2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels
[] = {
73 DB8500_DMA_MEMCPY_EV_0
,
74 DB8500_DMA_MEMCPY_EV_1
,
75 DB8500_DMA_MEMCPY_EV_2
,
76 DB8500_DMA_MEMCPY_EV_3
,
77 DB8500_DMA_MEMCPY_EV_4
,
78 DB8500_DMA_MEMCPY_EV_5
,
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
83 .mode
= STEDMA40_MODE_PHYSICAL
,
84 .dir
= DMA_MEM_TO_MEM
,
86 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
87 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
88 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
90 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
92 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
97 .mode
= STEDMA40_MODE_LOGICAL
,
98 .dir
= DMA_MEM_TO_MEM
,
100 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
101 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
102 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
104 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
106 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
120 D40_DMA_SUSPEND_REQ
= 2,
121 D40_DMA_SUSPENDED
= 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
134 D40_DEACTIVATE_EVENTLINE
= 0,
135 D40_ACTIVATE_EVENTLINE
= 1,
136 D40_SUSPEND_REQ_EVENTLINE
= 2,
137 D40_ROUND_EVENTLINE
= 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static u32 d40_backup_regs
[] = {
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a
[] = {
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b
[] = {
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static u32 d40_backup_regs_chan
[] = {
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup
{
245 static struct d40_interrupt_lookup il_v4a
[] = {
246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
258 static struct d40_interrupt_lookup il_v4b
[] = {
259 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
260 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
261 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
262 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
263 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
264 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
265 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
266 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
267 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
268 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
269 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
270 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
284 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
288 /* Interrupts on all logical channels */
289 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
290 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
291 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
292 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
293 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
294 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
295 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
296 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
297 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
298 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
299 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
300 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
302 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
306 /* Interrupts on all logical channels */
307 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
308 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
309 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
310 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
311 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
312 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
313 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
314 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
315 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
316 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool
{
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
364 struct d40_phy_lli_bidir lli_phy
;
366 struct d40_log_lli_bidir lli_log
;
368 struct d40_lli_pool lli_pool
;
373 struct dma_async_tx_descriptor txd
;
374 struct list_head node
;
376 bool is_in_client_list
;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool
{
394 void *base_unaligned
;
397 struct d40_desc
**alloc_map
;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
461 struct d40_phy_res
*phy_chan
;
462 struct dma_chan chan
;
463 struct tasklet_struct tasklet
;
464 struct list_head client
;
465 struct list_head pending_queue
;
466 struct list_head active
;
467 struct list_head done
;
468 struct list_head queue
;
469 struct list_head prepare_queue
;
470 struct stedma40_chan_cfg dma_cfg
;
472 struct d40_base
*base
;
473 /* Default register configurations */
476 struct d40_def_lcsp log_def
;
477 struct d40_log_lli_full
*lcpa
;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr
;
480 enum dma_transfer_direction runtime_direction
;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac
{
509 struct d40_interrupt_lookup
*il
;
511 struct d40_reg_val
*init_reg
;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @initialized: true if the dma has been initialized
560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
564 spinlock_t interrupt_lock
;
565 spinlock_t execmd_lock
;
567 void __iomem
*virtbase
;
570 phys_addr_t phy_start
;
571 resource_size_t phy_size
;
573 int num_memcpy_chans
;
576 struct device_dma_parameters dma_parms
;
577 struct dma_device dma_both
;
578 struct dma_device dma_slave
;
579 struct dma_device dma_memcpy
;
580 struct d40_chan
*phy_chans
;
581 struct d40_chan
*log_chans
;
582 struct d40_chan
**lookup_log_chans
;
583 struct d40_chan
**lookup_phy_chans
;
584 struct stedma40_platform_data
*plat_data
;
585 struct regulator
*lcpa_regulator
;
586 /* Physical half channels */
587 struct d40_phy_res
*phy_res
;
588 struct d40_lcla_pool lcla_pool
;
591 resource_size_t lcpa_size
;
592 struct kmem_cache
*desc_slab
;
593 u32 reg_val_backup
[BACKUP_REGS_SZ
];
594 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
595 u32
*reg_val_backup_chan
;
596 u16 gcc_pwr_off_mask
;
598 struct d40_gen_dmac gen_dmac
;
601 static struct device
*chan2dev(struct d40_chan
*d40c
)
603 return &d40c
->chan
.dev
->device
;
606 static bool chan_is_physical(struct d40_chan
*chan
)
608 return chan
->log_num
== D40_PHY_CHAN
;
611 static bool chan_is_logical(struct d40_chan
*chan
)
613 return !chan_is_physical(chan
);
616 static void __iomem
*chan_base(struct d40_chan
*chan
)
618 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
619 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
622 #define d40_err(dev, format, arg...) \
623 dev_err(dev, "[%s] " format, __func__, ## arg)
625 #define chan_err(d40c, format, arg...) \
626 d40_err(chan2dev(d40c), format, ## arg)
628 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
631 bool is_log
= chan_is_logical(d40c
);
636 align
= sizeof(struct d40_log_lli
);
638 align
= sizeof(struct d40_phy_lli
);
641 base
= d40d
->lli_pool
.pre_alloc_lli
;
642 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
643 d40d
->lli_pool
.base
= NULL
;
645 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
647 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
648 d40d
->lli_pool
.base
= base
;
650 if (d40d
->lli_pool
.base
== NULL
)
655 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
656 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
658 d40d
->lli_pool
.dma_addr
= 0;
660 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
661 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
663 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
668 if (dma_mapping_error(d40c
->base
->dev
,
669 d40d
->lli_pool
.dma_addr
)) {
670 kfree(d40d
->lli_pool
.base
);
671 d40d
->lli_pool
.base
= NULL
;
672 d40d
->lli_pool
.dma_addr
= 0;
680 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
682 if (d40d
->lli_pool
.dma_addr
)
683 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
684 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
686 kfree(d40d
->lli_pool
.base
);
687 d40d
->lli_pool
.base
= NULL
;
688 d40d
->lli_pool
.size
= 0;
689 d40d
->lli_log
.src
= NULL
;
690 d40d
->lli_log
.dst
= NULL
;
691 d40d
->lli_phy
.src
= NULL
;
692 d40d
->lli_phy
.dst
= NULL
;
695 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
696 struct d40_desc
*d40d
)
702 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
705 * Allocate both src and dst at the same time, therefore the half
706 * start on 1 since 0 can't be used since zero is used as end marker.
708 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
709 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
711 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
712 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
719 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
724 static int d40_lcla_free_all(struct d40_chan
*d40c
,
725 struct d40_desc
*d40d
)
731 if (chan_is_physical(d40c
))
734 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
736 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
737 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
739 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
740 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
742 if (d40d
->lcla_alloc
== 0) {
749 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
755 static void d40_desc_remove(struct d40_desc
*d40d
)
757 list_del(&d40d
->node
);
760 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
762 struct d40_desc
*desc
= NULL
;
764 if (!list_empty(&d40c
->client
)) {
768 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
769 if (async_tx_test_ack(&d
->txd
)) {
772 memset(desc
, 0, sizeof(*desc
));
779 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
782 INIT_LIST_HEAD(&desc
->node
);
787 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
790 d40_pool_lli_free(d40c
, d40d
);
791 d40_lcla_free_all(d40c
, d40d
);
792 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
795 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
797 list_add_tail(&desc
->node
, &d40c
->active
);
800 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
802 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
803 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
804 void __iomem
*base
= chan_base(chan
);
806 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
807 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
808 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
809 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
811 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
812 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
813 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
814 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
817 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
819 list_add_tail(&desc
->node
, &d40c
->done
);
822 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
824 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
825 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
826 int lli_current
= desc
->lli_current
;
827 int lli_len
= desc
->lli_len
;
828 bool cyclic
= desc
->cyclic
;
829 int curr_lcla
= -EINVAL
;
831 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
835 * We may have partially running cyclic transfers, in case we did't get
836 * enough LCLA entries.
838 linkback
= cyclic
&& lli_current
== 0;
841 * For linkback, we need one LCLA even with only one link, because we
842 * can't link back to the one in LCPA space
844 if (linkback
|| (lli_len
- lli_current
> 1)) {
846 * If the channel is expected to use only soft_lli don't
847 * allocate a lcla. This is to avoid a HW issue that exists
848 * in some controller during a peripheral to memory transfer
849 * that uses linked lists.
