1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
70 #define FW_FILE_VERSION \
71 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
72 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
73 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
74 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT (5*HZ)
82 static char version
[] =
83 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 DRV_MODULE_NAME
" " DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 "BCM57710/57711/57711E/"
89 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION
);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1
);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H
);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2
);
98 module_param_named(num_queues
, bnx2x_num_queues
, int, S_IRUGO
);
99 MODULE_PARM_DESC(num_queues
,
100 " Set number of queues (default is as a number of CPUs)");
102 static int disable_tpa
;
103 module_param(disable_tpa
, int, S_IRUGO
);
104 MODULE_PARM_DESC(disable_tpa
, " Disable the TPA (LRO) feature");
107 module_param(int_mode
, int, S_IRUGO
);
108 MODULE_PARM_DESC(int_mode
, " Force interrupt mode other than MSI-X "
111 static int dropless_fc
;
112 module_param(dropless_fc
, int, S_IRUGO
);
113 MODULE_PARM_DESC(dropless_fc
, " Pause on exhausted host ring");
115 static int mrrs
= -1;
116 module_param(mrrs
, int, S_IRUGO
);
117 MODULE_PARM_DESC(mrrs
, " Force Max Read Req Size (0..3) (for debug)");
120 module_param(debug
, int, S_IRUGO
);
121 MODULE_PARM_DESC(debug
, " Default debug msglevel");
123 struct workqueue_struct
*bnx2x_wq
;
125 struct bnx2x_mac_vals
{
136 enum bnx2x_board_type
{
160 /* indexed by board_type, above */
164 [BCM57710
] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165 [BCM57711
] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166 [BCM57711E
] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167 [BCM57712
] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168 [BCM57712_MF
] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169 [BCM57712_VF
] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
170 [BCM57800
] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
171 [BCM57800_MF
] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
172 [BCM57800_VF
] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
173 [BCM57810
] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
174 [BCM57810_MF
] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
175 [BCM57810_VF
] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
176 [BCM57840_4_10
] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
177 [BCM57840_2_20
] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
178 [BCM57840_MF
] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
179 [BCM57840_VF
] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
180 [BCM57811
] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
181 [BCM57811_MF
] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
182 [BCM57840_O
] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
183 [BCM57840_MFO
] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
184 [BCM57811_VF
] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
187 #ifndef PCI_DEVICE_ID_NX2_57710
188 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
190 #ifndef PCI_DEVICE_ID_NX2_57711
191 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
193 #ifndef PCI_DEVICE_ID_NX2_57711E
194 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
196 #ifndef PCI_DEVICE_ID_NX2_57712
197 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
199 #ifndef PCI_DEVICE_ID_NX2_57712_MF
200 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
202 #ifndef PCI_DEVICE_ID_NX2_57712_VF
203 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
205 #ifndef PCI_DEVICE_ID_NX2_57800
206 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
208 #ifndef PCI_DEVICE_ID_NX2_57800_MF
209 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
211 #ifndef PCI_DEVICE_ID_NX2_57800_VF
212 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
214 #ifndef PCI_DEVICE_ID_NX2_57810
215 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
217 #ifndef PCI_DEVICE_ID_NX2_57810_MF
218 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
220 #ifndef PCI_DEVICE_ID_NX2_57840_O
221 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
223 #ifndef PCI_DEVICE_ID_NX2_57810_VF
224 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
226 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
227 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
229 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
230 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
232 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
233 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
235 #ifndef PCI_DEVICE_ID_NX2_57840_MF
236 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
238 #ifndef PCI_DEVICE_ID_NX2_57840_VF
239 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
241 #ifndef PCI_DEVICE_ID_NX2_57811
242 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
244 #ifndef PCI_DEVICE_ID_NX2_57811_MF
245 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
247 #ifndef PCI_DEVICE_ID_NX2_57811_VF
248 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
251 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl
) = {
252 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57710
), BCM57710
},
253 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711
), BCM57711
},
254 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711E
), BCM57711E
},
255 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712
), BCM57712
},
256 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_MF
), BCM57712_MF
},
257 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_VF
), BCM57712_VF
},
258 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800
), BCM57800
},
259 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_MF
), BCM57800_MF
},
260 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_VF
), BCM57800_VF
},
261 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810
), BCM57810
},
262 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_MF
), BCM57810_MF
},
263 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_O
), BCM57840_O
},
264 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_4_10
), BCM57840_4_10
},
265 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_2_20
), BCM57840_2_20
},
266 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_VF
), BCM57810_VF
},
267 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MFO
), BCM57840_MFO
},
268 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MF
), BCM57840_MF
},
269 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_VF
), BCM57840_VF
},
270 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811
), BCM57811
},
271 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811_MF
), BCM57811_MF
},
272 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811_VF
), BCM57811_VF
},
276 MODULE_DEVICE_TABLE(pci
, bnx2x_pci_tbl
);
278 /* Global resources for unloading a previously loaded device */
279 #define BNX2X_PREV_WAIT_NEEDED 1
280 static DEFINE_SEMAPHORE(bnx2x_prev_sem
);
281 static LIST_HEAD(bnx2x_prev_list
);
283 /* Forward declaration */
284 static struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
);
285 static u32
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath
*fp
);
286 static int bnx2x_set_storm_rx_mode(struct bnx2x
*bp
);
288 /****************************************************************************
289 * General service functions
290 ****************************************************************************/
292 static void __storm_memset_dma_mapping(struct bnx2x
*bp
,
293 u32 addr
, dma_addr_t mapping
)
295 REG_WR(bp
, addr
, U64_LO(mapping
));
296 REG_WR(bp
, addr
+ 4, U64_HI(mapping
));
299 static void storm_memset_spq_addr(struct bnx2x
*bp
,
300 dma_addr_t mapping
, u16 abs_fid
)
302 u32 addr
= XSEM_REG_FAST_MEMORY
+
303 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid
);
305 __storm_memset_dma_mapping(bp
, addr
, mapping
);
308 static void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
311 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
313 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
315 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
317 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
321 static void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
324 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
326 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
328 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
330 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
334 static void storm_memset_eq_data(struct bnx2x
*bp
,
335 struct event_ring_data
*eq_data
,
338 size_t size
= sizeof(struct event_ring_data
);
340 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_DATA_OFFSET(pfid
