Linux 4.16.11
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blob4170dfbd93bdba5e9fa6a57e5c68ec9d95a9a274
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
45 #include "remoteproc_internal.h"
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
83 struct rproc *rproc = token;
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
93 return -ENOSYS;
96 static int rproc_enable_iommu(struct rproc *rproc)
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
121 rproc->domain = domain;
123 return 0;
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
130 static void rproc_disable_iommu(struct rproc *rproc)
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
135 if (!domain)
136 return;
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
164 * The function returns a valid kernel address on success or NULL on failure.
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
193 ptr = carveout->va + offset;
195 break;
198 out:
199 return ptr;
201 EXPORT_SYMBOL(rproc_da_to_va);
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 struct rproc *rproc = rvdev->rproc;
206 struct device *dev = &rproc->dev;
207 struct rproc_vring *rvring = &rvdev->vring[i];
208 struct fw_rsc_vdev *rsc;
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
213 /* actual size of vring (in bytes) */
214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 if (!va) {
222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 return -EINVAL;
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
229 * TODO: support predefined notifyids (via resource table)
231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 if (ret < 0) {
233 dev_err(dev, "idr_alloc failed: %d\n", ret);
234 dma_free_coherent(dev->parent, size, va, dma);
235 return ret;
237 notifyid = ret;
239 /* Potentially bump max_notifyid */
240 if (notifyid > rproc->max_notifyid)
241 rproc->max_notifyid = notifyid;
243 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
244 i, va, &dma, size, notifyid);
246 rvring->va = va;
247 rvring->dma = dma;
248 rvring->notifyid = notifyid;
251 * Let the rproc know the notifyid and da of this vring.
252 * Not all platforms use dma_alloc_coherent to automatically
253 * set up the iommu. In this case the device address (da) will
254 * hold the physical address and not the device address.
256 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
257 rsc->vring[i].da = dma;
258 rsc->vring[i].notifyid = notifyid;
259 return 0;
262 static int
263 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
265 struct rproc *rproc = rvdev->rproc;
266 struct device *dev = &rproc->dev;
267 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
268 struct rproc_vring *rvring = &rvdev->vring[i];
270 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
271 i, vring->da, vring->num, vring->align);
273 /* verify queue size and vring alignment are sane */
274 if (!vring->num || !vring->align) {
275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276 vring->num, vring->align);
277 return -EINVAL;
280 rvring->len = vring->num;
281 rvring->align = vring->align;
282 rvring->rvdev = rvdev;
284 return 0;
287 void rproc_free_vring(struct rproc_vring *rvring)
289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
290 struct rproc *rproc = rvring->rvdev->rproc;
291 int idx = rvring->rvdev->vring - rvring;
292 struct fw_rsc_vdev *rsc;
294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295 idr_remove(&rproc->notifyids, rvring->notifyid);
297 /* reset resource entry info */
298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
299 rsc->vring[idx].da = 0;
300 rsc->vring[idx].notifyid = -1;
303 static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
305 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
307 return rproc_add_virtio_dev(rvdev, rvdev->id);
310 static void rproc_vdev_do_remove(struct rproc_subdev *subdev)
312 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
314 rproc_remove_virtio_dev(rvdev);
318 * rproc_handle_vdev() - handle a vdev fw resource
319 * @rproc: the remote processor
320 * @rsc: the vring resource descriptor
321 * @avail: size of available data (for sanity checking the image)
323 * This resource entry requests the host to statically register a virtio
324 * device (vdev), and setup everything needed to support it. It contains
325 * everything needed to make it possible: the virtio device id, virtio
326 * device features, vrings information, virtio config space, etc...
328 * Before registering the vdev, the vrings are allocated from non-cacheable
329 * physically contiguous memory. Currently we only support two vrings per
330 * remote processor (temporary limitation). We might also want to consider
331 * doing the vring allocation only later when ->find_vqs() is invoked, and
332 * then release them upon ->del_vqs().
334 * Note: @da is currently not really handled correctly: we dynamically
335 * allocate it using the DMA API, ignoring requested hard coded addresses,
336 * and we don't take care of any required IOMMU programming. This is all
337 * going to be taken care of when the generic iommu-based DMA API will be
338 * merged. Meanwhile, statically-addressed iommu-based firmware images should
339 * use RSC_DEVMEM resource entries to map their required @da to the physical
340 * address of their base CMA region (ouch, hacky!).