851 if (!(chan
->phy_chan
->use_soft_lli
&&
852 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
853 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
855 first_lcla
= curr_lcla
;
859 * For linkback, we normally load the LCPA in the loop since we need to
860 * link it to the second LCLA and not the first. However, if we
861 * couldn't even get a first LCLA, then we have to run in LCPA and
864 if (!linkback
|| curr_lcla
== -EINVAL
) {
865 unsigned int flags
= 0;
867 if (curr_lcla
== -EINVAL
)
868 flags
|= LLI_TERM_INT
;
870 d40_log_lli_lcpa_write(chan
->lcpa
,
871 &lli
->dst
[lli_current
],
872 &lli
->src
[lli_current
],
881 for (; lli_current
< lli_len
; lli_current
++) {
882 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
884 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
885 unsigned int flags
= 0;
888 if (lli_current
+ 1 < lli_len
)
889 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
891 next_lcla
= linkback
? first_lcla
: -EINVAL
;
893 if (cyclic
|| next_lcla
== -EINVAL
)
894 flags
|= LLI_TERM_INT
;
896 if (linkback
&& curr_lcla
== first_lcla
) {
897 /* First link goes in both LCPA and LCLA */
898 d40_log_lli_lcpa_write(chan
->lcpa
,
899 &lli
->dst
[lli_current
],
900 &lli
->src
[lli_current
],
905 * One unused LCLA in the cyclic case if the very first
908 d40_log_lli_lcla_write(lcla
,
909 &lli
->dst
[lli_current
],
910 &lli
->src
[lli_current
],
914 * Cache maintenance is not needed if lcla is
917 if (!use_esram_lcla
) {
918 dma_sync_single_range_for_device(chan
->base
->dev
,
919 pool
->dma_addr
, lcla_offset
,
920 2 * sizeof(struct d40_log_lli
),
923 curr_lcla
= next_lcla
;
925 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
932 desc
->lli_current
= lli_current
;
935 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
937 if (chan_is_physical(d40c
)) {
938 d40_phy_lli_load(d40c
, d40d
);
939 d40d
->lli_current
= d40d
->lli_len
;
941 d40_log_lli_to_lcxa(d40c
, d40d
);
944 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
948 if (list_empty(&d40c
->active
))
951 d
= list_first_entry(&d40c
->active
,
957 /* remove desc from current queue and add it to the pending_queue */
958 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
960 d40_desc_remove(desc
);
961 desc
->is_in_client_list
= false;
962 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
965 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
969 if (list_empty(&d40c
->pending_queue
))
972 d
= list_first_entry(&d40c
->pending_queue
,
978 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
982 if (list_empty(&d40c
->queue
))
985 d
= list_first_entry(&d40c
->queue
,
991 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
993 if (list_empty(&d40c
->done
))
996 return list_first_entry(&d40c
->done
, struct d40_desc
, node
);
999 static int d40_psize_2_burst_size(bool is_log
, int psize
)
1002 if (psize
== STEDMA40_PSIZE_LOG_1
)
1005 if (psize
== STEDMA40_PSIZE_PHY_1
)
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1016 * Calculate the total number of dma elements required to send the entire sg list.
1018 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
1021 u32 max_w
= max(data_width1
, data_width2
);
1022 u32 min_w
= min(data_width1
, data_width2
);
1023 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
1025 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
1028 if (!IS_ALIGNED(size
, max_w
))
1031 if (size
<= seg_max
)
1034 dmalen
= size
/ seg_max
;
1035 if (dmalen
* seg_max
< size
)
1041 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1042 u32 data_width1
, u32 data_width2
)
1044 struct scatterlist
*sg
;
1049 for_each_sg(sgl
, sg
, sg_len
, i
) {
1050 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1051 data_width1
, data_width2
);
1061 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
1062 u32
*regaddr
, int num
, bool save
)
1066 for (i
= 0; i
< num
; i
++) {
1067 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
1070 backup
[i
] = readl_relaxed(addr
);
1072 writel_relaxed(backup
[i
], addr
);
1076 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
1080 /* Save/Restore channel specific registers */
1081 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
1085 if (base
->phy_res
[i
].reserved
)
1088 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
1089 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
1091 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
1092 d40_backup_regs_chan
,
1093 ARRAY_SIZE(d40_backup_regs_chan
),
1097 /* Save/Restore global registers */
1098 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
1099 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
1102 /* Save/Restore registers only existing on dma40 v3 and later */
1103 if (base
->gen_dmac
.backup
)
1104 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
1105 base
->gen_dmac
.backup
,
1106 base
->gen_dmac
.backup_size
,
1110 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
1115 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1116 enum d40_command command
)
1120 void __iomem
*active_reg
;
1122 unsigned long flags
;
1125 if (command
== D40_DMA_STOP
) {
1126 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1131 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1133 if (d40c
->phy_chan
->num
% 2 == 0)
1134 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1136 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1138 if (command
== D40_DMA_SUSPEND_REQ
) {
1139 status
= (readl(active_reg
) &
1140 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1141 D40_CHAN_POS(d40c
->phy_chan
->num
);
1143 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1147 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1148 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1151 if (command
== D40_DMA_SUSPEND_REQ
) {
1153 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1154 status
= (readl(active_reg
) &
1155 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1156 D40_CHAN_POS(d40c
->phy_chan
->num
);
1160 * Reduce the number of bus accesses while
1161 * waiting for the DMA to suspend.
1165 if (status
== D40_DMA_STOP
||
1166 status
== D40_DMA_SUSPENDED
)
1170 if (i
== D40_SUSPEND_MAX_IT
) {
1172 "unable to suspend the chl %d (log: %d) status %x\n",
1173 d40c
->phy_chan
->num
, d40c
->log_num
,
1181 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1185 static void d40_term_all(struct d40_chan
*d40c
)
1187 struct d40_desc
*d40d
;
1188 struct d40_desc
*_d
;
1190 /* Release completed descriptors */
1191 while ((d40d
= d40_first_done(d40c
))) {
1192 d40_desc_remove(d40d
);
1193 d40_desc_free(d40c
, d40d
);
1196 /* Release active descriptors */
1197 while ((d40d
= d40_first_active_get(d40c
))) {
1198 d40_desc_remove(d40d
);
1199 d40_desc_free(d40c
, d40d
);
1202 /* Release queued descriptors waiting for transfer */
1203 while ((d40d
= d40_first_queued(d40c
))) {
1204 d40_desc_remove(d40d
);
1205 d40_desc_free(d40c
, d40d
);
1208 /* Release pending descriptors */
1209 while ((d40d
= d40_first_pending(d40c
))) {
1210 d40_desc_remove(d40d
);
1211 d40_desc_free(d40c
, d40d
);
1214 /* Release client owned descriptors */
1215 if (!list_empty(&d40c
->client
))
1216 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1217 d40_desc_remove(d40d
);
1218 d40_desc_free(d40c
, d40d
);
1221 /* Release descriptors in prepare queue */
1222 if (!list_empty(&d40c
->prepare_queue
))
1223 list_for_each_entry_safe(d40d
, _d
,
1224 &d40c
->prepare_queue
, node
) {
1225 d40_desc_remove(d40d
);
1226 d40_desc_free(d40c
, d40d
);
1229 d40c
->pending_tx
= 0;
1232 static void __d40_config_set_event(struct d40_chan
*d40c
,
1233 enum d40_events event_type
, u32 event
,
1236 void __iomem
*addr
= chan_base(d40c
) + reg
;
1240 switch (event_type
) {
1242 case D40_DEACTIVATE_EVENTLINE
:
1244 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1245 | ~D40_EVENTLINE_MASK(event
), addr
);
1248 case D40_SUSPEND_REQ_EVENTLINE
:
1249 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1250 D40_EVENTLINE_POS(event
);
1252 if (status
== D40_DEACTIVATE_EVENTLINE
||
1253 status
== D40_SUSPEND_REQ_EVENTLINE
)
1256 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1257 | ~D40_EVENTLINE_MASK(event
), addr
);
1259 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1261 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1262 D40_EVENTLINE_POS(event
);
1266 * Reduce the number of bus accesses while
1267 * waiting for the DMA to suspend.
1271 if (status
== D40_DEACTIVATE_EVENTLINE
)
1275 if (tries
== D40_SUSPEND_MAX_IT
) {
1277 "unable to stop the event_line chl %d (log: %d)"
1278 "status %x\n", d40c
->phy_chan
->num
,
1279 d40c
->log_num
, status
);
1283 case D40_ACTIVATE_EVENTLINE
:
1285 * The hardware sometimes doesn't register the enable when src and dst
1286 * event lines are active on the same logical channel. Retry to ensure
1287 * it does. Usually only one retry is sufficient.
