4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
79 #define PFX "ipmi_si: "
81 /* Measure times between events in the driver. */
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
96 SI_CLEARING_FLAGS_THEN_SET_IRQ
,
98 SI_ENABLE_INTERRUPTS1
,
99 SI_ENABLE_INTERRUPTS2
,
100 SI_DISABLE_INTERRUPTS1
,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
111 SI_KCS
, SI_SMIC
, SI_BT
113 static char *si_to_str
[] = { "kcs", "smic", "bt" };
115 static char *ipmi_addr_src_to_str
[] = { NULL
, "hotmod", "hardcoded", "SPMI",
116 "ACPI", "SMBIOS", "PCI",
117 "device-tree", "default" };
119 #define DEVICE_NAME "ipmi_si"
121 static struct platform_driver ipmi_driver
;
124 * Indexes into stats[] in smi_info below.
126 enum si_stat_indexes
{
128 * Number of times the driver requested a timer while an operation
131 SI_STAT_short_timeouts
= 0,
134 * Number of times the driver requested a timer while nothing was in
137 SI_STAT_long_timeouts
,
139 /* Number of times the interface was idle while being polled. */
142 /* Number of interrupts the driver handled. */
145 /* Number of time the driver got an ATTN from the hardware. */
148 /* Number of times the driver requested flags from the hardware. */
149 SI_STAT_flag_fetches
,
151 /* Number of times the hardware didn't follow the state machine. */
154 /* Number of completed messages. */
155 SI_STAT_complete_transactions
,
157 /* Number of IPMI events received from the hardware. */
160 /* Number of watchdog pretimeouts. */
161 SI_STAT_watchdog_pretimeouts
,
163 /* Number of asynchronous messages received. */
164 SI_STAT_incoming_messages
,
167 /* This *must* remain last, add new values above this. */
174 struct si_sm_data
*si_sm
;
175 struct si_sm_handlers
*handlers
;
176 enum si_type si_type
;
178 struct list_head xmit_msgs
;
179 struct list_head hp_xmit_msgs
;
180 struct ipmi_smi_msg
*curr_msg
;
181 enum si_intf_state si_state
;
184 * Used to handle the various types of I/O that can occur with
188 int (*io_setup
)(struct smi_info
*info
);
189 void (*io_cleanup
)(struct smi_info
*info
);
190 int (*irq_setup
)(struct smi_info
*info
);
191 void (*irq_cleanup
)(struct smi_info
*info
);
192 unsigned int io_size
;
193 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
194 void (*addr_source_cleanup
)(struct smi_info
*info
);
195 void *addr_source_data
;
198 * Per-OEM handler, called from handle_flags(). Returns 1
199 * when handle_flags() needs to be re-run or 0 indicating it
200 * set si_state itself.
202 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
205 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
206 * is set to hold the flags until we are done handling everything
209 #define RECEIVE_MSG_AVAIL 0x01
210 #define EVENT_MSG_BUFFER_FULL 0x02
211 #define WDT_PRE_TIMEOUT_INT 0x08
212 #define OEM0_DATA_AVAIL 0x20
213 #define OEM1_DATA_AVAIL 0x40
214 #define OEM2_DATA_AVAIL 0x80
215 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
218 unsigned char msg_flags
;
220 /* Does the BMC have an event buffer? */
221 char has_event_buffer
;
224 * If set to true, this will request events the next time the
225 * state machine is idle.
230 * If true, run the state machine to completion on every send
231 * call. Generally used after a panic to make sure stuff goes
234 int run_to_completion
;
236 /* The I/O port of an SI interface. */
240 * The space between start addresses of the two ports. For
241 * instance, if the first port is 0xca2 and the spacing is 4, then
242 * the second port is 0xca6.
244 unsigned int spacing
;
246 /* zero if no irq; */
249 /* The timer for this si. */
250 struct timer_list si_timer
;
252 /* The time (in jiffies) the last timeout occurred at. */
253 unsigned long last_timeout_jiffies
;
255 /* Used to gracefully stop the timer without race conditions. */
256 atomic_t stop_operation
;
259 * The driver will disable interrupts when it gets into a
260 * situation where it cannot handle messages due to lack of
261 * memory. Once that situation clears up, it will re-enable
264 int interrupt_disabled
;
266 /* From the get device id response... */
267 struct ipmi_device_id device_id
;
269 /* Driver model stuff. */
271 struct platform_device
*pdev
;
274 * True if we allocated the device, false if it came from
275 * someplace else (like PCI).
279 /* Slave address, could be reported from DMI. */
280 unsigned char slave_addr
;
282 /* Counters and things for the proc filesystem. */
283 atomic_t stats
[SI_NUM_STATS
];
285 struct task_struct
*thread
;
287 struct list_head link
;
288 union ipmi_smi_info_union addr_info
;
291 #define smi_inc_stat(smi, stat) \
292 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
293 #define smi_get_stat(smi, stat) \
294 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
296 #define SI_MAX_PARMS 4
298 static int force_kipmid
[SI_MAX_PARMS
];
299 static int num_force_kipmid
;
301 static int pci_registered
;
304 static int pnp_registered
;
307 static int parisc_registered
;
310 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
311 static int num_max_busy_us
;
313 static int unload_when_empty
= 1;
315 static int add_smi(struct smi_info
*smi
);
316 static int try_smi_init(struct smi_info
*smi
);
317 static void cleanup_one_si(struct smi_info
*to_clean
);
318 static void cleanup_ipmi_si(void);
320 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
321 static int register_xaction_notifier(struct notifier_block
*nb
)
323 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
326 static void deliver_recv_msg(struct smi_info
*smi_info
,
327 struct ipmi_smi_msg
*msg
)
329 /* Deliver the message to the upper layer. */
330 ipmi_smi_msg_received(smi_info
->intf
, msg
);
333 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
335 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
337 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
338 cCode
= IPMI_ERR_UNSPECIFIED
;
339 /* else use it as is */
341 /* Make it a response */
342 msg
->rsp
[0] = msg
->data
[0] | 4;
343 msg
->rsp
[1] = msg
->data
[1];
347 smi_info
->curr_msg
= NULL
;
348 deliver_recv_msg(smi_info
, msg
);
351 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
354 struct list_head
*entry
= NULL
;
359 /* Pick the high priority queue first. */
360 if (!list_empty(&(smi_info
->hp_xmit_msgs
))) {
361 entry
= smi_info
->hp_xmit_msgs
.next
;
362 } else if (!list_empty(&(smi_info
->xmit_msgs
))) {
363 entry
= smi_info
->xmit_msgs
.next
;
367 smi_info
->curr_msg
= NULL
;
373 smi_info
->curr_msg
= list_entry(entry
,
378 printk(KERN_DEBUG
"**Start2: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
380 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
382 if (err
& NOTIFY_STOP_MASK
) {
383 rv
= SI_SM_CALL_WITHOUT_DELAY
;
386 err
= smi_info
->handlers
->start_transaction(
388 smi_info
->curr_msg
->data
,
389 smi_info
->curr_msg
->data_size
);
391 return_hosed_msg(smi_info
, err
);
393 rv
= SI_SM_CALL_WITHOUT_DELAY
;
399 static void start_enable_irq(struct smi_info
*smi_info
)
401 unsigned char msg
[2];
404 * If we are enabling interrupts, we have to tell the
407 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
408 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
410 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
411 smi_info
->si_state
= SI_ENABLE_INTERRUPTS1
;
414 static void start_disable_irq(struct smi_info
*smi_info
)
416 unsigned char msg
[2];
418 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
419 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
421 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
422 smi_info
->si_state
= SI_DISABLE_INTERRUPTS1
;
425 static void start_clear_flags(struct smi_info
*smi_info
)
427 unsigned char msg
[3];
429 /* Make sure the watchdog pre-timeout flag is not set at startup. */
430 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
431 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
432 msg
[2] = WDT_PRE_TIMEOUT_INT
;
434 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
435 smi_info
->si_state
= SI_CLEARING_FLAGS
;
439 * When we have a situtaion where we run out of memory and cannot
440 * allocate messages, we just leave them in the BMC and run the system
441 * polled until we can allocate some memory. Once we have some
442 * memory, we will re-enable the interrupt.
444 static inline void disable_si_irq(struct smi_info
*smi_info
)
446 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
447 start_disable_irq(smi_info
);
448 smi_info
->interrupt_disabled
= 1;
449 if (!atomic_read(&smi_info
->stop_operation
))
450 mod_timer(&smi_info
->si_timer
,
451 jiffies
+ SI_TIMEOUT_JIFFIES
);
455 static inline void enable_si_irq(struct smi_info
*smi_info
)
457 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
458 start_enable_irq(smi_info
);
459 smi_info
->interrupt_disabled
= 0;
463 static void handle_flags(struct smi_info
*smi_info
)
466 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
467 /* Watchdog pre-timeout */
468 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
470 start_clear_flags(smi_info
);
471 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
472 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
473 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
474 /* Messages available. */
475 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
476 if (!smi_info
->curr_msg
) {
477 disable_si_irq(smi_info
);
478 smi_info
->si_state
= SI_NORMAL
;
481 enable_si_irq(smi_info
);
483 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
484 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
485 smi_info
->curr_msg
->data_size
= 2;
487 smi_info
->handlers
->start_transaction(
489 smi_info
->curr_msg
->data
,
490 smi_info
->curr_msg
->data_size
);
491 smi_info
->si_state
= SI_GETTING_MESSAGES
;
492 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
493 /* Events available. */
494 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
495 if (!smi_info
->curr_msg
) {
496 disable_si_irq(smi_info
);
497 smi_info
->si_state
= SI_NORMAL
;
500 enable_si_irq(smi_info
);
502 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
503 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
504 smi_info
->curr_msg
->data_size
= 2;
506 smi_info
->handlers
->start_transaction(
508 smi_info
->curr_msg
->data
,
509 smi_info
->curr_msg
->data_size
);
510 smi_info
->si_state
= SI_GETTING_EVENTS
;
511 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
512 smi_info
->oem_data_avail_handler
) {
513 if (smi_info
->oem_data_avail_handler(smi_info
))
516 smi_info
->si_state
= SI_NORMAL
;
519 static void handle_transaction_done(struct smi_info
*smi_info
)
521 struct ipmi_smi_msg
*msg
;
526 printk(KERN_DEBUG
"**Done: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
528 switch (smi_info
->si_state
) {
530 if (!smi_info
->curr_msg
)
533 smi_info
->curr_msg
->rsp_size
534 = smi_info
->handlers
->get_result(
536 smi_info
->curr_msg
->rsp
,
537 IPMI_MAX_MSG_LENGTH
);
540 * Do this here becase deliver_recv_msg() releases the
541 * lock, and a new message can be put in during the
542 * time the lock is released.
