ARC: [arcompact] brown paper bag bug in unaligned access delay slot fixup
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blob9ea70127074d19973e3213a622d996cdf5bc846f
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
84 fe = (struct ocfs2_dinode *) bh->b_data;
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
123 brelse(buffer_cache_bh);
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
129 err = 0;
131 bail:
132 brelse(bh);
134 return err;
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
168 if (max_blocks < count)
169 count = max_blocks;
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
192 bh_result->b_size = count << inode->i_blkbits;
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
215 bail:
216 if (err < 0)
217 err = -EIO;
219 return err;
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
235 size = i_size_read(inode);
237 if (size > PAGE_CACHE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
254 SetPageUptodate(page);
256 return 0;
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 int ret;
262 struct buffer_head *di_bh = NULL;
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
277 brelse(di_bh);
278 return ret;
281 static int ocfs2_readpage(struct file *file, struct page *page)
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
398 return err;
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
418 return block_write_full_page(page, ocfs2_get_block, wbc);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
454 return ret;
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
496 bail:
497 status = err ? 0 : p_blkno;
499 return status;
503 * TODO: Make this into a generic get_blocks function.
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
510 * This function is called directly from get_more_blocks in direct-io.c.
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 struct buffer_head *bh_result, int create)
518 int ret;
519 u32 cpos = 0;
520 int alloc_locked = 0;
521 u64 p_blkno, inode_blocks, contig_blocks;
522 unsigned int ext_flags;
523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0;
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 &contig_blocks, &ext_flags);
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
558 alloc_locked = 1;
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 if (clusters_to_alloc > contig_blocks)
564 clusters_to_alloc = contig_blocks;
566 /* allocate extent and insert them into the extent tree */
567 ret = ocfs2_extend_allocation(inode, cpos,
568 clusters_to_alloc, 0);
569 if (ret < 0) {
570 mlog_errno(ret);
571 goto bail;
574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 &contig_blocks, &ext_flags);
576 if (ret < 0) {
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
579 ret = -EIO;
580 goto bail;
585 * get_more_blocks() expects us to describe a hole by clearing
586 * the mapped bit on bh_result().
588 * Consider an unwritten extent as a hole.
590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591 map_bh(bh_result, inode->i_sb, p_blkno);
592 else
593 clear_buffer_mapped(bh_result);
595 /* make sure we don't map more than max_blocks blocks here as
596 that's all the kernel will handle at this point. */
597 if (max_blocks < contig_blocks)
598 contig_blocks = max_blocks;
599 bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601 if (alloc_locked)
602 ocfs2_inode_unlock(inode, 1);
603 return ret;
607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
609 * to protect io on one node from truncation on another.
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612 loff_t offset,
613 ssize_t bytes,
614 void *private)
616 struct inode *inode = file_inode(iocb->ki_filp);
617 int level;
619 /* this io's submitter should not have unlocked this before we could */
620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
622 if (ocfs2_iocb_is_sem_locked(iocb))
623 ocfs2_iocb_clear_sem_locked(iocb);
625 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 ocfs2_iocb_clear_unaligned_aio(iocb);
628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
631 ocfs2_iocb_clear_rw_locked(iocb);
633 level = ocfs2_iocb_rw_locked_level(iocb);
634 ocfs2_rw_unlock(inode, level);
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
639 if (!page_has_buffers(page))
640 return 0;
641 return try_to_free_buffers(page);
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 struct inode *inode, loff_t offset)
647 int ret = 0;
648 u32 v_cpos = 0;
649 u32 p_cpos = 0;
650 unsigned int num_clusters = 0;
651 unsigned int ext_flags = 0;
653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 &num_clusters, &ext_flags);
656 if (ret < 0) {
657 mlog_errno(ret);
658 return ret;
661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 return 1;
664 return 0;
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668 struct inode *inode, loff_t offset,
669 u64 zero_len, int cluster_align)
671 u32 p_cpos = 0;
672 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673 unsigned int num_clusters = 0;
674 unsigned int ext_flags = 0;
675 int ret = 0;
677 if (offset <= i_size_read(inode) || cluster_align)
678 return 0;
680 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681 &ext_flags);
682 if (ret < 0) {
683 mlog_errno(ret);
684 return ret;
687 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688 u64 s = i_size_read(inode);
689 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
690 (do_div(s, osb->s_clustersize) >> 9);
692 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693 zero_len >> 9, GFP_NOFS, false);
694 if (ret < 0)
695 mlog_errno(ret);
698 return ret;
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702 struct inode *inode, loff_t offset)
704 u64 zero_start, zero_len, total_zero_len;
705 u32 p_cpos = 0, clusters_to_add;
706 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707 unsigned int num_clusters = 0;
708 unsigned int ext_flags = 0;
709 u32 size_div, offset_div;
710 int ret = 0;
713 u64 o = offset;
714 u64 s = i_size_read(inode);
716 offset_div = do_div(o, osb->s_clustersize);
717 size_div = do_div(s, osb->s_clustersize);
720 if (offset <= i_size_read(inode))
721 return 0;
723 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725 total_zero_len = offset - i_size_read(inode);
726 if (clusters_to_add)
727 total_zero_len -= offset_div;
729 /* Allocate clusters to fill out holes, and this is only needed
730 * when we add more than one clusters. Otherwise the cluster will
731 * be allocated during direct IO */
732 if (clusters_to_add > 1) {
733 ret = ocfs2_extend_allocation(inode,
734 OCFS2_I(inode)->ip_clusters,
735 clusters_to_add - 1, 0);
736 if (ret) {
737 mlog_errno(ret);
738 goto out;
742 while (total_zero_len) {
743 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744 &ext_flags);
745 if (ret < 0) {
746 mlog_errno(ret);
747 goto out;
750 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751 size_div;
752 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753 size_div;
754 zero_len = min(total_zero_len, zero_len);
756 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758 zero_start >> 9, zero_len >> 9,
759 GFP_NOFS, false);
760 if (ret < 0) {
761 mlog_errno(ret);
762 goto out;
766 total_zero_len -= zero_len;
767 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
769 /* Only at first iteration can be cluster not aligned.
