PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / dma / ste_dma40.c
blob00a2de957b234da060fe5e03592b171f50fa53d1
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
376 bool is_in_client_list;
377 bool cyclic;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool {
392 void *base;
393 dma_addr_t dma_addr;
394 void *base_unaligned;
395 int pages;
396 spinlock_t lock;
397 struct d40_desc **alloc_map;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
414 struct d40_phy_res {
415 spinlock_t lock;
416 bool reserved;
417 int num;
418 u32 allocated_src;
419 u32 allocated_dst;
420 bool use_soft_lli;
423 struct d40_base;
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
456 struct d40_chan {
457 spinlock_t lock;
458 int log_num;
459 int pending_tx;
460 bool busy;
461 struct d40_phy_res *phy_chan;
462 struct dma_chan chan;
463 struct tasklet_struct tasklet;
464 struct list_head client;
465 struct list_head pending_queue;
466 struct list_head active;
467 struct list_head done;
468 struct list_head queue;
469 struct list_head prepare_queue;
470 struct stedma40_chan_cfg dma_cfg;
471 bool configured;
472 struct d40_base *base;
473 /* Default register configurations */
474 u32 src_def_cfg;
475 u32 dst_def_cfg;
476 struct d40_def_lcsp log_def;
477 struct d40_log_lli_full *lcpa;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr;
480 enum dma_transfer_direction runtime_direction;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485 * controller
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac {
501 u32 *backup;
502 u32 backup_size;
503 u32 realtime_en;
504 u32 realtime_clear;
505 u32 high_prio_en;
506 u32 high_prio_clear;
507 u32 interrupt_en;
508 u32 interrupt_clear;
509 struct d40_interrupt_lookup *il;
510 u32 il_size;
511 struct d40_reg_val *init_reg;
512 u32 init_reg_size;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529 * transfers).
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
534 * num_phy_chans.
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
545 * configuration.
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556 * later
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @initialized: true if the dma has been initialized
560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
561 * DMA controller
563 struct d40_base {
564 spinlock_t interrupt_lock;
565 spinlock_t execmd_lock;
566 struct device *dev;
567 void __iomem *virtbase;
568 u8 rev:4;
569 struct clk *clk;
570 phys_addr_t phy_start;
571 resource_size_t phy_size;
572 int irq;
573 int num_memcpy_chans;
574 int num_phy_chans;
575 int num_log_chans;
576 struct device_dma_parameters dma_parms;
577 struct dma_device dma_both;
578 struct dma_device dma_slave;
579 struct dma_device dma_memcpy;
580 struct d40_chan *phy_chans;
581 struct d40_chan *log_chans;
582 struct d40_chan **lookup_log_chans;
583 struct d40_chan **lookup_phy_chans;
584 struct stedma40_platform_data *plat_data;
585 struct regulator *lcpa_regulator;
586 /* Physical half channels */
587 struct d40_phy_res *phy_res;
588 struct d40_lcla_pool lcla_pool;
589 void *lcpa_base;
590 dma_addr_t phy_lcpa;
591 resource_size_t lcpa_size;
592 struct kmem_cache *desc_slab;
593 u32 reg_val_backup[BACKUP_REGS_SZ];
594 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
595 u32 *reg_val_backup_chan;
596 u16 gcc_pwr_off_mask;
597 bool initialized;
598 struct d40_gen_dmac gen_dmac;
601 static struct device *chan2dev(struct d40_chan *d40c)
603 return &d40c->chan.dev->device;
606 static bool chan_is_physical(struct d40_chan *chan)
608 return chan->log_num == D40_PHY_CHAN;
611 static bool chan_is_logical(struct d40_chan *chan)
613 return !chan_is_physical(chan);
616 static void __iomem *chan_base(struct d40_chan *chan)
618 return chan->base->virtbase + D40_DREG_PCBASE +
619 chan->phy_chan->num * D40_DREG_PCDELTA;
622 #define d40_err(dev, format, arg...) \
623 dev_err(dev, "[%s] " format, __func__, ## arg)
625 #define chan_err(d40c, format, arg...) \
626 d40_err(chan2dev(d40c), format, ## arg)
628 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
629 int lli_len)
631 bool is_log = chan_is_logical(d40c);
632 u32 align;
633 void *base;
635 if (is_log)
636 align = sizeof(struct d40_log_lli);
637 else
638 align = sizeof(struct d40_phy_lli);
640 if (lli_len == 1) {
641 base = d40d->lli_pool.pre_alloc_lli;
642 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
643 d40d->lli_pool.base = NULL;
644 } else {
645 d40d->lli_pool.size = lli_len * 2 * align;
647 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
648 d40d->lli_pool.base = base;
650 if (d40d->lli_pool.base == NULL)
651 return -ENOMEM;
654 if (is_log) {
655 d40d->lli_log.src = PTR_ALIGN(base, align);
656 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
658 d40d->lli_pool.dma_addr = 0;
659 } else {
660 d40d->lli_phy.src = PTR_ALIGN(base, align);
661 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
663 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
664 d40d->lli_phy.src,
665 d40d->lli_pool.size,
666 DMA_TO_DEVICE);
668 if (dma_mapping_error(d40c->base->dev,
669 d40d->lli_pool.dma_addr)) {
670 kfree(d40d->lli_pool.base);
671 d40d->lli_pool.base = NULL;
672 d40d->lli_pool.dma_addr = 0;
673 return -ENOMEM;
677 return 0;
680 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
682 if (d40d->lli_pool.dma_addr)
683 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
684 d40d->lli_pool.size, DMA_TO_DEVICE);
686 kfree(d40d->lli_pool.base);
687 d40d->lli_pool.base = NULL;
688 d40d->lli_pool.size = 0;
689 d40d->lli_log.src = NULL;
690 d40d->lli_log.dst = NULL;
691 d40d->lli_phy.src = NULL;
692 d40d->lli_phy.dst = NULL;
695 static int d40_lcla_alloc_one(struct d40_chan *d40c,
696 struct d40_desc *d40d)
698 unsigned long flags;
699 int i;
700 int ret = -EINVAL;
702 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
705 * Allocate both src and dst at the same time, therefore the half
706 * start on 1 since 0 can't be used since zero is used as end marker.
708 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
709 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
711 if (!d40c->base->lcla_pool.alloc_map[idx]) {
712 d40c->base->lcla_pool.alloc_map[idx] = d40d;
713 d40d->lcla_alloc++;
714 ret = i;
715 break;
719 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
721 return ret;
724 static int d40_lcla_free_all(struct d40_chan *d40c,
725 struct d40_desc *d40d)
727 unsigned long flags;
728 int i;
729 int ret = -EINVAL;
731 if (chan_is_physical(d40c))
732 return 0;
734 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
736 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
737 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
739 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
740 d40c->base->lcla_pool.alloc_map[idx] = NULL;
741 d40d->lcla_alloc--;
742 if (d40d->lcla_alloc == 0) {
743 ret = 0;
744 break;
749 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
751 return ret;
755 static void d40_desc_remove(struct d40_desc *d40d)
757 list_del(&d40d->node);
760 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
762 struct d40_desc *desc = NULL;
764 if (!list_empty(&d40c->client)) {
765 struct d40_desc *d;
766 struct d40_desc *_d;
768 list_for_each_entry_safe(d, _d, &d40c->client, node) {
769 if (async_tx_test_ack(&d->txd)) {
770 d40_desc_remove(d);
771 desc = d;
772 memset(desc, 0, sizeof(*desc));
773 break;
778 if (!desc)
779 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
781 if (desc)
782 INIT_LIST_HEAD(&desc->node);
784 return desc;
787 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
790 d40_pool_lli_free(d40c, d40d);
791 d40_lcla_free_all(d40c, d40d);
792 kmem_cache_free(d40c->base->desc_slab, d40d);
795 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
797 list_add_tail(&desc->node, &d40c->active);
800 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
802 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
803 struct d40_phy_lli *lli_src = desc->lli_phy.src;
804 void __iomem *base = chan_base(chan);
806 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
807 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
808 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
809 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
811 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
812 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
813 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
814 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
817 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
819 list_add_tail(&desc->node, &d40c->done);
822 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
824 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
825 struct d40_log_lli_bidir *lli = &desc->lli_log;
826 int lli_current = desc->lli_current;
827 int lli_len = desc->lli_len;
828 bool cyclic = desc->cyclic;
829 int curr_lcla = -EINVAL;
830 int first_lcla = 0;
831 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
832 bool linkback;
835 * We may have partially running cyclic transfers, in case we did't get
836 * enough LCLA entries.
838 linkback = cyclic && lli_current == 0;
841 * For linkback, we need one LCLA even with only one link, because we
842 * can't link back to the one in LCPA space
844 if (linkback || (lli_len - lli_current > 1)) {
846 * If the channel is expected to use only soft_lli don't
847 * allocate a lcla. This is to avoid a HW issue that exists
848 * in some controller during a peripheral to memory transfer
849 * that uses linked lists.
851 if (!(chan->phy_chan->use_soft_lli &&
852 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
853 curr_lcla = d40_lcla_alloc_one(chan, desc);
855 first_lcla = curr_lcla;
859 * For linkback, we normally load the LCPA in the loop since we need to
860 * link it to the second LCLA and not the first. However, if we
861 * couldn't even get a first LCLA, then we have to run in LCPA and
862 * reload manually.
864 if (!linkback || curr_lcla == -EINVAL) {
865 unsigned int flags = 0;
867 if (curr_lcla == -EINVAL)
868 flags |= LLI_TERM_INT;
870 d40_log_lli_lcpa_write(chan->lcpa,
871 &lli->dst[lli_current],
872 &lli->src[lli_current],
873 curr_lcla,
874 flags);
875 lli_current++;
878 if (curr_lcla < 0)
879 goto out;
881 for (; lli_current < lli_len; lli_current++) {
882 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
883 8 * curr_lcla * 2;
884 struct d40_log_lli *lcla = pool->base + lcla_offset;
885 unsigned int flags = 0;
886 int next_lcla;
888 if (lli_current + 1 < lli_len)
889 next_lcla = d40_lcla_alloc_one(chan, desc);
890 else
891 next_lcla = linkback ? first_lcla : -EINVAL;
893 if (cyclic || next_lcla == -EINVAL)
894 flags |= LLI_TERM_INT;
896 if (linkback && curr_lcla == first_lcla) {
897 /* First link goes in both LCPA and LCLA */
898 d40_log_lli_lcpa_write(chan->lcpa,
899 &lli->dst[lli_current],
900 &lli->src[lli_current],
901 next_lcla, flags);
905 * One unused LCLA in the cyclic case if the very first
906 * next_lcla fails...