342 * Returns 0 on success, or an appropriate error code otherwise
344 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
345 int offset, int avail)
347 struct device *dev = &rproc->dev;
348 struct rproc_vdev *rvdev;
349 int i, ret;
351 /* make sure resource isn't truncated */
352 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
353 + rsc->config_len > avail) {
354 dev_err(dev, "vdev rsc is truncated\n");
355 return -EINVAL;
358 /* make sure reserved bytes are zeroes */
359 if (rsc->reserved[0] || rsc->reserved[1]) {
360 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
361 return -EINVAL;
364 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
365 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
367 /* we currently support only two vrings per rvdev */
368 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
369 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
370 return -EINVAL;
373 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
374 if (!rvdev)
375 return -ENOMEM;
377 kref_init(&rvdev->refcount);
379 rvdev->id = rsc->id;
380 rvdev->rproc = rproc;
382 /* parse the vrings */
383 for (i = 0; i < rsc->num_of_vrings; i++) {
384 ret = rproc_parse_vring(rvdev, rsc, i);
385 if (ret)
386 goto free_rvdev;
389 /* remember the resource offset*/
390 rvdev->rsc_offset = offset;
392 /* allocate the vring resources */
393 for (i = 0; i < rsc->num_of_vrings; i++) {
394 ret = rproc_alloc_vring(rvdev, i);
395 if (ret)
396 goto unwind_vring_allocations;
399 list_add_tail(&rvdev->node, &rproc->rvdevs);
401 rproc_add_subdev(rproc, &rvdev->subdev,
402 rproc_vdev_do_probe, rproc_vdev_do_remove);
404 return 0;
406 unwind_vring_allocations:
407 for (i--; i >= 0; i--)
408 rproc_free_vring(&rvdev->vring[i]);
409 free_rvdev:
410 kfree(rvdev);
411 return ret;
414 void rproc_vdev_release(struct kref *ref)
416 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
417 struct rproc_vring *rvring;
418 struct rproc *rproc = rvdev->rproc;
419 int id;
421 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
422 rvring = &rvdev->vring[id];
423 if (!rvring->va)
424 continue;
426 rproc_free_vring(rvring);
429 rproc_remove_subdev(rproc, &rvdev->subdev);
430 list_del(&rvdev->node);
431 kfree(rvdev);
435 * rproc_handle_trace() - handle a shared trace buffer resource
436 * @rproc: the remote processor
437 * @rsc: the trace resource descriptor
438 * @avail: size of available data (for sanity checking the image)
440 * In case the remote processor dumps trace logs into memory,
441 * export it via debugfs.
443 * Currently, the 'da' member of @rsc should contain the device address
444 * where the remote processor is dumping the traces. Later we could also
445 * support dynamically allocating this address using the generic
446 * DMA API (but currently there isn't a use case for that).
448 * Returns 0 on success, or an appropriate error code otherwise
450 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
451 int offset, int avail)
453 struct rproc_mem_entry *trace;
454 struct device *dev = &rproc->dev;
455 void *ptr;
456 char name[15];
458 if (sizeof(*rsc) > avail) {
459 dev_err(dev, "trace rsc is truncated\n");
460 return -EINVAL;
463 /* make sure reserved bytes are zeroes */
464 if (rsc->reserved) {
465 dev_err(dev, "trace rsc has non zero reserved bytes\n");
466 return -EINVAL;
469 /* what's the kernel address of this resource ? */
470 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
471 if (!ptr) {
472 dev_err(dev, "erroneous trace resource entry\n");
473 return -EINVAL;
476 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
477 if (!trace)
478 return -ENOMEM;
480 /* set the trace buffer dma properties */
481 trace->len = rsc->len;
482 trace->va = ptr;
484 /* make sure snprintf always null terminates, even if truncating */
485 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
487 /* create the debugfs entry */
488 trace->priv = rproc_create_trace_file(name, rproc, trace);
489 if (!trace->priv) {
490 trace->va = NULL;
491 kfree(trace);
492 return -EINVAL;
495 list_add_tail(&trace->node, &rproc->traces);
497 rproc->num_traces++;
499 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
500 name, ptr, rsc->da, rsc->len);
502 return 0;
506 * rproc_handle_devmem() - handle devmem resource entry
507 * @rproc: remote processor handle
508 * @rsc: the devmem resource entry
509 * @avail: size of available data (for sanity checking the image)
511 * Remote processors commonly need to access certain on-chip peripherals.
513 * Some of these remote processors access memory via an iommu device,
514 * and might require us to configure their iommu before they can access
515 * the on-chip peripherals they need.
517 * This resource entry is a request to map such a peripheral device.
519 * These devmem entries will contain the physical address of the device in
520 * the 'pa' member. If a specific device address is expected, then 'da' will
521 * contain it (currently this is the only use case supported). 'len' will
522 * contain the size of the physical region we need to map.
524 * Currently we just "trust" those devmem entries to contain valid physical
525 * addresses, but this is going to change: we want the implementations to
526 * tell us ranges of physical addresses the firmware is allowed to request,
527 * and not allow firmwares to request access to physical addresses that
528 * are outside those ranges.