770 * So set size_div to 0 for the rest */
771 size_div = 0;
774 out:
775 return ret;
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779 struct iov_iter *iter,
780 loff_t offset)
782 ssize_t ret = 0;
783 ssize_t written = 0;
784 bool orphaned = false;
785 int is_overwrite = 0;
786 struct file *file = iocb->ki_filp;
787 struct inode *inode = file_inode(file)->i_mapping->host;
788 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789 struct buffer_head *di_bh = NULL;
790 size_t count = iter->count;
791 journal_t *journal = osb->journal->j_journal;
792 u64 zero_len_head, zero_len_tail;
793 int cluster_align_head, cluster_align_tail;
794 loff_t final_size = offset + count;
795 int append_write = offset >= i_size_read(inode) ? 1 : 0;
796 unsigned int num_clusters = 0;
797 unsigned int ext_flags = 0;
800 u64 o = offset;
801 u64 s = i_size_read(inode);
803 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804 cluster_align_head = !zero_len_head;
806 zero_len_tail = osb->s_clustersize -
807 do_div(s, osb->s_clustersize);
808 if ((offset - i_size_read(inode)) < zero_len_tail)
809 zero_len_tail = offset - i_size_read(inode);
810 cluster_align_tail = !zero_len_tail;
814 * when final_size > inode->i_size, inode->i_size will be
815 * updated after direct write, so add the inode to orphan
816 * dir first.
818 if (final_size > i_size_read(inode)) {
819 ret = ocfs2_add_inode_to_orphan(osb, inode);
820 if (ret < 0) {
821 mlog_errno(ret);
822 goto out;
824 orphaned = true;
827 if (append_write) {
828 ret = ocfs2_inode_lock(inode, NULL, 1);
829 if (ret < 0) {
830 mlog_errno(ret);
831 goto clean_orphan;
834 /* zeroing out the previously allocated cluster tail
835 * that but not zeroed */
836 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838 zero_len_tail, cluster_align_tail);
839 else
840 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841 offset);
842 if (ret < 0) {
843 mlog_errno(ret);
844 ocfs2_inode_unlock(inode, 1);
845 goto clean_orphan;
848 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849 if (is_overwrite < 0) {
850 mlog_errno(is_overwrite);
851 ocfs2_inode_unlock(inode, 1);
852 goto clean_orphan;
855 ocfs2_inode_unlock(inode, 1);
858 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
859 offset, ocfs2_direct_IO_get_blocks,
860 ocfs2_dio_end_io, NULL, 0);
861 if (unlikely(written < 0)) {
862 loff_t i_size = i_size_read(inode);
864 if (offset + count > i_size) {
865 ret = ocfs2_inode_lock(inode, &di_bh, 1);
866 if (ret < 0) {
867 mlog_errno(ret);
868 goto clean_orphan;
871 if (i_size == i_size_read(inode)) {
872 ret = ocfs2_truncate_file(inode, di_bh,
873 i_size);
874 if (ret < 0) {
875 if (ret != -ENOSPC)
876 mlog_errno(ret);
878 ocfs2_inode_unlock(inode, 1);
879 brelse(di_bh);
880 goto clean_orphan;
884 ocfs2_inode_unlock(inode, 1);
885 brelse(di_bh);
887 ret = jbd2_journal_force_commit(journal);
888 if (ret < 0)
889 mlog_errno(ret);
891 } else if (written > 0 && append_write && !is_overwrite &&
892 !cluster_align_head) {
893 /* zeroing out the allocated cluster head */
894 u32 p_cpos = 0;
895 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
897 ret = ocfs2_inode_lock(inode, NULL, 0);
898 if (ret < 0) {
899 mlog_errno(ret);
900 goto clean_orphan;
903 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904 &num_clusters, &ext_flags);
905 if (ret < 0) {
906 mlog_errno(ret);
907 ocfs2_inode_unlock(inode, 0);
908 goto clean_orphan;
911 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
913 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914 (u64)p_cpos << (osb->s_clustersize_bits - 9),
915 zero_len_head >> 9, GFP_NOFS, false);
916 if (ret < 0)
917 mlog_errno(ret);
919 ocfs2_inode_unlock(inode, 0);
922 clean_orphan:
923 if (orphaned) {
924 int tmp_ret;
925 int update_isize = written > 0 ? 1 : 0;
926 loff_t end = update_isize ? offset + written : 0;
928 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929 update_isize, end);
930 if (tmp_ret < 0) {
931 ret = tmp_ret;
932 goto out;
935 tmp_ret = jbd2_journal_force_commit(journal);
936 if (tmp_ret < 0) {
937 ret = tmp_ret;
938 mlog_errno(tmp_ret);
942 out:
943 if (ret >= 0)
944 ret = written;
945 return ret;
948 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
949 loff_t offset)
951 struct file *file = iocb->ki_filp;
952 struct inode *inode = file_inode(file)->i_mapping->host;
953 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
954 int full_coherency = !(osb->s_mount_opt &
955 OCFS2_MOUNT_COHERENCY_BUFFERED);
958 * Fallback to buffered I/O if we see an inode without
959 * extents.
961 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
962 return 0;
964 /* Fallback to buffered I/O if we are appending and
965 * concurrent O_DIRECT writes are allowed.
967 if (i_size_read(inode) <= offset && !full_coherency)
968 return 0;
970 if (iov_iter_rw(iter) == READ)
971 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
972 iter, offset,
973 ocfs2_direct_IO_get_blocks,
974 ocfs2_dio_end_io, NULL, 0);
975 else
976 return ocfs2_direct_IO_write(iocb, iter, offset);
979 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
980 u32 cpos,
981 unsigned int *start,
982 unsigned int *end)
984 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
986 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
987 unsigned int cpp;
989 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
991 cluster_start = cpos % cpp;
992 cluster_start = cluster_start << osb->s_clustersize_bits;
994 cluster_end = cluster_start + osb->s_clustersize;
997 BUG_ON(cluster_start > PAGE_SIZE);
998 BUG_ON(cluster_end > PAGE_SIZE);
1000 if (start)
1001 *start = cluster_start;
1002 if (end)
1003 *end = cluster_end;
1007 * 'from' and 'to' are the region in the page to avoid zeroing.