908 d40_log_lli_lcla_write(lcla,
909 &lli->dst[lli_current],
910 &lli->src[lli_current],
911 next_lcla, flags);
914 * Cache maintenance is not needed if lcla is
915 * mapped in esram
917 if (!use_esram_lcla) {
918 dma_sync_single_range_for_device(chan->base->dev,
919 pool->dma_addr, lcla_offset,
920 2 * sizeof(struct d40_log_lli),
921 DMA_TO_DEVICE);
923 curr_lcla = next_lcla;
925 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
926 lli_current++;
927 break;
931 out:
932 desc->lli_current = lli_current;
935 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
937 if (chan_is_physical(d40c)) {
938 d40_phy_lli_load(d40c, d40d);
939 d40d->lli_current = d40d->lli_len;
940 } else
941 d40_log_lli_to_lcxa(d40c, d40d);
944 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
946 struct d40_desc *d;
948 if (list_empty(&d40c->active))
949 return NULL;
951 d = list_first_entry(&d40c->active,
952 struct d40_desc,
953 node);
954 return d;
957 /* remove desc from current queue and add it to the pending_queue */
958 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
960 d40_desc_remove(desc);
961 desc->is_in_client_list = false;
962 list_add_tail(&desc->node, &d40c->pending_queue);
965 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
967 struct d40_desc *d;
969 if (list_empty(&d40c->pending_queue))
970 return NULL;
972 d = list_first_entry(&d40c->pending_queue,
973 struct d40_desc,
974 node);
975 return d;
978 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
980 struct d40_desc *d;
982 if (list_empty(&d40c->queue))
983 return NULL;
985 d = list_first_entry(&d40c->queue,
986 struct d40_desc,
987 node);
988 return d;
991 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
993 if (list_empty(&d40c->done))
994 return NULL;
996 return list_first_entry(&d40c->done, struct d40_desc, node);
999 static int d40_psize_2_burst_size(bool is_log, int psize)
1001 if (is_log) {
1002 if (psize == STEDMA40_PSIZE_LOG_1)
1003 return 1;
1004 } else {
1005 if (psize == STEDMA40_PSIZE_PHY_1)
1006 return 1;
1009 return 2 << psize;
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1016 * Calculate the total number of dma elements required to send the entire sg list.
1018 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1020 int dmalen;
1021 u32 max_w = max(data_width1, data_width2);
1022 u32 min_w = min(data_width1, data_width2);
1023 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1025 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026 seg_max -= max_w;
1028 if (!IS_ALIGNED(size, max_w))
1029 return -EINVAL;
1031 if (size <= seg_max)
1032 dmalen = 1;
1033 else {
1034 dmalen = size / seg_max;
1035 if (dmalen * seg_max < size)
1036 dmalen++;
1038 return dmalen;
1041 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1042 u32 data_width1, u32 data_width2)
1044 struct scatterlist *sg;
1045 int i;
1046 int len = 0;
1047 int ret;
1049 for_each_sg(sgl, sg, sg_len, i) {
1050 ret = d40_size_2_dmalen(sg_dma_len(sg),
1051 data_width1, data_width2);
1052 if (ret < 0)
1053 return ret;
1054 len += ret;
1056 return len;
1060 #ifdef CONFIG_PM
1061 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1062 u32 *regaddr, int num, bool save)
1064 int i;
1066 for (i = 0; i < num; i++) {
1067 void __iomem *addr = baseaddr + regaddr[i];
1069 if (save)
1070 backup[i] = readl_relaxed(addr);
1071 else
1072 writel_relaxed(backup[i], addr);
1076 static void d40_save_restore_registers(struct d40_base *base, bool save)
1078 int i;
1080 /* Save/Restore channel specific registers */
1081 for (i = 0; i < base->num_phy_chans; i++) {
1082 void __iomem *addr;
1083 int idx;
1085 if (base->phy_res[i].reserved)
1086 continue;
1088 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1089 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1091 dma40_backup(addr, &base->reg_val_backup_chan[idx],
1092 d40_backup_regs_chan,
1093 ARRAY_SIZE(d40_backup_regs_chan),
1094 save);
1097 /* Save/Restore global registers */
1098 dma40_backup(base->virtbase, base->reg_val_backup,
1099 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1100 save);
1102 /* Save/Restore registers only existing on dma40 v3 and later */
1103 if (base->gen_dmac.backup)
1104 dma40_backup(base->virtbase, base->reg_val_backup_v4,
1105 base->gen_dmac.backup,
1106 base->gen_dmac.backup_size,
1107 save);
1109 #else
1110 static void d40_save_restore_registers(struct d40_base *base, bool save)
1113 #endif
1115 static int __d40_execute_command_phy(struct d40_chan *d40c,
1116 enum d40_command command)
1118 u32 status;
1119 int i;
1120 void __iomem *active_reg;
1121 int ret = 0;
1122 unsigned long flags;
1123 u32 wmask;
1125 if (command == D40_DMA_STOP) {
1126 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1127 if (ret)
1128 return ret;
1131 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1133 if (d40c->phy_chan->num % 2 == 0)
1134 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1135 else
1136 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1138 if (command == D40_DMA_SUSPEND_REQ) {
1139 status = (readl(active_reg) &
1140 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1141 D40_CHAN_POS(d40c->phy_chan->num);
1143 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1144 goto done;
1147 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1148 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1149 active_reg);
1151 if (command == D40_DMA_SUSPEND_REQ) {
1153 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1154 status = (readl(active_reg) &
1155 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1156 D40_CHAN_POS(d40c->phy_chan->num);
1158 cpu_relax();
1160 * Reduce the number of bus accesses while
1161 * waiting for the DMA to suspend.
1163 udelay(3);
1165 if (status == D40_DMA_STOP ||
1166 status == D40_DMA_SUSPENDED)
1167 break;
1170 if (i == D40_SUSPEND_MAX_IT) {
1171 chan_err(d40c,
1172 "unable to suspend the chl %d (log: %d) status %x\n",
1173 d40c->phy_chan->num, d40c->log_num,
1174 status);
1175 dump_stack();
1176 ret = -EBUSY;
1180 done:
1181 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1182 return ret;
1185 static void d40_term_all(struct d40_chan *d40c)
1187 struct d40_desc *d40d;
1188 struct d40_desc *_d;
1190 /* Release completed descriptors */
1191 while ((d40d = d40_first_done(d40c))) {
1192 d40_desc_remove(d40d);
1193 d40_desc_free(d40c, d40d);
1196 /* Release active descriptors */
1197 while ((d40d = d40_first_active_get(d40c))) {
1198 d40_desc_remove(d40d);
1199 d40_desc_free(d40c, d40d);
1202 /* Release queued descriptors waiting for transfer */
1203 while ((d40d = d40_first_queued(d40c))) {
1204 d40_desc_remove(d40d);
1205 d40_desc_free(d40c, d40d);
1208 /* Release pending descriptors */
1209 while ((d40d = d40_first_pending(d40c))) {
1210 d40_desc_remove(d40d);
1211 d40_desc_free(d40c, d40d);
1214 /* Release client owned descriptors */
1215 if (!list_empty(&d40c->client))
1216 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1217 d40_desc_remove(d40d);
1218 d40_desc_free(d40c, d40d);
1221 /* Release descriptors in prepare queue */
1222 if (!list_empty(&d40c->prepare_queue))
1223 list_for_each_entry_safe(d40d, _d,
1224 &d40c->prepare_queue, node) {
1225 d40_desc_remove(d40d);
1226 d40_desc_free(d40c, d40d);
1229 d40c->pending_tx = 0;
1232 static void __d40_config_set_event(struct d40_chan *d40c,
1233 enum d40_events event_type, u32 event,
1234 int reg)
1236 void __iomem *addr = chan_base(d40c) + reg;
1237 int tries;
1238 u32 status;
1240 switch (event_type) {
1242 case D40_DEACTIVATE_EVENTLINE:
1244 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1245 | ~D40_EVENTLINE_MASK(event), addr);
1246 break;
1248 case D40_SUSPEND_REQ_EVENTLINE:
1249 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1250 D40_EVENTLINE_POS(event);
1252 if (status == D40_DEACTIVATE_EVENTLINE ||
1253 status == D40_SUSPEND_REQ_EVENTLINE)
1254 break;
1256 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1257 | ~D40_EVENTLINE_MASK(event), addr);
1259 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1261 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1262 D40_EVENTLINE_POS(event);
1264 cpu_relax();
1266 * Reduce the number of bus accesses while
1267 * waiting for the DMA to suspend.
1269 udelay(3);
1271 if (status == D40_DEACTIVATE_EVENTLINE)
1272 break;
1275 if (tries == D40_SUSPEND_MAX_IT) {
1276 chan_err(d40c,
1277 "unable to stop the event_line chl %d (log: %d)"
1278 "status %x\n", d40c->phy_chan->num,
1279 d40c->log_num, status);
1281 break;
1283 case D40_ACTIVATE_EVENTLINE:
1285 * The hardware sometimes doesn't register the enable when src and dst
1286 * event lines are active on the same logical channel. Retry to ensure
1287 * it does. Usually only one retry is sufficient.