530 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
531 int offset, int avail)
533 struct rproc_mem_entry *mapping;
534 struct device *dev = &rproc->dev;
535 int ret;
537 /* no point in handling this resource without a valid iommu domain */
538 if (!rproc->domain)
539 return -EINVAL;
541 if (sizeof(*rsc) > avail) {
542 dev_err(dev, "devmem rsc is truncated\n");
543 return -EINVAL;
546 /* make sure reserved bytes are zeroes */
547 if (rsc->reserved) {
548 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
549 return -EINVAL;
552 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
553 if (!mapping)
554 return -ENOMEM;
556 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
557 if (ret) {
558 dev_err(dev, "failed to map devmem: %d\n", ret);
559 goto out;
563 * We'll need this info later when we'll want to unmap everything
564 * (e.g. on shutdown).
566 * We can't trust the remote processor not to change the resource
567 * table, so we must maintain this info independently.
569 mapping->da = rsc->da;
570 mapping->len = rsc->len;
571 list_add_tail(&mapping->node, &rproc->mappings);
573 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
574 rsc->pa, rsc->da, rsc->len);
576 return 0;
578 out:
579 kfree(mapping);
580 return ret;
584 * rproc_handle_carveout() - handle phys contig memory allocation requests
585 * @rproc: rproc handle
586 * @rsc: the resource entry
587 * @avail: size of available data (for image validation)
589 * This function will handle firmware requests for allocation of physically
590 * contiguous memory regions.
592 * These request entries should come first in the firmware's resource table,
593 * as other firmware entries might request placing other data objects inside
594 * these memory regions (e.g. data/code segments, trace resource entries, ...).
596 * Allocating memory this way helps utilizing the reserved physical memory
597 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
598 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
599 * pressure is important; it may have a substantial impact on performance.
601 static int rproc_handle_carveout(struct rproc *rproc,
602 struct fw_rsc_carveout *rsc,
603 int offset, int avail)
605 struct rproc_mem_entry *carveout, *mapping;
606 struct device *dev = &rproc->dev;
607 dma_addr_t dma;
608 void *va;
609 int ret;
611 if (sizeof(*rsc) > avail) {
612 dev_err(dev, "carveout rsc is truncated\n");
613 return -EINVAL;
616 /* make sure reserved bytes are zeroes */
617 if (rsc->reserved) {
618 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
619 return -EINVAL;
622 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
623 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
625 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
626 if (!carveout)
627 return -ENOMEM;
629 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
630 if (!va) {
631 dev_err(dev->parent,
632 "failed to allocate dma memory: len 0x%x\n", rsc->len);
633 ret = -ENOMEM;
634 goto free_carv;
637 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
638 va, &dma, rsc->len);
641 * Ok, this is non-standard.
643 * Sometimes we can't rely on the generic iommu-based DMA API
644 * to dynamically allocate the device address and then set the IOMMU
645 * tables accordingly, because some remote processors might
646 * _require_ us to use hard coded device addresses that their
647 * firmware was compiled with.
649 * In this case, we must use the IOMMU API directly and map
650 * the memory to the device address as expected by the remote
651 * processor.
653 * Obviously such remote processor devices should not be configured
654 * to use the iommu-based DMA API: we expect 'dma' to contain the
655 * physical address in this case.
657 if (rproc->domain) {
658 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
659 if (!mapping) {
660 ret = -ENOMEM;
661 goto dma_free;
664 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
665 rsc->flags);
666 if (ret) {
667 dev_err(dev, "iommu_map failed: %d\n", ret);
668 goto free_mapping;
672 * We'll need this info later when we'll want to unmap
673 * everything (e.g. on shutdown).
675 * We can't trust the remote processor not to change the
676 * resource table, so we must maintain this info independently.
678 mapping->da = rsc->da;
679 mapping->len = rsc->len;
680 list_add_tail(&mapping->node, &rproc->mappings);
682 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
683 rsc->da, &dma);
687 * Some remote processors might need to know the pa
688 * even though they are behind an IOMMU. E.g., OMAP4's
689 * remote M3 processor needs this so it can control
690 * on-chip hardware accelerators that are not behind
691 * the IOMMU, and therefor must know the pa.
693 * Generally we don't want to expose physical addresses
694 * if we don't have to (remote processors are generally
695 * _not_ trusted), so we might want to do this only for
696 * remote processor that _must_ have this (e.g. OMAP4's
697 * dual M3 subsystem).
699 * Non-IOMMU processors might also want to have this info.
700 * In this case, the device address and the physical address
701 * are the same.
703 rsc->pa = dma;
705 carveout->va = va;
706 carveout->len = rsc->len;
707 carveout->dma = dma;
708 carveout->da = rsc->da;
710 list_add_tail(&carveout->node, &rproc->carveouts);
712 return 0;
714 free_mapping:
715 kfree(mapping);
716 dma_free:
717 dma_free_coherent(dev->parent, rsc->len, va, dma);
718 free_carv:
719 kfree(carveout);
720 return ret;
724 * A lookup table for resource handlers. The indices are defined in
725 * enum fw_resource_type.
