1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
29 unsigned int cycle_state
,
30 unsigned int max_packet
,
33 struct xhci_segment
*seg
;
37 seg
= kzalloc(sizeof *seg
, flags
);
41 seg
->trbs
= dma_pool_zalloc(xhci
->segment_pool
, flags
, &dma
);
48 seg
->bounce_buf
= kzalloc(max_packet
, flags
);
49 if (!seg
->bounce_buf
) {
50 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, dma
);
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state
== 0) {
57 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
58 seg
->trbs
[i
].link
.control
|= cpu_to_le32(TRB_CYCLE
);
66 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
69 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
72 kfree(seg
->bounce_buf
);
76 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
77 struct xhci_segment
*first
)
79 struct xhci_segment
*seg
;
82 while (seg
!= first
) {
83 struct xhci_segment
*next
= seg
->next
;
84 xhci_segment_free(xhci
, seg
);
87 xhci_segment_free(xhci
, first
);
91 * Make the prev segment point to the next segment.
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
98 struct xhci_segment
*next
, enum xhci_ring_type type
)
105 if (type
!= TYPE_EVENT
) {
106 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
107 cpu_to_le64(next
->dma
);
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
111 val
&= ~TRB_TYPE_BITMASK
;
112 val
|= TRB_TYPE(TRB_LINK
);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci
) ||
116 (type
== TYPE_ISOC
&&
117 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
119 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
127 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
128 struct xhci_segment
*first
, struct xhci_segment
*last
,
129 unsigned int num_segs
)
131 struct xhci_segment
*next
;
133 if (!ring
|| !first
|| !last
)
136 next
= ring
->enq_seg
->next
;
137 xhci_link_segments(xhci
, ring
->enq_seg
, first
, ring
->type
);
138 xhci_link_segments(xhci
, last
, next
, ring
->type
);
139 ring
->num_segs
+= num_segs
;
140 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
142 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
143 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
144 &= ~cpu_to_le32(LINK_TOGGLE
);
145 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
146 |= cpu_to_le32(LINK_TOGGLE
);
147 ring
->last_seg
= last
;
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
172 * Caveats for the radix tree:
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
182 static int xhci_insert_segment_mapping(struct radix_tree_root
*trb_address_map
,
183 struct xhci_ring
*ring
,
184 struct xhci_segment
*seg
,
190 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map
, key
))
195 ret
= radix_tree_maybe_preload(mem_flags
);
198 ret
= radix_tree_insert(trb_address_map
,
200 radix_tree_preload_end();
204 static void xhci_remove_segment_mapping(struct radix_tree_root
*trb_address_map
,
205 struct xhci_segment
*seg
)
209 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
210 if (radix_tree_lookup(trb_address_map
, key
))
211 radix_tree_delete(trb_address_map
, key
);
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root
*trb_address_map
,
216 struct xhci_ring
*ring
,
217 struct xhci_segment
*first_seg
,
218 struct xhci_segment
*last_seg
,
221 struct xhci_segment
*seg
;
222 struct xhci_segment
*failed_seg
;
225 if (WARN_ON_ONCE(trb_address_map
== NULL
))
230 ret
= xhci_insert_segment_mapping(trb_address_map
,
231 ring
, seg
, mem_flags
);
237 } while (seg
!= first_seg
);
245 xhci_remove_segment_mapping(trb_address_map
, seg
);
246 if (seg
== failed_seg
)
249 } while (seg
!= first_seg
);
254 static void xhci_remove_stream_mapping(struct xhci_ring
*ring
)
256 struct xhci_segment
*seg
;
258 if (WARN_ON_ONCE(ring
->trb_address_map
== NULL
))
261 seg
= ring
->first_seg
;
263 xhci_remove_segment_mapping(ring
->trb_address_map
, seg
);
265 } while (seg
!= ring
->first_seg
);
268 static int xhci_update_stream_mapping(struct xhci_ring
*ring
, gfp_t mem_flags
)
270 return xhci_update_stream_segment_mapping(ring
->trb_address_map
, ring
,
271 ring
->first_seg
, ring
->last_seg
, mem_flags
);
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
280 trace_xhci_ring_free(ring
);
282 if (ring
->first_seg
) {
283 if (ring
->type
== TYPE_STREAM
)
284 xhci_remove_stream_mapping(ring
);
285 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
291 static void xhci_initialize_ring_info(struct xhci_ring
*ring
,
292 unsigned int cycle_state
)
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring
->enqueue
= ring
->first_seg
->trbs
;
296 ring
->enq_seg
= ring
->first_seg
;
297 ring
->dequeue
= ring
->enqueue
;
298 ring
->deq_seg
= ring
->first_seg
;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
306 ring
->cycle_state
= cycle_state
;
309 * Each segment has a link TRB, and leave an extra TRB for SW
312 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
317 struct xhci_segment
**first
, struct xhci_segment
**last
,
318 unsigned int num_segs
, unsigned int cycle_state
,
319 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
321 struct xhci_segment
*prev
;
323 prev
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
329 while (num_segs
> 0) {
330 struct xhci_segment
*next
;
332 next
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
337 xhci_segment_free(xhci
, prev
);
342 xhci_link_segments(xhci
, prev
, next
, type
);
347 xhci_link_segments(xhci
, prev
, *first
, type
);
354 * Create a new ring with zero or more segments.
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
360 struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
361 unsigned int num_segs
, unsigned int cycle_state
,
362 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
364 struct xhci_ring
*ring
;
367 ring
= kzalloc(sizeof *(ring
), flags
);
371 ring
->num_segs
= num_segs
;
372 ring
->bounce_buf_len
= max_packet
;
373 INIT_LIST_HEAD(&ring
->td_list
);
378 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
379 &ring
->last_seg
, num_segs
, cycle_state
, type
,
384 /* Only event ring does not use link TRB */
385 if (type
!= TYPE_EVENT
) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
388 cpu_to_le32(LINK_TOGGLE
);
390 xhci_initialize_ring_info(ring
, cycle_state
);
391 trace_xhci_ring_alloc(ring
);
399 void xhci_free_endpoint_ring(struct xhci_hcd
*xhci
,
400 struct xhci_virt_device
*virt_dev
,
401 unsigned int ep_index
)
403 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
404 virt_dev
->eps
[ep_index
].ring
= NULL
;
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
411 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
412 unsigned int num_trbs
, gfp_t flags
)
414 struct xhci_segment
*first
;
415 struct xhci_segment
*last
;
416 unsigned int num_segs
;
417 unsigned int num_segs_needed
;
420 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
421 (TRBS_PER_SEGMENT
- 1);
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs
= ring
->num_segs
> num_segs_needed
?