544 msg
= smi_info
->curr_msg
;
545 smi_info
->curr_msg
= NULL
;
546 deliver_recv_msg(smi_info
, msg
);
549 case SI_GETTING_FLAGS
:
551 unsigned char msg
[4];
554 /* We got the flags from the SMI, now handle them. */
555 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
557 /* Error fetching flags, just give up for now. */
558 smi_info
->si_state
= SI_NORMAL
;
559 } else if (len
< 4) {
561 * Hmm, no flags. That's technically illegal, but
562 * don't use uninitialized data.
564 smi_info
->si_state
= SI_NORMAL
;
566 smi_info
->msg_flags
= msg
[3];
567 handle_flags(smi_info
);
572 case SI_CLEARING_FLAGS
:
573 case SI_CLEARING_FLAGS_THEN_SET_IRQ
:
575 unsigned char msg
[3];
577 /* We cleared the flags. */
578 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
580 /* Error clearing flags */
581 dev_warn(smi_info
->dev
,
582 "Error clearing flags: %2.2x\n", msg
[2]);
584 if (smi_info
->si_state
== SI_CLEARING_FLAGS_THEN_SET_IRQ
)
585 start_enable_irq(smi_info
);
587 smi_info
->si_state
= SI_NORMAL
;
591 case SI_GETTING_EVENTS
:
593 smi_info
->curr_msg
->rsp_size
594 = smi_info
->handlers
->get_result(
596 smi_info
->curr_msg
->rsp
,
597 IPMI_MAX_MSG_LENGTH
);
600 * Do this here becase deliver_recv_msg() releases the
601 * lock, and a new message can be put in during the
602 * time the lock is released.
604 msg
= smi_info
->curr_msg
;
605 smi_info
->curr_msg
= NULL
;
606 if (msg
->rsp
[2] != 0) {
607 /* Error getting event, probably done. */
610 /* Take off the event flag. */
611 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
612 handle_flags(smi_info
);
614 smi_inc_stat(smi_info
, events
);
617 * Do this before we deliver the message
618 * because delivering the message releases the
619 * lock and something else can mess with the
622 handle_flags(smi_info
);
624 deliver_recv_msg(smi_info
, msg
);
629 case SI_GETTING_MESSAGES
:
631 smi_info
->curr_msg
->rsp_size
632 = smi_info
->handlers
->get_result(
634 smi_info
->curr_msg
->rsp
,
635 IPMI_MAX_MSG_LENGTH
);
638 * Do this here becase deliver_recv_msg() releases the
639 * lock, and a new message can be put in during the
640 * time the lock is released.
642 msg
= smi_info
->curr_msg
;
643 smi_info
->curr_msg
= NULL
;
644 if (msg
->rsp
[2] != 0) {
645 /* Error getting event, probably done. */
648 /* Take off the msg flag. */
649 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
650 handle_flags(smi_info
);
652 smi_inc_stat(smi_info
, incoming_messages
);
655 * Do this before we deliver the message
656 * because delivering the message releases the
657 * lock and something else can mess with the
660 handle_flags(smi_info
);
662 deliver_recv_msg(smi_info
, msg
);
667 case SI_ENABLE_INTERRUPTS1
:
669 unsigned char msg
[4];
671 /* We got the flags from the SMI, now handle them. */
672 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
674 dev_warn(smi_info
->dev
,
675 "Couldn't get irq info: %x.\n", msg
[2]);
676 dev_warn(smi_info
->dev
,
677 "Maybe ok, but ipmi might run very slowly.\n");
678 smi_info
->si_state
= SI_NORMAL
;
680 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
681 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
683 IPMI_BMC_RCV_MSG_INTR
|
684 IPMI_BMC_EVT_MSG_INTR
);
685 smi_info
->handlers
->start_transaction(
686 smi_info
->si_sm
, msg
, 3);
687 smi_info
->si_state
= SI_ENABLE_INTERRUPTS2
;
692 case SI_ENABLE_INTERRUPTS2
:
694 unsigned char msg
[4];
696 /* We got the flags from the SMI, now handle them. */
697 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
699 dev_warn(smi_info
->dev
,
700 "Couldn't set irq info: %x.\n", msg
[2]);
701 dev_warn(smi_info
->dev
,
702 "Maybe ok, but ipmi might run very slowly.\n");
704 smi_info
->interrupt_disabled
= 0;
705 smi_info
->si_state
= SI_NORMAL
;
709 case SI_DISABLE_INTERRUPTS1
:
711 unsigned char msg
[4];
713 /* We got the flags from the SMI, now handle them. */
714 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
716 dev_warn(smi_info
->dev
, "Could not disable interrupts"
718 smi_info
->si_state
= SI_NORMAL
;
720 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
721 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
723 ~(IPMI_BMC_RCV_MSG_INTR
|
724 IPMI_BMC_EVT_MSG_INTR
));
725 smi_info
->handlers
->start_transaction(
726 smi_info
->si_sm
, msg
, 3);
727 smi_info
->si_state
= SI_DISABLE_INTERRUPTS2
;
732 case SI_DISABLE_INTERRUPTS2
:
734 unsigned char msg
[4];
736 /* We got the flags from the SMI, now handle them. */
737 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
739 dev_warn(smi_info
->dev
, "Could not disable interrupts"
742 smi_info
->si_state
= SI_NORMAL
;
749 * Called on timeouts and events. Timeouts should pass the elapsed
750 * time, interrupts should pass in zero. Must be called with
751 * si_lock held and interrupts disabled.
753 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
756 enum si_sm_result si_sm_result
;
760 * There used to be a loop here that waited a little while
761 * (around 25us) before giving up. That turned out to be
762 * pointless, the minimum delays I was seeing were in the 300us
763 * range, which is far too long to wait in an interrupt. So
764 * we just run until the state machine tells us something
765 * happened or it needs a delay.
767 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
769 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
770 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
772 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
773 smi_inc_stat(smi_info
, complete_transactions
);
775 handle_transaction_done(smi_info
);
776 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
777 } else if (si_sm_result
== SI_SM_HOSED
) {
778 smi_inc_stat(smi_info
, hosed_count
);
781 * Do the before return_hosed_msg, because that
784 smi_info
->si_state
= SI_NORMAL
;
785 if (smi_info
->curr_msg
!= NULL
) {
787 * If we were handling a user message, format
788 * a response to send to the upper layer to
789 * tell it about the error.
791 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
793 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
797 * We prefer handling attn over new messages. But don't do
798 * this if there is not yet an upper layer to handle anything.
800 if (likely(smi_info
->intf
) && si_sm_result
== SI_SM_ATTN
) {
801 unsigned char msg
[2];
803 smi_inc_stat(smi_info
, attentions
);
806 * Got a attn, send down a get message flags to see
807 * what's causing it. It would be better to handle
808 * this in the upper layer, but due to the way
809 * interrupts work with the SMI, that's not really
812 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
813 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
815 smi_info
->handlers
->start_transaction(
816 smi_info
->si_sm
, msg
, 2);
817 smi_info
->si_state
= SI_GETTING_FLAGS
;
821 /* If we are currently idle, try to start the next message. */
822 if (si_sm_result
== SI_SM_IDLE
) {
823 smi_inc_stat(smi_info
, idles
);
825 si_sm_result
= start_next_msg(smi_info
);
826 if (si_sm_result
!= SI_SM_IDLE
)
830 if ((si_sm_result
== SI_SM_IDLE
)
831 && (atomic_read(&smi_info
->req_events
))) {
833 * We are idle and the upper layer requested that I fetch
836 atomic_set(&smi_info
->req_events
, 0);
838 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
839 if (!smi_info
->curr_msg
)
842 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
843 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
844 smi_info
->curr_msg
->data_size
= 2;
846 smi_info
->handlers
->start_transaction(
848 smi_info
->curr_msg
->data
,
849 smi_info
->curr_msg
->data_size
);
850 smi_info
->si_state
= SI_GETTING_EVENTS
;
857 static void sender(void *send_info
,
858 struct ipmi_smi_msg
*msg
,
861 struct smi_info
*smi_info
= send_info
;
862 enum si_sm_result result
;
868 if (atomic_read(&smi_info
->stop_operation
)) {
869 msg
->rsp
[0] = msg
->data
[0] | 4;
870 msg
->rsp
[1] = msg
->data
[1];
871 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
873 deliver_recv_msg(smi_info
, msg
);
879 printk("**Enqueue: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
882 if (smi_info
->run_to_completion
) {
884 * If we are running to completion, then throw it in
885 * the list and run transactions until everything is
886 * clear. Priority doesn't matter here.
890 * Run to completion means we are single-threaded, no
893 list_add_tail(&(msg
->link
), &(smi_info
->xmit_msgs
));
895 result
= smi_event_handler(smi_info
, 0);
896 while (result
!= SI_SM_IDLE
) {
897 udelay(SI_SHORT_TIMEOUT_USEC
);
898 result
= smi_event_handler(smi_info
,
899 SI_SHORT_TIMEOUT_USEC
);
904 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
906 list_add_tail(&msg
->link
, &smi_info
->hp_xmit_msgs
);
908 list_add_tail(&msg
->link
, &smi_info
->xmit_msgs
);
910 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
912 * last_timeout_jiffies is updated here to avoid
913 * smi_timeout() handler passing very large time_diff
914 * value to smi_event_handler() that causes
915 * the send command to abort.