1009 * If pagesize > clustersize, this function will avoid zeroing outside
1010 * of the cluster boundary.
1012 * from == to == 0 is code for "zero the entire cluster region"
1014 static void ocfs2_clear_page_regions(struct page *page,
1015 struct ocfs2_super *osb, u32 cpos,
1016 unsigned from, unsigned to)
1018 void *kaddr;
1019 unsigned int cluster_start, cluster_end;
1021 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1023 kaddr = kmap_atomic(page);
1025 if (from || to) {
1026 if (from > cluster_start)
1027 memset(kaddr + cluster_start, 0, from - cluster_start);
1028 if (to < cluster_end)
1029 memset(kaddr + to, 0, cluster_end - to);
1030 } else {
1031 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1034 kunmap_atomic(kaddr);
1038 * Nonsparse file systems fully allocate before we get to the write
1039 * code. This prevents ocfs2_write() from tagging the write as an
1040 * allocating one, which means ocfs2_map_page_blocks() might try to
1041 * read-in the blocks at the tail of our file. Avoid reading them by
1042 * testing i_size against each block offset.
1044 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1045 unsigned int block_start)
1047 u64 offset = page_offset(page) + block_start;
1049 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1050 return 1;
1052 if (i_size_read(inode) > offset)
1053 return 1;
1055 return 0;
1059 * Some of this taken from __block_write_begin(). We already have our
1060 * mapping by now though, and the entire write will be allocating or
1061 * it won't, so not much need to use BH_New.
1063 * This will also skip zeroing, which is handled externally.
1065 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1066 struct inode *inode, unsigned int from,
1067 unsigned int to, int new)
1069 int ret = 0;
1070 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1071 unsigned int block_end, block_start;
1072 unsigned int bsize = 1 << inode->i_blkbits;
1074 if (!page_has_buffers(page))
1075 create_empty_buffers(page, bsize, 0);
1077 head = page_buffers(page);
1078 for (bh = head, block_start = 0; bh != head || !block_start;
1079 bh = bh->b_this_page, block_start += bsize) {
1080 block_end = block_start + bsize;
1082 clear_buffer_new(bh);
1085 * Ignore blocks outside of our i/o range -
1086 * they may belong to unallocated clusters.
1088 if (block_start >= to || block_end <= from) {
1089 if (PageUptodate(page))
1090 set_buffer_uptodate(bh);
1091 continue;
1095 * For an allocating write with cluster size >= page
1096 * size, we always write the entire page.
1098 if (new)
1099 set_buffer_new(bh);
1101 if (!buffer_mapped(bh)) {
1102 map_bh(bh, inode->i_sb, *p_blkno);
1103 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1106 if (PageUptodate(page)) {
1107 if (!buffer_uptodate(bh))
1108 set_buffer_uptodate(bh);
1109 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1110 !buffer_new(bh) &&
1111 ocfs2_should_read_blk(inode, page, block_start) &&
1112 (block_start < from || block_end > to)) {
1113 ll_rw_block(READ, 1, &bh);
1114 *wait_bh++=bh;
1117 *p_blkno = *p_blkno + 1;
1121 * If we issued read requests - let them complete.
1123 while(wait_bh > wait) {
1124 wait_on_buffer(*--wait_bh);
1125 if (!buffer_uptodate(*wait_bh))
1126 ret = -EIO;
1129 if (ret == 0 || !new)
1130 return ret;
1133 * If we get -EIO above, zero out any newly allocated blocks
1134 * to avoid exposing stale data.
1136 bh = head;
1137 block_start = 0;
1138 do {
1139 block_end = block_start + bsize;
1140 if (block_end <= from)
1141 goto next_bh;
1142 if (block_start >= to)
1143 break;
1145 zero_user(page, block_start, bh->b_size);
1146 set_buffer_uptodate(bh);
1147 mark_buffer_dirty(bh);
1149 next_bh:
1150 block_start = block_end;
1151 bh = bh->b_this_page;
1152 } while (bh != head);
1154 return ret;
1157 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1158 #define OCFS2_MAX_CTXT_PAGES 1
1159 #else
1160 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1161 #endif
1163 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1166 * Describe the state of a single cluster to be written to.
1168 struct ocfs2_write_cluster_desc {
1169 u32 c_cpos;
1170 u32 c_phys;
1172 * Give this a unique field because c_phys eventually gets
1173 * filled.
1175 unsigned c_new;
1176 unsigned c_unwritten;
1177 unsigned c_needs_zero;
1180 struct ocfs2_write_ctxt {
1181 /* Logical cluster position / len of write */
1182 u32 w_cpos;
1183 u32 w_clen;
1185 /* First cluster allocated in a nonsparse extend */
1186 u32 w_first_new_cpos;
1188 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1191 * This is true if page_size > cluster_size.
1193 * It triggers a set of special cases during write which might
1194 * have to deal with allocating writes to partial pages.
1196 unsigned int w_large_pages;
1199 * Pages involved in this write.
1201 * w_target_page is the page being written to by the user.
1203 * w_pages is an array of pages which always contains
1204 * w_target_page, and in the case of an allocating write with
1205 * page_size < cluster size, it will contain zero'd and mapped
1206 * pages adjacent to w_target_page which need to be written
1207 * out in so that future reads from that region will get
1208 * zero's.
1210 unsigned int w_num_pages;
1211 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1212 struct page *w_target_page;
1215 * w_target_locked is used for page_mkwrite path indicating no unlocking
1216 * against w_target_page in ocfs2_write_end_nolock.
1218 unsigned int w_target_locked:1;
1221 * ocfs2_write_end() uses this to know what the real range to
1222 * write in the target should be.
1224 unsigned int w_target_from;
1225 unsigned int w_target_to;
1228 * We could use journal_current_handle() but this is cleaner,
1229 * IMHO -Mark
1231 handle_t *w_handle;
1233 struct buffer_head *w_di_bh;
1235 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1238 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1240 int i;
1242 for(i = 0; i < num_pages; i++) {
1243 if (pages[i]) {
1244 unlock_page(pages[i]);
1245 mark_page_accessed(pages[i]);
1246 page_cache_release(pages[i]);
1251 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1253 int i;
1256 * w_target_locked is only set to true in the page_mkwrite() case.
