PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_si_intf.c
blob03f41896d09050ff391ad55ef263faa1430de19a
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
79 #define PFX "ipmi_si: "
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
89 short timeout */
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 SI_GETTING_MESSAGES,
98 SI_ENABLE_INTERRUPTS1,
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
110 enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
115 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
116 "ACPI", "SMBIOS", "PCI",
117 "device-tree", "default" };
119 #define DEVICE_NAME "ipmi_si"
121 static struct platform_driver ipmi_driver;
124 * Indexes into stats[] in smi_info below.
126 enum si_stat_indexes {
128 * Number of times the driver requested a timer while an operation
129 * was in progress.
131 SI_STAT_short_timeouts = 0,
134 * Number of times the driver requested a timer while nothing was in
135 * progress.
137 SI_STAT_long_timeouts,
139 /* Number of times the interface was idle while being polled. */
140 SI_STAT_idles,
142 /* Number of interrupts the driver handled. */
143 SI_STAT_interrupts,
145 /* Number of time the driver got an ATTN from the hardware. */
146 SI_STAT_attentions,
148 /* Number of times the driver requested flags from the hardware. */
149 SI_STAT_flag_fetches,
151 /* Number of times the hardware didn't follow the state machine. */
152 SI_STAT_hosed_count,
154 /* Number of completed messages. */
155 SI_STAT_complete_transactions,
157 /* Number of IPMI events received from the hardware. */
158 SI_STAT_events,
160 /* Number of watchdog pretimeouts. */
161 SI_STAT_watchdog_pretimeouts,
163 /* Number of asynchronous messages received. */
164 SI_STAT_incoming_messages,
167 /* This *must* remain last, add new values above this. */
168 SI_NUM_STATS
171 struct smi_info {
172 int intf_num;
173 ipmi_smi_t intf;
174 struct si_sm_data *si_sm;
175 struct si_sm_handlers *handlers;
176 enum si_type si_type;
177 spinlock_t si_lock;
178 struct list_head xmit_msgs;
179 struct list_head hp_xmit_msgs;
180 struct ipmi_smi_msg *curr_msg;
181 enum si_intf_state si_state;
184 * Used to handle the various types of I/O that can occur with
185 * IPMI
187 struct si_sm_io io;
188 int (*io_setup)(struct smi_info *info);
189 void (*io_cleanup)(struct smi_info *info);
190 int (*irq_setup)(struct smi_info *info);
191 void (*irq_cleanup)(struct smi_info *info);
192 unsigned int io_size;
193 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
194 void (*addr_source_cleanup)(struct smi_info *info);
195 void *addr_source_data;
198 * Per-OEM handler, called from handle_flags(). Returns 1
199 * when handle_flags() needs to be re-run or 0 indicating it
200 * set si_state itself.
202 int (*oem_data_avail_handler)(struct smi_info *smi_info);
205 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
206 * is set to hold the flags until we are done handling everything
207 * from the flags.
209 #define RECEIVE_MSG_AVAIL 0x01
210 #define EVENT_MSG_BUFFER_FULL 0x02
211 #define WDT_PRE_TIMEOUT_INT 0x08
212 #define OEM0_DATA_AVAIL 0x20
213 #define OEM1_DATA_AVAIL 0x40
214 #define OEM2_DATA_AVAIL 0x80
215 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
216 OEM1_DATA_AVAIL | \
217 OEM2_DATA_AVAIL)
218 unsigned char msg_flags;
220 /* Does the BMC have an event buffer? */
221 char has_event_buffer;
224 * If set to true, this will request events the next time the
225 * state machine is idle.
227 atomic_t req_events;
230 * If true, run the state machine to completion on every send
231 * call. Generally used after a panic to make sure stuff goes
232 * out.
234 int run_to_completion;
236 /* The I/O port of an SI interface. */
237 int port;
240 * The space between start addresses of the two ports. For
241 * instance, if the first port is 0xca2 and the spacing is 4, then
242 * the second port is 0xca6.
244 unsigned int spacing;
246 /* zero if no irq; */
247 int irq;
249 /* The timer for this si. */
250 struct timer_list si_timer;
252 /* The time (in jiffies) the last timeout occurred at. */
253 unsigned long last_timeout_jiffies;
255 /* Used to gracefully stop the timer without race conditions. */
256 atomic_t stop_operation;
259 * The driver will disable interrupts when it gets into a
260 * situation where it cannot handle messages due to lack of
261 * memory. Once that situation clears up, it will re-enable
262 * interrupts.
264 int interrupt_disabled;
266 /* From the get device id response... */
267 struct ipmi_device_id device_id;
269 /* Driver model stuff. */
270 struct device *dev;
271 struct platform_device *pdev;
274 * True if we allocated the device, false if it came from
275 * someplace else (like PCI).
277 int dev_registered;
279 /* Slave address, could be reported from DMI. */
280 unsigned char slave_addr;
282 /* Counters and things for the proc filesystem. */
283 atomic_t stats[SI_NUM_STATS];
285 struct task_struct *thread;
287 struct list_head link;
288 union ipmi_smi_info_union addr_info;
291 #define smi_inc_stat(smi, stat) \
292 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
293 #define smi_get_stat(smi, stat) \
294 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
296 #define SI_MAX_PARMS 4
298 static int force_kipmid[SI_MAX_PARMS];
299 static int num_force_kipmid;
300 #ifdef CONFIG_PCI
301 static int pci_registered;
302 #endif
303 #ifdef CONFIG_ACPI
304 static int pnp_registered;
305 #endif
306 #ifdef CONFIG_PARISC
307 static int parisc_registered;
308 #endif
310 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
311 static int num_max_busy_us;
313 static int unload_when_empty = 1;
315 static int add_smi(struct smi_info *smi);
316 static int try_smi_init(struct smi_info *smi);
317 static void cleanup_one_si(struct smi_info *to_clean);
318 static void cleanup_ipmi_si(void);
320 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
321 static int register_xaction_notifier(struct notifier_block *nb)
323 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
326 static void deliver_recv_msg(struct smi_info *smi_info,
327 struct ipmi_smi_msg *msg)
329 /* Deliver the message to the upper layer. */
330 ipmi_smi_msg_received(smi_info->intf, msg);
333 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
335 struct ipmi_smi_msg *msg = smi_info->curr_msg;
337 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
338 cCode = IPMI_ERR_UNSPECIFIED;
339 /* else use it as is */
341 /* Make it a response */
342 msg->rsp[0] = msg->data[0] | 4;
343 msg->rsp[1] = msg->data[1];
344 msg->rsp[2] = cCode;
345 msg->rsp_size = 3;
347 smi_info->curr_msg = NULL;
348 deliver_recv_msg(smi_info, msg);
351 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
353 int rv;
354 struct list_head *entry = NULL;
355 #ifdef DEBUG_TIMING
356 struct timeval t;
357 #endif
359 /* Pick the high priority queue first. */
360 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
361 entry = smi_info->hp_xmit_msgs.next;
362 } else if (!list_empty(&(smi_info->xmit_msgs))) {
363 entry = smi_info->xmit_msgs.next;
366 if (!entry) {
367 smi_info->curr_msg = NULL;
368 rv = SI_SM_IDLE;
369 } else {
370 int err;
372 list_del(entry);
373 smi_info->curr_msg = list_entry(entry,
374 struct ipmi_smi_msg,
375 link);
376 #ifdef DEBUG_TIMING
377 do_gettimeofday(&t);
378 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
379 #endif
380 err = atomic_notifier_call_chain(&xaction_notifier_list,
381 0, smi_info);
382 if (err & NOTIFY_STOP_MASK) {
383 rv = SI_SM_CALL_WITHOUT_DELAY;
384 goto out;
386 err = smi_info->handlers->start_transaction(
387 smi_info->si_sm,
388 smi_info->curr_msg->data,
389 smi_info->curr_msg->data_size);
390 if (err)
391 return_hosed_msg(smi_info, err);
393 rv = SI_SM_CALL_WITHOUT_DELAY;
395 out:
396 return rv;
399 static void start_enable_irq(struct smi_info *smi_info)
401 unsigned char msg[2];
404 * If we are enabling interrupts, we have to tell the
405 * BMC to use them.
407 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
408 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
410 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
411 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
414 static void start_disable_irq(struct smi_info *smi_info)
416 unsigned char msg[2];
418 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
425 static void start_clear_flags(struct smi_info *smi_info)
427 unsigned char msg[3];
429 /* Make sure the watchdog pre-timeout flag is not set at startup. */
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
432 msg[2] = WDT_PRE_TIMEOUT_INT;
434 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
435 smi_info->si_state = SI_CLEARING_FLAGS;
439 * When we have a situtaion where we run out of memory and cannot
440 * allocate messages, we just leave them in the BMC and run the system
441 * polled until we can allocate some memory. Once we have some
442 * memory, we will re-enable the interrupt.
444 static inline void disable_si_irq(struct smi_info *smi_info)
446 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
447 start_disable_irq(smi_info);
448 smi_info->interrupt_disabled = 1;
449 if (!atomic_read(&smi_info->stop_operation))
450 mod_timer(&smi_info->si_timer,
451 jiffies + SI_TIMEOUT_JIFFIES);
455 static inline void enable_si_irq(struct smi_info *smi_info)
457 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
458 start_enable_irq(smi_info);
459 smi_info->interrupt_disabled = 0;
463 static void handle_flags(struct smi_info *smi_info)
465 retry:
466 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
467 /* Watchdog pre-timeout */
468 smi_inc_stat(smi_info, watchdog_pretimeouts);
470 start_clear_flags(smi_info);
471 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
472 ipmi_smi_watchdog_pretimeout(smi_info->intf);
473 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
474 /* Messages available. */
475 smi_info->curr_msg = ipmi_alloc_smi_msg();
476 if (!smi_info->curr_msg) {
477 disable_si_irq(smi_info);
478 smi_info->si_state = SI_NORMAL;
479 return;
481 enable_si_irq(smi_info);
483 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
484 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
485 smi_info->curr_msg->data_size = 2;
487 smi_info->handlers->start_transaction(
488 smi_info->si_sm,
489 smi_info->curr_msg->data,
490 smi_info->curr_msg->data_size);
491 smi_info->si_state = SI_GETTING_MESSAGES;
492 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
493 /* Events available. */
494 smi_info->curr_msg = ipmi_alloc_smi_msg();
495 if (!smi_info->curr_msg) {
496 disable_si_irq(smi_info);
497 smi_info->si_state = SI_NORMAL;
498 return;
500 enable_si_irq(smi_info);
502 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
503 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
504 smi_info->curr_msg->data_size = 2;
506 smi_info->handlers->start_transaction(
507 smi_info->si_sm,
508 smi_info->curr_msg->data,
509 smi_info->curr_msg->data_size);
510 smi_info->si_state = SI_GETTING_EVENTS;
511 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
512 smi_info->oem_data_avail_handler) {
513 if (smi_info->oem_data_avail_handler(smi_info))
514 goto retry;
515 } else
516 smi_info->si_state = SI_NORMAL;
519 static void handle_transaction_done(struct smi_info *smi_info)
521 struct ipmi_smi_msg *msg;
522 #ifdef DEBUG_TIMING
523 struct timeval t;
525 do_gettimeofday(&t);
526 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
527 #endif
528 switch (smi_info->si_state) {
529 case SI_NORMAL:
530 if (!smi_info->curr_msg)
531 break;
533 smi_info->curr_msg->rsp_size
534 = smi_info->handlers->get_result(
535 smi_info->si_sm,
536 smi_info->curr_msg->rsp,
537 IPMI_MAX_MSG_LENGTH);
540 * Do this here becase deliver_recv_msg() releases the
541 * lock, and a new message can be put in during the
542 * time the lock is released.
