4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
74 #define PFX "ipmi_si: "
76 /* Measure times between events in the driver. */
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 SI_CLEARING_FLAGS_THEN_SET_IRQ
,
93 SI_ENABLE_INTERRUPTS1
,
94 SI_ENABLE_INTERRUPTS2
,
95 SI_DISABLE_INTERRUPTS1
,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 SI_KCS
, SI_SMIC
, SI_BT
108 static char *si_to_str
[] = { "kcs", "smic", "bt" };
110 static char *ipmi_addr_src_to_str
[] = { NULL
, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
114 #define DEVICE_NAME "ipmi_si"
116 static struct platform_driver ipmi_driver
;
119 * Indexes into stats[] in smi_info below.
121 enum si_stat_indexes
{
123 * Number of times the driver requested a timer while an operation
126 SI_STAT_short_timeouts
= 0,
129 * Number of times the driver requested a timer while nothing was in
132 SI_STAT_long_timeouts
,
134 /* Number of times the interface was idle while being polled. */
137 /* Number of interrupts the driver handled. */
140 /* Number of time the driver got an ATTN from the hardware. */
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches
,
146 /* Number of times the hardware didn't follow the state machine. */
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions
,
152 /* Number of IPMI events received from the hardware. */
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts
,
158 /* Number of asynchronous messages received. */
159 SI_STAT_incoming_messages
,
162 /* This *must* remain last, add new values above this. */
169 struct si_sm_data
*si_sm
;
170 struct si_sm_handlers
*handlers
;
171 enum si_type si_type
;
173 struct list_head xmit_msgs
;
174 struct list_head hp_xmit_msgs
;
175 struct ipmi_smi_msg
*curr_msg
;
176 enum si_intf_state si_state
;
179 * Used to handle the various types of I/O that can occur with
183 int (*io_setup
)(struct smi_info
*info
);
184 void (*io_cleanup
)(struct smi_info
*info
);
185 int (*irq_setup
)(struct smi_info
*info
);
186 void (*irq_cleanup
)(struct smi_info
*info
);
187 unsigned int io_size
;
188 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup
)(struct smi_info
*info
);
190 void *addr_source_data
;
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
197 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213 unsigned char msg_flags
;
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer
;
219 * If set to true, this will request events the next time the
220 * state machine is idle.
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
229 int run_to_completion
;
231 /* The I/O port of an SI interface. */
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
239 unsigned int spacing
;
241 /* zero if no irq; */
244 /* The timer for this si. */
245 struct timer_list si_timer
;
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies
;
250 /* Used to gracefully stop the timer without race conditions. */
251 atomic_t stop_operation
;
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
259 int interrupt_disabled
;
261 /* From the get device id response... */
262 struct ipmi_device_id device_id
;
264 /* Driver model stuff. */
266 struct platform_device
*pdev
;
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr
;
277 /* Counters and things for the proc filesystem. */
278 atomic_t stats
[SI_NUM_STATS
];
280 struct task_struct
*thread
;
282 struct list_head link
;
283 union ipmi_smi_info_union addr_info
;
286 #define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291 #define SI_MAX_PARMS 4
293 static int force_kipmid
[SI_MAX_PARMS
];
294 static int num_force_kipmid
;
296 static int pci_registered
;
299 static int pnp_registered
;
302 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
303 static int num_max_busy_us
;
305 static int unload_when_empty
= 1;
307 static int add_smi(struct smi_info
*smi
);
308 static int try_smi_init(struct smi_info
*smi
);
309 static void cleanup_one_si(struct smi_info
*to_clean
);
310 static void cleanup_ipmi_si(void);
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
313 static int register_xaction_notifier(struct notifier_block
*nb
)
315 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
318 static void deliver_recv_msg(struct smi_info
*smi_info
,
319 struct ipmi_smi_msg
*msg
)
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info
->intf
, msg
);
325 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
327 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
329 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
330 cCode
= IPMI_ERR_UNSPECIFIED
;
331 /* else use it as is */
333 /* Make it a response */
334 msg
->rsp
[0] = msg
->data
[0] | 4;
335 msg
->rsp
[1] = msg
->data
[1];
339 smi_info
->curr_msg
= NULL
;
340 deliver_recv_msg(smi_info
, msg
);
343 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
346 struct list_head
*entry
= NULL
;
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info
->hp_xmit_msgs
))) {
353 entry
= smi_info
->hp_xmit_msgs
.next
;
354 } else if (!list_empty(&(smi_info
->xmit_msgs
))) {
355 entry
= smi_info
->xmit_msgs
.next
;
359 smi_info
->curr_msg
= NULL
;
365 smi_info
->curr_msg
= list_entry(entry
,
370 printk(KERN_DEBUG
"**Start2: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
372 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
374 if (err
& NOTIFY_STOP_MASK
) {
375 rv
= SI_SM_CALL_WITHOUT_DELAY
;
378 err
= smi_info
->handlers
->start_transaction(
380 smi_info
->curr_msg
->data
,
381 smi_info
->curr_msg
->data_size
);
383 return_hosed_msg(smi_info
, err
);
385 rv
= SI_SM_CALL_WITHOUT_DELAY
;
391 static void start_enable_irq(struct smi_info
*smi_info
)
393 unsigned char msg
[2];
396 * If we are enabling interrupts, we have to tell the
399 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
400 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
402 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
403 smi_info
->si_state
= SI_ENABLE_INTERRUPTS1
;
406 static void start_disable_irq(struct smi_info
*smi_info
)
408 unsigned char msg
[2];
410 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
411 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
413 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
414 smi_info
->si_state
= SI_DISABLE_INTERRUPTS1
;
417 static void start_clear_flags(struct smi_info
*smi_info
)
419 unsigned char msg
[3];
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
423 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
424 msg
[2] = WDT_PRE_TIMEOUT_INT
;
426 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
427 smi_info
->si_state
= SI_CLEARING_FLAGS
;
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
436 static inline void disable_si_irq(struct smi_info
*smi_info
)
438 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
439 start_disable_irq(smi_info
);
440 smi_info
->interrupt_disabled
= 1;
441 if (!atomic_read(&smi_info
->stop_operation
))
442 mod_timer(&smi_info
->si_timer
,
443 jiffies
+ SI_TIMEOUT_JIFFIES
);
447 static inline void enable_si_irq(struct smi_info
*smi_info
)
449 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
450 start_enable_irq(smi_info
);
451 smi_info
->interrupt_disabled
= 0;
455 static void handle_flags(struct smi_info
*smi_info
)
458 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
462 start_clear_flags(smi_info
);
463 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
464 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
465 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
466 /* Messages available. */
467 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
468 if (!smi_info
->curr_msg
) {
469 disable_si_irq(smi_info
);
470 smi_info
->si_state
= SI_NORMAL
;
473 enable_si_irq(smi_info
);
475 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
476 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
477 smi_info
->curr_msg
->data_size
= 2;
479 smi_info
->handlers
->start_transaction(
481 smi_info
->curr_msg
->data
,
482 smi_info
->curr_msg
->data_size
);
483 smi_info
->si_state
= SI_GETTING_MESSAGES
;
484 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
485 /* Events available. */
486 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
487 if (!smi_info
->curr_msg
) {
488 disable_si_irq(smi_info
);
489 smi_info
->si_state
= SI_NORMAL
;
492 enable_si_irq(smi_info
);
494 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
495 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
496 smi_info
->curr_msg
->data_size
= 2;
498 smi_info
->handlers
->start_transaction(
500 smi_info
->curr_msg
->data
,
501 smi_info
->curr_msg
->data_size
);
502 smi_info
->si_state
= SI_GETTING_EVENTS
;
503 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
504 smi_info
->oem_data_avail_handler
) {
505 if (smi_info
->oem_data_avail_handler(smi_info
))
508 smi_info
->si_state
= SI_NORMAL
;
511 static void handle_transaction_done(struct smi_info
*smi_info
)
513 struct ipmi_smi_msg
*msg
;
518 printk(KERN_DEBUG
"**Done: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
520 switch (smi_info
->si_state
) {
522 if (!smi_info
->curr_msg
)
525 smi_info
->curr_msg
->rsp_size
526 = smi_info
->handlers
->get_result(
528 smi_info
->curr_msg
->rsp
,
529 IPMI_MAX_MSG_LENGTH
);
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
536 msg
= smi_info
->curr_msg
;
537 smi_info
->curr_msg
= NULL
;
538 deliver_recv_msg(smi_info
, msg
);
541 case SI_GETTING_FLAGS
:
543 unsigned char msg
[4];
546 /* We got the flags from the SMI, now handle them. */
547 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
549 /* Error fetching flags, just give up for now. */
550 smi_info
->si_state
= SI_NORMAL
;
551 } else if (len
< 4) {
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
556 smi_info
->si_state
= SI_NORMAL
;
558 smi_info
->msg_flags
= msg