1257 * The intent is to allow us to lock the target page from write_begin()
1258 * to write_end(). The caller must hold a ref on w_target_page.
1260 if (wc->w_target_locked) {
1261 BUG_ON(!wc->w_target_page);
1262 for (i = 0; i < wc->w_num_pages; i++) {
1263 if (wc->w_target_page == wc->w_pages[i]) {
1264 wc->w_pages[i] = NULL;
1265 break;
1268 mark_page_accessed(wc->w_target_page);
1269 page_cache_release(wc->w_target_page);
1271 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1274 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1276 ocfs2_unlock_pages(wc);
1277 brelse(wc->w_di_bh);
1278 kfree(wc);
1281 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1282 struct ocfs2_super *osb, loff_t pos,
1283 unsigned len, struct buffer_head *di_bh)
1285 u32 cend;
1286 struct ocfs2_write_ctxt *wc;
1288 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1289 if (!wc)
1290 return -ENOMEM;
1292 wc->w_cpos = pos >> osb->s_clustersize_bits;
1293 wc->w_first_new_cpos = UINT_MAX;
1294 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1295 wc->w_clen = cend - wc->w_cpos + 1;
1296 get_bh(di_bh);
1297 wc->w_di_bh = di_bh;
1299 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1300 wc->w_large_pages = 1;
1301 else
1302 wc->w_large_pages = 0;
1304 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1306 *wcp = wc;
1308 return 0;
1312 * If a page has any new buffers, zero them out here, and mark them uptodate
1313 * and dirty so they'll be written out (in order to prevent uninitialised
1314 * block data from leaking). And clear the new bit.
1316 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1318 unsigned int block_start, block_end;
1319 struct buffer_head *head, *bh;
1321 BUG_ON(!PageLocked(page));
1322 if (!page_has_buffers(page))
1323 return;
1325 bh = head = page_buffers(page);
1326 block_start = 0;
1327 do {
1328 block_end = block_start + bh->b_size;
1330 if (buffer_new(bh)) {
1331 if (block_end > from && block_start < to) {
1332 if (!PageUptodate(page)) {
1333 unsigned start, end;
1335 start = max(from, block_start);
1336 end = min(to, block_end);
1338 zero_user_segment(page, start, end);
1339 set_buffer_uptodate(bh);
1342 clear_buffer_new(bh);
1343 mark_buffer_dirty(bh);
1347 block_start = block_end;
1348 bh = bh->b_this_page;
1349 } while (bh != head);
1353 * Only called when we have a failure during allocating write to write
1354 * zero's to the newly allocated region.
1356 static void ocfs2_write_failure(struct inode *inode,
1357 struct ocfs2_write_ctxt *wc,
1358 loff_t user_pos, unsigned user_len)
1360 int i;
1361 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1362 to = user_pos + user_len;
1363 struct page *tmppage;
1365 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1367 for(i = 0; i < wc->w_num_pages; i++) {
1368 tmppage = wc->w_pages[i];
1370 if (page_has_buffers(tmppage)) {
1371 if (ocfs2_should_order_data(inode))
1372 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1374 block_commit_write(tmppage, from, to);
1379 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1380 struct ocfs2_write_ctxt *wc,
1381 struct page *page, u32 cpos,
1382 loff_t user_pos, unsigned user_len,
1383 int new)
1385 int ret;
1386 unsigned int map_from = 0, map_to = 0;
1387 unsigned int cluster_start, cluster_end;
1388 unsigned int user_data_from = 0, user_data_to = 0;
1390 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1391 &cluster_start, &cluster_end);
1393 /* treat the write as new if the a hole/lseek spanned across
1394 * the page boundary.
1396 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1397 (page_offset(page) <= user_pos));
1399 if (page == wc->w_target_page) {
1400 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1401 map_to = map_from + user_len;
1403 if (new)
1404 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1405 cluster_start, cluster_end,
1406 new);
1407 else
1408 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409 map_from, map_to, new);
1410 if (ret) {
1411 mlog_errno(ret);
1412 goto out;
1415 user_data_from = map_from;
1416 user_data_to = map_to;
1417 if (new) {
1418 map_from = cluster_start;
1419 map_to = cluster_end;
1421 } else {
1423 * If we haven't allocated the new page yet, we
1424 * shouldn't be writing it out without copying user
1425 * data. This is likely a math error from the caller.
1427 BUG_ON(!new);
1429 map_from = cluster_start;
1430 map_to = cluster_end;
1432 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1433 cluster_start, cluster_end, new);
1434 if (ret) {
1435 mlog_errno(ret);
1436 goto out;
1441 * Parts of newly allocated pages need to be zero'd.
1443 * Above, we have also rewritten 'to' and 'from' - as far as
1444 * the rest of the function is concerned, the entire cluster
1445 * range inside of a page needs to be written.
1447 * We can skip this if the page is up to date - it's already
1448 * been zero'd from being read in as a hole.
1450 if (new && !PageUptodate(page))
1451 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1452 cpos, user_data_from, user_data_to);
1454 flush_dcache_page(page);
1456 out:
1457 return ret;
1461 * This function will only grab one clusters worth of pages.
1463 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1464 struct ocfs2_write_ctxt *wc,
1465 u32 cpos, loff_t user_pos,
1466 unsigned user_len, int new,
1467 struct page *mmap_page)
1469 int ret = 0, i;
1470 unsigned long start, target_index, end_index, index;
1471 struct inode *inode = mapping->host;
1472 loff_t last_byte;
1474 target_index = user_pos >> PAGE_CACHE_SHIFT;
1477 * Figure out how many pages we'll be manipulating here. For
1478 * non allocating write, we just change the one
1479 * page. Otherwise, we'll need a whole clusters worth. If we're
1480 * writing past i_size, we only need enough pages to cover the
1481 * last page of the write.
1483 if (new) {
1484 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1485 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1487 * We need the index *past* the last page we could possibly
1488 * touch. This is the page past the end of the write or
1489 * i_size, whichever is greater.