1291 writel((D40_ACTIVATE_EVENTLINE
<<
1292 D40_EVENTLINE_POS(event
)) |
1293 ~D40_EVENTLINE_MASK(event
), addr
);
1295 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1300 dev_dbg(chan2dev(d40c
),
1301 "[%s] workaround enable S%cLNK (%d tries)\n",
1302 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1308 case D40_ROUND_EVENTLINE
:
1315 static void d40_config_set_event(struct d40_chan
*d40c
,
1316 enum d40_events event_type
)
1318 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1320 /* Enable event line connected to device (or memcpy) */
1321 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1322 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1323 __d40_config_set_event(d40c
, event_type
, event
,
1324 D40_CHAN_REG_SSLNK
);
1326 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1327 __d40_config_set_event(d40c
, event_type
, event
,
1328 D40_CHAN_REG_SDLNK
);
1331 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1333 void __iomem
*chanbase
= chan_base(d40c
);
1336 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1337 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1343 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1345 unsigned long flags
;
1348 void __iomem
*active_reg
;
1350 if (d40c
->phy_chan
->num
% 2 == 0)
1351 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1353 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1356 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1360 case D40_DMA_SUSPEND_REQ
:
1362 active_status
= (readl(active_reg
) &
1363 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1364 D40_CHAN_POS(d40c
->phy_chan
->num
);
1366 if (active_status
== D40_DMA_RUN
)
1367 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1369 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1371 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1372 ret
= __d40_execute_command_phy(d40c
, command
);
1378 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1379 ret
= __d40_execute_command_phy(d40c
, command
);
1382 case D40_DMA_SUSPENDED
:
1387 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1391 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1392 enum d40_command command
)
1394 if (chan_is_logical(d40c
))
1395 return __d40_execute_command_log(d40c
, command
);
1397 return __d40_execute_command_phy(d40c
, command
);
1400 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1402 static const unsigned int phy_map
[] = {
1403 [STEDMA40_PCHAN_BASIC_MODE
]
1404 = D40_DREG_PRMO_PCHAN_BASIC
,
1405 [STEDMA40_PCHAN_MODULO_MODE
]
1406 = D40_DREG_PRMO_PCHAN_MODULO
,
1407 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1408 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1410 static const unsigned int log_map
[] = {
1411 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1412 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1413 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1414 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1415 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1416 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1419 if (chan_is_physical(d40c
))
1420 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1422 return log_map
[d40c
->dma_cfg
.mode_opt
];
1425 static void d40_config_write(struct d40_chan
*d40c
)
1430 /* Odd addresses are even addresses + 4 */
1431 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1432 /* Setup channel mode to logical or physical */
1433 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1434 D40_CHAN_POS(d40c
->phy_chan
->num
);
1435 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1437 /* Setup operational mode option register */
1438 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1440 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1442 if (chan_is_logical(d40c
)) {
1443 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1444 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1445 void __iomem
*chanbase
= chan_base(d40c
);
1447 /* Set default config for CFG reg */
1448 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1449 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1451 /* Set LIDX for lcla */
1452 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1453 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1455 /* Clear LNK which will be used by d40_chan_has_events() */
1456 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1457 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1461 static u32
d40_residue(struct d40_chan
*d40c
)
1465 if (chan_is_logical(d40c
))
1466 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1467 >> D40_MEM_LCSP2_ECNT_POS
;
1469 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1470 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1471 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1474 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1477 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1481 if (chan_is_logical(d40c
))
1482 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1484 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1485 & D40_SREG_LNK_PHYS_LNK_MASK
;
1490 static int d40_pause(struct d40_chan
*d40c
)
1493 unsigned long flags
;
1498 pm_runtime_get_sync(d40c
->base
->dev
);
1499 spin_lock_irqsave(&d40c
->lock
, flags
);
1501 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1503 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1504 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1505 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1509 static int d40_resume(struct d40_chan
*d40c
)
1512 unsigned long flags
;
1517 spin_lock_irqsave(&d40c
->lock
, flags
);
1518 pm_runtime_get_sync(d40c
->base
->dev
);
1520 /* If bytes left to transfer or linked tx resume job */
1521 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1522 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1524 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1525 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1526 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1530 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1532 struct d40_chan
*d40c
= container_of(tx
->chan
,
1535 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1536 unsigned long flags
;
1537 dma_cookie_t cookie
;
1539 spin_lock_irqsave(&d40c
->lock
, flags
);
1540 cookie
= dma_cookie_assign(tx
);
1541 d40_desc_queue(d40c
, d40d
);
1542 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1547 static int d40_start(struct d40_chan
*d40c
)
1549 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1552 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1554 struct d40_desc
*d40d
;
1557 /* Start queued jobs, if any */
1558 d40d
= d40_first_queued(d40c
);
1563 pm_runtime_get_sync(d40c
->base
->dev
);
1566 /* Remove from queue */
1567 d40_desc_remove(d40d
);
1569 /* Add to active queue */
1570 d40_desc_submit(d40c
, d40d
);
1572 /* Initiate DMA job */
1573 d40_desc_load(d40c
, d40d
);
1576 err
= d40_start(d40c
);
1585 /* called from interrupt context */
1586 static void dma_tc_handle(struct d40_chan
*d40c
)
1588 struct d40_desc
*d40d
;
1590 /* Get first active entry from list */
1591 d40d
= d40_first_active_get(d40c
);
1598 * If this was a paritially loaded list, we need to reloaded
1599 * it, and only when the list is completed. We need to check
1600 * for done because the interrupt will hit for every link, and
1601 * not just the last one.
1603 if (d40d
->lli_current
< d40d
->lli_len
1604 && !d40_tx_is_linked(d40c
)
1605 && !d40_residue(d40c
)) {
1606 d40_lcla_free_all(d40c
, d40d
);
1607 d40_desc_load(d40c
, d40d
);
1608 (void) d40_start(d40c
);
1610 if (d40d
->lli_current
== d40d
->lli_len
)
1611 d40d
->lli_current
= 0;
1614 d40_lcla_free_all(d40c
, d40d
);
1616 if (d40d
->lli_current
< d40d
->lli_len
) {
1617 d40_desc_load(d40c
, d40d
);
1619 (void) d40_start(d40c
);
1623 if (d40_queue_start(d40c
) == NULL
) {
1626 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1627 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1630 d40_desc_remove(d40d
);
1631 d40_desc_done(d40c
, d40d
);
1635 tasklet_schedule(&d40c
->tasklet
);
1639 static void dma_tasklet(unsigned long data
)
1641 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1642 struct d40_desc
*d40d
;
1643 unsigned long flags
;
1644 dma_async_tx_callback callback
;
1645 void *callback_param
;
1647 spin_lock_irqsave(&d40c
->lock
, flags
);
1649 /* Get first entry from the done list */
1650 d40d
= d40_first_done(d40c
);
1652 /* Check if we have reached here for cyclic job */
1653 d40d
= d40_first_active_get(d40c
);
1654 if (d40d
== NULL
|| !d40d
->cyclic
)
1659 dma_cookie_complete(&d40d
->txd
);
1662 * If terminating a channel pending_tx is set to zero.
1663 * This prevents any finished active jobs to return to the client.
1665 if (d40c
->pending_tx
== 0) {
1666 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1670 /* Callback to client */
1671 callback
= d40d
->txd
.callback
;
1672 callback_param
= d40d
->txd
.callback_param
;
1674 if (!d40d
->cyclic
) {
1675 if (async_tx_test_ack(&d40d
->txd
)) {
1676 d40_desc_remove(d40d
);
1677 d40_desc_free(d40c
, d40d
);
1678 } else if (!d40d
->is_in_client_list
) {
1679 d40_desc_remove(d40d
);
1680 d40_lcla_free_all(d40c
, d40d
);
1681 list_add_tail(&d40d
->node
, &d40c
->client
);
1682 d40d
->is_in_client_list
= true;
1688 if (d40c
->pending_tx
)
1689 tasklet_schedule(&d40c
->tasklet
);
1691 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1693 if (callback
&& (d40d
->txd
.flags
& DMA_PREP_INTERRUPT
))
1694 callback(callback_param
);
1699 /* Rescue manouver if receiving double interrupts */
1700 if (d40c
->pending_tx
> 0)
1702 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1705 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1711 struct d40_chan
*d40c
;
1712 unsigned long flags
;
1713 struct d40_base
*base
= data
;
1714 u32 regs
[base
->gen_dmac
.il_size
];
1715 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1716 u32 il_size
= base
->gen_dmac
.il_size
;
1718 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1720 /* Read interrupt status of both logical and physical channels */
1721 for (i
= 0; i
< il_size
; i
++)
1722 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1726 chan
= find_next_bit((unsigned long *)regs
,
1727 BITS_PER_LONG
* il_size
, chan
+ 1);
1729 /* No more set bits found? */
1730 if (chan
== BITS_PER_LONG
* il_size
)
1733 row
= chan
/ BITS_PER_LONG
;
1734 idx
= chan
& (BITS_PER_LONG
- 1);
1736 if (il
[row
].offset
== D40_PHY_CHAN
)
1737 d40c
= base
->lookup_phy_chans
[idx
];
1739 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1743 * No error because this can happen if something else
1744 * in the system is using the channel.