[3];
559 handle_flags(smi_info
);
564 case SI_CLEARING_FLAGS
:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ
:
567 unsigned char msg
[3];
569 /* We cleared the flags. */
570 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
572 /* Error clearing flags */
573 dev_warn(smi_info
->dev
,
574 "Error clearing flags: %2.2x\n", msg
[2]);
576 if (smi_info
->si_state
== SI_CLEARING_FLAGS_THEN_SET_IRQ
)
577 start_enable_irq(smi_info
);
579 smi_info
->si_state
= SI_NORMAL
;
583 case SI_GETTING_EVENTS
:
585 smi_info
->curr_msg
->rsp_size
586 = smi_info
->handlers
->get_result(
588 smi_info
->curr_msg
->rsp
,
589 IPMI_MAX_MSG_LENGTH
);
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
596 msg
= smi_info
->curr_msg
;
597 smi_info
->curr_msg
= NULL
;
598 if (msg
->rsp
[2] != 0) {
599 /* Error getting event, probably done. */
602 /* Take off the event flag. */
603 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
604 handle_flags(smi_info
);
606 smi_inc_stat(smi_info
, events
);
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
614 handle_flags(smi_info
);
616 deliver_recv_msg(smi_info
, msg
);
621 case SI_GETTING_MESSAGES
:
623 smi_info
->curr_msg
->rsp_size
624 = smi_info
->handlers
->get_result(
626 smi_info
->curr_msg
->rsp
,
627 IPMI_MAX_MSG_LENGTH
);
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
634 msg
= smi_info
->curr_msg
;
635 smi_info
->curr_msg
= NULL
;
636 if (msg
->rsp
[2] != 0) {
637 /* Error getting event, probably done. */
640 /* Take off the msg flag. */
641 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
642 handle_flags(smi_info
);
644 smi_inc_stat(smi_info
, incoming_messages
);
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
652 handle_flags(smi_info
);
654 deliver_recv_msg(smi_info
, msg
);
659 case SI_ENABLE_INTERRUPTS1
:
661 unsigned char msg
[4];
663 /* We got the flags from the SMI, now handle them. */
664 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
666 dev_warn(smi_info
->dev
, "Could not enable interrupts"
667 ", failed get, using polled mode.\n");
668 smi_info
->si_state
= SI_NORMAL
;
670 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
671 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
673 IPMI_BMC_RCV_MSG_INTR
|
674 IPMI_BMC_EVT_MSG_INTR
);
675 smi_info
->handlers
->start_transaction(
676 smi_info
->si_sm
, msg
, 3);
677 smi_info
->si_state
= SI_ENABLE_INTERRUPTS2
;
682 case SI_ENABLE_INTERRUPTS2
:
684 unsigned char msg
[4];
686 /* We got the flags from the SMI, now handle them. */
687 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
689 dev_warn(smi_info
->dev
, "Could not enable interrupts"
690 ", failed set, using polled mode.\n");
692 smi_info
->interrupt_disabled
= 0;
693 smi_info
->si_state
= SI_NORMAL
;
697 case SI_DISABLE_INTERRUPTS1
:
699 unsigned char msg
[4];
701 /* We got the flags from the SMI, now handle them. */
702 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
704 dev_warn(smi_info
->dev
, "Could not disable interrupts"
706 smi_info
->si_state
= SI_NORMAL
;
708 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
709 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
711 ~(IPMI_BMC_RCV_MSG_INTR
|
712 IPMI_BMC_EVT_MSG_INTR
));
713 smi_info
->handlers
->start_transaction(
714 smi_info
->si_sm
, msg
, 3);
715 smi_info
->si_state
= SI_DISABLE_INTERRUPTS2
;
720 case SI_DISABLE_INTERRUPTS2
:
722 unsigned char msg
[4];
724 /* We got the flags from the SMI, now handle them. */
725 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
727 dev_warn(smi_info
->dev
, "Could not disable interrupts"
730 smi_info
->si_state
= SI_NORMAL
;
737 * Called on timeouts and events. Timeouts should pass the elapsed
738 * time, interrupts should pass in zero. Must be called with
739 * si_lock held and interrupts disabled.
741 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
744 enum si_sm_result si_sm_result
;
748 * There used to be a loop here that waited a little while
749 * (around 25us) before giving up. That turned out to be
750 * pointless, the minimum delays I was seeing were in the 300us
751 * range, which is far too long to wait in an interrupt. So
752 * we just run until the state machine tells us something
753 * happened or it needs a delay.
755 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
757 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
758 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
760 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
761 smi_inc_stat(smi_info
, complete_transactions
);
763 handle_transaction_done(smi_info
);
764 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
765 } else if (si_sm_result
== SI_SM_HOSED
) {
766 smi_inc_stat(smi_info
, hosed_count
);
769 * Do the before return_hosed_msg, because that
772 smi_info
->si_state
= SI_NORMAL
;
773 if (smi_info
->curr_msg
!= NULL
) {
775 * If we were handling a user message, format
776 * a response to send to the upper layer to
777 * tell it about the error.
779 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
781 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
785 * We prefer handling attn over new messages. But don't do
786 * this if there is not yet an upper layer to handle anything.
788 if (likely(smi_info
->intf
) && si_sm_result
== SI_SM_ATTN
) {
789 unsigned char msg
[2];
791 smi_inc_stat(smi_info
, attentions
);
794 * Got a attn, send down a get message flags to see
795 * what's causing it. It would be better to handle
796 * this in the upper layer, but due to the way
797 * interrupts work with the SMI, that's not really
800 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
801 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
803 smi_info
->handlers
->start_transaction(
804 smi_info
->si_sm
, msg
, 2);
805 smi_info
->si_state
= SI_GETTING_FLAGS
;
809 /* If we are currently idle, try to start the next message. */
810 if (si_sm_result
== SI_SM_IDLE
) {
811 smi_inc_stat(smi_info
, idles
);
813 si_sm_result
= start_next_msg(smi_info
);
814 if (si_sm_result
!= SI_SM_IDLE
)
818 if ((si_sm_result
== SI_SM_IDLE
)
819 && (atomic_read(&smi_info
->req_events
))) {
821 * We are idle and the upper layer requested that I fetch
824 atomic_set(&smi_info
->req_events
, 0);
826 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
827 if (!smi_info
->curr_msg
)
830 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
831 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
832 smi_info
->curr_msg
->data_size
= 2;
834 smi_info
->handlers
->start_transaction(
836 smi_info
->curr_msg
->data
,
837 smi_info
->curr_msg
->data_size
);
838 smi_info
->si_state
= SI_GETTING_EVENTS
;
845 static void sender(void *send_info
,
846 struct ipmi_smi_msg
*msg
,
849 struct smi_info
*smi_info
= send_info
;
850 enum si_sm_result result
;
856 if (atomic_read(&smi_info
->stop_operation
)) {
857 msg
->rsp
[0] = msg
->data
[0] | 4;
858 msg
->rsp
[1] = msg
->data
[1];
859 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
861 deliver_recv_msg(smi_info
, msg
);
867 printk("**Enqueue: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
870 if (smi_info
->run_to_completion
) {
872 * If we are running to completion, then throw it in
873 * the list and run transactions until everything is
874 * clear. Priority doesn't matter here.
878 * Run to completion means we are single-threaded, no
881 list_add_tail(&(msg
->link
), &(smi_info
->xmit_msgs
));
883 result
= smi_event_handler(smi_info
, 0);
884 while (result
!= SI_SM_IDLE
) {
885 udelay(SI_SHORT_TIMEOUT_USEC
);
886 result
= smi_event_handler(smi_info
,
887 SI_SHORT_TIMEOUT_USEC
);
892 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
894 list_add_tail(&msg
->link
, &smi_info
->hp_xmit_msgs
);
896 list_add_tail(&msg
->link
, &smi_info
->xmit_msgs
);
898 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
900 * last_timeout_jiffies is updated here to avoid
901 * smi_timeout() handler passing very large time_diff
902 * value to smi_event_handler() that causes
903 * the send command to abort.
905 smi_info
->last_timeout_jiffies
= jiffies
;
907 mod_timer(&smi_info
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
909 if (smi_info
->thread
)
910 wake_up_process(smi_info
->thread
);
912 start_next_msg(smi_info
);
913 smi_event_handler(smi_info
, 0);
915 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
918 static void set_run_to_completion(void *send_info
, int i_run_to_completion
)
920 struct smi_info
*smi_info
= send_info
;
921 enum si_sm_result result
;
923 smi_info
->run_to_completion
= i_run_to_completion
;
924 if (i_run_to_completion
) {
925 result
= smi_event_handler(smi_info
, 0);
926 while (result
!= SI_SM_IDLE
) {
927 udelay(SI_SHORT_TIMEOUT_USEC
);
928 result
= smi_event_handler(smi_info
,
929 SI_SHORT_TIMEOUT_USEC
);
935 * Use -1 in the nsec value of the busy waiting timespec to tell that
936 * we are spinning in kipmid looking for something and not delaying
939 static inline void ipmi_si_set_not_busy(struct timespec
*ts
)
943 static inline int ipmi_si_is_busy(struct timespec
*ts
)
945 return ts
->tv_nsec
!= -1;
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
949 const struct smi_info
*smi_info
,
950 struct timespec
*busy_until
)
952 unsigned int max_busy_us
= 0;
954 if (smi_info
->intf_num
< num_max_busy_us
)
955 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
956 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
957 ipmi_si_set_not_busy(busy_until
);
958 else if (!ipmi_si_is_busy(busy_until
)) {
959 getnstimeofday(busy_until
);
960 timespec_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
963 getnstimeofday(&now
);
964 if (unlikely(timespec_compare(&now
, busy_until
) > 0)) {
965 ipmi_si_set_not_busy(busy_until
);
974 * A busy-waiting loop for speeding up IPMI operation.