425 ring
->num_segs
: num_segs_needed
;
427 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
428 num_segs
, ring
->cycle_state
, ring
->type
,
429 ring
->bounce_buf_len
, flags
);
433 if (ring
->type
== TYPE_STREAM
)
434 ret
= xhci_update_stream_segment_mapping(ring
->trb_address_map
,
435 ring
, first
, last
, flags
);
437 struct xhci_segment
*next
;
440 xhci_segment_free(xhci
, first
);
448 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
449 trace_xhci_ring_expansion(ring
);
450 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
451 "ring expansion succeed, now has %d segments",
457 struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
458 int type
, gfp_t flags
)
460 struct xhci_container_ctx
*ctx
;
462 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
465 ctx
= kzalloc(sizeof(*ctx
), flags
);
470 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
471 if (type
== XHCI_CTX_TYPE_INPUT
)
472 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
474 ctx
->bytes
= dma_pool_zalloc(xhci
->device_pool
, flags
, &ctx
->dma
);
482 void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
483 struct xhci_container_ctx
*ctx
)
487 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
491 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(
492 struct xhci_container_ctx
*ctx
)
494 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
497 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
500 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
501 struct xhci_container_ctx
*ctx
)
503 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
504 return (struct xhci_slot_ctx
*)ctx
->bytes
;
506 return (struct xhci_slot_ctx
*)
507 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
510 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
511 struct xhci_container_ctx
*ctx
,
512 unsigned int ep_index
)
514 /* increment ep index by offset of start of ep ctx array */
516 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
519 return (struct xhci_ep_ctx
*)
520 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
524 /***************** Streams structures manipulation *************************/
526 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
527 unsigned int num_stream_ctxs
,
528 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
530 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
531 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
533 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
534 dma_free_coherent(dev
, size
,
536 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
537 return dma_pool_free(xhci
->small_streams_pool
,
540 return dma_pool_free(xhci
->medium_streams_pool
,
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
554 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
555 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
558 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
559 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
561 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
562 return dma_alloc_coherent(dev
, size
,
564 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
565 return dma_pool_alloc(xhci
->small_streams_pool
,
568 return dma_pool_alloc(xhci
->medium_streams_pool
,
572 struct xhci_ring
*xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep
*ep
,
576 if (ep
->ep_state
& EP_HAS_STREAMS
)
577 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
578 address
>> TRB_SEGMENT_SHIFT
);
582 struct xhci_ring
*xhci_stream_id_to_ring(
583 struct xhci_virt_device
*dev
,
584 unsigned int ep_index
,
585 unsigned int stream_id
)
587 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
591 if (!ep
->stream_info
)
594 if (stream_id
> ep
->stream_info
->num_streams
)
596 return ep
->stream_info
->stream_rings
[stream_id
];
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
608 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
609 unsigned int num_stream_ctxs
,
610 unsigned int num_streams
,
611 unsigned int max_packet
, gfp_t mem_flags
)
613 struct xhci_stream_info
*stream_info
;
615 struct xhci_ring
*cur_ring
;
619 xhci_dbg(xhci
, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams
, num_stream_ctxs
);
622 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
623 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
626 xhci
->cmd_ring_reserved_trbs
++;
628 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
632 stream_info
->num_streams
= num_streams
;
633 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info
->stream_rings
= kzalloc(
637 sizeof(struct xhci_ring
*)*num_streams
,
639 if (!stream_info
->stream_rings
)
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
644 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
646 if (!stream_info
->stream_ctx_array
)
648 memset(stream_info
->stream_ctx_array
, 0,
649 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
651 /* Allocate everything needed to free the stream rings later */
652 stream_info
->free_streams_command
=
653 xhci_alloc_command_with_ctx(xhci
, true, mem_flags
);
654 if (!stream_info
->free_streams_command
)
657 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
664 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
665 stream_info
->stream_rings
[cur_stream
] =
666 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, max_packet
,
668 cur_ring
= stream_info
->stream_rings
[cur_stream
];
671 cur_ring
->stream_id
= cur_stream
;
672 cur_ring
->trb_address_map
= &stream_info
->trb_address_map
;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr
= cur_ring
->first_seg
->dma
|
675 SCT_FOR_CTX(SCT_PRI_TR
) |
676 cur_ring
->cycle_state
;
677 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
679 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream
, (unsigned long long) addr
);
682 ret
= xhci_update_stream_mapping(cur_ring
, mem_flags
);
684 xhci_ring_free(xhci
, cur_ring
);
685 stream_info
->stream_rings
[cur_stream
] = NULL
;
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
699 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
700 cur_ring
= stream_info
->stream_rings
[cur_stream
];
702 xhci_ring_free(xhci
, cur_ring
);
703 stream_info
->stream_rings
[cur_stream
] = NULL
;
706 xhci_free_command(xhci
, stream_info
->free_streams_command
);
708 kfree(stream_info
->stream_rings
);
712 xhci
->cmd_ring_reserved_trbs
--;
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
720 struct xhci_ep_ctx
*ep_ctx
,
721 struct xhci_stream_info
*stream_info
)
723 u32 max_primary_streams
;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
728 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
729 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams
+ 1));
732 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
733 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
735 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx
*ep_ctx
,
744 struct xhci_virt_ep
*ep
)
747 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
748 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
749 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
752 /* Frees all stream contexts associated with the endpoint,
754 * Caller should fix the endpoint context streams fields.
756 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
757 struct xhci_stream_info
*stream_info
)
760 struct xhci_ring
*cur_ring
;
765 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
767 cur_ring
= stream_info
->stream_rings
[cur_stream
];
769 xhci_ring_free(xhci
, cur_ring
);
770 stream_info
->stream_rings
[cur_stream
] = NULL
;
773 xhci_free_command(xhci
, stream_info
->free_streams_command
);
774 xhci
->cmd_ring_reserved_trbs
--;
775 if (stream_info
->stream_ctx_array
)
776 xhci_free_stream_ctx(xhci
,
777 stream_info
->num_stream_ctxs
,
778 stream_info
->stream_ctx_array
,
779 stream_info
->ctx_array_dma
);
781 kfree(stream_info
->stream_rings
);
786 /***************** Device context manipulation *************************/
788 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
789 struct xhci_virt_ep
*ep
)
791 timer_setup(&ep
->stop_cmd_timer
, xhci_stop_endpoint_command_watchdog
,
796 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
797 struct xhci_virt_device
*virt_dev
,
800 struct list_head
*tt_list_head
;
801 struct xhci_tt_bw_info
*tt_info
, *next
;
802 bool slot_found
= false;
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
807 if (virt_dev
->real_port
== 0 ||
808 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
809 xhci_dbg(xhci
, "Bad real port.\n");
813 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
814 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info
->slot_id
== slot_id
) {
818 list_del(&tt_info
->tt_list
);
820 } else if (slot_found
) {
826 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
827 struct xhci_virt_device
*virt_dev
,
828 struct usb_device
*hdev
,
829 struct usb_tt
*tt
, gfp_t mem_flags
)
831 struct xhci_tt_bw_info
*tt_info
;
832 unsigned int num_ports
;
838 num_ports
= hdev
->maxchild
;
840 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
841 struct xhci_interval_bw_table
*bw_table
;
843 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
846 INIT_LIST_HEAD(&tt_info
->tt_list
);
847 list_add(&tt_info
->tt_list
,
848 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
849 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
851 tt_info
->ttport
= i
+1;
852 bw_table
= &tt_info
->bw_table
;
853 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
854 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
859 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
869 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
871 struct xhci_virt_device
*dev
;
873 int old_active_eps
= 0;
875 /* Slot ID 0 is reserved */
876 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
879 dev
= xhci
->devs
[slot_id
];
881 trace_xhci_free_virt_device(dev
);
883 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
888 old_active_eps
= dev
->tt_info
->active_eps
;
890 for (i
= 0; i
< 31; i
++) {
891 if (dev
->eps
[i
].ring
)
892 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
893 if (dev
->eps
[i
].stream_info
)
894 xhci_free_stream_info(xhci
,
895 dev
->eps
[i
].stream_info
);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
901 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
902 xhci_warn(xhci
, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci
, dev
, slot_id
);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
912 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
914 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
916 kfree(xhci
->devs
[slot_id
]);
917 xhci
->devs
[slot_id
] = NULL
;
921 * Free a virt_device structure.
