2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
41 /* ---------- Initialization ---------- */
43 static int asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
45 /* adapter came with a sas address */
46 if (asd_ha
->hw_prof
.sas_addr
[0])
49 return sas_request_addr(asd_ha
->sas_ha
.core
.shost
,
50 asd_ha
->hw_prof
.sas_addr
);
53 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
57 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
58 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
63 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
64 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
65 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy
*phy
)
73 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
75 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
77 phy
->identify_frame
->dev_type
= SAS_END_DEVICE
;
78 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
79 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
80 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
81 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
82 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
84 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
87 static int asd_init_phy(struct asd_phy
*phy
)
89 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
90 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
94 sas_phy
->iproto
= SAS_PROTOCOL_ALL
;
96 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
97 sas_phy
->role
= PHY_ROLE_INITIATOR
;
98 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
99 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
101 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
102 sizeof(*phy
->identify_frame
),
104 if (!phy
->id_frm_tok
) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
108 asd_init_phy_identify(phy
);
110 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
115 static void asd_init_ports(struct asd_ha_struct
*asd_ha
)
119 spin_lock_init(&asd_ha
->asd_ports_lock
);
120 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
121 struct asd_port
*asd_port
= &asd_ha
->asd_ports
[i
];
123 memset(asd_port
->sas_addr
, 0, SAS_ADDR_SIZE
);
124 memset(asd_port
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
125 asd_port
->phy_mask
= 0;
126 asd_port
->num_phys
= 0;
130 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
133 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
135 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
136 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
138 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
139 phy
->asd_port
= NULL
;
141 phy
->sas_phy
.enabled
= 0;
143 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
144 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
145 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
146 phy
->sas_phy
.lldd_phy
= phy
;
149 /* Now enable and initialize only the enabled phys. */
150 for_each_phy(phy_mask
, phy_mask
, i
) {
151 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
159 /* ---------- Sliding windows ---------- */
161 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
163 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
168 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
170 asd_printk("couldn't access conf. space of %s\n",
175 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
177 asd_printk("couldn't write to MBAR_KEY of %s\n",
182 /* Set sliding windows A, B and C to point to proper internal
185 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
186 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
187 REG_BASE_ADDR_CSEQCIO
);
188 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
189 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
190 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
191 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
192 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
193 if (!asd_ha
->iospace
) {
194 /* MBAR1 will point to OCM (On Chip Memory) */
195 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
196 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
198 spin_lock_init(&asd_ha
->iolock
);
203 /* ---------- SCB initialization ---------- */
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution. Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
216 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
218 struct asd_seq_data
*seq
= &asd_ha
->seq
;
221 /* allocate the index array and bitmap */
222 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
223 asd_ha
->seq
.tc_index_array
= kzalloc(asd_ha
->seq
.tc_index_bitmap_bits
*
224 sizeof(void *), GFP_KERNEL
);
225 if (!asd_ha
->seq
.tc_index_array
)
228 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
229 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
230 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
231 if (!asd_ha
->seq
.tc_index_bitmap
) {
232 kfree(asd_ha
->seq
.tc_index_array
);
233 asd_ha
->seq
.tc_index_array
= NULL
;
237 spin_lock_init(&seq
->tc_index_lock
);
239 seq
->next_scb
.size
= sizeof(struct scb
);