1289 tries = 100;
1290 while (--tries) {
1291 writel((D40_ACTIVATE_EVENTLINE <<
1292 D40_EVENTLINE_POS(event)) |
1293 ~D40_EVENTLINE_MASK(event), addr);
1295 if (readl(addr) & D40_EVENTLINE_MASK(event))
1296 break;
1299 if (tries != 99)
1300 dev_dbg(chan2dev(d40c),
1301 "[%s] workaround enable S%cLNK (%d tries)\n",
1302 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1303 100 - tries);
1305 WARN_ON(!tries);
1306 break;
1308 case D40_ROUND_EVENTLINE:
1309 BUG();
1310 break;
1315 static void d40_config_set_event(struct d40_chan *d40c,
1316 enum d40_events event_type)
1318 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1320 /* Enable event line connected to device (or memcpy) */
1321 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1322 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1323 __d40_config_set_event(d40c, event_type, event,
1324 D40_CHAN_REG_SSLNK);
1326 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1327 __d40_config_set_event(d40c, event_type, event,
1328 D40_CHAN_REG_SDLNK);
1331 static u32 d40_chan_has_events(struct d40_chan *d40c)
1333 void __iomem *chanbase = chan_base(d40c);
1334 u32 val;
1336 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1337 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1339 return val;
1342 static int
1343 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1345 unsigned long flags;
1346 int ret = 0;
1347 u32 active_status;
1348 void __iomem *active_reg;
1350 if (d40c->phy_chan->num % 2 == 0)
1351 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1352 else
1353 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1356 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1358 switch (command) {
1359 case D40_DMA_STOP:
1360 case D40_DMA_SUSPEND_REQ:
1362 active_status = (readl(active_reg) &
1363 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1364 D40_CHAN_POS(d40c->phy_chan->num);
1366 if (active_status == D40_DMA_RUN)
1367 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1368 else
1369 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1371 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1372 ret = __d40_execute_command_phy(d40c, command);
1374 break;
1376 case D40_DMA_RUN:
1378 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1379 ret = __d40_execute_command_phy(d40c, command);
1380 break;
1382 case D40_DMA_SUSPENDED:
1383 BUG();
1384 break;
1387 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1388 return ret;
1391 static int d40_channel_execute_command(struct d40_chan *d40c,
1392 enum d40_command command)
1394 if (chan_is_logical(d40c))
1395 return __d40_execute_command_log(d40c, command);
1396 else
1397 return __d40_execute_command_phy(d40c, command);
1400 static u32 d40_get_prmo(struct d40_chan *d40c)
1402 static const unsigned int phy_map[] = {
1403 [STEDMA40_PCHAN_BASIC_MODE]
1404 = D40_DREG_PRMO_PCHAN_BASIC,
1405 [STEDMA40_PCHAN_MODULO_MODE]
1406 = D40_DREG_PRMO_PCHAN_MODULO,
1407 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1408 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1410 static const unsigned int log_map[] = {
1411 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1412 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1413 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1414 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1415 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1416 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1419 if (chan_is_physical(d40c))
1420 return phy_map[d40c->dma_cfg.mode_opt];
1421 else
1422 return log_map[d40c->dma_cfg.mode_opt];
1425 static void d40_config_write(struct d40_chan *d40c)
1427 u32 addr_base;
1428 u32 var;
1430 /* Odd addresses are even addresses + 4 */
1431 addr_base = (d40c->phy_chan->num % 2) * 4;
1432 /* Setup channel mode to logical or physical */
1433 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434 D40_CHAN_POS(d40c->phy_chan->num);
1435 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1437 /* Setup operational mode option register */
1438 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1440 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1442 if (chan_is_logical(d40c)) {
1443 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1444 & D40_SREG_ELEM_LOG_LIDX_MASK;
1445 void __iomem *chanbase = chan_base(d40c);
1447 /* Set default config for CFG reg */
1448 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1449 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1451 /* Set LIDX for lcla */
1452 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1453 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1455 /* Clear LNK which will be used by d40_chan_has_events() */
1456 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1457 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1461 static u32 d40_residue(struct d40_chan *d40c)
1463 u32 num_elt;
1465 if (chan_is_logical(d40c))
1466 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1467 >> D40_MEM_LCSP2_ECNT_POS;
1468 else {
1469 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1470 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1471 >> D40_SREG_ELEM_PHY_ECNT_POS;
1474 return num_elt * d40c->dma_cfg.dst_info.data_width;
1477 static bool d40_tx_is_linked(struct d40_chan *d40c)
1479 bool is_link;
1481 if (chan_is_logical(d40c))
1482 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1483 else
1484 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1485 & D40_SREG_LNK_PHYS_LNK_MASK;
1487 return is_link;
1490 static int d40_pause(struct d40_chan *d40c)
1492 int res = 0;
1493 unsigned long flags;
1495 if (!d40c->busy)
1496 return 0;
1498 pm_runtime_get_sync(d40c->base->dev);
1499 spin_lock_irqsave(&d40c->lock, flags);
1501 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1503 pm_runtime_mark_last_busy(d40c->base->dev);
1504 pm_runtime_put_autosuspend(d40c->base->dev);
1505 spin_unlock_irqrestore(&d40c->lock, flags);
1506 return res;
1509 static int d40_resume(struct d40_chan *d40c)
1511 int res = 0;
1512 unsigned long flags;
1514 if (!d40c->busy)
1515 return 0;
1517 spin_lock_irqsave(&d40c->lock, flags);
1518 pm_runtime_get_sync(d40c->base->dev);
1520 /* If bytes left to transfer or linked tx resume job */
1521 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1524 pm_runtime_mark_last_busy(d40c->base->dev);
1525 pm_runtime_put_autosuspend(d40c->base->dev);
1526 spin_unlock_irqrestore(&d40c->lock, flags);
1527 return res;
1530 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1532 struct d40_chan *d40c = container_of(tx->chan,
1533 struct d40_chan,
1534 chan);
1535 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1536 unsigned long flags;
1537 dma_cookie_t cookie;
1539 spin_lock_irqsave(&d40c->lock, flags);
1540 cookie = dma_cookie_assign(tx);
1541 d40_desc_queue(d40c, d40d);
1542 spin_unlock_irqrestore(&d40c->lock, flags);
1544 return cookie;
1547 static int d40_start(struct d40_chan *d40c)
1549 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1552 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1554 struct d40_desc *d40d;
1555 int err;
1557 /* Start queued jobs, if any */
1558 d40d = d40_first_queued(d40c);
1560 if (d40d != NULL) {
1561 if (!d40c->busy) {
1562 d40c->busy = true;
1563 pm_runtime_get_sync(d40c->base->dev);
1566 /* Remove from queue */
1567 d40_desc_remove(d40d);
1569 /* Add to active queue */
1570 d40_desc_submit(d40c, d40d);
1572 /* Initiate DMA job */
1573 d40_desc_load(d40c, d40d);
1575 /* Start dma job */
1576 err = d40_start(d40c);
1578 if (err)
1579 return NULL;
1582 return d40d;
1585 /* called from interrupt context */
1586 static void dma_tc_handle(struct d40_chan *d40c)
1588 struct d40_desc *d40d;
1590 /* Get first active entry from list */
1591 d40d = d40_first_active_get(d40c);
1593 if (d40d == NULL)
1594 return;
1596 if (d40d->cyclic) {
1598 * If this was a paritially loaded list, we need to reloaded
1599 * it, and only when the list is completed. We need to check
1600 * for done because the interrupt will hit for every link, and
1601 * not just the last one.
1603 if (d40d->lli_current < d40d->lli_len
1604 && !d40_tx_is_linked(d40c)
1605 && !d40_residue(d40c)) {
1606 d40_lcla_free_all(d40c, d40d);
1607 d40_desc_load(d40c, d40d);
1608 (void) d40_start(d40c);
1610 if (d40d->lli_current == d40d->lli_len)
1611 d40d->lli_current = 0;
1613 } else {
1614 d40_lcla_free_all(d40c, d40d);
1616 if (d40d->lli_current < d40d->lli_len) {
1617 d40_desc_load(d40c, d40d);
1618 /* Start dma job */
1619 (void) d40_start(d40c);
1620 return;
1623 if (d40_queue_start(d40c) == NULL) {
1624 d40c->busy = false;
1626 pm_runtime_mark_last_busy(d40c->base->dev);
1627 pm_runtime_put_autosuspend(d40c->base->dev);
1630 d40_desc_remove(d40d);
1631 d40_desc_done(d40c, d40d);
1634 d40c->pending_tx++;
1635 tasklet_schedule(&d40c->tasklet);
1639 static void dma_tasklet(unsigned long data)
1641 struct d40_chan *d40c = (struct d40_chan *) data;
1642 struct d40_desc *d40d;
1643 unsigned long flags;
1644 dma_async_tx_callback callback;
1645 void *callback_param;
1647 spin_lock_irqsave(&d40c->lock, flags);
1649 /* Get first entry from the done list */
1650 d40d = d40_first_done(d40c);
1651 if (d40d == NULL) {
1652 /* Check if we have reached here for cyclic job */
1653 d40d = d40_first_active_get(d40c);
1654 if (d40d == NULL || !d40d->cyclic)
1655 goto err;
1658 if (!d40d->cyclic)
1659 dma_cookie_complete(&d40d->txd);
1662 * If terminating a channel pending_tx is set to zero.
1663 * This prevents any finished active jobs to return to the client.
1665 if (d40c->pending_tx == 0) {
1666 spin_unlock_irqrestore(&d40c->lock, flags);
1667 return;
1670 /* Callback to client */
1671 callback = d40d->txd.callback;
1672 callback_param = d40d->txd.callback_param;
1674 if (!d40d->cyclic) {
1675 if (async_tx_test_ack(&d40d->txd)) {
1676 d40_desc_remove(d40d);
1677 d40_desc_free(d40c, d40d);
1678 } else if (!d40d->is_in_client_list) {
1679 d40_desc_remove(d40d);
1680 d40_lcla_free_all(d40c, d40d);
1681 list_add_tail(&d40d->node, &d40c->client);
1682 d40d->is_in_client_list = true;
1686 d40c->pending_tx--;
1688 if (d40c->pending_tx)
1689 tasklet_schedule(&d40c->tasklet);
1691 spin_unlock_irqrestore(&d40c->lock, flags);
1693 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1694 callback(callback_param);
1696 return;
1698 err:
1699 /* Rescue manouver if receiving double interrupts */
1700 if (d40c->pending_tx > 0)
1701 d40c->pending_tx--;
1702 spin_unlock_irqrestore(&d40c->lock, flags);
1705 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1707 int i;
1708 u32 idx;
1709 u32 row;
1710 long chan = -1;
1711 struct d40_chan *d40c;
1712 unsigned long flags;
1713 struct d40_base *base = data;
1714 u32 regs[base->gen_dmac.il_size];
1715 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1716 u32 il_size = base->gen_dmac.il_size;
1718 spin_lock_irqsave(&base->interrupt_lock, flags);
1720 /* Read interrupt status of both logical and physical channels */
1721 for (i = 0; i < il_size; i++)
1722 regs[i] = readl(base->virtbase + il[i].src);
1724 for (;;) {
1726 chan = find_next_bit((unsigned long *)regs,
1727 BITS_PER_LONG * il_size, chan + 1);
1729 /* No more set bits found? */
1730 if (chan == BITS_PER_LONG * il_size)
1731 break;
1733 row = chan / BITS_PER_LONG;
1734 idx = chan & (BITS_PER_LONG - 1);
1736 if (il[row].offset == D40_PHY_CHAN)
1737 d40c = base->lookup_phy_chans[idx];
1738 else
1739 d40c = base->lookup_log_chans[il[row].offset + idx];
1741 if (!d40c) {
1743 * No error because this can happen if something else
1744 * in the system is using the channel.
1746 continue;
1749 /* ACK interrupt */
1750 writel(BIT(idx), base->virtbase + il[row].clr);
1752 spin_lock(&d40c->lock);
1754 if (!il[row].is_error)
1755 dma_tc_handle(d40c);
1756 else
1757 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1758 chan, il[row].offset, idx);
1760 spin_unlock(&d40c->lock);
1763 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1765 return IRQ_HANDLED;
1768 static int d40_validate_conf(struct d40_chan *d40c,
1769 struct stedma40_chan_cfg *conf)
1771 int res = 0;
1772 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1774 if (!conf->dir) {
1775 chan_err(d40c, "Invalid direction.\n");
1776 res = -EINVAL;
1779 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1780 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1781 (conf->dev_type < 0)) {
1782 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1783 res = -EINVAL;
1786 if (conf->dir == DMA_DEV_TO_DEV) {
1788 * DMAC HW supports it. Will be added to this driver,
1789 * in case any dma client requires it.
