PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / gma500 / gma_display.c
blob386de2c9dc8649f449580a062d4d91c62fd3a733
1 /*
2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 * Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
22 #include <drm/drmP.h>
23 #include "gma_display.h"
24 #include "psb_intel_drv.h"
25 #include "psb_intel_reg.h"
26 #include "psb_drv.h"
27 #include "framebuffer.h"
29 /**
30 * Returns whether any output on the specified pipe is of the specified type
32 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
34 struct drm_device *dev = crtc->dev;
35 struct drm_mode_config *mode_config = &dev->mode_config;
36 struct drm_connector *l_entry;
38 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
39 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
40 struct gma_encoder *gma_encoder =
41 gma_attached_encoder(l_entry);
42 if (gma_encoder->type == type)
43 return true;
47 return false;
50 void gma_wait_for_vblank(struct drm_device *dev)
52 /* Wait for 20ms, i.e. one cycle at 50hz. */
53 mdelay(20);
56 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
57 struct drm_framebuffer *old_fb)
59 struct drm_device *dev = crtc->dev;
60 struct drm_psb_private *dev_priv = dev->dev_private;
61 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
62 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
63 int pipe = gma_crtc->pipe;
64 const struct psb_offset *map = &dev_priv->regmap[pipe];
65 unsigned long start, offset;
66 u32 dspcntr;
67 int ret = 0;
69 if (!gma_power_begin(dev, true))
70 return 0;
72 /* no fb bound */
73 if (!crtc->fb) {
74 dev_err(dev->dev, "No FB bound\n");
75 goto gma_pipe_cleaner;
78 /* We are displaying this buffer, make sure it is actually loaded
79 into the GTT */
80 ret = psb_gtt_pin(psbfb->gtt);
81 if (ret < 0)
82 goto gma_pipe_set_base_exit;
83 start = psbfb->gtt->offset;
84 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
86 REG_WRITE(map->stride, crtc->fb->pitches[0]);
88 dspcntr = REG_READ(map->cntr);
89 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
91 switch (crtc->fb->bits_per_pixel) {
92 case 8:
93 dspcntr |= DISPPLANE_8BPP;
94 break;
95 case 16:
96 if (crtc->fb->depth == 15)
97 dspcntr |= DISPPLANE_15_16BPP;
98 else
99 dspcntr |= DISPPLANE_16BPP;
100 break;
101 case 24:
102 case 32:
103 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
104 break;
105 default:
106 dev_err(dev->dev, "Unknown color depth\n");
107 ret = -EINVAL;
108 goto gma_pipe_set_base_exit;
110 REG_WRITE(map->cntr, dspcntr);
112 dev_dbg(dev->dev,
113 "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
115 /* FIXME: Investigate whether this really is the base for psb and why
116 the linear offset is named base for the other chips. map->surf
117 should be the base and map->linoff the offset for all chips */
118 if (IS_PSB(dev)) {
119 REG_WRITE(map->base, offset + start);
120 REG_READ(map->base);
121 } else {
122 REG_WRITE(map->base, offset);
123 REG_READ(map->base);
124 REG_WRITE(map->surf, start);
125 REG_READ(map->surf);
128 gma_pipe_cleaner:
129 /* If there was a previous display we can now unpin it */
130 if (old_fb)
131 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
133 gma_pipe_set_base_exit:
134 gma_power_end(dev);
135 return ret;
138 /* Loads the palette/gamma unit for the CRTC with the prepared values */
139 void gma_crtc_load_lut(struct drm_crtc *crtc)
141 struct drm_device *dev = crtc->dev;
142 struct drm_psb_private *dev_priv = dev->dev_private;
143 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
144 const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
145 int palreg = map->palette;
146 int i;
148 /* The clocks have to be on to load the palette. */
149 if (!crtc->enabled)
150 return;
152 if (gma_power_begin(dev, false)) {
153 for (i = 0; i < 256; i++) {
154 REG_WRITE(palreg + 4 * i,
155 ((gma_crtc->lut_r[i] +
156 gma_crtc->lut_adj[i]) << 16) |
157 ((gma_crtc->lut_g[i] +
158 gma_crtc->lut_adj[i]) << 8) |
159 (gma_crtc->lut_b[i] +
160 gma_crtc->lut_adj[i]));
162 gma_power_end(dev);
163 } else {
164 for (i = 0; i < 256; i++) {
165 /* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
166 dev_priv->regs.pipe[0].palette[i] =
167 ((gma_crtc->lut_r[i] +
168 gma_crtc->lut_adj[i]) << 16) |
169 ((gma_crtc->lut_g[i] +
170 gma_crtc->lut_adj[i]) << 8) |
171 (gma_crtc->lut_b[i] +
172 gma_crtc->lut_adj[i]);
178 void gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
179 u32 start, u32 size)
181 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
182 int i;
183 int end = (start + size > 256) ? 256 : start + size;
185 for (i = start; i < end; i++) {
186 gma_crtc->lut_r[i] = red[i] >> 8;
187 gma_crtc->lut_g[i] = green[i] >> 8;
188 gma_crtc->lut_b[i] = blue[i] >> 8;
191 gma_crtc_load_lut(crtc);
195 * Sets the power management mode of the pipe and plane.