544 msg = smi_info->curr_msg;
545 smi_info->curr_msg = NULL;
546 deliver_recv_msg(smi_info, msg);
547 break;
549 case SI_GETTING_FLAGS:
551 unsigned char msg[4];
552 unsigned int len;
554 /* We got the flags from the SMI, now handle them. */
555 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
556 if (msg[2] != 0) {
557 /* Error fetching flags, just give up for now. */
558 smi_info->si_state = SI_NORMAL;
559 } else if (len < 4) {
561 * Hmm, no flags. That's technically illegal, but
562 * don't use uninitialized data.
564 smi_info->si_state = SI_NORMAL;
565 } else {
566 smi_info->msg_flags = msg[3];
567 handle_flags(smi_info);
569 break;
572 case SI_CLEARING_FLAGS:
573 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
575 unsigned char msg[3];
577 /* We cleared the flags. */
578 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
579 if (msg[2] != 0) {
580 /* Error clearing flags */
581 dev_warn(smi_info->dev,
582 "Error clearing flags: %2.2x\n", msg[2]);
584 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
585 start_enable_irq(smi_info);
586 else
587 smi_info->si_state = SI_NORMAL;
588 break;
591 case SI_GETTING_EVENTS:
593 smi_info->curr_msg->rsp_size
594 = smi_info->handlers->get_result(
595 smi_info->si_sm,
596 smi_info->curr_msg->rsp,
597 IPMI_MAX_MSG_LENGTH);
600 * Do this here becase deliver_recv_msg() releases the
601 * lock, and a new message can be put in during the
602 * time the lock is released.
604 msg = smi_info->curr_msg;
605 smi_info->curr_msg = NULL;
606 if (msg->rsp[2] != 0) {
607 /* Error getting event, probably done. */
608 msg->done(msg);
610 /* Take off the event flag. */
611 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
612 handle_flags(smi_info);
613 } else {
614 smi_inc_stat(smi_info, events);
617 * Do this before we deliver the message
618 * because delivering the message releases the
619 * lock and something else can mess with the
620 * state.
622 handle_flags(smi_info);
624 deliver_recv_msg(smi_info, msg);
626 break;
629 case SI_GETTING_MESSAGES:
631 smi_info->curr_msg->rsp_size
632 = smi_info->handlers->get_result(
633 smi_info->si_sm,
634 smi_info->curr_msg->rsp,
635 IPMI_MAX_MSG_LENGTH);
638 * Do this here becase deliver_recv_msg() releases the
639 * lock, and a new message can be put in during the
640 * time the lock is released.
642 msg = smi_info->curr_msg;
643 smi_info->curr_msg = NULL;
644 if (msg->rsp[2] != 0) {
645 /* Error getting event, probably done. */
646 msg->done(msg);
648 /* Take off the msg flag. */
649 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
650 handle_flags(smi_info);
651 } else {
652 smi_inc_stat(smi_info, incoming_messages);
655 * Do this before we deliver the message
656 * because delivering the message releases the
657 * lock and something else can mess with the
658 * state.
660 handle_flags(smi_info);
662 deliver_recv_msg(smi_info, msg);
664 break;
667 case SI_ENABLE_INTERRUPTS1:
669 unsigned char msg[4];
671 /* We got the flags from the SMI, now handle them. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
673 if (msg[2] != 0) {
674 dev_warn(smi_info->dev,
675 "Couldn't get irq info: %x.\n", msg[2]);
676 dev_warn(smi_info->dev,
677 "Maybe ok, but ipmi might run very slowly.\n");
678 smi_info->si_state = SI_NORMAL;
679 } else {
680 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
681 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
682 msg[2] = (msg[3] |
683 IPMI_BMC_RCV_MSG_INTR |
684 IPMI_BMC_EVT_MSG_INTR);
685 smi_info->handlers->start_transaction(
686 smi_info->si_sm, msg, 3);
687 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
689 break;
692 case SI_ENABLE_INTERRUPTS2:
694 unsigned char msg[4];
696 /* We got the flags from the SMI, now handle them. */
697 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698 if (msg[2] != 0) {
699 dev_warn(smi_info->dev,
700 "Couldn't set irq info: %x.\n", msg[2]);
701 dev_warn(smi_info->dev,
702 "Maybe ok, but ipmi might run very slowly.\n");
703 } else
704 smi_info->interrupt_disabled = 0;
705 smi_info->si_state = SI_NORMAL;
706 break;
709 case SI_DISABLE_INTERRUPTS1:
711 unsigned char msg[4];
713 /* We got the flags from the SMI, now handle them. */
714 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
715 if (msg[2] != 0) {
716 dev_warn(smi_info->dev, "Could not disable interrupts"
717 ", failed get.\n");
718 smi_info->si_state = SI_NORMAL;
719 } else {
720 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
721 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
722 msg[2] = (msg[3] &
723 ~(IPMI_BMC_RCV_MSG_INTR |
724 IPMI_BMC_EVT_MSG_INTR));
725 smi_info->handlers->start_transaction(
726 smi_info->si_sm, msg, 3);
727 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
729 break;
732 case SI_DISABLE_INTERRUPTS2:
734 unsigned char msg[4];
736 /* We got the flags from the SMI, now handle them. */
737 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
738 if (msg[2] != 0) {
739 dev_warn(smi_info->dev, "Could not disable interrupts"
740 ", failed set.\n");
742 smi_info->si_state = SI_NORMAL;
743 break;
749 * Called on timeouts and events. Timeouts should pass the elapsed
750 * time, interrupts should pass in zero. Must be called with
751 * si_lock held and interrupts disabled.
753 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
754 int time)
756 enum si_sm_result si_sm_result;
758 restart:
760 * There used to be a loop here that waited a little while
761 * (around 25us) before giving up. That turned out to be
762 * pointless, the minimum delays I was seeing were in the 300us
763 * range, which is far too long to wait in an interrupt. So
764 * we just run until the state machine tells us something
765 * happened or it needs a delay.
767 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
768 time = 0;
769 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
770 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
773 smi_inc_stat(smi_info, complete_transactions);
775 handle_transaction_done(smi_info);
776 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
777 } else if (si_sm_result == SI_SM_HOSED) {
778 smi_inc_stat(smi_info, hosed_count);
781 * Do the before return_hosed_msg, because that
782 * releases the lock.
784 smi_info->si_state = SI_NORMAL;
785 if (smi_info->curr_msg != NULL) {
787 * If we were handling a user message, format
788 * a response to send to the upper layer to
789 * tell it about the error.
791 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
793 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797 * We prefer handling attn over new messages. But don't do
798 * this if there is not yet an upper layer to handle anything.
800 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
801 unsigned char msg[2];
803 smi_inc_stat(smi_info, attentions);
806 * Got a attn, send down a get message flags to see
807 * what's causing it. It would be better to handle
808 * this in the upper layer, but due to the way
809 * interrupts work with the SMI, that's not really
810 * possible.
812 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
813 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
815 smi_info->handlers->start_transaction(
816 smi_info->si_sm, msg, 2);
817 smi_info->si_state = SI_GETTING_FLAGS;
818 goto restart;
821 /* If we are currently idle, try to start the next message. */
822 if (si_sm_result == SI_SM_IDLE) {
823 smi_inc_stat(smi_info, idles);
825 si_sm_result = start_next_msg(smi_info);
826 if (si_sm_result != SI_SM_IDLE)
827 goto restart;
830 if ((si_sm_result == SI_SM_IDLE)
831 && (atomic_read(&smi_info->req_events))) {
833 * We are idle and the upper layer requested that I fetch
834 * events, so do so.
836 atomic_set(&smi_info->req_events, 0);
838 smi_info->curr_msg = ipmi_alloc_smi_msg();
839 if (!smi_info->curr_msg)
840 goto out;
842 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
843 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
844 smi_info->curr_msg->data_size = 2;
846 smi_info->handlers->start_transaction(
847 smi_info->si_sm,
848 smi_info->curr_msg->data,
849 smi_info->curr_msg->data_size);
850 smi_info->si_state = SI_GETTING_EVENTS;
851 goto restart;
853 out:
854 return si_sm_result;
857 static void sender(void *send_info,
858 struct ipmi_smi_msg *msg,
859 int priority)
861 struct smi_info *smi_info = send_info;
862 enum si_sm_result result;
863 unsigned long flags;
864 #ifdef DEBUG_TIMING
865 struct timeval t;
866 #endif
868 if (atomic_read(&smi_info->stop_operation)) {
869 msg->rsp[0] = msg->data[0] | 4;
870 msg->rsp[1] = msg->data[1];
871 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
872 msg->rsp_size = 3;
873 deliver_recv_msg(smi_info, msg);
874 return;
877 #ifdef DEBUG_TIMING
878 do_gettimeofday(&t);
879 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
880 #endif
882 if (smi_info->run_to_completion) {
884 * If we are running to completion, then throw it in
885 * the list and run transactions until everything is
886 * clear. Priority doesn't matter here.
890 * Run to completion means we are single-threaded, no
891 * need for locks.
893 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
895 result = smi_event_handler(smi_info, 0);
896 while (result != SI_SM_IDLE) {
897 udelay(SI_SHORT_TIMEOUT_USEC);
898 result = smi_event_handler(smi_info,
899 SI_SHORT_TIMEOUT_USEC);
901 return;
904 spin_lock_irqsave(&smi_info->si_lock, flags);
905 if (priority > 0)
906 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
907 else
908 list_add_tail(&msg->link, &smi_info->xmit_msgs);
910 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
912 * last_timeout_jiffies is updated here to avoid
913 * smi_timeout() handler passing very large time_diff
914 * value to smi_event_handler() that causes
915 * the send command to abort.
917 smi_info->last_timeout_jiffies = jiffies;
919 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
921 if (smi_info->thread)
922 wake_up_process(smi_info->thread);
924 start_next_msg(smi_info);
925 smi_event_handler(smi_info, 0);
927 spin_unlock_irqrestore(&smi_info->si_lock, flags);
930 static void set_run_to_completion(void *send_info, int i_run_to_completion)
932 struct smi_info *smi_info = send_info;
933 enum si_sm_result result;
935 smi_info->run_to_completion = i_run_to_completion;
936 if (i_run_to_completion) {
937 result = smi_event_handler(smi_info, 0);
938 while (result != SI_SM_IDLE) {
939 udelay(SI_SHORT_TIMEOUT_USEC);
940 result = smi_event_handler(smi_info,
941 SI_SHORT_TIMEOUT_USEC);
947 * Use -1 in the nsec value of the busy waiting timespec to tell that
948 * we are spinning in kipmid looking for something and not delaying
949 * between checks
951 static inline void ipmi_si_set_not_busy(struct timespec *ts)
953 ts->tv_nsec = -1;
955 static inline int ipmi_si_is_busy(struct timespec *ts)
957 return ts->tv_nsec != -1;
960 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
961 const struct smi_info *smi_info,
962 struct timespec *busy_until)
964 unsigned int max_busy_us = 0;
966 if (smi_info->intf_num < num_max_busy_us)
967 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
968 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
969 ipmi_si_set_not_busy(busy_until);
970 else if (!ipmi_si_is_busy(busy_until)) {
971 getnstimeofday(busy_until);
972 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
973 } else {
974 struct timespec now;
975 getnstimeofday(&now);
976 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
977 ipmi_si_set_not_busy(busy_until);
978 return 0;
981 return 1;
986 * A busy-waiting loop for speeding up IPMI operation.
988 * Lousy hardware makes this hard. This is only enabled for systems
989 * that are not BT and do not have interrupts. It starts spinning
990 * when an operation is complete or until max_busy tells it to stop
991 * (if that is enabled). See the paragraph on kimid_max_busy_us in
992 * Documentation/IPMI.txt for details.
994 static int ipmi_thread(void *data)
996 struct smi_info *smi_info = data;
997 unsigned long flags;
998 enum si_sm_result smi_result;
999 struct timespec busy_until;
1001 ipmi_si_set_not_busy(&busy_until);
1002 set_user_nice(current, 19);
1003 while (!kthread_should_stop()) {
1004 int busy_wait;
1006 spin_lock_irqsave(&(smi_info->si_lock), flags);
1007 smi_result = smi_event_handler(smi_info, 0);
1008 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1009 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1010 &busy_until);
1011 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1012 ; /* do nothing */
1013 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1014 schedule();
1015 else if (smi_result == SI_SM_IDLE)
1016 schedule_timeout_interruptible(100);
1017 else
1018 schedule_timeout_interruptible(1);
1020 return 0;
1024 static void poll(void *send_info)
1026 struct smi_info *smi_info = send_info;
1027 unsigned long flags = 0;
1028 int run_to_completion = smi_info->run_to_completion;
1031 * Make sure there is some delay in the poll loop so we can
1032 * drive time forward and timeout things.