1750 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1752 spin_lock(&d40c
->lock
);
1754 if (!il
[row
].is_error
)
1755 dma_tc_handle(d40c
);
1757 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1758 chan
, il
[row
].offset
, idx
);
1760 spin_unlock(&d40c
->lock
);
1763 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1768 static int d40_validate_conf(struct d40_chan
*d40c
,
1769 struct stedma40_chan_cfg
*conf
)
1772 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1775 chan_err(d40c
, "Invalid direction.\n");
1779 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1780 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1781 (conf
->dev_type
< 0)) {
1782 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1786 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1788 * DMAC HW supports it. Will be added to this driver,
1789 * in case any dma client requires it.
1791 chan_err(d40c
, "periph to periph not supported\n");
1795 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1796 conf
->src_info
.data_width
!=
1797 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1798 conf
->dst_info
.data_width
) {
1800 * The DMAC hardware only supports
1801 * src (burst x width) == dst (burst x width)
1804 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1811 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1812 bool is_src
, int log_event_line
, bool is_log
,
1815 unsigned long flags
;
1816 spin_lock_irqsave(&phy
->lock
, flags
);
1818 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1822 /* Physical interrupts are masked per physical full channel */
1823 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1824 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1825 phy
->allocated_dst
= D40_ALLOC_PHY
;
1826 phy
->allocated_src
= D40_ALLOC_PHY
;
1832 /* Logical channel */
1834 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1837 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1838 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1840 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1841 phy
->allocated_src
|= BIT(log_event_line
);
1846 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1849 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1850 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1852 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1853 phy
->allocated_dst
|= BIT(log_event_line
);
1860 spin_unlock_irqrestore(&phy
->lock
, flags
);
1863 spin_unlock_irqrestore(&phy
->lock
, flags
);
1867 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1870 unsigned long flags
;
1871 bool is_free
= false;
1873 spin_lock_irqsave(&phy
->lock
, flags
);
1874 if (!log_event_line
) {
1875 phy
->allocated_dst
= D40_ALLOC_FREE
;
1876 phy
->allocated_src
= D40_ALLOC_FREE
;
1881 /* Logical channel */
1883 phy
->allocated_src
&= ~BIT(log_event_line
);
1884 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1885 phy
->allocated_src
= D40_ALLOC_FREE
;
1887 phy
->allocated_dst
&= ~BIT(log_event_line
);
1888 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1889 phy
->allocated_dst
= D40_ALLOC_FREE
;
1892 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1896 spin_unlock_irqrestore(&phy
->lock
, flags
);
1901 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1903 int dev_type
= d40c
->dma_cfg
.dev_type
;
1906 struct d40_phy_res
*phys
;
1912 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1914 phys
= d40c
->base
->phy_res
;
1915 num_phy_chans
= d40c
->base
->num_phy_chans
;
1917 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1918 log_num
= 2 * dev_type
;
1920 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1921 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1922 /* dst event lines are used for logical memcpy */
1923 log_num
= 2 * dev_type
+ 1;
1928 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1929 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1932 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1933 /* Find physical half channel */
1934 if (d40c
->dma_cfg
.use_fixed_channel
) {
1935 i
= d40c
->dma_cfg
.phy_channel
;
1936 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1941 for (i
= 0; i
< num_phy_chans
; i
++) {
1942 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1949 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1950 int phy_num
= j
+ event_group
* 2;
1951 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1952 if (d40_alloc_mask_set(&phys
[i
],
1962 d40c
->phy_chan
= &phys
[i
];
1963 d40c
->log_num
= D40_PHY_CHAN
;
1969 /* Find logical channel */
1970 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1971 int phy_num
= j
+ event_group
* 2;
1973 if (d40c
->dma_cfg
.use_fixed_channel
) {
1974 i
= d40c
->dma_cfg
.phy_channel
;
1976 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1977 dev_err(chan2dev(d40c
),
1978 "invalid fixed phy channel %d\n", i
);
1982 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1983 is_log
, first_phy_user
))
1986 dev_err(chan2dev(d40c
),
1987 "could not allocate fixed phy channel %d\n", i
);
1992 * Spread logical channels across all available physical rather
1993 * than pack every logical channel at the first available phy
1997 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1998 if (d40_alloc_mask_set(&phys
[i
], is_src
,
2004 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
2005 if (d40_alloc_mask_set(&phys
[i
], is_src
,
2015 d40c
->phy_chan
= &phys
[i
];
2016 d40c
->log_num
= log_num
;
2020 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
2022 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
2028 static int d40_config_memcpy(struct d40_chan
*d40c
)
2030 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
2032 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
2033 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
2034 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
2036 d40_log_cfg(&d40c
->dma_cfg
,
2037 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2039 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
2040 dma_has_cap(DMA_SLAVE
, cap
)) {
2041 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
2043 /* Generate interrrupt at end of transfer or relink. */
2044 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
2046 /* Generate interrupt on error. */
2047 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2048 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2051 chan_err(d40c
, "No memcpy\n");
2058 static int d40_free_dma(struct d40_chan
*d40c
)
2062 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2063 struct d40_phy_res
*phy
= d40c
->phy_chan
;
2066 /* Terminate all queued and active transfers */
2070 chan_err(d40c
, "phy == null\n");
2074 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
2075 phy
->allocated_dst
== D40_ALLOC_FREE
) {
2076 chan_err(d40c
, "channel already free\n");
2080 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2081 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2083 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2086 chan_err(d40c
, "Unknown direction\n");
2090 pm_runtime_get_sync(d40c
->base
->dev
);
2091 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2093 chan_err(d40c
, "stop failed\n");
2097 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2099 if (chan_is_logical(d40c
))
2100 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2102 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2105 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2106 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2110 d40c
->phy_chan
= NULL
;
2111 d40c
->configured
= false;
2114 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2115 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2119 static bool d40_is_paused(struct d40_chan
*d40c
)
2121 void __iomem
*chanbase
= chan_base(d40c
);
2122 bool is_paused
= false;
2123 unsigned long flags
;
2124 void __iomem
*active_reg
;
2126 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2128 spin_lock_irqsave(&d40c
->lock
, flags
);
2130 if (chan_is_physical(d40c
)) {
2131 if (d40c
->phy_chan
->num
% 2 == 0)
2132 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2134 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2136 status
= (readl(active_reg
) &
2137 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2138 D40_CHAN_POS(d40c
->phy_chan
->num
);
2139 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2145 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2146 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2147 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2148 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2149 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2151 chan_err(d40c
, "Unknown direction\n");
2155 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2156 D40_EVENTLINE_POS(event
);
2158 if (status
!= D40_DMA_RUN
)
2161 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2166 static u32
stedma40_residue(struct dma_chan
*chan
)
2168 struct d40_chan
*d40c
=
2169 container_of(chan
, struct d40_chan
, chan
);
2171 unsigned long flags
;
2173 spin_lock_irqsave(&d40c
->lock
, flags
);
2174 bytes_left
= d40_residue(d40c
);
2175 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2181 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2182 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2183 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2184 dma_addr_t dst_dev_addr
)
2186 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2187 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2188 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2191 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2194 chan
->log_def
.lcsp1
,
2195 src_info
->data_width
,
2196 dst_info
->data_width
);
2198 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2201 chan
->log_def
.lcsp3
,
2202 dst_info
->data_width
,
2203 src_info
->data_width
);
2205 return ret
< 0 ? ret
: 0;
2209 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2210 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2211 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2212 dma_addr_t dst_dev_addr
)