240 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
241 &seq
->next_scb
.dma_handle
);
242 if (!seq
->next_scb
.vaddr
) {
243 kfree(asd_ha
->seq
.tc_index_bitmap
);
244 kfree(asd_ha
->seq
.tc_index_array
);
245 asd_ha
->seq
.tc_index_bitmap
= NULL
;
246 asd_ha
->seq
.tc_index_array
= NULL
;
251 spin_lock_init(&seq
->pend_q_lock
);
252 INIT_LIST_HEAD(&seq
->pend_q
);
257 static void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
259 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
260 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
261 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
262 asd_ha
->hw_prof
.max_scbs
,
263 asd_ha
->hw_prof
.max_ddbs
);
266 /* ---------- Done List initialization ---------- */
268 static void asd_dl_tasklet_handler(unsigned long);
270 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
272 asd_ha
->seq
.actual_dl
273 = asd_alloc_coherent(asd_ha
,
274 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
276 if (!asd_ha
->seq
.actual_dl
)
278 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
279 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
280 asd_ha
->seq
.dl_next
= 0;
281 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
282 (unsigned long) asd_ha
);
287 /* ---------- EDB and ESCB init ---------- */
289 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, gfp_t gfp_flags
)
291 struct asd_seq_data
*seq
= &asd_ha
->seq
;
294 seq
->edb_arr
= kmalloc(seq
->num_edbs
*sizeof(*seq
->edb_arr
), gfp_flags
);
298 for (i
= 0; i
< seq
->num_edbs
; i
++) {
299 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
301 if (!seq
->edb_arr
[i
])
303 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
306 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
311 for (i
-- ; i
>= 0; i
--)
312 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
319 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
322 struct asd_seq_data
*seq
= &asd_ha
->seq
;
323 struct asd_ascb
*escb
;
326 seq
->escb_arr
= kmalloc(seq
->num_escbs
*sizeof(*seq
->escb_arr
),
331 escbs
= seq
->num_escbs
;
332 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
334 asd_printk("couldn't allocate list of escbs\n");
337 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
338 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
340 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
343 seq
->escb_arr
[i
] = escb
;
344 escb
->scb
->header
.opcode
= EMPTY_SCB
;
349 kfree(seq
->escb_arr
);
350 seq
->escb_arr
= NULL
;
355 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
357 struct asd_seq_data
*seq
= &asd_ha
->seq
;
360 for (i
= 0; i
< seq
->num_escbs
; i
++) {
361 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
362 struct empty_scb
*escb
= &ascb
->scb
->escb
;
366 escb
->num_valid
= ASD_EDBS_PER_SCB
;
368 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
369 struct sg_el
*eb
= &escb
->eb
[k
];
370 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
372 memset(eb
, 0, sizeof(*eb
));
373 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
374 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
380 * asd_init_escbs -- allocate and initialize empty scbs
381 * @asd_ha: pointer to host adapter structure
383 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
384 * They transport sense data, etc.
386 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
388 struct asd_seq_data
*seq
= &asd_ha
->seq
;
391 /* Allocate two empty data buffers (edb) per sequencer. */
392 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
394 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
395 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
397 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
399 asd_printk("couldn't allocate edbs\n");
403 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
405 asd_printk("couldn't allocate escbs\n");
409 asd_assign_edbs2escbs(asd_ha
);
410 /* In order to insure that normal SCBs do not overfill sequencer
411 * memory and leave no space for escbs (halting condition),
412 * we increment pending here by the number of escbs. However,
413 * escbs are never pending.
415 seq
->pending
= seq
->num_escbs
;
416 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
421 /* ---------- HW initialization ---------- */
424 * asd_chip_hardrst -- hard reset the chip
425 * @asd_ha: pointer to host adapter structure
427 * This takes 16 cycles and is synchronous to CFCLK, which runs
428 * at 200 MHz, so this should take at most 80 nanoseconds.
430 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
436 for (i
= 0 ; i
< 4 ; i
++) {
437 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
442 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
443 if (reg
& HARDRSTDET
) {
444 asd_write_reg_dword(asd_ha
, CHIMINT
,
445 HARDRSTDET
|PORRSTDET
);
448 } while (--count
> 0);
454 * asd_init_chip -- initialize the chip
455 * @asd_ha: pointer to host adapter structure
457 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
458 * microcode and starts the sequencers. The caller has to explicitly
459 * enable HA interrupts with asd_enable_ints(asd_ha).