1791 chan_err(d40c, "periph to periph not supported\n");
1792 res = -EINVAL;
1795 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1796 conf->src_info.data_width !=
1797 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1798 conf->dst_info.data_width) {
1800 * The DMAC hardware only supports
1801 * src (burst x width) == dst (burst x width)
1804 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1805 res = -EINVAL;
1808 return res;
1811 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1812 bool is_src, int log_event_line, bool is_log,
1813 bool *first_user)
1815 unsigned long flags;
1816 spin_lock_irqsave(&phy->lock, flags);
1818 *first_user = ((phy->allocated_src | phy->allocated_dst)
1819 == D40_ALLOC_FREE);
1821 if (!is_log) {
1822 /* Physical interrupts are masked per physical full channel */
1823 if (phy->allocated_src == D40_ALLOC_FREE &&
1824 phy->allocated_dst == D40_ALLOC_FREE) {
1825 phy->allocated_dst = D40_ALLOC_PHY;
1826 phy->allocated_src = D40_ALLOC_PHY;
1827 goto found;
1828 } else
1829 goto not_found;
1832 /* Logical channel */
1833 if (is_src) {
1834 if (phy->allocated_src == D40_ALLOC_PHY)
1835 goto not_found;
1837 if (phy->allocated_src == D40_ALLOC_FREE)
1838 phy->allocated_src = D40_ALLOC_LOG_FREE;
1840 if (!(phy->allocated_src & BIT(log_event_line))) {
1841 phy->allocated_src |= BIT(log_event_line);
1842 goto found;
1843 } else
1844 goto not_found;
1845 } else {
1846 if (phy->allocated_dst == D40_ALLOC_PHY)
1847 goto not_found;
1849 if (phy->allocated_dst == D40_ALLOC_FREE)
1850 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1852 if (!(phy->allocated_dst & BIT(log_event_line))) {
1853 phy->allocated_dst |= BIT(log_event_line);
1854 goto found;
1855 } else
1856 goto not_found;
1859 not_found:
1860 spin_unlock_irqrestore(&phy->lock, flags);
1861 return false;
1862 found:
1863 spin_unlock_irqrestore(&phy->lock, flags);
1864 return true;
1867 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1868 int log_event_line)
1870 unsigned long flags;
1871 bool is_free = false;
1873 spin_lock_irqsave(&phy->lock, flags);
1874 if (!log_event_line) {
1875 phy->allocated_dst = D40_ALLOC_FREE;
1876 phy->allocated_src = D40_ALLOC_FREE;
1877 is_free = true;
1878 goto out;
1881 /* Logical channel */
1882 if (is_src) {
1883 phy->allocated_src &= ~BIT(log_event_line);
1884 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1885 phy->allocated_src = D40_ALLOC_FREE;
1886 } else {
1887 phy->allocated_dst &= ~BIT(log_event_line);
1888 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1889 phy->allocated_dst = D40_ALLOC_FREE;
1892 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1893 D40_ALLOC_FREE);
1895 out:
1896 spin_unlock_irqrestore(&phy->lock, flags);
1898 return is_free;
1901 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1903 int dev_type = d40c->dma_cfg.dev_type;
1904 int event_group;
1905 int event_line;
1906 struct d40_phy_res *phys;
1907 int i;
1908 int j;
1909 int log_num;
1910 int num_phy_chans;
1911 bool is_src;
1912 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1914 phys = d40c->base->phy_res;
1915 num_phy_chans = d40c->base->num_phy_chans;
1917 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1918 log_num = 2 * dev_type;
1919 is_src = true;
1920 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1921 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1922 /* dst event lines are used for logical memcpy */
1923 log_num = 2 * dev_type + 1;
1924 is_src = false;
1925 } else
1926 return -EINVAL;
1928 event_group = D40_TYPE_TO_GROUP(dev_type);
1929 event_line = D40_TYPE_TO_EVENT(dev_type);
1931 if (!is_log) {
1932 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1933 /* Find physical half channel */
1934 if (d40c->dma_cfg.use_fixed_channel) {
1935 i = d40c->dma_cfg.phy_channel;
1936 if (d40_alloc_mask_set(&phys[i], is_src,
1937 0, is_log,
1938 first_phy_user))
1939 goto found_phy;
1940 } else {
1941 for (i = 0; i < num_phy_chans; i++) {
1942 if (d40_alloc_mask_set(&phys[i], is_src,
1943 0, is_log,
1944 first_phy_user))
1945 goto found_phy;
1948 } else
1949 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1950 int phy_num = j + event_group * 2;
1951 for (i = phy_num; i < phy_num + 2; i++) {
1952 if (d40_alloc_mask_set(&phys[i],
1953 is_src,
1955 is_log,
1956 first_phy_user))
1957 goto found_phy;
1960 return -EINVAL;
1961 found_phy:
1962 d40c->phy_chan = &phys[i];
1963 d40c->log_num = D40_PHY_CHAN;
1964 goto out;
1966 if (dev_type == -1)
1967 return -EINVAL;
1969 /* Find logical channel */
1970 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1971 int phy_num = j + event_group * 2;
1973 if (d40c->dma_cfg.use_fixed_channel) {
1974 i = d40c->dma_cfg.phy_channel;
1976 if ((i != phy_num) && (i != phy_num + 1)) {
1977 dev_err(chan2dev(d40c),
1978 "invalid fixed phy channel %d\n", i);
1979 return -EINVAL;
1982 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1983 is_log, first_phy_user))
1984 goto found_log;
1986 dev_err(chan2dev(d40c),
1987 "could not allocate fixed phy channel %d\n", i);
1988 return -EINVAL;
1992 * Spread logical channels across all available physical rather
1993 * than pack every logical channel at the first available phy
1994 * channels.
1996 if (is_src) {
1997 for (i = phy_num; i < phy_num + 2; i++) {
1998 if (d40_alloc_mask_set(&phys[i], is_src,
1999 event_line, is_log,
2000 first_phy_user))
2001 goto found_log;
2003 } else {
2004 for (i = phy_num + 1; i >= phy_num; i--) {
2005 if (d40_alloc_mask_set(&phys[i], is_src,
2006 event_line, is_log,
2007 first_phy_user))
2008 goto found_log;
2012 return -EINVAL;
2014 found_log:
2015 d40c->phy_chan = &phys[i];
2016 d40c->log_num = log_num;
2017 out:
2019 if (is_log)
2020 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2021 else
2022 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2024 return 0;
2028 static int d40_config_memcpy(struct d40_chan *d40c)
2030 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2032 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2033 d40c->dma_cfg = dma40_memcpy_conf_log;
2034 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2036 d40_log_cfg(&d40c->dma_cfg,
2037 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2039 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2040 dma_has_cap(DMA_SLAVE, cap)) {
2041 d40c->dma_cfg = dma40_memcpy_conf_phy;
2043 /* Generate interrrupt at end of transfer or relink. */
2044 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2046 /* Generate interrupt on error. */
2047 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2048 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2050 } else {
2051 chan_err(d40c, "No memcpy\n");
2052 return -EINVAL;
2055 return 0;
2058 static int d40_free_dma(struct d40_chan *d40c)
2061 int res = 0;
2062 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2063 struct d40_phy_res *phy = d40c->phy_chan;
2064 bool is_src;
2066 /* Terminate all queued and active transfers */
2067 d40_term_all(d40c);
2069 if (phy == NULL) {
2070 chan_err(d40c, "phy == null\n");
2071 return -EINVAL;
2074 if (phy->allocated_src == D40_ALLOC_FREE &&
2075 phy->allocated_dst == D40_ALLOC_FREE) {
2076 chan_err(d40c, "channel already free\n");
2077 return -EINVAL;
2080 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2081 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2082 is_src = false;
2083 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2084 is_src = true;
2085 else {
2086 chan_err(d40c, "Unknown direction\n");
2087 return -EINVAL;
2090 pm_runtime_get_sync(d40c->base->dev);
2091 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2092 if (res) {
2093 chan_err(d40c, "stop failed\n");
2094 goto out;
2097 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2099 if (chan_is_logical(d40c))
2100 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2101 else
2102 d40c->base->lookup_phy_chans[phy->num] = NULL;
2104 if (d40c->busy) {
2105 pm_runtime_mark_last_busy(d40c->base->dev);
2106 pm_runtime_put_autosuspend(d40c->base->dev);
2109 d40c->busy = false;
2110 d40c->phy_chan = NULL;
2111 d40c->configured = false;
2112 out:
2114 pm_runtime_mark_last_busy(d40c->base->dev);
2115 pm_runtime_put_autosuspend(d40c->base->dev);
2116 return res;
2119 static bool d40_is_paused(struct d40_chan *d40c)
2121 void __iomem *chanbase = chan_base(d40c);
2122 bool is_paused = false;
2123 unsigned long flags;
2124 void __iomem *active_reg;
2125 u32 status;
2126 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2128 spin_lock_irqsave(&d40c->lock, flags);
2130 if (chan_is_physical(d40c)) {
2131 if (d40c->phy_chan->num % 2 == 0)
2132 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2133 else
2134 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2136 status = (readl(active_reg) &
2137 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2138 D40_CHAN_POS(d40c->phy_chan->num);
2139 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2140 is_paused = true;
2142 goto _exit;
2145 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2146 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2147 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2148 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2149 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2150 } else {
2151 chan_err(d40c, "Unknown direction\n");
2152 goto _exit;
2155 status = (status & D40_EVENTLINE_MASK(event)) >>
2156 D40_EVENTLINE_POS(event);
2158 if (status != D40_DMA_RUN)
2159 is_paused = true;
2160 _exit:
2161 spin_unlock_irqrestore(&d40c->lock, flags);
2162 return is_paused;