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
982 static int ipmi_thread(void *data
)
984 struct smi_info
*smi_info
= data
;
986 enum si_sm_result smi_result
;
987 struct timespec busy_until
;
989 ipmi_si_set_not_busy(&busy_until
);
990 set_user_nice(current
, 19);
991 while (!kthread_should_stop()) {
994 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
995 smi_result
= smi_event_handler(smi_info
, 0);
996 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
997 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
999 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1001 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1003 else if (smi_result
== SI_SM_IDLE
)
1004 schedule_timeout_interruptible(100);
1006 schedule_timeout_interruptible(1);
1012 static void poll(void *send_info
)
1014 struct smi_info
*smi_info
= send_info
;
1015 unsigned long flags
= 0;
1016 int run_to_completion
= smi_info
->run_to_completion
;
1019 * Make sure there is some delay in the poll loop so we can
1020 * drive time forward and timeout things.
1023 if (!run_to_completion
)
1024 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1025 smi_event_handler(smi_info
, 10);
1026 if (!run_to_completion
)
1027 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1030 static void request_events(void *send_info
)
1032 struct smi_info
*smi_info
= send_info
;
1034 if (atomic_read(&smi_info
->stop_operation
) ||
1035 !smi_info
->has_event_buffer
)
1038 atomic_set(&smi_info
->req_events
, 1);
1041 static int initialized
;
1043 static void smi_timeout(unsigned long data
)
1045 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1046 enum si_sm_result smi_result
;
1047 unsigned long flags
;
1048 unsigned long jiffies_now
;
1055 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1057 do_gettimeofday(&t
);
1058 printk(KERN_DEBUG
"**Timer: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1060 jiffies_now
= jiffies
;
1061 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1062 * SI_USEC_PER_JIFFY
);
1063 smi_result
= smi_event_handler(smi_info
, time_diff
);
1065 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1067 smi_info
->last_timeout_jiffies
= jiffies_now
;
1069 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1070 /* Running with interrupts, only do long timeouts. */
1071 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1072 smi_inc_stat(smi_info
, long_timeouts
);
1077 * If the state machine asks for a short delay, then shorten
1078 * the timer timeout.
1080 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1081 smi_inc_stat(smi_info
, short_timeouts
);
1082 timeout
= jiffies
+ 1;
1084 smi_inc_stat(smi_info
, long_timeouts
);
1085 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1089 if (smi_result
!= SI_SM_IDLE
)
1090 mod_timer(&(smi_info
->si_timer
), timeout
);
1093 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1095 struct smi_info
*smi_info
= data
;
1096 unsigned long flags
;
1101 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1103 smi_inc_stat(smi_info
, interrupts
);
1106 do_gettimeofday(&t
);
1107 printk(KERN_DEBUG
"**Interrupt: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1109 smi_event_handler(smi_info
, 0);
1110 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1114 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1116 struct smi_info
*smi_info
= data
;
1117 /* We need to clear the IRQ flag for the BT interface. */
1118 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1121 return si_irq_handler(irq
, data
);
1124 static int smi_start_processing(void *send_info
,
1127 struct smi_info
*new_smi
= send_info
;
1130 new_smi
->intf
= intf
;
1132 /* Try to claim any interrupts. */
1133 if (new_smi
->irq_setup
)
1134 new_smi
->irq_setup(new_smi
);
1136 /* Set up the timer that drives the interface. */
1137 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1138 new_smi
->last_timeout_jiffies
= jiffies
;
1139 mod_timer(&new_smi
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1142 * Check if the user forcefully enabled the daemon.
1144 if (new_smi
->intf_num
< num_force_kipmid
)
1145 enable
= force_kipmid
[new_smi
->intf_num
];
1147 * The BT interface is efficient enough to not need a thread,
1148 * and there is no need for a thread if we have interrupts.
1150 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1154 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1155 "kipmi%d", new_smi
->intf_num
);
1156 if (IS_ERR(new_smi
->thread
)) {
1157 dev_notice(new_smi
->dev
, "Could not start"
1158 " kernel thread due to error %ld, only using"
1159 " timers to drive the interface\n",
1160 PTR_ERR(new_smi
->thread
));
1161 new_smi
->thread
= NULL
;
1168 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1170 struct smi_info
*smi
= send_info
;
1172 data
->addr_src
= smi
->addr_source
;
1173 data
->dev
= smi
->dev
;
1174 data
->addr_info
= smi
->addr_info
;
1175 get_device(smi
->dev
);
1180 static void set_maintenance_mode(void *send_info
, int enable
)
1182 struct smi_info
*smi_info
= send_info
;
1185 atomic_set(&smi_info
->req_events
, 0);
1188 static struct ipmi_smi_handlers handlers
= {
1189 .owner
= THIS_MODULE
,
1190 .start_processing
= smi_start_processing
,
1191 .get_smi_info
= get_smi_info
,
1193 .request_events
= request_events
,
1194 .set_maintenance_mode
= set_maintenance_mode
,
1195 .set_run_to_completion
= set_run_to_completion
,
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1204 static LIST_HEAD(smi_infos
);
1205 static DEFINE_MUTEX(smi_infos_lock
);
1206 static int smi_num
; /* Used to sequence the SMIs */
1208 #define DEFAULT_REGSPACING 1
1209 #define DEFAULT_REGSIZE 1
1211 static bool si_trydefaults
= 1;
1212 static char *si_type
[SI_MAX_PARMS
];
1213 #define MAX_SI_TYPE_STR 30
1214 static char si_type_str
[MAX_SI_TYPE_STR
];
1215 static unsigned long addrs
[SI_MAX_PARMS
];
1216 static unsigned int num_addrs
;
1217 static unsigned int ports
[SI_MAX_PARMS
];
1218 static unsigned int num_ports
;
1219 static int irqs
[SI_MAX_PARMS
];
1220 static unsigned int num_irqs
;
1221 static int regspacings
[SI_MAX_PARMS
];
1222 static unsigned int num_regspacings
;
1223 static int regsizes
[SI_MAX_PARMS
];
1224 static unsigned int num_regsizes
;
1225 static int regshifts
[SI_MAX_PARMS
];
1226 static unsigned int num_regshifts
;
1227 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs
;
1230 #define IPMI_IO_ADDR_SPACE 0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str
[] = { "i/o", "mem" };
1234 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1236 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1237 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1238 " Documentation/IPMI.txt in the kernel sources for the"
1241 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1242 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1243 " default scan of the KCS and SMIC interface at the standard"
1245 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1246 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1247 " interface separated by commas. The types are 'kcs',"
1248 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1249 " the first interface to kcs and the second to bt");
1250 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1251 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1252 " addresses separated by commas. Only use if an interface"
1253 " is in memory. Otherwise, set it to zero or leave"
1255 module_param_array(ports
, uint
, &num_ports
, 0);
1256 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1257 " addresses separated by commas. Only use if an interface"
1258 " is a port. Otherwise, set it to zero or leave"
1260 module_param_array(irqs
, int, &num_irqs
, 0);
1261 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " has an interrupt. Otherwise, set it to zero or leave"
1265 module_param_array(regspacings
, int, &num_regspacings
, 0);
1266 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1267 " and each successive register used by the interface. For"
1268 " instance, if the start address is 0xca2 and the spacing"
1269 " is 2, then the second address is at 0xca4. Defaults"
1271 module_param_array(regsizes
, int, &num_regsizes
, 0);
1272 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1273 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1275 " the 8-bit IPMI register has to be read from a larger"
1277 module_param_array(regshifts
, int, &num_regshifts
, 0);
1278 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1279 " IPMI register, in bits. For instance, if the data"
1280 " is read from a 32-bit word and the IPMI data is in"
1281 " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1283 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1284 " the controller. Normally this is 0x20, but can be"
1285 " overridden by this parm. This is an array indexed"
1286 " by interface number.");
1287 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1288 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1289 " disabled(0). Normally the IPMI driver auto-detects"
1290 " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty
, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1293 " specified or found, default is 1. Setting to 0"
1294 " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us
,
1297 "Max time (in microseconds) to busy-wait for IPMI data before"
1298 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299 " if kipmid is using up a lot of CPU time.");
1302 static void std_irq_cleanup(struct smi_info
*info
)
1304 if (info
->si_type
== SI_BT
)
1305 /* Disable the interrupt in the BT interface. */
1306 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1307 free_irq(info
->irq
, info
);
1310 static int std_irq_setup(struct smi_info
*info
)
1317 if (info
->si_type
== SI_BT
) {
1318 rv
= request_irq(info
->irq
,
1320 IRQF_SHARED
| IRQF_DISABLED
,
1324 /* Enable the interrupt in the BT interface. */
1325 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1326 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1328 rv
= request_irq(info
->irq
,
1330 IRQF_SHARED
| IRQF_DISABLED
,
1334 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1335 " running polled\n",
1336 DEVICE_NAME
, info
->irq
);
1339 info
->irq_cleanup
= std_irq_cleanup
;
1340 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1346 static unsigned char port_inb(struct si_sm_io
*io
, unsigned int offset
)
1348 unsigned int addr
= io
->addr_data
;
1350 return inb(addr
+ (offset
* io
->regspacing
));
1353 static void port_outb(struct si_sm_io
*io
, unsigned int offset
,
1356 unsigned int addr
= io
->addr_data
;
1358 outb(b
, addr
+ (offset
* io
->regspacing
));
1361 static unsigned char port_inw(struct si_sm_io
*io
, unsigned int offset
)
1363 unsigned int addr
= io
->addr_data
;
1365 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1368 static void port_outw(struct si_sm_io
*io
, unsigned int offset
,
1371 unsigned int addr
= io
->addr_data
;
1373 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1376 static unsigned char port_inl(struct si_sm_io
*io
, unsigned int offset
)
1378 unsigned int addr
= io
->addr_data
;
1380 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1383 static void port_outl(struct si_sm_io
*io
, unsigned int offset
,
1386 unsigned int addr
= io
->addr_data
;
1388 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1391 static void port_cleanup(struct smi_info
*info
)
1393 unsigned int addr
= info
->io
.addr_data
;
1397 for (idx
= 0; idx
< info
->io_size
; idx
++)
1398 release_region(addr
+ idx
* info
->io
.regspacing
,
1403 static int port_setup(struct smi_info
*info
)
1405 unsigned int addr
= info
->io
.addr_data
;
1411 info
->io_cleanup
= port_cleanup
;
1414 * Figure out the actual inb/inw/inl/etc routine to use based
1415 * upon the register size.