2214 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2215 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2216 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2217 unsigned long flags
= 0;
2221 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2223 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2225 virt_to_phys(desc
->lli_phy
.src
),
2227 src_info
, dst_info
, flags
);
2229 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2231 virt_to_phys(desc
->lli_phy
.dst
),
2233 dst_info
, src_info
, flags
);
2235 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2236 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2238 return ret
< 0 ? ret
: 0;
2241 static struct d40_desc
*
2242 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2243 unsigned int sg_len
, unsigned long dma_flags
)
2245 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2246 struct d40_desc
*desc
;
2249 desc
= d40_desc_get(chan
);
2253 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2254 cfg
->dst_info
.data_width
);
2255 if (desc
->lli_len
< 0) {
2256 chan_err(chan
, "Unaligned size\n");
2260 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2262 chan_err(chan
, "Could not allocate lli\n");
2266 desc
->lli_current
= 0;
2267 desc
->txd
.flags
= dma_flags
;
2268 desc
->txd
.tx_submit
= d40_tx_submit
;
2270 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2275 d40_desc_free(chan
, desc
);
2279 static struct dma_async_tx_descriptor
*
2280 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2281 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2282 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2284 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2285 dma_addr_t src_dev_addr
= 0;
2286 dma_addr_t dst_dev_addr
= 0;
2287 struct d40_desc
*desc
;
2288 unsigned long flags
;
2291 if (!chan
->phy_chan
) {
2292 chan_err(chan
, "Cannot prepare unallocated channel\n");
2296 spin_lock_irqsave(&chan
->lock
, flags
);
2298 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2302 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2303 desc
->cyclic
= true;
2305 if (direction
== DMA_DEV_TO_MEM
)
2306 src_dev_addr
= chan
->runtime_addr
;
2307 else if (direction
== DMA_MEM_TO_DEV
)
2308 dst_dev_addr
= chan
->runtime_addr
;
2310 if (chan_is_logical(chan
))
2311 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2312 sg_len
, src_dev_addr
, dst_dev_addr
);
2314 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2315 sg_len
, src_dev_addr
, dst_dev_addr
);
2318 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2319 chan_is_logical(chan
) ? "log" : "phy", ret
);
2324 * add descriptor to the prepare queue in order to be able
2325 * to free them later in terminate_all
2327 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2329 spin_unlock_irqrestore(&chan
->lock
, flags
);
2335 d40_desc_free(chan
, desc
);
2336 spin_unlock_irqrestore(&chan
->lock
, flags
);
2340 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2342 struct stedma40_chan_cfg
*info
= data
;
2343 struct d40_chan
*d40c
=
2344 container_of(chan
, struct d40_chan
, chan
);
2348 err
= d40_validate_conf(d40c
, info
);
2350 d40c
->dma_cfg
= *info
;
2352 err
= d40_config_memcpy(d40c
);
2355 d40c
->configured
= true;
2359 EXPORT_SYMBOL(stedma40_filter
);
2361 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2363 bool realtime
= d40c
->dma_cfg
.realtime
;
2364 bool highprio
= d40c
->dma_cfg
.high_priority
;
2366 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2367 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2368 u32 bit
= BIT(event
);
2370 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2372 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2374 * Due to a hardware bug, in some cases a logical channel triggered by
2375 * a high priority destination event line can generate extra packet
2378 * The workaround is to not set the high priority level for the
2379 * destination event lines that trigger logical channels.
2381 if (!src
&& chan_is_logical(d40c
))
2384 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2386 /* Destination event lines are stored in the upper halfword */
2390 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2391 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2394 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2396 if (d40c
->base
->rev
< 3)
2399 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2400 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2401 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2403 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2404 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2405 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2408 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2409 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2410 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2411 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2412 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2414 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2415 struct of_dma
*ofdma
)
2417 struct stedma40_chan_cfg cfg
;
2421 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2424 dma_cap_set(DMA_SLAVE
, cap
);
2426 cfg
.dev_type
= dma_spec
->args
[0];
2427 flags
= dma_spec
->args
[2];
2429 switch (D40_DT_FLAGS_MODE(flags
)) {
2430 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2431 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2434 switch (D40_DT_FLAGS_DIR(flags
)) {
2436 cfg
.dir
= DMA_MEM_TO_DEV
;
2437 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2440 cfg
.dir
= DMA_DEV_TO_MEM
;
2441 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2445 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2446 cfg
.phy_channel
= dma_spec
->args
[1];
2447 cfg
.use_fixed_channel
= true;
2450 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2451 cfg
.high_priority
= true;
2453 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2456 /* DMA ENGINE functions */
2457 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2460 unsigned long flags
;
2461 struct d40_chan
*d40c
=
2462 container_of(chan
, struct d40_chan
, chan
);
2464 spin_lock_irqsave(&d40c
->lock
, flags
);
2466 dma_cookie_init(chan
);
2468 /* If no dma configuration is set use default configuration (memcpy) */
2469 if (!d40c
->configured
) {
2470 err
= d40_config_memcpy(d40c
);
2472 chan_err(d40c
, "Failed to configure memcpy channel\n");
2477 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2479 chan_err(d40c
, "Failed to allocate channel\n");
2480 d40c
->configured
= false;
2484 pm_runtime_get_sync(d40c
->base
->dev
);
2486 d40_set_prio_realtime(d40c
);
2488 if (chan_is_logical(d40c
)) {
2489 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2490 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2491 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2493 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2494 d40c
->dma_cfg
.dev_type
*
2495 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2497 /* Unmask the Global Interrupt Mask. */
2498 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2499 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2502 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2503 chan_is_logical(d40c
) ? "logical" : "physical",
2504 d40c
->phy_chan
->num
,
2505 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2509 * Only write channel configuration to the DMA if the physical
2510 * resource is free. In case of multiple logical channels
2511 * on the same physical resource, only the first write is necessary.
2514 d40_config_write(d40c
);
2516 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2517 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2518 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2522 static void d40_free_chan_resources(struct dma_chan
*chan
)
2524 struct d40_chan
*d40c
=
2525 container_of(chan
, struct d40_chan
, chan
);
2527 unsigned long flags
;
2529 if (d40c
->phy_chan
== NULL
) {
2530 chan_err(d40c
, "Cannot free unallocated channel\n");
2534 spin_lock_irqsave(&d40c
->lock
, flags
);
2536 err
= d40_free_dma(d40c
);
2539 chan_err(d40c
, "Failed to free channel\n");
2540 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2543 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2547 unsigned long dma_flags
)
2549 struct scatterlist dst_sg
;
2550 struct scatterlist src_sg
;
2552 sg_init_table(&dst_sg
, 1);
2553 sg_init_table(&src_sg
, 1);
2555 sg_dma_address(&dst_sg
) = dst
;
2556 sg_dma_address(&src_sg
) = src
;
2558 sg_dma_len(&dst_sg
) = size
;
2559 sg_dma_len(&src_sg
) = size
;
2561 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1, DMA_NONE
, dma_flags
);
2564 static struct dma_async_tx_descriptor
*
2565 d40_prep_memcpy_sg(struct dma_chan
*chan
,
2566 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
2567 struct scatterlist
*src_sg
, unsigned int src_nents
,
2568 unsigned long dma_flags
)
2570 if (dst_nents
!= src_nents
)
2573 return d40_prep_sg(chan
, src_sg
, dst_sg
, src_nents
, DMA_NONE
, dma_flags
);
2576 static struct dma_async_tx_descriptor
*
2577 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2578 unsigned int sg_len
, enum dma_transfer_direction direction
,
2579 unsigned long dma_flags
, void *context
)
2581 if (!is_slave_direction(direction
))
2584 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2587 static struct dma_async_tx_descriptor
*
2588 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2589 size_t buf_len
, size_t period_len
,
2590 enum dma_transfer_direction direction
, unsigned long flags
,
2593 unsigned int periods
= buf_len
/ period_len
;
2594 struct dma_async_tx_descriptor
*txd
;
2595 struct scatterlist
*sg
;
2598 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2602 for (i
= 0; i
< periods
; i
++) {
2603 sg_dma_address(&sg
[i
]) = dma_addr
;
2604 sg_dma_len(&sg
[i
]) = period_len
;
2605 dma_addr
+= period_len
;
2608 sg
[periods
].offset
= 0;
2609 sg_dma_len(&sg
[periods
]) = 0;
2610 sg
[periods
].page_link
=
2611 ((unsigned long)sg
| 0x01) & ~0x02;
2613 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2614 DMA_PREP_INTERRUPT
);
2621 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2622 dma_cookie_t cookie
,
2623 struct dma_tx_state
*txstate
)