1034 udelay(10);
1035 if (!run_to_completion)
1036 spin_lock_irqsave(&smi_info->si_lock, flags);
1037 smi_event_handler(smi_info, 10);
1038 if (!run_to_completion)
1039 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1042 static void request_events(void *send_info)
1044 struct smi_info *smi_info = send_info;
1046 if (atomic_read(&smi_info->stop_operation) ||
1047 !smi_info->has_event_buffer)
1048 return;
1050 atomic_set(&smi_info->req_events, 1);
1053 static int initialized;
1055 static void smi_timeout(unsigned long data)
1057 struct smi_info *smi_info = (struct smi_info *) data;
1058 enum si_sm_result smi_result;
1059 unsigned long flags;
1060 unsigned long jiffies_now;
1061 long time_diff;
1062 long timeout;
1063 #ifdef DEBUG_TIMING
1064 struct timeval t;
1065 #endif
1067 spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 #ifdef DEBUG_TIMING
1069 do_gettimeofday(&t);
1070 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1071 #endif
1072 jiffies_now = jiffies;
1073 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1074 * SI_USEC_PER_JIFFY);
1075 smi_result = smi_event_handler(smi_info, time_diff);
1077 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1079 smi_info->last_timeout_jiffies = jiffies_now;
1081 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1082 /* Running with interrupts, only do long timeouts. */
1083 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1084 smi_inc_stat(smi_info, long_timeouts);
1085 goto do_mod_timer;
1089 * If the state machine asks for a short delay, then shorten
1090 * the timer timeout.
1092 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1093 smi_inc_stat(smi_info, short_timeouts);
1094 timeout = jiffies + 1;
1095 } else {
1096 smi_inc_stat(smi_info, long_timeouts);
1097 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1100 do_mod_timer:
1101 if (smi_result != SI_SM_IDLE)
1102 mod_timer(&(smi_info->si_timer), timeout);
1105 static irqreturn_t si_irq_handler(int irq, void *data)
1107 struct smi_info *smi_info = data;
1108 unsigned long flags;
1109 #ifdef DEBUG_TIMING
1110 struct timeval t;
1111 #endif
1113 spin_lock_irqsave(&(smi_info->si_lock), flags);
1115 smi_inc_stat(smi_info, interrupts);
1117 #ifdef DEBUG_TIMING
1118 do_gettimeofday(&t);
1119 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1120 #endif
1121 smi_event_handler(smi_info, 0);
1122 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1123 return IRQ_HANDLED;
1126 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1128 struct smi_info *smi_info = data;
1129 /* We need to clear the IRQ flag for the BT interface. */
1130 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1131 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1133 return si_irq_handler(irq, data);
1136 static int smi_start_processing(void *send_info,
1137 ipmi_smi_t intf)
1139 struct smi_info *new_smi = send_info;
1140 int enable = 0;
1142 new_smi->intf = intf;
1144 /* Try to claim any interrupts. */
1145 if (new_smi->irq_setup)
1146 new_smi->irq_setup(new_smi);
1148 /* Set up the timer that drives the interface. */
1149 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1150 new_smi->last_timeout_jiffies = jiffies;
1151 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1154 * Check if the user forcefully enabled the daemon.
1156 if (new_smi->intf_num < num_force_kipmid)
1157 enable = force_kipmid[new_smi->intf_num];
1159 * The BT interface is efficient enough to not need a thread,
1160 * and there is no need for a thread if we have interrupts.
1162 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1163 enable = 1;
1165 if (enable) {
1166 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1167 "kipmi%d", new_smi->intf_num);
1168 if (IS_ERR(new_smi->thread)) {
1169 dev_notice(new_smi->dev, "Could not start"
1170 " kernel thread due to error %ld, only using"
1171 " timers to drive the interface\n",
1172 PTR_ERR(new_smi->thread));
1173 new_smi->thread = NULL;
1177 return 0;
1180 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1182 struct smi_info *smi = send_info;
1184 data->addr_src = smi->addr_source;
1185 data->dev = smi->dev;
1186 data->addr_info = smi->addr_info;
1187 get_device(smi->dev);
1189 return 0;
1192 static void set_maintenance_mode(void *send_info, int enable)
1194 struct smi_info *smi_info = send_info;
1196 if (!enable)
1197 atomic_set(&smi_info->req_events, 0);
1200 static struct ipmi_smi_handlers handlers = {
1201 .owner = THIS_MODULE,
1202 .start_processing = smi_start_processing,
1203 .get_smi_info = get_smi_info,
1204 .sender = sender,
1205 .request_events = request_events,
1206 .set_maintenance_mode = set_maintenance_mode,
1207 .set_run_to_completion = set_run_to_completion,
1208 .poll = poll,
1212 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1213 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1216 static LIST_HEAD(smi_infos);
1217 static DEFINE_MUTEX(smi_infos_lock);
1218 static int smi_num; /* Used to sequence the SMIs */
1220 #define DEFAULT_REGSPACING 1
1221 #define DEFAULT_REGSIZE 1
1223 #ifdef CONFIG_ACPI
1224 static bool si_tryacpi = 1;
1225 #endif
1226 #ifdef CONFIG_DMI
1227 static bool si_trydmi = 1;
1228 #endif
1229 static bool si_tryplatform = 1;
1230 #ifdef CONFIG_PCI
1231 static bool si_trypci = 1;
1232 #endif
1233 static bool si_trydefaults = 1;
1234 static char *si_type[SI_MAX_PARMS];
1235 #define MAX_SI_TYPE_STR 30
1236 static char si_type_str[MAX_SI_TYPE_STR];
1237 static unsigned long addrs[SI_MAX_PARMS];
1238 static unsigned int num_addrs;
1239 static unsigned int ports[SI_MAX_PARMS];
1240 static unsigned int num_ports;
1241 static int irqs[SI_MAX_PARMS];
1242 static unsigned int num_irqs;
1243 static int regspacings[SI_MAX_PARMS];
1244 static unsigned int num_regspacings;
1245 static int regsizes[SI_MAX_PARMS];
1246 static unsigned int num_regsizes;
1247 static int regshifts[SI_MAX_PARMS];
1248 static unsigned int num_regshifts;
1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs;
1252 #define IPMI_IO_ADDR_SPACE 0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str[] = { "i/o", "mem" };
1256 static int hotmod_handler(const char *val, struct kernel_param *kp);
1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1260 " Documentation/IPMI.txt in the kernel sources for the"
1261 " gory details.");
1263 #ifdef CONFIG_ACPI
1264 module_param_named(tryacpi, si_tryacpi, bool, 0);
1265 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1266 " default scan of the interfaces identified via ACPI");
1267 #endif
1268 #ifdef CONFIG_DMI
1269 module_param_named(trydmi, si_trydmi, bool, 0);
1270 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1271 " default scan of the interfaces identified via DMI");
1272 #endif
1273 module_param_named(tryplatform, si_tryplatform, bool, 0);
1274 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1275 " default scan of the interfaces identified via platform"
1276 " interfaces like openfirmware");
1277 #ifdef CONFIG_PCI
1278 module_param_named(trypci, si_trypci, bool, 0);
1279 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1280 " default scan of the interfaces identified via pci");
1281 #endif
1282 module_param_named(trydefaults, si_trydefaults, bool, 0);
1283 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1284 " default scan of the KCS and SMIC interface at the standard"
1285 " address");
1286 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1287 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1288 " interface separated by commas. The types are 'kcs',"
1289 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1290 " the first interface to kcs and the second to bt");
1291 module_param_array(addrs, ulong, &num_addrs, 0);
1292 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1293 " addresses separated by commas. Only use if an interface"
1294 " is in memory. Otherwise, set it to zero or leave"
1295 " it blank.");
1296 module_param_array(ports, uint, &num_ports, 0);
1297 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1298 " addresses separated by commas. Only use if an interface"
1299 " is a port. Otherwise, set it to zero or leave"
1300 " it blank.");
1301 module_param_array(irqs, int, &num_irqs, 0);
1302 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1303 " addresses separated by commas. Only use if an interface"
1304 " has an interrupt. Otherwise, set it to zero or leave"
1305 " it blank.");
1306 module_param_array(regspacings, int, &num_regspacings, 0);
1307 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1308 " and each successive register used by the interface. For"
1309 " instance, if the start address is 0xca2 and the spacing"
1310 " is 2, then the second address is at 0xca4. Defaults"
1311 " to 1.");
1312 module_param_array(regsizes, int, &num_regsizes, 0);
1313 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1314 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1315 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1316 " the 8-bit IPMI register has to be read from a larger"
1317 " register.");
1318 module_param_array(regshifts, int, &num_regshifts, 0);
1319 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1320 " IPMI register, in bits. For instance, if the data"
1321 " is read from a 32-bit word and the IPMI data is in"
1322 " bit 8-15, then the shift would be 8");
1323 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1324 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1325 " the controller. Normally this is 0x20, but can be"
1326 " overridden by this parm. This is an array indexed"
1327 " by interface number.");
1328 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1329 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1330 " disabled(0). Normally the IPMI driver auto-detects"
1331 " this, but the value may be overridden by this parm.");
1332 module_param(unload_when_empty, int, 0);
1333 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1334 " specified or found, default is 1. Setting to 0"
1335 " is useful for hot add of devices using hotmod.");
1336 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1337 MODULE_PARM_DESC(kipmid_max_busy_us,
1338 "Max time (in microseconds) to busy-wait for IPMI data before"
1339 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1340 " if kipmid is using up a lot of CPU time.");
1343 static void std_irq_cleanup(struct smi_info *info)
1345 if (info->si_type == SI_BT)
1346 /* Disable the interrupt in the BT interface. */
1347 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1348 free_irq(info->irq, info);
1351 static int std_irq_setup(struct smi_info *info)
1353 int rv;
1355 if (!info->irq)
1356 return 0;
1358 if (info->si_type == SI_BT) {
1359 rv = request_irq(info->irq,
1360 si_bt_irq_handler,
1361 IRQF_SHARED,
1362 DEVICE_NAME,
1363 info);
1364 if (!rv)
1365 /* Enable the interrupt in the BT interface. */
1366 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1367 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1368 } else
1369 rv = request_irq(info->irq,
1370 si_irq_handler,
1371 IRQF_SHARED,
1372 DEVICE_NAME,
1373 info);
1374 if (rv) {
1375 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1376 " running polled\n",
1377 DEVICE_NAME, info->irq);
1378 info->irq = 0;
1379 } else {
1380 info->irq_cleanup = std_irq_cleanup;
1381 dev_info(info->dev, "Using irq %d\n", info->irq);
1384 return rv;
1387 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1389 unsigned int addr = io->addr_data;
1391 return inb(addr + (offset * io->regspacing));
1394 static void port_outb(struct si_sm_io *io, unsigned int offset,
1395 unsigned char b)
1397 unsigned int addr = io->addr_data;
1399 outb(b, addr + (offset * io->regspacing));
1402 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1404 unsigned int addr = io->addr_data;
1406 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1409 static void port_outw(struct si_sm_io *io, unsigned int offset,
1410 unsigned char b)
1412 unsigned int addr = io->addr_data;
1414 outw(b << io->regshift, addr + (offset * io->regspacing));
1417 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1419 unsigned int addr = io->addr_data;
1421 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1424 static void port_outl(struct si_sm_io *io, unsigned int offset,
1425 unsigned char b)
1427 unsigned int addr = io->addr_data;
1429 outl(b << io->regshift, addr+(offset * io->regspacing));
1432 static void port_cleanup(struct smi_info *info)
1434 unsigned int addr = info->io.addr_data;
1435 int idx;
1437 if (addr) {
1438 for (idx = 0; idx < info->io_size; idx++)
1439 release_region(addr + idx * info->io.regspacing,
1440 info->io.regsize);
1444 static int port_setup(struct smi_info *info)
1446 unsigned int addr = info->io.addr_data;
1447 int idx;
1449 if (!addr)
1450 return -ENODEV;
1452 info->io_cleanup = port_cleanup;
1455 * Figure out the actual inb/inw/inl/etc routine to use based
1456 * upon the register size.