1417 switch (info
->io
.regsize
) {
1419 info
->io
.inputb
= port_inb
;
1420 info
->io
.outputb
= port_outb
;
1423 info
->io
.inputb
= port_inw
;
1424 info
->io
.outputb
= port_outw
;
1427 info
->io
.inputb
= port_inl
;
1428 info
->io
.outputb
= port_outl
;
1431 dev_warn(info
->dev
, "Invalid register size: %d\n",
1437 * Some BIOSes reserve disjoint I/O regions in their ACPI
1438 * tables. This causes problems when trying to register the
1439 * entire I/O region. Therefore we must register each I/O
1442 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1443 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1444 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1445 /* Undo allocations */
1447 release_region(addr
+ idx
* info
->io
.regspacing
,
1456 static unsigned char intf_mem_inb(struct si_sm_io
*io
, unsigned int offset
)
1458 return readb((io
->addr
)+(offset
* io
->regspacing
));
1461 static void intf_mem_outb(struct si_sm_io
*io
, unsigned int offset
,
1464 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1467 static unsigned char intf_mem_inw(struct si_sm_io
*io
, unsigned int offset
)
1469 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1473 static void intf_mem_outw(struct si_sm_io
*io
, unsigned int offset
,
1476 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1479 static unsigned char intf_mem_inl(struct si_sm_io
*io
, unsigned int offset
)
1481 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1485 static void intf_mem_outl(struct si_sm_io
*io
, unsigned int offset
,
1488 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1492 static unsigned char mem_inq(struct si_sm_io
*io
, unsigned int offset
)
1494 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1498 static void mem_outq(struct si_sm_io
*io
, unsigned int offset
,
1501 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1505 static void mem_cleanup(struct smi_info
*info
)
1507 unsigned long addr
= info
->io
.addr_data
;
1510 if (info
->io
.addr
) {
1511 iounmap(info
->io
.addr
);
1513 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1514 - (info
->io
.regspacing
- info
->io
.regsize
));
1516 release_mem_region(addr
, mapsize
);
1520 static int mem_setup(struct smi_info
*info
)
1522 unsigned long addr
= info
->io
.addr_data
;
1528 info
->io_cleanup
= mem_cleanup
;
1531 * Figure out the actual readb/readw/readl/etc routine to use based
1532 * upon the register size.
1534 switch (info
->io
.regsize
) {
1536 info
->io
.inputb
= intf_mem_inb
;
1537 info
->io
.outputb
= intf_mem_outb
;
1540 info
->io
.inputb
= intf_mem_inw
;
1541 info
->io
.outputb
= intf_mem_outw
;
1544 info
->io
.inputb
= intf_mem_inl
;
1545 info
->io
.outputb
= intf_mem_outl
;
1549 info
->io
.inputb
= mem_inq
;
1550 info
->io
.outputb
= mem_outq
;
1554 dev_warn(info
->dev
, "Invalid register size: %d\n",
1560 * Calculate the total amount of memory to claim. This is an
1561 * unusual looking calculation, but it avoids claiming any
1562 * more memory than it has to. It will claim everything
1563 * between the first address to the end of the last full
1566 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1567 - (info
->io
.regspacing
- info
->io
.regsize
));
1569 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1572 info
->io
.addr
= ioremap(addr
, mapsize
);
1573 if (info
->io
.addr
== NULL
) {
1574 release_mem_region(addr
, mapsize
);
1581 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1582 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1590 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1591 struct hotmod_vals
{
1595 static struct hotmod_vals hotmod_ops
[] = {
1597 { "remove", HM_REMOVE
},
1600 static struct hotmod_vals hotmod_si
[] = {
1602 { "smic", SI_SMIC
},
1606 static struct hotmod_vals hotmod_as
[] = {
1607 { "mem", IPMI_MEM_ADDR_SPACE
},
1608 { "i/o", IPMI_IO_ADDR_SPACE
},
1612 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1617 s
= strchr(*curr
, ',');
1619 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1624 for (i
= 0; hotmod_ops
[i
].name
; i
++) {
1625 if (strcmp(*curr
, v
[i
].name
) == 0) {
1632 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1636 static int check_hotmod_int_op(const char *curr
, const char *option
,
1637 const char *name
, int *val
)
1641 if (strcmp(curr
, name
) == 0) {
1643 printk(KERN_WARNING PFX
1644 "No option given for '%s'\n",
1648 *val
= simple_strtoul(option
, &n
, 0);
1649 if ((*n
!= '\0') || (*option
== '\0')) {
1650 printk(KERN_WARNING PFX
1651 "Bad option given for '%s'\n",
1660 static struct smi_info
*smi_info_alloc(void)
1662 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1665 spin_lock_init(&info
->si_lock
);
1669 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1671 char *str
= kstrdup(val
, GFP_KERNEL
);
1673 char *next
, *curr
, *s
, *n
, *o
;
1675 enum si_type si_type
;
1685 struct smi_info
*info
;
1690 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1693 while ((ival
>= 0) && isspace(str
[ival
])) {
1698 for (curr
= str
; curr
; curr
= next
) {
1703 ipmb
= 0; /* Choose the default if not specified */
1705 next
= strchr(curr
, ':');
1711 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1716 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1721 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1725 s
= strchr(curr
, ',');
1730 addr
= simple_strtoul(curr
, &n
, 0);
1731 if ((*n
!= '\0') || (*curr
== '\0')) {
1732 printk(KERN_WARNING PFX
"Invalid hotmod address"
1739 s
= strchr(curr
, ',');
1744 o
= strchr(curr
, '=');
1749 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1754 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1759 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1764 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1769 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1776 printk(KERN_WARNING PFX
1777 "Invalid hotmod option '%s'\n",
1783 info
= smi_info_alloc();
1789 info
->addr_source
= SI_HOTMOD
;
1790 info
->si_type
= si_type
;
1791 info
->io
.addr_data
= addr
;
1792 info
->io
.addr_type
= addr_space
;
1793 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1794 info
->io_setup
= mem_setup
;
1796 info
->io_setup
= port_setup
;
1798 info
->io
.addr
= NULL
;
1799 info
->io
.regspacing
= regspacing
;
1800 if (!info
->io
.regspacing
)
1801 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1802 info
->io
.regsize
= regsize
;
1803 if (!info
->io
.regsize
)
1804 info
->io
.regsize
= DEFAULT_REGSPACING
;
1805 info
->io
.regshift
= regshift
;
1808 info
->irq_setup
= std_irq_setup
;
1809 info
->slave_addr
= ipmb
;
1811 if (!add_smi(info
)) {
1812 if (try_smi_init(info
))
1813 cleanup_one_si(info
);
1819 struct smi_info
*e
, *tmp_e
;
1821 mutex_lock(&smi_infos_lock
);
1822 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1823 if (e
->io
.addr_type
!= addr_space
)
1825 if (e
->si_type
!= si_type
)
1827 if (e
->io
.addr_data
== addr
)
1830 mutex_unlock(&smi_infos_lock
);
1839 static int hardcode_find_bmc(void)
1843 struct smi_info
*info
;
1845 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1846 if (!ports
[i
] && !addrs
[i
])
1849 info
= smi_info_alloc();
1853 info
->addr_source
= SI_HARDCODED
;
1854 printk(KERN_INFO PFX
"probing via hardcoded address\n");
1856 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1857 info
->si_type
= SI_KCS
;
1858 } else if (strcmp(si_type
[i
], "smic") == 0) {
1859 info
->si_type
= SI_SMIC
;
1860 } else if (strcmp(si_type
[i
], "bt") == 0) {
1861 info
->si_type
= SI_BT
;
1863 printk(KERN_WARNING PFX
"Interface type specified "
1864 "for interface %d, was invalid: %s\n",
1872 info
->io_setup
= port_setup
;
1873 info
->io
.addr_data
= ports
[i
];
1874 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1875 } else if (addrs
[i
]) {
1877 info
->io_setup
= mem_setup
;
1878 info
->io
.addr_data
= addrs
[i
];
1879 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1881 printk(KERN_WARNING PFX
"Interface type specified "
1882 "for interface %d, but port and address were "
1883 "not set or set to zero.\n", i
);
1888 info
->io
.addr
= NULL
;
1889 info
->io
.regspacing
= regspacings
[i
];
1890 if (!info
->io
.regspacing
)
1891 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1892 info
->io
.regsize
= regsizes
[i
];
1893 if (!info
->io
.regsize
)
1894 info
->io
.regsize
= DEFAULT_REGSPACING
;
1895 info
->io
.regshift
= regshifts
[i
];
1896 info
->irq
= irqs
[i
];
1898 info
->irq_setup
= std_irq_setup
;
1899 info
->slave_addr
= slave_addrs
[i
];
1901 if (!add_smi(info
)) {
1902 if (try_smi_init(info
))
1903 cleanup_one_si(info
);
1914 #include <linux/acpi.h>
1917 * Once we get an ACPI failure, we don't try any more, because we go
1918 * through the tables sequentially. Once we don't find a table, there
1921 static int acpi_failure
;
1923 /* For GPE-type interrupts. */
1924 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
1925 u32 gpe_number
, void *context
)
1927 struct smi_info
*smi_info
= context
;
1928 unsigned long flags
;
1933 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1935 smi_inc_stat(smi_info
, interrupts
);
1938 do_gettimeofday(&t
);
1939 printk("**ACPI_GPE: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1941 smi_event_handler(smi_info
, 0);
1942 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1944 return ACPI_INTERRUPT_HANDLED
;
1947 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
1952 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
1955 static int acpi_gpe_irq_setup(struct smi_info
*info
)
1962 /* FIXME - is level triggered right? */
1963 status
= acpi_install_gpe_handler(NULL
,
1965 ACPI_GPE_LEVEL_TRIGGERED
,
1968 if (status
!= AE_OK
) {
1969 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
1970 " running polled\n", DEVICE_NAME
, info
->irq
);
1974 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
1975 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
1982 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1993 s8 CreatorRevision
[4];
1996 s16 SpecificationRevision
;
1999 * Bit 0 - SCI interrupt supported
2000 * Bit 1 - I/O APIC/SAPIC
2005 * If bit 0 of InterruptType is set, then this is the SCI
2006 * interrupt in the GPEx_STS register.