);
342 __storm_memset_struct(bp
, addr
, size
, (u32
*)eq_data
);
345 static void storm_memset_eq_prod(struct bnx2x
*bp
, u16 eq_prod
,
348 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_PROD_OFFSET(pfid
);
349 REG_WR16(bp
, addr
, eq_prod
);
353 * locking is done by mcp
355 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
)
357 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
358 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, val
);
359 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
360 PCICFG_VENDOR_ID_OFFSET
);
363 static u32
bnx2x_reg_rd_ind(struct bnx2x
*bp
, u32 addr
)
367 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
368 pci_read_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, &val
);
369 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
370 PCICFG_VENDOR_ID_OFFSET
);
375 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
376 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
377 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
378 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
379 #define DMAE_DP_DST_NONE "dst_addr [none]"
381 static void bnx2x_dp_dmae(struct bnx2x
*bp
,
382 struct dmae_command
*dmae
, int msglvl
)
384 u32 src_type
= dmae
->opcode
& DMAE_COMMAND_SRC
;
387 switch (dmae
->opcode
& DMAE_COMMAND_DST
) {
388 case DMAE_CMD_DST_PCI
:
389 if (src_type
== DMAE_CMD_SRC_PCI
)
390 DP(msglvl
, "DMAE: opcode 0x%08x\n"
391 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
392 "comp_addr [%x:%08x], comp_val 0x%08x\n",
393 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
394 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
395 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
398 DP(msglvl
, "DMAE: opcode 0x%08x\n"
399 "src [%08x], len [%d*4], dst [%x:%08x]\n"
400 "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
402 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
403 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
406 case DMAE_CMD_DST_GRC
:
407 if (src_type
== DMAE_CMD_SRC_PCI
)
408 DP(msglvl
, "DMAE: opcode 0x%08x\n"
409 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
410 "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
412 dmae
->len
, dmae
->dst_addr_lo
>> 2,
413 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
416 DP(msglvl
, "DMAE: opcode 0x%08x\n"
417 "src [%08x], len [%d*4], dst [%08x]\n"
418 "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
420 dmae
->len
, dmae
->dst_addr_lo
>> 2,
421 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
425 if (src_type
== DMAE_CMD_SRC_PCI
)
426 DP(msglvl
, "DMAE: opcode 0x%08x\n"
427 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
428 "comp_addr [%x:%08x] comp_val 0x%08x\n",
429 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
430 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
433 DP(msglvl
, "DMAE: opcode 0x%08x\n"
434 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
435 "comp_addr [%x:%08x] comp_val 0x%08x\n",
436 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
437 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
442 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++)
443 DP(msglvl
, "DMAE RAW [%02d]: 0x%08x\n",
444 i
, *(((u32
*)dmae
) + i
));
447 /* copy command into DMAE command memory and set DMAE command go */
448 void bnx2x_post_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
, int idx
)
453 cmd_offset
= (DMAE_REG_CMD_MEM
+ sizeof(struct dmae_command
) * idx
);
454 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++) {
455 REG_WR(bp
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
457 REG_WR(bp
, dmae_reg_go_c
[idx
], 1);
460 u32
bnx2x_dmae_opcode_add_comp(u32 opcode
, u8 comp_type
)
462 return opcode
| ((comp_type
<< DMAE_COMMAND_C_DST_SHIFT
) |
466 u32
bnx2x_dmae_opcode_clr_src_reset(u32 opcode
)
468 return opcode
& ~DMAE_CMD_SRC_RESET
;
471 u32
bnx2x_dmae_opcode(struct bnx2x
*bp
, u8 src_type
, u8 dst_type
,
472 bool with_comp
, u8 comp_type
)
476 opcode
|= ((src_type
<< DMAE_COMMAND_SRC_SHIFT
) |
477 (dst_type
<< DMAE_COMMAND_DST_SHIFT
));
479 opcode
|= (DMAE_CMD_SRC_RESET
| DMAE_CMD_DST_RESET
);
481 opcode
|= (BP_PORT(bp
) ? DMAE_CMD_PORT_1
: DMAE_CMD_PORT_0
);
482 opcode
|= ((BP_VN(bp
) << DMAE_CMD_E1HVN_SHIFT
) |
483 (BP_VN(bp
) << DMAE_COMMAND_DST_VN_SHIFT
));
484 opcode
|= (DMAE_COM_SET_ERR
<< DMAE_COMMAND_ERR_POLICY_SHIFT
);
487 opcode
|= DMAE_CMD_ENDIANITY_B_DW_SWAP
;
489 opcode
|= DMAE_CMD_ENDIANITY_DW_SWAP
;
492 opcode
= bnx2x_dmae_opcode_add_comp(opcode
, comp_type
);
496 void bnx2x_prep_dmae_with_comp(struct bnx2x
*bp
,
497 struct dmae_command
*dmae
,
498 u8 src_type
, u8 dst_type
)
500 memset(dmae
, 0, sizeof(struct dmae_command
));
503 dmae
->opcode
= bnx2x_dmae_opcode(bp
, src_type
, dst_type
,
504 true, DMAE_COMP_PCI
);
506 /* fill in the completion parameters */
507 dmae
->comp_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_comp
));
508 dmae
->comp_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_comp
));
509 dmae
->comp_val
= DMAE_COMP_VAL
;
512 /* issue a dmae command over the init-channel and wait for completion */
513 int bnx2x_issue_dmae_with_comp(struct bnx2x
*bp
, struct dmae_command
*dmae
,
516 int cnt
= CHIP_REV_IS_SLOW(bp
) ? (400000) : 4000;
519 bnx2x_dp_dmae(bp
, dmae
, BNX2X_MSG_DMAE
);
521 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
522 * as long as this code is called both from syscall context and
523 * from ndo_set_rx_mode() flow that may be called from BH.
525 spin_lock_bh(&bp
->dmae_lock
);
527 /* reset completion */
530 /* post the command on the channel used for initializations */
531 bnx2x_post_dmae(bp
, dmae
, INIT_DMAE_C(bp
));
533 /* wait for completion */
535 while ((*comp
& ~DMAE_PCI_ERR_FLAG
) != DMAE_COMP_VAL
) {
538 (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
539 bp
->recovery_state
!= BNX2X_RECOVERY_NIC_LOADING
)) {
540 BNX2X_ERR("DMAE timeout!\n");
547 if (*comp
& DMAE_PCI_ERR_FLAG
) {
548 BNX2X_ERR("DMAE PCI error!\n");
553 spin_unlock_bh(&bp
->dmae_lock
);
557 void bnx2x_write_dmae(struct bnx2x
*bp
, dma_addr_t dma_addr
, u32 dst_addr
,
561 struct dmae_command dmae
;
563 if (!bp
->dmae_ready
) {
564 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
567 bnx2x_init_ind_wr(bp
, dst_addr
, data
, len32
);
569 bnx2x_init_str_wr(bp
, dst_addr
, data
, len32
);
573 /* set opcode and fixed command fields */
574 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_PCI
, DMAE_DST_GRC
);
576 /* fill in addresses and len */
577 dmae
.src_addr_lo
= U64_LO(dma_addr
);
578 dmae
.src_addr_hi
= U64_HI(dma_addr
);
579 dmae
.dst_addr_lo
= dst_addr
>> 2;
580 dmae
.dst_addr_hi
= 0;
583 /* issue the command and wait for completion */
584 rc
= bnx2x_issue_dmae_with_comp(bp
, &dmae
, bnx2x_sp(bp
, wb_comp
));
586 BNX2X_ERR("DMAE returned failure %d\n", rc
);
587 #ifdef BNX2X_STOP_ON_ERROR
593 void bnx2x_read_dmae(struct bnx2x
*bp
, u32 src_addr
, u32 len32
)
596 struct dmae_command dmae
;
598 if (!bp
->dmae_ready
) {
599 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
603 for (i
= 0; i
< len32
; i
++)
604 data
[i
] = bnx2x_reg_rd_ind(bp
, src_addr
+ i
*4);
606 for (i
= 0; i
< len32
; i
++)
607 data
[i
] = REG_RD(bp
, src_addr
+ i
*4);
612 /* set opcode and fixed command fields */
613 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_GRC
, DMAE_DST_PCI
);
615 /* fill in addresses and len */
616 dmae
.src_addr_lo
= src_addr
>> 2;
617 dmae
.src_addr_hi
= 0;
618 dmae
.dst_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_data
));
619 dmae
.dst_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_data
));
622 /* issue the command and wait for completion */
623 rc
= bnx2x_issue_dmae_with_comp(bp
, &dmae
, bnx2x_sp(bp
, wb_comp
));
625 BNX2X_ERR("DMAE returned failure %d\n", rc
);
626 #ifdef BNX2X_STOP_ON_ERROR
632 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
, dma_addr_t phys_addr
,
635 int dmae_wr_max
= DMAE_LEN32_WR_MAX(bp
);
638 while (len
> dmae_wr_max
) {
639 bnx2x_write_dmae(bp
, phys_addr
+ offset
,
640 addr
+ offset
, dmae_wr_max
);
641 offset
+= dmae_wr_max
* 4;
645 bnx2x_write_dmae(bp
, phys_addr
+ offset
, addr
+ offset
, len
);
648 static int bnx2x_mc_assert(struct bnx2x
*bp
)
652 u32 row0
, row1
, row2
, row3
;
655 last_idx
= REG_RD8(bp
, BAR_XSTRORM_INTMEM
+
656 XSTORM_ASSERT_LIST_INDEX_OFFSET
);
658 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
660 /* print the asserts */
661 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
663 row0
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
664 XSTORM_ASSERT_LIST_OFFSET(i
));
665 row1
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
666 XSTORM_ASSERT_LIST_OFFSET(i
) + 4);
667 row2
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
668 XSTORM_ASSERT_LIST_OFFSET(i
) + 8);
669 row3
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
670 XSTORM_ASSERT_LIST_OFFSET(i
) + 12);
672 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