917 smi_info
->last_timeout_jiffies
= jiffies
;
919 mod_timer(&smi_info
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
921 if (smi_info
->thread
)
922 wake_up_process(smi_info
->thread
);
924 start_next_msg(smi_info
);
925 smi_event_handler(smi_info
, 0);
927 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
930 static void set_run_to_completion(void *send_info
, int i_run_to_completion
)
932 struct smi_info
*smi_info
= send_info
;
933 enum si_sm_result result
;
935 smi_info
->run_to_completion
= i_run_to_completion
;
936 if (i_run_to_completion
) {
937 result
= smi_event_handler(smi_info
, 0);
938 while (result
!= SI_SM_IDLE
) {
939 udelay(SI_SHORT_TIMEOUT_USEC
);
940 result
= smi_event_handler(smi_info
,
941 SI_SHORT_TIMEOUT_USEC
);
947 * Use -1 in the nsec value of the busy waiting timespec to tell that
948 * we are spinning in kipmid looking for something and not delaying
951 static inline void ipmi_si_set_not_busy(struct timespec
*ts
)
955 static inline int ipmi_si_is_busy(struct timespec
*ts
)
957 return ts
->tv_nsec
!= -1;
960 static int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
961 const struct smi_info
*smi_info
,
962 struct timespec
*busy_until
)
964 unsigned int max_busy_us
= 0;
966 if (smi_info
->intf_num
< num_max_busy_us
)
967 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
968 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
969 ipmi_si_set_not_busy(busy_until
);
970 else if (!ipmi_si_is_busy(busy_until
)) {
971 getnstimeofday(busy_until
);
972 timespec_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
975 getnstimeofday(&now
);
976 if (unlikely(timespec_compare(&now
, busy_until
) > 0)) {
977 ipmi_si_set_not_busy(busy_until
);
986 * A busy-waiting loop for speeding up IPMI operation.
988 * Lousy hardware makes this hard. This is only enabled for systems
989 * that are not BT and do not have interrupts. It starts spinning
990 * when an operation is complete or until max_busy tells it to stop
991 * (if that is enabled). See the paragraph on kimid_max_busy_us in
992 * Documentation/IPMI.txt for details.
994 static int ipmi_thread(void *data
)
996 struct smi_info
*smi_info
= data
;
998 enum si_sm_result smi_result
;
999 struct timespec busy_until
;
1001 ipmi_si_set_not_busy(&busy_until
);
1002 set_user_nice(current
, 19);
1003 while (!kthread_should_stop()) {
1006 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1007 smi_result
= smi_event_handler(smi_info
, 0);
1008 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1009 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1011 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1013 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1015 else if (smi_result
== SI_SM_IDLE
)
1016 schedule_timeout_interruptible(100);
1018 schedule_timeout_interruptible(1);
1024 static void poll(void *send_info
)
1026 struct smi_info
*smi_info
= send_info
;
1027 unsigned long flags
= 0;
1028 int run_to_completion
= smi_info
->run_to_completion
;
1031 * Make sure there is some delay in the poll loop so we can
1032 * drive time forward and timeout things.
1035 if (!run_to_completion
)
1036 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1037 smi_event_handler(smi_info
, 10);
1038 if (!run_to_completion
)
1039 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1042 static void request_events(void *send_info
)
1044 struct smi_info
*smi_info
= send_info
;
1046 if (atomic_read(&smi_info
->stop_operation
) ||
1047 !smi_info
->has_event_buffer
)
1050 atomic_set(&smi_info
->req_events
, 1);
1053 static int initialized
;
1055 static void smi_timeout(unsigned long data
)
1057 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1058 enum si_sm_result smi_result
;
1059 unsigned long flags
;
1060 unsigned long jiffies_now
;
1067 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1069 do_gettimeofday(&t
);
1070 printk(KERN_DEBUG
"**Timer: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1072 jiffies_now
= jiffies
;
1073 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1074 * SI_USEC_PER_JIFFY
);
1075 smi_result
= smi_event_handler(smi_info
, time_diff
);
1077 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1079 smi_info
->last_timeout_jiffies
= jiffies_now
;
1081 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1082 /* Running with interrupts, only do long timeouts. */
1083 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1084 smi_inc_stat(smi_info
, long_timeouts
);
1089 * If the state machine asks for a short delay, then shorten
1090 * the timer timeout.
1092 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1093 smi_inc_stat(smi_info
, short_timeouts
);
1094 timeout
= jiffies
+ 1;
1096 smi_inc_stat(smi_info
, long_timeouts
);
1097 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1101 if (smi_result
!= SI_SM_IDLE
)
1102 mod_timer(&(smi_info
->si_timer
), timeout
);
1105 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1107 struct smi_info
*smi_info
= data
;
1108 unsigned long flags
;
1113 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1115 smi_inc_stat(smi_info
, interrupts
);
1118 do_gettimeofday(&t
);
1119 printk(KERN_DEBUG
"**Interrupt: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1121 smi_event_handler(smi_info
, 0);
1122 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1126 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1128 struct smi_info
*smi_info
= data
;
1129 /* We need to clear the IRQ flag for the BT interface. */
1130 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1131 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1133 return si_irq_handler(irq
, data
);
1136 static int smi_start_processing(void *send_info
,
1139 struct smi_info
*new_smi
= send_info
;
1142 new_smi
->intf
= intf
;
1144 /* Try to claim any interrupts. */
1145 if (new_smi
->irq_setup
)
1146 new_smi
->irq_setup(new_smi
);
1148 /* Set up the timer that drives the interface. */
1149 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1150 new_smi
->last_timeout_jiffies
= jiffies
;
1151 mod_timer(&new_smi
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1154 * Check if the user forcefully enabled the daemon.
1156 if (new_smi
->intf_num
< num_force_kipmid
)
1157 enable
= force_kipmid
[new_smi
->intf_num
];
1159 * The BT interface is efficient enough to not need a thread,
1160 * and there is no need for a thread if we have interrupts.
1162 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1166 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1167 "kipmi%d", new_smi
->intf_num
);
1168 if (IS_ERR(new_smi
->thread
)) {
1169 dev_notice(new_smi
->dev
, "Could not start"
1170 " kernel thread due to error %ld, only using"
1171 " timers to drive the interface\n",
1172 PTR_ERR(new_smi
->thread
));
1173 new_smi
->thread
= NULL
;
1180 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1182 struct smi_info
*smi
= send_info
;
1184 data
->addr_src
= smi
->addr_source
;
1185 data
->dev
= smi
->dev
;
1186 data
->addr_info
= smi
->addr_info
;
1187 get_device(smi
->dev
);
1192 static void set_maintenance_mode(void *send_info
, int enable
)
1194 struct smi_info
*smi_info
= send_info
;
1197 atomic_set(&smi_info
->req_events
, 0);
1200 static struct ipmi_smi_handlers handlers
= {
1201 .owner
= THIS_MODULE
,
1202 .start_processing
= smi_start_processing
,
1203 .get_smi_info
= get_smi_info
,
1205 .request_events
= request_events
,
1206 .set_maintenance_mode
= set_maintenance_mode
,
1207 .set_run_to_completion
= set_run_to_completion
,
1212 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1213 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1216 static LIST_HEAD(smi_infos
);
1217 static DEFINE_MUTEX(smi_infos_lock
);
1218 static int smi_num
; /* Used to sequence the SMIs */
1220 #define DEFAULT_REGSPACING 1
1221 #define DEFAULT_REGSIZE 1
1224 static bool si_tryacpi
= 1;
1227 static bool si_trydmi
= 1;
1229 static bool si_tryplatform
= 1;
1231 static bool si_trypci
= 1;
1233 static bool si_trydefaults
= 1;
1234 static char *si_type
[SI_MAX_PARMS
];
1235 #define MAX_SI_TYPE_STR 30
1236 static char si_type_str
[MAX_SI_TYPE_STR
];
1237 static unsigned long addrs
[SI_MAX_PARMS
];
1238 static unsigned int num_addrs
;
1239 static unsigned int ports
[SI_MAX_PARMS
];
1240 static unsigned int num_ports
;
1241 static int irqs
[SI_MAX_PARMS
];
1242 static unsigned int num_irqs
;
1243 static int regspacings
[SI_MAX_PARMS
];
1244 static unsigned int num_regspacings
;
1245 static int regsizes
[SI_MAX_PARMS
];
1246 static unsigned int num_regsizes
;
1247 static int regshifts
[SI_MAX_PARMS
];
1248 static unsigned int num_regshifts
;
1249 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs
;
1252 #define IPMI_IO_ADDR_SPACE 0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str
[] = { "i/o", "mem" };
1256 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1258 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1259 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1260 " Documentation/IPMI.txt in the kernel sources for the"
1264 module_param_named(tryacpi
, si_tryacpi
, bool, 0);
1265 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1266 " default scan of the interfaces identified via ACPI");
1269 module_param_named(trydmi
, si_trydmi
, bool, 0);
1270 MODULE_PARM_DESC(trydmi
, "Setting this to zero will disable the"
1271 " default scan of the interfaces identified via DMI");
1273 module_param_named(tryplatform
, si_tryplatform
, bool, 0);
1274 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1275 " default scan of the interfaces identified via platform"
1276 " interfaces like openfirmware");
1278 module_param_named(trypci
, si_trypci
, bool, 0);
1279 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1280 " default scan of the interfaces identified via pci");
1282 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1283 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1284 " default scan of the KCS and SMIC interface at the standard"
1286 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1287 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1288 " interface separated by commas. The types are 'kcs',"
1289 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1290 " the first interface to kcs and the second to bt");
1291 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1292 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1293 " addresses separated by commas. Only use if an interface"
1294 " is in memory. Otherwise, set it to zero or leave"