461 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
465 err
= asd_chip_hardrst(asd_ha
);
467 asd_printk("couldn't hard reset %s\n",
468 pci_name(asd_ha
->pcidev
));
472 asd_disable_ints(asd_ha
);
474 err
= asd_init_seqs(asd_ha
);
476 asd_printk("couldn't init seqs for %s\n",
477 pci_name(asd_ha
->pcidev
));
481 err
= asd_start_seqs(asd_ha
);
483 asd_printk("couldn't start seqs for %s\n",
484 pci_name(asd_ha
->pcidev
));
491 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
493 static int max_devs
= 0;
494 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
495 MODULE_PARM_DESC(max_devs
, "\n"
496 "\tMaximum number of SAS devices to support (not LUs).\n"
497 "\tDefault: 2176, Maximum: 65663.\n");
499 static int max_cmnds
= 0;
500 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
501 MODULE_PARM_DESC(max_cmnds
, "\n"
502 "\tMaximum number of commands queuable.\n"
503 "\tDefault: 512, Maximum: 66047.\n");
505 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
507 unsigned long dma_addr
= OCM_BASE_ADDR
;
510 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
511 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
512 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
514 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
515 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
518 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
520 dma_addr_t dma_handle
;
521 unsigned long dma_addr
;
525 asd_extend_devctx_ocm(asd_ha
);
527 asd_ha
->hw_prof
.ddb_ext
= NULL
;
528 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
529 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
533 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
535 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
536 if (!asd_ha
->hw_prof
.ddb_ext
) {
537 asd_printk("couldn't allocate memory for %d devices\n",
539 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
542 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
543 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
544 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
545 dma_handle
= (dma_addr_t
) dma_addr
;
546 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
547 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
549 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
551 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
556 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
558 dma_addr_t dma_handle
;
559 unsigned long dma_addr
;
563 asd_ha
->hw_prof
.scb_ext
= NULL
;
564 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
565 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
569 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
571 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
572 if (!asd_ha
->hw_prof
.scb_ext
) {
573 asd_printk("couldn't allocate memory for %d commands\n",
575 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
578 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
579 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
580 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
581 dma_handle
= (dma_addr_t
) dma_addr
;
582 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
583 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
585 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
587 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
593 * asd_init_ctxmem -- initialize context memory
594 * asd_ha: pointer to host adapter structure
596 * This function sets the maximum number of SCBs and
597 * DDBs which can be used by the sequencer. This is normally
598 * 512 and 128 respectively. If support for more SCBs or more DDBs
599 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
600 * initialized here to extend context memory to point to host memory,
601 * thus allowing unlimited support for SCBs and DDBs -- only limited
604 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
608 asd_get_max_scb_ddb(asd_ha
);
609 asd_extend_devctx(asd_ha
);
610 asd_extend_cmdctx(asd_ha
);
612 /* The kernel wants bitmaps to be unsigned long sized. */
613 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
614 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
615 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
616 if (!asd_ha
->hw_prof
.ddb_bitmap
)
618 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
623 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
628 err
= asd_init_sw(asd_ha
);
632 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
634 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
635 pci_name(asd_ha
->pcidev
));
638 err
= pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
641 asd_printk("couldn't disable split completion timer of %s\n",
642 pci_name(asd_ha
->pcidev
));
646 err
= asd_read_ocm(asd_ha
);
648 asd_printk("couldn't read ocm(%d)\n", err
);
649 /* While suspicios, it is not an error that we
650 * couldn't read the OCM. */
653 err
= asd_read_flash(asd_ha
);
655 asd_printk("couldn't read flash(%d)\n", err
);
656 /* While suspicios, it is not an error that we
657 * couldn't read FLASH memory.