197 * This code should probably grow support for turning the cursor off and back
198 * on appropriately at the same time as we're turning the pipe off/on.
200 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
202 struct drm_device *dev = crtc->dev;
203 struct drm_psb_private *dev_priv = dev->dev_private;
204 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
205 int pipe = gma_crtc->pipe;
206 const struct psb_offset *map = &dev_priv->regmap[pipe];
207 u32 temp;
209 /* XXX: When our outputs are all unaware of DPMS modes other than off
210 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
213 if (IS_CDV(dev))
214 dev_priv->ops->disable_sr(dev);
216 switch (mode) {
217 case DRM_MODE_DPMS_ON:
218 case DRM_MODE_DPMS_STANDBY:
219 case DRM_MODE_DPMS_SUSPEND:
220 if (gma_crtc->active)
221 break;
223 gma_crtc->active = true;
225 /* Enable the DPLL */
226 temp = REG_READ(map->dpll);
227 if ((temp & DPLL_VCO_ENABLE) == 0) {
228 REG_WRITE(map->dpll, temp);
229 REG_READ(map->dpll);
230 /* Wait for the clocks to stabilize. */
231 udelay(150);
232 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
233 REG_READ(map->dpll);
234 /* Wait for the clocks to stabilize. */
235 udelay(150);
236 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
237 REG_READ(map->dpll);
238 /* Wait for the clocks to stabilize. */
239 udelay(150);
242 /* Enable the plane */
243 temp = REG_READ(map->cntr);
244 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
245 REG_WRITE(map->cntr,
246 temp | DISPLAY_PLANE_ENABLE);
247 /* Flush the plane changes */
248 REG_WRITE(map->base, REG_READ(map->base));
251 udelay(150);
253 /* Enable the pipe */
254 temp = REG_READ(map->conf);
255 if ((temp & PIPEACONF_ENABLE) == 0)
256 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
258 temp = REG_READ(map->status);
259 temp &= ~(0xFFFF);
260 temp |= PIPE_FIFO_UNDERRUN;
261 REG_WRITE(map->status, temp);
262 REG_READ(map->status);
264 gma_crtc_load_lut(crtc);
266 /* Give the overlay scaler a chance to enable
267 * if it's on this pipe */
268 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
269 break;
270 case DRM_MODE_DPMS_OFF:
271 if (!gma_crtc->active)
272 break;
274 gma_crtc->active = false;
276 /* Give the overlay scaler a chance to disable
277 * if it's on this pipe */
278 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
280 /* Disable the VGA plane that we never use */
281 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
283 /* Turn off vblank interrupts */
284 drm_vblank_off(dev, pipe);
286 /* Wait for vblank for the disable to take effect */
287 gma_wait_for_vblank(dev);
289 /* Disable plane */
290 temp = REG_READ(map->cntr);
291 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
292 REG_WRITE(map->cntr,
293 temp & ~DISPLAY_PLANE_ENABLE);
294 /* Flush the plane changes */
295 REG_WRITE(map->base, REG_READ(map->base));
296 REG_READ(map->base);
299 /* Disable pipe */
300 temp = REG_READ(map->conf);
301 if ((temp & PIPEACONF_ENABLE) != 0) {
302 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
303 REG_READ(map->conf);
306 /* Wait for vblank for the disable to take effect. */
307 gma_wait_for_vblank(dev);
309 udelay(150);
311 /* Disable DPLL */
312 temp = REG_READ(map->dpll);
313 if ((temp & DPLL_VCO_ENABLE) != 0) {
314 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
315 REG_READ(map->dpll);
318 /* Wait for the clocks to turn off. */
319 udelay(150);
320 break;
323 if (IS_CDV(dev))
324 dev_priv->ops->update_wm(dev, crtc);
326 /* Set FIFO watermarks */
327 REG_WRITE(DSPARB, 0x3F3E);
330 int gma_crtc_cursor_set(struct drm_crtc *crtc,
331 struct drm_file *file_priv,
332 uint32_t handle,
333 uint32_t width, uint32_t height)
335 struct drm_device *dev = crtc->dev;
336 struct drm_psb_private *dev_priv = dev->dev_private;
337 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
338 int pipe = gma_crtc->pipe;
339 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
340 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
341 uint32_t temp;
342 size_t addr = 0;
343 struct gtt_range *gt;