1491 last_byte = max(user_pos + user_len, i_size_read(inode));
1492 BUG_ON(last_byte < 1);
1493 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1494 if ((start + wc->w_num_pages) > end_index)
1495 wc->w_num_pages = end_index - start;
1496 } else {
1497 wc->w_num_pages = 1;
1498 start = target_index;
1501 for(i = 0; i < wc->w_num_pages; i++) {
1502 index = start + i;
1504 if (index == target_index && mmap_page) {
1506 * ocfs2_pagemkwrite() is a little different
1507 * and wants us to directly use the page
1508 * passed in.
1510 lock_page(mmap_page);
1512 /* Exit and let the caller retry */
1513 if (mmap_page->mapping != mapping) {
1514 WARN_ON(mmap_page->mapping);
1515 unlock_page(mmap_page);
1516 ret = -EAGAIN;
1517 goto out;
1520 page_cache_get(mmap_page);
1521 wc->w_pages[i] = mmap_page;
1522 wc->w_target_locked = true;
1523 } else {
1524 wc->w_pages[i] = find_or_create_page(mapping, index,
1525 GFP_NOFS);
1526 if (!wc->w_pages[i]) {
1527 ret = -ENOMEM;
1528 mlog_errno(ret);
1529 goto out;
1532 wait_for_stable_page(wc->w_pages[i]);
1534 if (index == target_index)
1535 wc->w_target_page = wc->w_pages[i];
1537 out:
1538 if (ret)
1539 wc->w_target_locked = false;
1540 return ret;
1544 * Prepare a single cluster for write one cluster into the file.
1546 static int ocfs2_write_cluster(struct address_space *mapping,
1547 u32 phys, unsigned int unwritten,
1548 unsigned int should_zero,
1549 struct ocfs2_alloc_context *data_ac,
1550 struct ocfs2_alloc_context *meta_ac,
1551 struct ocfs2_write_ctxt *wc, u32 cpos,
1552 loff_t user_pos, unsigned user_len)
1554 int ret, i, new;
1555 u64 v_blkno, p_blkno;
1556 struct inode *inode = mapping->host;
1557 struct ocfs2_extent_tree et;
1559 new = phys == 0 ? 1 : 0;
1560 if (new) {
1561 u32 tmp_pos;
1564 * This is safe to call with the page locks - it won't take
1565 * any additional semaphores or cluster locks.
1567 tmp_pos = cpos;
1568 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1569 &tmp_pos, 1, 0, wc->w_di_bh,
1570 wc->w_handle, data_ac,
1571 meta_ac, NULL);
1573 * This shouldn't happen because we must have already
1574 * calculated the correct meta data allocation required. The
1575 * internal tree allocation code should know how to increase
1576 * transaction credits itself.
1578 * If need be, we could handle -EAGAIN for a
1579 * RESTART_TRANS here.
1581 mlog_bug_on_msg(ret == -EAGAIN,
1582 "Inode %llu: EAGAIN return during allocation.\n",
1583 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1584 if (ret < 0) {
1585 mlog_errno(ret);
1586 goto out;
1588 } else if (unwritten) {
1589 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1590 wc->w_di_bh);
1591 ret = ocfs2_mark_extent_written(inode, &et,
1592 wc->w_handle, cpos, 1, phys,
1593 meta_ac, &wc->w_dealloc);
1594 if (ret < 0) {
1595 mlog_errno(ret);
1596 goto out;
1600 if (should_zero)
1601 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1602 else
1603 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1606 * The only reason this should fail is due to an inability to
1607 * find the extent added.
1609 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1610 NULL);
1611 if (ret < 0) {
1612 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1613 "at logical block %llu",
1614 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1615 (unsigned long long)v_blkno);
1616 goto out;
1619 BUG_ON(p_blkno == 0);
1621 for(i = 0; i < wc->w_num_pages; i++) {
1622 int tmpret;
1624 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1625 wc->w_pages[i], cpos,
1626 user_pos, user_len,
1627 should_zero);
1628 if (tmpret) {
1629 mlog_errno(tmpret);
1630 if (ret == 0)
1631 ret = tmpret;
1636 * We only have cleanup to do in case of allocating write.
1638 if (ret && new)
1639 ocfs2_write_failure(inode, wc, user_pos, user_len);
1641 out:
1643 return ret;
1646 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1647 struct ocfs2_alloc_context *data_ac,
1648 struct ocfs2_alloc_context *meta_ac,
1649 struct ocfs2_write_ctxt *wc,
1650 loff_t pos, unsigned len)
1652 int ret, i;
1653 loff_t cluster_off;
1654 unsigned int local_len = len;
1655 struct ocfs2_write_cluster_desc *desc;
1656 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1658 for (i = 0; i < wc->w_clen; i++) {
1659 desc = &wc->w_desc[i];
1662 * We have to make sure that the total write passed in
1663 * doesn't extend past a single cluster.
1665 local_len = len;
1666 cluster_off = pos & (osb->s_clustersize - 1);
1667 if ((cluster_off + local_len) > osb->s_clustersize)
1668 local_len = osb->s_clustersize - cluster_off;
1670 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1671 desc->c_unwritten,
1672 desc->c_needs_zero,
1673 data_ac, meta_ac,
1674 wc, desc->c_cpos, pos, local_len);
1675 if (ret) {
1676 mlog_errno(ret);
1677 goto out;
1680 len -= local_len;
1681 pos += local_len;
1684 ret = 0;
1685 out:
1686 return ret;
1690 * ocfs2_write_end() wants to know which parts of the target page it
1691 * should complete the write on. It's easiest to compute them ahead of
1692 * time when a more complete view of the write is available.
1694 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1695 struct ocfs2_write_ctxt *wc,
1696 loff_t pos, unsigned len, int alloc)
1698 struct ocfs2_write_cluster_desc *desc;
1700 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1701 wc->w_target_to = wc->w_target_from + len;
1703 if (alloc == 0)
1704 return;
1707 * Allocating write - we may have different boundaries based
1708 * on page size and cluster size.
1710 * NOTE: We can no longer compute one value from the other as
1711 * the actual write length and user provided length may be
1712 * different.
