154 ret = -EIO;
155 goto out;
158 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159 rrpriv->tx_ring = tmpptr;
160 rrpriv->tx_ring_dma = ring_dma;
162 if (!tmpptr) {
163 ret = -ENOMEM;
164 goto out;
167 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168 rrpriv->rx_ring = tmpptr;
169 rrpriv->rx_ring_dma = ring_dma;
171 if (!tmpptr) {
172 ret = -ENOMEM;
173 goto out;
176 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177 rrpriv->evt_ring = tmpptr;
178 rrpriv->evt_ring_dma = ring_dma;
180 if (!tmpptr) {
181 ret = -ENOMEM;
182 goto out;
186 * Don't access any register before this point!
188 #ifdef __BIG_ENDIAN
189 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190 &rrpriv->regs->HostCtrl);
191 #endif
193 * Need to add a case for little-endian 64-bit hosts here.
196 rr_init(dev);
198 ret = register_netdev(dev);
199 if (ret)
200 goto out;
201 return 0;
203 out:
204 if (rrpriv->evt_ring)
205 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
206 rrpriv->evt_ring_dma);
207 if (rrpriv->rx_ring)
208 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
209 rrpriv->rx_ring_dma);
210 if (rrpriv->tx_ring)
211 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
212 rrpriv->tx_ring_dma);
213 if (rrpriv->regs)
214 pci_iounmap(pdev, rrpriv->regs);
215 if (pdev)
216 pci_release_regions(pdev);
217 out2:
218 free_netdev(dev);
219 out3:
220 return ret;
223 static void rr_remove_one(struct pci_dev *pdev)
225 struct net_device *dev = pci_get_drvdata(pdev);
226 struct rr_private *rr = netdev_priv(dev);
228 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 printk(KERN_ERR "%s: trying to unload running NIC\n",
230 dev->name);
231 writel(HALT_NIC, &rr->regs->HostCtrl);
234 unregister_netdev(dev);
235 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
236 rr->evt_ring_dma);
237 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
238 rr->rx_ring_dma);
239 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
240 rr->tx_ring_dma);
241 pci_iounmap(pdev, rr->regs);
242 pci_release_regions(pdev);
243 pci_disable_device(pdev);
244 free_netdev(dev);
249 * Commands are considered to be slow, thus there is no reason to
250 * inline this.
252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
254 struct rr_regs __iomem *regs;
255 u32 idx;
257 regs = rrpriv->regs;
259 * This is temporary - it will go away in the final version.
260 * We probably also want to make this function inline.
262 if (readl(&regs->HostCtrl) & NIC_HALTED){
263 printk("issuing command for halted NIC, code 0x%x, "
264 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265 if (readl(&regs->Mode) & FATAL_ERR)
266 printk("error codes Fail1 %02x, Fail2 %02x\n",
267 readl(&regs->Fail1), readl(&regs->Fail2));
270 idx = rrpriv->info->cmd_ctrl.pi;
272 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
273 wmb();
275 idx = (idx - 1) % CMD_RING_ENTRIES;
276 rrpriv->info->cmd_ctrl.pi = idx;
277 wmb();
279 if (readl(&regs->Mode) & FATAL_ERR)
280 printk("error code %02x\n", readl(&regs->Fail1));
285 * Reset the board in a sensible manner. The NIC is already halted
286 * when we get here and a spin-lock is held.
288 static int rr_reset(struct net_device *dev)
290 struct rr_private *rrpriv;
291 struct rr_regs __iomem *regs;
292 u32 start_pc;
293 int i;
295 rrpriv = netdev_priv(dev);
296 regs = rrpriv->regs;
298 rr_load_firmware(dev);
300 writel(0x01000000, &regs->TX_state);
301 writel(0xff800000, &regs->RX_state);
302 writel(0, &regs->AssistState);
303 writel(CLEAR_INTA, &regs->LocalCtrl);
304 writel(0x01, &regs->BrkPt);
305 writel(0, &regs->Timer);
306 writel(0, &regs->TimerRef);
307 writel(RESET_DMA, &regs->DmaReadState);
308 writel(RESET_DMA, &regs->DmaWriteState);
309 writel(0, &regs->DmaWriteHostHi);
310 writel(0, &regs->DmaWriteHostLo);
311 writel(0, &regs->DmaReadHostHi);
312 writel(0, &regs->DmaReadHostLo);
313 writel(0, &regs->DmaReadLen);
314 writel(0, &regs->DmaWriteLen);
315 writel(0, &regs->DmaWriteLcl);
316 writel(0, &regs->DmaWriteIPchecksum);
317 writel(0, &regs->DmaReadLcl);
318 writel(0, &regs->DmaReadIPchecksum);
319 writel(0, &regs->PciState);
320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
322 #elif (BITS_PER_LONG == 64)
323 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324 #else
325 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #endif
328 #if 0
330 * Don't worry, this is just black magic.