1458 switch (info->io.regsize) {
1459 case 1:
1460 info->io.inputb = port_inb;
1461 info->io.outputb = port_outb;
1462 break;
1463 case 2:
1464 info->io.inputb = port_inw;
1465 info->io.outputb = port_outw;
1466 break;
1467 case 4:
1468 info->io.inputb = port_inl;
1469 info->io.outputb = port_outl;
1470 break;
1471 default:
1472 dev_warn(info->dev, "Invalid register size: %d\n",
1473 info->io.regsize);
1474 return -EINVAL;
1478 * Some BIOSes reserve disjoint I/O regions in their ACPI
1479 * tables. This causes problems when trying to register the
1480 * entire I/O region. Therefore we must register each I/O
1481 * port separately.
1483 for (idx = 0; idx < info->io_size; idx++) {
1484 if (request_region(addr + idx * info->io.regspacing,
1485 info->io.regsize, DEVICE_NAME) == NULL) {
1486 /* Undo allocations */
1487 while (idx--) {
1488 release_region(addr + idx * info->io.regspacing,
1489 info->io.regsize);
1491 return -EIO;
1494 return 0;
1497 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1499 return readb((io->addr)+(offset * io->regspacing));
1502 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1503 unsigned char b)
1505 writeb(b, (io->addr)+(offset * io->regspacing));
1508 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1510 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511 & 0xff;
1514 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1515 unsigned char b)
1517 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1520 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1522 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1523 & 0xff;
1526 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1527 unsigned char b)
1529 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1532 #ifdef readq
1533 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1535 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1536 & 0xff;
1539 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1540 unsigned char b)
1542 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1544 #endif
1546 static void mem_cleanup(struct smi_info *info)
1548 unsigned long addr = info->io.addr_data;
1549 int mapsize;
1551 if (info->io.addr) {
1552 iounmap(info->io.addr);
1554 mapsize = ((info->io_size * info->io.regspacing)
1555 - (info->io.regspacing - info->io.regsize));
1557 release_mem_region(addr, mapsize);
1561 static int mem_setup(struct smi_info *info)
1563 unsigned long addr = info->io.addr_data;
1564 int mapsize;
1566 if (!addr)
1567 return -ENODEV;
1569 info->io_cleanup = mem_cleanup;
1572 * Figure out the actual readb/readw/readl/etc routine to use based
1573 * upon the register size.
1575 switch (info->io.regsize) {
1576 case 1:
1577 info->io.inputb = intf_mem_inb;
1578 info->io.outputb = intf_mem_outb;
1579 break;
1580 case 2:
1581 info->io.inputb = intf_mem_inw;
1582 info->io.outputb = intf_mem_outw;
1583 break;
1584 case 4:
1585 info->io.inputb = intf_mem_inl;
1586 info->io.outputb = intf_mem_outl;
1587 break;
1588 #ifdef readq
1589 case 8:
1590 info->io.inputb = mem_inq;
1591 info->io.outputb = mem_outq;
1592 break;
1593 #endif
1594 default:
1595 dev_warn(info->dev, "Invalid register size: %d\n",
1596 info->io.regsize);
1597 return -EINVAL;
1601 * Calculate the total amount of memory to claim. This is an
1602 * unusual looking calculation, but it avoids claiming any
1603 * more memory than it has to. It will claim everything
1604 * between the first address to the end of the last full
1605 * register.
1607 mapsize = ((info->io_size * info->io.regspacing)
1608 - (info->io.regspacing - info->io.regsize));
1610 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1611 return -EIO;
1613 info->io.addr = ioremap(addr, mapsize);
1614 if (info->io.addr == NULL) {
1615 release_mem_region(addr, mapsize);
1616 return -EIO;
1618 return 0;
1622 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1623 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1624 * Options are:
1625 * rsp=<regspacing>
1626 * rsi=<regsize>
1627 * rsh=<regshift>
1628 * irq=<irq>
1629 * ipmb=<ipmb addr>
1631 enum hotmod_op { HM_ADD, HM_REMOVE };
1632 struct hotmod_vals {
1633 char *name;
1634 int val;
1636 static struct hotmod_vals hotmod_ops[] = {
1637 { "add", HM_ADD },
1638 { "remove", HM_REMOVE },
1639 { NULL }
1641 static struct hotmod_vals hotmod_si[] = {
1642 { "kcs", SI_KCS },
1643 { "smic", SI_SMIC },
1644 { "bt", SI_BT },
1645 { NULL }
1647 static struct hotmod_vals hotmod_as[] = {
1648 { "mem", IPMI_MEM_ADDR_SPACE },
1649 { "i/o", IPMI_IO_ADDR_SPACE },
1650 { NULL }
1653 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1655 char *s;
1656 int i;
1658 s = strchr(*curr, ',');
1659 if (!s) {
1660 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1661 return -EINVAL;
1663 *s = '\0';
1664 s++;
1665 for (i = 0; hotmod_ops[i].name; i++) {
1666 if (strcmp(*curr, v[i].name) == 0) {
1667 *val = v[i].val;
1668 *curr = s;
1669 return 0;
1673 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1674 return -EINVAL;
1677 static int check_hotmod_int_op(const char *curr, const char *option,
1678 const char *name, int *val)
1680 char *n;
1682 if (strcmp(curr, name) == 0) {
1683 if (!option) {
1684 printk(KERN_WARNING PFX
1685 "No option given for '%s'\n",
1686 curr);
1687 return -EINVAL;
1689 *val = simple_strtoul(option, &n, 0);
1690 if ((*n != '\0') || (*option == '\0')) {
1691 printk(KERN_WARNING PFX
1692 "Bad option given for '%s'\n",
1693 curr);
1694 return -EINVAL;
1696 return 1;
1698 return 0;
1701 static struct smi_info *smi_info_alloc(void)
1703 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1705 if (info)
1706 spin_lock_init(&info->si_lock);
1707 return info;
1710 static int hotmod_handler(const char *val, struct kernel_param *kp)
1712 char *str = kstrdup(val, GFP_KERNEL);
1713 int rv;
1714 char *next, *curr, *s, *n, *o;
1715 enum hotmod_op op;
1716 enum si_type si_type;
1717 int addr_space;
1718 unsigned long addr;
1719 int regspacing;
1720 int regsize;
1721 int regshift;
1722 int irq;
1723 int ipmb;
1724 int ival;
1725 int len;
1726 struct smi_info *info;
1728 if (!str)
1729 return -ENOMEM;
1731 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1732 len = strlen(str);
1733 ival = len - 1;
1734 while ((ival >= 0) && isspace(str[ival])) {
1735 str[ival] = '\0';
1736 ival--;
1739 for (curr = str; curr; curr = next) {
1740 regspacing = 1;
1741 regsize = 1;
1742 regshift = 0;
1743 irq = 0;
1744 ipmb = 0; /* Choose the default if not specified */
1746 next = strchr(curr, ':');
1747 if (next) {
1748 *next = '\0';
1749 next++;
1752 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1753 if (rv)
1754 break;
1755 op = ival;
1757 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1758 if (rv)
1759 break;
1760 si_type = ival;
1762 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1763 if (rv)
1764 break;
1766 s = strchr(curr, ',');
1767 if (s) {
1768 *s = '\0';
1769 s++;
1771 addr = simple_strtoul(curr, &n, 0);
1772 if ((*n != '\0') || (*curr == '\0')) {
1773 printk(KERN_WARNING PFX "Invalid hotmod address"
1774 " '%s'\n", curr);
1775 break;
1778 while (s) {
1779 curr = s;
1780 s = strchr(curr, ',');
1781 if (s) {
1782 *s = '\0';
1783 s++;
1785 o = strchr(curr, '=');
1786 if (o) {
1787 *o = '\0';
1788 o++;
1790 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1791 if (rv < 0)
1792 goto out;
1793 else if (rv)
1794 continue;
1795 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1796 if (rv < 0)
1797 goto out;
1798 else if (rv)
1799 continue;
1800 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1801 if (rv < 0)
1802 goto out;
1803 else if (rv)
1804 continue;
1805 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1806 if (rv < 0)
1807 goto out;
1808 else if (rv)
1809 continue;
1810 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1811 if (rv < 0)
1812 goto out;
1813 else if (rv)
1814 continue;
1816 rv = -EINVAL;
1817 printk(KERN_WARNING PFX
1818 "Invalid hotmod option '%s'\n",
1819 curr);
1820 goto out;
1823 if (op == HM_ADD) {
1824 info = smi_info_alloc();
1825 if (!info) {
1826 rv = -ENOMEM;
1827 goto out;
1830 info->addr_source = SI_HOTMOD;
1831 info->si_type = si_type;
1832 info->io.addr_data = addr;
1833 info->io.addr_type = addr_space;
1834 if (addr_space == IPMI_MEM_ADDR_SPACE)
1835 info->io_setup = mem_setup;
1836 else
1837 info->io_setup = port_setup;
1839 info->io.addr = NULL;
1840 info->io.regspacing = regspacing;
1841 if (!info->io.regspacing)
1842 info->io.regspacing = DEFAULT_REGSPACING;
1843 info->io.regsize = regsize;
1844 if (!info->io.regsize)
1845 info->io.regsize = DEFAULT_REGSPACING;
1846 info->io.regshift = regshift;
1847 info->irq = irq;
1848 if (info->irq)
1849 info->irq_setup = std_irq_setup;
1850 info->slave_addr = ipmb;
1852 rv = add_smi(info);
1853 if (rv) {
1854 kfree(info);
1855 goto out;
1857 rv = try_smi_init(info);
1858 if (rv) {
1859 cleanup_one_si(info);
1860 goto out;
1862 } else {
1863 /* remove */
1864 struct smi_info *e, *tmp_e;
1866 mutex_lock(&smi_infos_lock);
1867 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1868 if (e->io.addr_type != addr_space)
1869 continue;
1870 if (e->si_type != si_type)
1871 continue;
1872 if (e->io.addr_data == addr)
1873 cleanup_one_si(e);
1875 mutex_unlock(&smi_infos_lock);
1878 rv = len;
1879 out:
1880 kfree(str);
1881 return rv;
1884 static int hardcode_find_bmc(void)
1886 int ret = -ENODEV;
1887 int i;
1888 struct smi_info *info;
1890 for (i = 0; i < SI_MAX_PARMS; i++) {
1891 if (!ports[i] && !addrs[i])
1892 continue;
1894 info = smi_info_alloc();
1895 if (!info)
1896 return -ENOMEM;
1898 info->addr_source = SI_HARDCODED;
1899 printk(KERN_INFO PFX "probing via hardcoded address\n");
1901 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1902 info->si_type = SI_KCS;
1903 } else if (strcmp(si_type[i], "smic") == 0) {
1904 info->si_type = SI_SMIC;
1905 } else if (strcmp(si_type[i], "bt") == 0) {
1906 info->si_type = SI_BT;
1907 } else {
1908 printk(KERN_WARNING PFX "Interface type specified "
1909 "for interface %d, was invalid: %s\n",
1910 i, si_type[i]);
1911 kfree(info);
1912 continue;
1915 if (ports[i]) {
1916 /* An I/O port */
1917 info->io_setup = port_setup;
1918 info->io.addr_data = ports[i];
1919 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1920 } else if (addrs[i]) {
1921 /* A memory port */
1922 info->io_setup = mem_setup;
1923 info->io.addr_data = addrs[i];
1924 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1925 } else {
1926 printk(KERN_WARNING PFX "Interface type specified "
1927 "for interface %d, but port and address were "
1928 "not set or set to zero.\n", i);
1929 kfree(info);
1930 continue;
1933 info->io.addr = NULL;
1934 info->io.regspacing = regspacings[i];
1935 if (!info->io.regspacing)
1936 info->io.regspacing = DEFAULT_REGSPACING;
1937 info->io.regsize = regsizes[i];
1938 if (!info->io.regsize)
1939 info->io.regsize = DEFAULT_REGSPACING;
1940 info->io.regshift = regshifts[i];
1941 info->irq = irqs[i];
1942 if (info->irq)
1943 info->irq_setup = std_irq_setup;
1944 info->slave_addr = slave_addrs[i];
1946 if (!add_smi(info)) {
1947 if (try_smi_init(info))
1948 cleanup_one_si(info);
1949 ret = 0;
1950 } else {
1951 kfree(info);
1954 return ret;
1957 #ifdef CONFIG_ACPI
1959 #include <linux/acpi.h>
1962 * Once we get an ACPI failure, we don't try any more, because we go
1963 * through the tables sequentially. Once we don't find a table, there
1964 * are no more.