2166 static u32 stedma40_residue(struct dma_chan *chan)
2168 struct d40_chan *d40c =
2169 container_of(chan, struct d40_chan, chan);
2170 u32 bytes_left;
2171 unsigned long flags;
2173 spin_lock_irqsave(&d40c->lock, flags);
2174 bytes_left = d40_residue(d40c);
2175 spin_unlock_irqrestore(&d40c->lock, flags);
2177 return bytes_left;
2180 static int
2181 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2182 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2183 unsigned int sg_len, dma_addr_t src_dev_addr,
2184 dma_addr_t dst_dev_addr)
2186 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2187 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2188 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2189 int ret;
2191 ret = d40_log_sg_to_lli(sg_src, sg_len,
2192 src_dev_addr,
2193 desc->lli_log.src,
2194 chan->log_def.lcsp1,
2195 src_info->data_width,
2196 dst_info->data_width);
2198 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2199 dst_dev_addr,
2200 desc->lli_log.dst,
2201 chan->log_def.lcsp3,
2202 dst_info->data_width,
2203 src_info->data_width);
2205 return ret < 0 ? ret : 0;
2208 static int
2209 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2210 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2211 unsigned int sg_len, dma_addr_t src_dev_addr,
2212 dma_addr_t dst_dev_addr)
2214 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2215 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2216 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2217 unsigned long flags = 0;
2218 int ret;
2220 if (desc->cyclic)
2221 flags |= LLI_CYCLIC | LLI_TERM_INT;
2223 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2224 desc->lli_phy.src,
2225 virt_to_phys(desc->lli_phy.src),
2226 chan->src_def_cfg,
2227 src_info, dst_info, flags);
2229 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2230 desc->lli_phy.dst,
2231 virt_to_phys(desc->lli_phy.dst),
2232 chan->dst_def_cfg,
2233 dst_info, src_info, flags);
2235 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2236 desc->lli_pool.size, DMA_TO_DEVICE);
2238 return ret < 0 ? ret : 0;
2241 static struct d40_desc *
2242 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2243 unsigned int sg_len, unsigned long dma_flags)
2245 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2246 struct d40_desc *desc;
2247 int ret;
2249 desc = d40_desc_get(chan);
2250 if (!desc)
2251 return NULL;
2253 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2254 cfg->dst_info.data_width);
2255 if (desc->lli_len < 0) {
2256 chan_err(chan, "Unaligned size\n");
2257 goto err;
2260 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2261 if (ret < 0) {
2262 chan_err(chan, "Could not allocate lli\n");
2263 goto err;
2266 desc->lli_current = 0;
2267 desc->txd.flags = dma_flags;
2268 desc->txd.tx_submit = d40_tx_submit;
2270 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2272 return desc;
2274 err:
2275 d40_desc_free(chan, desc);
2276 return NULL;
2279 static struct dma_async_tx_descriptor *
2280 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2281 struct scatterlist *sg_dst, unsigned int sg_len,
2282 enum dma_transfer_direction direction, unsigned long dma_flags)
2284 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2285 dma_addr_t src_dev_addr = 0;
2286 dma_addr_t dst_dev_addr = 0;
2287 struct d40_desc *desc;
2288 unsigned long flags;
2289 int ret;
2291 if (!chan->phy_chan) {
2292 chan_err(chan, "Cannot prepare unallocated channel\n");
2293 return NULL;
2296 spin_lock_irqsave(&chan->lock, flags);
2298 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2299 if (desc == NULL)
2300 goto err;
2302 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2303 desc->cyclic = true;
2305 if (direction == DMA_DEV_TO_MEM)
2306 src_dev_addr = chan->runtime_addr;
2307 else if (direction == DMA_MEM_TO_DEV)
2308 dst_dev_addr = chan->runtime_addr;
2310 if (chan_is_logical(chan))
2311 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2312 sg_len, src_dev_addr, dst_dev_addr);
2313 else
2314 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2315 sg_len, src_dev_addr, dst_dev_addr);
2317 if (ret) {
2318 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2319 chan_is_logical(chan) ? "log" : "phy", ret);
2320 goto err;
2324 * add descriptor to the prepare queue in order to be able
2325 * to free them later in terminate_all
2327 list_add_tail(&desc->node, &chan->prepare_queue);
2329 spin_unlock_irqrestore(&chan->lock, flags);
2331 return &desc->txd;
2333 err:
2334 if (desc)
2335 d40_desc_free(chan, desc);
2336 spin_unlock_irqrestore(&chan->lock, flags);
2337 return NULL;
2340 bool stedma40_filter(struct dma_chan *chan, void *data)
2342 struct stedma40_chan_cfg *info = data;
2343 struct d40_chan *d40c =
2344 container_of(chan, struct d40_chan, chan);
2345 int err;
2347 if (data) {
2348 err = d40_validate_conf(d40c, info);
2349 if (!err)
2350 d40c->dma_cfg = *info;
2351 } else
2352 err = d40_config_memcpy(d40c);
2354 if (!err)
2355 d40c->configured = true;
2357 return err == 0;
2359 EXPORT_SYMBOL(stedma40_filter);
2361 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2363 bool realtime = d40c->dma_cfg.realtime;
2364 bool highprio = d40c->dma_cfg.high_priority;
2365 u32 rtreg;
2366 u32 event = D40_TYPE_TO_EVENT(dev_type);
2367 u32 group = D40_TYPE_TO_GROUP(dev_type);
2368 u32 bit = BIT(event);
2369 u32 prioreg;
2370 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2372 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2374 * Due to a hardware bug, in some cases a logical channel triggered by
2375 * a high priority destination event line can generate extra packet
2376 * transactions.
2378 * The workaround is to not set the high priority level for the
2379 * destination event lines that trigger logical channels.
2381 if (!src && chan_is_logical(d40c))
2382 highprio = false;
2384 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2386 /* Destination event lines are stored in the upper halfword */
2387 if (!src)
2388 bit <<= 16;
2390 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2391 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2394 static void d40_set_prio_realtime(struct d40_chan *d40c)
2396 if (d40c->base->rev < 3)
2397 return;
2399 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2400 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2401 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2403 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2404 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2405 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2408 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2409 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2410 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2411 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2412 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2414 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2415 struct of_dma *ofdma)
2417 struct stedma40_chan_cfg cfg;
2418 dma_cap_mask_t cap;
2419 u32 flags;
2421 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2423 dma_cap_zero(cap);
2424 dma_cap_set(DMA_SLAVE, cap);
2426 cfg.dev_type = dma_spec->args[0];
2427 flags = dma_spec->args[2];
2429 switch (D40_DT_FLAGS_MODE(flags)) {
2430 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2431 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2434 switch (D40_DT_FLAGS_DIR(flags)) {
2435 case 0:
2436 cfg.dir = DMA_MEM_TO_DEV;
2437 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2438 break;
2439 case 1:
2440 cfg.dir = DMA_DEV_TO_MEM;
2441 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2442 break;
2445 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2446 cfg.phy_channel = dma_spec->args[1];
2447 cfg.use_fixed_channel = true;
2450 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2451 cfg.high_priority = true;
2453 return dma_request_channel(cap, stedma40_filter, &cfg);
2456 /* DMA ENGINE functions */
2457 static int d40_alloc_chan_resources(struct dma_chan *chan)
2459 int err;
2460 unsigned long flags;
2461 struct d40_chan *d40c =
2462 container_of(chan, struct d40_chan, chan);
2463 bool is_free_phy;
2464 spin_lock_irqsave(&d40c->lock, flags);
2466 dma_cookie_init(chan);
2468 /* If no dma configuration is set use default configuration (memcpy) */
2469 if (!d40c->configured) {
2470 err = d40_config_memcpy(d40c);
2471 if (err) {
2472 chan_err(d40c, "Failed to configure memcpy channel\n");
2473 goto fail;
2477 err = d40_allocate_channel(d40c, &is_free_phy);
2478 if (err) {
2479 chan_err(d40c, "Failed to allocate channel\n");
2480 d40c->configured = false;
2481 goto fail;
2484 pm_runtime_get_sync(d40c->base->dev);
2486 d40_set_prio_realtime(d40c);
2488 if (chan_is_logical(d40c)) {
2489 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2490 d40c->lcpa = d40c->base->lcpa_base +
2491 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2492 else
2493 d40c->lcpa = d40c->base->lcpa_base +
2494 d40c->dma_cfg.dev_type *
2495 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2497 /* Unmask the Global Interrupt Mask. */
2498 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2499 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2502 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2503 chan_is_logical(d40c) ? "logical" : "physical",
2504 d40c->phy_chan->num,
2505 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2509 * Only write channel configuration to the DMA if the physical
2510 * resource is free. In case of multiple logical channels
2511 * on the same physical resource, only the first write is necessary.