332 writel(0xdf000, &regs->RxBase);
333 writel(0xdf000, &regs->RxPrd);
334 writel(0xdf000, &regs->RxCon);
335 writel(0xce000, &regs->TxBase);
336 writel(0xce000, &regs->TxPrd);
337 writel(0xce000, &regs->TxCon);
338 writel(0, &regs->RxIndPro);
339 writel(0, &regs->RxIndCon);
340 writel(0, &regs->RxIndRef);
341 writel(0, &regs->TxIndPro);
342 writel(0, &regs->TxIndCon);
343 writel(0, &regs->TxIndRef);
344 writel(0xcc000, &regs->pad10[0]);
345 writel(0, &regs->DrCmndPro);
346 writel(0, &regs->DrCmndCon);
347 writel(0, &regs->DwCmndPro);
348 writel(0, &regs->DwCmndCon);
349 writel(0, &regs->DwCmndRef);
350 writel(0, &regs->DrDataPro);
351 writel(0, &regs->DrDataCon);
352 writel(0, &regs->DrDataRef);
353 writel(0, &regs->DwDataPro);
354 writel(0, &regs->DwDataCon);
355 writel(0, &regs->DwDataRef);
356 #endif
358 writel(0xffffffff, &regs->MbEvent);
359 writel(0, &regs->Event);
361 writel(0, &regs->TxPi);
362 writel(0, &regs->IpRxPi);
364 writel(0, &regs->EvtCon);
365 writel(0, &regs->EvtPrd);
367 rrpriv->info->evt_ctrl.pi = 0;
369 for (i = 0; i < CMD_RING_ENTRIES; i++)
370 writel(0, &regs->CmdRing[i]);
373 * Why 32 ? is this not cache line size dependent?
375 writel(RBURST_64|WBURST_64, &regs->PciState);
376 wmb();
378 start_pc = rr_read_eeprom_word(rrpriv,
379 offsetof(struct eeprom, rncd_info.FwStart));
381 #if (DEBUG > 1)
382 printk("%s: Executing firmware at address 0x%06x\n",
383 dev->name, start_pc);
384 #endif
386 writel(start_pc + 0x800, &regs->Pc);
387 wmb();
388 udelay(5);
390 writel(start_pc, &regs->Pc);
391 wmb();
393 return 0;
398 * Read a string from the EEPROM.
400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401 unsigned long offset,
402 unsigned char *buf,
403 unsigned long length)
405 struct rr_regs __iomem *regs = rrpriv->regs;
406 u32 misc, io, host, i;
408 io = readl(&regs->ExtIo);
409 writel(0, &regs->ExtIo);
410 misc = readl(&regs->LocalCtrl);
411 writel(0, &regs->LocalCtrl);
412 host = readl(&regs->HostCtrl);
413 writel(host | HALT_NIC, &regs->HostCtrl);
414 mb();
416 for (i = 0; i < length; i++){
417 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
418 mb();
419 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
420 mb();
423 writel(host, &regs->HostCtrl);
424 writel(misc, &regs->LocalCtrl);
425 writel(io, &regs->ExtIo);
426 mb();
427 return i;
432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433 * it to our CPU byte-order.
435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436 size_t offset)
438 __be32 word;
440 if ((rr_read_eeprom(rrpriv, offset,
441 (unsigned char *)&word, 4) == 4))
442 return be32_to_cpu(word);
443 return 0;
448 * Write a string to the EEPROM.
450 * This is only called when the firmware is not running.
452 static unsigned int write_eeprom(struct rr_private *rrpriv,
453 unsigned long offset,
454 unsigned char *buf,
455 unsigned long length)
457 struct rr_regs __iomem *regs = rrpriv->regs;
458 u32 misc, io, data, i, j, ready, error = 0;
460 io = readl(&regs->ExtIo);
461 writel(0, &regs->ExtIo);
462 misc = readl(&regs->LocalCtrl);
463 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
464 mb();
466 for (i = 0; i < length; i++){
467 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
468 mb();
469 data = buf[i] << 24;
471 * Only try to write the data if it is not the same
472 * value already.
474 if ((readl(&regs->WinData) & 0xff000000) != data){
475 writel(data, &regs->WinData);
476 ready = 0;
477 j = 0;
478 mb();
479 while(!ready){
480 udelay(20);
481 if ((readl(&regs->WinData) & 0xff000000) ==
482 data)
483 ready = 1;
484 mb();
485 if (j++ > 5000){
486 printk("data mismatch: %08x, "
487 "WinData %08x\n", data,
488 readl(&regs->WinData));
489 ready = 1;
490 error = 1;
496 writel(misc, &regs->LocalCtrl);
497 writel(io, &regs->ExtIo);
498 mb();
500 return error;
504 static int rr_init(struct net_device *dev)
506 struct rr_private *rrpriv;
507 struct rr_regs __iomem *regs;
508 u32 sram_size, rev;
510 rrpriv = netdev_priv(dev);
511 regs = rrpriv->regs;
513 rev = readl(&regs->FwRev);
514 rrpriv->fw_rev = rev;
515 if (rev > 0x00020024)
516 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
517 ((rev >> 8) & 0xff), (rev & 0xff));
518 else if (rev >= 0x00020000) {
519 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
520 "later is recommended)\n", (rev >> 16),
521 ((rev >> 8) & 0xff), (rev & 0xff));
522 }else{
523 printk(" Firmware revision too old: %i.%i.%i, please "
524 "upgrade to 2.0.37 or later.\n",
525 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
528 #if (DEBUG > 2)
529 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
530 #endif
533 * Read the hardware address from the eeprom. The HW address
534 * is not really necessary for HIPPI but awfully convenient.