922 * If the virt_device added a tt_info (a hub) and has children pointing to
923 * that tt_info, then free the child first. Recursive.
924 * We can't rely on udev at this point to find child-parent relationships.
926 void xhci_free_virt_devices_depth_first(struct xhci_hcd
*xhci
, int slot_id
)
928 struct xhci_virt_device
*vdev
;
929 struct list_head
*tt_list_head
;
930 struct xhci_tt_bw_info
*tt_info
, *next
;
933 vdev
= xhci
->devs
[slot_id
];
937 if (vdev
->real_port
== 0 ||
938 vdev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
939 xhci_dbg(xhci
, "Bad vdev->real_port.\n");
943 tt_list_head
= &(xhci
->rh_bw
[vdev
->real_port
- 1].tts
);
944 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
945 /* is this a hub device that added a tt_info to the tts list */
946 if (tt_info
->slot_id
== slot_id
) {
947 /* are any devices using this tt_info? */
948 for (i
= 1; i
< HCS_MAX_SLOTS(xhci
->hcs_params1
); i
++) {
949 vdev
= xhci
->devs
[i
];
950 if (vdev
&& (vdev
->tt_info
== tt_info
))
951 xhci_free_virt_devices_depth_first(
957 /* we are now at a leaf device */
958 xhci_debugfs_remove_slot(xhci
, slot_id
);
959 xhci_free_virt_device(xhci
, slot_id
);
962 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
963 struct usb_device
*udev
, gfp_t flags
)
965 struct xhci_virt_device
*dev
;
968 /* Slot ID 0 is reserved */
969 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
970 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
974 dev
= kzalloc(sizeof(*dev
), flags
);
978 /* Allocate the (output) device context that will be used in the HC. */
979 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
983 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
984 (unsigned long long)dev
->out_ctx
->dma
);
986 /* Allocate the (input) device context for address device command */
987 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
991 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
992 (unsigned long long)dev
->in_ctx
->dma
);
994 /* Initialize the cancellation list and watchdog timers for each ep */
995 for (i
= 0; i
< 31; i
++) {
996 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
997 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
998 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
1001 /* Allocate endpoint 0 ring */
1002 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, 0, flags
);
1003 if (!dev
->eps
[0].ring
)
1008 /* Point to output device context in dcbaa. */
1009 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
1010 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1012 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
1013 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
1015 trace_xhci_alloc_virt_device(dev
);
1017 xhci
->devs
[slot_id
] = dev
;
1023 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
1025 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
1031 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
1032 struct usb_device
*udev
)
1034 struct xhci_virt_device
*virt_dev
;
1035 struct xhci_ep_ctx
*ep0_ctx
;
1036 struct xhci_ring
*ep_ring
;
1038 virt_dev
= xhci
->devs
[udev
->slot_id
];
1039 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
1040 ep_ring
= virt_dev
->eps
[0].ring
;
1042 * FIXME we don't keep track of the dequeue pointer very well after a
1043 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1044 * host to our enqueue pointer. This should only be called after a
1045 * configured device has reset, so all control transfers should have
1046 * been completed or cancelled before the reset.
1048 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
1050 | ep_ring
->cycle_state
);
1054 * The xHCI roothub may have ports of differing speeds in any order in the port
1055 * status registers. xhci->port_array provides an array of the port speed for
1056 * each offset into the port status registers.
1058 * The xHCI hardware wants to know the roothub port number that the USB device
1059 * is attached to (or the roothub port its ancestor hub is attached to). All we
1060 * know is the index of that port under either the USB 2.0 or the USB 3.0
1061 * roothub, but that doesn't give us the real index into the HW port status
1062 * registers. Call xhci_find_raw_port_number() to get real index.
1064 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
1065 struct usb_device
*udev
)
1067 struct usb_device
*top_dev
;
1068 struct usb_hcd
*hcd
;
1070 if (udev
->speed
>= USB_SPEED_SUPER
)
1071 hcd
= xhci
->shared_hcd
;
1073 hcd
= xhci
->main_hcd
;
1075 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1076 top_dev
= top_dev
->parent
)
1077 /* Found device below root hub */;
1079 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
1082 /* Setup an xHCI virtual device for a Set Address command */
1083 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
1085 struct xhci_virt_device
*dev
;
1086 struct xhci_ep_ctx
*ep0_ctx
;
1087 struct xhci_slot_ctx
*slot_ctx
;
1090 struct usb_device
*top_dev
;
1092 dev
= xhci
->devs
[udev
->slot_id
];
1093 /* Slot ID 0 is reserved */
1094 if (udev
->slot_id
== 0 || !dev
) {
1095 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1099 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1100 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1102 /* 3) Only the control endpoint is valid - one endpoint context */
1103 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1104 switch (udev
->speed
) {
1105 case USB_SPEED_SUPER_PLUS
:
1106 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SSP
);
1107 max_packets
= MAX_PACKET(512);
1109 case USB_SPEED_SUPER
:
1110 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1111 max_packets
= MAX_PACKET(512);
1113 case USB_SPEED_HIGH
:
1114 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1115 max_packets
= MAX_PACKET(64);
1117 /* USB core guesses at a 64-byte max packet first for FS devices */
1118 case USB_SPEED_FULL
:
1119 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1120 max_packets
= MAX_PACKET(64);
1123 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1124 max_packets
= MAX_PACKET(8);
1126 case USB_SPEED_WIRELESS
:
1127 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1131 /* Speed was set earlier, this shouldn't happen. */
1134 /* Find the root hub port this device is under */
1135 port_num
= xhci_find_real_port_number(xhci
, udev
);
1138 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1139 /* Set the port number in the virtual_device to the faked port number */
1140 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1141 top_dev
= top_dev
->parent
)
1142 /* Found device below root hub */;
1143 dev
->fake_port
= top_dev
->portnum
;
1144 dev
->real_port
= port_num
;
1145 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1146 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1148 /* Find the right bandwidth table that this device will be a part of.
1149 * If this is a full speed device attached directly to a root port (or a
1150 * decendent of one), it counts as a primary bandwidth domain, not a
1151 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1152 * will never be created for the HS root hub.
1154 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1155 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1157 struct xhci_root_port_bw_info
*rh_bw
;
1158 struct xhci_tt_bw_info
*tt_bw
;
1160 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1161 /* Find the right TT. */
1162 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1163 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1166 if (!dev
->udev
->tt
->multi
||
1168 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1169 dev
->bw_table
= &tt_bw
->bw_table
;
1170 dev
->tt_info
= tt_bw
;
1175 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1178 /* Is this a LS/FS device under an external HS hub? */
1179 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1180 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1181 (udev
->ttport
<< 8));
1182 if (udev
->tt
->multi
)
1183 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1185 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1186 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1188 /* Step 4 - ring already allocated */
1190 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1192 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1193 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1197 dev
->eps
[0].ring
->cycle_state
);
1199 trace_xhci_setup_addressable_virt_device(dev
);
1201 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1207 * Convert interval expressed as 2^(bInterval - 1) == interval into
1208 * straight exponent value 2^n == interval.