1966 static int acpi_failure;
1968 /* For GPE-type interrupts. */
1969 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1970 u32 gpe_number, void *context)
1972 struct smi_info *smi_info = context;
1973 unsigned long flags;
1974 #ifdef DEBUG_TIMING
1975 struct timeval t;
1976 #endif
1978 spin_lock_irqsave(&(smi_info->si_lock), flags);
1980 smi_inc_stat(smi_info, interrupts);
1982 #ifdef DEBUG_TIMING
1983 do_gettimeofday(&t);
1984 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1985 #endif
1986 smi_event_handler(smi_info, 0);
1987 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1989 return ACPI_INTERRUPT_HANDLED;
1992 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1994 if (!info->irq)
1995 return;
1997 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2000 static int acpi_gpe_irq_setup(struct smi_info *info)
2002 acpi_status status;
2004 if (!info->irq)
2005 return 0;
2007 /* FIXME - is level triggered right? */
2008 status = acpi_install_gpe_handler(NULL,
2009 info->irq,
2010 ACPI_GPE_LEVEL_TRIGGERED,
2011 &ipmi_acpi_gpe,
2012 info);
2013 if (status != AE_OK) {
2014 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2015 " running polled\n", DEVICE_NAME, info->irq);
2016 info->irq = 0;
2017 return -EINVAL;
2018 } else {
2019 info->irq_cleanup = acpi_gpe_irq_cleanup;
2020 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2021 return 0;
2026 * Defined at
2027 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2029 struct SPMITable {
2030 s8 Signature[4];
2031 u32 Length;
2032 u8 Revision;
2033 u8 Checksum;
2034 s8 OEMID[6];
2035 s8 OEMTableID[8];
2036 s8 OEMRevision[4];
2037 s8 CreatorID[4];
2038 s8 CreatorRevision[4];
2039 u8 InterfaceType;
2040 u8 IPMIlegacy;
2041 s16 SpecificationRevision;
2044 * Bit 0 - SCI interrupt supported
2045 * Bit 1 - I/O APIC/SAPIC
2047 u8 InterruptType;
2050 * If bit 0 of InterruptType is set, then this is the SCI
2051 * interrupt in the GPEx_STS register.
2053 u8 GPE;
2055 s16 Reserved;
2058 * If bit 1 of InterruptType is set, then this is the I/O
2059 * APIC/SAPIC interrupt.
2061 u32 GlobalSystemInterrupt;
2063 /* The actual register address. */
2064 struct acpi_generic_address addr;
2066 u8 UID[4];
2068 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2071 static int try_init_spmi(struct SPMITable *spmi)
2073 struct smi_info *info;
2074 int rv;
2076 if (spmi->IPMIlegacy != 1) {
2077 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2078 return -ENODEV;
2081 info = smi_info_alloc();
2082 if (!info) {
2083 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2084 return -ENOMEM;
2087 info->addr_source = SI_SPMI;
2088 printk(KERN_INFO PFX "probing via SPMI\n");
2090 /* Figure out the interface type. */
2091 switch (spmi->InterfaceType) {
2092 case 1: /* KCS */
2093 info->si_type = SI_KCS;
2094 break;
2095 case 2: /* SMIC */
2096 info->si_type = SI_SMIC;
2097 break;
2098 case 3: /* BT */
2099 info->si_type = SI_BT;
2100 break;
2101 default:
2102 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2103 spmi->InterfaceType);
2104 kfree(info);
2105 return -EIO;
2108 if (spmi->InterruptType & 1) {
2109 /* We've got a GPE interrupt. */
2110 info->irq = spmi->GPE;
2111 info->irq_setup = acpi_gpe_irq_setup;
2112 } else if (spmi->InterruptType & 2) {
2113 /* We've got an APIC/SAPIC interrupt. */
2114 info->irq = spmi->GlobalSystemInterrupt;
2115 info->irq_setup = std_irq_setup;
2116 } else {
2117 /* Use the default interrupt setting. */
2118 info->irq = 0;
2119 info->irq_setup = NULL;
2122 if (spmi->addr.bit_width) {
2123 /* A (hopefully) properly formed register bit width. */
2124 info->io.regspacing = spmi->addr.bit_width / 8;
2125 } else {
2126 info->io.regspacing = DEFAULT_REGSPACING;
2128 info->io.regsize = info->io.regspacing;
2129 info->io.regshift = spmi->addr.bit_offset;
2131 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2132 info->io_setup = mem_setup;
2133 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2134 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2135 info->io_setup = port_setup;
2136 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 } else {
2138 kfree(info);
2139 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2140 return -EIO;
2142 info->io.addr_data = spmi->addr.address;
2144 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2145 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2146 info->io.addr_data, info->io.regsize, info->io.regspacing,
2147 info->irq);
2149 rv = add_smi(info);
2150 if (rv)
2151 kfree(info);
2153 return rv;
2156 static void spmi_find_bmc(void)
2158 acpi_status status;
2159 struct SPMITable *spmi;
2160 int i;
2162 if (acpi_disabled)
2163 return;
2165 if (acpi_failure)
2166 return;
2168 for (i = 0; ; i++) {
2169 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2170 (struct acpi_table_header **)&spmi);
2171 if (status != AE_OK)
2172 return;
2174 try_init_spmi(spmi);
2178 static int ipmi_pnp_probe(struct pnp_dev *dev,
2179 const struct pnp_device_id *dev_id)
2181 struct acpi_device *acpi_dev;
2182 struct smi_info *info;
2183 struct resource *res, *res_second;
2184 acpi_handle handle;
2185 acpi_status status;
2186 unsigned long long tmp;
2187 int rv;
2189 acpi_dev = pnp_acpi_device(dev);
2190 if (!acpi_dev)
2191 return -ENODEV;
2193 info = smi_info_alloc();
2194 if (!info)
2195 return -ENOMEM;
2197 info->addr_source = SI_ACPI;
2198 printk(KERN_INFO PFX "probing via ACPI\n");
2200 handle = acpi_dev->handle;
2201 info->addr_info.acpi_info.acpi_handle = handle;
2203 /* _IFT tells us the interface type: KCS, BT, etc */
2204 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2205 if (ACPI_FAILURE(status))
2206 goto err_free;
2208 switch (tmp) {
2209 case 1:
2210 info->si_type = SI_KCS;
2211 break;
2212 case 2:
2213 info->si_type = SI_SMIC;
2214 break;
2215 case 3:
2216 info->si_type = SI_BT;
2217 break;
2218 default:
2219 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2220 goto err_free;
2223 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2224 if (res) {
2225 info->io_setup = port_setup;
2226 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2227 } else {
2228 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2229 if (res) {
2230 info->io_setup = mem_setup;
2231 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2234 if (!res) {
2235 dev_err(&dev->dev, "no I/O or memory address\n");
2236 goto err_free;
2238 info->io.addr_data = res->start;
2240 info->io.regspacing = DEFAULT_REGSPACING;
2241 res_second = pnp_get_resource(dev,
2242 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2243 IORESOURCE_IO : IORESOURCE_MEM,
2245 if (res_second) {
2246 if (res_second->start > info->io.addr_data)
2247 info->io.regspacing = res_second->start - info->io.addr_data;
2249 info->io.regsize = DEFAULT_REGSPACING;
2250 info->io.regshift = 0;
2252 /* If _GPE exists, use it; otherwise use standard interrupts */
2253 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2254 if (ACPI_SUCCESS(status)) {
2255 info->irq = tmp;
2256 info->irq_setup = acpi_gpe_irq_setup;
2257 } else if (pnp_irq_valid(dev, 0)) {
2258 info->irq = pnp_irq(dev, 0);
2259 info->irq_setup = std_irq_setup;
2262 info->dev = &dev->dev;
2263 pnp_set_drvdata(dev, info);
2265 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2266 res, info->io.regsize, info->io.regspacing,
2267 info->irq);
2269 rv = add_smi(info);
2270 if (rv)
2271 kfree(info);
2273 return rv;
2275 err_free:
2276 kfree(info);
2277 return -EINVAL;
2280 static void ipmi_pnp_remove(struct pnp_dev *dev)
2282 struct smi_info *info = pnp_get_drvdata(dev);
2284 cleanup_one_si(info);
2287 static const struct pnp_device_id pnp_dev_table[] = {
2288 {"IPI0001", 0},
2289 {"", 0},
2292 static struct pnp_driver ipmi_pnp_driver = {
2293 .name = DEVICE_NAME,
2294 .probe = ipmi_pnp_probe,
2295 .remove = ipmi_pnp_remove,
2296 .id_table = pnp_dev_table,
2299 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2300 #endif
2302 #ifdef CONFIG_DMI
2303 struct dmi_ipmi_data {
2304 u8 type;
2305 u8 addr_space;
2306 unsigned long base_addr;
2307 u8 irq;
2308 u8 offset;
2309 u8 slave_addr;
2312 static int decode_dmi(const struct dmi_header *dm,
2313 struct dmi_ipmi_data *dmi)
2315 const u8 *data = (const u8 *)dm;
2316 unsigned long base_addr;
2317 u8 reg_spacing;
2318 u8 len = dm->length;
2320 dmi->type = data[4];
2322 memcpy(&base_addr, data+8, sizeof(unsigned long));
2323 if (len >= 0x11) {
2324 if (base_addr & 1) {
2325 /* I/O */
2326 base_addr &= 0xFFFE;
2327 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2328 } else
2329 /* Memory */
2330 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2332 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2333 is odd. */
2334 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2336 dmi->irq = data[0x11];
2338 /* The top two bits of byte 0x10 hold the register spacing. */
2339 reg_spacing = (data[0x10] & 0xC0) >> 6;
2340 switch (reg_spacing) {
2341 case 0x00: /* Byte boundaries */
2342 dmi->offset = 1;
2343 break;
2344 case 0x01: /* 32-bit boundaries */
2345 dmi->offset = 4;
2346 break;
2347 case 0x02: /* 16-byte boundaries */
2348 dmi->offset = 16;
2349 break;
2350 default:
2351 /* Some other interface, just ignore it. */
2352 return -EIO;
2354 } else {
2355 /* Old DMI spec. */
2357 * Note that technically, the lower bit of the base
2358 * address should be 1 if the address is I/O and 0 if
2359 * the address is in memory. So many systems get that
2360 * wrong (and all that I have seen are I/O) so we just
2361 * ignore that bit and assume I/O. Systems that use
2362 * memory should use the newer spec, anyway.