673 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
674 i
, row3
, row2
, row1
, row0
);
682 last_idx
= REG_RD8(bp
, BAR_TSTRORM_INTMEM
+
683 TSTORM_ASSERT_LIST_INDEX_OFFSET
);
685 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
687 /* print the asserts */
688 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
690 row0
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
691 TSTORM_ASSERT_LIST_OFFSET(i
));
692 row1
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
693 TSTORM_ASSERT_LIST_OFFSET(i
) + 4);
694 row2
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
695 TSTORM_ASSERT_LIST_OFFSET(i
) + 8);
696 row3
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
697 TSTORM_ASSERT_LIST_OFFSET(i
) + 12);
699 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
700 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
701 i
, row3
, row2
, row1
, row0
);
709 last_idx
= REG_RD8(bp
, BAR_CSTRORM_INTMEM
+
710 CSTORM_ASSERT_LIST_INDEX_OFFSET
);
712 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
714 /* print the asserts */
715 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
717 row0
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
718 CSTORM_ASSERT_LIST_OFFSET(i
));
719 row1
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
720 CSTORM_ASSERT_LIST_OFFSET(i
) + 4);
721 row2
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
722 CSTORM_ASSERT_LIST_OFFSET(i
) + 8);
723 row3
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
724 CSTORM_ASSERT_LIST_OFFSET(i
) + 12);
726 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
727 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
728 i
, row3
, row2
, row1
, row0
);
736 last_idx
= REG_RD8(bp
, BAR_USTRORM_INTMEM
+
737 USTORM_ASSERT_LIST_INDEX_OFFSET
);
739 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
741 /* print the asserts */
742 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
744 row0
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
745 USTORM_ASSERT_LIST_OFFSET(i
));
746 row1
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
747 USTORM_ASSERT_LIST_OFFSET(i
) + 4);
748 row2
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
749 USTORM_ASSERT_LIST_OFFSET(i
) + 8);
750 row3
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
751 USTORM_ASSERT_LIST_OFFSET(i
) + 12);
753 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
754 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
755 i
, row3
, row2
, row1
, row0
);
765 #define MCPR_TRACE_BUFFER_SIZE (0x800)
766 #define SCRATCH_BUFFER_SIZE(bp) \
767 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769 void bnx2x_fw_dump_lvl(struct bnx2x
*bp
, const char *lvl
)
775 u32 trace_shmem_base
;
777 BNX2X_ERR("NO MCP - can not dump\n");
780 netdev_printk(lvl
, bp
->dev
, "bc %d.%d.%d\n",
781 (bp
->common
.bc_ver
& 0xff0000) >> 16,
782 (bp
->common
.bc_ver
& 0xff00) >> 8,
783 (bp
->common
.bc_ver
& 0xff));
785 val
= REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
);
786 if (val
== REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
))
787 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl
, val
);
789 if (BP_PATH(bp
) == 0)
790 trace_shmem_base
= bp
->common
.shmem_base
;
792 trace_shmem_base
= SHMEM2_RD(bp
, other_shmem_base_addr
);
795 if (trace_shmem_base
< MCPR_SCRATCH_BASE(bp
) + MCPR_TRACE_BUFFER_SIZE
||
796 trace_shmem_base
>= MCPR_SCRATCH_BASE(bp
) +
797 SCRATCH_BUFFER_SIZE(bp
)) {
798 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
803 addr
= trace_shmem_base
- MCPR_TRACE_BUFFER_SIZE
;
805 /* validate TRCB signature */
806 mark
= REG_RD(bp
, addr
);
807 if (mark
!= MFW_TRACE_SIGNATURE
) {
808 BNX2X_ERR("Trace buffer signature is missing.");
812 /* read cyclic buffer pointer */
814 mark
= REG_RD(bp
, addr
);
815 mark
= MCPR_SCRATCH_BASE(bp
) + ((mark
+ 0x3) & ~0x3) - 0x08000000;
816 if (mark
>= trace_shmem_base
|| mark
< addr
+ 4) {
817 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
820 printk("%s" "begin fw dump (mark 0x%x)\n", lvl
, mark
);
824 /* dump buffer after the mark */
825 for (offset
= mark
; offset
< trace_shmem_base
; offset
+= 0x8*4) {
826 for (word
= 0; word
< 8; word
++)
827 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
829 pr_cont("%s", (char *)data
);
832 /* dump buffer before the mark */
833 for (offset
= addr
+ 4; offset
<= mark
; offset
+= 0x8*4) {
834 for (word
= 0; word
< 8; word
++)
835 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
837 pr_cont("%s", (char *)data
);
839 printk("%s" "end of fw dump\n", lvl
);
842 static void bnx2x_fw_dump(struct bnx2x
*bp
)
844 bnx2x_fw_dump_lvl(bp
, KERN_ERR
);
847 static void bnx2x_hc_int_disable(struct bnx2x
*bp
)
849 int port
= BP_PORT(bp
);
850 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
851 u32 val
= REG_RD(bp
, addr
);
853 /* in E1 we must use only PCI configuration space to disable
854 * MSI/MSIX capability
855 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857 if (CHIP_IS_E1(bp
)) {
858 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
859 * Use mask register to prevent from HC sending interrupts
860 * after we exit the function
862 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0);
864 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
865 HC_CONFIG_0_REG_INT_LINE_EN_0
|
866 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
868 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
869 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
870 HC_CONFIG_0_REG_INT_LINE_EN_0
|
871 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
874 "write %x to HC %d (addr 0x%x)\n",
877 /* flush all outstanding writes */
880 REG_WR(bp
, addr
, val
);
881 if (REG_RD(bp
, addr
) != val
)
882 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
885 static void bnx2x_igu_int_disable(struct bnx2x
*bp
)
887 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
889 val
&= ~(IGU_PF_CONF_MSI_MSIX_EN
|
890 IGU_PF_CONF_INT_LINE_EN
|
891 IGU_PF_CONF_ATTN_BIT_EN
);
893 DP(NETIF_MSG_IFDOWN
, "write %x to IGU\n", val
);
895 /* flush all outstanding writes */
898 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
899 if (REG_RD(bp
, IGU_REG_PF_CONFIGURATION
) != val
)
900 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 static void bnx2x_int_disable(struct bnx2x
*bp
)
905 if (bp
->common
.int_block
== INT_BLOCK_HC
)
906 bnx2x_hc_int_disable(bp
);
908 bnx2x_igu_int_disable(bp
);
911 void bnx2x_panic_dump(struct bnx2x
*bp
, bool disable_int
)
915 struct hc_sp_status_block_data sp_sb_data
;
916 int func
= BP_FUNC(bp
);
917 #ifdef BNX2X_STOP_ON_ERROR
918 u16 start
= 0, end
= 0;
922 bnx2x_int_disable(bp
);
924 bp
->stats_state
= STATS_STATE_DISABLED
;
925 bp
->eth_stats
.unrecoverable_error
++;
926 DP(BNX2X_MSG_STATS
, "stats_state - DISABLED\n");
928 BNX2X_ERR("begin crash dump -----------------\n");
932 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
933 bp
->def_idx
, bp
->def_att_idx
, bp
->attn_state
,
934 bp
->spq_prod_idx
, bp
->stats_counter
);
935 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
936 bp
->def_status_blk
->atten_status_block
.attn_bits
,
937 bp
->def_status_blk
->atten_status_block
.attn_bits_ack
,
938 bp
->def_status_blk
->atten_status_block
.status_block_id
,
939 bp
->def_status_blk
->atten_status_block
.attn_bits_index
);
941 for (i
= 0; i
< HC_SP_SB_MAX_INDICES
; i
++)
943 bp
->def_status_blk
->sp_sb
.index_values
[i
],
944 (i
== HC_SP_SB_MAX_INDICES
- 1) ? ") " : " ");
946 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
947 *((u32
*)&sp_sb_data
+ i
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
948 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
951 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
952 sp_sb_data
.igu_sb_id
,
953 sp_sb_data
.igu_seg_id
,
954 sp_sb_data
.p_func
.pf_id
,
955 sp_sb_data
.p_func
.vnic_id
,
956 sp_sb_data
.p_func
.vf_id
,
957 sp_sb_data
.p_func
.vf_valid
,
960 for_each_eth_queue(bp
, i
) {
961 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
963 struct hc_status_block_data_e2 sb_data_e2
;
964 struct hc_status_block_data_e1x sb_data_e1x
;
965 struct hc_status_block_sm
*hc_sm_p
=
967 sb_data_e1x
.common
.state_machine
:
968 sb_data_e2
.common
.state_machine
;
969 struct hc_index_data
*hc_index_p
=
971 sb_data_e1x
.index_data
:
972 sb_data_e2
.index_data
;
975 struct bnx2x_fp_txdata txdata
;
978 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
979 i
, fp
->rx_bd_prod
, fp
->rx_bd_cons
,
981 fp
->rx_comp_cons
, le16_to_cpu(*fp
->rx_cons_sb
));
982 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
983 fp
->rx_sge_prod
, fp
->last_max_sge
,
984 le16_to_cpu(fp
->fp_hc_idx
));
987 for_each_cos_in_tx_queue(fp
, cos
)
989 txdata
= *fp
->txdata_ptr
[cos
];
990 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
991 i
, txdata
.tx_pkt_prod
,
992 txdata
.tx_pkt_cons
, txdata
.tx_bd_prod
,
994 le16_to_cpu(*txdata
.tx_cons_sb
));
997 loop
= CHIP_IS_E1x(bp
) ?