1211 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1212 struct usb_host_endpoint
*ep
)
1214 unsigned int interval
;
1216 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1217 if (interval
!= ep
->desc
.bInterval
- 1)
1218 dev_warn(&udev
->dev
,
1219 "ep %#x - rounding interval to %d %sframes\n",
1220 ep
->desc
.bEndpointAddress
,
1222 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1224 if (udev
->speed
== USB_SPEED_FULL
) {
1226 * Full speed isoc endpoints specify interval in frames,
1227 * not microframes. We are using microframes everywhere,
1228 * so adjust accordingly.
1230 interval
+= 3; /* 1 frame = 2^3 uframes */
1237 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1238 * microframes, rounded down to nearest power of 2.
1240 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1241 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1242 unsigned int min_exponent
, unsigned int max_exponent
)
1244 unsigned int interval
;
1246 interval
= fls(desc_interval
) - 1;
1247 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1248 if ((1 << interval
) != desc_interval
)
1250 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1251 ep
->desc
.bEndpointAddress
,
1258 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1259 struct usb_host_endpoint
*ep
)
1261 if (ep
->desc
.bInterval
== 0)
1263 return xhci_microframes_to_exponent(udev
, ep
,
1264 ep
->desc
.bInterval
, 0, 15);
1268 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1269 struct usb_host_endpoint
*ep
)
1271 return xhci_microframes_to_exponent(udev
, ep
,
1272 ep
->desc
.bInterval
* 8, 3, 10);
1275 /* Return the polling or NAK interval.
1277 * The polling interval is expressed in "microframes". If xHCI's Interval field
1278 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1284 struct usb_host_endpoint
*ep
)
1286 unsigned int interval
= 0;
1288 switch (udev
->speed
) {
1289 case USB_SPEED_HIGH
:
1291 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1292 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1293 interval
= xhci_parse_microframe_interval(udev
, ep
);
1296 /* Fall through - SS and HS isoc/int have same decoding */
1298 case USB_SPEED_SUPER_PLUS
:
1299 case USB_SPEED_SUPER
:
1300 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1301 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1302 interval
= xhci_parse_exponent_interval(udev
, ep
);
1306 case USB_SPEED_FULL
:
1307 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1308 interval
= xhci_parse_exponent_interval(udev
, ep
);
1312 * Fall through for interrupt endpoint interval decoding
1313 * since it uses the same rules as low speed interrupt
1319 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1320 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1322 interval
= xhci_parse_frame_interval(udev
, ep
);
1332 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1337 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1338 struct usb_host_endpoint
*ep
)
1340 if (udev
->speed
< USB_SPEED_SUPER
||
1341 !usb_endpoint_xfer_isoc(&ep
->desc
))
1343 return ep
->ss_ep_comp
.bmAttributes
;
1346 static u32
xhci_get_endpoint_max_burst(struct usb_device
*udev
,
1347 struct usb_host_endpoint
*ep
)
1349 /* Super speed and Plus have max burst in ep companion desc */
1350 if (udev
->speed
>= USB_SPEED_SUPER
)
1351 return ep
->ss_ep_comp
.bMaxBurst
;
1353 if (udev
->speed
== USB_SPEED_HIGH
&&
1354 (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1355 usb_endpoint_xfer_int(&ep
->desc
)))
1356 return usb_endpoint_maxp_mult(&ep
->desc
) - 1;
1361 static u32
xhci_get_endpoint_type(struct usb_host_endpoint
*ep
)
1365 in
= usb_endpoint_dir_in(&ep
->desc
);
1367 switch (usb_endpoint_type(&ep
->desc
)) {
1368 case USB_ENDPOINT_XFER_CONTROL
:
1370 case USB_ENDPOINT_XFER_BULK
:
1371 return in
? BULK_IN_EP
: BULK_OUT_EP
;
1372 case USB_ENDPOINT_XFER_ISOC
:
1373 return in
? ISOC_IN_EP
: ISOC_OUT_EP
;
1374 case USB_ENDPOINT_XFER_INT
:
1375 return in
? INT_IN_EP
: INT_OUT_EP
;
1380 /* Return the maximum endpoint service interval time (ESIT) payload.
1381 * Basically, this is the maxpacket size, multiplied by the burst size
1384 static u32
xhci_get_max_esit_payload(struct usb_device
*udev
,
1385 struct usb_host_endpoint
*ep
)
1390 /* Only applies for interrupt or isochronous endpoints */
1391 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1392 usb_endpoint_xfer_bulk(&ep
->desc
))
1395 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1396 if ((udev
->speed
>= USB_SPEED_SUPER_PLUS
) &&
1397 USB_SS_SSP_ISOC_COMP(ep
->ss_ep_comp
.bmAttributes
))
1398 return le32_to_cpu(ep
->ssp_isoc_ep_comp
.dwBytesPerInterval
);
1399 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1400 else if (udev
->speed
>= USB_SPEED_SUPER
)
1401 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1403 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1404 max_burst
= usb_endpoint_maxp_mult(&ep
->desc
);
1405 /* A 0 in max burst means 1 transfer per ESIT */
1406 return max_packet
* max_burst
;
1409 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1410 * Drivers will have to call usb_alloc_streams() to do that.
1412 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1413 struct xhci_virt_device
*virt_dev
,
1414 struct usb_device
*udev
,
1415 struct usb_host_endpoint
*ep
,
1418 unsigned int ep_index
;
1419 struct xhci_ep_ctx
*ep_ctx
;
1420 struct xhci_ring
*ep_ring
;
1421 unsigned int max_packet
;
1422 enum xhci_ring_type ring_type
;
1423 u32 max_esit_payload
;
1425 unsigned int max_burst
;
1426 unsigned int interval
;
1428 unsigned int avg_trb_len
;
1429 unsigned int err_count
= 0;
1431 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1432 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1434 endpoint_type
= xhci_get_endpoint_type(ep
);
1438 ring_type
= usb_endpoint_type(&ep
->desc
);
1441 * Get values to fill the endpoint context, mostly from ep descriptor.