727 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
728 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
729 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
730 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
731 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
734 /* handle firmware resource entries before booting the remote processor */
735 static int rproc_handle_resources(struct rproc *rproc,
736 rproc_handle_resource_t handlers[RSC_LAST])
738 struct device *dev = &rproc->dev;
739 rproc_handle_resource_t handler;
740 int ret = 0, i;
742 if (!rproc->table_ptr)
743 return 0;
745 for (i = 0; i < rproc->table_ptr->num; i++) {
746 int offset = rproc->table_ptr->offset[i];
747 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
748 int avail = rproc->table_sz - offset - sizeof(*hdr);
749 void *rsc = (void *)hdr + sizeof(*hdr);
751 /* make sure table isn't truncated */
752 if (avail < 0) {
753 dev_err(dev, "rsc table is truncated\n");
754 return -EINVAL;
757 dev_dbg(dev, "rsc: type %d\n", hdr->type);
759 if (hdr->type >= RSC_LAST) {
760 dev_warn(dev, "unsupported resource %d\n", hdr->type);
761 continue;
764 handler = handlers[hdr->type];
765 if (!handler)
766 continue;
768 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
769 if (ret)
770 break;
773 return ret;
776 static int rproc_probe_subdevices(struct rproc *rproc)
778 struct rproc_subdev *subdev;
779 int ret;
781 list_for_each_entry(subdev, &rproc->subdevs, node) {
782 ret = subdev->probe(subdev);
783 if (ret)
784 goto unroll_registration;
787 return 0;
789 unroll_registration:
790 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
791 subdev->remove(subdev);
793 return ret;
796 static void rproc_remove_subdevices(struct rproc *rproc)
798 struct rproc_subdev *subdev;
800 list_for_each_entry_reverse(subdev, &rproc->subdevs, node)
801 subdev->remove(subdev);
805 * rproc_resource_cleanup() - clean up and free all acquired resources
806 * @rproc: rproc handle
808 * This function will free all resources acquired for @rproc, and it
809 * is called whenever @rproc either shuts down or fails to boot.
811 static void rproc_resource_cleanup(struct rproc *rproc)
813 struct rproc_mem_entry *entry, *tmp;
814 struct rproc_vdev *rvdev, *rvtmp;
815 struct device *dev = &rproc->dev;
817 /* clean up debugfs trace entries */
818 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
819 rproc_remove_trace_file(entry->priv);
820 rproc->num_traces--;
821 list_del(&entry->node);
822 kfree(entry);
825 /* clean up iommu mapping entries */
826 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
827 size_t unmapped;
829 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
830 if (unmapped != entry->len) {
831 /* nothing much to do besides complaining */
832 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
833 unmapped);
836 list_del(&entry->node);
837 kfree(entry);
840 /* clean up carveout allocations */
841 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
842 dma_free_coherent(dev->parent, entry->len, entry->va,
843 entry->dma);
844 list_del(&entry->node);
845 kfree(entry);
848 /* clean up remote vdev entries */
849 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
850 kref_put(&rvdev->refcount, rproc_vdev_release);
853 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
855 struct resource_table *loaded_table;
856 struct device *dev = &rproc->dev;
857 int ret;
859 /* load the ELF segments to memory */
860 ret = rproc_load_segments(rproc, fw);
861 if (ret) {
862 dev_err(dev, "Failed to load program segments: %d\n", ret);
863 return ret;
867 * The starting device has been given the rproc->cached_table as the
868 * resource table. The address of the vring along with the other
869 * allocated resources (carveouts etc) is stored in cached_table.
870 * In order to pass this information to the remote device we must copy
871 * this information to device memory. We also update the table_ptr so
872 * that any subsequent changes will be applied to the loaded version.
874 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
875 if (loaded_table) {
876 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
877 rproc->table_ptr = loaded_table;
880 /* power up the remote processor */
881 ret = rproc->ops->start(rproc);
882 if (ret) {
883 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
884 return ret;
887 /* probe any subdevices for the remote processor */
888 ret = rproc_probe_subdevices(rproc);
889 if (ret) {
890 dev_err(dev, "failed to probe subdevices for %s: %d\n",
891 rproc->name, ret);
892 rproc->ops->stop(rproc);
893 return ret;
896 rproc->state = RPROC_RUNNING;
898 dev_info(dev, "remote processor %s is now up\n", rproc->name);
900 return 0;
904 * take a firmware and boot a remote processor with it.