661 asd_init_ctxmem(asd_ha
);
663 if (asd_get_user_sas_addr(asd_ha
)) {
664 asd_printk("No SAS Address provided for %s\n",
665 pci_name(asd_ha
->pcidev
));
670 asd_propagate_sas_addr(asd_ha
);
672 err
= asd_init_phys(asd_ha
);
674 asd_printk("couldn't initialize phys for %s\n",
675 pci_name(asd_ha
->pcidev
));
679 asd_init_ports(asd_ha
);
681 err
= asd_init_scbs(asd_ha
);
683 asd_printk("couldn't initialize scbs for %s\n",
684 pci_name(asd_ha
->pcidev
));
688 err
= asd_init_dl(asd_ha
);
690 asd_printk("couldn't initialize the done list:%d\n",
695 err
= asd_init_escbs(asd_ha
);
697 asd_printk("couldn't initialize escbs\n");
701 err
= asd_init_chip(asd_ha
);
703 asd_printk("couldn't init the chip\n");
710 /* ---------- Chip reset ---------- */
713 * asd_chip_reset -- reset the host adapter, etc
714 * @asd_ha: pointer to host adapter structure of interest
716 * Called from the ISR. Hard reset the chip. Let everything
717 * timeout. This should be no different than hot-unplugging the
718 * host adapter. Once everything times out we'll init the chip with
719 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
722 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
724 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
725 asd_chip_hardrst(asd_ha
);
728 /* ---------- Done List Routines ---------- */
730 static void asd_dl_tasklet_handler(unsigned long data
)
732 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
733 struct asd_seq_data
*seq
= &asd_ha
->seq
;
737 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
738 struct asd_ascb
*ascb
;
740 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
744 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
745 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
746 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
747 if (unlikely(!ascb
)) {
748 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
750 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
752 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
755 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
756 list_del_init(&ascb
->list
);
758 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
760 ascb
->tasklet_complete(ascb
, dl
);
763 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
765 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
769 /* ---------- Interrupt Service Routines ---------- */
772 * asd_process_donelist_isr -- schedule processing of done list entries
773 * @asd_ha: pointer to host adapter structure
775 static void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
777 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
781 * asd_com_sas_isr -- process device communication interrupt (COMINT)
782 * @asd_ha: pointer to host adapter structure
784 static void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
786 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
788 /* clear COMSTAT int */
789 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
791 if (comstat
& CSBUFPERR
) {
792 asd_printk("%s: command/status buffer dma parity error\n",
793 pci_name(asd_ha
->pcidev
));
794 } else if (comstat
& CSERR
) {
796 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
798 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
799 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
800 pci_name(asd_ha
->pcidev
),
802 asd_read_reg_dword(asd_ha
, CSDMAADR
),
803 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
804 asd_printk("CSBUFFER:\n");
805 for (i
= 0; i
< 8; i
++) {
806 asd_printk("%08x %08x %08x %08x\n",
807 asd_read_reg_dword(asd_ha
, CSBUFFER
),
808 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
809 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
810 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
812 asd_dump_seq_state(asd_ha
, 0);
813 } else if (comstat
& OVLYERR
) {
814 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
815 dmaerr
= (dmaerr
>> 8) & 0xFF;
816 asd_printk("%s: overlay dma error:0x%x\n",
817 pci_name(asd_ha
->pcidev
),
820 asd_chip_reset(asd_ha
);
823 static void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
825 static const char *halt_code
[256] = {
826 "UNEXPECTED_INTERRUPT0",
827 "UNEXPECTED_INTERRUPT1",
828 "UNEXPECTED_INTERRUPT2",
829 "UNEXPECTED_INTERRUPT3",
830 "UNEXPECTED_INTERRUPT4",
831 "UNEXPECTED_INTERRUPT5",
832 "UNEXPECTED_INTERRUPT6",
833 "UNEXPECTED_INTERRUPT7",
834 "UNEXPECTED_INTERRUPT8",
835 "UNEXPECTED_INTERRUPT9",
836 "UNEXPECTED_INTERRUPT10",
837 [11 ... 19] = "unknown[11,19]",
838 "NO_FREE_SCB_AVAILABLE",
839 "INVALID_SCB_OPCODE",
840 "INVALID_MBX_OPCODE",
843 "ATA_TAG_TABLE_FAULT",
844 "ATA_TAG_MASK_FAULT",
845 "BAD_LINK_QUEUE_STATE",
846 "DMA2CHIM_QUEUE_ERROR",
847 "EMPTY_SCB_LIST_FULL",
849 "IN_USE_SCB_ON_FREE_LIST",
850 "BAD_OPEN_WAIT_STATE",
851 "INVALID_STP_AFFILIATION",
854 "TOO_MANY_EMPTIES_NEEDED",