2013 * If bit 1 of InterruptType is set, then this is the I/O
2014 * APIC/SAPIC interrupt.
2016 u32 GlobalSystemInterrupt
;
2018 /* The actual register address. */
2019 struct acpi_generic_address addr
;
2023 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2026 static int try_init_spmi(struct SPMITable
*spmi
)
2028 struct smi_info
*info
;
2030 if (spmi
->IPMIlegacy
!= 1) {
2031 printk(KERN_INFO PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2035 info
= smi_info_alloc();
2037 printk(KERN_ERR PFX
"Could not allocate SI data (3)\n");
2041 info
->addr_source
= SI_SPMI
;
2042 printk(KERN_INFO PFX
"probing via SPMI\n");
2044 /* Figure out the interface type. */
2045 switch (spmi
->InterfaceType
) {
2047 info
->si_type
= SI_KCS
;
2050 info
->si_type
= SI_SMIC
;
2053 info
->si_type
= SI_BT
;
2056 printk(KERN_INFO PFX
"Unknown ACPI/SPMI SI type %d\n",
2057 spmi
->InterfaceType
);
2062 if (spmi
->InterruptType
& 1) {
2063 /* We've got a GPE interrupt. */
2064 info
->irq
= spmi
->GPE
;
2065 info
->irq_setup
= acpi_gpe_irq_setup
;
2066 } else if (spmi
->InterruptType
& 2) {
2067 /* We've got an APIC/SAPIC interrupt. */
2068 info
->irq
= spmi
->GlobalSystemInterrupt
;
2069 info
->irq_setup
= std_irq_setup
;
2071 /* Use the default interrupt setting. */
2073 info
->irq_setup
= NULL
;
2076 if (spmi
->addr
.bit_width
) {
2077 /* A (hopefully) properly formed register bit width. */
2078 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2080 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2082 info
->io
.regsize
= info
->io
.regspacing
;
2083 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2085 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2086 info
->io_setup
= mem_setup
;
2087 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2088 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2089 info
->io_setup
= port_setup
;
2090 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2093 printk(KERN_WARNING PFX
"Unknown ACPI I/O Address type\n");
2096 info
->io
.addr_data
= spmi
->addr
.address
;
2098 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2100 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2109 static void spmi_find_bmc(void)
2112 struct SPMITable
*spmi
;
2121 for (i
= 0; ; i
++) {
2122 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2123 (struct acpi_table_header
**)&spmi
);
2124 if (status
!= AE_OK
)
2127 try_init_spmi(spmi
);
2131 static int ipmi_pnp_probe(struct pnp_dev
*dev
,
2132 const struct pnp_device_id
*dev_id
)
2134 struct acpi_device
*acpi_dev
;
2135 struct smi_info
*info
;
2136 struct resource
*res
, *res_second
;
2139 unsigned long long tmp
;
2141 acpi_dev
= pnp_acpi_device(dev
);
2145 info
= smi_info_alloc();
2149 info
->addr_source
= SI_ACPI
;
2150 printk(KERN_INFO PFX
"probing via ACPI\n");
2152 handle
= acpi_dev
->handle
;
2153 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2155 /* _IFT tells us the interface type: KCS, BT, etc */
2156 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2157 if (ACPI_FAILURE(status
))
2162 info
->si_type
= SI_KCS
;
2165 info
->si_type
= SI_SMIC
;
2168 info
->si_type
= SI_BT
;
2171 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2175 res
= pnp_get_resource(dev
, IORESOURCE_IO
, 0);
2177 info
->io_setup
= port_setup
;
2178 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2180 res
= pnp_get_resource(dev
, IORESOURCE_MEM
, 0);
2182 info
->io_setup
= mem_setup
;
2183 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2187 dev_err(&dev
->dev
, "no I/O or memory address\n");
2190 info
->io
.addr_data
= res
->start
;
2192 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2193 res_second
= pnp_get_resource(dev
,
2194 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2195 IORESOURCE_IO
: IORESOURCE_MEM
,
2198 if (res_second
->start
> info
->io
.addr_data
)
2199 info
->io
.regspacing
= res_second
->start
- info
->io
.addr_data
;
2201 info
->io
.regsize
= DEFAULT_REGSPACING
;
2202 info
->io
.regshift
= 0;
2204 /* If _GPE exists, use it; otherwise use standard interrupts */
2205 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2206 if (ACPI_SUCCESS(status
)) {
2208 info
->irq_setup
= acpi_gpe_irq_setup
;
2209 } else if (pnp_irq_valid(dev
, 0)) {
2210 info
->irq
= pnp_irq(dev
, 0);
2211 info
->irq_setup
= std_irq_setup
;
2214 info
->dev
= &dev
->dev
;
2215 pnp_set_drvdata(dev
, info
);
2217 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2218 res
, info
->io
.regsize
, info
->io
.regspacing
,
2231 static void ipmi_pnp_remove(struct pnp_dev
*dev
)
2233 struct smi_info
*info
= pnp_get_drvdata(dev
);
2235 cleanup_one_si(info
);
2238 static const struct pnp_device_id pnp_dev_table
[] = {
2243 static struct pnp_driver ipmi_pnp_driver
= {
2244 .name
= DEVICE_NAME
,
2245 .probe
= ipmi_pnp_probe
,
2246 .remove
= ipmi_pnp_remove
,
2247 .id_table
= pnp_dev_table
,
2252 struct dmi_ipmi_data
{
2255 unsigned long base_addr
;
2261 static int decode_dmi(const struct dmi_header
*dm
,
2262 struct dmi_ipmi_data
*dmi
)
2264 const u8
*data
= (const u8
*)dm
;
2265 unsigned long base_addr
;
2267 u8 len
= dm
->length
;
2269 dmi
->type
= data
[4];
2271 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2273 if (base_addr
& 1) {
2275 base_addr
&= 0xFFFE;
2276 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2279 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2281 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2283 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2285 dmi
->irq
= data
[0x11];
2287 /* The top two bits of byte 0x10 hold the register spacing. */
2288 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2289 switch (reg_spacing
) {
2290 case 0x00: /* Byte boundaries */
2293 case 0x01: /* 32-bit boundaries */
2296 case 0x02: /* 16-byte boundaries */
2300 /* Some other interface, just ignore it. */
2306 * Note that technically, the lower bit of the base
2307 * address should be 1 if the address is I/O and 0 if
2308 * the address is in memory. So many systems get that
2309 * wrong (and all that I have seen are I/O) so we just
2310 * ignore that bit and assume I/O. Systems that use
2311 * memory should use the newer spec, anyway.