344 struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
345 struct drm_gem_object *obj;
346 void *tmp_dst, *tmp_src;
347 int ret = 0, i, cursor_pages;
349 /* If we didn't get a handle then turn the cursor off */
350 if (!handle) {
351 temp = CURSOR_MODE_DISABLE;
352 mutex_lock(&dev->struct_mutex);
354 if (gma_power_begin(dev, false)) {
355 REG_WRITE(control, temp);
356 REG_WRITE(base, 0);
357 gma_power_end(dev);
360 /* Unpin the old GEM object */
361 if (gma_crtc->cursor_obj) {
362 gt = container_of(gma_crtc->cursor_obj,
363 struct gtt_range, gem);
364 psb_gtt_unpin(gt);
365 drm_gem_object_unreference(gma_crtc->cursor_obj);
366 gma_crtc->cursor_obj = NULL;
369 mutex_unlock(&dev->struct_mutex);
370 return 0;
373 /* Currently we only support 64x64 cursors */
374 if (width != 64 || height != 64) {
375 dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
376 return -EINVAL;
379 mutex_lock(&dev->struct_mutex);
380 obj = drm_gem_object_lookup(dev, file_priv, handle);
381 if (!obj) {
382 ret = -ENOENT;
383 goto unlock;
386 if (obj->size < width * height * 4) {
387 dev_dbg(dev->dev, "Buffer is too small\n");
388 ret = -ENOMEM;
389 goto unref_cursor;
392 gt = container_of(obj, struct gtt_range, gem);
394 /* Pin the memory into the GTT */
395 ret = psb_gtt_pin(gt);
396 if (ret) {
397 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
398 goto unref_cursor;
401 if (dev_priv->ops->cursor_needs_phys) {
402 if (cursor_gt == NULL) {
403 dev_err(dev->dev, "No hardware cursor mem available");
404 ret = -ENOMEM;
405 goto unref_cursor;
408 /* Prevent overflow */
409 if (gt->npage > 4)
410 cursor_pages = 4;
411 else
412 cursor_pages = gt->npage;
414 /* Copy the cursor to cursor mem */
415 tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
416 for (i = 0; i < cursor_pages; i++) {
417 tmp_src = kmap(gt->pages[i]);
418 memcpy(tmp_dst, tmp_src, PAGE_SIZE);
419 kunmap(gt->pages[i]);
420 tmp_dst += PAGE_SIZE;
423 addr = gma_crtc->cursor_addr;
424 } else {
425 addr = gt->offset;
426 gma_crtc->cursor_addr = addr;
429 temp = 0;
430 /* set the pipe for the cursor */
431 temp |= (pipe << 28);
432 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
434 if (gma_power_begin(dev, false)) {
435 REG_WRITE(control, temp);
436 REG_WRITE(base, addr);
437 gma_power_end(dev);
440 /* unpin the old bo */
441 if (gma_crtc->cursor_obj) {
442 gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
443 psb_gtt_unpin(gt);
444 drm_gem_object_unreference(gma_crtc->cursor_obj);
447 gma_crtc->cursor_obj = obj;
448 unlock:
449 mutex_unlock(&dev->struct_mutex);
450 return ret;
452 unref_cursor:
453 drm_gem_object_unreference(obj);
454 mutex_unlock(&dev->struct_mutex);
455 return ret;
458 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
460 struct drm_device *dev = crtc->dev;
461 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
462 int pipe = gma_crtc->pipe;
463 uint32_t temp = 0;
464 uint32_t addr;
466 if (x < 0) {
467 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
468 x = -x;
470 if (y < 0) {
471 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
472 y = -y;
475 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
476 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
478 addr = gma_crtc->cursor_addr;
480 if (gma_power_begin(dev, false)) {
481 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
482 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
483 gma_power_end(dev);
485 return 0;
488 bool gma_crtc_mode_fixup(struct drm_crtc *crtc,
489 const struct drm_display_mode *mode,
490 struct drm_display_mode *adjusted_mode)
492 return true;
495 void gma_crtc_prepare(struct drm_crtc *crtc)
497 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
498 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
501 void gma_crtc_commit(struct drm_crtc *crtc)
503 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
504 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
507 void gma_crtc_disable(struct drm_crtc *crtc)
509 struct gtt_range *gt;
510 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