998 HC_SB_MAX_INDICES_E1X
: HC_SB_MAX_INDICES_E2
;
1005 BNX2X_ERR(" run indexes (");
1006 for (j
= 0; j
< HC_SB_MAX_SM
; j
++)
1008 fp
->sb_running_index
[j
],
1009 (j
== HC_SB_MAX_SM
- 1) ? ")" : " ");
1011 BNX2X_ERR(" indexes (");
1012 for (j
= 0; j
< loop
; j
++)
1014 fp
->sb_index_values
[j
],
1015 (j
== loop
- 1) ? ")" : " ");
1017 data_size
= CHIP_IS_E1x(bp
) ?
1018 sizeof(struct hc_status_block_data_e1x
) :
1019 sizeof(struct hc_status_block_data_e2
);
1020 data_size
/= sizeof(u32
);
1021 sb_data_p
= CHIP_IS_E1x(bp
) ?
1022 (u32
*)&sb_data_e1x
:
1024 /* copy sb data in here */
1025 for (j
= 0; j
< data_size
; j
++)
1026 *(sb_data_p
+ j
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
1027 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp
->fw_sb_id
) +
1030 if (!CHIP_IS_E1x(bp
)) {
1031 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1032 sb_data_e2
.common
.p_func
.pf_id
,
1033 sb_data_e2
.common
.p_func
.vf_id
,
1034 sb_data_e2
.common
.p_func
.vf_valid
,
1035 sb_data_e2
.common
.p_func
.vnic_id
,
1036 sb_data_e2
.common
.same_igu_sb_1b
,
1037 sb_data_e2
.common
.state
);
1039 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1040 sb_data_e1x
.common
.p_func
.pf_id
,
1041 sb_data_e1x
.common
.p_func
.vf_id
,
1042 sb_data_e1x
.common
.p_func
.vf_valid
,
1043 sb_data_e1x
.common
.p_func
.vnic_id
,
1044 sb_data_e1x
.common
.same_igu_sb_1b
,
1045 sb_data_e1x
.common
.state
);
1049 for (j
= 0; j
< HC_SB_MAX_SM
; j
++) {
1050 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051 j
, hc_sm_p
[j
].__flags
,
1052 hc_sm_p
[j
].igu_sb_id
,
1053 hc_sm_p
[j
].igu_seg_id
,
1054 hc_sm_p
[j
].time_to_expire
,
1055 hc_sm_p
[j
].timer_value
);
1059 for (j
= 0; j
< loop
; j
++) {
1060 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j
,
1061 hc_index_p
[j
].flags
,
1062 hc_index_p
[j
].timeout
);
1066 #ifdef BNX2X_STOP_ON_ERROR
1069 BNX2X_ERR("eq cons %x prod %x\n", bp
->eq_cons
, bp
->eq_prod
);
1070 for (i
= 0; i
< NUM_EQ_DESC
; i
++) {
1071 u32
*data
= (u32
*)&bp
->eq_ring
[i
].message
.data
;
1073 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074 i
, bp
->eq_ring
[i
].message
.opcode
,
1075 bp
->eq_ring
[i
].message
.error
);
1076 BNX2X_ERR("data: %x %x %x\n", data
[0], data
[1], data
[2]);
1081 for_each_valid_rx_queue(bp
, i
) {
1082 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1084 start
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) - 10);
1085 end
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) + 503);
1086 for (j
= start
; j
!= end
; j
= RX_BD(j
+ 1)) {
1087 u32
*rx_bd
= (u32
*)&fp
->rx_desc_ring
[j
];
1088 struct sw_rx_bd
*sw_bd
= &fp
->rx_buf_ring
[j
];
1090 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1091 i
, j
, rx_bd
[1], rx_bd
[0], sw_bd
->data
);
1094 start
= RX_SGE(fp
->rx_sge_prod
);
1095 end
= RX_SGE(fp
->last_max_sge
);
1096 for (j
= start
; j
!= end
; j
= RX_SGE(j
+ 1)) {
1097 u32
*rx_sge
= (u32
*)&fp
->rx_sge_ring
[j
];
1098 struct sw_rx_page
*sw_page
= &fp
->rx_page_ring
[j
];
1100 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1101 i
, j
, rx_sge
[1], rx_sge
[0], sw_page
->page
);
1104 start
= RCQ_BD(fp
->rx_comp_cons
- 10);
1105 end
= RCQ_BD(fp
->rx_comp_cons
+ 503);
1106 for (j
= start
; j
!= end
; j
= RCQ_BD(j
+ 1)) {
1107 u32
*cqe
= (u32
*)&fp
->rx_comp_ring
[j
];
1109 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110 i
, j
, cqe
[0], cqe
[1], cqe
[2], cqe
[3]);
1115 for_each_valid_tx_queue(bp
, i
) {
1116 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1117 for_each_cos_in_tx_queue(fp
, cos
) {
1118 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1120 start
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) - 10);
1121 end
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) + 245);
1122 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
1123 struct sw_tx_bd
*sw_bd
=
1124 &txdata
->tx_buf_ring
[j
];
1126 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127 i
, cos
, j
, sw_bd
->skb
,
1131 start
= TX_BD(txdata
->tx_bd_cons
- 10);
1132 end
= TX_BD(txdata
->tx_bd_cons
+ 254);
1133 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
1134 u32
*tx_bd
= (u32
*)&txdata
->tx_desc_ring
[j
];
1136 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137 i
, cos
, j
, tx_bd
[0], tx_bd
[1],
1138 tx_bd
[2], tx_bd
[3]);
1144 bnx2x_mc_assert(bp
);
1145 BNX2X_ERR("end crash dump -----------------\n");
1149 * FLR Support for E2
1151 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1154 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1155 #define FLR_WAIT_INTERVAL 50 /* usec */
1156 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1158 struct pbf_pN_buf_regs
{
1165 struct pbf_pN_cmd_regs
{
1171 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x
*bp
,
1172 struct pbf_pN_buf_regs
*regs
,
1175 u32 init_crd
, crd
, crd_start
, crd_freed
, crd_freed_start
;
1176 u32 cur_cnt
= poll_count
;
1178 crd_freed
= crd_freed_start
= REG_RD(bp
, regs
->crd_freed
);
1179 crd
= crd_start
= REG_RD(bp
, regs
->crd
);
1180 init_crd
= REG_RD(bp
, regs
->init_crd
);
1182 DP(BNX2X_MSG_SP
, "INIT CREDIT[%d] : %x\n", regs
->pN
, init_crd
);
1183 DP(BNX2X_MSG_SP
, "CREDIT[%d] : s:%x\n", regs
->pN
, crd
);
1184 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: s:%x\n", regs
->pN
, crd_freed
);
1186 while ((crd
!= init_crd
) && ((u32
)SUB_S32(crd_freed
, crd_freed_start
) <
1187 (init_crd
- crd_start
))) {
1189 udelay(FLR_WAIT_INTERVAL
);
1190 crd
= REG_RD(bp
, regs
->crd
);
1191 crd_freed
= REG_RD(bp
, regs
->crd_freed
);
1193 DP(BNX2X_MSG_SP
, "PBF tx buffer[%d] timed out\n",
1195 DP(BNX2X_MSG_SP
, "CREDIT[%d] : c:%x\n",
1197 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: c:%x\n",
1198 regs
->pN
, crd_freed
);
1202 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203 poll_count
-cur_cnt
, FLR_WAIT_INTERVAL
, regs
->pN
);
1206 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x
*bp
,
1207 struct pbf_pN_cmd_regs
*regs
,
1210 u32 occup
, to_free
, freed
, freed_start
;
1211 u32 cur_cnt
= poll_count
;
1213 occup
= to_free
= REG_RD(bp
, regs
->lines_occup
);
1214 freed
= freed_start
= REG_RD(bp
, regs
->lines_freed
);
1216 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n", regs
->pN
, occup
);
1217 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n", regs
->pN
, freed
);
1219 while (occup
&& ((u32
)SUB_S32(freed
, freed_start
) < to_free
)) {
1221 udelay(FLR_WAIT_INTERVAL
);
1222 occup
= REG_RD(bp
, regs
->lines_occup
);
1223 freed
= REG_RD(bp
, regs
->lines_freed
);
1225 DP(BNX2X_MSG_SP
, "PBF cmd queue[%d] timed out\n",