1715 if (wc->w_large_pages) {
1717 * We only care about the 1st and last cluster within
1718 * our range and whether they should be zero'd or not. Either
1719 * value may be extended out to the start/end of a
1720 * newly allocated cluster.
1722 desc = &wc->w_desc[0];
1723 if (desc->c_needs_zero)
1724 ocfs2_figure_cluster_boundaries(osb,
1725 desc->c_cpos,
1726 &wc->w_target_from,
1727 NULL);
1729 desc = &wc->w_desc[wc->w_clen - 1];
1730 if (desc->c_needs_zero)
1731 ocfs2_figure_cluster_boundaries(osb,
1732 desc->c_cpos,
1733 NULL,
1734 &wc->w_target_to);
1735 } else {
1736 wc->w_target_from = 0;
1737 wc->w_target_to = PAGE_CACHE_SIZE;
1742 * Populate each single-cluster write descriptor in the write context
1743 * with information about the i/o to be done.
1745 * Returns the number of clusters that will have to be allocated, as
1746 * well as a worst case estimate of the number of extent records that
1747 * would have to be created during a write to an unwritten region.
1749 static int ocfs2_populate_write_desc(struct inode *inode,
1750 struct ocfs2_write_ctxt *wc,
1751 unsigned int *clusters_to_alloc,
1752 unsigned int *extents_to_split)
1754 int ret;
1755 struct ocfs2_write_cluster_desc *desc;
1756 unsigned int num_clusters = 0;
1757 unsigned int ext_flags = 0;
1758 u32 phys = 0;
1759 int i;
1761 *clusters_to_alloc = 0;
1762 *extents_to_split = 0;
1764 for (i = 0; i < wc->w_clen; i++) {
1765 desc = &wc->w_desc[i];
1766 desc->c_cpos = wc->w_cpos + i;
1768 if (num_clusters == 0) {
1770 * Need to look up the next extent record.
1772 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1773 &num_clusters, &ext_flags);
1774 if (ret) {
1775 mlog_errno(ret);
1776 goto out;
1779 /* We should already CoW the refcountd extent. */
1780 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1783 * Assume worst case - that we're writing in
1784 * the middle of the extent.
1786 * We can assume that the write proceeds from
1787 * left to right, in which case the extent
1788 * insert code is smart enough to coalesce the
1789 * next splits into the previous records created.
1791 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1792 *extents_to_split = *extents_to_split + 2;
1793 } else if (phys) {
1795 * Only increment phys if it doesn't describe
1796 * a hole.
1798 phys++;
1802 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1803 * file that got extended. w_first_new_cpos tells us
1804 * where the newly allocated clusters are so we can
1805 * zero them.
1807 if (desc->c_cpos >= wc->w_first_new_cpos) {
1808 BUG_ON(phys == 0);
1809 desc->c_needs_zero = 1;
1812 desc->c_phys = phys;
1813 if (phys == 0) {
1814 desc->c_new = 1;
1815 desc->c_needs_zero = 1;
1816 *clusters_to_alloc = *clusters_to_alloc + 1;
1819 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1820 desc->c_unwritten = 1;
1821 desc->c_needs_zero = 1;
1824 num_clusters--;
1827 ret = 0;
1828 out:
1829 return ret;
1832 static int ocfs2_write_begin_inline(struct address_space *mapping,
1833 struct inode *inode,
1834 struct ocfs2_write_ctxt *wc)
1836 int ret;
1837 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838 struct page *page;
1839 handle_t *handle;
1840 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1842 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1843 if (IS_ERR(handle)) {
1844 ret = PTR_ERR(handle);
1845 mlog_errno(ret);
1846 goto out;
1849 page = find_or_create_page(mapping, 0, GFP_NOFS);
1850 if (!page) {
1851 ocfs2_commit_trans(osb, handle);
1852 ret = -ENOMEM;
1853 mlog_errno(ret);
1854 goto out;
1857 * If we don't set w_num_pages then this page won't get unlocked
1858 * and freed on cleanup of the write context.
1860 wc->w_pages[0] = wc->w_target_page = page;
1861 wc->w_num_pages = 1;
1863 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1864 OCFS2_JOURNAL_ACCESS_WRITE);
1865 if (ret) {
1866 ocfs2_commit_trans(osb, handle);
1868 mlog_errno(ret);
1869 goto out;
1872 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1873 ocfs2_set_inode_data_inline(inode, di);
1875 if (!PageUptodate(page)) {
1876 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1877 if (ret) {
1878 ocfs2_commit_trans(osb, handle);
1880 goto out;
1884 wc->w_handle = handle;
1885 out:
1886 return ret;
1889 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1891 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1893 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1894 return 1;
1895 return 0;
1898 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1899 struct inode *inode, loff_t pos,
1900 unsigned len, struct page *mmap_page,
1901 struct ocfs2_write_ctxt *wc)
1903 int ret, written = 0;
1904 loff_t end = pos + len;
1905 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1906 struct ocfs2_dinode *di = NULL;
1908 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1909 len, (unsigned long long)pos,
1910 oi->ip_dyn_features);
1913 * Handle inodes which already have inline data 1st.
1915 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916 if (mmap_page == NULL &&
1917 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1918 goto do_inline_write;
1921 * The write won't fit - we have to give this inode an
1922 * inline extent list now.
1924 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1925 if (ret)
1926 mlog_errno(ret);
1927 goto out;
1931 * Check whether the inode can accept inline data.
1933 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1934 return 0;
1937 * Check whether the write can fit.
1939 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1940 if (mmap_page ||
1941 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1942 return 0;
1944 do_inline_write:
1945 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1946 if (ret) {
1947 mlog_errno(ret);
1948 goto out;
1952 * This signals to the caller that the data can be written
1953 * inline.
1955 written = 1;
1956 out:
1957 return written ? written : ret;
1961 * This function only does anything for file systems which can't
1962 * handle sparse files.
1964 * What we want to do here is fill in any hole between the current end
1965 * of allocation and the end of our write. That way the rest of the
1966 * write path can treat it as an non-allocating write, which has no
1967 * special case code for sparse/nonsparse files.