2513 if (is_free_phy)
2514 d40_config_write(d40c);
2515 fail:
2516 pm_runtime_mark_last_busy(d40c->base->dev);
2517 pm_runtime_put_autosuspend(d40c->base->dev);
2518 spin_unlock_irqrestore(&d40c->lock, flags);
2519 return err;
2522 static void d40_free_chan_resources(struct dma_chan *chan)
2524 struct d40_chan *d40c =
2525 container_of(chan, struct d40_chan, chan);
2526 int err;
2527 unsigned long flags;
2529 if (d40c->phy_chan == NULL) {
2530 chan_err(d40c, "Cannot free unallocated channel\n");
2531 return;
2534 spin_lock_irqsave(&d40c->lock, flags);
2536 err = d40_free_dma(d40c);
2538 if (err)
2539 chan_err(d40c, "Failed to free channel\n");
2540 spin_unlock_irqrestore(&d40c->lock, flags);
2543 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2544 dma_addr_t dst,
2545 dma_addr_t src,
2546 size_t size,
2547 unsigned long dma_flags)
2549 struct scatterlist dst_sg;
2550 struct scatterlist src_sg;
2552 sg_init_table(&dst_sg, 1);
2553 sg_init_table(&src_sg, 1);
2555 sg_dma_address(&dst_sg) = dst;
2556 sg_dma_address(&src_sg) = src;
2558 sg_dma_len(&dst_sg) = size;
2559 sg_dma_len(&src_sg) = size;
2561 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2564 static struct dma_async_tx_descriptor *
2565 d40_prep_memcpy_sg(struct dma_chan *chan,
2566 struct scatterlist *dst_sg, unsigned int dst_nents,
2567 struct scatterlist *src_sg, unsigned int src_nents,
2568 unsigned long dma_flags)
2570 if (dst_nents != src_nents)
2571 return NULL;
2573 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2576 static struct dma_async_tx_descriptor *
2577 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2578 unsigned int sg_len, enum dma_transfer_direction direction,
2579 unsigned long dma_flags, void *context)
2581 if (!is_slave_direction(direction))
2582 return NULL;
2584 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2587 static struct dma_async_tx_descriptor *
2588 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2589 size_t buf_len, size_t period_len,
2590 enum dma_transfer_direction direction, unsigned long flags,
2591 void *context)
2593 unsigned int periods = buf_len / period_len;
2594 struct dma_async_tx_descriptor *txd;
2595 struct scatterlist *sg;
2596 int i;
2598 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2599 if (!sg)
2600 return NULL;
2602 for (i = 0; i < periods; i++) {
2603 sg_dma_address(&sg[i]) = dma_addr;
2604 sg_dma_len(&sg[i]) = period_len;
2605 dma_addr += period_len;
2608 sg[periods].offset = 0;
2609 sg_dma_len(&sg[periods]) = 0;
2610 sg[periods].page_link =
2611 ((unsigned long)sg | 0x01) & ~0x02;
2613 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2614 DMA_PREP_INTERRUPT);
2616 kfree(sg);
2618 return txd;
2621 static enum dma_status d40_tx_status(struct dma_chan *chan,
2622 dma_cookie_t cookie,
2623 struct dma_tx_state *txstate)
2625 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2626 enum dma_status ret;
2628 if (d40c->phy_chan == NULL) {
2629 chan_err(d40c, "Cannot read status of unallocated channel\n");
2630 return -EINVAL;
2633 ret = dma_cookie_status(chan, cookie, txstate);
2634 if (ret != DMA_COMPLETE)
2635 dma_set_residue(txstate, stedma40_residue(chan));
2637 if (d40_is_paused(d40c))
2638 ret = DMA_PAUSED;
2640 return ret;
2643 static void d40_issue_pending(struct dma_chan *chan)
2645 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2646 unsigned long flags;
2648 if (d40c->phy_chan == NULL) {
2649 chan_err(d40c, "Channel is not allocated!\n");
2650 return;
2653 spin_lock_irqsave(&d40c->lock, flags);
2655 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2657 /* Busy means that queued jobs are already being processed */
2658 if (!d40c->busy)
2659 (void) d40_queue_start(d40c);
2661 spin_unlock_irqrestore(&d40c->lock, flags);
2664 static void d40_terminate_all(struct dma_chan *chan)
2666 unsigned long flags;
2667 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2668 int ret;
2670 spin_lock_irqsave(&d40c->lock, flags);
2672 pm_runtime_get_sync(d40c->base->dev);
2673 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2674 if (ret)
2675 chan_err(d40c, "Failed to stop channel\n");
2677 d40_term_all(d40c);
2678 pm_runtime_mark_last_busy(d40c->base->dev);
2679 pm_runtime_put_autosuspend(d40c->base->dev);
2680 if (d40c->busy) {
2681 pm_runtime_mark_last_busy(d40c->base->dev);
2682 pm_runtime_put_autosuspend(d40c->base->dev);
2684 d40c->busy = false;
2686 spin_unlock_irqrestore(&d40c->lock, flags);
2689 static int
2690 dma40_config_to_halfchannel(struct d40_chan *d40c,
2691 struct stedma40_half_channel_info *info,
2692 u32 maxburst)
2694 int psize;
2696 if (chan_is_logical(d40c)) {
2697 if (maxburst >= 16)
2698 psize = STEDMA40_PSIZE_LOG_16;
2699 else if (maxburst >= 8)
2700 psize = STEDMA40_PSIZE_LOG_8;
2701 else if (maxburst >= 4)
2702 psize = STEDMA40_PSIZE_LOG_4;
2703 else
2704 psize = STEDMA40_PSIZE_LOG_1;
2705 } else {
2706 if (maxburst >= 16)
2707 psize = STEDMA40_PSIZE_PHY_16;
2708 else if (maxburst >= 8)
2709 psize = STEDMA40_PSIZE_PHY_8;
2710 else if (maxburst >= 4)
2711 psize = STEDMA40_PSIZE_PHY_4;
2712 else
2713 psize = STEDMA40_PSIZE_PHY_1;
2716 info->psize = psize;
2717 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2719 return 0;
2722 /* Runtime reconfiguration extension */
2723 static int d40_set_runtime_config(struct dma_chan *chan,
2724 struct dma_slave_config *config)
2726 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2727 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2728 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2729 dma_addr_t config_addr;
2730 u32 src_maxburst, dst_maxburst;
2731 int ret;
2733 src_addr_width = config->src_addr_width;
2734 src_maxburst = config->src_maxburst;
2735 dst_addr_width = config->dst_addr_width;
2736 dst_maxburst = config->dst_maxburst;
2738 if (config->direction == DMA_DEV_TO_MEM) {
2739 config_addr = config->src_addr;
2741 if (cfg->dir != DMA_DEV_TO_MEM)
2742 dev_dbg(d40c->base->dev,
2743 "channel was not configured for peripheral "
2744 "to memory transfer (%d) overriding\n",
2745 cfg->dir);
2746 cfg->dir = DMA_DEV_TO_MEM;
2748 /* Configure the memory side */
2749 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2750 dst_addr_width = src_addr_width;
2751 if (dst_maxburst == 0)
2752 dst_maxburst = src_maxburst;
2754 } else if (config->direction == DMA_MEM_TO_DEV) {
2755 config_addr = config->dst_addr;
2757 if (cfg->dir != DMA_MEM_TO_DEV)
2758 dev_dbg(d40c->base->dev,
2759 "channel was not configured for memory "
2760 "to peripheral transfer (%d) overriding\n",
2761 cfg->dir);
2762 cfg->dir = DMA_MEM_TO_DEV;
2764 /* Configure the memory side */
2765 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2766 src_addr_width = dst_addr_width;
2767 if (src_maxburst == 0)
2768 src_maxburst = dst_maxburst;
2769 } else {
2770 dev_err(d40c->base->dev,
2771 "unrecognized channel direction %d\n",
2772 config->direction);
2773 return -EINVAL;
2776 if (config_addr <= 0) {
2777 dev_err(d40c->base->dev, "no address supplied\n");
2778 return -EINVAL;
2781 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2782 dev_err(d40c->base->dev,
2783 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2784 src_maxburst,
2785 src_addr_width,
2786 dst_maxburst,
2787 dst_addr_width);
2788 return -EINVAL;
2791 if (src_maxburst > 16) {
2792 src_maxburst = 16;
2793 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2794 } else if (dst_maxburst > 16) {
2795 dst_maxburst = 16;
2796 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2799 /* Only valid widths are; 1, 2, 4 and 8. */
2800 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2801 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2802 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2803 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2804 !is_power_of_2(src_addr_width) ||
2805 !is_power_of_2(dst_addr_width))
2806 return -EINVAL;
2808 cfg->src_info.data_width = src_addr_width;
2809 cfg->dst_info.data_width = dst_addr_width;
2811 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2812 src_maxburst);
2813 if (ret)
2814 return ret;
2816 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2817 dst_maxburst);
2818 if (ret)
2819 return ret;
2821 /* Fill in register values */
2822 if (chan_is_logical(d40c))
2823 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2824 else
2825 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2827 /* These settings will take precedence later */
2828 d40c->runtime_addr = config_addr;
2829 d40c->runtime_direction = config->direction;
2830 dev_dbg(d40c->base->dev,
2831 "configured channel %s for %s, data width %d/%d, "
2832 "maxburst %d/%d elements, LE, no flow control\n",
2833 dma_chan_name(chan),
2834 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2835 src_addr_width, dst_addr_width,
2836 src_maxburst, dst_maxburst);
2838 return 0;
2841 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2842 unsigned long arg)
2844 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2846 if (d40c->phy_chan == NULL) {
2847 chan_err(d40c, "Channel is not allocated!\n");
2848 return -EINVAL;
2851 switch (cmd) {
2852 case DMA_TERMINATE_ALL:
2853 d40_terminate_all(chan);
2854 return 0;
2855 case DMA_PAUSE:
2856 return d40_pause(d40c);
2857 case DMA_RESUME:
2858 return d40_resume(d40c);
2859 case DMA_SLAVE_CONFIG:
2860 return d40_set_runtime_config(chan,
2861 (struct dma_slave_config *) arg);
2862 default:
2863 break;
2866 /* Other commands are unimplemented */
2867 return -ENXIO;
2870 /* Initialization functions */
2872 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2873 struct d40_chan *chans, int offset,
2874 int num_chans)
2876 int i = 0;
2877 struct d40_chan *d40c;
2879 INIT_LIST_HEAD(&dma->channels);
2881 for (i = offset; i < offset + num_chans; i++) {
2882 d40c = &chans[i];
2883 d40c->base = base;
2884 d40c->chan.device = dma;
2886 spin_lock_init(&d40c->lock);
2888 d40c->log_num = D40_PHY_CHAN;
2890 INIT_LIST_HEAD(&d40c->done);
2891 INIT_LIST_HEAD(&d40c->active);
2892 INIT_LIST_HEAD(&d40c->queue);
2893 INIT_LIST_HEAD(&d40c->pending_queue);
2894 INIT_LIST_HEAD(&d40c->client);
2895 INIT_LIST_HEAD(&d40c->prepare_queue);
2897 tasklet_init(&d40c->tasklet, dma_tasklet,
2898 (unsigned long) d40c);
2900 list_add_tail(&d40c->chan.device_node,
2901 &dma->channels);
2905 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2907 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2908 dev->device_prep_slave_sg = d40_prep_slave_sg;
2910 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2911 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2914 * This controller can only access address at even
2915 * 32bit boundaries, i.e. 2^2
2917 dev->copy_align = 2;
2920 if (dma_has_cap(DMA_SG, dev->cap_mask))
2921 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2923 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2924 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2926 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2927 dev->device_free_chan_resources = d40_free_chan_resources;
2928 dev->device_issue_pending = d40_issue_pending;
2929 dev->device_tx_status = d40_tx_status;
2930 dev->device_control = d40_control;
2931 dev->dev = base->dev;
2934 static int __init d40_dmaengine_init(struct d40_base *base,
2935 int num_reserved_chans)
2937 int err ;
2939 d40_chan_init(base, &base->dma_slave, base->log_chans,
2940 0, base->num_log_chans);
2942 dma_cap_zero(base->dma_slave.cap_mask);
2943 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2944 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2946 d40_ops_init(base, &base->dma_slave);
2948 err = dma_async_device_register(&base->dma_slave);
2950 if (err) {
2951 d40_err(base->dev, "Failed to register slave channels\n");
2952 goto failure1;
2955 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2956 base->num_log_chans, base->num_memcpy_chans);
2958 dma_cap_zero(base->dma_memcpy.cap_mask);
2959 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2960 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2962 d40_ops_init(base, &base->dma_memcpy);
2964 err = dma_async_device_register(&base->dma_memcpy);
2966 if (err) {
2967 d40_err(base->dev,
2968 "Failed to regsiter memcpy only channels\n");
2969 goto failure2;
2972 d40_chan_init(base, &base->dma_both, base->phy_chans,
2973 0, num_reserved_chans);
2975 dma_cap_zero(base->dma_both.cap_mask);
2976 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2977 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2978 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2979 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2981 d40_ops_init(base, &base->dma_both);
2982 err = dma_async_device_register(&base->dma_both);
2984 if (err) {