535 * The pointer arithmetic to put it in dev_addr is ugly, but
536 * Donald Becker does it this way for the GigE version of this
537 * card and it's shorter and more portable than any
538 * other method I've seen. -VAL
541 *(__be16 *)(dev->dev_addr) =
542 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
543 *(__be32 *)(dev->dev_addr+2) =
544 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546 printk(" MAC: %pM\n", dev->dev_addr);
548 sram_size = rr_read_eeprom_word(rrpriv, 8);
549 printk(" SRAM size 0x%06x\n", sram_size);
551 return 0;
555 static int rr_init1(struct net_device *dev)
557 struct rr_private *rrpriv;
558 struct rr_regs __iomem *regs;
559 unsigned long myjif, flags;
560 struct cmd cmd;
561 u32 hostctrl;
562 int ecode = 0;
563 short i;
565 rrpriv = netdev_priv(dev);
566 regs = rrpriv->regs;
568 spin_lock_irqsave(&rrpriv->lock, flags);
570 hostctrl = readl(&regs->HostCtrl);
571 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
572 wmb();
574 if (hostctrl & PARITY_ERR){
575 printk("%s: Parity error halting NIC - this is serious!\n",
576 dev->name);
577 spin_unlock_irqrestore(&rrpriv->lock, flags);
578 ecode = -EFAULT;
579 goto error;
582 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
583 set_infoaddr(regs, rrpriv->info_dma);
585 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
586 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
587 rrpriv->info->evt_ctrl.mode = 0;
588 rrpriv->info->evt_ctrl.pi = 0;
589 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
591 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
592 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
593 rrpriv->info->cmd_ctrl.mode = 0;
594 rrpriv->info->cmd_ctrl.pi = 15;
596 for (i = 0; i < CMD_RING_ENTRIES; i++) {
597 writel(0, &regs->CmdRing[i]);
600 for (i = 0; i < TX_RING_ENTRIES; i++) {
601 rrpriv->tx_ring[i].size = 0;
602 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
603 rrpriv->tx_skbuff[i] = NULL;
605 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
606 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
607 rrpriv->info->tx_ctrl.mode = 0;
608 rrpriv->info->tx_ctrl.pi = 0;
609 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612 * Set dirty_tx before we start receiving interrupts, otherwise
613 * the interrupt handler might think it is supposed to process
614 * tx ints before we are up and running, which may cause a null
615 * pointer access in the int handler.
617 rrpriv->tx_full = 0;
618 rrpriv->cur_rx = 0;
619 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
621 rr_reset(dev);
623 /* Tuning values */
624 writel(0x5000, &regs->ConRetry);
625 writel(0x100, &regs->ConRetryTmr);
626 writel(0x500000, &regs->ConTmout);
627 writel(0x60, &regs->IntrTmr);
628 writel(0x500000, &regs->TxDataMvTimeout);
629 writel(0x200000, &regs->RxDataMvTimeout);
630 writel(0x80, &regs->WriteDmaThresh);
631 writel(0x80, &regs->ReadDmaThresh);
633 rrpriv->fw_running = 0;
634 wmb();
636 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
637 writel(hostctrl, &regs->HostCtrl);
638 wmb();
640 spin_unlock_irqrestore(&rrpriv->lock, flags);
642 for (i = 0; i < RX_RING_ENTRIES; i++) {
643 struct sk_buff *skb;
644 dma_addr_t addr;
646 rrpriv->rx_ring[i].mode = 0;
647 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
648 if (!skb) {
649 printk(KERN_WARNING "%s: Unable to allocate memory "
650 "for receive ring - halting NIC\n", dev->name);
651 ecode = -ENOMEM;
652 goto error;
654 rrpriv->rx_skbuff[i] = skb;
655 addr = pci_map_single(rrpriv->pci_dev, skb->data,
656 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
658 * Sanity test to see if we conflict with the DMA
659 * limitations of the Roadrunner.
661 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
662 printk("skb alloc error\n");
664 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
665 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
669 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
670 rrpriv->rx_ctrl[4].mode = 8;
671 rrpriv->rx_ctrl[4].pi = 0;
672 wmb();
673 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
675 udelay(1000);
678 * Now start the FirmWare.
680 cmd.code = C_START_FW;
681 cmd.ring = 0;
682 cmd.index = 0;
684 rr_issue_cmd(rrpriv, &cmd);
687 * Give the FirmWare time to chew on the `get running' command.
689 myjif = jiffies + 5 * HZ;
690 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
691 cpu_relax();
693 netif_start_queue(dev);
695 return ecode;
697 error:
699 * We might have gotten here because we are out of memory,
700 * make sure we release everything we allocated before failing
702 for (i = 0; i < RX_RING_ENTRIES; i++) {
703 struct sk_buff *skb = rrpriv->rx_skbuff[i];
705 if (skb) {
706 pci_unmap_single(rrpriv->pci_dev,
707 rrpriv->rx_ring[i].addr.addrlo,
708 dev->mtu + HIPPI_HLEN,
709 PCI_DMA_FROMDEVICE);
710 rrpriv->rx_ring[i].size = 0;
711 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
712 dev_kfree_skb(skb);
713 rrpriv->rx_skbuff[i] = NULL;
716 return ecode;
721 * All events are considered to be slow (RX/TX ints do not generate
722 * events) and are handled here, outside the main interrupt handler,
723 * to reduce the size of the handler.