2313 dmi
->base_addr
= base_addr
& 0xfffe;
2314 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2318 dmi
->slave_addr
= data
[6];
2323 static void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2325 struct smi_info
*info
;
2327 info
= smi_info_alloc();
2329 printk(KERN_ERR PFX
"Could not allocate SI data\n");
2333 info
->addr_source
= SI_SMBIOS
;
2334 printk(KERN_INFO PFX
"probing via SMBIOS\n");
2336 switch (ipmi_data
->type
) {
2337 case 0x01: /* KCS */
2338 info
->si_type
= SI_KCS
;
2340 case 0x02: /* SMIC */
2341 info
->si_type
= SI_SMIC
;
2344 info
->si_type
= SI_BT
;
2351 switch (ipmi_data
->addr_space
) {
2352 case IPMI_MEM_ADDR_SPACE
:
2353 info
->io_setup
= mem_setup
;
2354 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2357 case IPMI_IO_ADDR_SPACE
:
2358 info
->io_setup
= port_setup
;
2359 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2364 printk(KERN_WARNING PFX
"Unknown SMBIOS I/O Address type: %d\n",
2365 ipmi_data
->addr_space
);
2368 info
->io
.addr_data
= ipmi_data
->base_addr
;
2370 info
->io
.regspacing
= ipmi_data
->offset
;
2371 if (!info
->io
.regspacing
)
2372 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2373 info
->io
.regsize
= DEFAULT_REGSPACING
;
2374 info
->io
.regshift
= 0;
2376 info
->slave_addr
= ipmi_data
->slave_addr
;
2378 info
->irq
= ipmi_data
->irq
;
2380 info
->irq_setup
= std_irq_setup
;
2382 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2384 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2391 static void dmi_find_bmc(void)
2393 const struct dmi_device
*dev
= NULL
;
2394 struct dmi_ipmi_data data
;
2397 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2398 memset(&data
, 0, sizeof(data
));
2399 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2402 try_init_dmi(&data
);
2405 #endif /* CONFIG_DMI */
2409 #define PCI_ERMC_CLASSCODE 0x0C0700
2410 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2414 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2416 #define PCI_HP_VENDOR_ID 0x103C
2417 #define PCI_MMC_DEVICE_ID 0x121A
2418 #define PCI_MMC_ADDR_CW 0x10
2420 static void ipmi_pci_cleanup(struct smi_info
*info
)
2422 struct pci_dev
*pdev
= info
->addr_source_data
;
2424 pci_disable_device(pdev
);
2427 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2429 if (info
->si_type
== SI_KCS
) {
2430 unsigned char status
;
2433 info
->io
.regsize
= DEFAULT_REGSIZE
;
2434 info
->io
.regshift
= 0;
2436 info
->handlers
= &kcs_smi_handlers
;
2438 /* detect 1, 4, 16byte spacing */
2439 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2440 info
->io
.regspacing
= regspacing
;
2441 if (info
->io_setup(info
)) {
2443 "Could not setup I/O space\n");
2444 return DEFAULT_REGSPACING
;
2446 /* write invalid cmd */
2447 info
->io
.outputb(&info
->io
, 1, 0x10);
2448 /* read status back */
2449 status
= info
->io
.inputb(&info
->io
, 1);
2450 info
->io_cleanup(info
);
2456 return DEFAULT_REGSPACING
;
2459 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2460 const struct pci_device_id
*ent
)
2463 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2464 struct smi_info
*info
;
2466 info
= smi_info_alloc();
2470 info
->addr_source
= SI_PCI
;
2471 dev_info(&pdev
->dev
, "probing via PCI");
2473 switch (class_type
) {
2474 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2475 info
->si_type
= SI_SMIC
;
2478 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2479 info
->si_type
= SI_KCS
;
2482 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2483 info
->si_type
= SI_BT
;
2488 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2492 rv
= pci_enable_device(pdev
);
2494 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2499 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2500 info
->addr_source_data
= pdev
;
2502 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2503 info
->io_setup
= port_setup
;
2504 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2506 info
->io_setup
= mem_setup
;
2507 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2509 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2511 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2512 info
->io
.regsize
= DEFAULT_REGSIZE
;
2513 info
->io
.regshift
= 0;
2515 info
->irq
= pdev
->irq
;
2517 info
->irq_setup
= std_irq_setup
;
2519 info
->dev
= &pdev
->dev
;
2520 pci_set_drvdata(pdev
, info
);
2522 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2523 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2532 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2534 struct smi_info
*info
= pci_get_drvdata(pdev
);
2535 cleanup_one_si(info
);
2538 static struct pci_device_id ipmi_pci_devices
[] = {
2539 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2543 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2545 static struct pci_driver ipmi_pci_driver
= {
2546 .name
= DEVICE_NAME
,
2547 .id_table
= ipmi_pci_devices
,
2548 .probe
= ipmi_pci_probe
,
2549 .remove
= ipmi_pci_remove
,
2551 #endif /* CONFIG_PCI */
2553 static struct of_device_id ipmi_match
[];
2554 static int ipmi_probe(struct platform_device
*dev
)
2557 const struct of_device_id
*match
;
2558 struct smi_info
*info
;
2559 struct resource resource
;
2560 const __be32
*regsize
, *regspacing
, *regshift
;
2561 struct device_node
*np
= dev
->dev
.of_node
;
2565 dev_info(&dev
->dev
, "probing via device tree\n");
2567 match
= of_match_device(ipmi_match
, &dev
->dev
);
2571 ret
= of_address_to_resource(np
, 0, &resource
);
2573 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2577 regsize
= of_get_property(np
, "reg-size", &proplen
);
2578 if (regsize
&& proplen
!= 4) {
2579 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2583 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2584 if (regspacing
&& proplen
!= 4) {
2585 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2589 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2590 if (regshift
&& proplen
!= 4) {
2591 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2595 info
= smi_info_alloc();
2599 "could not allocate memory for OF probe\n");
2603 info
->si_type
= (enum si_type
) match
->data
;
2604 info
->addr_source
= SI_DEVICETREE
;
2605 info
->irq_setup
= std_irq_setup
;
2607 if (resource
.flags
& IORESOURCE_IO
) {
2608 info
->io_setup
= port_setup
;
2609 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2611 info
->io_setup
= mem_setup
;
2612 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2615 info
->io
.addr_data
= resource
.start
;
2617 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2618 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2619 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2621 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2622 info
->dev
= &dev
->dev
;
2624 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2625 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2628 dev_set_drvdata(&dev
->dev
, info
);
2630 if (add_smi(info
)) {
2638 static int ipmi_remove(struct platform_device
*dev
)
2641 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2646 static struct of_device_id ipmi_match
[] =
2648 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2649 .data
= (void *)(unsigned long) SI_KCS
},
2650 { .type
= "ipmi", .compatible
= "ipmi-smic",
2651 .data
= (void *)(unsigned long) SI_SMIC
},
2652 { .type
= "ipmi", .compatible
= "ipmi-bt",
2653 .data
= (void *)(unsigned long) SI_BT
},
2657 static struct platform_driver ipmi_driver
= {
2659 .name
= DEVICE_NAME
,
2660 .owner
= THIS_MODULE
,
2661 .of_match_table
= ipmi_match
,
2663 .probe
= ipmi_probe
,
2664 .remove
= ipmi_remove
,
2667 static int wait_for_msg_done(struct smi_info
*smi_info
)
2669 enum si_sm_result smi_result
;
2671 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2673 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2674 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2675 schedule_timeout_uninterruptible(1);
2676 smi_result
= smi_info
->handlers
->event(
2677 smi_info
->si_sm
, 100);
2678 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2679 smi_result
= smi_info
->handlers
->event(
2680 smi_info
->si_sm
, 0);
2684 if (smi_result
== SI_SM_HOSED
)
2686 * We couldn't get the state machine to run, so whatever's at
2687 * the port is probably not an IPMI SMI interface.
2694 static int try_get_dev_id(struct smi_info
*smi_info
)
2696 unsigned char msg
[2];
2697 unsigned char *resp
;
2698 unsigned long resp_len
;
2701 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2706 * Do a Get Device ID command, since it comes back with some
2709 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2710 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2711 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2713 rv
= wait_for_msg_done(smi_info
);
2717 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2718 resp
, IPMI_MAX_MSG_LENGTH
);
2720 /* Check and record info from the get device id, in case we need it. */
2721 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2728 static int try_enable_event_buffer(struct smi_info
*smi_info
)
2730 unsigned char msg
[3];
2731 unsigned char *resp
;
2732 unsigned long resp_len
;
2735 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2739 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2740 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2741 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2743 rv
= wait_for_msg_done(smi_info
);
2745 printk(KERN_WARNING PFX
"Error getting response from get"
2746 " global enables command, the event buffer is not"
2751 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2752 resp
, IPMI_MAX_MSG_LENGTH
);
2755 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2756 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2758 printk(KERN_WARNING PFX
"Invalid return from get global"
2759 " enables command, cannot enable the event buffer.\n");
2764 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
)
2765 /* buffer is already enabled, nothing to do. */
2768 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2769 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2770 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
2771 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2773 rv
= wait_for_msg_done(smi_info
);
2775 printk(KERN_WARNING PFX
"Error getting response from set"
2776 " global, enables command, the event buffer is not"
2781 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2782 resp
, IPMI_MAX_MSG_LENGTH
);
2785 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2786 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
2787 printk(KERN_WARNING PFX
"Invalid return from get global,"
2788 "enables command, not enable the event buffer.\n");
2795 * An error when setting the event buffer bit means
2796 * that the event buffer is not supported.