2985 d40_err(base->dev,
2986 "Failed to register logical and physical capable channels\n");
2987 goto failure3;
2989 return 0;
2990 failure3:
2991 dma_async_device_unregister(&base->dma_memcpy);
2992 failure2:
2993 dma_async_device_unregister(&base->dma_slave);
2994 failure1:
2995 return err;
2998 /* Suspend resume functionality */
2999 #ifdef CONFIG_PM
3000 static int dma40_pm_suspend(struct device *dev)
3002 struct platform_device *pdev = to_platform_device(dev);
3003 struct d40_base *base = platform_get_drvdata(pdev);
3004 int ret = 0;
3006 if (base->lcpa_regulator)
3007 ret = regulator_disable(base->lcpa_regulator);
3008 return ret;
3011 static int dma40_runtime_suspend(struct device *dev)
3013 struct platform_device *pdev = to_platform_device(dev);
3014 struct d40_base *base = platform_get_drvdata(pdev);
3016 d40_save_restore_registers(base, true);
3018 /* Don't disable/enable clocks for v1 due to HW bugs */
3019 if (base->rev != 1)
3020 writel_relaxed(base->gcc_pwr_off_mask,
3021 base->virtbase + D40_DREG_GCC);
3023 return 0;
3026 static int dma40_runtime_resume(struct device *dev)
3028 struct platform_device *pdev = to_platform_device(dev);
3029 struct d40_base *base = platform_get_drvdata(pdev);
3031 if (base->initialized)
3032 d40_save_restore_registers(base, false);
3034 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3035 base->virtbase + D40_DREG_GCC);
3036 return 0;
3039 static int dma40_resume(struct device *dev)
3041 struct platform_device *pdev = to_platform_device(dev);
3042 struct d40_base *base = platform_get_drvdata(pdev);
3043 int ret = 0;
3045 if (base->lcpa_regulator)
3046 ret = regulator_enable(base->lcpa_regulator);
3048 return ret;
3051 static const struct dev_pm_ops dma40_pm_ops = {
3052 .suspend = dma40_pm_suspend,
3053 .runtime_suspend = dma40_runtime_suspend,
3054 .runtime_resume = dma40_runtime_resume,
3055 .resume = dma40_resume,
3057 #define DMA40_PM_OPS (&dma40_pm_ops)
3058 #else
3059 #define DMA40_PM_OPS NULL
3060 #endif
3062 /* Initialization functions. */
3064 static int __init d40_phy_res_init(struct d40_base *base)
3066 int i;
3067 int num_phy_chans_avail = 0;
3068 u32 val[2];
3069 int odd_even_bit = -2;
3070 int gcc = D40_DREG_GCC_ENA;
3072 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3073 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3075 for (i = 0; i < base->num_phy_chans; i++) {
3076 base->phy_res[i].num = i;
3077 odd_even_bit += 2 * ((i % 2) == 0);
3078 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3079 /* Mark security only channels as occupied */
3080 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3081 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3082 base->phy_res[i].reserved = true;
3083 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3084 D40_DREG_GCC_SRC);
3085 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3086 D40_DREG_GCC_DST);
3089 } else {
3090 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3091 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3092 base->phy_res[i].reserved = false;
3093 num_phy_chans_avail++;
3095 spin_lock_init(&base->phy_res[i].lock);
3098 /* Mark disabled channels as occupied */
3099 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3100 int chan = base->plat_data->disabled_channels[i];
3102 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3103 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3104 base->phy_res[chan].reserved = true;
3105 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3106 D40_DREG_GCC_SRC);
3107 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3108 D40_DREG_GCC_DST);
3109 num_phy_chans_avail--;
3112 /* Mark soft_lli channels */
3113 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3114 int chan = base->plat_data->soft_lli_chans[i];
3116 base->phy_res[chan].use_soft_lli = true;
3119 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3120 num_phy_chans_avail, base->num_phy_chans);
3122 /* Verify settings extended vs standard */
3123 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3125 for (i = 0; i < base->num_phy_chans; i++) {
3127 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3128 (val[0] & 0x3) != 1)
3129 dev_info(base->dev,
3130 "[%s] INFO: channel %d is misconfigured (%d)\n",
3131 __func__, i, val[0] & 0x3);
3133 val[0] = val[0] >> 2;
3137 * To keep things simple, Enable all clocks initially.
3138 * The clocks will get managed later post channel allocation.
3139 * The clocks for the event lines on which reserved channels exists
3140 * are not managed here.
3142 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3143 base->gcc_pwr_off_mask = gcc;
3145 return num_phy_chans_avail;
3148 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3150 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3151 struct clk *clk = NULL;
3152 void __iomem *virtbase = NULL;
3153 struct resource *res = NULL;
3154 struct d40_base *base = NULL;
3155 int num_log_chans = 0;
3156 int num_phy_chans;
3157 int num_memcpy_chans;
3158 int clk_ret = -EINVAL;
3159 int i;
3160 u32 pid;
3161 u32 cid;
3162 u8 rev;
3164 clk = clk_get(&pdev->dev, NULL);
3165 if (IS_ERR(clk)) {
3166 d40_err(&pdev->dev, "No matching clock found\n");
3167 goto failure;
3170 clk_ret = clk_prepare_enable(clk);
3171 if (clk_ret) {
3172 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3173 goto failure;
3176 /* Get IO for DMAC base address */
3177 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3178 if (!res)
3179 goto failure;
3181 if (request_mem_region(res->start, resource_size(res),
3182 D40_NAME " I/O base") == NULL)
3183 goto failure;
3185 virtbase = ioremap(res->start, resource_size(res));
3186 if (!virtbase)
3187 goto failure;
3189 /* This is just a regular AMBA PrimeCell ID actually */
3190 for (pid = 0, i = 0; i < 4; i++)
3191 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3192 & 255) << (i * 8);
3193 for (cid = 0, i = 0; i < 4; i++)
3194 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3195 & 255) << (i * 8);
3197 if (cid != AMBA_CID) {
3198 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3199 goto failure;
3201 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3202 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3203 AMBA_MANF_BITS(pid),
3204 AMBA_VENDOR_ST);
3205 goto failure;
3208 * HW revision:
3209 * DB8500ed has revision 0
3210 * ? has revision 1
3211 * DB8500v1 has revision 2
3212 * DB8500v2 has revision 3
3213 * AP9540v1 has revision 4
3214 * DB8540v1 has revision 4
3216 rev = AMBA_REV_BITS(pid);
3217 if (rev < 2) {
3218 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3219 goto failure;
3222 /* The number of physical channels on this HW */
3223 if (plat_data->num_of_phy_chans)
3224 num_phy_chans = plat_data->num_of_phy_chans;
3225 else
3226 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3228 /* The number of channels used for memcpy */
3229 if (plat_data->num_of_memcpy_chans)
3230 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3231 else
3232 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3234 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3236 dev_info(&pdev->dev,
3237 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3238 rev, &res->start, num_phy_chans, num_log_chans);
3240 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3241 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3242 sizeof(struct d40_chan), GFP_KERNEL);
3244 if (base == NULL) {
3245 d40_err(&pdev->dev, "Out of memory\n");
3246 goto failure;
3249 base->rev = rev;
3250 base->clk = clk;
3251 base->num_memcpy_chans = num_memcpy_chans;
3252 base->num_phy_chans = num_phy_chans;
3253 base->num_log_chans = num_log_chans;
3254 base->phy_start = res->start;
3255 base->phy_size = resource_size(res);
3256 base->virtbase = virtbase;
3257 base->plat_data = plat_data;
3258 base->dev = &pdev->dev;
3259 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3260 base->log_chans = &base->phy_chans[num_phy_chans];
3262 if (base->plat_data->num_of_phy_chans == 14) {
3263 base->gen_dmac.backup = d40_backup_regs_v4b;
3264 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3265 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3266 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3267 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3268 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3269 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3270 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3271 base->gen_dmac.il = il_v4b;
3272 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3273 base->gen_dmac.init_reg = dma_init_reg_v4b;
3274 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3275 } else {
3276 if (base->rev >= 3) {
3277 base->gen_dmac.backup = d40_backup_regs_v4a;
3278 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3280 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3281 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3282 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3283 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3284 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3285 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3286 base->gen_dmac.il = il_v4a;
3287 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3288 base->gen_dmac.init_reg = dma_init_reg_v4a;
3289 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3292 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3293 GFP_KERNEL);
3294 if (!base->phy_res)
3295 goto failure;
3297 base->lookup_phy_chans = kzalloc(num_phy_chans *
3298 sizeof(struct d40_chan *),
3299 GFP_KERNEL);
3300 if (!base->lookup_phy_chans)
3301 goto failure;
3303 base->lookup_log_chans = kzalloc(num_log_chans *
3304 sizeof(struct d40_chan *),
3305 GFP_KERNEL);
3306 if (!base->lookup_log_chans)
3307 goto failure;
3309 base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3310 sizeof(d40_backup_regs_chan),
3311 GFP_KERNEL);
3312 if (!base->reg_val_backup_chan)
3313 goto failure;
3315 base->lcla_pool.alloc_map =
3316 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3317 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3318 if (!base->lcla_pool.alloc_map)
3319 goto failure;
3321 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3322 0, SLAB_HWCACHE_ALIGN,
3323 NULL);
3324 if (base->desc_slab == NULL)
3325 goto failure;
3327 return base;
3329 failure:
3330 if (!clk_ret)
3331 clk_disable_unprepare(clk);
3332 if (!IS_ERR(clk))
3333 clk_put(clk);
3334 if (virtbase)
3335 iounmap(virtbase);
3336 if (res)
3337 release_mem_region(res->start,
3338 resource_size(res));
3339 if (virtbase)
3340 iounmap(virtbase);
3342 if (base) {
3343 kfree(base->lcla_pool.alloc_map);
3344 kfree(base->reg_val_backup_chan);
3345 kfree(base->lookup_log_chans);
3346 kfree(base->lookup_phy_chans);
3347 kfree(base->phy_res);
3348 kfree(base);
3351 return NULL;
3354 static void __init d40_hw_init(struct d40_base *base)
3357 int i;
3358 u32 prmseo[2] = {0, 0};
3359 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3360 u32 pcmis = 0;
3361 u32 pcicr = 0;
3362 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3363 u32 reg_size = base->gen_dmac.init_reg_size;
3365 for (i = 0; i < reg_size; i++)
3366 writel(dma_init_reg[i].val,
3367 base->virtbase + dma_init_reg[i].reg);
3369 /* Configure all our dma channels to default settings */
3370 for (i = 0; i < base->num_phy_chans; i++) {
3372 activeo[i % 2] = activeo[i % 2] << 2;
3374 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3375 == D40_ALLOC_PHY) {
3376 activeo[i % 2] |= 3;
3377 continue;
3380 /* Enable interrupt # */
3381 pcmis = (pcmis << 1) | 1;
3383 /* Clear interrupt # */
3384 pcicr = (pcicr << 1) | 1;
3386 /* Set channel to physical mode */
3387 prmseo[i % 2] = prmseo[i % 2] << 2;
3388 prmseo[i % 2] |= 1;
3392 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3393 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3394 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3395 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3397 /* Write which interrupt to enable */
3398 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3400 /* Write which interrupt to clear */
3401 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3403 /* These are __initdata and cannot be accessed after init */
3404 base->gen_dmac.init_reg = NULL;
3405 base->gen_dmac.init_reg_size = 0;
3408 static int __init d40_lcla_allocate(struct d40_base *base)
3410 struct d40_lcla_pool *pool = &base->lcla_pool;
3411 unsigned long *page_list;
3412 int i, j;
3413 int ret = 0;
3416 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3417 * To full fill this hardware requirement without wasting 256 kb
3418 * we allocate pages until we get an aligned one.