1227 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n",
1229 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n",
1234 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235 poll_count
-cur_cnt
, FLR_WAIT_INTERVAL
, regs
->pN
);
1238 static u32
bnx2x_flr_clnup_reg_poll(struct bnx2x
*bp
, u32 reg
,
1239 u32 expected
, u32 poll_count
)
1241 u32 cur_cnt
= poll_count
;
1244 while ((val
= REG_RD(bp
, reg
)) != expected
&& cur_cnt
--)
1245 udelay(FLR_WAIT_INTERVAL
);
1250 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x
*bp
, u32 reg
,
1251 char *msg
, u32 poll_cnt
)
1253 u32 val
= bnx2x_flr_clnup_reg_poll(bp
, reg
, 0, poll_cnt
);
1255 BNX2X_ERR("%s usage count=%d\n", msg
, val
);
1261 /* Common routines with VF FLR cleanup */
1262 u32
bnx2x_flr_clnup_poll_count(struct bnx2x
*bp
)
1264 /* adjust polling timeout */
1265 if (CHIP_REV_IS_EMUL(bp
))
1266 return FLR_POLL_CNT
* 2000;
1268 if (CHIP_REV_IS_FPGA(bp
))
1269 return FLR_POLL_CNT
* 120;
1271 return FLR_POLL_CNT
;
1274 void bnx2x_tx_hw_flushed(struct bnx2x
*bp
, u32 poll_count
)
1276 struct pbf_pN_cmd_regs cmd_regs
[] = {
1277 {0, (CHIP_IS_E3B0(bp
)) ?
1278 PBF_REG_TQ_OCCUPANCY_Q0
:
1279 PBF_REG_P0_TQ_OCCUPANCY
,
1280 (CHIP_IS_E3B0(bp
)) ?
1281 PBF_REG_TQ_LINES_FREED_CNT_Q0
:
1282 PBF_REG_P0_TQ_LINES_FREED_CNT
},
1283 {1, (CHIP_IS_E3B0(bp
)) ?
1284 PBF_REG_TQ_OCCUPANCY_Q1
:
1285 PBF_REG_P1_TQ_OCCUPANCY
,
1286 (CHIP_IS_E3B0(bp
)) ?
1287 PBF_REG_TQ_LINES_FREED_CNT_Q1
:
1288 PBF_REG_P1_TQ_LINES_FREED_CNT
},
1289 {4, (CHIP_IS_E3B0(bp
)) ?
1290 PBF_REG_TQ_OCCUPANCY_LB_Q
:
1291 PBF_REG_P4_TQ_OCCUPANCY
,
1292 (CHIP_IS_E3B0(bp
)) ?
1293 PBF_REG_TQ_LINES_FREED_CNT_LB_Q
:
1294 PBF_REG_P4_TQ_LINES_FREED_CNT
}
1297 struct pbf_pN_buf_regs buf_regs
[] = {
1298 {0, (CHIP_IS_E3B0(bp
)) ?
1299 PBF_REG_INIT_CRD_Q0
:
1300 PBF_REG_P0_INIT_CRD
,
1301 (CHIP_IS_E3B0(bp
)) ?
1304 (CHIP_IS_E3B0(bp
)) ?
1305 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0
:
1306 PBF_REG_P0_INTERNAL_CRD_FREED_CNT
},
1307 {1, (CHIP_IS_E3B0(bp
)) ?
1308 PBF_REG_INIT_CRD_Q1
:
1309 PBF_REG_P1_INIT_CRD
,
1310 (CHIP_IS_E3B0(bp
)) ?
1313 (CHIP_IS_E3B0(bp
)) ?
1314 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1
:
1315 PBF_REG_P1_INTERNAL_CRD_FREED_CNT
},
1316 {4, (CHIP_IS_E3B0(bp
)) ?
1317 PBF_REG_INIT_CRD_LB_Q
:
1318 PBF_REG_P4_INIT_CRD
,
1319 (CHIP_IS_E3B0(bp
)) ?
1320 PBF_REG_CREDIT_LB_Q
:
1322 (CHIP_IS_E3B0(bp
)) ?
1323 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q
:
1324 PBF_REG_P4_INTERNAL_CRD_FREED_CNT
},
1329 /* Verify the command queues are flushed P0, P1, P4 */
1330 for (i
= 0; i
< ARRAY_SIZE(cmd_regs
); i
++)
1331 bnx2x_pbf_pN_cmd_flushed(bp
, &cmd_regs
[i
], poll_count
);
1333 /* Verify the transmission buffers are flushed P0, P1, P4 */
1334 for (i
= 0; i
< ARRAY_SIZE(buf_regs
); i
++)
1335 bnx2x_pbf_pN_buf_flushed(bp
, &buf_regs
[i
], poll_count
);
1338 #define OP_GEN_PARAM(param) \
1339 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1341 #define OP_GEN_TYPE(type) \
1342 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1344 #define OP_GEN_AGG_VECT(index) \
1345 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1347 int bnx2x_send_final_clnup(struct bnx2x
*bp
, u8 clnup_func
, u32 poll_cnt
)
1349 u32 op_gen_command
= 0;
1350 u32 comp_addr
= BAR_CSTRORM_INTMEM
+
1351 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func
);
1354 if (REG_RD(bp
, comp_addr
)) {
1355 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1359 op_gen_command
|= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX
);
1360 op_gen_command
|= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE
);
1361 op_gen_command
|= OP_GEN_AGG_VECT(clnup_func
);
1362 op_gen_command
|= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT
;
1364 DP(BNX2X_MSG_SP
, "sending FW Final cleanup\n");
1365 REG_WR(bp
, XSDM_REG_OPERATION_GEN
, op_gen_command
);
1367 if (bnx2x_flr_clnup_reg_poll(bp
, comp_addr
, 1, poll_cnt
) != 1) {
1368 BNX2X_ERR("FW final cleanup did not succeed\n");
1369 DP(BNX2X_MSG_SP
, "At timeout completion address contained %x\n",
1370 (REG_RD(bp
, comp_addr
)));
1374 /* Zero completion for next FLR */
1375 REG_WR(bp
, comp_addr
, 0);
1380 u8
bnx2x_is_pcie_pending(struct pci_dev
*dev
)
1384 pcie_capability_read_word(dev
, PCI_EXP_DEVSTA
, &status
);
1385 return status
& PCI_EXP_DEVSTA_TRPND
;
1388 /* PF FLR specific routines
1390 static int bnx2x_poll_hw_usage_counters(struct bnx2x
*bp
, u32 poll_cnt
)
1392 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1394 CFC_REG_NUM_LCIDS_INSIDE_PF
,
1395 "CFC PF usage counter timed out",
1399 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1401 DORQ_REG_PF_USAGE_CNT
,
1402 "DQ PF usage counter timed out",
1406 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1408 QM_REG_PF_USG_CNT_0
+ 4*BP_FUNC(bp
),
1409 "QM PF usage counter timed out",
1413 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1415 TM_REG_LIN0_VNIC_UC
+ 4*BP_PORT(bp
),
1416 "Timers VNIC usage counter timed out",
1419 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1420 TM_REG_LIN0_NUM_SCANS
+ 4*BP_PORT(bp
),
1421 "Timers NUM_SCANS usage counter timed out",
1425 /* Wait DMAE PF usage counter to zero */
1426 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1427 dmae_reg_go_c
[INIT_DMAE_C(bp
)],
1428 "DMAE command register timed out",
1435 static void bnx2x_hw_enable_status(struct bnx2x
*bp
)
1439 val
= REG_RD(bp
, CFC_REG_WEAK_ENABLE_PF
);
1440 DP(BNX2X_MSG_SP
, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val
);
1442 val
= REG_RD(bp
, PBF_REG_DISABLE_PF
);
1443 DP(BNX2X_MSG_SP
, "PBF_REG_DISABLE_PF is 0x%x\n", val
);
1445 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSI_EN
);
1446 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val
);
1448 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_EN
);
1449 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val
);
1451 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_FUNC_MASK
);
1452 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val
);
1454 val
= REG_RD(bp
, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR
);
1455 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val
);
1457 val
= REG_RD(bp
, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR
);
1458 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val
);
1460 val
= REG_RD(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
);
1461 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1465 static int bnx2x_pf_flr_clnup(struct bnx2x
*bp
)
1467 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
1469 DP(BNX2X_MSG_SP
, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp
));
1471 /* Re-enable PF target read access */
1472 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
1474 /* Poll HW usage counters */
1475 DP(BNX2X_MSG_SP
, "Polling usage counters\n");
1476 if (bnx2x_poll_hw_usage_counters(bp
, poll_cnt
))
1479 /* Zero the igu 'trailing edge' and 'leading edge' */
1481 /* Send the FW cleanup command */
1482 if (bnx2x_send_final_clnup(bp
, (u8
)BP_FUNC(bp
), poll_cnt
))
1487 /* Verify TX hw is flushed */
1488 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
1490 /* Wait 100ms (not adjusted according to platform) */
1493 /* Verify no pending pci transactions */
1494 if (bnx2x_is_pcie_pending(bp
->pdev
))
1495 BNX2X_ERR("PCIE Transactions still pending\n");
1498 bnx2x_hw_enable_status(bp
);
1501 * Master enable - Due to WB DMAE writes performed before this
1502 * register is re-initialized as part of the regular function init
1504 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
1509 static void bnx2x_hc_int_enable(struct bnx2x
*bp
)
1511 int port
= BP_PORT(bp
);
1512 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1513 u32 val
= REG_RD(bp
, addr
);
1514 bool msix
= (bp
->flags
& USING_MSIX_FLAG
) ? true : false;
1515 bool single_msix
= (bp
->flags
& USING_SINGLE_MSIX_FLAG
) ? true : false;
1516 bool msi
= (bp
->flags
& USING_MSI_FLAG
) ? true : false;
1519 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1520 HC_CONFIG_0_REG_INT_LINE_EN_0
);
1521 val
|= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1522 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1524 val
|= HC_CONFIG_0_REG_SINGLE_ISR_EN_0
;
1526 val
&= ~HC_CONFIG_0_REG_INT_LINE_EN_0
;
1527 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1528 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1529 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1531 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1532 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1533 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1534 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1536 if (!CHIP_IS_E1(bp
)) {
1538 "write %x to HC %d (addr 0x%x)\n", val
, port
, addr
);
1540 REG_WR(bp
, addr
, val
);
1542 val
&= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
;
1547 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0x1FFFF);
1550 "write %x to HC %d (addr 0x%x) mode %s\n", val
, port
, addr
,
1551 (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1553 REG_WR(bp
, addr
, val
);
1555 * Ensure that HC_CONFIG is written before leading/trailing edge config
1560 if (!CHIP_IS_E1(bp
)) {
1561 /* init leading/trailing edge */
1563 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1565 /* enable nig and gpio3 attention */
1570 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
1571 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
1574 /* Make sure that interrupts are indeed enabled from here on */
1578 static void bnx2x_igu_int_enable(struct bnx2x
*bp
)
1581 bool msix
= (bp
->flags
& USING_MSIX_FLAG
) ? true : false;
1582 bool single_msix
= (bp
->flags
& USING_SINGLE_MSIX_FLAG
) ? true : false;
1583 bool msi
= (bp
->flags
& USING_MSI_FLAG
) ? true : false;
1585 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1588 val
&= ~(IGU_PF_CONF_INT_LINE_EN
|
1589 IGU_PF_CONF_SINGLE_ISR_EN
);
1590 val
|= (IGU_PF_CONF_MSI_MSIX_EN
|
1591 IGU_PF_CONF_ATTN_BIT_EN
);
1594 val
|= IGU_PF_CONF_SINGLE_ISR_EN
;
1596 val
&= ~IGU_PF_CONF_INT_LINE_EN
;
1597 val
|= (IGU_PF_CONF_MSI_MSIX_EN
|
1598 IGU_PF_CONF_ATTN_BIT_EN
|
1599 IGU_PF_CONF_SINGLE_ISR_EN
);
1601 val
&= ~IGU_PF_CONF_MSI_MSIX_EN
;
1602 val
|= (IGU_PF_CONF_INT_LINE_EN
|
1603 IGU_PF_CONF_ATTN_BIT_EN
|
1604 IGU_PF_CONF_SINGLE_ISR_EN
);
1607 /* Clean previous status - need to configure igu prior to ack*/
1608 if ((!msix
) || single_msix
) {
1609 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1613 val
|= IGU_PF_CONF_FUNC_EN
;
1615 DP(NETIF_MSG_IFUP
, "write 0x%x to IGU mode %s\n",
1616 val
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1618 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1620 if (val
& IGU_PF_CONF_INT_LINE_EN
)
1621 pci_intx(bp
->pdev
, true);
1625 /* init leading/trailing edge */
1627 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1629 /* enable nig and gpio3 attention */
1634 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
1635 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
1637 /* Make sure that interrupts are indeed enabled from here on */
1641 void bnx2x_int_enable(struct bnx2x
*bp
)
1643 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1644 bnx2x_hc_int_enable(bp
);
1646 bnx2x_igu_int_enable(bp
);
1649 void bnx2x_int_disable_sync(struct bnx2x
*bp
, int disable_hw
)
1651 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1655 /* prevent the HW from sending interrupts */
1656 bnx2x_int_disable(bp
);
1658 /* make sure all ISRs are done */
1660 synchronize_irq(bp
->msix_table
[0].vector
);
1662 if (CNIC_SUPPORT(bp
))
1664 for_each_eth_queue(bp
, i
)
1665 synchronize_irq(bp
->msix_table
[offset
++].vector
);
1667 synchronize_irq(bp
->pdev
->irq
);
1669 /* make sure sp_task is not running */
1670 cancel_delayed_work(&bp
->sp_task
);
1671 cancel_delayed_work(&bp
->period_task
);
1672 flush_workqueue(bnx2x_wq
);
1678 * General service functions
1681 /* Return true if succeeded to acquire the lock */
1682 static bool bnx2x_trylock_hw_lock(struct bnx2x
*bp
, u32 resource
)
1685 u32 resource_bit
= (1 << resource
);
1686 int func
= BP_FUNC(bp
);
1687 u32 hw_lock_control_reg
;
1689 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1690 "Trying to take a lock on resource %d\n", resource
);
1692 /* Validating that the resource is within range */
1693 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1694 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1695 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1701 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1703 hw_lock_control_reg
=
1704 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1706 /* Try to acquire the lock */
1707 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1708 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1709 if (lock_status
& resource_bit
)
1712 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1713 "Failed to get a lock on resource %d\n", resource
);
1718 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1720 * @bp: driver handle
1722 * Returns the recovery leader resource id according to the engine this function
1723 * belongs to. Currently only only 2 engines is supported.