2625 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2626 enum dma_status ret
;
2628 if (d40c
->phy_chan
== NULL
) {
2629 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2633 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2634 if (ret
!= DMA_COMPLETE
)
2635 dma_set_residue(txstate
, stedma40_residue(chan
));
2637 if (d40_is_paused(d40c
))
2643 static void d40_issue_pending(struct dma_chan
*chan
)
2645 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2646 unsigned long flags
;
2648 if (d40c
->phy_chan
== NULL
) {
2649 chan_err(d40c
, "Channel is not allocated!\n");
2653 spin_lock_irqsave(&d40c
->lock
, flags
);
2655 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2657 /* Busy means that queued jobs are already being processed */
2659 (void) d40_queue_start(d40c
);
2661 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2664 static void d40_terminate_all(struct dma_chan
*chan
)
2666 unsigned long flags
;
2667 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2670 spin_lock_irqsave(&d40c
->lock
, flags
);
2672 pm_runtime_get_sync(d40c
->base
->dev
);
2673 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2675 chan_err(d40c
, "Failed to stop channel\n");
2678 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2679 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2681 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2682 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2686 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2690 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2691 struct stedma40_half_channel_info
*info
,
2696 if (chan_is_logical(d40c
)) {
2698 psize
= STEDMA40_PSIZE_LOG_16
;
2699 else if (maxburst
>= 8)
2700 psize
= STEDMA40_PSIZE_LOG_8
;
2701 else if (maxburst
>= 4)
2702 psize
= STEDMA40_PSIZE_LOG_4
;
2704 psize
= STEDMA40_PSIZE_LOG_1
;
2707 psize
= STEDMA40_PSIZE_PHY_16
;
2708 else if (maxburst
>= 8)
2709 psize
= STEDMA40_PSIZE_PHY_8
;
2710 else if (maxburst
>= 4)
2711 psize
= STEDMA40_PSIZE_PHY_4
;
2713 psize
= STEDMA40_PSIZE_PHY_1
;
2716 info
->psize
= psize
;
2717 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2722 /* Runtime reconfiguration extension */
2723 static int d40_set_runtime_config(struct dma_chan
*chan
,
2724 struct dma_slave_config
*config
)
2726 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2727 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2728 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2729 dma_addr_t config_addr
;
2730 u32 src_maxburst
, dst_maxburst
;
2733 src_addr_width
= config
->src_addr_width
;
2734 src_maxburst
= config
->src_maxburst
;
2735 dst_addr_width
= config
->dst_addr_width
;
2736 dst_maxburst
= config
->dst_maxburst
;
2738 if (config
->direction
== DMA_DEV_TO_MEM
) {
2739 config_addr
= config
->src_addr
;
2741 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2742 dev_dbg(d40c
->base
->dev
,
2743 "channel was not configured for peripheral "
2744 "to memory transfer (%d) overriding\n",
2746 cfg
->dir
= DMA_DEV_TO_MEM
;
2748 /* Configure the memory side */
2749 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2750 dst_addr_width
= src_addr_width
;
2751 if (dst_maxburst
== 0)
2752 dst_maxburst
= src_maxburst
;
2754 } else if (config
->direction
== DMA_MEM_TO_DEV
) {
2755 config_addr
= config
->dst_addr
;
2757 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2758 dev_dbg(d40c
->base
->dev
,
2759 "channel was not configured for memory "
2760 "to peripheral transfer (%d) overriding\n",
2762 cfg
->dir
= DMA_MEM_TO_DEV
;
2764 /* Configure the memory side */
2765 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2766 src_addr_width
= dst_addr_width
;
2767 if (src_maxburst
== 0)
2768 src_maxburst
= dst_maxburst
;
2770 dev_err(d40c
->base
->dev
,
2771 "unrecognized channel direction %d\n",
2776 if (config_addr
<= 0) {
2777 dev_err(d40c
->base
->dev
, "no address supplied\n");
2781 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2782 dev_err(d40c
->base
->dev
,
2783 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2791 if (src_maxburst
> 16) {
2793 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2794 } else if (dst_maxburst
> 16) {
2796 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2799 /* Only valid widths are; 1, 2, 4 and 8. */
2800 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2801 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2802 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2803 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2804 !is_power_of_2(src_addr_width
) ||
2805 !is_power_of_2(dst_addr_width
))
2808 cfg
->src_info
.data_width
= src_addr_width
;
2809 cfg
->dst_info
.data_width
= dst_addr_width
;
2811 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2816 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2821 /* Fill in register values */
2822 if (chan_is_logical(d40c
))
2823 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2825 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2827 /* These settings will take precedence later */
2828 d40c
->runtime_addr
= config_addr
;
2829 d40c
->runtime_direction
= config
->direction
;
2830 dev_dbg(d40c
->base
->dev
,
2831 "configured channel %s for %s, data width %d/%d, "
2832 "maxburst %d/%d elements, LE, no flow control\n",
2833 dma_chan_name(chan
),
2834 (config
->direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2835 src_addr_width
, dst_addr_width
,
2836 src_maxburst
, dst_maxburst
);
2841 static int d40_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
2844 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2846 if (d40c
->phy_chan
== NULL
) {
2847 chan_err(d40c
, "Channel is not allocated!\n");
2852 case DMA_TERMINATE_ALL
:
2853 d40_terminate_all(chan
);
2856 return d40_pause(d40c
);
2858 return d40_resume(d40c
);
2859 case DMA_SLAVE_CONFIG
:
2860 return d40_set_runtime_config(chan
,
2861 (struct dma_slave_config
*) arg
);
2866 /* Other commands are unimplemented */
2870 /* Initialization functions */
2872 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2873 struct d40_chan
*chans
, int offset
,
2877 struct d40_chan
*d40c
;
2879 INIT_LIST_HEAD(&dma
->channels
);
2881 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2884 d40c
->chan
.device
= dma
;
2886 spin_lock_init(&d40c
->lock
);
2888 d40c
->log_num
= D40_PHY_CHAN
;
2890 INIT_LIST_HEAD(&d40c
->done
);
2891 INIT_LIST_HEAD(&d40c
->active
);
2892 INIT_LIST_HEAD(&d40c
->queue
);
2893 INIT_LIST_HEAD(&d40c
->pending_queue
);
2894 INIT_LIST_HEAD(&d40c
->client
);
2895 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2897 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2898 (unsigned long) d40c
);
2900 list_add_tail(&d40c
->chan
.device_node
,
2905 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2907 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
))
2908 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2910 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2911 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2914 * This controller can only access address at even
2915 * 32bit boundaries, i.e. 2^2
2917 dev
->copy_align
= 2;
2920 if (dma_has_cap(DMA_SG
, dev
->cap_mask
))
2921 dev
->device_prep_dma_sg
= d40_prep_memcpy_sg
;
2923 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2924 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2926 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2927 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2928 dev
->device_issue_pending
= d40_issue_pending
;
2929 dev
->device_tx_status
= d40_tx_status
;
2930 dev
->device_control
= d40_control
;
2931 dev
->dev
= base
->dev
;
2934 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2935 int num_reserved_chans
)
2939 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2940 0, base
->num_log_chans
);
2942 dma_cap_zero(base
->dma_slave
.cap_mask
);
2943 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2944 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2946 d40_ops_init(base
, &base
->dma_slave
);
2948 err
= dma_async_device_register(&base
->dma_slave
);
2951 d40_err(base
->dev
, "Failed to register slave channels\n");
2955 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2956 base
->num_log_chans
, base
->num_memcpy_chans
);
2958 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2959 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2960 dma_cap_set(DMA_SG
, base
->dma_memcpy
.cap_mask
);
2962 d40_ops_init(base
, &base
->dma_memcpy
);
2964 err
= dma_async_device_register(&base
->dma_memcpy
);
2968 "Failed to regsiter memcpy only channels\n");
2972 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2973 0, num_reserved_chans
);
2975 dma_cap_zero(base
->dma_both
.cap_mask
);
2976 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2977 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2978 dma_cap_set(DMA_SG
, base
->dma_both
.cap_mask
);
2979 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2981 d40_ops_init(base
, &base
->dma_both
);
2982 err
= dma_async_device_register(&base
->dma_both
);
2986 "Failed to register logical and physical capable channels\n");
2991 dma_async_device_unregister(&base
->dma_memcpy
);
2993 dma_async_device_unregister(&base
->dma_slave
);
2998 /* Suspend resume functionality */
3000 static int dma40_pm_suspend(struct device
*dev
)
3002 struct platform_device
*pdev
= to_platform_device(dev
);
3003 struct d40_base
*base
= platform_get_drvdata(pdev
);
3006 if (base
->lcpa_regulator
)
3007 ret
= regulator_disable(base
->lcpa_regulator
);
3011 static int dma40_runtime_suspend(struct device
*dev
)
3013 struct platform_device
*pdev
= to_platform_device(dev
);
3014 struct d40_base
*base
= platform_get_drvdata(pdev
);
3016 d40_save_restore_registers(base
, true);
3018 /* Don't disable/enable clocks for v1 due to HW bugs */
3020 writel_relaxed(base
->gcc_pwr_off_mask
,
3021 base
->virtbase
+ D40_DREG_GCC
);
3026 static int dma40_runtime_resume(struct device
*dev
)
3028 struct platform_device
*pdev
= to_platform_device(dev
);
3029 struct d40_base
*base
= platform_get_drvdata(pdev
);
3031 if (base
->initialized
)
3032 d40_save_restore_registers(base
, false);
3034 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
3035 base
->virtbase