3420 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3421 GFP_KERNEL);
3423 if (!page_list) {
3424 ret = -ENOMEM;
3425 goto failure;
3428 /* Calculating how many pages that are required */
3429 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3431 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3432 page_list[i] = __get_free_pages(GFP_KERNEL,
3433 base->lcla_pool.pages);
3434 if (!page_list[i]) {
3436 d40_err(base->dev, "Failed to allocate %d pages.\n",
3437 base->lcla_pool.pages);
3439 for (j = 0; j < i; j++)
3440 free_pages(page_list[j], base->lcla_pool.pages);
3441 goto failure;
3444 if ((virt_to_phys((void *)page_list[i]) &
3445 (LCLA_ALIGNMENT - 1)) == 0)
3446 break;
3449 for (j = 0; j < i; j++)
3450 free_pages(page_list[j], base->lcla_pool.pages);
3452 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3453 base->lcla_pool.base = (void *)page_list[i];
3454 } else {
3456 * After many attempts and no succees with finding the correct
3457 * alignment, try with allocating a big buffer.
3459 dev_warn(base->dev,
3460 "[%s] Failed to get %d pages @ 18 bit align.\n",
3461 __func__, base->lcla_pool.pages);
3462 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3463 base->num_phy_chans +
3464 LCLA_ALIGNMENT,
3465 GFP_KERNEL);
3466 if (!base->lcla_pool.base_unaligned) {
3467 ret = -ENOMEM;
3468 goto failure;
3471 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3472 LCLA_ALIGNMENT);
3475 pool->dma_addr = dma_map_single(base->dev, pool->base,
3476 SZ_1K * base->num_phy_chans,
3477 DMA_TO_DEVICE);
3478 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3479 pool->dma_addr = 0;
3480 ret = -ENOMEM;
3481 goto failure;
3484 writel(virt_to_phys(base->lcla_pool.base),
3485 base->virtbase + D40_DREG_LCLA);
3486 failure:
3487 kfree(page_list);
3488 return ret;
3491 static int __init d40_of_probe(struct platform_device *pdev,
3492 struct device_node *np)
3494 struct stedma40_platform_data *pdata;
3495 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3496 const __be32 *list;
3498 pdata = devm_kzalloc(&pdev->dev,
3499 sizeof(struct stedma40_platform_data),
3500 GFP_KERNEL);
3501 if (!pdata)
3502 return -ENOMEM;
3504 /* If absent this value will be obtained from h/w. */
3505 of_property_read_u32(np, "dma-channels", &num_phy);
3506 if (num_phy > 0)
3507 pdata->num_of_phy_chans = num_phy;
3509 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3510 num_memcpy /= sizeof(*list);
3512 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3513 d40_err(&pdev->dev,
3514 "Invalid number of memcpy channels specified (%d)\n",
3515 num_memcpy);
3516 return -EINVAL;
3518 pdata->num_of_memcpy_chans = num_memcpy;
3520 of_property_read_u32_array(np, "memcpy-channels",
3521 dma40_memcpy_channels,
3522 num_memcpy);
3524 list = of_get_property(np, "disabled-channels", &num_disabled);
3525 num_disabled /= sizeof(*list);
3527 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3528 d40_err(&pdev->dev,
3529 "Invalid number of disabled channels specified (%d)\n",
3530 num_disabled);
3531 return -EINVAL;
3534 of_property_read_u32_array(np, "disabled-channels",
3535 pdata->disabled_channels,
3536 num_disabled);
3537 pdata->disabled_channels[num_disabled] = -1;
3539 pdev->dev.platform_data = pdata;
3541 return 0;
3544 static int __init d40_probe(struct platform_device *pdev)
3546 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3547 struct device_node *np = pdev->dev.of_node;
3548 int ret = -ENOENT;
3549 struct d40_base *base = NULL;
3550 struct resource *res = NULL;
3551 int num_reserved_chans;
3552 u32 val;
3554 if (!plat_data) {
3555 if (np) {
3556 if(d40_of_probe(pdev, np)) {
3557 ret = -ENOMEM;
3558 goto failure;
3560 } else {
3561 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3562 goto failure;
3566 base = d40_hw_detect_init(pdev);
3567 if (!base)
3568 goto failure;
3570 num_reserved_chans = d40_phy_res_init(base);
3572 platform_set_drvdata(pdev, base);
3574 spin_lock_init(&base->interrupt_lock);
3575 spin_lock_init(&base->execmd_lock);
3577 /* Get IO for logical channel parameter address */
3578 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3579 if (!res) {
3580 ret = -ENOENT;
3581 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3582 goto failure;
3584 base->lcpa_size = resource_size(res);
3585 base->phy_lcpa = res->start;
3587 if (request_mem_region(res->start, resource_size(res),
3588 D40_NAME " I/O lcpa") == NULL) {
3589 ret = -EBUSY;
3590 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3591 goto failure;
3594 /* We make use of ESRAM memory for this. */
3595 val = readl(base->virtbase + D40_DREG_LCPA);
3596 if (res->start != val && val != 0) {
3597 dev_warn(&pdev->dev,
3598 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3599 __func__, val, &res->start);
3600 } else
3601 writel(res->start, base->virtbase + D40_DREG_LCPA);
3603 base->lcpa_base = ioremap(res->start, resource_size(res));
3604 if (!base->lcpa_base) {
3605 ret = -ENOMEM;
3606 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3607 goto failure;
3609 /* If lcla has to be located in ESRAM we don't need to allocate */
3610 if (base->plat_data->use_esram_lcla) {
3611 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3612 "lcla_esram");
3613 if (!res) {
3614 ret = -ENOENT;
3615 d40_err(&pdev->dev,
3616 "No \"lcla_esram\" memory resource\n");
3617 goto failure;
3619 base->lcla_pool.base = ioremap(res->start,
3620 resource_size(res));
3621 if (!base->lcla_pool.base) {
3622 ret = -ENOMEM;
3623 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3624 goto failure;
3626 writel(res->start, base->virtbase + D40_DREG_LCLA);
3628 } else {
3629 ret = d40_lcla_allocate(base);
3630 if (ret) {
3631 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3632 goto failure;
3636 spin_lock_init(&base->lcla_pool.lock);
3638 base->irq = platform_get_irq(pdev, 0);
3640 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3641 if (ret) {
3642 d40_err(&pdev->dev, "No IRQ defined\n");
3643 goto failure;
3646 pm_runtime_irq_safe(base->dev);
3647 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3648 pm_runtime_use_autosuspend(base->dev);
3649 pm_runtime_enable(base->dev);
3650 pm_runtime_resume(base->dev);
3652 if (base->plat_data->use_esram_lcla) {
3654 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3655 if (IS_ERR(base->lcpa_regulator)) {
3656 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3657 ret = PTR_ERR(base->lcpa_regulator);
3658 base->lcpa_regulator = NULL;
3659 goto failure;
3662 ret = regulator_enable(base->lcpa_regulator);
3663 if (ret) {
3664 d40_err(&pdev->dev,
3665 "Failed to enable lcpa_regulator\n");
3666 regulator_put(base->lcpa_regulator);
3667 base->lcpa_regulator = NULL;
3668 goto failure;
3672 base->initialized = true;
3673 ret = d40_dmaengine_init(base, num_reserved_chans);
3674 if (ret)
3675 goto failure;
3677 base->dev->dma_parms = &base->dma_parms;
3678 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3679 if (ret) {
3680 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3681 goto failure;
3684 d40_hw_init(base);
3686 if (np) {
3687 ret = of_dma_controller_register(np, d40_xlate, NULL);
3688 if (ret)
3689 dev_err(&pdev->dev,
3690 "could not register of_dma_controller\n");
3693 dev_info(base->dev, "initialized\n");
3694 return 0;
3696 failure:
3697 if (base) {
3698 if (base->desc_slab)
3699 kmem_cache_destroy(base->desc_slab);
3700 if (base->virtbase)
3701 iounmap(base->virtbase);
3703 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3704 iounmap(base->lcla_pool.base);
3705 base->lcla_pool.base = NULL;
3708 if (base->lcla_pool.dma_addr)
3709 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3710 SZ_1K * base->num_phy_chans,
3711 DMA_TO_DEVICE);
3713 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3714 free_pages((unsigned long)base->lcla_pool.base,
3715 base->lcla_pool.pages);
3717 kfree(base->lcla_pool.base_unaligned);
3719 if (base->phy_lcpa)
3720 release_mem_region(base->phy_lcpa,
3721 base->lcpa_size);
3722 if (base->phy_start)
3723 release_mem_region(base->phy_start,
3724 base->phy_size);
3725 if (base->clk) {
3726 clk_disable_unprepare(base->clk);
3727 clk_put(base->clk);
3730 if (base->lcpa_regulator) {
3731 regulator_disable(base->lcpa_regulator);
3732 regulator_put(base->lcpa_regulator);
3735 kfree(base->lcla_pool.alloc_map);
3736 kfree(base->lookup_log_chans);
3737 kfree(base->lookup_phy_chans);
3738 kfree(base->phy_res);
3739 kfree(base);
3742 d40_err(&pdev->dev, "probe failed\n");
3743 return ret;
3746 static const struct of_device_id d40_match[] = {
3747 { .compatible = "stericsson,dma40", },
3751 static struct platform_driver d40_driver = {
3752 .driver = {
3753 .owner = THIS_MODULE,
3754 .name = D40_NAME,
3755 .pm = DMA40_PM_OPS,
3756 .of_match_table = d40_match,
3760 static int __init stedma40_init(void)
3762 return platform_driver_probe(&d40_driver, d40_probe);
3764 subsys_initcall(stedma40_init);