855 "EMPTY_REQ_QUEUE_ERROR",
856 "Q_MONIRTT_MGMT_ERROR",
857 "TARGET_MODE_FLOW_ERROR",
858 "DEVICE_QUEUE_NOT_FOUND",
859 "START_IRTT_TIMER_ERROR",
860 "ABORT_TASK_ILLEGAL_REQ",
861 [43 ... 255] = "unknown[43,255]"
864 if (dchstatus
& CSEQINT
) {
865 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
867 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
868 asd_printk("%s: CSEQ arp2int:0x%x\n",
869 pci_name(asd_ha
->pcidev
),
871 } else if (arp2int
& ARP2HALTC
)
872 asd_printk("%s: CSEQ halted: %s\n",
873 pci_name(asd_ha
->pcidev
),
874 halt_code
[(arp2int
>>16)&0xFF]);
876 asd_printk("%s: CARP2INT:0x%x\n",
877 pci_name(asd_ha
->pcidev
),
880 if (dchstatus
& LSEQINT_MASK
) {
882 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
884 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
885 u32 arp2int
= asd_read_reg_dword(asd_ha
,
887 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
889 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
890 pci_name(asd_ha
->pcidev
),
892 /* XXX we should only do lseq reset */
893 } else if (arp2int
& ARP2HALTC
)
894 asd_printk("%s: LSEQ%d halted: %s\n",
895 pci_name(asd_ha
->pcidev
),
896 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
898 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
899 pci_name(asd_ha
->pcidev
), lseq
,
903 asd_chip_reset(asd_ha
);
907 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
908 * @asd_ha: pointer to host adapter structure
910 static void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
912 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
914 if (dchstatus
& CFIFTOERR
) {
915 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
916 asd_chip_reset(asd_ha
);
918 asd_arp2_err(asd_ha
, dchstatus
);
922 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
923 * @asd_ha: pointer to host adapter structure
925 static void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
927 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
929 if (!(stat0r
& ASIERR
)) {
930 asd_printk("hmm, EXSI interrupted but no error?\n");
934 if (stat0r
& ASIFMTERR
) {
935 asd_printk("ASI SEEPROM format error for %s\n",
936 pci_name(asd_ha
->pcidev
));
937 } else if (stat0r
& ASISEECHKERR
) {
938 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
939 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
940 stat1r
& CHECKSUM_MASK
,
941 pci_name(asd_ha
->pcidev
));
943 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
945 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
946 ASD_DPRINTK("hmm, ASIERR?\n");
949 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
950 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
952 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
953 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
954 "master id: 0x%x, master err: 0x%x\n",
955 pci_name(asd_ha
->pcidev
),
957 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
958 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
959 (statr
& CPI2ASITARGERR_MASK
) >> 8,
960 (statr
& CPI2ASITARGMID_MASK
) >> 4,
961 (statr
& CPI2ASIMSTERR_MASK
));
964 asd_chip_reset(asd_ha
);
968 * asd_hst_pcix_isr -- process host interface interrupts
969 * @asd_ha: pointer to host adapter structure
971 * Asserted on PCIX errors: target abort, etc.
973 static void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
979 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
980 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
981 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
983 if (status
& PCI_STATUS_DETECTED_PARITY
)
984 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
985 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
986 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
987 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
988 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
989 else if (status
& PCI_STATUS_PARITY
)
990 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
991 else if (pcix_status
& RCV_SCE
) {
992 asd_printk("received split completion error for %s\n",
993 pci_name(asd_ha
->pcidev
));
994 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
995 /* XXX: Abort task? */
997 } else if (pcix_status
& UNEXP_SC
) {
998 asd_printk("unexpected split completion for %s\n",
999 pci_name(asd_ha
->pcidev
));
1000 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
1003 } else if (pcix_status
& SC_DISCARD
)
1004 asd_printk("split completion discarded for %s\n",
1005 pci_name(asd_ha
->pcidev
));
1006 else if (ecc_status
& UNCOR_ECCERR
)
1007 asd_printk("uncorrectable ECC error for %s\n",
1008 pci_name(asd_ha
->pcidev
));
1009 asd_chip_reset(asd_ha
);
1013 * asd_hw_isr -- host adapter interrupt service routine
1015 * @dev_id: pointer to host adapter structure
1017 * The ISR processes done list entries and level 3 error handling.