725 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
727 struct rr_private *rrpriv;
728 struct rr_regs __iomem *regs;
729 u32 tmp;
731 rrpriv = netdev_priv(dev);
732 regs = rrpriv->regs;
734 while (prodidx != eidx){
735 switch (rrpriv->evt_ring[eidx].code){
736 case E_NIC_UP:
737 tmp = readl(&regs->FwRev);
738 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
739 "up and running\n", dev->name,
740 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
741 rrpriv->fw_running = 1;
742 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
743 wmb();
744 break;
745 case E_LINK_ON:
746 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
747 break;
748 case E_LINK_OFF:
749 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
750 break;
751 case E_RX_IDLE:
752 printk(KERN_WARNING "%s: RX data not moving\n",
753 dev->name);
754 goto drop;
755 case E_WATCHDOG:
756 printk(KERN_INFO "%s: The watchdog is here to see "
757 "us\n", dev->name);
758 break;
759 case E_INTERN_ERR:
760 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
761 dev->name);
762 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
763 &regs->HostCtrl);
764 wmb();
765 break;
766 case E_HOST_ERR:
767 printk(KERN_ERR "%s: Host software error\n",
768 dev->name);
769 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
770 &regs->HostCtrl);
771 wmb();
772 break;
774 * TX events.
776 case E_CON_REJ:
777 printk(KERN_WARNING "%s: Connection rejected\n",
778 dev->name);
779 dev->stats.tx_aborted_errors++;
780 break;
781 case E_CON_TMOUT:
782 printk(KERN_WARNING "%s: Connection timeout\n",
783 dev->name);
784 break;
785 case E_DISC_ERR:
786 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
787 dev->name);
788 dev->stats.tx_aborted_errors++;
789 break;
790 case E_INT_PRTY:
791 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
792 dev->name);
793 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
794 &regs->HostCtrl);
795 wmb();
796 break;
797 case E_TX_IDLE:
798 printk(KERN_WARNING "%s: Transmitter idle\n",
799 dev->name);
800 break;
801 case E_TX_LINK_DROP:
802 printk(KERN_WARNING "%s: Link lost during transmit\n",
803 dev->name);
804 dev->stats.tx_aborted_errors++;
805 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
806 &regs->HostCtrl);
807 wmb();
808 break;
809 case E_TX_INV_RNG:
810 printk(KERN_ERR "%s: Invalid send ring block\n",
811 dev->name);
812 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
813 &regs->HostCtrl);
814 wmb();
815 break;
816 case E_TX_INV_BUF:
817 printk(KERN_ERR "%s: Invalid send buffer address\n",
818 dev->name);
819 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
820 &regs->HostCtrl);
821 wmb();
822 break;
823 case E_TX_INV_DSC:
824 printk(KERN_ERR "%s: Invalid descriptor address\n",
825 dev->name);
826 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
827 &regs->HostCtrl);
828 wmb();
829 break;
831 * RX events.
833 case E_RX_RNG_OUT:
834 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
835 break;
837 case E_RX_PAR_ERR:
838 printk(KERN_WARNING "%s: Receive parity error\n",
839 dev->name);
840 goto drop;
841 case E_RX_LLRC_ERR:
842 printk(KERN_WARNING "%s: Receive LLRC error\n",
843 dev->name);
844 goto drop;
845 case E_PKT_LN_ERR:
846 printk(KERN_WARNING "%s: Receive packet length "
847 "error\n", dev->name);
848 goto drop;
849 case E_DTA_CKSM_ERR:
850 printk(KERN_WARNING "%s: Data checksum error\n",
851 dev->name);
852 goto drop;
853 case E_SHT_BST:
854 printk(KERN_WARNING "%s: Unexpected short burst "
855 "error\n", dev->name);
856 goto drop;
857 case E_STATE_ERR:
858 printk(KERN_WARNING "%s: Recv. state transition"
859 " error\n", dev->name);
860 goto drop;
861 case E_UNEXP_DATA:
862 printk(KERN_WARNING "%s: Unexpected data error\n",
863 dev->name);
864 goto drop;
865 case E_LST_LNK_ERR:
866 printk(KERN_WARNING "%s: Link lost error\n",
867 dev->name);
868 goto drop;
869 case E_FRM_ERR:
870 printk(KERN_WARNING "%s: Framming Error\n",
871 dev->name);
872 goto drop;
873 case E_FLG_SYN_ERR:
874 printk(KERN_WARNING "%s: Flag sync. lost during "
875 "packet\n", dev->name);
876 goto drop;
877 case E_RX_INV_BUF:
878 printk(KERN_ERR "%s: Invalid receive buffer "
879 "address\n", dev->name);
880 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
881 &regs->HostCtrl);
882 wmb();
883 break;
884 case E_RX_INV_DSC:
885 printk(KERN_ERR "%s: Invalid receive descriptor "
886 "address\n", dev->name);
887 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
888 &regs->HostCtrl);
889 wmb();
890 break;
891 case E_RNG_BLK:
892 printk(KERN_ERR "%s: Invalid ring block\n",
893 dev->name);
894 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
895 &regs->HostCtrl);
896 wmb();
897 break;
898 drop:
899 /* Label packet to be dropped.
900 * Actual dropping occurs in rx
901 * handling.