1296 module_param_array(ports
, uint
, &num_ports
, 0);
1297 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1298 " addresses separated by commas. Only use if an interface"
1299 " is a port. Otherwise, set it to zero or leave"
1301 module_param_array(irqs
, int, &num_irqs
, 0);
1302 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1303 " addresses separated by commas. Only use if an interface"
1304 " has an interrupt. Otherwise, set it to zero or leave"
1306 module_param_array(regspacings
, int, &num_regspacings
, 0);
1307 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1308 " and each successive register used by the interface. For"
1309 " instance, if the start address is 0xca2 and the spacing"
1310 " is 2, then the second address is at 0xca4. Defaults"
1312 module_param_array(regsizes
, int, &num_regsizes
, 0);
1313 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1314 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1315 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1316 " the 8-bit IPMI register has to be read from a larger"
1318 module_param_array(regshifts
, int, &num_regshifts
, 0);
1319 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1320 " IPMI register, in bits. For instance, if the data"
1321 " is read from a 32-bit word and the IPMI data is in"
1322 " bit 8-15, then the shift would be 8");
1323 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1324 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1325 " the controller. Normally this is 0x20, but can be"
1326 " overridden by this parm. This is an array indexed"
1327 " by interface number.");
1328 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1329 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1330 " disabled(0). Normally the IPMI driver auto-detects"
1331 " this, but the value may be overridden by this parm.");
1332 module_param(unload_when_empty
, int, 0);
1333 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1334 " specified or found, default is 1. Setting to 0"
1335 " is useful for hot add of devices using hotmod.");
1336 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1337 MODULE_PARM_DESC(kipmid_max_busy_us
,
1338 "Max time (in microseconds) to busy-wait for IPMI data before"
1339 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1340 " if kipmid is using up a lot of CPU time.");
1343 static void std_irq_cleanup(struct smi_info
*info
)
1345 if (info
->si_type
== SI_BT
)
1346 /* Disable the interrupt in the BT interface. */
1347 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1348 free_irq(info
->irq
, info
);
1351 static int std_irq_setup(struct smi_info
*info
)
1358 if (info
->si_type
== SI_BT
) {
1359 rv
= request_irq(info
->irq
,
1365 /* Enable the interrupt in the BT interface. */
1366 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1367 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1369 rv
= request_irq(info
->irq
,
1375 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1376 " running polled\n",
1377 DEVICE_NAME
, info
->irq
);
1380 info
->irq_cleanup
= std_irq_cleanup
;
1381 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1387 static unsigned char port_inb(struct si_sm_io
*io
, unsigned int offset
)
1389 unsigned int addr
= io
->addr_data
;
1391 return inb(addr
+ (offset
* io
->regspacing
));
1394 static void port_outb(struct si_sm_io
*io
, unsigned int offset
,
1397 unsigned int addr
= io
->addr_data
;
1399 outb(b
, addr
+ (offset
* io
->regspacing
));
1402 static unsigned char port_inw(struct si_sm_io
*io
, unsigned int offset
)
1404 unsigned int addr
= io
->addr_data
;
1406 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1409 static void port_outw(struct si_sm_io
*io
, unsigned int offset
,
1412 unsigned int addr
= io
->addr_data
;
1414 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1417 static unsigned char port_inl(struct si_sm_io
*io
, unsigned int offset
)
1419 unsigned int addr
= io
->addr_data
;
1421 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1424 static void port_outl(struct si_sm_io
*io
, unsigned int offset
,
1427 unsigned int addr
= io
->addr_data
;
1429 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1432 static void port_cleanup(struct smi_info
*info
)
1434 unsigned int addr
= info
->io
.addr_data
;
1438 for (idx
= 0; idx
< info
->io_size
; idx
++)
1439 release_region(addr
+ idx
* info
->io
.regspacing
,
1444 static int port_setup(struct smi_info
*info
)
1446 unsigned int addr
= info
->io
.addr_data
;
1452 info
->io_cleanup
= port_cleanup
;
1455 * Figure out the actual inb/inw/inl/etc routine to use based
1456 * upon the register size.
1458 switch (info
->io
.regsize
) {
1460 info
->io
.inputb
= port_inb
;
1461 info
->io
.outputb
= port_outb
;
1464 info
->io
.inputb
= port_inw
;
1465 info
->io
.outputb
= port_outw
;
1468 info
->io
.inputb
= port_inl
;
1469 info
->io
.outputb
= port_outl
;
1472 dev_warn(info
->dev
, "Invalid register size: %d\n",
1478 * Some BIOSes reserve disjoint I/O regions in their ACPI
1479 * tables. This causes problems when trying to register the
1480 * entire I/O region. Therefore we must register each I/O
1483 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1484 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1485 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1486 /* Undo allocations */
1488 release_region(addr
+ idx
* info
->io
.regspacing
,
1497 static unsigned char intf_mem_inb(struct si_sm_io
*io
, unsigned int offset
)
1499 return readb((io
->addr
)+(offset
* io
->regspacing
));
1502 static void intf_mem_outb(struct si_sm_io
*io
, unsigned int offset
,
1505 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1508 static unsigned char intf_mem_inw(struct si_sm_io
*io
, unsigned int offset
)
1510 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1514 static void intf_mem_outw(struct si_sm_io
*io
, unsigned int offset
,
1517 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1520 static unsigned char intf_mem_inl(struct si_sm_io
*io
, unsigned int offset
)
1522 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1526 static void intf_mem_outl(struct si_sm_io
*io
, unsigned int offset
,
1529 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1533 static unsigned char mem_inq(struct si_sm_io
*io
, unsigned int offset
)
1535 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1539 static void mem_outq(struct si_sm_io
*io
, unsigned int offset
,
1542 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1546 static void mem_cleanup(struct smi_info
*info
)
1548 unsigned long addr
= info
->io
.addr_data
;
1551 if (info
->io
.addr
) {
1552 iounmap(info
->io
.addr
);
1554 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1555 - (info
->io
.regspacing
- info
->io
.regsize
));
1557 release_mem_region(addr
, mapsize
);
1561 static int mem_setup(struct smi_info
*info
)
1563 unsigned long addr
= info
->io
.addr_data
;
1569 info
->io_cleanup
= mem_cleanup
;
1572 * Figure out the actual readb/readw/readl/etc routine to use based
1573 * upon the register size.
1575 switch (info
->io
.regsize
) {
1577 info
->io
.inputb
= intf_mem_inb
;
1578 info
->io
.outputb
= intf_mem_outb
;
1581 info
->io
.inputb
= intf_mem_inw
;
1582 info
->io
.outputb
= intf_mem_outw
;
1585 info
->io
.inputb
= intf_mem_inl
;
1586 info
->io
.outputb
= intf_mem_outl
;
1590 info
->io
.inputb
= mem_inq
;
1591 info
->io
.outputb
= mem_outq
;
1595 dev_warn(info
->dev
, "Invalid register size: %d\n",
1601 * Calculate the total amount of memory to claim. This is an
1602 * unusual looking calculation, but it avoids claiming any
1603 * more memory than it has to. It will claim everything
1604 * between the first address to the end of the last full
1607 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1608 - (info
->io
.regspacing
- info
->io
.regsize
));
1610 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1613 info
->io
.addr
= ioremap(addr
, mapsize
);
1614 if (info
->io
.addr
== NULL
) {
1615 release_mem_region(addr
, mapsize
);
1622 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1623 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1631 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1632 struct hotmod_vals
{
1636 static struct hotmod_vals hotmod_ops
[] = {
1638 { "remove", HM_REMOVE
},
1641 static struct hotmod_vals hotmod_si
[] = {
1643 { "smic", SI_SMIC
},
1647 static struct hotmod_vals hotmod_as
[] = {
1648 { "mem", IPMI_MEM_ADDR_SPACE
},
1649 { "i/o", IPMI_IO_ADDR_SPACE
},
1653 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1658 s
= strchr(*curr
, ',');
1660 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1665 for (i
= 0; hotmod_ops
[i
].name
; i
++) {
1666 if (strcmp(*curr
, v
[i
].name
) == 0) {
1673 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1677 static int check_hotmod_int_op(const char *curr
, const char *option
,
1678 const char *name
, int *val
)
1682 if (strcmp(curr
, name
) == 0) {
1684 printk(KERN_WARNING PFX
1685 "No option given for '%s'\n",
1689 *val
= simple_strtoul(option
, &n
, 0);
1690 if ((*n
!= '\0') || (*option
== '\0')) {
1691 printk(KERN_WARNING PFX
1692 "Bad option given for '%s'\n",
1701 static struct smi_info
*smi_info_alloc(void)
1703 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1706 spin_lock_init(&info
->si_lock
);
1710 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1712 char *str
= kstrdup(val
, GFP_KERNEL
);
1714 char *next
, *curr
, *s
, *n
, *o
;
1716 enum si_type si_type
;
1726 struct smi_info
*info
;
1731 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1734 while ((ival
>= 0) && isspace(str
[ival
])) {
1739 for (curr
= str
; curr
; curr
= next
) {
1744 ipmb
= 0; /* Choose the default if not specified */
1746 next
= strchr(curr
, ':');
1752 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1757 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1762 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1766 s
= strchr(curr
, ',');
1771 addr
= simple_strtoul(curr
, &n
, 0);
1772 if ((*n
!= '\0') || (*curr
== '\0')) {
1773 printk(KERN_WARNING PFX
"Invalid hotmod address"
1780 s
= strchr(curr
, ',');
1785 o
= strchr(curr
, '=');
1790 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1795 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1800 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1805 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1810 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1817 printk(KERN_WARNING PFX
1818 "Invalid hotmod option '%s'\n",
1824 info
= smi_info_alloc();