1019 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
)
1021 struct asd_ha_struct
*asd_ha
= dev_id
;
1022 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1027 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1028 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1030 if (chimint
& DLAVAIL
)
1031 asd_process_donelist_isr(asd_ha
);
1032 if (chimint
& COMINT
)
1033 asd_com_sas_isr(asd_ha
);
1034 if (chimint
& DEVINT
)
1035 asd_dch_sas_isr(asd_ha
);
1036 if (chimint
& INITERR
)
1037 asd_rbi_exsi_isr(asd_ha
);
1038 if (chimint
& HOSTERR
)
1039 asd_hst_pcix_isr(asd_ha
);
1044 /* ---------- SCB handling ---------- */
1046 static struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1049 extern struct kmem_cache
*asd_ascb_cache
;
1050 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1051 struct asd_ascb
*ascb
;
1052 unsigned long flags
;
1054 ascb
= kmem_cache_zalloc(asd_ascb_cache
, gfp_flags
);
1057 ascb
->dma_scb
.size
= sizeof(struct scb
);
1058 ascb
->dma_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
,
1060 &ascb
->dma_scb
.dma_handle
);
1061 if (!ascb
->dma_scb
.vaddr
) {
1062 kmem_cache_free(asd_ascb_cache
, ascb
);
1065 memset(ascb
->dma_scb
.vaddr
, 0, sizeof(struct scb
));
1066 asd_init_ascb(asd_ha
, ascb
);
1068 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1069 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1070 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1071 if (ascb
->tc_index
== -1)
1074 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1079 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1080 ascb
->dma_scb
.dma_handle
);
1081 kmem_cache_free(asd_ascb_cache
, ascb
);
1082 ASD_DPRINTK("no index for ascb\n");
1087 * asd_ascb_alloc_list -- allocate a list of aSCBs
1088 * @asd_ha: pointer to host adapter structure
1089 * @num: pointer to integer number of aSCBs
1090 * @gfp_flags: GFP_ flags.
1092 * This is the only function which is used to allocate aSCBs.
1093 * It can allocate one or many. If more than one, then they form
1094 * a linked list in two ways: by their list field of the ascb struct
1095 * and by the next_scb field of the scb_header.
1097 * Returns NULL if no memory was available, else pointer to a list
1098 * of ascbs. When this function returns, @num would be the number
1099 * of SCBs which were not able to be allocated, 0 if all requested
1100 * were able to be allocated.
1102 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1106 struct asd_ascb
*first
= NULL
;
1108 for ( ; *num
> 0; --*num
) {
1109 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1116 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1119 list_add_tail(&ascb
->list
, &first
->list
);
1120 last
->scb
->header
.next_scb
=
1121 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1129 * asd_swap_head_scb -- swap the head scb
1130 * @asd_ha: pointer to host adapter structure
1131 * @ascb: pointer to the head of an ascb list
1133 * The sequencer knows the DMA address of the next SCB to be DMAed to
1134 * the host adapter, from initialization or from the last list DMAed.
1135 * seq->next_scb keeps the address of this SCB. The sequencer will
1136 * DMA to the host adapter this list of SCBs. But the head (first
1137 * element) of this list is not known to the sequencer. Here we swap
1138 * the head of the list with the known SCB (memcpy()).
1139 * Only one memcpy() is required per list so it is in our interest
1140 * to keep the list of SCB as long as possible so that the ratio
1141 * of number of memcpy calls to the number of SCB DMA-ed is as small
1144 * LOCKING: called with the pending list lock held.
1146 static void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1147 struct asd_ascb
*ascb
)
1149 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1150 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1153 struct asd_dma_tok t
= ascb
->dma_scb
;
1155 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1156 ascb
->dma_scb
= seq
->next_scb
;
1157 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1159 last
->scb
->header
.next_scb
=
1160 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1164 * asd_start_timers -- (add and) start timers of SCBs
1165 * @list: pointer to struct list_head of the scbs
1166 * @to: timeout in jiffies
1168 * If an SCB in the @list has no timer function, assign the default
1169 * one, then start the timer of the SCB. This function is
1170 * intended to be called from asd_post_ascb_list(), just prior to
1171 * posting the SCBs to the sequencer.
1173 static void asd_start_scb_timers(struct list_head
*list
)
1175 struct asd_ascb
*ascb
;
1176 list_for_each_entry(ascb
, list
, list
) {
1177 if (!ascb
->uldd_timer
) {
1178 ascb
->timer
.function
= asd_ascb_timedout
;
1179 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1180 add_timer(&ascb
->timer
);
1186 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187 * @asd_ha: pointer to a host adapter structure
1188 * @ascb: pointer to the first aSCB in the list
1189 * @num: number of aSCBs in the list (to be posted)
1191 * See queueing comment in asd_post_escb_list().
