PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-riic.c
blob9e1f8bacfb39a5f8083bb88885c1ce5993f4e1f0
1 /*
2 * Renesas RIIC driver
4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
5 * Copyright (C) 2013 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
14 * some kind of state machine.
16 * 1) The main xfer routine kicks off a transmission by putting the start bit
17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
18 * since we need to send the slave address + RW bit in every case.
20 * 2) TIE sends slave address + RW bit and selects how to continue.
22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
23 * are done, we switch over to the transmission done interrupt (TEIE) and mark
24 * the message as completed (includes sending STOP) there.
26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
27 * needed to start clocking, then we keep receiving until we are done. Note
28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
30 * message to create the final NACK as sketched in the datasheet. This caused
31 * some subtle races (when byte n was processed and byte n+1 was already
32 * waiting), though, and I started with the safe approach.
34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
35 * via NAKIE.
37 * Also check the comments in the interrupt routines for some gory details.
40 #include <linux/clk.h>
41 #include <linux/completion.h>
42 #include <linux/err.h>
43 #include <linux/i2c.h>
44 #include <linux/interrupt.h>
45 #include <linux/io.h>
46 #include <linux/module.h>
47 #include <linux/of.h>
48 #include <linux/platform_device.h>
50 #define RIIC_ICCR1 0x00
51 #define RIIC_ICCR2 0x04
52 #define RIIC_ICMR1 0x08
53 #define RIIC_ICMR3 0x10
54 #define RIIC_ICSER 0x18
55 #define RIIC_ICIER 0x1c
56 #define RIIC_ICSR2 0x24
57 #define RIIC_ICBRL 0x34
58 #define RIIC_ICBRH 0x38
59 #define RIIC_ICDRT 0x3c
60 #define RIIC_ICDRR 0x40
62 #define ICCR1_ICE 0x80
63 #define ICCR1_IICRST 0x40
64 #define ICCR1_SOWP 0x10
66 #define ICCR2_BBSY 0x80
67 #define ICCR2_SP 0x08
68 #define ICCR2_RS 0x04
69 #define ICCR2_ST 0x02
71 #define ICMR1_CKS_MASK 0x70
72 #define ICMR1_BCWP 0x08
73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
75 #define ICMR3_RDRFS 0x20
76 #define ICMR3_ACKWP 0x10
77 #define ICMR3_ACKBT 0x08
79 #define ICIER_TIE 0x80
80 #define ICIER_TEIE 0x40
81 #define ICIER_RIE 0x20
82 #define ICIER_NAKIE 0x10
84 #define ICSR2_NACKF 0x10
86 /* ICBRx (@ PCLK 33MHz) */
87 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
88 #define ICBRL_SP100K (19 | ICBR_RESERVED)
89 #define ICBRH_SP100K (16 | ICBR_RESERVED)
90 #define ICBRL_SP400K (21 | ICBR_RESERVED)
91 #define ICBRH_SP400K (9 | ICBR_RESERVED)
93 #define RIIC_INIT_MSG -1
95 struct riic_dev {
96 void __iomem *base;
97 u8 *buf;
98 struct i2c_msg *msg;
99 int bytes_left;
100 int err;
101 int is_last;
102 struct completion msg_done;
103 struct i2c_adapter adapter;
104 struct clk *clk;
107 struct riic_irq_desc {
108 int res_num;
109 irq_handler_t isr;
110 char *name;
113 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
115 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
118 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
120 struct riic_dev *riic = i2c_get_adapdata(adap);
121 unsigned long time_left;
122 int i, ret;
123 u8 start_bit;
125 ret = clk_prepare_enable(riic->clk);
126 if (ret)
127 return ret;
129 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
130 riic->err = -EBUSY;
131 goto out;
134 reinit_completion(&riic->msg_done);
135 riic->err = 0;
137 writeb(0, riic->base + RIIC_ICSR2);
139 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
140 riic->bytes_left = RIIC_INIT_MSG;
141 riic->buf = msgs[i].buf;
142 riic->msg = &msgs[i];
143 riic->is_last = (i == num - 1);
145 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
147 writeb(start_bit, riic->base + RIIC_ICCR2);
149 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
150 if (time_left == 0)
151 riic->err = -ETIMEDOUT;
153 if (riic->err)
154 break;
156 start_bit = ICCR2_RS;
159 out:
160 clk_disable_unprepare(riic->clk);
162 return riic->err ?: num;
165 static irqreturn_t riic_tdre_isr(int irq, void *data)
167 struct riic_dev *riic = data;
168 u8 val;
170 if (!riic->bytes_left)
171 return IRQ_NONE;
173 if (riic->bytes_left == RIIC_INIT_MSG) {
174 val = !!(riic->msg->flags & I2C_M_RD);
175 if (val)
176 /* On read, switch over to receive interrupt */
177 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
178 else
179 /* On write, initialize length */
180 riic->bytes_left = riic->msg->len;
182 val |= (riic->msg->addr << 1);
183 } else {
184 val = *riic->buf;
185 riic->buf++;
186 riic->bytes_left--;
190 * Switch to transmission ended interrupt when done. Do check here
191 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
192 * 0 length then)
194 if (riic->bytes_left == 0)
195 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
198 * This acks the TIE interrupt. We get another TIE immediately if our
199 * value could be moved to the shadow shift register right away. So
200 * this must be after updates to ICIER (where we want to disable TIE)!