1725 static int bnx2x_get_leader_lock_resource(struct bnx2x
*bp
)
1728 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1
;
1730 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0
;
1734 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1736 * @bp: driver handle
1738 * Tries to acquire a leader lock for current engine.
1740 static bool bnx2x_trylock_leader_lock(struct bnx2x
*bp
)
1742 return bnx2x_trylock_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1745 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
);
1747 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748 static int bnx2x_schedule_sp_task(struct bnx2x
*bp
)
1750 /* Set the interrupt occurred bit for the sp-task to recognize it
1751 * must ack the interrupt and transition according to the IGU
1754 atomic_set(&bp
->interrupt_occurred
, 1);
1756 /* The sp_task must execute only after this bit
1757 * is set, otherwise we will get out of sync and miss all
1758 * further interrupts. Hence, the barrier.
1762 /* schedule sp_task to workqueue */
1763 return queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
1766 void bnx2x_sp_event(struct bnx2x_fastpath
*fp
, union eth_rx_cqe
*rr_cqe
)
1768 struct bnx2x
*bp
= fp
->bp
;
1769 int cid
= SW_CID(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1770 int command
= CQE_CMD(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1771 enum bnx2x_queue_cmd drv_cmd
= BNX2X_Q_CMD_MAX
;
1772 struct bnx2x_queue_sp_obj
*q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
1775 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1776 fp
->index
, cid
, command
, bp
->state
,
1777 rr_cqe
->ramrod_cqe
.ramrod_type
);
1779 /* If cid is within VF range, replace the slowpath object with the
1780 * one corresponding to this VF
1782 if (cid
>= BNX2X_FIRST_VF_CID
&&
1783 cid
< BNX2X_FIRST_VF_CID
+ BNX2X_VF_CIDS
)
1784 bnx2x_iov_set_queue_sp_obj(bp
, cid
, &q_obj
);
1787 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE
):
1788 DP(BNX2X_MSG_SP
, "got UPDATE ramrod. CID %d\n", cid
);
1789 drv_cmd
= BNX2X_Q_CMD_UPDATE
;
1792 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP
):
1793 DP(BNX2X_MSG_SP
, "got MULTI[%d] setup ramrod\n", cid
);
1794 drv_cmd
= BNX2X_Q_CMD_SETUP
;
1797 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
):
1798 DP(BNX2X_MSG_SP
, "got MULTI[%d] tx-only setup ramrod\n", cid
);
1799 drv_cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
1802 case (RAMROD_CMD_ID_ETH_HALT
):
1803 DP(BNX2X_MSG_SP
, "got MULTI[%d] halt ramrod\n", cid
);
1804 drv_cmd
= BNX2X_Q_CMD_HALT
;
1807 case (RAMROD_CMD_ID_ETH_TERMINATE
):
1808 DP(BNX2X_MSG_SP
, "got MULTI[%d] terminate ramrod\n", cid
);
1809 drv_cmd
= BNX2X_Q_CMD_TERMINATE
;
1812 case (RAMROD_CMD_ID_ETH_EMPTY
):
1813 DP(BNX2X_MSG_SP
, "got MULTI[%d] empty ramrod\n", cid
);
1814 drv_cmd
= BNX2X_Q_CMD_EMPTY
;
1818 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819 command
, fp
->index
);
1823 if ((drv_cmd
!= BNX2X_Q_CMD_MAX
) &&
1824 q_obj
->complete_cmd(bp
, q_obj
, drv_cmd
))
1825 /* q_obj->complete_cmd() failure means that this was
1826 * an unexpected completion.
1828 * In this case we don't want to increase the bp->spq_left
1829 * because apparently we haven't sent this command the first
1832 #ifdef BNX2X_STOP_ON_ERROR
1837 /* SRIOV: reschedule any 'in_progress' operations */
1838 bnx2x_iov_sp_event(bp
, cid
, true);
1840 smp_mb__before_atomic_inc();
1841 atomic_inc(&bp
->cq_spq_left
);
1842 /* push the change in bp->spq_left and towards the memory */
1843 smp_mb__after_atomic_inc();
1845 DP(BNX2X_MSG_SP
, "bp->cq_spq_left %x\n", atomic_read(&bp
->cq_spq_left
));
1847 if ((drv_cmd
== BNX2X_Q_CMD_UPDATE
) && (IS_FCOE_FP(fp
)) &&
1848 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
))) {
1849 /* if Q update ramrod is completed for last Q in AFEX vif set
1850 * flow, then ACK MCP at the end
1852 * mark pending ACK to MCP bit.
1853 * prevent case that both bits are cleared.
1854 * At the end of load/unload driver checks that
1855 * sp_state is cleared, and this order prevents
1858 smp_mb__before_clear_bit();
1859 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK
, &bp
->sp_state
);
1861 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
);
1862 smp_mb__after_clear_bit();
1864 /* schedule the sp task as mcp ack is required */
1865 bnx2x_schedule_sp_task(bp
);
1871 irqreturn_t
bnx2x_interrupt(int irq
, void *dev_instance
)
1873 struct bnx2x
*bp
= netdev_priv(dev_instance
);
1874 u16 status
= bnx2x_ack_int(bp
);
1879 /* Return here if interrupt is shared and it's not for us */
1880 if (unlikely(status
== 0)) {
1881 DP(NETIF_MSG_INTR
, "not our interrupt!\n");
1884 DP(NETIF_MSG_INTR
, "got an interrupt status 0x%x\n", status
);
1886 #ifdef BNX2X_STOP_ON_ERROR
1887 if (unlikely(bp
->panic
))
1891 for_each_eth_queue(bp
, i
) {
1892 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1894 mask
= 0x2 << (fp
->index
+ CNIC_SUPPORT(bp
));
1895 if (status
& mask
) {
1896 /* Handle Rx or Tx according to SB id */
1897 for_each_cos_in_tx_queue(fp
, cos
)
1898 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1899 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1900 napi_schedule(&bnx2x_fp(bp
, fp
->index
, napi
));
1905 if (CNIC_SUPPORT(bp
)) {
1907 if (status
& (mask
| 0x1)) {
1908 struct cnic_ops
*c_ops
= NULL
;
1911 c_ops
= rcu_dereference(bp
->cnic_ops
);
1912 if (c_ops
&& (bp
->cnic_eth_dev
.drv_state
&
1913 CNIC_DRV_STATE_HANDLES_IRQ
))
1914 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
1921 if (unlikely(status
& 0x1)) {
1923 /* schedule sp task to perform default status block work, ack
1924 * attentions and enable interrupts.