903 * The index of packet we get to drop is
904 * the index of the packet following
905 * the bad packet. -kbf
908 u16 index = rrpriv->evt_ring[eidx].index;
909 index = (index + (RX_RING_ENTRIES - 1)) %
910 RX_RING_ENTRIES;
911 rrpriv->rx_ring[index].mode |=
912 (PACKET_BAD | PACKET_END);
914 break;
915 default:
916 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
917 dev->name, rrpriv->evt_ring[eidx].code);
919 eidx = (eidx + 1) % EVT_RING_ENTRIES;
922 rrpriv->info->evt_ctrl.pi = eidx;
923 wmb();
924 return eidx;
928 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
930 struct rr_private *rrpriv = netdev_priv(dev);
931 struct rr_regs __iomem *regs = rrpriv->regs;
933 do {
934 struct rx_desc *desc;
935 u32 pkt_len;
937 desc = &(rrpriv->rx_ring[index]);
938 pkt_len = desc->size;
939 #if (DEBUG > 2)
940 printk("index %i, rxlimit %i\n", index, rxlimit);
941 printk("len %x, mode %x\n", pkt_len, desc->mode);
942 #endif
943 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
944 dev->stats.rx_dropped++;
945 goto defer;
948 if (pkt_len > 0){
949 struct sk_buff *skb, *rx_skb;
951 rx_skb = rrpriv->rx_skbuff[index];
953 if (pkt_len < PKT_COPY_THRESHOLD) {
954 skb = alloc_skb(pkt_len, GFP_ATOMIC);
955 if (skb == NULL){
956 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
957 dev->stats.rx_dropped++;
958 goto defer;
959 } else {
960 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
961 desc->addr.addrlo,
962 pkt_len,
963 PCI_DMA_FROMDEVICE);
965 skb_put_data(skb, rx_skb->data,
966 pkt_len);
968 pci_dma_sync_single_for_device(rrpriv->pci_dev,
969 desc->addr.addrlo,
970 pkt_len,
971 PCI_DMA_FROMDEVICE);
973 }else{
974 struct sk_buff *newskb;
976 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
977 GFP_ATOMIC);
978 if (newskb){
979 dma_addr_t addr;
981 pci_unmap_single(rrpriv->pci_dev,
982 desc->addr.addrlo, dev->mtu +
983 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
984 skb = rx_skb;
985 skb_put(skb, pkt_len);
986 rrpriv->rx_skbuff[index] = newskb;
987 addr = pci_map_single(rrpriv->pci_dev,
988 newskb->data,
989 dev->mtu + HIPPI_HLEN,
990 PCI_DMA_FROMDEVICE);
991 set_rraddr(&desc->addr, addr);
992 } else {
993 printk("%s: Out of memory, deferring "
994 "packet\n", dev->name);
995 dev->stats.rx_dropped++;
996 goto defer;
999 skb->protocol = hippi_type_trans(skb, dev);
1001 netif_rx(skb); /* send it up */
1003 dev->stats.rx_packets++;
1004 dev->stats.rx_bytes += pkt_len;
1006 defer:
1007 desc->mode = 0;
1008 desc->size = dev->mtu + HIPPI_HLEN;
1010 if ((index & 7) == 7)
1011 writel(index, &regs->IpRxPi);
1013 index = (index + 1) % RX_RING_ENTRIES;
1014 } while(index != rxlimit);
1016 rrpriv->cur_rx = index;
1017 wmb();
1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1023 struct rr_private *rrpriv;
1024 struct rr_regs __iomem *regs;
1025 struct net_device *dev = (struct net_device *)dev_id;
1026 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1028 rrpriv = netdev_priv(dev);
1029 regs = rrpriv->regs;
1031 if (!(readl(&regs->HostCtrl) & RR_INT))
1032 return IRQ_NONE;
1034 spin_lock(&rrpriv->lock);
1036 prodidx = readl(&regs->EvtPrd);
1037 txcsmr = (prodidx >> 8) & 0xff;
1038 rxlimit = (prodidx >> 16) & 0xff;
1039 prodidx &= 0xff;
1041 #if (DEBUG > 2)
1042 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043 prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1046 * Order here is important. We must handle events
1047 * before doing anything else in order to catch
1048 * such things as LLRC errors, etc -kbf
1051 eidx = rrpriv->info->evt_ctrl.pi;
1052 if (prodidx != eidx)
1053 eidx = rr_handle_event(dev, prodidx, eidx);
1055 rxindex = rrpriv->cur_rx;
1056 if (rxindex != rxlimit)
1057 rx_int(dev, rxlimit, rxindex);
1059 txcon = rrpriv->dirty_tx;
1060 if (txcsmr != txcon) {
1061 do {
1062 /* Due to occational firmware TX producer/consumer out
1063 * of sync. error need to check entry in ring -kbf
1065 if(rrpriv->tx_skbuff[txcon]){
1066 struct tx_desc *desc;
1067 struct sk_buff *skb;
1069 desc = &(rrpriv->tx_ring[txcon]);
1070 skb = rrpriv->tx_skbuff[txcon];
1072 dev->stats.tx_packets++;
1073 dev->stats.tx_bytes += skb->len;
1075 pci_unmap_single(rrpriv->pci_dev,
1076 desc->addr.addrlo, skb->len,
1077 PCI_DMA_TODEVICE);
1078 dev_kfree_skb_irq(skb);
1080 rrpriv->tx_skbuff[txcon] = NULL;
1081 desc->size = 0;
1082 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083 desc->mode = 0;
1085 txcon = (txcon + 1) % TX_RING_ENTRIES;
1086 } while (txcsmr != txcon);
1087 wmb();
1089 rrpriv->dirty_tx = txcon;
1090 if (rrpriv->tx_full && rr_if_busy(dev) &&
1091 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092 != rrpriv->dirty_tx)){
1093 rrpriv->tx_full = 0;
1094 netif_wake_queue(dev);
1098 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099 writel(eidx, &regs->EvtCon);
1100 wmb();
1102 spin_unlock(&rrpriv->lock);
1103 return IRQ_HANDLED;
1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107 struct net_device *dev)
1109 int i;
1111 for (i = 0; i < TX_RING_ENTRIES; i++) {
1112 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1114 if (skb) {
1115 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1117 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118 skb->len, PCI_DMA_TODEVICE);
1119 desc->size = 0;
1120 set_rraddr(&desc->addr, 0);
1121 dev_kfree_skb(skb);
1122 rrpriv->tx_skbuff[i] = NULL;
1128 static inline void rr_raz_rx(struct rr_private *rrpriv,
1129 struct net_device *dev)
1131 int i;