1830 info
->addr_source
= SI_HOTMOD
;
1831 info
->si_type
= si_type
;
1832 info
->io
.addr_data
= addr
;
1833 info
->io
.addr_type
= addr_space
;
1834 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1835 info
->io_setup
= mem_setup
;
1837 info
->io_setup
= port_setup
;
1839 info
->io
.addr
= NULL
;
1840 info
->io
.regspacing
= regspacing
;
1841 if (!info
->io
.regspacing
)
1842 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1843 info
->io
.regsize
= regsize
;
1844 if (!info
->io
.regsize
)
1845 info
->io
.regsize
= DEFAULT_REGSPACING
;
1846 info
->io
.regshift
= regshift
;
1849 info
->irq_setup
= std_irq_setup
;
1850 info
->slave_addr
= ipmb
;
1857 rv
= try_smi_init(info
);
1859 cleanup_one_si(info
);
1864 struct smi_info
*e
, *tmp_e
;
1866 mutex_lock(&smi_infos_lock
);
1867 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1868 if (e
->io
.addr_type
!= addr_space
)
1870 if (e
->si_type
!= si_type
)
1872 if (e
->io
.addr_data
== addr
)
1875 mutex_unlock(&smi_infos_lock
);
1884 static int hardcode_find_bmc(void)
1888 struct smi_info
*info
;
1890 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1891 if (!ports
[i
] && !addrs
[i
])
1894 info
= smi_info_alloc();
1898 info
->addr_source
= SI_HARDCODED
;
1899 printk(KERN_INFO PFX
"probing via hardcoded address\n");
1901 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1902 info
->si_type
= SI_KCS
;
1903 } else if (strcmp(si_type
[i
], "smic") == 0) {
1904 info
->si_type
= SI_SMIC
;
1905 } else if (strcmp(si_type
[i
], "bt") == 0) {
1906 info
->si_type
= SI_BT
;
1908 printk(KERN_WARNING PFX
"Interface type specified "
1909 "for interface %d, was invalid: %s\n",
1917 info
->io_setup
= port_setup
;
1918 info
->io
.addr_data
= ports
[i
];
1919 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1920 } else if (addrs
[i
]) {
1922 info
->io_setup
= mem_setup
;
1923 info
->io
.addr_data
= addrs
[i
];
1924 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1926 printk(KERN_WARNING PFX
"Interface type specified "
1927 "for interface %d, but port and address were "
1928 "not set or set to zero.\n", i
);
1933 info
->io
.addr
= NULL
;
1934 info
->io
.regspacing
= regspacings
[i
];
1935 if (!info
->io
.regspacing
)
1936 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1937 info
->io
.regsize
= regsizes
[i
];
1938 if (!info
->io
.regsize
)
1939 info
->io
.regsize
= DEFAULT_REGSPACING
;
1940 info
->io
.regshift
= regshifts
[i
];
1941 info
->irq
= irqs
[i
];
1943 info
->irq_setup
= std_irq_setup
;
1944 info
->slave_addr
= slave_addrs
[i
];
1946 if (!add_smi(info
)) {
1947 if (try_smi_init(info
))
1948 cleanup_one_si(info
);
1959 #include <linux/acpi.h>
1962 * Once we get an ACPI failure, we don't try any more, because we go
1963 * through the tables sequentially. Once we don't find a table, there
1966 static int acpi_failure
;
1968 /* For GPE-type interrupts. */
1969 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
1970 u32 gpe_number
, void *context
)
1972 struct smi_info
*smi_info
= context
;
1973 unsigned long flags
;
1978 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1980 smi_inc_stat(smi_info
, interrupts
);
1983 do_gettimeofday(&t
);
1984 printk("**ACPI_GPE: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1986 smi_event_handler(smi_info
, 0);
1987 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1989 return ACPI_INTERRUPT_HANDLED
;
1992 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
1997 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
2000 static int acpi_gpe_irq_setup(struct smi_info
*info
)
2007 /* FIXME - is level triggered right? */
2008 status
= acpi_install_gpe_handler(NULL
,
2010 ACPI_GPE_LEVEL_TRIGGERED
,
2013 if (status
!= AE_OK
) {
2014 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
2015 " running polled\n", DEVICE_NAME
, info
->irq
);
2019 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
2020 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2027 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2038 s8 CreatorRevision
[4];
2041 s16 SpecificationRevision
;
2044 * Bit 0 - SCI interrupt supported
2045 * Bit 1 - I/O APIC/SAPIC
2050 * If bit 0 of InterruptType is set, then this is the SCI
2051 * interrupt in the GPEx_STS register.
2058 * If bit 1 of InterruptType is set, then this is the I/O
2059 * APIC/SAPIC interrupt.
2061 u32 GlobalSystemInterrupt
;
2063 /* The actual register address. */
2064 struct acpi_generic_address addr
;
2068 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2071 static int try_init_spmi(struct SPMITable
*spmi
)
2073 struct smi_info
*info
;
2076 if (spmi
->IPMIlegacy
!= 1) {
2077 printk(KERN_INFO PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2081 info
= smi_info_alloc();
2083 printk(KERN_ERR PFX
"Could not allocate SI data (3)\n");
2087 info
->addr_source
= SI_SPMI
;
2088 printk(KERN_INFO PFX
"probing via SPMI\n");
2090 /* Figure out the interface type. */
2091 switch (spmi
->InterfaceType
) {
2093 info
->si_type
= SI_KCS
;
2096 info
->si_type
= SI_SMIC
;
2099 info
->si_type
= SI_BT
;
2102 printk(KERN_INFO PFX
"Unknown ACPI/SPMI SI type %d\n",
2103 spmi
->InterfaceType
);
2108 if (spmi
->InterruptType
& 1) {
2109 /* We've got a GPE interrupt. */
2110 info
->irq
= spmi
->GPE
;
2111 info
->irq_setup
= acpi_gpe_irq_setup
;
2112 } else if (spmi
->InterruptType
& 2) {
2113 /* We've got an APIC/SAPIC interrupt. */
2114 info
->irq
= spmi
->GlobalSystemInterrupt
;
2115 info
->irq_setup
= std_irq_setup
;
2117 /* Use the default interrupt setting. */
2119 info
->irq_setup
= NULL
;
2122 if (spmi
->addr
.bit_width
) {
2123 /* A (hopefully) properly formed register bit width. */
2124 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2126 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2128 info
->io
.regsize
= info
->io
.regspacing
;
2129 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2131 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2132 info
->io_setup
= mem_setup
;
2133 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2134 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2135 info
->io_setup
= port_setup
;
2136 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2139 printk(KERN_WARNING PFX
"Unknown ACPI I/O Address type\n");
2142 info
->io
.addr_data
= spmi
->addr
.address
;
2144 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2145 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2146 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2156 static void spmi_find_bmc(void)
2159 struct SPMITable
*spmi
;
2168 for (i
= 0; ; i
++) {
2169 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2170 (struct acpi_table_header
**)&spmi
);
2171 if (status
!= AE_OK
)
2174 try_init_spmi(spmi
);
2178 static int ipmi_pnp_probe(struct pnp_dev
*dev
,
2179 const struct pnp_device_id
*dev_id
)
2181 struct acpi_device
*acpi_dev
;
2182 struct smi_info
*info
;
2183 struct resource
*res
, *res_second
;
2186 unsigned long long tmp
;
2189 acpi_dev
= pnp_acpi_device(dev
);
2193 info
= smi_info_alloc();
2197 info
->addr_source
= SI_ACPI
;
2198 printk(KERN_INFO PFX
"probing via ACPI\n");
2200 handle
= acpi_dev
->handle
;
2201 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2203 /* _IFT tells us the interface type: KCS, BT, etc */
2204 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2205 if (ACPI_FAILURE(status
))
2210 info
->si_type
= SI_KCS
;
2213 info
->si_type
= SI_SMIC
;
2216 info
->si_type
= SI_BT
;
2219 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2223 res
= pnp_get_resource(dev
, IORESOURCE_IO
, 0);
2225 info
->io_setup
= port_setup
;
2226 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2228 res
= pnp_get_resource(dev
, IORESOURCE_MEM
, 0);
2230 info
->io_setup
= mem_setup
;
2231 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2235 dev_err(&dev
->dev
, "no I/O or memory address\n");
2238 info
->io
.addr_data
= res
->start
;
2240 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2241 res_second
= pnp_get_resource(dev
,
2242 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2243 IORESOURCE_IO
: IORESOURCE_MEM
,
2246 if (res_second
->start
> info
->io
.addr_data
)
2247 info
->io
.regspacing
= res_second
->start
- info
->io
.addr_data
;
2249 info
->io
.regsize
= DEFAULT_REGSPACING
;
2250 info
->io
.regshift
= 0;
2252 /* If _GPE exists, use it; otherwise use standard interrupts */
2253 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2254 if (ACPI_SUCCESS(status
)) {
2256 info
->irq_setup
= acpi_gpe_irq_setup
;
2257 } else if (pnp_irq_valid(dev
, 0)) {
2258 info
->irq
= pnp_irq(dev
, 0);
2259 info
->irq_setup
= std_irq_setup
;
2262 info
->dev
= &dev
->dev
;
2263 pnp_set_drvdata(dev
, info
);
2265 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2266 res
, info
->io
.regsize
, info
->io
.regspacing
,
2280 static void ipmi_pnp_remove(struct pnp_dev
*dev
)
2282 struct smi_info
*info
= pnp_get_drvdata(dev
);
2284 cleanup_one_si(info
);
2287 static const struct pnp_device_id pnp_dev_table
[] = {
2292 static struct pnp_driver ipmi_pnp_driver
= {
2293 .name
= DEVICE_NAME
,
2294 .probe
= ipmi_pnp_probe
,
2295 .remove
= ipmi_pnp_remove
,
2296 .id_table
= pnp_dev_table
,
2299 MODULE_DEVICE_TABLE(pnp
, pnp_dev_table
);
2303 struct dmi_ipmi_data
{
2306 unsigned long base_addr
;
2312 static int decode_dmi(const struct dmi_header
*dm
,
2313 struct dmi_ipmi_data
*dmi
)
2315 const u8
*data
= (const u8
*)dm
;
2316 unsigned long base_addr
;
2318 u8 len
= dm
->length
;
2320 dmi
->type
= data
[4];
2322 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2324 if (base_addr
& 1) {
2326 base_addr
&= 0xFFFE;
2327 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2330 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2332 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2334 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2336 dmi
->irq
= data
[0x11];
2338 /* The top two bits of byte 0x10 hold the register spacing. */
2339 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2340 switch (reg_spacing
) {
2341 case 0x00: /* Byte boundaries */
2344 case 0x01: /* 32-bit boundaries */
2347 case 0x02: /* 16-byte boundaries */
2351 /* Some other interface, just ignore it. */
2357 * Note that technically, the lower bit of the base
2358 * address should be 1 if the address is I/O and 0 if
2359 * the address is in memory. So many systems get that
2360 * wrong (and all that I have seen are I/O) so we just
2361 * ignore that bit and assume I/O. Systems that use
2362 * memory should use the newer spec, anyway.