906 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
908 struct device *dev = &rproc->dev;
909 const char *name = rproc->firmware;
910 int ret;
912 ret = rproc_fw_sanity_check(rproc, fw);
913 if (ret)
914 return ret;
916 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
919 * if enabling an IOMMU isn't relevant for this rproc, this is
920 * just a nop
922 ret = rproc_enable_iommu(rproc);
923 if (ret) {
924 dev_err(dev, "can't enable iommu: %d\n", ret);
925 return ret;
928 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
930 /* load resource table */
931 ret = rproc_load_rsc_table(rproc, fw);
932 if (ret)
933 goto disable_iommu;
935 /* reset max_notifyid */
936 rproc->max_notifyid = -1;
938 /* handle fw resources which are required to boot rproc */
939 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
940 if (ret) {
941 dev_err(dev, "Failed to process resources: %d\n", ret);
942 goto clean_up_resources;
945 ret = rproc_start(rproc, fw);
946 if (ret)
947 goto clean_up_resources;
949 return 0;
951 clean_up_resources:
952 rproc_resource_cleanup(rproc);
953 kfree(rproc->cached_table);
954 rproc->cached_table = NULL;
955 rproc->table_ptr = NULL;
956 disable_iommu:
957 rproc_disable_iommu(rproc);
958 return ret;
962 * take a firmware and boot it up.
964 * Note: this function is called asynchronously upon registration of the
965 * remote processor (so we must wait until it completes before we try
966 * to unregister the device. one other option is just to use kref here,
967 * that might be cleaner).
969 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
971 struct rproc *rproc = context;
973 rproc_boot(rproc);
975 release_firmware(fw);
978 static int rproc_trigger_auto_boot(struct rproc *rproc)
980 int ret;
983 * We're initiating an asynchronous firmware loading, so we can
984 * be built-in kernel code, without hanging the boot process.
986 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
987 rproc->firmware, &rproc->dev, GFP_KERNEL,
988 rproc, rproc_auto_boot_callback);
989 if (ret < 0)
990 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
992 return ret;
995 static int rproc_stop(struct rproc *rproc)
997 struct device *dev = &rproc->dev;
998 int ret;
1000 /* remove any subdevices for the remote processor */
1001 rproc_remove_subdevices(rproc);
1003 /* the installed resource table is no longer accessible */
1004 rproc->table_ptr = rproc->cached_table;
1006 /* power off the remote processor */
1007 ret = rproc->ops->stop(rproc);
1008 if (ret) {
1009 dev_err(dev, "can't stop rproc: %d\n", ret);
1010 return ret;
1013 rproc->state = RPROC_OFFLINE;
1015 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1017 return 0;
1021 * rproc_trigger_recovery() - recover a remoteproc
1022 * @rproc: the remote processor
1024 * The recovery is done by resetting all the virtio devices, that way all the
1025 * rpmsg drivers will be reseted along with the remote processor making the
1026 * remoteproc functional again.
1028 * This function can sleep, so it cannot be called from atomic context.
1030 int rproc_trigger_recovery(struct rproc *rproc)
1032 const struct firmware *firmware_p;
1033 struct device *dev = &rproc->dev;
1034 int ret;
1036 dev_err(dev, "recovering %s\n", rproc->name);
1038 ret = mutex_lock_interruptible(&rproc->lock);
1039 if (ret)
1040 return ret;
1042 ret = rproc_stop(rproc);
1043 if (ret)
1044 goto unlock_mutex;
1046 /* load firmware */
1047 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1048 if (ret < 0) {
1049 dev_err(dev, "request_firmware failed: %d\n", ret);
1050 goto unlock_mutex;
1053 /* boot the remote processor up again */
1054 ret = rproc_start(rproc, firmware_p);
1056 release_firmware(firmware_p);
1058 unlock_mutex:
1059 mutex_unlock(&rproc->lock);
1060 return ret;
1064 * rproc_crash_handler_work() - handle a crash
1066 * This function needs to handle everything related to a crash, like cpu
1067 * registers and stack dump, information to help to debug the fatal error, etc.
1069 static void rproc_crash_handler_work(struct work_struct *work)
1071 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1072 struct device *dev = &rproc->dev;
1074 dev_dbg(dev, "enter %s\n", __func__);
1076 mutex_lock(&rproc->lock);
1078 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1079 /* handle only the first crash detected */
1080 mutex_unlock(&rproc->lock);
1081 return;
1084 rproc->state = RPROC_CRASHED;
1085 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1086 rproc->name);
1088 mutex_unlock(&rproc->lock);
1090 if (!rproc->recovery_disabled)
1091 rproc_trigger_recovery(rproc);
1095 * rproc_boot() - boot a remote processor
1096 * @rproc: handle of a remote processor
1098 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1100 * If the remote processor is already powered on, this function immediately
1101 * returns (successfully).
1103 * Returns 0 on success, and an appropriate error value otherwise.