1133 for (i = 0; i < RX_RING_ENTRIES; i++) {
1134 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136 if (skb) {
1137 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141 desc->size = 0;
1142 set_rraddr(&desc->addr, 0);
1143 dev_kfree_skb(skb);
1144 rrpriv->rx_skbuff[i] = NULL;
1149 static void rr_timer(struct timer_list *t)
1151 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1152 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1153 struct rr_regs __iomem *regs = rrpriv->regs;
1154 unsigned long flags;
1156 if (readl(&regs->HostCtrl) & NIC_HALTED){
1157 printk("%s: Restarting nic\n", dev->name);
1158 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159 memset(rrpriv->info, 0, sizeof(struct rr_info));
1160 wmb();
1162 rr_raz_tx(rrpriv, dev);
1163 rr_raz_rx(rrpriv, dev);
1165 if (rr_init1(dev)) {
1166 spin_lock_irqsave(&rrpriv->lock, flags);
1167 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168 &regs->HostCtrl);
1169 spin_unlock_irqrestore(&rrpriv->lock, flags);
1172 rrpriv->timer.expires = RUN_AT(5*HZ);
1173 add_timer(&rrpriv->timer);
1177 static int rr_open(struct net_device *dev)
1179 struct rr_private *rrpriv = netdev_priv(dev);
1180 struct pci_dev *pdev = rrpriv->pci_dev;
1181 struct rr_regs __iomem *regs;
1182 int ecode = 0;
1183 unsigned long flags;
1184 dma_addr_t dma_addr;
1186 regs = rrpriv->regs;
1188 if (rrpriv->fw_rev < 0x00020000) {
1189 printk(KERN_WARNING "%s: trying to configure device with "
1190 "obsolete firmware\n", dev->name);
1191 ecode = -EBUSY;
1192 goto error;
1195 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196 256 * sizeof(struct ring_ctrl),
1197 &dma_addr);
1198 if (!rrpriv->rx_ctrl) {
1199 ecode = -ENOMEM;
1200 goto error;
1202 rrpriv->rx_ctrl_dma = dma_addr;
1203 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1205 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206 &dma_addr);
1207 if (!rrpriv->info) {
1208 ecode = -ENOMEM;
1209 goto error;
1211 rrpriv->info_dma = dma_addr;
1212 memset(rrpriv->info, 0, sizeof(struct rr_info));
1213 wmb();
1215 spin_lock_irqsave(&rrpriv->lock, flags);
1216 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217 readl(&regs->HostCtrl);
1218 spin_unlock_irqrestore(&rrpriv->lock, flags);
1220 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222 dev->name, pdev->irq);
1223 ecode = -EAGAIN;
1224 goto error;
1227 if ((ecode = rr_init1(dev)))
1228 goto error;
1230 /* Set the timer to switch to check for link beat and perhaps switch
1231 to an alternate media type. */
1232 timer_setup(&rrpriv->timer, rr_timer, 0);
1233 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1234 add_timer(&rrpriv->timer);
1236 netif_start_queue(dev);
1238 return ecode;
1240 error:
1241 spin_lock_irqsave(&rrpriv->lock, flags);
1242 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1243 spin_unlock_irqrestore(&rrpriv->lock, flags);
1245 if (rrpriv->info) {
1246 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1247 rrpriv->info_dma);
1248 rrpriv->info = NULL;
1250 if (rrpriv->rx_ctrl) {
1251 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1252 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1253 rrpriv->rx_ctrl = NULL;
1256 netif_stop_queue(dev);
1258 return ecode;
1262 static void rr_dump(struct net_device *dev)
1264 struct rr_private *rrpriv;
1265 struct rr_regs __iomem *regs;
1266 u32 index, cons;
1267 short i;
1268 int len;
1270 rrpriv = netdev_priv(dev);
1271 regs = rrpriv->regs;
1273 printk("%s: dumping NIC TX rings\n", dev->name);
1275 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1276 readl(&regs->RxPrd), readl(&regs->TxPrd),
1277 readl(&regs->EvtPrd), readl(&regs->TxPi),
1278 rrpriv->info->tx_ctrl.pi);
1280 printk("Error code 0x%x\n", readl(&regs->Fail1));
1282 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1283 cons = rrpriv->dirty_tx;
1284 printk("TX ring index %i, TX consumer %i\n",
1285 index, cons);
1287 if (rrpriv->tx_skbuff[index]){
1288 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1289 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1290 for (i = 0; i < len; i++){
1291 if (!(i & 7))
1292 printk("\n");
1293 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295 printk("\n");
1298 if (rrpriv->tx_skbuff[cons]){
1299 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1300 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1301 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1302 rrpriv->tx_ring[cons].mode,
1303 rrpriv->tx_ring[cons].size,
1304 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1305 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1306 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1307 for (i = 0; i < len; i++){
1308 if (!(i & 7))
1309 printk("\n");
1310 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312 printk("\n");
1315 printk("dumping TX ring info:\n");
1316 for (i = 0; i < TX_RING_ENTRIES; i++)
1317 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1318 rrpriv->tx_ring[i].mode,
1319 rrpriv->tx_ring[i].size,
1320 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325 static int rr_close(struct net_device *dev)
1327 struct rr_private *rrpriv = netdev_priv(dev);
1328 struct rr_regs __iomem *regs = rrpriv->regs;
1329 struct pci_dev *pdev = rrpriv->pci_dev;
1330 unsigned long flags;
1331 u32 tmp;
1332 short i;
1334 netif_stop_queue(dev);
1338 * Lock to make sure we are not cleaning up while another CPU
1339 * is handling interrupts.