512 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
514 if (crtc->fb) {
515 gt = to_psb_fb(crtc->fb)->gtt;
516 psb_gtt_unpin(gt);
520 void gma_crtc_destroy(struct drm_crtc *crtc)
522 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
524 kfree(gma_crtc->crtc_state);
525 drm_crtc_cleanup(crtc);
526 kfree(gma_crtc);
529 int gma_crtc_set_config(struct drm_mode_set *set)
531 struct drm_device *dev = set->crtc->dev;
532 struct drm_psb_private *dev_priv = dev->dev_private;
533 int ret;
535 if (!dev_priv->rpm_enabled)
536 return drm_crtc_helper_set_config(set);
538 pm_runtime_forbid(&dev->pdev->dev);
539 ret = drm_crtc_helper_set_config(set);
540 pm_runtime_allow(&dev->pdev->dev);
542 return ret;
546 * Save HW states of given crtc
548 void gma_crtc_save(struct drm_crtc *crtc)
550 struct drm_device *dev = crtc->dev;
551 struct drm_psb_private *dev_priv = dev->dev_private;
552 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
553 struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
554 const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
555 uint32_t palette_reg;
556 int i;
558 if (!crtc_state) {
559 dev_err(dev->dev, "No CRTC state found\n");
560 return;
563 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
564 crtc_state->savePIPECONF = REG_READ(map->conf);
565 crtc_state->savePIPESRC = REG_READ(map->src);
566 crtc_state->saveFP0 = REG_READ(map->fp0);
567 crtc_state->saveFP1 = REG_READ(map->fp1);
568 crtc_state->saveDPLL = REG_READ(map->dpll);
569 crtc_state->saveHTOTAL = REG_READ(map->htotal);
570 crtc_state->saveHBLANK = REG_READ(map->hblank);
571 crtc_state->saveHSYNC = REG_READ(map->hsync);
572 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
573 crtc_state->saveVBLANK = REG_READ(map->vblank);
574 crtc_state->saveVSYNC = REG_READ(map->vsync);
575 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
577 /* NOTE: DSPSIZE DSPPOS only for psb */
578 crtc_state->saveDSPSIZE = REG_READ(map->size);
579 crtc_state->saveDSPPOS = REG_READ(map->pos);
581 crtc_state->saveDSPBASE = REG_READ(map->base);
583 palette_reg = map->palette;
584 for (i = 0; i < 256; ++i)
585 crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
589 * Restore HW states of given crtc
591 void gma_crtc_restore(struct drm_crtc *crtc)
593 struct drm_device *dev = crtc->dev;
594 struct drm_psb_private *dev_priv = dev->dev_private;
595 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
596 struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
597 const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
598 uint32_t palette_reg;
599 int i;
601 if (!crtc_state) {
602 dev_err(dev->dev, "No crtc state\n");
603 return;
606 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
607 REG_WRITE(map->dpll,
608 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
609 REG_READ(map->dpll);
610 udelay(150);
613 REG_WRITE(map->fp0, crtc_state->saveFP0);
614 REG_READ(map->fp0);
616 REG_WRITE(map->fp1, crtc_state->saveFP1);
617 REG_READ(map->fp1);
619 REG_WRITE(map->dpll, crtc_state->saveDPLL);
620 REG_READ(map->dpll);
621 udelay(150);
623 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
624 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
625 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
626 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
627 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
628 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
629 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
631 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
632 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
634 REG_WRITE(map->src, crtc_state->savePIPESRC);
635 REG_WRITE(map->base, crtc_state->saveDSPBASE);
636 REG_WRITE(map->conf, crtc_state->savePIPECONF);
638 gma_wait_for_vblank(dev);
640 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
641 REG_WRITE(map->base, crtc_state->saveDSPBASE);
643 gma_wait_for_vblank(dev);
645 palette_reg = map->palette;
646 for (i = 0; i < 256; ++i)
647 REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