2364 dmi->base_addr = base_addr & 0xfffe;
2365 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2366 dmi->offset = 1;
2369 dmi->slave_addr = data[6];
2371 return 0;
2374 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2376 struct smi_info *info;
2378 info = smi_info_alloc();
2379 if (!info) {
2380 printk(KERN_ERR PFX "Could not allocate SI data\n");
2381 return;
2384 info->addr_source = SI_SMBIOS;
2385 printk(KERN_INFO PFX "probing via SMBIOS\n");
2387 switch (ipmi_data->type) {
2388 case 0x01: /* KCS */
2389 info->si_type = SI_KCS;
2390 break;
2391 case 0x02: /* SMIC */
2392 info->si_type = SI_SMIC;
2393 break;
2394 case 0x03: /* BT */
2395 info->si_type = SI_BT;
2396 break;
2397 default:
2398 kfree(info);
2399 return;
2402 switch (ipmi_data->addr_space) {
2403 case IPMI_MEM_ADDR_SPACE:
2404 info->io_setup = mem_setup;
2405 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2406 break;
2408 case IPMI_IO_ADDR_SPACE:
2409 info->io_setup = port_setup;
2410 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2411 break;
2413 default:
2414 kfree(info);
2415 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2416 ipmi_data->addr_space);
2417 return;
2419 info->io.addr_data = ipmi_data->base_addr;
2421 info->io.regspacing = ipmi_data->offset;
2422 if (!info->io.regspacing)
2423 info->io.regspacing = DEFAULT_REGSPACING;
2424 info->io.regsize = DEFAULT_REGSPACING;
2425 info->io.regshift = 0;
2427 info->slave_addr = ipmi_data->slave_addr;
2429 info->irq = ipmi_data->irq;
2430 if (info->irq)
2431 info->irq_setup = std_irq_setup;
2433 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2434 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2435 info->io.addr_data, info->io.regsize, info->io.regspacing,
2436 info->irq);
2438 if (add_smi(info))
2439 kfree(info);
2442 static void dmi_find_bmc(void)
2444 const struct dmi_device *dev = NULL;
2445 struct dmi_ipmi_data data;
2446 int rv;
2448 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2449 memset(&data, 0, sizeof(data));
2450 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2451 &data);
2452 if (!rv)
2453 try_init_dmi(&data);
2456 #endif /* CONFIG_DMI */
2458 #ifdef CONFIG_PCI
2460 #define PCI_ERMC_CLASSCODE 0x0C0700
2461 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2462 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2463 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2464 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2465 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2467 #define PCI_HP_VENDOR_ID 0x103C
2468 #define PCI_MMC_DEVICE_ID 0x121A
2469 #define PCI_MMC_ADDR_CW 0x10
2471 static void ipmi_pci_cleanup(struct smi_info *info)
2473 struct pci_dev *pdev = info->addr_source_data;
2475 pci_disable_device(pdev);
2478 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2480 if (info->si_type == SI_KCS) {
2481 unsigned char status;
2482 int regspacing;
2484 info->io.regsize = DEFAULT_REGSIZE;
2485 info->io.regshift = 0;
2486 info->io_size = 2;
2487 info->handlers = &kcs_smi_handlers;
2489 /* detect 1, 4, 16byte spacing */
2490 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2491 info->io.regspacing = regspacing;
2492 if (info->io_setup(info)) {
2493 dev_err(info->dev,
2494 "Could not setup I/O space\n");
2495 return DEFAULT_REGSPACING;
2497 /* write invalid cmd */
2498 info->io.outputb(&info->io, 1, 0x10);
2499 /* read status back */
2500 status = info->io.inputb(&info->io, 1);
2501 info->io_cleanup(info);
2502 if (status)
2503 return regspacing;
2504 regspacing *= 4;
2507 return DEFAULT_REGSPACING;
2510 static int ipmi_pci_probe(struct pci_dev *pdev,
2511 const struct pci_device_id *ent)
2513 int rv;
2514 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2515 struct smi_info *info;
2517 info = smi_info_alloc();
2518 if (!info)
2519 return -ENOMEM;
2521 info->addr_source = SI_PCI;
2522 dev_info(&pdev->dev, "probing via PCI");
2524 switch (class_type) {
2525 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2526 info->si_type = SI_SMIC;
2527 break;
2529 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2530 info->si_type = SI_KCS;
2531 break;
2533 case PCI_ERMC_CLASSCODE_TYPE_BT:
2534 info->si_type = SI_BT;
2535 break;
2537 default:
2538 kfree(info);
2539 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2540 return -ENOMEM;
2543 rv = pci_enable_device(pdev);
2544 if (rv) {
2545 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2546 kfree(info);
2547 return rv;
2550 info->addr_source_cleanup = ipmi_pci_cleanup;
2551 info->addr_source_data = pdev;
2553 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2554 info->io_setup = port_setup;
2555 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2556 } else {
2557 info->io_setup = mem_setup;
2558 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2560 info->io.addr_data = pci_resource_start(pdev, 0);
2562 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2563 info->io.regsize = DEFAULT_REGSIZE;
2564 info->io.regshift = 0;
2566 info->irq = pdev->irq;
2567 if (info->irq)
2568 info->irq_setup = std_irq_setup;
2570 info->dev = &pdev->dev;
2571 pci_set_drvdata(pdev, info);
2573 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2574 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2575 info->irq);
2577 rv = add_smi(info);
2578 if (rv) {
2579 kfree(info);
2580 pci_disable_device(pdev);
2583 return rv;
2586 static void ipmi_pci_remove(struct pci_dev *pdev)
2588 struct smi_info *info = pci_get_drvdata(pdev);
2589 cleanup_one_si(info);
2590 pci_disable_device(pdev);
2593 static struct pci_device_id ipmi_pci_devices[] = {
2594 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2595 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2596 { 0, }
2598 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2600 static struct pci_driver ipmi_pci_driver = {
2601 .name = DEVICE_NAME,
2602 .id_table = ipmi_pci_devices,
2603 .probe = ipmi_pci_probe,
2604 .remove = ipmi_pci_remove,
2606 #endif /* CONFIG_PCI */
2608 static struct of_device_id ipmi_match[];
2609 static int ipmi_probe(struct platform_device *dev)
2611 #ifdef CONFIG_OF
2612 const struct of_device_id *match;
2613 struct smi_info *info;
2614 struct resource resource;
2615 const __be32 *regsize, *regspacing, *regshift;
2616 struct device_node *np = dev->dev.of_node;
2617 int ret;
2618 int proplen;
2620 dev_info(&dev->dev, "probing via device tree\n");
2622 match = of_match_device(ipmi_match, &dev->dev);
2623 if (!match)
2624 return -EINVAL;
2626 ret = of_address_to_resource(np, 0, &resource);
2627 if (ret) {
2628 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2629 return ret;
2632 regsize = of_get_property(np, "reg-size", &proplen);
2633 if (regsize && proplen != 4) {
2634 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2635 return -EINVAL;
2638 regspacing = of_get_property(np, "reg-spacing", &proplen);
2639 if (regspacing && proplen != 4) {
2640 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2641 return -EINVAL;
2644 regshift = of_get_property(np, "reg-shift", &proplen);
2645 if (regshift && proplen != 4) {
2646 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2647 return -EINVAL;
2650 info = smi_info_alloc();
2652 if (!info) {
2653 dev_err(&dev->dev,
2654 "could not allocate memory for OF probe\n");
2655 return -ENOMEM;
2658 info->si_type = (enum si_type) match->data;
2659 info->addr_source = SI_DEVICETREE;
2660 info->irq_setup = std_irq_setup;
2662 if (resource.flags & IORESOURCE_IO) {
2663 info->io_setup = port_setup;
2664 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2665 } else {
2666 info->io_setup = mem_setup;
2667 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2670 info->io.addr_data = resource.start;
2672 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2673 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2674 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2676 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2677 info->dev = &dev->dev;
2679 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2680 info->io.addr_data, info->io.regsize, info->io.regspacing,
2681 info->irq);
2683 dev_set_drvdata(&dev->dev, info);
2685 ret = add_smi(info);
2686 if (ret) {
2687 kfree(info);
2688 return ret;
2690 #endif
2691 return 0;
2694 static int ipmi_remove(struct platform_device *dev)
2696 #ifdef CONFIG_OF
2697 cleanup_one_si(dev_get_drvdata(&dev->dev));
2698 #endif
2699 return 0;
2702 static struct of_device_id ipmi_match[] =
2704 { .type = "ipmi", .compatible = "ipmi-kcs",
2705 .data = (void *)(unsigned long) SI_KCS },
2706 { .type = "ipmi", .compatible = "ipmi-smic",
2707 .data = (void *)(unsigned long) SI_SMIC },
2708 { .type = "ipmi", .compatible = "ipmi-bt",
2709 .data = (void *)(unsigned long) SI_BT },
2713 static struct platform_driver ipmi_driver = {
2714 .driver = {
2715 .name = DEVICE_NAME,
2716 .owner = THIS_MODULE,
2717 .of_match_table = ipmi_match,
2719 .probe = ipmi_probe,
2720 .remove = ipmi_remove,
2723 #ifdef CONFIG_PARISC
2724 static int ipmi_parisc_probe(struct parisc_device *dev)
2726 struct smi_info *info;
2727 int rv;
2729 info = smi_info_alloc();
2731 if (!info) {
2732 dev_err(&dev->dev,
2733 "could not allocate memory for PARISC probe\n");
2734 return -ENOMEM;
2737 info->si_type = SI_KCS;
2738 info->addr_source = SI_DEVICETREE;
2739 info->io_setup = mem_setup;
2740 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2741 info->io.addr_data = dev->hpa.start;
2742 info->io.regsize = 1;
2743 info->io.regspacing = 1;
2744 info->io.regshift = 0;
2745 info->irq = 0; /* no interrupt */
2746 info->irq_setup = NULL;
2747 info->dev = &dev->dev;
2749 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2751 dev_set_drvdata(&dev->dev, info);
2753 rv = add_smi(info);
2754 if (rv) {
2755 kfree(info);
2756 return rv;
2759 return 0;
2762 static int ipmi_parisc_remove(struct parisc_device *dev)
2764 cleanup_one_si(dev_get_drvdata(&dev->dev));
2765 return 0;
2768 static struct parisc_device_id ipmi_parisc_tbl[] = {
2769 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2770 { 0, }
2773 static struct parisc_driver ipmi_parisc_driver = {
2774 .name = "ipmi",
2775 .id_table = ipmi_parisc_tbl,
2776 .probe = ipmi_parisc_probe,
2777 .remove = ipmi_parisc_remove,
2779 #endif /* CONFIG_PARISC */
2781 static int wait_for_msg_done(struct smi_info *smi_info)
2783 enum si_sm_result smi_result;
2785 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2786 for (;;) {
2787 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2788 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2789 schedule_timeout_uninterruptible(1);
2790 smi_result = smi_info->handlers->event(
2791 smi_info->si_sm, jiffies_to_usecs(1));
2792 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2793 smi_result = smi_info->handlers->event(
2794 smi_info->si_sm, 0);
2795 } else
2796 break;
2798 if (smi_result == SI_SM_HOSED)
2800 * We couldn't get the state machine to run, so whatever's at
2801 * the port is probably not an IPMI SMI interface.
2803 return -ENODEV;
2805 return 0;
2808 static int try_get_dev_id(struct smi_info *smi_info)
2810 unsigned char msg[2];
2811 unsigned char *resp;
2812 unsigned long resp_len;
2813 int rv = 0;
2815 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2816 if (!resp)
2817 return -ENOMEM;
2820 * Do a Get Device ID command, since it comes back with some
2821 * useful info.