1341 spin_lock_irqsave(&rrpriv->lock, flags);
1343 tmp = readl(&regs->HostCtrl);
1344 if (tmp & NIC_HALTED){
1345 printk("%s: NIC already halted\n", dev->name);
1346 rr_dump(dev);
1347 }else{
1348 tmp |= HALT_NIC | RR_CLEAR_INT;
1349 writel(tmp, &regs->HostCtrl);
1350 readl(&regs->HostCtrl);
1353 rrpriv->fw_running = 0;
1355 del_timer_sync(&rrpriv->timer);
1357 writel(0, &regs->TxPi);
1358 writel(0, &regs->IpRxPi);
1360 writel(0, &regs->EvtCon);
1361 writel(0, &regs->EvtPrd);
1363 for (i = 0; i < CMD_RING_ENTRIES; i++)
1364 writel(0, &regs->CmdRing[i]);
1366 rrpriv->info->tx_ctrl.entries = 0;
1367 rrpriv->info->cmd_ctrl.pi = 0;
1368 rrpriv->info->evt_ctrl.pi = 0;
1369 rrpriv->rx_ctrl[4].entries = 0;
1371 rr_raz_tx(rrpriv, dev);
1372 rr_raz_rx(rrpriv, dev);
1374 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1375 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1376 rrpriv->rx_ctrl = NULL;
1378 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1379 rrpriv->info_dma);
1380 rrpriv->info = NULL;
1382 spin_unlock_irqrestore(&rrpriv->lock, flags);
1383 free_irq(pdev->irq, dev);
1385 return 0;
1389 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1390 struct net_device *dev)
1392 struct rr_private *rrpriv = netdev_priv(dev);
1393 struct rr_regs __iomem *regs = rrpriv->regs;
1394 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1395 struct ring_ctrl *txctrl;
1396 unsigned long flags;
1397 u32 index, len = skb->len;
1398 u32 *ifield;
1399 struct sk_buff *new_skb;
1401 if (readl(&regs->Mode) & FATAL_ERR)
1402 printk("error codes Fail1 %02x, Fail2 %02x\n",
1403 readl(&regs->Fail1), readl(&regs->Fail2));
1406 * We probably need to deal with tbusy here to prevent overruns.
1409 if (skb_headroom(skb) < 8){
1410 printk("incoming skb too small - reallocating\n");
1411 if (!(new_skb = dev_alloc_skb(len + 8))) {
1412 dev_kfree_skb(skb);
1413 netif_wake_queue(dev);
1414 return NETDEV_TX_OK;
1416 skb_reserve(new_skb, 8);
1417 skb_put(new_skb, len);
1418 skb_copy_from_linear_data(skb, new_skb->data, len);
1419 dev_kfree_skb(skb);
1420 skb = new_skb;
1423 ifield = skb_push(skb, 8);
1425 ifield[0] = 0;
1426 ifield[1] = hcb->ifield;
1429 * We don't need the lock before we are actually going to start
1430 * fiddling with the control blocks.
1432 spin_lock_irqsave(&rrpriv->lock, flags);
1434 txctrl = &rrpriv->info->tx_ctrl;
1436 index = txctrl->pi;
1438 rrpriv->tx_skbuff[index] = skb;
1439 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1440 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1441 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1442 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1443 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1444 wmb();
1445 writel(txctrl->pi, &regs->TxPi);
1447 if (txctrl->pi == rrpriv->dirty_tx){
1448 rrpriv->tx_full = 1;
1449 netif_stop_queue(dev);
1452 spin_unlock_irqrestore(&rrpriv->lock, flags);
1454 return NETDEV_TX_OK;
1459 * Read the firmware out of the EEPROM and put it into the SRAM
1460 * (or from user space - later)
1462 * This operation requires the NIC to be halted and is performed with
1463 * interrupts disabled and with the spinlock hold.