2364 dmi
->base_addr
= base_addr
& 0xfffe;
2365 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2369 dmi
->slave_addr
= data
[6];
2374 static void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2376 struct smi_info
*info
;
2378 info
= smi_info_alloc();
2380 printk(KERN_ERR PFX
"Could not allocate SI data\n");
2384 info
->addr_source
= SI_SMBIOS
;
2385 printk(KERN_INFO PFX
"probing via SMBIOS\n");
2387 switch (ipmi_data
->type
) {
2388 case 0x01: /* KCS */
2389 info
->si_type
= SI_KCS
;
2391 case 0x02: /* SMIC */
2392 info
->si_type
= SI_SMIC
;
2395 info
->si_type
= SI_BT
;
2402 switch (ipmi_data
->addr_space
) {
2403 case IPMI_MEM_ADDR_SPACE
:
2404 info
->io_setup
= mem_setup
;
2405 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2408 case IPMI_IO_ADDR_SPACE
:
2409 info
->io_setup
= port_setup
;
2410 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2415 printk(KERN_WARNING PFX
"Unknown SMBIOS I/O Address type: %d\n",
2416 ipmi_data
->addr_space
);
2419 info
->io
.addr_data
= ipmi_data
->base_addr
;
2421 info
->io
.regspacing
= ipmi_data
->offset
;
2422 if (!info
->io
.regspacing
)
2423 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2424 info
->io
.regsize
= DEFAULT_REGSPACING
;
2425 info
->io
.regshift
= 0;
2427 info
->slave_addr
= ipmi_data
->slave_addr
;
2429 info
->irq
= ipmi_data
->irq
;
2431 info
->irq_setup
= std_irq_setup
;
2433 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2434 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2435 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2442 static void dmi_find_bmc(void)
2444 const struct dmi_device
*dev
= NULL
;
2445 struct dmi_ipmi_data data
;
2448 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2449 memset(&data
, 0, sizeof(data
));
2450 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2453 try_init_dmi(&data
);
2456 #endif /* CONFIG_DMI */
2460 #define PCI_ERMC_CLASSCODE 0x0C0700
2461 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2462 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2463 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2464 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2465 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2467 #define PCI_HP_VENDOR_ID 0x103C
2468 #define PCI_MMC_DEVICE_ID 0x121A
2469 #define PCI_MMC_ADDR_CW 0x10
2471 static void ipmi_pci_cleanup(struct smi_info
*info
)
2473 struct pci_dev
*pdev
= info
->addr_source_data
;
2475 pci_disable_device(pdev
);
2478 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2480 if (info
->si_type
== SI_KCS
) {
2481 unsigned char status
;
2484 info
->io
.regsize
= DEFAULT_REGSIZE
;
2485 info
->io
.regshift
= 0;
2487 info
->handlers
= &kcs_smi_handlers
;
2489 /* detect 1, 4, 16byte spacing */
2490 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2491 info
->io
.regspacing
= regspacing
;
2492 if (info
->io_setup(info
)) {
2494 "Could not setup I/O space\n");
2495 return DEFAULT_REGSPACING
;
2497 /* write invalid cmd */
2498 info
->io
.outputb(&info
->io
, 1, 0x10);
2499 /* read status back */
2500 status
= info
->io
.inputb(&info
->io
, 1);
2501 info
->io_cleanup(info
);
2507 return DEFAULT_REGSPACING
;
2510 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2511 const struct pci_device_id
*ent
)
2514 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2515 struct smi_info
*info
;
2517 info
= smi_info_alloc();
2521 info
->addr_source
= SI_PCI
;
2522 dev_info(&pdev
->dev
, "probing via PCI");
2524 switch (class_type
) {
2525 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2526 info
->si_type
= SI_SMIC
;
2529 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2530 info
->si_type
= SI_KCS
;
2533 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2534 info
->si_type
= SI_BT
;
2539 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2543 rv
= pci_enable_device(pdev
);
2545 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2550 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2551 info
->addr_source_data
= pdev
;
2553 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2554 info
->io_setup
= port_setup
;
2555 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2557 info
->io_setup
= mem_setup
;
2558 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2560 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2562 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2563 info
->io
.regsize
= DEFAULT_REGSIZE
;
2564 info
->io
.regshift
= 0;
2566 info
->irq
= pdev
->irq
;
2568 info
->irq_setup
= std_irq_setup
;
2570 info
->dev
= &pdev
->dev
;
2571 pci_set_drvdata(pdev
, info
);
2573 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2574 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2580 pci_disable_device(pdev
);
2586 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2588 struct smi_info
*info
= pci_get_drvdata(pdev
);
2589 cleanup_one_si(info
);
2590 pci_disable_device(pdev
);
2593 static struct pci_device_id ipmi_pci_devices
[] = {
2594 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2595 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2598 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2600 static struct pci_driver ipmi_pci_driver
= {
2601 .name
= DEVICE_NAME
,
2602 .id_table
= ipmi_pci_devices
,
2603 .probe
= ipmi_pci_probe
,
2604 .remove
= ipmi_pci_remove
,
2606 #endif /* CONFIG_PCI */
2608 static struct of_device_id ipmi_match
[];
2609 static int ipmi_probe(struct platform_device
*dev
)
2612 const struct of_device_id
*match
;
2613 struct smi_info
*info
;
2614 struct resource resource
;
2615 const __be32
*regsize
, *regspacing
, *regshift
;
2616 struct device_node
*np
= dev
->dev
.of_node
;
2620 dev_info(&dev
->dev
, "probing via device tree\n");
2622 match
= of_match_device(ipmi_match
, &dev
->dev
);
2626 ret
= of_address_to_resource(np
, 0, &resource
);
2628 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2632 regsize
= of_get_property(np
, "reg-size", &proplen
);
2633 if (regsize
&& proplen
!= 4) {
2634 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2638 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2639 if (regspacing
&& proplen
!= 4) {
2640 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2644 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2645 if (regshift
&& proplen
!= 4) {
2646 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2650 info
= smi_info_alloc();
2654 "could not allocate memory for OF probe\n");
2658 info
->si_type
= (enum si_type
) match
->data
;
2659 info
->addr_source
= SI_DEVICETREE
;
2660 info
->irq_setup
= std_irq_setup
;
2662 if (resource
.flags
& IORESOURCE_IO
) {
2663 info
->io_setup
= port_setup
;
2664 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2666 info
->io_setup
= mem_setup
;
2667 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2670 info
->io
.addr_data
= resource
.start
;
2672 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2673 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2674 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2676 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2677 info
->dev
= &dev
->dev
;
2679 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2680 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2683 dev_set_drvdata(&dev
->dev
, info
);
2685 ret
= add_smi(info
);
2694 static int ipmi_remove(struct platform_device
*dev
)
2697 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2702 static struct of_device_id ipmi_match
[] =
2704 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2705 .data
= (void *)(unsigned long) SI_KCS
},
2706 { .type
= "ipmi", .compatible
= "ipmi-smic",
2707 .data
= (void *)(unsigned long) SI_SMIC
},
2708 { .type
= "ipmi", .compatible
= "ipmi-bt",
2709 .data
= (void *)(unsigned long) SI_BT
},
2713 static struct platform_driver ipmi_driver
= {
2715 .name
= DEVICE_NAME
,
2716 .owner
= THIS_MODULE
,
2717 .of_match_table
= ipmi_match
,
2719 .probe
= ipmi_probe
,
2720 .remove
= ipmi_remove
,
2723 #ifdef CONFIG_PARISC
2724 static int ipmi_parisc_probe(struct parisc_device
*dev
)
2726 struct smi_info
*info
;
2729 info
= smi_info_alloc();
2733 "could not allocate memory for PARISC probe\n");
2737 info
->si_type
= SI_KCS
;
2738 info
->addr_source
= SI_DEVICETREE
;
2739 info
->io_setup
= mem_setup
;
2740 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2741 info
->io
.addr_data
= dev
->hpa
.start
;
2742 info
->io
.regsize
= 1;
2743 info
->io
.regspacing
= 1;
2744 info
->io
.regshift
= 0;
2745 info
->irq
= 0; /* no interrupt */
2746 info
->irq_setup
= NULL
;
2747 info
->dev
= &dev
->dev
;
2749 dev_dbg(&dev
->dev
, "addr 0x%lx\n", info
->io
.addr_data
);
2751 dev_set_drvdata(&dev
->dev
, info
);
2762 static int ipmi_parisc_remove(struct parisc_device
*dev
)
2764 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2768 static struct parisc_device_id ipmi_parisc_tbl
[] = {
2769 { HPHW_MC
, HVERSION_REV_ANY_ID
, 0x004, 0xC0 },
2773 static struct parisc_driver ipmi_parisc_driver
= {
2775 .id_table
= ipmi_parisc_tbl
,
2776 .probe
= ipmi_parisc_probe
,
2777 .remove
= ipmi_parisc_remove
,
2779 #endif /* CONFIG_PARISC */
2781 static int wait_for_msg_done(struct smi_info
*smi_info
)
2783 enum si_sm_result smi_result
;
2785 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2787 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2788 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2789 schedule_timeout_uninterruptible(1);
2790 smi_result
= smi_info
->handlers
->event(
2791 smi_info
->si_sm
, jiffies_to_usecs(1));
2792 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2793 smi_result
= smi_info
->handlers
->event(
2794 smi_info
->si_sm
, 0);
2798 if (smi_result
== SI_SM_HOSED
)
2800 * We couldn't get the state machine to run, so whatever's at
2801 * the port is probably not an IPMI SMI interface.
