2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now
, struct sched_entity
*se
);
5 int __update_load_avg_se(u64 now
, struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
6 int __update_load_avg_cfs_rq(u64 now
, struct cfs_rq
*cfs_rq
);
7 int update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
8 int update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
10 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
11 int update_irq_load_avg(struct rq
*rq
, u64 running
);
14 update_irq_load_avg(struct rq
*rq
, u64 running
)
21 * When a task is dequeued, its estimated utilization should not be update if
22 * its util_avg has not been updated at least once.
23 * This flag is used to synchronize util_avg updates with util_est updates.
24 * We map this information into the LSB bit of the utilization saved at
25 * dequeue time (i.e. util_est.dequeued).
27 #define UTIL_AVG_UNCHANGED 0x1
29 static inline void cfs_se_util_change(struct sched_avg
*avg
)
31 unsigned int enqueued
;
33 if (!sched_feat(UTIL_EST
))
36 /* Avoid store if the flag has been already set */
37 enqueued
= avg
->util_est
.enqueued
;
38 if (!(enqueued
& UTIL_AVG_UNCHANGED
))
41 /* Reset flag to report util_avg has been updated */
42 enqueued
&= ~UTIL_AVG_UNCHANGED
;
43 WRITE_ONCE(avg
->util_est
.enqueued
, enqueued
);
47 * The clock_pelt scales the time to reflect the effective amount of
48 * computation done during the running delta time but then sync back to
49 * clock_task when rq is idle.
52 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
53 * @ max capacity ------******---------------******---------------
54 * @ half capacity ------************---------************---------
55 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
58 static inline void update_rq_clock_pelt(struct rq
*rq
, s64 delta
)
60 if (unlikely(is_idle_task(rq
->curr
))) {
61 /* The rq is idle, we can sync to clock_task */
62 rq
->clock_pelt
= rq_clock_task(rq
);
67 * When a rq runs at a lower compute capacity, it will need
68 * more time to do the same amount of work than at max
69 * capacity. In order to be invariant, we scale the delta to
70 * reflect how much work has been really done.
71 * Running longer results in stealing idle time that will
72 * disturb the load signal compared to max capacity. This
73 * stolen idle time will be automatically reflected when the
74 * rq will be idle and the clock will be synced with
79 * Scale the elapsed time to reflect the real amount of
82 delta
= cap_scale(delta
, arch_scale_cpu_capacity(cpu_of(rq
)));
83 delta
= cap_scale(delta
, arch_scale_freq_capacity(cpu_of(rq
)));
85 rq
->clock_pelt
+= delta
;
89 * When rq becomes idle, we have to check if it has lost idle time
90 * because it was fully busy. A rq is fully used when the /Sum util_sum
91 * is greater or equal to:
92 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
93 * For optimization and computing rounding purpose, we don't take into account
94 * the position in the current window (period_contrib) and we use the higher
95 * bound of util_sum to decide.
97 static inline void update_idle_rq_clock_pelt(struct rq
*rq
)
99 u32 divider
= ((LOAD_AVG_MAX
- 1024) << SCHED_CAPACITY_SHIFT
) - LOAD_AVG_MAX
;
100 u32 util_sum
= rq
->cfs
.avg
.util_sum
;
101 util_sum
+= rq
->avg_rt
.util_sum
;
102 util_sum
+= rq
->avg_dl
.util_sum
;
105 * Reflecting stolen time makes sense only if the idle
106 * phase would be present at max capacity. As soon as the
107 * utilization of a rq has reached the maximum value, it is
108 * considered as an always runnig rq without idle time to
109 * steal. This potential idle time is considered as lost in
110 * this case. We keep track of this lost idle time compare to
113 if (util_sum
>= divider
)
114 rq
->lost_idle_time
+= rq_clock_task(rq
) - rq
->clock_pelt
;
117 static inline u64
rq_clock_pelt(struct rq
*rq
)
119 lockdep_assert_held(&rq
->lock
);
120 assert_clock_updated(rq
);
122 return rq
->clock_pelt
- rq
->lost_idle_time
;
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
127 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
129 if (unlikely(cfs_rq
->throttle_count
))
130 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
132 return rq_clock_pelt(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
135 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
137 return rq_clock_pelt(rq_of(cfs_rq
));
144 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
150 update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
156 update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
162 update_irq_load_avg(struct rq
*rq
, u64 running
)
167 static inline u64
rq_clock_pelt(struct rq
*rq
)
169 return rq_clock_task(rq
);
173 update_rq_clock_pelt(struct rq
*rq
, s64 delta
) { }
176 update_idle_rq_clock_pelt(struct rq
*rq
) { }