1969 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1970 struct buffer_head *di_bh,
1971 loff_t pos, unsigned len,
1972 struct ocfs2_write_ctxt *wc)
1974 int ret;
1975 loff_t newsize = pos + len;
1977 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1979 if (newsize <= i_size_read(inode))
1980 return 0;
1982 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1983 if (ret)
1984 mlog_errno(ret);
1986 wc->w_first_new_cpos =
1987 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1989 return ret;
1992 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1993 loff_t pos)
1995 int ret = 0;
1997 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1998 if (pos > i_size_read(inode))
1999 ret = ocfs2_zero_extend(inode, di_bh, pos);
2001 return ret;
2005 * Try to flush truncate logs if we can free enough clusters from it.
2006 * As for return value, "< 0" means error, "0" no space and "1" means
2007 * we have freed enough spaces and let the caller try to allocate again.
2009 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2010 unsigned int needed)
2012 tid_t target;
2013 int ret = 0;
2014 unsigned int truncated_clusters;
2016 mutex_lock(&osb->osb_tl_inode->i_mutex);
2017 truncated_clusters = osb->truncated_clusters;
2018 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2021 * Check whether we can succeed in allocating if we free
2022 * the truncate log.
2024 if (truncated_clusters < needed)
2025 goto out;
2027 ret = ocfs2_flush_truncate_log(osb);
2028 if (ret) {
2029 mlog_errno(ret);
2030 goto out;
2033 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2034 jbd2_log_wait_commit(osb->journal->j_journal, target);
2035 ret = 1;
2037 out:
2038 return ret;
2041 int ocfs2_write_begin_nolock(struct file *filp,
2042 struct address_space *mapping,
2043 loff_t pos, unsigned len, unsigned flags,
2044 struct page **pagep, void **fsdata,
2045 struct buffer_head *di_bh, struct page *mmap_page)
2047 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2048 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2049 struct ocfs2_write_ctxt *wc;
2050 struct inode *inode = mapping->host;
2051 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2052 struct ocfs2_dinode *di;
2053 struct ocfs2_alloc_context *data_ac = NULL;
2054 struct ocfs2_alloc_context *meta_ac = NULL;
2055 handle_t *handle;
2056 struct ocfs2_extent_tree et;
2057 int try_free = 1, ret1;
2059 try_again:
2060 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2061 if (ret) {
2062 mlog_errno(ret);
2063 return ret;
2066 if (ocfs2_supports_inline_data(osb)) {
2067 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2068 mmap_page, wc);
2069 if (ret == 1) {
2070 ret = 0;
2071 goto success;
2073 if (ret < 0) {
2074 mlog_errno(ret);
2075 goto out;
2079 if (ocfs2_sparse_alloc(osb))
2080 ret = ocfs2_zero_tail(inode, di_bh, pos);
2081 else
2082 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2083 wc);
2084 if (ret) {
2085 mlog_errno(ret);
2086 goto out;
2089 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2090 if (ret < 0) {
2091 mlog_errno(ret);
2092 goto out;
2093 } else if (ret == 1) {
2094 clusters_need = wc->w_clen;
2095 ret = ocfs2_refcount_cow(inode, di_bh,
2096 wc->w_cpos, wc->w_clen, UINT_MAX);
2097 if (ret) {
2098 mlog_errno(ret);
2099 goto out;
2103 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2104 &extents_to_split);
2105 if (ret) {
2106 mlog_errno(ret);
2107 goto out;
2109 clusters_need += clusters_to_alloc;
2111 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2113 trace_ocfs2_write_begin_nolock(
2114 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2115 (long long)i_size_read(inode),
2116 le32_to_cpu(di->i_clusters),
2117 pos, len, flags, mmap_page,
2118 clusters_to_alloc, extents_to_split);
2121 * We set w_target_from, w_target_to here so that
2122 * ocfs2_write_end() knows which range in the target page to
2123 * write out. An allocation requires that we write the entire
2124 * cluster range.
2126 if (clusters_to_alloc || extents_to_split) {
2128 * XXX: We are stretching the limits of
2129 * ocfs2_lock_allocators(). It greatly over-estimates
2130 * the work to be done.
2132 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2133 wc->w_di_bh);
2134 ret = ocfs2_lock_allocators(inode, &et,
2135 clusters_to_alloc, extents_to_split,
2136 &data_ac, &meta_ac);
2137 if (ret) {
2138 mlog_errno(ret);
2139 goto out;
2142 if (data_ac)
2143 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2145 credits = ocfs2_calc_extend_credits(inode->i_sb,
2146 &di->id2.i_list);
2151 * We have to zero sparse allocated clusters, unwritten extent clusters,
2152 * and non-sparse clusters we just extended. For non-sparse writes,
2153 * we know zeros will only be needed in the first and/or last cluster.
2155 if (clusters_to_alloc || extents_to_split ||
2156 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2157 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2158 cluster_of_pages = 1;
2159 else
2160 cluster_of_pages = 0;
2162 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2164 handle = ocfs2_start_trans(osb, credits);
2165 if (IS_ERR(handle)) {
2166 ret = PTR_ERR(handle);
2167 mlog_errno(ret);
2168 goto out;
2171 wc->w_handle = handle;
2173 if (clusters_to_alloc) {
2174 ret = dquot_alloc_space_nodirty(inode,
2175 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2176 if (ret)
2177 goto out_commit;
2180 * We don't want this to fail in ocfs2_write_end(), so do it
2181 * here.
2183 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2184 OCFS2_JOURNAL_ACCESS_WRITE);
2185 if (ret) {
2186 mlog_errno(ret);
2187 goto out_quota;
2191 * Fill our page array first. That way we've grabbed enough so
2192 * that we can zero and flush if we error after adding the
2193 * extent.
2195 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2196 cluster_of_pages, mmap_page);
2197 if (ret && ret != -EAGAIN) {
2198 mlog_errno(ret);
2199 goto out_quota;
2203 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2204 * the target page. In this case, we exit with no error and no target
2205 * page. This will trigger the caller, page_mkwrite(), to re-try
2206 * the operation.