2804 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
2806 struct smi_info
*smi
= m
->private;
2808 return seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
2811 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
2813 return single_open(file
, smi_type_proc_show
, PDE(inode
)->data
);
2816 static const struct file_operations smi_type_proc_ops
= {
2817 .open
= smi_type_proc_open
,
2819 .llseek
= seq_lseek
,
2820 .release
= single_release
,
2823 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
2825 struct smi_info
*smi
= m
->private;
2827 seq_printf(m
, "interrupts_enabled: %d\n",
2828 smi
->irq
&& !smi
->interrupt_disabled
);
2829 seq_printf(m
, "short_timeouts: %u\n",
2830 smi_get_stat(smi
, short_timeouts
));
2831 seq_printf(m
, "long_timeouts: %u\n",
2832 smi_get_stat(smi
, long_timeouts
));
2833 seq_printf(m
, "idles: %u\n",
2834 smi_get_stat(smi
, idles
));
2835 seq_printf(m
, "interrupts: %u\n",
2836 smi_get_stat(smi
, interrupts
));
2837 seq_printf(m
, "attentions: %u\n",
2838 smi_get_stat(smi
, attentions
));
2839 seq_printf(m
, "flag_fetches: %u\n",
2840 smi_get_stat(smi
, flag_fetches
));
2841 seq_printf(m
, "hosed_count: %u\n",
2842 smi_get_stat(smi
, hosed_count
));
2843 seq_printf(m
, "complete_transactions: %u\n",
2844 smi_get_stat(smi
, complete_transactions
));
2845 seq_printf(m
, "events: %u\n",
2846 smi_get_stat(smi
, events
));
2847 seq_printf(m
, "watchdog_pretimeouts: %u\n",
2848 smi_get_stat(smi
, watchdog_pretimeouts
));
2849 seq_printf(m
, "incoming_messages: %u\n",
2850 smi_get_stat(smi
, incoming_messages
));
2854 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
2856 return single_open(file
, smi_si_stats_proc_show
, PDE(inode
)->data
);
2859 static const struct file_operations smi_si_stats_proc_ops
= {
2860 .open
= smi_si_stats_proc_open
,
2862 .llseek
= seq_lseek
,
2863 .release
= single_release
,
2866 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
2868 struct smi_info
*smi
= m
->private;
2870 return seq_printf(m
,
2871 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2872 si_to_str
[smi
->si_type
],
2873 addr_space_to_str
[smi
->io
.addr_type
],
2882 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
2884 return single_open(file
, smi_params_proc_show
, PDE(inode
)->data
);
2887 static const struct file_operations smi_params_proc_ops
= {
2888 .open
= smi_params_proc_open
,
2890 .llseek
= seq_lseek
,
2891 .release
= single_release
,
2895 * oem_data_avail_to_receive_msg_avail
2896 * @info - smi_info structure with msg_flags set
2898 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2899 * Returns 1 indicating need to re-run handle_flags().
2901 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
2903 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
2909 * setup_dell_poweredge_oem_data_handler
2910 * @info - smi_info.device_id must be populated
2912 * Systems that match, but have firmware version < 1.40 may assert
2913 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2914 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2915 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2916 * as RECEIVE_MSG_AVAIL instead.
2918 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2919 * assert the OEM[012] bits, and if it did, the driver would have to
2920 * change to handle that properly, we don't actually check for the
2922 * Device ID = 0x20 BMC on PowerEdge 8G servers
2923 * Device Revision = 0x80
2924 * Firmware Revision1 = 0x01 BMC version 1.40
2925 * Firmware Revision2 = 0x40 BCD encoded
2926 * IPMI Version = 0x51 IPMI 1.5
2927 * Manufacturer ID = A2 02 00 Dell IANA
2929 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2930 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2933 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2934 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2935 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2936 #define DELL_IANA_MFR_ID 0x0002a2
2937 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
2939 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2940 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
2941 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
2942 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
2943 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
2944 smi_info
->oem_data_avail_handler
=
2945 oem_data_avail_to_receive_msg_avail
;
2946 } else if (ipmi_version_major(id
) < 1 ||
2947 (ipmi_version_major(id
) == 1 &&
2948 ipmi_version_minor(id
) < 5)) {
2949 smi_info
->oem_data_avail_handler
=
2950 oem_data_avail_to_receive_msg_avail
;
2955 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2956 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
2958 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
2960 /* Make it a response */
2961 msg
->rsp
[0] = msg
->data
[0] | 4;
2962 msg
->rsp
[1] = msg
->data
[1];
2963 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
2965 smi_info
->curr_msg
= NULL
;
2966 deliver_recv_msg(smi_info
, msg
);
2970 * dell_poweredge_bt_xaction_handler
2971 * @info - smi_info.device_id must be populated
2973 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2974 * not respond to a Get SDR command if the length of the data
2975 * requested is exactly 0x3A, which leads to command timeouts and no
2976 * data returned. This intercepts such commands, and causes userspace
2977 * callers to try again with a different-sized buffer, which succeeds.
2980 #define STORAGE_NETFN 0x0A
2981 #define STORAGE_CMD_GET_SDR 0x23
2982 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
2983 unsigned long unused
,
2986 struct smi_info
*smi_info
= in
;
2987 unsigned char *data
= smi_info
->curr_msg
->data
;
2988 unsigned int size
= smi_info
->curr_msg
->data_size
;
2990 (data
[0]>>2) == STORAGE_NETFN
&&
2991 data
[1] == STORAGE_CMD_GET_SDR
&&
2993 return_hosed_msg_badsize(smi_info
);
2999 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3000 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3004 * setup_dell_poweredge_bt_xaction_handler
3005 * @info - smi_info.device_id must be filled in already
3007 * Fills in smi_info.device_id.start_transaction_pre_hook
3008 * when we know what function to use there.
3011 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3013 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3014 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3015 smi_info
->si_type
== SI_BT
)
3016 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3020 * setup_oem_data_handler
3021 * @info - smi_info.device_id must be filled in already
3023 * Fills in smi_info.device_id.oem_data_available_handler
3024 * when we know what function to use there.
3027 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3029 setup_dell_poweredge_oem_data_handler(smi_info
);
3032 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3034 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3037 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
3039 if (smi_info
->intf
) {
3041 * The timer and thread are only running if the
3042 * interface has been started up and registered.
3044 if (smi_info
->thread
!= NULL
)
3045 kthread_stop(smi_info
->thread
);
3046 del_timer_sync(&smi_info
->si_timer
);
3050 static struct ipmi_default_vals
3056 { .type
= SI_KCS
, .port
= 0xca2 },
3057 { .type
= SI_SMIC
, .port
= 0xca9 },
3058 { .type
= SI_BT
, .port
= 0xe4 },
3062 static void default_find_bmc(void)
3064 struct smi_info
*info
;
3067 for (i
= 0; ; i
++) {
3068 if (!ipmi_defaults
[i
].port
)
3071 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
3074 info
= smi_info_alloc();
3078 info
->addr_source
= SI_DEFAULT
;
3080 info
->si_type
= ipmi_defaults
[i
].type
;
3081 info
->io_setup
= port_setup
;
3082 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
3083 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
3085 info
->io
.addr
= NULL
;
3086 info
->io
.regspacing
= DEFAULT_REGSPACING
;
3087 info
->io
.regsize
= DEFAULT_REGSPACING
;
3088 info
->io
.regshift
= 0;
3090 if (add_smi(info
) == 0) {
3091 if ((try_smi_init(info
)) == 0) {
3093 printk(KERN_INFO PFX
"Found default %s"
3094 " state machine at %s address 0x%lx\n",
3095 si_to_str
[info
->si_type
],
3096 addr_space_to_str
[info
->io
.addr_type
],
3097 info
->io
.addr_data
);
3099 cleanup_one_si(info
);
3106 static int is_new_interface(struct smi_info
*info
)
3110 list_for_each_entry(e
, &smi_infos
, link
) {
3111 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3113 if (e
->io
.addr_data
== info
->io
.addr_data
)
3120 static int add_smi(struct smi_info
*new_smi
)
3124 printk(KERN_INFO PFX
"Adding %s-specified %s state machine",
3125 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3126 si_to_str
[new_smi
->si_type
]);
3127 mutex_lock(&smi_infos_lock
);
3128 if (!is_new_interface(new_smi
)) {
3129 printk(KERN_CONT
" duplicate interface\n");
3134 printk(KERN_CONT
"\n");
3136 /* So we know not to free it unless we have allocated one. */
3137 new_smi
->intf
= NULL
;
3138 new_smi
->si_sm
= NULL
;
3139 new_smi
->handlers
= NULL
;
3141 list_add_tail(&new_smi
->link
, &smi_infos
);
3144 mutex_unlock(&smi_infos_lock
);
3148 static int try_smi_init(struct smi_info
*new_smi
)
3153 printk(KERN_INFO PFX
"Trying %s-specified %s state"
3154 " machine at %s address 0x%lx, slave address 0x%x,"
3156 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3157 si_to_str
[new_smi
->si_type
],
3158 addr_space_to_str
[new_smi
->io
.addr_type
],
3159 new_smi
->io
.addr_data
,
3160 new_smi
->slave_addr
, new_smi
->irq
);
3162 switch (new_smi
->si_type
) {
3164 new_smi
->handlers
= &kcs_smi_handlers
;
3168 new_smi
->handlers
= &smic_smi_handlers
;
3172 new_smi
->handlers
= &bt_smi_handlers
;
3176 /* No support for anything else yet. */
3181 /* Allocate the state machine's data and initialize it. */
3182 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3183 if (!new_smi
->si_sm
) {
3185 "Could not allocate state machine memory\n");
3189 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3192 /* Now that we know the I/O size, we can set up the I/O. */
3193 rv
= new_smi
->io_setup(new_smi
);
3195 printk(KERN_ERR PFX
"Could not set up I/O space\n");
3199 /* Do low-level detection first. */
3200 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3201 if (new_smi
->addr_source
)
3202 printk(KERN_INFO PFX
"Interface detection failed\n");
3208 * Attempt a get device id command. If it fails, we probably
3209 * don't have a BMC here.