2823 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2824 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2825 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2827 rv = wait_for_msg_done(smi_info);
2828 if (rv)
2829 goto out;
2831 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2832 resp, IPMI_MAX_MSG_LENGTH);
2834 /* Check and record info from the get device id, in case we need it. */
2835 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2837 out:
2838 kfree(resp);
2839 return rv;
2842 static int try_enable_event_buffer(struct smi_info *smi_info)
2844 unsigned char msg[3];
2845 unsigned char *resp;
2846 unsigned long resp_len;
2847 int rv = 0;
2849 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2850 if (!resp)
2851 return -ENOMEM;
2853 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2854 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2855 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2857 rv = wait_for_msg_done(smi_info);
2858 if (rv) {
2859 printk(KERN_WARNING PFX "Error getting response from get"
2860 " global enables command, the event buffer is not"
2861 " enabled.\n");
2862 goto out;
2865 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2866 resp, IPMI_MAX_MSG_LENGTH);
2868 if (resp_len < 4 ||
2869 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2870 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2871 resp[2] != 0) {
2872 printk(KERN_WARNING PFX "Invalid return from get global"
2873 " enables command, cannot enable the event buffer.\n");
2874 rv = -EINVAL;
2875 goto out;
2878 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2879 /* buffer is already enabled, nothing to do. */
2880 goto out;
2882 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2883 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2884 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2885 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2887 rv = wait_for_msg_done(smi_info);
2888 if (rv) {
2889 printk(KERN_WARNING PFX "Error getting response from set"
2890 " global, enables command, the event buffer is not"
2891 " enabled.\n");
2892 goto out;
2895 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2896 resp, IPMI_MAX_MSG_LENGTH);
2898 if (resp_len < 3 ||
2899 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2900 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2901 printk(KERN_WARNING PFX "Invalid return from get global,"
2902 "enables command, not enable the event buffer.\n");
2903 rv = -EINVAL;
2904 goto out;
2907 if (resp[2] != 0)
2909 * An error when setting the event buffer bit means
2910 * that the event buffer is not supported.
2912 rv = -ENOENT;
2913 out:
2914 kfree(resp);
2915 return rv;
2918 static int smi_type_proc_show(struct seq_file *m, void *v)
2920 struct smi_info *smi = m->private;
2922 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2925 static int smi_type_proc_open(struct inode *inode, struct file *file)
2927 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2930 static const struct file_operations smi_type_proc_ops = {
2931 .open = smi_type_proc_open,
2932 .read = seq_read,
2933 .llseek = seq_lseek,
2934 .release = single_release,
2937 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2939 struct smi_info *smi = m->private;
2941 seq_printf(m, "interrupts_enabled: %d\n",
2942 smi->irq && !smi->interrupt_disabled);
2943 seq_printf(m, "short_timeouts: %u\n",
2944 smi_get_stat(smi, short_timeouts));
2945 seq_printf(m, "long_timeouts: %u\n",
2946 smi_get_stat(smi, long_timeouts));
2947 seq_printf(m, "idles: %u\n",
2948 smi_get_stat(smi, idles));
2949 seq_printf(m, "interrupts: %u\n",
2950 smi_get_stat(smi, interrupts));
2951 seq_printf(m, "attentions: %u\n",
2952 smi_get_stat(smi, attentions));
2953 seq_printf(m, "flag_fetches: %u\n",
2954 smi_get_stat(smi, flag_fetches));
2955 seq_printf(m, "hosed_count: %u\n",
2956 smi_get_stat(smi, hosed_count));
2957 seq_printf(m, "complete_transactions: %u\n",
2958 smi_get_stat(smi, complete_transactions));
2959 seq_printf(m, "events: %u\n",
2960 smi_get_stat(smi, events));
2961 seq_printf(m, "watchdog_pretimeouts: %u\n",
2962 smi_get_stat(smi, watchdog_pretimeouts));
2963 seq_printf(m, "incoming_messages: %u\n",
2964 smi_get_stat(smi, incoming_messages));
2965 return 0;
2968 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2970 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2973 static const struct file_operations smi_si_stats_proc_ops = {
2974 .open = smi_si_stats_proc_open,
2975 .read = seq_read,
2976 .llseek = seq_lseek,
2977 .release = single_release,
2980 static int smi_params_proc_show(struct seq_file *m, void *v)
2982 struct smi_info *smi = m->private;
2984 return seq_printf(m,
2985 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2986 si_to_str[smi->si_type],
2987 addr_space_to_str[smi->io.addr_type],
2988 smi->io.addr_data,
2989 smi->io.regspacing,
2990 smi->io.regsize,
2991 smi->io.regshift,
2992 smi->irq,
2993 smi->slave_addr);
2996 static int smi_params_proc_open(struct inode *inode, struct file *file)
2998 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3001 static const struct file_operations smi_params_proc_ops = {
3002 .open = smi_params_proc_open,
3003 .read = seq_read,
3004 .llseek = seq_lseek,
3005 .release = single_release,
3009 * oem_data_avail_to_receive_msg_avail
3010 * @info - smi_info structure with msg_flags set
3012 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3013 * Returns 1 indicating need to re-run handle_flags().
3015 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3017 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3018 RECEIVE_MSG_AVAIL);
3019 return 1;
3023 * setup_dell_poweredge_oem_data_handler
3024 * @info - smi_info.device_id must be populated
3026 * Systems that match, but have firmware version < 1.40 may assert
3027 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3028 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3029 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3030 * as RECEIVE_MSG_AVAIL instead.
3032 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3033 * assert the OEM[012] bits, and if it did, the driver would have to
3034 * change to handle that properly, we don't actually check for the
3035 * firmware version.
3036 * Device ID = 0x20 BMC on PowerEdge 8G servers
3037 * Device Revision = 0x80
3038 * Firmware Revision1 = 0x01 BMC version 1.40
3039 * Firmware Revision2 = 0x40 BCD encoded
3040 * IPMI Version = 0x51 IPMI 1.5
3041 * Manufacturer ID = A2 02 00 Dell IANA
3043 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3044 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3047 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3048 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3049 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3050 #define DELL_IANA_MFR_ID 0x0002a2
3051 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3053 struct ipmi_device_id *id = &smi_info->device_id;
3054 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3055 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3056 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3057 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3058 smi_info->oem_data_avail_handler =
3059 oem_data_avail_to_receive_msg_avail;
3060 } else if (ipmi_version_major(id) < 1 ||
3061 (ipmi_version_major(id) == 1 &&
3062 ipmi_version_minor(id) < 5)) {
3063 smi_info->oem_data_avail_handler =
3064 oem_data_avail_to_receive_msg_avail;
3069 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3070 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3072 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3074 /* Make it a response */
3075 msg->rsp[0] = msg->data[0] | 4;
3076 msg->rsp[1] = msg->data[1];
3077 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3078 msg->rsp_size = 3;
3079 smi_info->curr_msg = NULL;
3080 deliver_recv_msg(smi_info, msg);
3084 * dell_poweredge_bt_xaction_handler
3085 * @info - smi_info.device_id must be populated
3087 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3088 * not respond to a Get SDR command if the length of the data
3089 * requested is exactly 0x3A, which leads to command timeouts and no
3090 * data returned. This intercepts such commands, and causes userspace
3091 * callers to try again with a different-sized buffer, which succeeds.
3094 #define STORAGE_NETFN 0x0A
3095 #define STORAGE_CMD_GET_SDR 0x23
3096 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3097 unsigned long unused,
3098 void *in)
3100 struct smi_info *smi_info = in;
3101 unsigned char *data = smi_info->curr_msg->data;
3102 unsigned int size = smi_info->curr_msg->data_size;
3103 if (size >= 8 &&
3104 (data[0]>>2) == STORAGE_NETFN &&
3105 data[1] == STORAGE_CMD_GET_SDR &&
3106 data[7] == 0x3A) {
3107 return_hosed_msg_badsize(smi_info);
3108 return NOTIFY_STOP;
3110 return NOTIFY_DONE;
3113 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3114 .notifier_call = dell_poweredge_bt_xaction_handler,
3118 * setup_dell_poweredge_bt_xaction_handler
3119 * @info - smi_info.device_id must be filled in already
3121 * Fills in smi_info.device_id.start_transaction_pre_hook
3122 * when we know what function to use there.
3124 static void
3125 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3127 struct ipmi_device_id *id = &smi_info->device_id;
3128 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3129 smi_info->si_type == SI_BT)
3130 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3134 * setup_oem_data_handler
3135 * @info - smi_info.device_id must be filled in already
3137 * Fills in smi_info.device_id.oem_data_available_handler
3138 * when we know what function to use there.
3141 static void setup_oem_data_handler(struct smi_info *smi_info)
3143 setup_dell_poweredge_oem_data_handler(smi_info);
3146 static void setup_xaction_handlers(struct smi_info *smi_info)
3148 setup_dell_poweredge_bt_xaction_handler(smi_info);
3151 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3153 if (smi_info->intf) {
3155 * The timer and thread are only running if the
3156 * interface has been started up and registered.
3158 if (smi_info->thread != NULL)
3159 kthread_stop(smi_info->thread);
3160 del_timer_sync(&smi_info->si_timer);
3164 static struct ipmi_default_vals
3166 int type;
3167 int port;
3168 } ipmi_defaults[] =
3170 { .type = SI_KCS, .port = 0xca2 },
3171 { .type = SI_SMIC, .port = 0xca9 },
3172 { .type = SI_BT, .port = 0xe4 },
3173 { .port = 0 }
3176 static void default_find_bmc(void)
3178 struct smi_info *info;
3179 int i;
3181 for (i = 0; ; i++) {
3182 if (!ipmi_defaults[i].port)
3183 break;
3184 #ifdef CONFIG_PPC
3185 if (check_legacy_ioport(ipmi_defaults[i].port))
3186 continue;
3187 #endif
3188 info = smi_info_alloc();
3189 if (!info)
3190 return;
3192 info->addr_source = SI_DEFAULT;
3194 info->si_type = ipmi_defaults[i].type;
3195 info->io_setup = port_setup;
3196 info->io.addr_data = ipmi_defaults[i].port;
3197 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3199 info->io.addr = NULL;
3200 info->io.regspacing = DEFAULT_REGSPACING;
3201 info->io.regsize = DEFAULT_REGSPACING;
3202 info->io.regshift = 0;
3204 if (add_smi(info) == 0) {
3205 if ((try_smi_init(info)) == 0) {
3206 /* Found one... */
3207 printk(KERN_INFO PFX "Found default %s"
3208 " state machine at %s address 0x%lx\n",
3209 si_to_str[info->si_type],
3210 addr_space_to_str[info->io.addr_type],
3211 info->io.addr_data);
3212 } else
3213 cleanup_one_si(info);
3214 } else {
3215 kfree(info);
3220 static int is_new_interface(struct smi_info *info)
3222 struct smi_info *e;
3224 list_for_each_entry(e, &smi_infos, link) {
3225 if (e->io.addr_type != info->io.addr_type)
3226 continue;
3227 if (e->io.addr_data == info->io.addr_data)
3228 return 0;
3231 return 1;
3234 static int add_smi(struct smi_info *new_smi)
3236 int rv = 0;
3238 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3239 ipmi_addr_src_to_str[new_smi->addr_source],
3240 si_to_str[new_smi->si_type]);
3241 mutex_lock(&smi_infos_lock);
3242 if (!is_new_interface(new_smi)) {
3243 printk(KERN_CONT " duplicate interface\n");
3244 rv = -EBUSY;
3245 goto out_err;
3248 printk(KERN_CONT "\n");
3250 /* So we know not to free it unless we have allocated one. */
3251 new_smi->intf = NULL;
3252 new_smi->si_sm = NULL;
3253 new_smi->handlers = NULL;
3255 list_add_tail(&new_smi->link, &smi_infos);
3257 out_err:
3258 mutex_unlock(&smi_infos_lock);
3259 return rv;
3262 static int try_smi_init(struct smi_info *new_smi)
3264 int rv = 0;
3265 int i;
3267 printk(KERN_INFO PFX "Trying %s-specified %s state"
3268 " machine at %s address 0x%lx, slave address 0x%x,"
3269 " irq %d\n",
3270 ipmi_addr_src_to_str[new_smi->addr_source],
3271 si_to_str[new_smi->si_type],
3272 addr_space_to_str[new_smi->io.addr_type],
3273 new_smi->io.addr_data,
3274 new_smi->slave_addr, new_smi->irq);
3276 switch (new_smi->si_type) {
3277 case SI_KCS:
3278 new_smi->handlers = &kcs_smi_handlers;
3279 break;
3281 case SI_SMIC:
3282 new_smi->handlers = &smic_smi_handlers;
3283 break;
3285 case SI_BT:
3286 new_smi->handlers = &bt_smi_handlers;
3287 break;
3289 default:
3290 /* No support for anything else yet. */
3291 rv = -EIO;
3292 goto out_err;
3295 /* Allocate the state machine's data and initialize it. */
3296 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3297 if (!new_smi->si_sm) {
3298 printk(KERN_ERR PFX
3299 "Could not allocate state machine memory\n");
3300 rv = -ENOMEM;
3301 goto out_err;
3303 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3304 &new_smi->io);
3306 /* Now that we know the I/O size, we can set up the I/O. */
3307 rv = new_smi->io_setup(new_smi);
3308 if (rv) {
3309 printk(KERN_ERR PFX "Could not set up I/O space\n");
3310 goto out_err;
3313 /* Do low-level detection first. */
3314 if (new_smi->handlers->detect(new_smi->si_sm)) {
3315 if (new_smi->addr_source)
3316 printk(KERN_INFO PFX "Interface detection failed\n");
3317 rv = -ENODEV;
3318 goto out_err;
3322 * Attempt a get device id command. If it fails, we probably
3323 * don't have a BMC here.