1105 int rproc_boot(struct rproc *rproc)
1107 const struct firmware *firmware_p;
1108 struct device *dev;
1109 int ret;
1111 if (!rproc) {
1112 pr_err("invalid rproc handle\n");
1113 return -EINVAL;
1116 dev = &rproc->dev;
1118 ret = mutex_lock_interruptible(&rproc->lock);
1119 if (ret) {
1120 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1121 return ret;
1124 if (rproc->state == RPROC_DELETED) {
1125 ret = -ENODEV;
1126 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1127 goto unlock_mutex;
1130 /* skip the boot process if rproc is already powered up */
1131 if (atomic_inc_return(&rproc->power) > 1) {
1132 ret = 0;
1133 goto unlock_mutex;
1136 dev_info(dev, "powering up %s\n", rproc->name);
1138 /* load firmware */
1139 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1140 if (ret < 0) {
1141 dev_err(dev, "request_firmware failed: %d\n", ret);
1142 goto downref_rproc;
1145 ret = rproc_fw_boot(rproc, firmware_p);
1147 release_firmware(firmware_p);
1149 downref_rproc:
1150 if (ret)
1151 atomic_dec(&rproc->power);
1152 unlock_mutex:
1153 mutex_unlock(&rproc->lock);
1154 return ret;
1156 EXPORT_SYMBOL(rproc_boot);
1159 * rproc_shutdown() - power off the remote processor
1160 * @rproc: the remote processor
1162 * Power off a remote processor (previously booted with rproc_boot()).
1164 * In case @rproc is still being used by an additional user(s), then
1165 * this function will just decrement the power refcount and exit,
1166 * without really powering off the device.
1168 * Every call to rproc_boot() must (eventually) be accompanied by a call
1169 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1171 * Notes:
1172 * - we're not decrementing the rproc's refcount, only the power refcount.
1173 * which means that the @rproc handle stays valid even after rproc_shutdown()
1174 * returns, and users can still use it with a subsequent rproc_boot(), if
1175 * needed.
1177 void rproc_shutdown(struct rproc *rproc)
1179 struct device *dev = &rproc->dev;
1180 int ret;
1182 ret = mutex_lock_interruptible(&rproc->lock);
1183 if (ret) {
1184 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1185 return;
1188 /* if the remote proc is still needed, bail out */
1189 if (!atomic_dec_and_test(&rproc->power))
1190 goto out;
1192 ret = rproc_stop(rproc);
1193 if (ret) {
1194 atomic_inc(&rproc->power);
1195 goto out;
1198 /* clean up all acquired resources */
1199 rproc_resource_cleanup(rproc);
1201 rproc_disable_iommu(rproc);
1203 /* Free the copy of the resource table */
1204 kfree(rproc->cached_table);
1205 rproc->cached_table = NULL;
1206 rproc->table_ptr = NULL;
1207 out:
1208 mutex_unlock(&rproc->lock);
1210 EXPORT_SYMBOL(rproc_shutdown);
1213 * rproc_get_by_phandle() - find a remote processor by phandle
1214 * @phandle: phandle to the rproc
1216 * Finds an rproc handle using the remote processor's phandle, and then
1217 * return a handle to the rproc.
1219 * This function increments the remote processor's refcount, so always
1220 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1222 * Returns the rproc handle on success, and NULL on failure.
1224 #ifdef CONFIG_OF
1225 struct rproc *rproc_get_by_phandle(phandle phandle)
1227 struct rproc *rproc = NULL, *r;
1228 struct device_node *np;
1230 np = of_find_node_by_phandle(phandle);
1231 if (!np)
1232 return NULL;
1234 mutex_lock(&rproc_list_mutex);
1235 list_for_each_entry(r, &rproc_list, node) {
1236 if (r->dev.parent && r->dev.parent->of_node == np) {
1237 /* prevent underlying implementation from being removed */
1238 if (!try_module_get(r->dev.parent->driver->owner)) {
1239 dev_err(&r->dev, "can't get owner\n");
1240 break;
1243 rproc = r;
1244 get_device(&rproc->dev);
1245 break;
1248 mutex_unlock(&rproc_list_mutex);
1250 of_node_put(np);
1252 return rproc;
1254 #else
1255 struct rproc *rproc_get_by_phandle(phandle phandle)
1257 return NULL;
1259 #endif
1260 EXPORT_SYMBOL(rproc_get_by_phandle);
1263 * rproc_add() - register a remote processor
1264 * @rproc: the remote processor handle to register
1266 * Registers @rproc with the remoteproc framework, after it has been
1267 * allocated with rproc_alloc().
1269 * This is called by the platform-specific rproc implementation, whenever
1270 * a new remote processor device is probed.
1272 * Returns 0 on success and an appropriate error code otherwise.
1274 * Note: this function initiates an asynchronous firmware loading
1275 * context, which will look for virtio devices supported by the rproc's
1276 * firmware.
1278 * If found, those virtio devices will be created and added, so as a result
1279 * of registering this remote processor, additional virtio drivers might be
1280 * probed.