1442 * The average TRB buffer lengt for bulk endpoints is unclear as we
1443 * have no clue on scatter gather list entry size. For Isoc and Int,
1444 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1446 max_esit_payload
= xhci_get_max_esit_payload(udev
, ep
);
1447 interval
= xhci_get_endpoint_interval(udev
, ep
);
1449 /* Periodic endpoint bInterval limit quirk */
1450 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1451 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1452 if ((xhci
->quirks
& XHCI_LIMIT_ENDPOINT_INTERVAL_7
) &&
1453 udev
->speed
>= USB_SPEED_HIGH
&&
1459 mult
= xhci_get_endpoint_mult(udev
, ep
);
1460 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1461 max_burst
= xhci_get_endpoint_max_burst(udev
, ep
);
1462 avg_trb_len
= max_esit_payload
;
1464 /* FIXME dig Mult and streams info out of ep companion desc */
1466 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1467 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1469 /* Some devices get this wrong */
1470 if (usb_endpoint_xfer_bulk(&ep
->desc
) && udev
->speed
== USB_SPEED_HIGH
)
1472 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1473 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
>= 0x100)
1475 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1476 if ((xhci
->hci_version
> 0x100) && HCC2_LEC(xhci
->hcc_params2
))
1479 /* Set up the endpoint ring */
1480 virt_dev
->eps
[ep_index
].new_ring
=
1481 xhci_ring_alloc(xhci
, 2, 1, ring_type
, max_packet
, mem_flags
);
1482 if (!virt_dev
->eps
[ep_index
].new_ring
)
1485 virt_dev
->eps
[ep_index
].skip
= false;
1486 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1488 /* Fill the endpoint context */
1489 ep_ctx
->ep_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload
) |
1490 EP_INTERVAL(interval
) |
1492 ep_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(endpoint_type
) |
1493 MAX_PACKET(max_packet
) |
1494 MAX_BURST(max_burst
) |
1495 ERROR_COUNT(err_count
));
1496 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
|
1497 ep_ring
->cycle_state
);
1499 ep_ctx
->tx_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload
) |
1500 EP_AVG_TRB_LENGTH(avg_trb_len
));
1505 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1506 struct xhci_virt_device
*virt_dev
,
1507 struct usb_host_endpoint
*ep
)
1509 unsigned int ep_index
;
1510 struct xhci_ep_ctx
*ep_ctx
;
1512 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1513 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1515 ep_ctx
->ep_info
= 0;
1516 ep_ctx
->ep_info2
= 0;
1518 ep_ctx
->tx_info
= 0;
1519 /* Don't free the endpoint ring until the set interface or configuration
1524 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1526 bw_info
->ep_interval
= 0;
1528 bw_info
->num_packets
= 0;
1529 bw_info
->max_packet_size
= 0;
1531 bw_info
->max_esit_payload
= 0;
1534 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1535 struct xhci_container_ctx
*in_ctx
,
1536 struct xhci_input_control_ctx
*ctrl_ctx
,
1537 struct xhci_virt_device
*virt_dev
)
1539 struct xhci_bw_info
*bw_info
;
1540 struct xhci_ep_ctx
*ep_ctx
;
1541 unsigned int ep_type
;
1544 for (i
= 1; i
< 31; i
++) {
1545 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1547 /* We can't tell what endpoint type is being dropped, but
1548 * unconditionally clearing the bandwidth info for non-periodic
1549 * endpoints should be harmless because the info will never be
1550 * set in the first place.
1552 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1553 /* Dropped endpoint */
1554 xhci_clear_endpoint_bw_info(bw_info
);
1558 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1559 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1560 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1562 /* Ignore non-periodic endpoints */
1563 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1564 ep_type
!= ISOC_IN_EP
&&
1565 ep_type
!= INT_IN_EP
)
1568 /* Added or changed endpoint */
1569 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1570 le32_to_cpu(ep_ctx
->ep_info
));
1571 /* Number of packets and mult are zero-based in the
1572 * input context, but we want one-based for the
1575 bw_info
->mult
= CTX_TO_EP_MULT(
1576 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1577 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1578 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1579 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1580 le32_to_cpu(ep_ctx
->ep_info2
));
1581 bw_info
->type
= ep_type
;
1582 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1583 le32_to_cpu(ep_ctx
->tx_info
));
1588 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1589 * Useful when you want to change one particular aspect of the endpoint and then
1590 * issue a configure endpoint command.
1592 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1593 struct xhci_container_ctx
*in_ctx
,
1594 struct xhci_container_ctx
*out_ctx
,
1595 unsigned int ep_index
)
1597 struct xhci_ep_ctx
*out_ep_ctx
;
1598 struct xhci_ep_ctx
*in_ep_ctx
;
1600 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1601 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1603 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1604 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1605 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1606 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1609 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1610 * Useful when you want to change one particular aspect of the endpoint and then
1611 * issue a configure endpoint command. Only the context entries field matters,
1612 * but we'll copy the whole thing anyway.
1614 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1615 struct xhci_container_ctx
*in_ctx
,
1616 struct xhci_container_ctx
*out_ctx
)
1618 struct xhci_slot_ctx
*in_slot_ctx
;
1619 struct xhci_slot_ctx
*out_slot_ctx
;
1621 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1622 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1624 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1625 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1626 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1627 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1630 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1631 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1634 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1635 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1637 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1638 "Allocating %d scratchpad buffers", num_sp
);
1643 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1644 if (!xhci
->scratchpad
)
1647 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1648 num_sp
* sizeof(u64
),
1649 &xhci
->scratchpad
->sp_dma
, flags
);
1650 if (!xhci
->scratchpad
->sp_array
)
1653 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1654 if (!xhci
->scratchpad
->sp_buffers
)
1657 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1658 for (i
= 0; i
< num_sp
; i
++) {
1660 void *buf
= dma_zalloc_coherent(dev
, xhci
->page_size
, &dma
,
1665 xhci
->scratchpad
->sp_array
[i
] = dma
;
1666 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1672 for (i
= i
- 1; i
>= 0; i
--) {
1673 dma_free_coherent(dev
, xhci
->page_size
,
1674 xhci
->scratchpad
->sp_buffers
[i
],
1675 xhci
->scratchpad
->sp_array
[i
]);
1678 kfree(xhci
->scratchpad
->sp_buffers
);
1681 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1682 xhci
->scratchpad
->sp_array
,
1683 xhci
->scratchpad
->sp_dma
);
1686 kfree(xhci
->scratchpad
);
1687 xhci
->scratchpad
= NULL
;
1693 static void scratchpad_free(struct xhci_hcd
*xhci
)
1697 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1699 if (!xhci
->scratchpad
)
1702 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1704 for (i
= 0; i
< num_sp
; i
++) {
1705 dma_free_coherent(dev
, xhci
->page_size
,
1706 xhci
->scratchpad
->sp_buffers
[i
],
1707 xhci
->scratchpad
->sp_array
[i
]);
1709 kfree(xhci
->scratchpad
->sp_buffers
);
1710 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1711 xhci
->scratchpad
->sp_array
,
1712 xhci
->scratchpad
->sp_dma
);
1713 kfree(xhci
->scratchpad
);
1714 xhci
->scratchpad
= NULL
;
1717 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1718 bool allocate_completion
, gfp_t mem_flags
)
1720 struct xhci_command
*command
;
1722 command
= kzalloc(sizeof(*command
), mem_flags
);
1726 if (allocate_completion
) {
1727 command
->completion
=
1728 kzalloc(sizeof(struct completion
), mem_flags
);
1729 if (!command
->completion
) {
1733 init_completion(command
->completion
);
1736 command
->status
= 0;
1737 INIT_LIST_HEAD(&command
->cmd_list
);
1741 struct xhci_command
*xhci_alloc_command_with_ctx(struct xhci_hcd
*xhci
,
1742 bool allocate_completion
, gfp_t mem_flags
)
1744 struct xhci_command
*command
;
1746 command
= xhci_alloc_command(xhci
, allocate_completion
, mem_flags
);
1750 command
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1752 if (!command
->in_ctx
) {
1753 kfree(command
->completion
);
1760 void xhci_urb_free_priv(struct urb_priv
*urb_priv
)
1765 void xhci_free_command(struct xhci_hcd
*xhci
,
1766 struct xhci_command
*command
)
1768 xhci_free_container_ctx(xhci
,
1770 kfree(command
->completion
);
1774 int xhci_alloc_erst(struct xhci_hcd
*xhci
,
1775 struct xhci_ring
*evt_ring
,