2808 static int try_get_dev_id(struct smi_info
*smi_info
)
2810 unsigned char msg
[2];
2811 unsigned char *resp
;
2812 unsigned long resp_len
;
2815 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2820 * Do a Get Device ID command, since it comes back with some
2823 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2824 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2825 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2827 rv
= wait_for_msg_done(smi_info
);
2831 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2832 resp
, IPMI_MAX_MSG_LENGTH
);
2834 /* Check and record info from the get device id, in case we need it. */
2835 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2842 static int try_enable_event_buffer(struct smi_info
*smi_info
)
2844 unsigned char msg
[3];
2845 unsigned char *resp
;
2846 unsigned long resp_len
;
2849 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2853 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2854 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2855 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2857 rv
= wait_for_msg_done(smi_info
);
2859 printk(KERN_WARNING PFX
"Error getting response from get"
2860 " global enables command, the event buffer is not"
2865 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2866 resp
, IPMI_MAX_MSG_LENGTH
);
2869 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2870 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2872 printk(KERN_WARNING PFX
"Invalid return from get global"
2873 " enables command, cannot enable the event buffer.\n");
2878 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
)
2879 /* buffer is already enabled, nothing to do. */
2882 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2883 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2884 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
2885 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2887 rv
= wait_for_msg_done(smi_info
);
2889 printk(KERN_WARNING PFX
"Error getting response from set"
2890 " global, enables command, the event buffer is not"
2895 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2896 resp
, IPMI_MAX_MSG_LENGTH
);
2899 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2900 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
2901 printk(KERN_WARNING PFX
"Invalid return from get global,"
2902 "enables command, not enable the event buffer.\n");
2909 * An error when setting the event buffer bit means
2910 * that the event buffer is not supported.
2918 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
2920 struct smi_info
*smi
= m
->private;
2922 return seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
2925 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
2927 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
2930 static const struct file_operations smi_type_proc_ops
= {
2931 .open
= smi_type_proc_open
,
2933 .llseek
= seq_lseek
,
2934 .release
= single_release
,
2937 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
2939 struct smi_info
*smi
= m
->private;
2941 seq_printf(m
, "interrupts_enabled: %d\n",
2942 smi
->irq
&& !smi
->interrupt_disabled
);
2943 seq_printf(m
, "short_timeouts: %u\n",
2944 smi_get_stat(smi
, short_timeouts
));
2945 seq_printf(m
, "long_timeouts: %u\n",
2946 smi_get_stat(smi
, long_timeouts
));
2947 seq_printf(m
, "idles: %u\n",
2948 smi_get_stat(smi
, idles
));
2949 seq_printf(m
, "interrupts: %u\n",
2950 smi_get_stat(smi
, interrupts
));
2951 seq_printf(m
, "attentions: %u\n",
2952 smi_get_stat(smi
, attentions
));
2953 seq_printf(m
, "flag_fetches: %u\n",
2954 smi_get_stat(smi
, flag_fetches
));
2955 seq_printf(m
, "hosed_count: %u\n",
2956 smi_get_stat(smi
, hosed_count
));
2957 seq_printf(m
, "complete_transactions: %u\n",
2958 smi_get_stat(smi
, complete_transactions
));
2959 seq_printf(m
, "events: %u\n",
2960 smi_get_stat(smi
, events
));
2961 seq_printf(m
, "watchdog_pretimeouts: %u\n",
2962 smi_get_stat(smi
, watchdog_pretimeouts
));
2963 seq_printf(m
, "incoming_messages: %u\n",
2964 smi_get_stat(smi
, incoming_messages
));
2968 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
2970 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
2973 static const struct file_operations smi_si_stats_proc_ops
= {
2974 .open
= smi_si_stats_proc_open
,
2976 .llseek
= seq_lseek
,
2977 .release
= single_release
,
2980 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
2982 struct smi_info
*smi
= m
->private;
2984 return seq_printf(m
,
2985 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2986 si_to_str
[smi
->si_type
],
2987 addr_space_to_str
[smi
->io
.addr_type
],
2996 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
2998 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
3001 static const struct file_operations smi_params_proc_ops
= {
3002 .open
= smi_params_proc_open
,
3004 .llseek
= seq_lseek
,
3005 .release
= single_release
,
3009 * oem_data_avail_to_receive_msg_avail
3010 * @info - smi_info structure with msg_flags set
3012 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3013 * Returns 1 indicating need to re-run handle_flags().
3015 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
3017 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
3023 * setup_dell_poweredge_oem_data_handler
3024 * @info - smi_info.device_id must be populated
3026 * Systems that match, but have firmware version < 1.40 may assert
3027 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3028 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3029 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3030 * as RECEIVE_MSG_AVAIL instead.
3032 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3033 * assert the OEM[012] bits, and if it did, the driver would have to
3034 * change to handle that properly, we don't actually check for the
3036 * Device ID = 0x20 BMC on PowerEdge 8G servers
3037 * Device Revision = 0x80
3038 * Firmware Revision1 = 0x01 BMC version 1.40
3039 * Firmware Revision2 = 0x40 BCD encoded
3040 * IPMI Version = 0x51 IPMI 1.5
3041 * Manufacturer ID = A2 02 00 Dell IANA
3043 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3044 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3047 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3048 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3049 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3050 #define DELL_IANA_MFR_ID 0x0002a2
3051 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
3053 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3054 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
3055 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
3056 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
3057 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
3058 smi_info
->oem_data_avail_handler
=
3059 oem_data_avail_to_receive_msg_avail
;
3060 } else if (ipmi_version_major(id
) < 1 ||
3061 (ipmi_version_major(id
) == 1 &&
3062 ipmi_version_minor(id
) < 5)) {
3063 smi_info
->oem_data_avail_handler
=
3064 oem_data_avail_to_receive_msg_avail
;
3069 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3070 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
3072 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
3074 /* Make it a response */
3075 msg
->rsp
[0] = msg
->data
[0] | 4;
3076 msg
->rsp
[1] = msg
->data
[1];
3077 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
3079 smi_info
->curr_msg
= NULL
;
3080 deliver_recv_msg(smi_info
, msg
);
3084 * dell_poweredge_bt_xaction_handler
3085 * @info - smi_info.device_id must be populated
3087 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3088 * not respond to a Get SDR command if the length of the data
3089 * requested is exactly 0x3A, which leads to command timeouts and no
3090 * data returned. This intercepts such commands, and causes userspace
3091 * callers to try again with a different-sized buffer, which succeeds.
3094 #define STORAGE_NETFN 0x0A
3095 #define STORAGE_CMD_GET_SDR 0x23
3096 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
3097 unsigned long unused
,
3100 struct smi_info
*smi_info
= in
;
3101 unsigned char *data
= smi_info
->curr_msg
->data
;
3102 unsigned int size
= smi_info
->curr_msg
->data_size
;
3104 (data
[0]>>2) == STORAGE_NETFN
&&
3105 data
[1] == STORAGE_CMD_GET_SDR
&&
3107 return_hosed_msg_badsize(smi_info
);
3113 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3114 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3118 * setup_dell_poweredge_bt_xaction_handler
3119 * @info - smi_info.device_id must be filled in already
3121 * Fills in smi_info.device_id.start_transaction_pre_hook
3122 * when we know what function to use there.
3125 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3127 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3128 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3129 smi_info
->si_type
== SI_BT
)
3130 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3134 * setup_oem_data_handler
3135 * @info - smi_info.device_id must be filled in already
3137 * Fills in smi_info.device_id.oem_data_available_handler
3138 * when we know what function to use there.
3141 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3143 setup_dell_poweredge_oem_data_handler(smi_info
);
3146 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3148 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3151 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
3153 if (smi_info
->intf
) {
3155 * The timer and thread are only running if the
3156 * interface has been started up and registered.
3158 if (smi_info
->thread
!= NULL
)
3159 kthread_stop(smi_info
->thread
);
3160 del_timer_sync(&smi_info
->si_timer
);
3164 static struct ipmi_default_vals
3170 { .type
= SI_KCS
, .port
= 0xca2 },
3171 { .type
= SI_SMIC
, .port
= 0xca9 },
3172 { .type
= SI_BT
, .port
= 0xe4 },
3176 static void default_find_bmc(void)
3178 struct smi_info
*info
;
3181 for (i
= 0; ; i
++) {
3182 if (!ipmi_defaults
[i
].port
)
3185 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
3188 info
= smi_info_alloc();
3192 info
->addr_source
= SI_DEFAULT
;
3194 info
->si_type
= ipmi_defaults
[i
].type
;
3195 info
->io_setup
= port_setup
;
3196 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
3197 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
3199 info
->io
.addr
= NULL
;
3200 info
->io
.regspacing
= DEFAULT_REGSPACING
;
3201 info
->io
.regsize
= DEFAULT_REGSPACING
;
3202 info
->io
.regshift
= 0;
3204 if (add_smi(info
) == 0) {
3205 if ((try_smi_init(info
)) == 0) {
3207 printk(KERN_INFO PFX
"Found default %s"
3208 " state machine at %s address 0x%lx\n",
3209 si_to_str
[info
->si_type
],
3210 addr_space_to_str
[info
->io
.addr_type
],
3211 info
->io
.addr_data
);
3213 cleanup_one_si(info
);
3220 static int is_new_interface(struct smi_info
*info
)
3224 list_for_each_entry(e
, &smi_infos
, link
) {
3225 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3227 if (e
->io
.addr_data
== info
->io
.addr_data
)
3234 static int add_smi(struct smi_info
*new_smi
)
3238 printk(KERN_INFO PFX
"Adding %s-specified %s state machine",
3239 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3240 si_to_str
[new_smi
->si_type
]);
3241 mutex_lock(&smi_infos_lock
);
3242 if (!is_new_interface(new_smi
)) {
3243 printk(KERN_CONT
" duplicate interface\n");
3248 printk(KERN_CONT
"\n");
3250 /* So we know not to free it unless we have allocated one. */
3251 new_smi
->intf
= NULL
;
3252 new_smi
->si_sm
= NULL
;
3253 new_smi
->handlers
= NULL
;
3255 list_add_tail(&new_smi
->link
, &smi_infos
);
3258 mutex_unlock(&smi_infos_lock
);
3262 static int try_smi_init(struct smi_info
*new_smi
)
3267 printk(KERN_INFO PFX
"Trying %s-specified %s state"
3268 " machine at %s address 0x%lx, slave address 0x%x,"
3270 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3271 si_to_str
[new_smi
->si_type
],
3272 addr_space_to_str
[new_smi
->io
.addr_type
],
3273 new_smi
->io
.addr_data
,
3274 new_smi
->slave_addr
, new_smi
->irq
);
3276 switch (new_smi
->si_type
) {
3278 new_smi
->handlers
= &kcs_smi_handlers
;
3282 new_smi
->handlers
= &smic_smi_handlers
;
3286 new_smi
->handlers
= &bt_smi_handlers
;
3290 /* No support for anything else yet. */
3295 /* Allocate the state machine's data and initialize it. */
3296 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3297 if (!new_smi
->si_sm
) {
3299 "Could not allocate state machine memory\n");
3303 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3306 /* Now that we know the I/O size, we can set up the I/O. */
3307 rv
= new_smi
->io_setup(new_smi
);
3309 printk(KERN_ERR PFX
"Could not set up I/O space\n");
3313 /* Do low-level detection first. */
3314 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3315 if (new_smi
->addr_source
)
3316 printk(KERN_INFO PFX
"Interface detection failed\n");
3322 * Attempt a get device id command. If it fails, we probably
3323 * don't have a BMC here.