3325 rv = try_get_dev_id(new_smi);
3326 if (rv) {
3327 if (new_smi->addr_source)
3328 printk(KERN_INFO PFX "There appears to be no BMC"
3329 " at this location\n");
3330 goto out_err;
3333 setup_oem_data_handler(new_smi);
3334 setup_xaction_handlers(new_smi);
3336 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3337 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3338 new_smi->curr_msg = NULL;
3339 atomic_set(&new_smi->req_events, 0);
3340 new_smi->run_to_completion = 0;
3341 for (i = 0; i < SI_NUM_STATS; i++)
3342 atomic_set(&new_smi->stats[i], 0);
3344 new_smi->interrupt_disabled = 1;
3345 atomic_set(&new_smi->stop_operation, 0);
3346 new_smi->intf_num = smi_num;
3347 smi_num++;
3349 rv = try_enable_event_buffer(new_smi);
3350 if (rv == 0)
3351 new_smi->has_event_buffer = 1;
3354 * Start clearing the flags before we enable interrupts or the
3355 * timer to avoid racing with the timer.
3357 start_clear_flags(new_smi);
3358 /* IRQ is defined to be set when non-zero. */
3359 if (new_smi->irq)
3360 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3362 if (!new_smi->dev) {
3364 * If we don't already have a device from something
3365 * else (like PCI), then register a new one.
3367 new_smi->pdev = platform_device_alloc("ipmi_si",
3368 new_smi->intf_num);
3369 if (!new_smi->pdev) {
3370 printk(KERN_ERR PFX
3371 "Unable to allocate platform device\n");
3372 goto out_err;
3374 new_smi->dev = &new_smi->pdev->dev;
3375 new_smi->dev->driver = &ipmi_driver.driver;
3377 rv = platform_device_add(new_smi->pdev);
3378 if (rv) {
3379 printk(KERN_ERR PFX
3380 "Unable to register system interface device:"
3381 " %d\n",
3382 rv);
3383 goto out_err;
3385 new_smi->dev_registered = 1;
3388 rv = ipmi_register_smi(&handlers,
3389 new_smi,
3390 &new_smi->device_id,
3391 new_smi->dev,
3392 "bmc",
3393 new_smi->slave_addr);
3394 if (rv) {
3395 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3396 rv);
3397 goto out_err_stop_timer;
3400 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3401 &smi_type_proc_ops,
3402 new_smi);
3403 if (rv) {
3404 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3405 goto out_err_stop_timer;
3408 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3409 &smi_si_stats_proc_ops,
3410 new_smi);
3411 if (rv) {
3412 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3413 goto out_err_stop_timer;
3416 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3417 &smi_params_proc_ops,
3418 new_smi);
3419 if (rv) {
3420 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3421 goto out_err_stop_timer;
3424 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3425 si_to_str[new_smi->si_type]);
3427 return 0;
3429 out_err_stop_timer:
3430 atomic_inc(&new_smi->stop_operation);
3431 wait_for_timer_and_thread(new_smi);
3433 out_err:
3434 new_smi->interrupt_disabled = 1;
3436 if (new_smi->intf) {
3437 ipmi_unregister_smi(new_smi->intf);
3438 new_smi->intf = NULL;
3441 if (new_smi->irq_cleanup) {
3442 new_smi->irq_cleanup(new_smi);
3443 new_smi->irq_cleanup = NULL;
3447 * Wait until we know that we are out of any interrupt
3448 * handlers might have been running before we freed the
3449 * interrupt.
3451 synchronize_sched();
3453 if (new_smi->si_sm) {
3454 if (new_smi->handlers)
3455 new_smi->handlers->cleanup(new_smi->si_sm);
3456 kfree(new_smi->si_sm);
3457 new_smi->si_sm = NULL;
3459 if (new_smi->addr_source_cleanup) {
3460 new_smi->addr_source_cleanup(new_smi);
3461 new_smi->addr_source_cleanup = NULL;
3463 if (new_smi->io_cleanup) {
3464 new_smi->io_cleanup(new_smi);
3465 new_smi->io_cleanup = NULL;
3468 if (new_smi->dev_registered) {
3469 platform_device_unregister(new_smi->pdev);
3470 new_smi->dev_registered = 0;
3473 return rv;
3476 static int init_ipmi_si(void)
3478 int i;
3479 char *str;
3480 int rv;
3481 struct smi_info *e;
3482 enum ipmi_addr_src type = SI_INVALID;
3484 if (initialized)
3485 return 0;
3486 initialized = 1;
3488 if (si_tryplatform) {
3489 rv = platform_driver_register(&ipmi_driver);
3490 if (rv) {
3491 printk(KERN_ERR PFX "Unable to register "
3492 "driver: %d\n", rv);
3493 return rv;
3497 /* Parse out the si_type string into its components. */
3498 str = si_type_str;
3499 if (*str != '\0') {
3500 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3501 si_type[i] = str;
3502 str = strchr(str, ',');
3503 if (str) {
3504 *str = '\0';
3505 str++;
3506 } else {
3507 break;
3512 printk(KERN_INFO "IPMI System Interface driver.\n");
3514 /* If the user gave us a device, they presumably want us to use it */
3515 if (!hardcode_find_bmc())
3516 return 0;
3518 #ifdef CONFIG_PCI
3519 if (si_trypci) {
3520 rv = pci_register_driver(&ipmi_pci_driver);
3521 if (rv)
3522 printk(KERN_ERR PFX "Unable to register "
3523 "PCI driver: %d\n", rv);
3524 else
3525 pci_registered = 1;
3527 #endif
3529 #ifdef CONFIG_ACPI
3530 if (si_tryacpi) {
3531 pnp_register_driver(&ipmi_pnp_driver);
3532 pnp_registered = 1;
3534 #endif
3536 #ifdef CONFIG_DMI
3537 if (si_trydmi)
3538 dmi_find_bmc();
3539 #endif
3541 #ifdef CONFIG_ACPI
3542 if (si_tryacpi)
3543 spmi_find_bmc();
3544 #endif
3546 #ifdef CONFIG_PARISC
3547 register_parisc_driver(&ipmi_parisc_driver);
3548 parisc_registered = 1;
3549 /* poking PC IO addresses will crash machine, don't do it */
3550 si_trydefaults = 0;
3551 #endif
3553 /* We prefer devices with interrupts, but in the case of a machine
3554 with multiple BMCs we assume that there will be several instances
3555 of a given type so if we succeed in registering a type then also
3556 try to register everything else of the same type */
3558 mutex_lock(&smi_infos_lock);
3559 list_for_each_entry(e, &smi_infos, link) {
3560 /* Try to register a device if it has an IRQ and we either
3561 haven't successfully registered a device yet or this
3562 device has the same type as one we successfully registered */
3563 if (e->irq && (!type || e->addr_source == type)) {
3564 if (!try_smi_init(e)) {
3565 type = e->addr_source;
3570 /* type will only have been set if we successfully registered an si */
3571 if (type) {
3572 mutex_unlock(&smi_infos_lock);
3573 return 0;
3576 /* Fall back to the preferred device */
3578 list_for_each_entry(e, &smi_infos, link) {
3579 if (!e->irq && (!type || e->addr_source == type)) {
3580 if (!try_smi_init(e)) {
3581 type = e->addr_source;
3585 mutex_unlock(&smi_infos_lock);
3587 if (type)
3588 return 0;
3590 if (si_trydefaults) {
3591 mutex_lock(&smi_infos_lock);
3592 if (list_empty(&smi_infos)) {
3593 /* No BMC was found, try defaults. */
3594 mutex_unlock(&smi_infos_lock);
3595 default_find_bmc();
3596 } else
3597 mutex_unlock(&smi_infos_lock);
3600 mutex_lock(&smi_infos_lock);
3601 if (unload_when_empty && list_empty(&smi_infos)) {
3602 mutex_unlock(&smi_infos_lock);
3603 cleanup_ipmi_si();
3604 printk(KERN_WARNING PFX
3605 "Unable to find any System Interface(s)\n");
3606 return -ENODEV;
3607 } else {
3608 mutex_unlock(&smi_infos_lock);
3609 return 0;
3612 module_init(init_ipmi_si);
3614 static void cleanup_one_si(struct smi_info *to_clean)
3616 int rv = 0;
3617 unsigned long flags;
3619 if (!to_clean)
3620 return;
3622 list_del(&to_clean->link);
3624 /* Tell the driver that we are shutting down. */
3625 atomic_inc(&to_clean->stop_operation);
3628 * Make sure the timer and thread are stopped and will not run
3629 * again.
3631 wait_for_timer_and_thread(to_clean);
3634 * Timeouts are stopped, now make sure the interrupts are off
3635 * for the device. A little tricky with locks to make sure
3636 * there are no races.
3638 spin_lock_irqsave(&to_clean->si_lock, flags);
3639 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3640 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3641 poll(to_clean);
3642 schedule_timeout_uninterruptible(1);
3643 spin_lock_irqsave(&to_clean->si_lock, flags);
3645 disable_si_irq(to_clean);
3646 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3647 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3648 poll(to_clean);
3649 schedule_timeout_uninterruptible(1);
3652 /* Clean up interrupts and make sure that everything is done. */
3653 if (to_clean->irq_cleanup)
3654 to_clean->irq_cleanup(to_clean);
3655 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3656 poll(to_clean);
3657 schedule_timeout_uninterruptible(1);
3660 if (to_clean->intf)
3661 rv = ipmi_unregister_smi(to_clean->intf);
3663 if (rv) {
3664 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3665 rv);
3668 if (to_clean->handlers)
3669 to_clean->handlers->cleanup(to_clean->si_sm);
3671 kfree(to_clean->si_sm);
3673 if (to_clean->addr_source_cleanup)
3674 to_clean->addr_source_cleanup(to_clean);
3675 if (to_clean->io_cleanup)
3676 to_clean->io_cleanup(to_clean);
3678 if (to_clean->dev_registered)
3679 platform_device_unregister(to_clean->pdev);
3681 kfree(to_clean);
3684 static void cleanup_ipmi_si(void)
3686 struct smi_info *e, *tmp_e;
3688 if (!initialized)
3689 return;
3691 #ifdef CONFIG_PCI
3692 if (pci_registered)
3693 pci_unregister_driver(&ipmi_pci_driver);
3694 #endif
3695 #ifdef CONFIG_ACPI
3696 if (pnp_registered)
3697 pnp_unregister_driver(&ipmi_pnp_driver);
3698 #endif
3699 #ifdef CONFIG_PARISC
3700 if (parisc_registered)
3701 unregister_parisc_driver(&ipmi_parisc_driver);
3702 #endif
3704 platform_driver_unregister(&ipmi_driver);
3706 mutex_lock(&smi_infos_lock);
3707 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3708 cleanup_one_si(e);
3709 mutex_unlock(&smi_infos_lock);
3711 module_exit(cleanup_ipmi_si);
3713 MODULE_LICENSE("GPL");
3714 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3715 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3716 " system interfaces.");