1193 * Additional note on queuing: In order to minimize the ratio of memcpy()
1194 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1196 * Two cases are possible:
1197 * A) can_queue >= num,
1198 * B) can_queue < num.
1199 * Case A: we can send the whole batch at once. Increment "pending"
1200 * in the beginning of this function, when it is checked, in order to
1201 * eliminate races when this function is called by multiple processes.
1202 * Case B: should never happen.
1204 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1207 unsigned long flags
;
1211 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1212 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1213 if (can_queue
>= num
)
1214 asd_ha
->seq
.pending
+= num
;
1219 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1220 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1221 return -SAS_QUEUE_FULL
;
1224 asd_swap_head_scb(asd_ha
, ascb
);
1226 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1228 asd_start_scb_timers(&list
);
1230 asd_ha
->seq
.scbpro
+= num
;
1231 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1232 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1233 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1239 * asd_post_escb_list -- post a list of 1 or more empty scb
1240 * @asd_ha: pointer to a host adapter structure
1241 * @ascb: pointer to the first empty SCB in the list
1242 * @num: number of aSCBs in the list (to be posted)
1244 * This is essentially the same as asd_post_ascb_list, but we do not
1245 * increment pending, add those to the pending list or get indexes.
1246 * See asd_init_escbs() and asd_init_post_escbs().
1248 * Since sending a list of ascbs is a superset of sending a single
1249 * ascb, this function exists to generalize this. More specifically,
1250 * when sending a list of those, we want to do only a _single_
1251 * memcpy() at swap head, as opposed to for each ascb sent (in the
1252 * case of sending them one by one). That is, we want to minimize the
1253 * ratio of memcpy() operations to the number of ascbs sent. The same
1254 * logic applies to asd_post_ascb_list().
1256 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1259 unsigned long flags
;
1261 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1262 asd_swap_head_scb(asd_ha
, ascb
);
1263 asd_ha
->seq
.scbpro
+= num
;
1264 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1265 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1270 /* ---------- LED ---------- */
1273 * asd_turn_led -- turn on/off an LED
1274 * @asd_ha: pointer to host adapter structure
1275 * @phy_id: the PHY id whose LED we want to manupulate
1276 * @op: 1 to turn on, 0 to turn off
1278 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1280 if (phy_id
< ASD_MAX_PHYS
) {
1281 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1286 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1291 * asd_control_led -- enable/disable an LED on the board
1292 * @asd_ha: pointer to host adapter structure
1293 * @phy_id: integer, the phy id
1294 * @op: integer, 1 to enable, 0 to disable the LED
1296 * First we output enable the LED, then we set the source
1297 * to be an external module.
1299 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1301 if (phy_id
< ASD_MAX_PHYS
) {
1304 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1308 v
&= ~(1 << phy_id
);
1309 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1311 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1315 v
&= ~(1 << phy_id
);
1316 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1320 /* ---------- PHY enable ---------- */
1322 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1324 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1326 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1327 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1328 HOTPLUG_DELAY_TIMEOUT
);
1330 /* Get defaults from manuf. sector */
1331 /* XXX we need defaults for those in case MS is broken. */
1332 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1333 phy
->phy_desc
->phy_control_0
);
1334 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1335 phy
->phy_desc
->phy_control_1
);
1336 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1337 phy
->phy_desc
->phy_control_2
);
1338 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1339 phy
->phy_desc
->phy_control_3
);
1341 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1342 ASD_COMINIT_TIMEOUT
);
1344 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1345 phy
->id_frm_tok
->dma_handle
);
1347 asd_control_led(asd_ha
, phy_id
, 1);
1352 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1357 struct asd_ascb
*ascb
;
1358 struct asd_ascb
*ascb_list
;
1361 asd_printk("%s called with phy_mask of 0!?\n", __func__
);
1365 for_each_phy(phy_mask
, phy_m
, i
) {
1367 asd_enable_phy(asd_ha
, i
);
1371 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1373 asd_printk("no memory for control phy ascb list\n");
1379 for_each_phy(phy_mask
, phy_m
, i
) {
1380 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1381 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1383 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1384 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1386 asd_ascb_free_list(ascb_list
);