1776 struct xhci_erst
*erst
,
1781 struct xhci_segment
*seg
;
1782 struct xhci_erst_entry
*entry
;
1784 size
= sizeof(struct xhci_erst_entry
) * evt_ring
->num_segs
;
1785 erst
->entries
= dma_zalloc_coherent(xhci_to_hcd(xhci
)->self
.sysdev
,
1786 size
, &erst
->erst_dma_addr
, flags
);
1790 erst
->num_entries
= evt_ring
->num_segs
;
1792 seg
= evt_ring
->first_seg
;
1793 for (val
= 0; val
< evt_ring
->num_segs
; val
++) {
1794 entry
= &erst
->entries
[val
];
1795 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
1796 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
1804 void xhci_free_erst(struct xhci_hcd
*xhci
, struct xhci_erst
*erst
)
1807 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1809 size
= sizeof(struct xhci_erst_entry
) * (erst
->num_entries
);
1811 dma_free_coherent(dev
, size
,
1813 erst
->erst_dma_addr
);
1814 erst
->entries
= NULL
;
1817 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1819 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1820 int i
, j
, num_ports
;
1822 cancel_delayed_work_sync(&xhci
->cmd_timer
);
1824 xhci_free_erst(xhci
, &xhci
->erst
);
1826 if (xhci
->event_ring
)
1827 xhci_ring_free(xhci
, xhci
->event_ring
);
1828 xhci
->event_ring
= NULL
;
1829 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1831 if (xhci
->lpm_command
)
1832 xhci_free_command(xhci
, xhci
->lpm_command
);
1833 xhci
->lpm_command
= NULL
;
1835 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1836 xhci
->cmd_ring
= NULL
;
1837 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1838 xhci_cleanup_command_queue(xhci
);
1840 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1841 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1842 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1843 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1844 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1845 while (!list_empty(ep
))
1846 list_del_init(ep
->next
);
1850 for (i
= HCS_MAX_SLOTS(xhci
->hcs_params1
); i
> 0; i
--)
1851 xhci_free_virt_devices_depth_first(xhci
, i
);
1853 dma_pool_destroy(xhci
->segment_pool
);
1854 xhci
->segment_pool
= NULL
;
1855 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1857 dma_pool_destroy(xhci
->device_pool
);
1858 xhci
->device_pool
= NULL
;
1859 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1861 dma_pool_destroy(xhci
->small_streams_pool
);
1862 xhci
->small_streams_pool
= NULL
;
1863 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1864 "Freed small stream array pool");
1866 dma_pool_destroy(xhci
->medium_streams_pool
);
1867 xhci
->medium_streams_pool
= NULL
;
1868 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1869 "Freed medium stream array pool");
1872 dma_free_coherent(dev
, sizeof(*xhci
->dcbaa
),
1873 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1876 scratchpad_free(xhci
);
1881 for (i
= 0; i
< num_ports
; i
++) {
1882 struct xhci_tt_bw_info
*tt
, *n
;
1883 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1884 list_del(&tt
->tt_list
);
1890 xhci
->cmd_ring_reserved_trbs
= 0;
1891 xhci
->num_usb2_ports
= 0;
1892 xhci
->num_usb3_ports
= 0;
1893 xhci
->num_active_eps
= 0;
1894 kfree(xhci
->usb2_ports
);
1895 kfree(xhci
->usb3_ports
);
1896 kfree(xhci
->port_array
);
1898 kfree(xhci
->ext_caps
);
1900 xhci
->usb2_ports
= NULL
;
1901 xhci
->usb3_ports
= NULL
;
1902 xhci
->port_array
= NULL
;
1904 xhci
->ext_caps
= NULL
;
1906 xhci
->page_size
= 0;
1907 xhci
->page_shift
= 0;
1908 xhci
->bus_state
[0].bus_suspended
= 0;
1909 xhci
->bus_state
[1].bus_suspended
= 0;
1912 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1913 struct xhci_segment
*input_seg
,
1914 union xhci_trb
*start_trb
,
1915 union xhci_trb
*end_trb
,
1916 dma_addr_t input_dma
,
1917 struct xhci_segment
*result_seg
,
1918 char *test_name
, int test_number
)
1920 unsigned long long start_dma
;
1921 unsigned long long end_dma
;
1922 struct xhci_segment
*seg
;
1924 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1925 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1927 seg
= trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
, false);
1928 if (seg
!= result_seg
) {
1929 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1930 test_name
, test_number
);
1931 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1932 "input DMA 0x%llx\n",
1934 (unsigned long long) input_dma
);
1935 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1936 "ending TRB %p (0x%llx DMA)\n",
1937 start_trb
, start_dma
,
1939 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1941 trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
,
1948 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1949 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
)
1952 dma_addr_t input_dma
;
1953 struct xhci_segment
*result_seg
;
1954 } simple_test_vector
[] = {
1955 /* A zeroed DMA field should fail */
1957 /* One TRB before the ring start should fail */
1958 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1959 /* One byte before the ring start should fail */
1960 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1961 /* Starting TRB should succeed */
1962 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1963 /* Ending TRB should succeed */
1964 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1965 xhci
->event_ring
->first_seg
},
1966 /* One byte after the ring end should fail */
1967 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1968 /* One TRB after the ring end should fail */
1969 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1970 /* An address of all ones should fail */
1971 { (dma_addr_t
) (~0), NULL
},
1974 struct xhci_segment
*input_seg
;
1975 union xhci_trb
*start_trb
;
1976 union xhci_trb
*end_trb
;
1977 dma_addr_t input_dma
;
1978 struct xhci_segment
*result_seg
;
1979 } complex_test_vector
[] = {
1980 /* Test feeding a valid DMA address from a different ring */
1981 { .input_seg
= xhci
->event_ring
->first_seg
,
1982 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1983 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1984 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1987 /* Test feeding a valid end TRB from a different ring */
1988 { .input_seg
= xhci
->event_ring
->first_seg
,
1989 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1990 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1991 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1994 /* Test feeding a valid start and end TRB from a different ring */
1995 { .input_seg
= xhci
->event_ring
->first_seg
,
1996 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1997 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1998 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2001 /* TRB in this ring, but after this TD */
2002 { .input_seg
= xhci
->event_ring
->first_seg
,
2003 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
2004 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2005 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
2008 /* TRB in this ring, but before this TD */
2009 { .input_seg
= xhci
->event_ring
->first_seg
,
2010 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2011 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
2012 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2015 /* TRB in this ring, but after this wrapped TD */
2016 { .input_seg
= xhci
->event_ring
->first_seg
,
2017 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2018 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2019 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2022 /* TRB in this ring, but before this wrapped TD */
2023 { .input_seg
= xhci
->event_ring
->first_seg
,
2024 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2025 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2026 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
2029 /* TRB not in this ring, and we have a wrapped TD */
2030 { .input_seg
= xhci
->event_ring
->first_seg
,
2031 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2032 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2033 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
2038 unsigned int num_tests
;
2041 num_tests
= ARRAY_SIZE(simple_test_vector
);
2042 for (i
= 0; i
< num_tests
; i
++) {
2043 ret
= xhci_test_trb_in_td(xhci
,
2044 xhci
->event_ring
->first_seg
,
2045 xhci
->event_ring
->first_seg
->trbs
,
2046 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2047 simple_test_vector
[i
].input_dma
,
2048 simple_test_vector
[i
].result_seg
,
2054 num_tests
= ARRAY_SIZE(complex_test_vector
);
2055 for (i
= 0; i
< num_tests
; i
++) {
2056 ret
= xhci_test_trb_in_td(xhci
,
2057 complex_test_vector
[i
].input_seg
,
2058 complex_test_vector
[i
].start_trb
,
2059 complex_test_vector
[i
].end_trb
,
2060 complex_test_vector
[i
].input_dma
,
2061 complex_test_vector
[i
].result_seg
,
2066 xhci_dbg(xhci
, "TRB math tests passed.\n");
2070 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
2075 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2076 xhci
->event_ring
->dequeue
);
2077 if (deq
== 0 && !in_interrupt())
2078 xhci_warn(xhci
, "WARN something wrong with SW event ring "
2080 /* Update HC event ring dequeue pointer */
2081 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2082 temp
&= ERST_PTR_MASK
;
2083 /* Don't clear the EHB bit (which is RW1C) because
2084 * there might be more events to service.