1282 int rproc_add(struct rproc *rproc)
1284 struct device *dev = &rproc->dev;
1285 int ret;
1287 ret = device_add(dev);
1288 if (ret < 0)
1289 return ret;
1291 dev_info(dev, "%s is available\n", rproc->name);
1293 /* create debugfs entries */
1294 rproc_create_debug_dir(rproc);
1296 /* if rproc is marked always-on, request it to boot */
1297 if (rproc->auto_boot) {
1298 ret = rproc_trigger_auto_boot(rproc);
1299 if (ret < 0)
1300 return ret;
1303 /* expose to rproc_get_by_phandle users */
1304 mutex_lock(&rproc_list_mutex);
1305 list_add(&rproc->node, &rproc_list);
1306 mutex_unlock(&rproc_list_mutex);
1308 return 0;
1310 EXPORT_SYMBOL(rproc_add);
1313 * rproc_type_release() - release a remote processor instance
1314 * @dev: the rproc's device
1316 * This function should _never_ be called directly.
1318 * It will be called by the driver core when no one holds a valid pointer
1319 * to @dev anymore.
1321 static void rproc_type_release(struct device *dev)
1323 struct rproc *rproc = container_of(dev, struct rproc, dev);
1325 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1327 idr_destroy(&rproc->notifyids);
1329 if (rproc->index >= 0)
1330 ida_simple_remove(&rproc_dev_index, rproc->index);
1332 kfree(rproc->firmware);
1333 kfree(rproc->ops);
1334 kfree(rproc);
1337 static const struct device_type rproc_type = {
1338 .name = "remoteproc",
1339 .release = rproc_type_release,
1343 * rproc_alloc() - allocate a remote processor handle
1344 * @dev: the underlying device
1345 * @name: name of this remote processor
1346 * @ops: platform-specific handlers (mainly start/stop)
1347 * @firmware: name of firmware file to load, can be NULL
1348 * @len: length of private data needed by the rproc driver (in bytes)
1350 * Allocates a new remote processor handle, but does not register
1351 * it yet. if @firmware is NULL, a default name is used.
1353 * This function should be used by rproc implementations during initialization
1354 * of the remote processor.
1356 * After creating an rproc handle using this function, and when ready,
1357 * implementations should then call rproc_add() to complete
1358 * the registration of the remote processor.
1360 * On success the new rproc is returned, and on failure, NULL.
1362 * Note: _never_ directly deallocate @rproc, even if it was not registered
1363 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1365 struct rproc *rproc_alloc(struct device *dev, const char *name,
1366 const struct rproc_ops *ops,
1367 const char *firmware, int len)
1369 struct rproc *rproc;
1370 char *p, *template = "rproc-%s-fw";
1371 int name_len;
1373 if (!dev || !name || !ops)
1374 return NULL;
1376 if (!firmware) {
1378 * If the caller didn't pass in a firmware name then
1379 * construct a default name.
1381 name_len = strlen(name) + strlen(template) - 2 + 1;
1382 p = kmalloc(name_len, GFP_KERNEL);
1383 if (!p)
1384 return NULL;
1385 snprintf(p, name_len, template, name);
1386 } else {
1387 p = kstrdup(firmware, GFP_KERNEL);
1388 if (!p)
1389 return NULL;
1392 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1393 if (!rproc) {
1394 kfree(p);
1395 return NULL;
1398 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1399 if (!rproc->ops) {
1400 kfree(p);
1401 kfree(rproc);
1402 return NULL;
1405 rproc->firmware = p;
1406 rproc->name = name;
1407 rproc->priv = &rproc[1];
1408 rproc->auto_boot = true;
1410 device_initialize(&rproc->dev);
1411 rproc->dev.parent = dev;
1412 rproc->dev.type = &rproc_type;
1413 rproc->dev.class = &rproc_class;
1414 rproc->dev.driver_data = rproc;
1416 /* Assign a unique device index and name */
1417 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1418 if (rproc->index < 0) {
1419 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1420 put_device(&rproc->dev);
1421 return NULL;
1424 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1426 atomic_set(&rproc->power, 0);
1428 /* Default to ELF loader if no load function is specified */
1429 if (!rproc->ops->load) {
1430 rproc->ops->load = rproc_elf_load_segments;
1431 rproc->ops->load_rsc_table = rproc_elf_load_rsc_table;
1432 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1433 rproc->ops->sanity_check = rproc_elf_sanity_check;
1434 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1437 mutex_init(&rproc->lock);
1439 idr_init(&rproc->notifyids);
1441 INIT_LIST_HEAD(&rproc->carveouts);
1442 INIT_LIST_HEAD(&rproc->mappings);
1443 INIT_LIST_HEAD(&rproc->traces);
1444 INIT_LIST_HEAD(&rproc->rvdevs);
1445 INIT_LIST_HEAD(&rproc->subdevs);
1447 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1449 rproc->state = RPROC_OFFLINE;
1451 return rproc;
1453 EXPORT_SYMBOL(rproc_alloc);
1456 * rproc_free() - unroll rproc_alloc()
1457 * @rproc: the remote processor handle
1459 * This function decrements the rproc dev refcount.