3325 rv
= try_get_dev_id(new_smi
);
3327 if (new_smi
->addr_source
)
3328 printk(KERN_INFO PFX
"There appears to be no BMC"
3329 " at this location\n");
3333 setup_oem_data_handler(new_smi
);
3334 setup_xaction_handlers(new_smi
);
3336 INIT_LIST_HEAD(&(new_smi
->xmit_msgs
));
3337 INIT_LIST_HEAD(&(new_smi
->hp_xmit_msgs
));
3338 new_smi
->curr_msg
= NULL
;
3339 atomic_set(&new_smi
->req_events
, 0);
3340 new_smi
->run_to_completion
= 0;
3341 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3342 atomic_set(&new_smi
->stats
[i
], 0);
3344 new_smi
->interrupt_disabled
= 1;
3345 atomic_set(&new_smi
->stop_operation
, 0);
3346 new_smi
->intf_num
= smi_num
;
3349 rv
= try_enable_event_buffer(new_smi
);
3351 new_smi
->has_event_buffer
= 1;
3354 * Start clearing the flags before we enable interrupts or the
3355 * timer to avoid racing with the timer.
3357 start_clear_flags(new_smi
);
3358 /* IRQ is defined to be set when non-zero. */
3360 new_smi
->si_state
= SI_CLEARING_FLAGS_THEN_SET_IRQ
;
3362 if (!new_smi
->dev
) {
3364 * If we don't already have a device from something
3365 * else (like PCI), then register a new one.
3367 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3369 if (!new_smi
->pdev
) {
3371 "Unable to allocate platform device\n");
3374 new_smi
->dev
= &new_smi
->pdev
->dev
;
3375 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3377 rv
= platform_device_add(new_smi
->pdev
);
3380 "Unable to register system interface device:"
3385 new_smi
->dev_registered
= 1;
3388 rv
= ipmi_register_smi(&handlers
,
3390 &new_smi
->device_id
,
3393 new_smi
->slave_addr
);
3395 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3397 goto out_err_stop_timer
;
3400 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3404 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3405 goto out_err_stop_timer
;
3408 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3409 &smi_si_stats_proc_ops
,
3412 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3413 goto out_err_stop_timer
;
3416 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3417 &smi_params_proc_ops
,
3420 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3421 goto out_err_stop_timer
;
3424 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3425 si_to_str
[new_smi
->si_type
]);
3430 atomic_inc(&new_smi
->stop_operation
);
3431 wait_for_timer_and_thread(new_smi
);
3434 new_smi
->interrupt_disabled
= 1;
3436 if (new_smi
->intf
) {
3437 ipmi_unregister_smi(new_smi
->intf
);
3438 new_smi
->intf
= NULL
;
3441 if (new_smi
->irq_cleanup
) {
3442 new_smi
->irq_cleanup(new_smi
);
3443 new_smi
->irq_cleanup
= NULL
;
3447 * Wait until we know that we are out of any interrupt
3448 * handlers might have been running before we freed the
3451 synchronize_sched();
3453 if (new_smi
->si_sm
) {
3454 if (new_smi
->handlers
)
3455 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3456 kfree(new_smi
->si_sm
);
3457 new_smi
->si_sm
= NULL
;
3459 if (new_smi
->addr_source_cleanup
) {
3460 new_smi
->addr_source_cleanup(new_smi
);
3461 new_smi
->addr_source_cleanup
= NULL
;
3463 if (new_smi
->io_cleanup
) {
3464 new_smi
->io_cleanup(new_smi
);
3465 new_smi
->io_cleanup
= NULL
;
3468 if (new_smi
->dev_registered
) {
3469 platform_device_unregister(new_smi
->pdev
);
3470 new_smi
->dev_registered
= 0;
3476 static int init_ipmi_si(void)
3482 enum ipmi_addr_src type
= SI_INVALID
;
3488 if (si_tryplatform
) {
3489 rv
= platform_driver_register(&ipmi_driver
);
3491 printk(KERN_ERR PFX
"Unable to register "
3492 "driver: %d\n", rv
);
3497 /* Parse out the si_type string into its components. */
3500 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3502 str
= strchr(str
, ',');
3512 printk(KERN_INFO
"IPMI System Interface driver.\n");
3514 /* If the user gave us a device, they presumably want us to use it */
3515 if (!hardcode_find_bmc())
3520 rv
= pci_register_driver(&ipmi_pci_driver
);
3522 printk(KERN_ERR PFX
"Unable to register "
3523 "PCI driver: %d\n", rv
);
3531 pnp_register_driver(&ipmi_pnp_driver
);
3546 #ifdef CONFIG_PARISC
3547 register_parisc_driver(&ipmi_parisc_driver
);
3548 parisc_registered
= 1;
3549 /* poking PC IO addresses will crash machine, don't do it */
3553 /* We prefer devices with interrupts, but in the case of a machine
3554 with multiple BMCs we assume that there will be several instances
3555 of a given type so if we succeed in registering a type then also
3556 try to register everything else of the same type */
3558 mutex_lock(&smi_infos_lock
);
3559 list_for_each_entry(e
, &smi_infos
, link
) {
3560 /* Try to register a device if it has an IRQ and we either
3561 haven't successfully registered a device yet or this
3562 device has the same type as one we successfully registered */
3563 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3564 if (!try_smi_init(e
)) {
3565 type
= e
->addr_source
;
3570 /* type will only have been set if we successfully registered an si */
3572 mutex_unlock(&smi_infos_lock
);
3576 /* Fall back to the preferred device */
3578 list_for_each_entry(e
, &smi_infos
, link
) {
3579 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3580 if (!try_smi_init(e
)) {
3581 type
= e
->addr_source
;
3585 mutex_unlock(&smi_infos_lock
);
3590 if (si_trydefaults
) {
3591 mutex_lock(&smi_infos_lock
);
3592 if (list_empty(&smi_infos
)) {
3593 /* No BMC was found, try defaults. */
3594 mutex_unlock(&smi_infos_lock
);
3597 mutex_unlock(&smi_infos_lock
);
3600 mutex_lock(&smi_infos_lock
);
3601 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3602 mutex_unlock(&smi_infos_lock
);
3604 printk(KERN_WARNING PFX
3605 "Unable to find any System Interface(s)\n");
3608 mutex_unlock(&smi_infos_lock
);
3612 module_init(init_ipmi_si
);
3614 static void cleanup_one_si(struct smi_info
*to_clean
)
3617 unsigned long flags
;
3622 list_del(&to_clean
->link
);
3624 /* Tell the driver that we are shutting down. */
3625 atomic_inc(&to_clean
->stop_operation
);
3628 * Make sure the timer and thread are stopped and will not run
3631 wait_for_timer_and_thread(to_clean
);
3634 * Timeouts are stopped, now make sure the interrupts are off
3635 * for the device. A little tricky with locks to make sure
3636 * there are no races.
3638 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3639 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3640 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3642 schedule_timeout_uninterruptible(1);
3643 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3645 disable_si_irq(to_clean
);
3646 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3647 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3649 schedule_timeout_uninterruptible(1);
3652 /* Clean up interrupts and make sure that everything is done. */
3653 if (to_clean
->irq_cleanup
)
3654 to_clean
->irq_cleanup(to_clean
);
3655 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3657 schedule_timeout_uninterruptible(1);
3661 rv
= ipmi_unregister_smi(to_clean
->intf
);
3664 printk(KERN_ERR PFX
"Unable to unregister device: errno=%d\n",
3668 if (to_clean
->handlers
)
3669 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3671 kfree(to_clean
->si_sm
);
3673 if (to_clean
->addr_source_cleanup
)
3674 to_clean
->addr_source_cleanup(to_clean
);
3675 if (to_clean
->io_cleanup
)
3676 to_clean
->io_cleanup(to_clean
);
3678 if (to_clean
->dev_registered
)
3679 platform_device_unregister(to_clean
->pdev
);
3684 static void cleanup_ipmi_si(void)
3686 struct smi_info
*e
, *tmp_e
;
3693 pci_unregister_driver(&ipmi_pci_driver
);
3697 pnp_unregister_driver(&ipmi_pnp_driver
);
3699 #ifdef CONFIG_PARISC
3700 if (parisc_registered
)
3701 unregister_parisc_driver(&ipmi_parisc_driver
);
3704 platform_driver_unregister(&ipmi_driver
);
3706 mutex_lock(&smi_infos_lock
);
3707 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3709 mutex_unlock(&smi_infos_lock
);
3711 module_exit(cleanup_ipmi_si
);
3713 MODULE_LICENSE("GPL");
3714 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3715 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3716 " system interfaces.");