650 void gma_encoder_prepare(struct drm_encoder *encoder)
652 struct drm_encoder_helper_funcs *encoder_funcs =
653 encoder->helper_private;
654 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
655 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
658 void gma_encoder_commit(struct drm_encoder *encoder)
660 struct drm_encoder_helper_funcs *encoder_funcs =
661 encoder->helper_private;
662 /* lvds has its own version of commit see psb_intel_lvds_commit */
663 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
666 void gma_encoder_destroy(struct drm_encoder *encoder)
668 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
670 drm_encoder_cleanup(encoder);
671 kfree(intel_encoder);
674 /* Currently there is only a 1:1 mapping of encoders and connectors */
675 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
677 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
679 return &gma_encoder->base;
682 void gma_connector_attach_encoder(struct gma_connector *connector,
683 struct gma_encoder *encoder)
685 connector->encoder = encoder;
686 drm_mode_connector_attach_encoder(&connector->base,
687 &encoder->base);
690 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
692 bool gma_pll_is_valid(struct drm_crtc *crtc,
693 const struct gma_limit_t *limit,
694 struct gma_clock_t *clock)
696 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
697 GMA_PLL_INVALID("p1 out of range");
698 if (clock->p < limit->p.min || limit->p.max < clock->p)
699 GMA_PLL_INVALID("p out of range");
700 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
701 GMA_PLL_INVALID("m2 out of range");
702 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
703 GMA_PLL_INVALID("m1 out of range");
704 /* On CDV m1 is always 0 */
705 if (clock->m1 <= clock->m2 && clock->m1 != 0)
706 GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
707 if (clock->m < limit->m.min || limit->m.max < clock->m)
708 GMA_PLL_INVALID("m out of range");
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 GMA_PLL_INVALID("n out of range");
711 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
712 GMA_PLL_INVALID("vco out of range");
713 /* XXX: We may need to be checking "Dot clock"
714 * depending on the multiplier, connector, etc.,
715 * rather than just a single range.
717 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
718 GMA_PLL_INVALID("dot out of range");
720 return true;
723 bool gma_find_best_pll(const struct gma_limit_t *limit,
724 struct drm_crtc *crtc, int target, int refclk,
725 struct gma_clock_t *best_clock)
727 struct drm_device *dev = crtc->dev;
728 const struct gma_clock_funcs *clock_funcs =
729 to_gma_crtc(crtc)->clock_funcs;
730 struct gma_clock_t clock;
731 int err = target;
733 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
734 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
736 * For LVDS, if the panel is on, just rely on its current
737 * settings for dual-channel. We haven't figured out how to
738 * reliably set up different single/dual channel state, if we
739 * even can.
741 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
742 LVDS_CLKB_POWER_UP)
743 clock.p2 = limit->p2.p2_fast;
744 else
745 clock.p2 = limit->p2.p2_slow;
746 } else {
747 if (target < limit->p2.dot_limit)
748 clock.p2 = limit->p2.p2_slow;
749 else
750 clock.p2 = limit->p2.p2_fast;
753 memset(best_clock, 0, sizeof(*best_clock));
755 /* m1 is always 0 on CDV so the outmost loop will run just once */
756 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
757 for (clock.m2 = limit->m2.min;
758 (clock.m2 < clock.m1 || clock.m1 == 0) &&
759 clock.m2 <= limit->m2.max; clock.m2++) {
760 for (clock.n = limit->n.min;
761 clock.n <= limit->n.max; clock.n++) {
762 for (clock.p1 = limit->p1.min;
763 clock.p1 <= limit->p1.max;
764 clock.p1++) {
765 int this_err;
767 clock_funcs->clock(refclk, &clock);
769 if (!clock_funcs->pll_is_valid(crtc,
770 limit, &clock))
771 continue;
773 this_err = abs(clock.dot - target);
774 if (this_err < err) {
775 *best_clock = clock;
776 err = this_err;
783 return err != target;