2087 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2088 "// Write event ring dequeue pointer, "
2089 "preserving EHB bit");
2090 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
2091 &xhci
->ir_set
->erst_dequeue
);
2094 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
2095 __le32 __iomem
*addr
, int max_caps
)
2097 u32 temp
, port_offset
, port_count
;
2099 u8 major_revision
, minor_revision
;
2100 struct xhci_hub
*rhub
;
2103 major_revision
= XHCI_EXT_PORT_MAJOR(temp
);
2104 minor_revision
= XHCI_EXT_PORT_MINOR(temp
);
2106 if (major_revision
== 0x03) {
2107 rhub
= &xhci
->usb3_rhub
;
2108 } else if (major_revision
<= 0x02) {
2109 rhub
= &xhci
->usb2_rhub
;
2111 xhci_warn(xhci
, "Ignoring unknown port speed, "
2112 "Ext Cap %p, revision = 0x%x\n",
2113 addr
, major_revision
);
2114 /* Ignoring port protocol we can't understand. FIXME */
2117 rhub
->maj_rev
= XHCI_EXT_PORT_MAJOR(temp
);
2119 if (rhub
->min_rev
< minor_revision
)
2120 rhub
->min_rev
= minor_revision
;
2122 /* Port offset and count in the third dword, see section 7.2 */
2123 temp
= readl(addr
+ 2);
2124 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2125 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2126 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2127 "Ext Cap %p, port offset = %u, "
2128 "count = %u, revision = 0x%x",
2129 addr
, port_offset
, port_count
, major_revision
);
2130 /* Port count includes the current port offset */
2131 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2132 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2135 rhub
->psi_count
= XHCI_EXT_PORT_PSIC(temp
);
2136 if (rhub
->psi_count
) {
2137 rhub
->psi
= kcalloc(rhub
->psi_count
, sizeof(*rhub
->psi
),
2140 rhub
->psi_count
= 0;
2142 rhub
->psi_uid_count
++;
2143 for (i
= 0; i
< rhub
->psi_count
; i
++) {
2144 rhub
->psi
[i
] = readl(addr
+ 4 + i
);
2146 /* count unique ID values, two consecutive entries can
2147 * have the same ID if link is assymetric
2149 if (i
&& (XHCI_EXT_PORT_PSIV(rhub
->psi
[i
]) !=
2150 XHCI_EXT_PORT_PSIV(rhub
->psi
[i
- 1])))
2151 rhub
->psi_uid_count
++;
2153 xhci_dbg(xhci
, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2154 XHCI_EXT_PORT_PSIV(rhub
->psi
[i
]),
2155 XHCI_EXT_PORT_PSIE(rhub
->psi
[i
]),
2156 XHCI_EXT_PORT_PLT(rhub
->psi
[i
]),
2157 XHCI_EXT_PORT_PFD(rhub
->psi
[i
]),
2158 XHCI_EXT_PORT_LP(rhub
->psi
[i
]),
2159 XHCI_EXT_PORT_PSIM(rhub
->psi
[i
]));
2162 /* cache usb2 port capabilities */
2163 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2164 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2166 /* Check the host's USB2 LPM capability */
2167 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
2168 (temp
& XHCI_L1C
)) {
2169 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2170 "xHCI 0.96: support USB2 software lpm");
2171 xhci
->sw_lpm_support
= 1;
2174 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
2175 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2176 "xHCI 1.0: support USB2 software lpm");
2177 xhci
->sw_lpm_support
= 1;
2178 if (temp
& XHCI_HLC
) {
2179 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2180 "xHCI 1.0: support USB2 hardware lpm");
2181 xhci
->hw_lpm_support
= 1;
2186 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2187 /* Duplicate entry. Ignore the port if the revisions differ. */
2188 if (xhci
->port_array
[i
] != 0) {
2189 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2190 " port %u\n", addr
, i
);
2191 xhci_warn(xhci
, "Port was marked as USB %u, "
2192 "duplicated as USB %u\n",
2193 xhci
->port_array
[i
], major_revision
);
2194 /* Only adjust the roothub port counts if we haven't
2195 * found a similar duplicate.
2197 if (xhci
->port_array
[i
] != major_revision
&&
2198 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
2199 if (xhci
->port_array
[i
] == 0x03)
2200 xhci
->num_usb3_ports
--;
2202 xhci
->num_usb2_ports
--;
2203 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
2205 /* FIXME: Should we disable the port? */
2208 xhci
->port_array
[i
] = major_revision
;
2209 if (major_revision
== 0x03)
2210 xhci
->num_usb3_ports
++;
2212 xhci
->num_usb2_ports
++;
2214 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2218 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2219 * specify what speeds each port is supposed to be. We can't count on the port
2220 * speed bits in the PORTSC register being correct until a device is connected,
2221 * but we need to set up the two fake roothubs with the correct number of USB
2222 * 3.0 and USB 2.0 ports at host controller initialization time.
2224 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2228 unsigned int num_ports
;
2229 int i
, j
, port_index
;
2233 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2234 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2235 if (!xhci
->port_array
)
2238 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2241 for (i
= 0; i
< num_ports
; i
++) {
2242 struct xhci_interval_bw_table
*bw_table
;
2244 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2245 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2246 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2247 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2249 base
= &xhci
->cap_regs
->hc_capbase
;
2251 cap_start
= xhci_find_next_ext_cap(base
, 0, XHCI_EXT_CAPS_PROTOCOL
);
2253 xhci_err(xhci
, "No Extended Capability registers, unable to set up roothub\n");
2258 /* count extended protocol capability entries for later caching */
2261 offset
= xhci_find_next_ext_cap(base
, offset
,
2262 XHCI_EXT_CAPS_PROTOCOL
);
2265 xhci
->ext_caps
= kzalloc(sizeof(*xhci
->ext_caps
) * cap_count
, flags
);
2266 if (!xhci
->ext_caps
)
2272 xhci_add_in_port(xhci
, num_ports
, base
+ offset
, cap_count
);
2273 if (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
== num_ports
)
2275 offset
= xhci_find_next_ext_cap(base
, offset
,
2276 XHCI_EXT_CAPS_PROTOCOL
);
2279 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2280 xhci_warn(xhci
, "No ports on the roothubs?\n");
2283 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2284 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2285 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2287 /* Place limits on the number of roothub ports so that the hub
2288 * descriptors aren't longer than the USB core will allocate.
2290 if (xhci
->num_usb3_ports
> USB_SS_MAXPORTS
) {
2291 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2292 "Limiting USB 3.0 roothub ports to %u.",
2294 xhci
->num_usb3_ports
= USB_SS_MAXPORTS
;
2296 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2297 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2298 "Limiting USB 2.0 roothub ports to %u.",
2300 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2304 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2305 * Not sure how the USB core will handle a hub with no ports...