1461 * If no one holds any reference to rproc anymore, then its refcount would
1462 * now drop to zero, and it would be freed.
1464 void rproc_free(struct rproc *rproc)
1466 put_device(&rproc->dev);
1468 EXPORT_SYMBOL(rproc_free);
1471 * rproc_put() - release rproc reference
1472 * @rproc: the remote processor handle
1474 * This function decrements the rproc dev refcount.
1476 * If no one holds any reference to rproc anymore, then its refcount would
1477 * now drop to zero, and it would be freed.
1479 void rproc_put(struct rproc *rproc)
1481 module_put(rproc->dev.parent->driver->owner);
1482 put_device(&rproc->dev);
1484 EXPORT_SYMBOL(rproc_put);
1487 * rproc_del() - unregister a remote processor
1488 * @rproc: rproc handle to unregister
1490 * This function should be called when the platform specific rproc
1491 * implementation decides to remove the rproc device. it should
1492 * _only_ be called if a previous invocation of rproc_add()
1493 * has completed successfully.
1495 * After rproc_del() returns, @rproc isn't freed yet, because
1496 * of the outstanding reference created by rproc_alloc. To decrement that
1497 * one last refcount, one still needs to call rproc_free().
1499 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1501 int rproc_del(struct rproc *rproc)
1503 if (!rproc)
1504 return -EINVAL;
1506 /* if rproc is marked always-on, rproc_add() booted it */
1507 /* TODO: make sure this works with rproc->power > 1 */
1508 if (rproc->auto_boot)
1509 rproc_shutdown(rproc);
1511 mutex_lock(&rproc->lock);
1512 rproc->state = RPROC_DELETED;
1513 mutex_unlock(&rproc->lock);
1515 rproc_delete_debug_dir(rproc);
1517 /* the rproc is downref'ed as soon as it's removed from the klist */
1518 mutex_lock(&rproc_list_mutex);
1519 list_del(&rproc->node);
1520 mutex_unlock(&rproc_list_mutex);
1522 device_del(&rproc->dev);
1524 return 0;
1526 EXPORT_SYMBOL(rproc_del);
1529 * rproc_add_subdev() - add a subdevice to a remoteproc
1530 * @rproc: rproc handle to add the subdevice to
1531 * @subdev: subdev handle to register
1532 * @probe: function to call when the rproc boots
1533 * @remove: function to call when the rproc shuts down
1535 void rproc_add_subdev(struct rproc *rproc,
1536 struct rproc_subdev *subdev,
1537 int (*probe)(struct rproc_subdev *subdev),
1538 void (*remove)(struct rproc_subdev *subdev))
1540 subdev->probe = probe;
1541 subdev->remove = remove;
1543 list_add_tail(&subdev->node, &rproc->subdevs);
1545 EXPORT_SYMBOL(rproc_add_subdev);
1548 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1549 * @rproc: rproc handle to remove the subdevice from
1550 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1552 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1554 list_del(&subdev->node);
1556 EXPORT_SYMBOL(rproc_remove_subdev);
1559 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1560 * @dev: child device to find ancestor of
1562 * Returns the ancestor rproc instance, or NULL if not found.
1564 struct rproc *rproc_get_by_child(struct device *dev)
1566 for (dev = dev->parent; dev; dev = dev->parent) {
1567 if (dev->type == &rproc_type)
1568 return dev->driver_data;
1571 return NULL;
1573 EXPORT_SYMBOL(rproc_get_by_child);
1576 * rproc_report_crash() - rproc crash reporter function
1577 * @rproc: remote processor
1578 * @type: crash type
1580 * This function must be called every time a crash is detected by the low-level
1581 * drivers implementing a specific remoteproc. This should not be called from a
1582 * non-remoteproc driver.
1584 * This function can be called from atomic/interrupt context.
1586 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1588 if (!rproc) {
1589 pr_err("NULL rproc pointer\n");
1590 return;
1593 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1594 rproc->name, rproc_crash_to_string(type));
1596 /* create a new task to handle the error */
1597 schedule_work(&rproc->crash_handler);
1599 EXPORT_SYMBOL(rproc_report_crash);
1601 static int __init remoteproc_init(void)
1603 rproc_init_sysfs();
1604 rproc_init_debugfs();
1606 return 0;
1608 module_init(remoteproc_init);
1610 static void __exit remoteproc_exit(void)
1612 ida_destroy(&rproc_dev_index);
1614 rproc_exit_debugfs();
1615 rproc_exit_sysfs();
1617 module_exit(remoteproc_exit);
1619 MODULE_LICENSE("GPL v2");
1620 MODULE_DESCRIPTION("Generic Remote Processor Framework");