3211 rv
= try_get_dev_id(new_smi
);
3213 if (new_smi
->addr_source
)
3214 printk(KERN_INFO PFX
"There appears to be no BMC"
3215 " at this location\n");
3219 setup_oem_data_handler(new_smi
);
3220 setup_xaction_handlers(new_smi
);
3222 INIT_LIST_HEAD(&(new_smi
->xmit_msgs
));
3223 INIT_LIST_HEAD(&(new_smi
->hp_xmit_msgs
));
3224 new_smi
->curr_msg
= NULL
;
3225 atomic_set(&new_smi
->req_events
, 0);
3226 new_smi
->run_to_completion
= 0;
3227 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3228 atomic_set(&new_smi
->stats
[i
], 0);
3230 new_smi
->interrupt_disabled
= 1;
3231 atomic_set(&new_smi
->stop_operation
, 0);
3232 new_smi
->intf_num
= smi_num
;
3235 rv
= try_enable_event_buffer(new_smi
);
3237 new_smi
->has_event_buffer
= 1;
3240 * Start clearing the flags before we enable interrupts or the
3241 * timer to avoid racing with the timer.
3243 start_clear_flags(new_smi
);
3244 /* IRQ is defined to be set when non-zero. */
3246 new_smi
->si_state
= SI_CLEARING_FLAGS_THEN_SET_IRQ
;
3248 if (!new_smi
->dev
) {
3250 * If we don't already have a device from something
3251 * else (like PCI), then register a new one.
3253 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3255 if (!new_smi
->pdev
) {
3257 "Unable to allocate platform device\n");
3260 new_smi
->dev
= &new_smi
->pdev
->dev
;
3261 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3263 rv
= platform_device_add(new_smi
->pdev
);
3266 "Unable to register system interface device:"
3271 new_smi
->dev_registered
= 1;
3274 rv
= ipmi_register_smi(&handlers
,
3276 &new_smi
->device_id
,
3279 new_smi
->slave_addr
);
3281 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3283 goto out_err_stop_timer
;
3286 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3290 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3291 goto out_err_stop_timer
;
3294 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3295 &smi_si_stats_proc_ops
,
3298 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3299 goto out_err_stop_timer
;
3302 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3303 &smi_params_proc_ops
,
3306 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3307 goto out_err_stop_timer
;
3310 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3311 si_to_str
[new_smi
->si_type
]);
3316 atomic_inc(&new_smi
->stop_operation
);
3317 wait_for_timer_and_thread(new_smi
);
3320 new_smi
->interrupt_disabled
= 1;
3322 if (new_smi
->intf
) {
3323 ipmi_unregister_smi(new_smi
->intf
);
3324 new_smi
->intf
= NULL
;
3327 if (new_smi
->irq_cleanup
) {
3328 new_smi
->irq_cleanup(new_smi
);
3329 new_smi
->irq_cleanup
= NULL
;
3333 * Wait until we know that we are out of any interrupt
3334 * handlers might have been running before we freed the
3337 synchronize_sched();
3339 if (new_smi
->si_sm
) {
3340 if (new_smi
->handlers
)
3341 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3342 kfree(new_smi
->si_sm
);
3343 new_smi
->si_sm
= NULL
;
3345 if (new_smi
->addr_source_cleanup
) {
3346 new_smi
->addr_source_cleanup(new_smi
);
3347 new_smi
->addr_source_cleanup
= NULL
;
3349 if (new_smi
->io_cleanup
) {
3350 new_smi
->io_cleanup(new_smi
);
3351 new_smi
->io_cleanup
= NULL
;
3354 if (new_smi
->dev_registered
) {
3355 platform_device_unregister(new_smi
->pdev
);
3356 new_smi
->dev_registered
= 0;
3362 static int init_ipmi_si(void)
3368 enum ipmi_addr_src type
= SI_INVALID
;
3374 rv
= platform_driver_register(&ipmi_driver
);
3376 printk(KERN_ERR PFX
"Unable to register driver: %d\n", rv
);
3381 /* Parse out the si_type string into its components. */
3384 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3386 str
= strchr(str
, ',');
3396 printk(KERN_INFO
"IPMI System Interface driver.\n");
3398 /* If the user gave us a device, they presumably want us to use it */
3399 if (!hardcode_find_bmc())
3403 rv
= pci_register_driver(&ipmi_pci_driver
);
3405 printk(KERN_ERR PFX
"Unable to register PCI driver: %d\n", rv
);
3411 pnp_register_driver(&ipmi_pnp_driver
);
3423 /* We prefer devices with interrupts, but in the case of a machine
3424 with multiple BMCs we assume that there will be several instances
3425 of a given type so if we succeed in registering a type then also
3426 try to register everything else of the same type */
3428 mutex_lock(&smi_infos_lock
);
3429 list_for_each_entry(e
, &smi_infos
, link
) {
3430 /* Try to register a device if it has an IRQ and we either
3431 haven't successfully registered a device yet or this
3432 device has the same type as one we successfully registered */
3433 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3434 if (!try_smi_init(e
)) {
3435 type
= e
->addr_source
;
3440 /* type will only have been set if we successfully registered an si */
3442 mutex_unlock(&smi_infos_lock
);
3446 /* Fall back to the preferred device */
3448 list_for_each_entry(e
, &smi_infos
, link
) {
3449 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3450 if (!try_smi_init(e
)) {
3451 type
= e
->addr_source
;
3455 mutex_unlock(&smi_infos_lock
);
3460 if (si_trydefaults
) {
3461 mutex_lock(&smi_infos_lock
);
3462 if (list_empty(&smi_infos
)) {
3463 /* No BMC was found, try defaults. */
3464 mutex_unlock(&smi_infos_lock
);
3467 mutex_unlock(&smi_infos_lock
);
3470 mutex_lock(&smi_infos_lock
);
3471 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3472 mutex_unlock(&smi_infos_lock
);
3474 printk(KERN_WARNING PFX
3475 "Unable to find any System Interface(s)\n");
3478 mutex_unlock(&smi_infos_lock
);
3482 module_init(init_ipmi_si
);
3484 static void cleanup_one_si(struct smi_info
*to_clean
)
3487 unsigned long flags
;
3492 list_del(&to_clean
->link
);
3494 /* Tell the driver that we are shutting down. */
3495 atomic_inc(&to_clean
->stop_operation
);
3498 * Make sure the timer and thread are stopped and will not run
3501 wait_for_timer_and_thread(to_clean
);
3504 * Timeouts are stopped, now make sure the interrupts are off
3505 * for the device. A little tricky with locks to make sure
3506 * there are no races.
3508 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3509 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3510 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3512 schedule_timeout_uninterruptible(1);
3513 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3515 disable_si_irq(to_clean
);
3516 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3517 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3519 schedule_timeout_uninterruptible(1);
3522 /* Clean up interrupts and make sure that everything is done. */
3523 if (to_clean
->irq_cleanup
)
3524 to_clean
->irq_cleanup(to_clean
);
3525 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3527 schedule_timeout_uninterruptible(1);
3531 rv
= ipmi_unregister_smi(to_clean
->intf
);
3534 printk(KERN_ERR PFX
"Unable to unregister device: errno=%d\n",
3538 if (to_clean
->handlers
)
3539 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3541 kfree(to_clean
->si_sm
);
3543 if (to_clean
->addr_source_cleanup
)
3544 to_clean
->addr_source_cleanup(to_clean
);
3545 if (to_clean
->io_cleanup
)
3546 to_clean
->io_cleanup(to_clean
);
3548 if (to_clean
->dev_registered
)
3549 platform_device_unregister(to_clean
->pdev
);
3554 static void cleanup_ipmi_si(void)
3556 struct smi_info
*e
, *tmp_e
;
3563 pci_unregister_driver(&ipmi_pci_driver
);
3567 pnp_unregister_driver(&ipmi_pnp_driver
);
3570 platform_driver_unregister(&ipmi_driver
);
3572 mutex_lock(&smi_infos_lock
);
3573 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3575 mutex_unlock(&smi_infos_lock
);
3577 module_exit(cleanup_ipmi_si
);
3579 MODULE_LICENSE("GPL");
3580 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3581 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3582 " system interfaces.");