+ D40_DREG_GCC
);
3039 static int dma40_resume(struct device
*dev
)
3041 struct platform_device
*pdev
= to_platform_device(dev
);
3042 struct d40_base
*base
= platform_get_drvdata(pdev
);
3045 if (base
->lcpa_regulator
)
3046 ret
= regulator_enable(base
->lcpa_regulator
);
3051 static const struct dev_pm_ops dma40_pm_ops
= {
3052 .suspend
= dma40_pm_suspend
,
3053 .runtime_suspend
= dma40_runtime_suspend
,
3054 .runtime_resume
= dma40_runtime_resume
,
3055 .resume
= dma40_resume
,
3057 #define DMA40_PM_OPS (&dma40_pm_ops)
3059 #define DMA40_PM_OPS NULL
3062 /* Initialization functions. */
3064 static int __init
d40_phy_res_init(struct d40_base
*base
)
3067 int num_phy_chans_avail
= 0;
3069 int odd_even_bit
= -2;
3070 int gcc
= D40_DREG_GCC_ENA
;
3072 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3073 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3075 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3076 base
->phy_res
[i
].num
= i
;
3077 odd_even_bit
+= 2 * ((i
% 2) == 0);
3078 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3079 /* Mark security only channels as occupied */
3080 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3081 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3082 base
->phy_res
[i
].reserved
= true;
3083 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3085 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3090 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3091 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3092 base
->phy_res
[i
].reserved
= false;
3093 num_phy_chans_avail
++;
3095 spin_lock_init(&base
->phy_res
[i
].lock
);
3098 /* Mark disabled channels as occupied */
3099 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3100 int chan
= base
->plat_data
->disabled_channels
[i
];
3102 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3103 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3104 base
->phy_res
[chan
].reserved
= true;
3105 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3107 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3109 num_phy_chans_avail
--;
3112 /* Mark soft_lli channels */
3113 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3114 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3116 base
->phy_res
[chan
].use_soft_lli
= true;
3119 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3120 num_phy_chans_avail
, base
->num_phy_chans
);
3122 /* Verify settings extended vs standard */
3123 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3125 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3127 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3128 (val
[0] & 0x3) != 1)
3130 "[%s] INFO: channel %d is misconfigured (%d)\n",
3131 __func__
, i
, val
[0] & 0x3);
3133 val
[0] = val
[0] >> 2;
3137 * To keep things simple, Enable all clocks initially.
3138 * The clocks will get managed later post channel allocation.
3139 * The clocks for the event lines on which reserved channels exists
3140 * are not managed here.
3142 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3143 base
->gcc_pwr_off_mask
= gcc
;
3145 return num_phy_chans_avail
;
3148 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
3150 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3151 struct clk
*clk
= NULL
;
3152 void __iomem
*virtbase
= NULL
;
3153 struct resource
*res
= NULL
;
3154 struct d40_base
*base
= NULL
;
3155 int num_log_chans
= 0;
3157 int num_memcpy_chans
;
3158 int clk_ret
= -EINVAL
;
3164 clk
= clk_get(&pdev
->dev
, NULL
);
3166 d40_err(&pdev
->dev
, "No matching clock found\n");
3170 clk_ret
= clk_prepare_enable(clk
);
3172 d40_err(&pdev
->dev
, "Failed to prepare/enable clock\n");
3176 /* Get IO for DMAC base address */
3177 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
3181 if (request_mem_region(res
->start
, resource_size(res
),
3182 D40_NAME
" I/O base") == NULL
)
3185 virtbase
= ioremap(res
->start
, resource_size(res
));
3189 /* This is just a regular AMBA PrimeCell ID actually */
3190 for (pid
= 0, i
= 0; i
< 4; i
++)
3191 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
3193 for (cid
= 0, i
= 0; i
< 4; i
++)
3194 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
3197 if (cid
!= AMBA_CID
) {
3198 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
3201 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3202 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
3203 AMBA_MANF_BITS(pid
),
3209 * DB8500ed has revision 0
3211 * DB8500v1 has revision 2
3212 * DB8500v2 has revision 3
3213 * AP9540v1 has revision 4
3214 * DB8540v1 has revision 4
3216 rev
= AMBA_REV_BITS(pid
);
3218 d40_err(&pdev
->dev
, "hardware revision: %d is not supported", rev
);
3222 /* The number of physical channels on this HW */
3223 if (plat_data
->num_of_phy_chans
)
3224 num_phy_chans
= plat_data
->num_of_phy_chans
;
3226 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3228 /* The number of channels used for memcpy */
3229 if (plat_data
->num_of_memcpy_chans
)
3230 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3232 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3234 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3236 dev_info(&pdev
->dev
,
3237 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3238 rev
, &res
->start
, num_phy_chans
, num_log_chans
);
3240 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
3241 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3242 sizeof(struct d40_chan
), GFP_KERNEL
);
3245 d40_err(&pdev
->dev
, "Out of memory\n");
3251 base
->num_memcpy_chans
= num_memcpy_chans
;
3252 base
->num_phy_chans
= num_phy_chans
;
3253 base
->num_log_chans
= num_log_chans
;
3254 base
->phy_start
= res
->start
;
3255 base
->phy_size
= resource_size(res
);
3256 base
->virtbase
= virtbase
;
3257 base
->plat_data
= plat_data
;
3258 base
->dev
= &pdev
->dev
;
3259 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3260 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3262 if (base
->plat_data
->num_of_phy_chans
== 14) {
3263 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3264 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3265 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3266 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3267 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3268 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3269 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3270 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3271 base
->gen_dmac
.il
= il_v4b
;
3272 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3273 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3274 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3276 if (base
->rev
>= 3) {
3277 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3278 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3280 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3281 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3282 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3283 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3284 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3285 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3286 base
->gen_dmac
.il
= il_v4a
;
3287 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3288 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3289 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3292 base
->phy_res
= kzalloc(num_phy_chans
* sizeof(struct d40_phy_res
),
3297 base
->lookup_phy_chans
= kzalloc(num_phy_chans
*
3298 sizeof(struct d40_chan
*),
3300 if (!base
->lookup_phy_chans
)
3303 base
->lookup_log_chans
= kzalloc(num_log_chans
*
3304 sizeof(struct d40_chan
*),
3306 if (!base
->lookup_log_chans
)
3309 base
->reg_val_backup_chan
= kmalloc(base
->num_phy_chans
*
3310 sizeof(d40_backup_regs_chan
),
3312 if (!base
->reg_val_backup_chan
)
3315 base
->lcla_pool
.alloc_map
=
3316 kzalloc(num_phy_chans
* sizeof(struct d40_desc
*)
3317 * D40_LCLA_LINK_PER_EVENT_GRP
, GFP_KERNEL
);
3318 if (!base
->lcla_pool
.alloc_map
)
3321 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3322 0, SLAB_HWCACHE_ALIGN
,
3324 if (base
->desc_slab
== NULL
)
3331 clk_disable_unprepare(clk
);
3337 release_mem_region(res
->start
,
3338 resource_size(res
));
3343 kfree(base
->lcla_pool
.alloc_map
);
3344 kfree(base
->reg_val_backup_chan
);
3345 kfree(base
->lookup_log_chans
);
3346 kfree(base
->lookup_phy_chans
);
3347 kfree(base
->phy_res
);
3354 static void __init
d40_hw_init(struct d40_base
*base
)
3358 u32 prmseo
[2] = {0, 0};
3359 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3362 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3363 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3365 for (i
= 0; i
< reg_size
; i
++)
3366 writel(dma_init_reg
[i
].val
,
3367 base
->virtbase
+ dma_init_reg
[i
].reg
);
3369 /* Configure all our dma channels to default settings */
3370 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3372 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3374 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3376 activeo
[i
% 2] |= 3;
3380 /* Enable interrupt # */
3381 pcmis
= (pcmis
<< 1) | 1;
3383 /* Clear interrupt # */
3384 pcicr
= (pcicr
<< 1) | 1;
3386 /* Set channel to physical mode */
3387 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3392 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3393 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3394 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3395 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3397 /* Write which interrupt to enable */
3398 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3400 /* Write which interrupt to clear */
3401 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3403 /* These are __initdata and cannot be accessed after init */
3404 base
->gen_dmac
.init_reg
= NULL
;
3405 base
->gen_dmac
.init_reg_size
= 0;
3408 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3410 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3411 unsigned long *page_list
;
3416 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3417 * To full fill this hardware requirement without wasting 256 kb
3418 * we allocate pages until we get an aligned one.