202 writeb(val, riic->base + RIIC_ICDRT);
204 return IRQ_HANDLED;
207 static irqreturn_t riic_tend_isr(int irq, void *data)
209 struct riic_dev *riic = data;
211 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
212 /* We got a NACKIE */
213 readb(riic->base + RIIC_ICDRR); /* dummy read */
214 riic->err = -ENXIO;
215 } else if (riic->bytes_left) {
216 return IRQ_NONE;
219 if (riic->is_last || riic->err)
220 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
222 writeb(0, riic->base + RIIC_ICIER);
223 complete(&riic->msg_done);
225 return IRQ_HANDLED;
228 static irqreturn_t riic_rdrf_isr(int irq, void *data)
230 struct riic_dev *riic = data;
232 if (!riic->bytes_left)
233 return IRQ_NONE;
235 if (riic->bytes_left == RIIC_INIT_MSG) {
236 riic->bytes_left = riic->msg->len;
237 readb(riic->base + RIIC_ICDRR); /* dummy read */
238 return IRQ_HANDLED;
241 if (riic->bytes_left == 1) {
242 /* STOP must come before we set ACKBT! */
243 if (riic->is_last)
244 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
246 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
248 writeb(0, riic->base + RIIC_ICIER);
249 complete(&riic->msg_done);
250 } else {
251 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
254 /* Reading acks the RIE interrupt */
255 *riic->buf = readb(riic->base + RIIC_ICDRR);
256 riic->buf++;
257 riic->bytes_left--;
259 return IRQ_HANDLED;
262 static u32 riic_func(struct i2c_adapter *adap)
264 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
267 static const struct i2c_algorithm riic_algo = {
268 .master_xfer = riic_xfer,
269 .functionality = riic_func,
272 static int riic_init_hw(struct riic_dev *riic, u32 spd)
274 int ret;
275 unsigned long rate;
277 ret = clk_prepare_enable(riic->clk);
278 if (ret)
279 return ret;
282 * TODO: Implement formula to calculate the timing values depending on
283 * variable parent clock rate and arbitrary bus speed
285 rate = clk_get_rate(riic->clk);
286 if (rate != 33325000) {
287 dev_err(&riic->adapter.dev,
288 "invalid parent clk (%lu). Must be 33325000Hz\n", rate);
289 clk_disable_unprepare(riic->clk);
290 return -EINVAL;
293 /* Changing the order of accessing IICRST and ICE may break things! */
294 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
295 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
297 switch (spd) {
298 case 100000:
299 writeb(ICMR1_CKS(3), riic->base + RIIC_ICMR1);
300 writeb(ICBRH_SP100K, riic->base + RIIC_ICBRH);
301 writeb(ICBRL_SP100K, riic->base + RIIC_ICBRL);
302 break;
303 case 400000:
304 writeb(ICMR1_CKS(1), riic->base + RIIC_ICMR1);
305 writeb(ICBRH_SP400K, riic->base + RIIC_ICBRH);
306 writeb(ICBRL_SP400K, riic->base + RIIC_ICBRL);
307 break;
308 default:
309 dev_err(&riic->adapter.dev,
310 "unsupported bus speed (%dHz). Use 100000 or 400000\n", spd);
311 clk_disable_unprepare(riic->clk);
312 return -EINVAL;
315 writeb(0, riic->base + RIIC_ICSER);
316 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
318 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
320 clk_disable_unprepare(riic->clk);
322 return 0;
325 static struct riic_irq_desc riic_irqs[] = {
326 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
327 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
328 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
329 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
332 static int riic_i2c_probe(struct platform_device *pdev)
334 struct device_node *np = pdev->dev.of_node;
335 struct riic_dev *riic;
336 struct i2c_adapter *adap;
337 struct resource *res;
338 u32 bus_rate = 0;
339 int i, ret;
341 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
342 if (!riic)
343 return -ENOMEM;
345 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
346 riic->base = devm_ioremap_resource(&pdev->dev, res);
347 if (IS_ERR(riic->base))
348 return PTR_ERR(riic->base);
350 riic->clk = devm_clk_get(&pdev->dev, NULL);
351 if (IS_ERR(riic->clk)) {
352 dev_err(&pdev->dev, "missing controller clock");
353 return PTR_ERR(riic->clk);
356 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
357 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
358 if (!res)
359 return -ENODEV;
361 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
362 0, riic_irqs[i].name, riic);
363 if (ret) {
364 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
365 return ret;
369 adap = &riic->adapter;
370 i2c_set_adapdata(adap, riic);
371 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
372 adap->owner = THIS_MODULE;
373 adap->algo = &riic_algo;
374 adap->dev.parent = &pdev->dev;
375 adap->dev.of_node = pdev->dev.of_node;
377 init_completion(&riic->msg_done);
379 of_property_read_u32(np, "clock-frequency", &bus_rate);
380 ret = riic_init_hw(riic, bus_rate);
381 if (ret)
382 return ret;
385 ret = i2c_add_adapter(adap);
386 if (ret) {
387 dev_err(&pdev->dev, "failed to add adapter\n");
388 return ret;
391 platform_set_drvdata(pdev, riic);
393 dev_info(&pdev->dev, "registered with %dHz bus speed\n", bus_rate);
394 return 0;
397 static int riic_i2c_remove(struct platform_device *pdev)
399 struct riic_dev *riic = platform_get_drvdata(pdev);
401 writeb(0, riic->base + RIIC_ICIER);
402 i2c_del_adapter(&riic->adapter);
404 return 0;
407 static struct of_device_id riic_i2c_dt_ids[] = {
408 { .compatible = "renesas,riic-rz" },
409 { /* Sentinel */ },
412 static struct platform_driver riic_i2c_driver = {
413 .probe = riic_i2c_probe,
414 .remove = riic_i2c_remove,
415 .driver = {
416 .name = "i2c-riic",
417 .owner = THIS_MODULE,
418 .of_match_table = riic_i2c_dt_ids,
422 module_platform_driver(riic_i2c_driver);
424 MODULE_DESCRIPTION("Renesas RIIC adapter");
425 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
426 MODULE_LICENSE("GPL v2");
427 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);