2307 if (xhci
->num_usb2_ports
) {
2308 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2309 xhci
->num_usb2_ports
, flags
);
2310 if (!xhci
->usb2_ports
)
2314 for (i
= 0; i
< num_ports
; i
++) {
2315 if (xhci
->port_array
[i
] == 0x03 ||
2316 xhci
->port_array
[i
] == 0 ||
2317 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2320 xhci
->usb2_ports
[port_index
] =
2321 &xhci
->op_regs
->port_status_base
+
2323 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2324 "USB 2.0 port at index %u, "
2326 xhci
->usb2_ports
[port_index
]);
2328 if (port_index
== xhci
->num_usb2_ports
)
2332 if (xhci
->num_usb3_ports
) {
2333 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2334 xhci
->num_usb3_ports
, flags
);
2335 if (!xhci
->usb3_ports
)
2339 for (i
= 0; i
< num_ports
; i
++)
2340 if (xhci
->port_array
[i
] == 0x03) {
2341 xhci
->usb3_ports
[port_index
] =
2342 &xhci
->op_regs
->port_status_base
+
2344 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2345 "USB 3.0 port at index %u, "
2347 xhci
->usb3_ports
[port_index
]);
2349 if (port_index
== xhci
->num_usb3_ports
)
2356 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2359 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2360 unsigned int val
, val2
;
2362 u32 page_size
, temp
;
2365 INIT_LIST_HEAD(&xhci
->cmd_list
);
2367 /* init command timeout work */
2368 INIT_DELAYED_WORK(&xhci
->cmd_timer
, xhci_handle_command_timeout
);
2369 init_completion(&xhci
->cmd_ring_stop_completion
);
2371 page_size
= readl(&xhci
->op_regs
->page_size
);
2372 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2373 "Supported page size register = 0x%x", page_size
);
2374 for (i
= 0; i
< 16; i
++) {
2375 if ((0x1 & page_size
) != 0)
2377 page_size
= page_size
>> 1;
2380 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2381 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2383 xhci_warn(xhci
, "WARN: no supported page size\n");
2384 /* Use 4K pages, since that's common and the minimum the HC supports */
2385 xhci
->page_shift
= 12;
2386 xhci
->page_size
= 1 << xhci
->page_shift
;
2387 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2388 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2391 * Program the Number of Device Slots Enabled field in the CONFIG
2392 * register with the max value of slots the HC can handle.
2394 val
= HCS_MAX_SLOTS(readl(&xhci
->cap_regs
->hcs_params1
));
2395 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2396 "// xHC can handle at most %d device slots.", val
);
2397 val2
= readl(&xhci
->op_regs
->config_reg
);
2398 val
|= (val2
& ~HCS_SLOTS_MASK
);
2399 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2400 "// Setting Max device slots reg = 0x%x.", val
);
2401 writel(val
, &xhci
->op_regs
->config_reg
);
2404 * xHCI section 5.4.6 - doorbell array must be
2405 * "physically contiguous and 64-byte (cache line) aligned".
2407 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2411 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2412 xhci
->dcbaa
->dma
= dma
;
2413 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2414 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2415 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2416 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2419 * Initialize the ring segment pool. The ring must be a contiguous
2420 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2421 * however, the command ring segment needs 64-byte aligned segments
2422 * and our use of dma addresses in the trb_address_map radix tree needs
2423 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2425 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2426 TRB_SEGMENT_SIZE
, TRB_SEGMENT_SIZE
, xhci
->page_size
);
2428 /* See Table 46 and Note on Figure 55 */
2429 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2430 2112, 64, xhci
->page_size
);
2431 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2434 /* Linear stream context arrays don't have any boundary restrictions,
2435 * and only need to be 16-byte aligned.
2437 xhci
->small_streams_pool
=
2438 dma_pool_create("xHCI 256 byte stream ctx arrays",
2439 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2440 xhci
->medium_streams_pool
=
2441 dma_pool_create("xHCI 1KB stream ctx arrays",
2442 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2443 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2444 * will be allocated with dma_alloc_coherent()
2447 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2450 /* Set up the command ring to have one segments for now. */
2451 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, 0, flags
);
2452 if (!xhci
->cmd_ring
)
2454 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2455 "Allocated command ring at %p", xhci
->cmd_ring
);
2456 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2457 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2459 /* Set the address in the Command Ring Control register */
2460 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2461 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2462 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2463 xhci
->cmd_ring
->cycle_state
;
2464 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2465 "// Setting command ring address to 0x%016llx", val_64
);
2466 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2468 xhci
->lpm_command
= xhci_alloc_command_with_ctx(xhci
, true, flags
);
2469 if (!xhci
->lpm_command
)
2472 /* Reserve one command ring TRB for disabling LPM.
2473 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2474 * disabling LPM, we only need to reserve one TRB for all devices.
2476 xhci
->cmd_ring_reserved_trbs
++;
2478 val
= readl(&xhci
->cap_regs
->db_off
);
2480 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2481 "// Doorbell array is located at offset 0x%x"
2482 " from cap regs base addr", val
);
2483 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2484 /* Set ir_set to interrupt register set 0 */
2485 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2488 * Event ring setup: Allocate a normal ring, but also setup
2489 * the event ring segment table (ERST). Section 4.9.3.
2491 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2492 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2494 if (!xhci
->event_ring
)
2496 if (xhci_check_trb_in_td_math(xhci
) < 0)
2499 ret
= xhci_alloc_erst(xhci
, xhci
->event_ring
, &xhci
->erst
, flags
);
2503 /* set ERST count with the number of entries in the segment table */
2504 val
= readl(&xhci
->ir_set
->erst_size
);
2505 val
&= ERST_SIZE_MASK
;
2506 val
|= ERST_NUM_SEGS
;
2507 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2508 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2510 writel(val
, &xhci
->ir_set
->erst_size
);
2512 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2513 "// Set ERST entries to point to event ring.");
2514 /* set the segment table base address */
2515 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2516 "// Set ERST base address for ir_set 0 = 0x%llx",
2517 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2518 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2519 val_64
&= ERST_PTR_MASK
;
2520 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2521 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2523 /* Set the event ring dequeue address */
2524 xhci_set_hc_event_deq(xhci
);
2525 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2526 "Wrote ERST address to ir_set 0.");
2529 * XXX: Might need to set the Interrupter Moderation Register to
2530 * something other than the default (~1ms minimum between interrupts).
2531 * See section 5.5.1.2.
2533 for (i
= 0; i
< MAX_HC_SLOTS
; i
++)
2534 xhci
->devs
[i
] = NULL
;
2535 for (i
= 0; i
< USB_MAXCHILDREN
; i
++) {
2536 xhci
->bus_state
[0].resume_done
[i
] = 0;
2537 xhci
->bus_state
[1].resume_done
[i
] = 0;
2538 /* Only the USB 2.0 completions will ever be used. */
2539 init_completion(&xhci
->bus_state
[1].rexit_done
[i
]);
2542 if (scratchpad_alloc(xhci
, flags
))
2544 if (xhci_setup_port_arrays(xhci
, flags
))
2547 /* Enable USB 3.0 device notifications for function remote wake, which
2548 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2549 * U3 (device suspend).
2551 temp
= readl(&xhci
->op_regs
->dev_notification
);
2552 temp
&= ~DEV_NOTE_MASK
;
2553 temp
|= DEV_NOTE_FWAKE
;
2554 writel(temp
, &xhci
->op_regs
->dev_notification
);
2561 xhci_mem_cleanup(xhci
);