mm/thp: fix __split_huge_pmd_locked() for migration PMD
[linux/fpc-iii.git] / kernel / sched / pelt.h
blobafff644da06500b4b817925e8f35824b8b69d0c5
1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
10 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
11 int update_irq_load_avg(struct rq *rq, u64 running);
12 #else
13 static inline int
14 update_irq_load_avg(struct rq *rq, u64 running)
16 return 0;
18 #endif
21 * When a task is dequeued, its estimated utilization should not be update if
22 * its util_avg has not been updated at least once.
23 * This flag is used to synchronize util_avg updates with util_est updates.
24 * We map this information into the LSB bit of the utilization saved at
25 * dequeue time (i.e. util_est.dequeued).
27 #define UTIL_AVG_UNCHANGED 0x1
29 static inline void cfs_se_util_change(struct sched_avg *avg)
31 unsigned int enqueued;
33 if (!sched_feat(UTIL_EST))
34 return;
36 /* Avoid store if the flag has been already set */
37 enqueued = avg->util_est.enqueued;
38 if (!(enqueued & UTIL_AVG_UNCHANGED))
39 return;
41 /* Reset flag to report util_avg has been updated */
42 enqueued &= ~UTIL_AVG_UNCHANGED;
43 WRITE_ONCE(avg->util_est.enqueued, enqueued);
47 * The clock_pelt scales the time to reflect the effective amount of
48 * computation done during the running delta time but then sync back to
49 * clock_task when rq is idle.
52 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
53 * @ max capacity ------******---------------******---------------
54 * @ half capacity ------************---------************---------
55 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
58 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
60 if (unlikely(is_idle_task(rq->curr))) {
61 /* The rq is idle, we can sync to clock_task */
62 rq->clock_pelt = rq_clock_task(rq);
63 return;
67 * When a rq runs at a lower compute capacity, it will need
68 * more time to do the same amount of work than at max
69 * capacity. In order to be invariant, we scale the delta to
70 * reflect how much work has been really done.
71 * Running longer results in stealing idle time that will
72 * disturb the load signal compared to max capacity. This
73 * stolen idle time will be automatically reflected when the
74 * rq will be idle and the clock will be synced with
75 * rq_clock_task.
79 * Scale the elapsed time to reflect the real amount of
80 * computation
82 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
83 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
85 rq->clock_pelt += delta;
89 * When rq becomes idle, we have to check if it has lost idle time
90 * because it was fully busy. A rq is fully used when the /Sum util_sum
91 * is greater or equal to:
92 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
93 * For optimization and computing rounding purpose, we don't take into account
94 * the position in the current window (period_contrib) and we use the higher
95 * bound of util_sum to decide.
97 static inline void update_idle_rq_clock_pelt(struct rq *rq)
99 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
100 u32 util_sum = rq->cfs.avg.util_sum;
101 util_sum += rq->avg_rt.util_sum;
102 util_sum += rq->avg_dl.util_sum;
105 * Reflecting stolen time makes sense only if the idle
106 * phase would be present at max capacity. As soon as the
107 * utilization of a rq has reached the maximum value, it is
108 * considered as an always runnig rq without idle time to
109 * steal. This potential idle time is considered as lost in
110 * this case. We keep track of this lost idle time compare to
111 * rq's clock_task.
113 if (util_sum >= divider)
114 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
117 static inline u64 rq_clock_pelt(struct rq *rq)
119 lockdep_assert_held(&rq->lock);
120 assert_clock_updated(rq);
122 return rq->clock_pelt - rq->lost_idle_time;
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
127 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
129 if (unlikely(cfs_rq->throttle_count))
130 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
132 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
134 #else
135 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
137 return rq_clock_pelt(rq_of(cfs_rq));
139 #endif
141 #else
143 static inline int
144 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
146 return 0;
149 static inline int
150 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
152 return 0;
155 static inline int
156 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
158 return 0;
161 static inline int
162 update_irq_load_avg(struct rq *rq, u64 running)
164 return 0;
167 static inline u64 rq_clock_pelt(struct rq *rq)
169 return rq_clock_task(rq);
172 static inline void
173 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
175 static inline void
176 update_idle_rq_clock_pelt(struct rq *rq) { }
178 #endif