1465 static int rr_load_firmware(struct net_device *dev)
1467 struct rr_private *rrpriv;
1468 struct rr_regs __iomem *regs;
1469 size_t eptr, segptr;
1470 int i, j;
1471 u32 localctrl, sptr, len, tmp;
1472 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1474 rrpriv = netdev_priv(dev);
1475 regs = rrpriv->regs;
1477 if (dev->flags & IFF_UP)
1478 return -EBUSY;
1480 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1481 printk("%s: Trying to load firmware to a running NIC.\n",
1482 dev->name);
1483 return -EBUSY;
1486 localctrl = readl(&regs->LocalCtrl);
1487 writel(0, &regs->LocalCtrl);
1489 writel(0, &regs->EvtPrd);
1490 writel(0, &regs->RxPrd);
1491 writel(0, &regs->TxPrd);
1494 * First wipe the entire SRAM, otherwise we might run into all
1495 * kinds of trouble ... sigh, this took almost all afternoon
1496 * to track down ;-(
1498 io = readl(&regs->ExtIo);
1499 writel(0, &regs->ExtIo);
1500 sram_size = rr_read_eeprom_word(rrpriv, 8);
1502 for (i = 200; i < sram_size / 4; i++){
1503 writel(i * 4, &regs->WinBase);
1504 mb();
1505 writel(0, &regs->WinData);
1506 mb();
1508 writel(io, &regs->ExtIo);
1509 mb();
1511 eptr = rr_read_eeprom_word(rrpriv,
1512 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1513 eptr = ((eptr & 0x1fffff) >> 3);
1515 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1516 p2len = (p2len << 2);
1517 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1518 p2size = ((p2size & 0x1fffff) >> 3);
1520 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1521 printk("%s: eptr is invalid\n", dev->name);
1522 goto out;
1525 revision = rr_read_eeprom_word(rrpriv,
1526 offsetof(struct eeprom, manf.HeaderFmt));
1528 if (revision != 1){
1529 printk("%s: invalid firmware format (%i)\n",
1530 dev->name, revision);
1531 goto out;
1534 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1535 eptr +=4;
1536 #if (DEBUG > 1)
1537 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1538 #endif
1540 for (i = 0; i < nr_seg; i++){
1541 sptr = rr_read_eeprom_word(rrpriv, eptr);
1542 eptr += 4;
1543 len = rr_read_eeprom_word(rrpriv, eptr);
1544 eptr += 4;
1545 segptr = rr_read_eeprom_word(rrpriv, eptr);
1546 segptr = ((segptr & 0x1fffff) >> 3);
1547 eptr += 4;
1548 #if (DEBUG > 1)
1549 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1550 dev->name, i, sptr, len, segptr);
1551 #endif
1552 for (j = 0; j < len; j++){
1553 tmp = rr_read_eeprom_word(rrpriv, segptr);
1554 writel(sptr, &regs->WinBase);
1555 mb();
1556 writel(tmp, &regs->WinData);
1557 mb();
1558 segptr += 4;
1559 sptr += 4;
1563 out:
1564 writel(localctrl, &regs->LocalCtrl);
1565 mb();
1566 return 0;
1570 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572 struct rr_private *rrpriv;
1573 unsigned char *image, *oldimage;
1574 unsigned long flags;
1575 unsigned int i;
1576 int error = -EOPNOTSUPP;
1578 rrpriv = netdev_priv(dev);
1580 switch(cmd){
1581 case SIOCRRGFW:
1582 if (!capable(CAP_SYS_RAWIO)){
1583 return -EPERM;
1586 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1587 if (!image)
1588 return -ENOMEM;
1590 if (rrpriv->fw_running){
1591 printk("%s: Firmware already running\n", dev->name);
1592 error = -EPERM;
1593 goto gf_out;
1596 spin_lock_irqsave(&rrpriv->lock, flags);
1597 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1598 spin_unlock_irqrestore(&rrpriv->lock, flags);
1599 if (i != EEPROM_BYTES){
1600 printk(KERN_ERR "%s: Error reading EEPROM\n",
1601 dev->name);
1602 error = -EFAULT;
1603 goto gf_out;
1605 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1606 if (error)
1607 error = -EFAULT;
1608 gf_out:
1609 kfree(image);
1610 return error;
1612 case SIOCRRPFW:
1613 if (!capable(CAP_SYS_RAWIO)){
1614 return -EPERM;
1617 image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1618 if (IS_ERR(image))
1619 return PTR_ERR(image);
1621 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1622 if (!oldimage) {
1623 kfree(image);
1624 return -ENOMEM;
1627 if (rrpriv->fw_running){
1628 printk("%s: Firmware already running\n", dev->name);
1629 error = -EPERM;
1630 goto wf_out;
1633 printk("%s: Updating EEPROM firmware\n", dev->name);
1635 spin_lock_irqsave(&rrpriv->lock, flags);
1636 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1637 if (error)
1638 printk(KERN_ERR "%s: Error writing EEPROM\n",
1639 dev->name);
1641 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1642 spin_unlock_irqrestore(&rrpriv->lock, flags);
1644 if (i != EEPROM_BYTES)
1645 printk(KERN_ERR "%s: Error reading back EEPROM "
1646 "image\n", dev->name);
1648 error = memcmp(image, oldimage, EEPROM_BYTES);
1649 if (error){
1650 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1651 dev->name);
1652 error = -EFAULT;
1654 wf_out:
1655 kfree(oldimage);
1656 kfree(image);
1657 return error;
1659 case SIOCRRID:
1660 return put_user(0x52523032, (int __user *)rq->ifr_data);
1661 default:
1662 return error;
1666 static const struct pci_device_id rr_pci_tbl[] = {
1667 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1668 PCI_ANY_ID, PCI_ANY_ID, },
1669 { 0,}
1671 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1673 static struct pci_driver rr_driver = {
1674 .name = "rrunner",
1675 .id_table = rr_pci_tbl,
1676 .probe = rr_init_one,
1677 .remove = rr_remove_one,
1680 module_pci_driver(rr_driver);