2208 if (ret == -EAGAIN) {
2209 BUG_ON(wc->w_target_page);
2210 ret = 0;
2211 goto out_quota;
2214 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2215 len);
2216 if (ret) {
2217 mlog_errno(ret);
2218 goto out_quota;
2221 if (data_ac)
2222 ocfs2_free_alloc_context(data_ac);
2223 if (meta_ac)
2224 ocfs2_free_alloc_context(meta_ac);
2226 success:
2227 *pagep = wc->w_target_page;
2228 *fsdata = wc;
2229 return 0;
2230 out_quota:
2231 if (clusters_to_alloc)
2232 dquot_free_space(inode,
2233 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2234 out_commit:
2235 ocfs2_commit_trans(osb, handle);
2237 out:
2238 ocfs2_free_write_ctxt(wc);
2240 if (data_ac) {
2241 ocfs2_free_alloc_context(data_ac);
2242 data_ac = NULL;
2244 if (meta_ac) {
2245 ocfs2_free_alloc_context(meta_ac);
2246 meta_ac = NULL;
2249 if (ret == -ENOSPC && try_free) {
2251 * Try to free some truncate log so that we can have enough
2252 * clusters to allocate.
2254 try_free = 0;
2256 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2257 if (ret1 == 1)
2258 goto try_again;
2260 if (ret1 < 0)
2261 mlog_errno(ret1);
2264 return ret;
2267 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2268 loff_t pos, unsigned len, unsigned flags,
2269 struct page **pagep, void **fsdata)
2271 int ret;
2272 struct buffer_head *di_bh = NULL;
2273 struct inode *inode = mapping->host;
2275 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2276 if (ret) {
2277 mlog_errno(ret);
2278 return ret;
2282 * Take alloc sem here to prevent concurrent lookups. That way
2283 * the mapping, zeroing and tree manipulation within
2284 * ocfs2_write() will be safe against ->readpage(). This
2285 * should also serve to lock out allocation from a shared
2286 * writeable region.
2288 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2290 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2291 fsdata, di_bh, NULL);
2292 if (ret) {
2293 mlog_errno(ret);
2294 goto out_fail;
2297 brelse(di_bh);
2299 return 0;
2301 out_fail:
2302 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2304 brelse(di_bh);
2305 ocfs2_inode_unlock(inode, 1);
2307 return ret;
2310 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2311 unsigned len, unsigned *copied,
2312 struct ocfs2_dinode *di,
2313 struct ocfs2_write_ctxt *wc)
2315 void *kaddr;
2317 if (unlikely(*copied < len)) {
2318 if (!PageUptodate(wc->w_target_page)) {
2319 *copied = 0;
2320 return;
2324 kaddr = kmap_atomic(wc->w_target_page);
2325 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2326 kunmap_atomic(kaddr);
2328 trace_ocfs2_write_end_inline(
2329 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2330 (unsigned long long)pos, *copied,
2331 le16_to_cpu(di->id2.i_data.id_count),
2332 le16_to_cpu(di->i_dyn_features));
2335 int ocfs2_write_end_nolock(struct address_space *mapping,
2336 loff_t pos, unsigned len, unsigned copied,
2337 struct page *page, void *fsdata)
2339 int i;
2340 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2341 struct inode *inode = mapping->host;
2342 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2343 struct ocfs2_write_ctxt *wc = fsdata;
2344 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2345 handle_t *handle = wc->w_handle;
2346 struct page *tmppage;
2348 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2349 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2350 goto out_write_size;
2353 if (unlikely(copied < len)) {
2354 if (!PageUptodate(wc->w_target_page))
2355 copied = 0;
2357 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2358 start+len);
2360 flush_dcache_page(wc->w_target_page);
2362 for(i = 0; i < wc->w_num_pages; i++) {
2363 tmppage = wc->w_pages[i];
2365 if (tmppage == wc->w_target_page) {
2366 from = wc->w_target_from;
2367 to = wc->w_target_to;
2369 BUG_ON(from > PAGE_CACHE_SIZE ||
2370 to > PAGE_CACHE_SIZE ||
2371 to < from);
2372 } else {
2374 * Pages adjacent to the target (if any) imply
2375 * a hole-filling write in which case we want
2376 * to flush their entire range.
2378 from = 0;
2379 to = PAGE_CACHE_SIZE;
2382 if (page_has_buffers(tmppage)) {
2383 if (ocfs2_should_order_data(inode))
2384 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2385 block_commit_write(tmppage, from, to);
2389 out_write_size:
2390 pos += copied;
2391 if (pos > i_size_read(inode)) {
2392 i_size_write(inode, pos);
2393 mark_inode_dirty(inode);
2395 inode->i_blocks = ocfs2_inode_sector_count(inode);
2396 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2397 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2398 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2399 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2400 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2401 ocfs2_journal_dirty(handle, wc->w_di_bh);
2403 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2404 * lock, or it will cause a deadlock since journal commit threads holds
2405 * this lock and will ask for the page lock when flushing the data.
2406 * put it here to preserve the unlock order.
2408 ocfs2_unlock_pages(wc);
2410 ocfs2_commit_trans(osb, handle);
2412 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2414 brelse(wc->w_di_bh);
2415 kfree(wc);
2417 return copied;
2420 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2421 loff_t pos, unsigned len, unsigned copied,
2422 struct page *page, void *fsdata)
2424 int ret;
2425 struct inode *inode = mapping->host;
2427 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2429 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2430 ocfs2_inode_unlock(inode, 1);
2432 return ret;
2435 const struct address_space_operations ocfs2_aops = {
2436 .readpage = ocfs2_readpage,
2437 .readpages = ocfs2_readpages,
2438 .writepage = ocfs2_writepage,
2439 .write_begin = ocfs2_write_begin,
2440 .write_end = ocfs2_write_end,
2441 .bmap = ocfs2_bmap,
2442 .direct_IO = ocfs2_direct_IO,
2443 .invalidatepage = block_invalidatepage,
2444 .releasepage = ocfs2_releasepage,
2445 .migratepage = buffer_migrate_page,
2446 .is_partially_uptodate = block_is_partially_uptodate,
2447 .error_remove_page = generic_error_remove_page,