3420 page_list
= kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS
,
3428 /* Calculating how many pages that are required */
3429 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3431 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3432 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3433 base
->lcla_pool
.pages
);
3434 if (!page_list
[i
]) {
3436 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3437 base
->lcla_pool
.pages
);
3439 for (j
= 0; j
< i
; j
++)
3440 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3444 if ((virt_to_phys((void *)page_list
[i
]) &
3445 (LCLA_ALIGNMENT
- 1)) == 0)
3449 for (j
= 0; j
< i
; j
++)
3450 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3452 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3453 base
->lcla_pool
.base
= (void *)page_list
[i
];
3456 * After many attempts and no succees with finding the correct
3457 * alignment, try with allocating a big buffer.
3460 "[%s] Failed to get %d pages @ 18 bit align.\n",
3461 __func__
, base
->lcla_pool
.pages
);
3462 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3463 base
->num_phy_chans
+
3466 if (!base
->lcla_pool
.base_unaligned
) {
3471 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3475 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3476 SZ_1K
* base
->num_phy_chans
,
3478 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3484 writel(virt_to_phys(base
->lcla_pool
.base
),
3485 base
->virtbase
+ D40_DREG_LCLA
);
3491 static int __init
d40_of_probe(struct platform_device
*pdev
,
3492 struct device_node
*np
)
3494 struct stedma40_platform_data
*pdata
;
3495 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3498 pdata
= devm_kzalloc(&pdev
->dev
,
3499 sizeof(struct stedma40_platform_data
),
3504 /* If absent this value will be obtained from h/w. */
3505 of_property_read_u32(np
, "dma-channels", &num_phy
);
3507 pdata
->num_of_phy_chans
= num_phy
;
3509 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3510 num_memcpy
/= sizeof(*list
);
3512 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3514 "Invalid number of memcpy channels specified (%d)\n",
3518 pdata
->num_of_memcpy_chans
= num_memcpy
;
3520 of_property_read_u32_array(np
, "memcpy-channels",
3521 dma40_memcpy_channels
,
3524 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3525 num_disabled
/= sizeof(*list
);
3527 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3529 "Invalid number of disabled channels specified (%d)\n",
3534 of_property_read_u32_array(np
, "disabled-channels",
3535 pdata
->disabled_channels
,
3537 pdata
->disabled_channels
[num_disabled
] = -1;
3539 pdev
->dev
.platform_data
= pdata
;
3544 static int __init
d40_probe(struct platform_device
*pdev
)
3546 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3547 struct device_node
*np
= pdev
->dev
.of_node
;
3549 struct d40_base
*base
= NULL
;
3550 struct resource
*res
= NULL
;
3551 int num_reserved_chans
;
3556 if(d40_of_probe(pdev
, np
)) {
3561 d40_err(&pdev
->dev
, "No pdata or Device Tree provided\n");
3566 base
= d40_hw_detect_init(pdev
);
3570 num_reserved_chans
= d40_phy_res_init(base
);
3572 platform_set_drvdata(pdev
, base
);
3574 spin_lock_init(&base
->interrupt_lock
);
3575 spin_lock_init(&base
->execmd_lock
);
3577 /* Get IO for logical channel parameter address */
3578 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
3581 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
3584 base
->lcpa_size
= resource_size(res
);
3585 base
->phy_lcpa
= res
->start
;
3587 if (request_mem_region(res
->start
, resource_size(res
),
3588 D40_NAME
" I/O lcpa") == NULL
) {
3590 d40_err(&pdev
->dev
, "Failed to request LCPA region %pR\n", res
);
3594 /* We make use of ESRAM memory for this. */
3595 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3596 if (res
->start
!= val
&& val
!= 0) {
3597 dev_warn(&pdev
->dev
,
3598 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3599 __func__
, val
, &res
->start
);
3601 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
3603 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
3604 if (!base
->lcpa_base
) {
3606 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
3609 /* If lcla has to be located in ESRAM we don't need to allocate */
3610 if (base
->plat_data
->use_esram_lcla
) {
3611 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3616 "No \"lcla_esram\" memory resource\n");
3619 base
->lcla_pool
.base
= ioremap(res
->start
,
3620 resource_size(res
));
3621 if (!base
->lcla_pool
.base
) {
3623 d40_err(&pdev
->dev
, "Failed to ioremap LCLA region\n");
3626 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3629 ret
= d40_lcla_allocate(base
);
3631 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
3636 spin_lock_init(&base
->lcla_pool
.lock
);
3638 base
->irq
= platform_get_irq(pdev
, 0);
3640 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3642 d40_err(&pdev
->dev
, "No IRQ defined\n");
3646 pm_runtime_irq_safe(base
->dev
);
3647 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3648 pm_runtime_use_autosuspend(base
->dev
);
3649 pm_runtime_enable(base
->dev
);
3650 pm_runtime_resume(base
->dev
);
3652 if (base
->plat_data
->use_esram_lcla
) {
3654 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3655 if (IS_ERR(base
->lcpa_regulator
)) {
3656 d40_err(&pdev
->dev
, "Failed to get lcpa_regulator\n");
3657 ret
= PTR_ERR(base
->lcpa_regulator
);
3658 base
->lcpa_regulator
= NULL
;
3662 ret
= regulator_enable(base
->lcpa_regulator
);
3665 "Failed to enable lcpa_regulator\n");
3666 regulator_put(base
->lcpa_regulator
);
3667 base
->lcpa_regulator
= NULL
;
3672 base
->initialized
= true;
3673 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3677 base
->dev
->dma_parms
= &base
->dma_parms
;
3678 ret
= dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3680 d40_err(&pdev
->dev
, "Failed to set dma max seg size\n");
3687 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3690 "could not register of_dma_controller\n");
3693 dev_info(base
->dev
, "initialized\n");
3698 if (base
->desc_slab
)
3699 kmem_cache_destroy(base
->desc_slab
);
3701 iounmap(base
->virtbase
);
3703 if (base
->lcla_pool
.base
&& base
->plat_data
->use_esram_lcla
) {
3704 iounmap(base
->lcla_pool
.base
);
3705 base
->lcla_pool
.base
= NULL
;
3708 if (base
->lcla_pool
.dma_addr
)
3709 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3710 SZ_1K
* base
->num_phy_chans
,
3713 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3714 free_pages((unsigned long)base
->lcla_pool
.base
,
3715 base
->lcla_pool
.pages
);
3717 kfree(base
->lcla_pool
.base_unaligned
);
3720 release_mem_region(base
->phy_lcpa
,
3722 if (base
->phy_start
)
3723 release_mem_region(base
->phy_start
,
3726 clk_disable_unprepare(base
->clk
);
3730 if (base
->lcpa_regulator
) {
3731 regulator_disable(base
->lcpa_regulator
);
3732 regulator_put(base
->lcpa_regulator
);
3735 kfree(base
->lcla_pool
.alloc_map
);
3736 kfree(base
->lookup_log_chans
);
3737 kfree(base
->lookup_phy_chans
);
3738 kfree(base
->phy_res
);
3742 d40_err(&pdev
->dev
, "probe failed\n");
3746 static const struct of_device_id d40_match
[] = {
3747 { .compatible
= "stericsson,dma40", },
3751 static struct platform_driver d40_driver
= {
3753 .owner
= THIS_MODULE
,
3756 .of_match_table
= d40_match
,
3760 static int __init
stedma40_init(void)
3762 return platform_driver_probe(&d40_driver
, d40_probe
);
3764 subsys_initcall(stedma40_init
);