1926 bnx2x_schedule_sp_task(bp
);
1933 if (unlikely(status
))
1934 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
1943 * General service functions
1946 int bnx2x_acquire_hw_lock(struct bnx2x
*bp
, u32 resource
)
1949 u32 resource_bit
= (1 << resource
);
1950 int func
= BP_FUNC(bp
);
1951 u32 hw_lock_control_reg
;
1954 /* Validating that the resource is within range */
1955 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1956 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1962 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1964 hw_lock_control_reg
=
1965 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1968 /* Validating that the resource is not already taken */
1969 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1970 if (lock_status
& resource_bit
) {
1971 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1972 lock_status
, resource_bit
);
1976 /* Try for 5 second every 5ms */
1977 for (cnt
= 0; cnt
< 1000; cnt
++) {
1978 /* Try to acquire the lock */
1979 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1980 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1981 if (lock_status
& resource_bit
)
1984 usleep_range(5000, 10000);
1986 BNX2X_ERR("Timeout\n");
1990 int bnx2x_release_leader_lock(struct bnx2x
*bp
)
1992 return bnx2x_release_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1995 int bnx2x_release_hw_lock(struct bnx2x
*bp
, u32 resource
)
1998 u32 resource_bit
= (1 << resource
);
1999 int func
= BP_FUNC(bp
);
2000 u32 hw_lock_control_reg
;
2002 /* Validating that the resource is within range */
2003 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
2004 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
2010 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
2012 hw_lock_control_reg
=
2013 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
2016 /* Validating that the resource is currently taken */
2017 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
2018 if (!(lock_status
& resource_bit
)) {
2019 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020 lock_status
, resource_bit
);
2024 REG_WR(bp
, hw_lock_control_reg
, resource_bit
);
2028 int bnx2x_get_gpio(struct bnx2x
*bp
, int gpio_num
, u8 port
)
2030 /* The GPIO should be swapped if swap register is set and active */
2031 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2032 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2033 int gpio_shift
= gpio_num
+
2034 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2035 u32 gpio_mask
= (1 << gpio_shift
);
2039 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2040 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2044 /* read GPIO value */
2045 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
2047 /* get the requested pin value */
2048 if ((gpio_reg
& gpio_mask
) == gpio_mask
)
2053 DP(NETIF_MSG_LINK
, "pin %d value 0x%x\n", gpio_num
, value
);
2058 int bnx2x_set_gpio(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2060 /* The GPIO should be swapped if swap register is set and active */
2061 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2062 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2063 int gpio_shift
= gpio_num
+
2064 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2065 u32 gpio_mask
= (1 << gpio_shift
);
2068 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2069 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2073 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2074 /* read GPIO and mask except the float bits */
2075 gpio_reg
= (REG_RD(bp
, MISC_REG_GPIO
) & MISC_REGISTERS_GPIO_FLOAT
);
2078 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
2080 "Set GPIO %d (shift %d) -> output low\n",
2081 gpio_num
, gpio_shift
);
2082 /* clear FLOAT and set CLR */
2083 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2084 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_CLR_POS
);
2087 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2089 "Set GPIO %d (shift %d) -> output high\n",
2090 gpio_num
, gpio_shift
);
2091 /* clear FLOAT and set SET */
2092 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2093 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_SET_POS
);
2096 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2098 "Set GPIO %d (shift %d) -> input\n",
2099 gpio_num
, gpio_shift
);
2101 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2108 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2109 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2114 int bnx2x_set_mult_gpio(struct bnx2x
*bp
, u8 pins
, u32 mode
)
2119 /* Any port swapping should be handled by caller. */
2121 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2122 /* read GPIO and mask except the float bits */
2123 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
2124 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2125 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2126 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2129 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
2130 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output low\n", pins
);
2132 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2135 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2136 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output high\n", pins
);
2138 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2141 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2142 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> input\n", pins
);
2144 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2148 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode
);
2154 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2156 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2161 int bnx2x_set_gpio_int(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2163 /* The GPIO should be swapped if swap register is set and active */
2164 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2165 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2166 int gpio_shift
= gpio_num
+
2167 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2168 u32 gpio_mask
= (1 << gpio_shift
);
2171 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2172 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2176 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2178 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO_INT
);
2181 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR
:
2183 "Clear GPIO INT %d (shift %d) -> output low\n",
2184 gpio_num
, gpio_shift
);
2185 /* clear SET and set CLR */
2186 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2187 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2190 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET
:
2192 "Set GPIO INT %d (shift %d) -> output high\n",
2193 gpio_num
, gpio_shift
);
2194 /* clear CLR and set SET */
2195 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2196 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2203 REG_WR(bp
, MISC_REG_GPIO_INT
, gpio_reg
);
2204 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2209 static int bnx2x_set_spio(struct bnx2x
*bp
, int spio
, u32 mode
)
2213 /* Only 2 SPIOs are configurable */
2214 if ((spio
!= MISC_SPIO_SPIO4
) && (spio
!= MISC_SPIO_SPIO5
)) {
2215 BNX2X_ERR("Invalid SPIO 0x%x\n", spio
);
2219 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2220 /* read SPIO and mask except the float bits */
2221 spio_reg
= (REG_RD(bp
, MISC_REG_SPIO
) & MISC_SPIO_FLOAT
);
2224 case MISC_SPIO_OUTPUT_LOW
:
2225 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> output low\n", spio
);
2226 /* clear FLOAT and set CLR */
2227 spio_reg
&= ~(spio
<< MISC_SPIO_FLOAT_POS
);
2228 spio_reg
|= (spio
<< MISC_SPIO_CLR_POS
);
2231 case MISC_SPIO_OUTPUT_HIGH
:
2232 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> output high\n", spio
);
2233 /* clear FLOAT and set SET */
2234 spio_reg
&= ~(spio
<< MISC_SPIO_FLOAT_POS
);
2235 spio_reg
|= (spio
<< MISC_SPIO_SET_POS
);
2238 case MISC_SPIO_INPUT_HI_Z
:
2239 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> input\n", spio
);
2241 spio_reg
|= (spio
<< MISC_SPIO_FLOAT_POS
);
2248 REG_WR(bp
, MISC_REG_SPIO
, spio_reg
);
2249 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2254 void bnx2x_calc_fc_adv(struct bnx2x
*bp
)
2256 u8 cfg_idx
= bnx2x_get_link_cfg_idx(bp
);
2257 switch (bp
->link_vars
.ieee_fc
&
2258 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK
) {
2259 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE
:
2260 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2264 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH
:
2265 bp
->port
.advertising
[cfg_idx
] |= (ADVERTISED_Asym_Pause
|
2269 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC
:
2270 bp
->port
.advertising
[cfg_idx
] |= ADVERTISED_Asym_Pause
;
2274 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2280 static void bnx2x_set_requested_fc(struct bnx2x
*bp
)
2282 /* Initialize link parameters structure variables
2283 * It is recommended to turn off RX FC for jumbo frames
2284 * for better performance
2286 if (CHIP_IS_E1x(bp
) && (bp
->dev
->mtu
> 5000))
2287 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_TX
;
2289 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_BOTH
;
2292 static void bnx2x_init_dropless_fc(struct bnx2x
*bp
)
2294 u32 pause_enabled
= 0;
2296 if (!CHIP_IS_E1(bp
) && bp
->dropless_fc
&& bp
->link_vars
.link_up
) {
2297 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
2300 REG_WR(bp
, BAR_USTRORM_INTMEM
+
2301 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp
)),
2305 DP(NETIF_MSG_IFUP
| NETIF_MSG_LINK
, "dropless_fc is %s\n",
2306 pause_enabled
? "enabled" : "disabled");
2309 int bnx2x_initial_phy_init(struct bnx2x
*bp
, int load_mode
)
2311 int rc
, cfx_idx
= bnx2x_get_link_cfg_idx(bp
);
2312 u16 req_line_speed
= bp
->link_params
.req_line_speed
[cfx_idx
];
2314 if (!BP_NOMCP(bp
)) {
2315 bnx2x_set_requested_fc(bp
);
2316 bnx2x_acquire_phy_lock(bp
);
2318 if (load_mode
== LOAD_DIAG
) {
2319 struct link_params
*lp
= &bp
->link_params
;
2320 lp
->loopback_mode
= LOOPBACK_XGXS
;
2321 /* do PHY loopback at 10G speed, if possible */
2322 if (lp
->req_line_speed
[cfx_idx
] < SPEED_10000
) {
2323 if (lp
->speed_cap_mask
[cfx_idx
] &
2324 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
)
2325 lp
->req_line_speed
[cfx_idx
] =
2328 lp
->req_line_speed
[cfx_idx
] =
2333 if (load_mode
== LOAD_LOOPBACK_EXT
) {
2334 struct link_params
*lp
= &bp
->link_params
;
2335 lp
->loopback_mode
= LOOPBACK_EXT
;
2338 rc
= bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2340 bnx2x_release_phy_lock(bp
);
2342 bnx2x_init_dropless_fc(bp
);
2344 bnx2x_calc_fc_adv(bp
);
2346 if (bp
->link_vars
.link_up
) {
2347 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2348 bnx2x_link_report(bp
);
2350 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2351 bp
->link_params
.req_line_speed
[cfx_idx
] = req_line_speed
;
2354 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2358 void bnx2x_link_set(struct bnx2x
*bp
)
2360 if (!BP_NOMCP(bp
)) {
2361 bnx2x_acquire_phy_lock(bp
);
2362 bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2363 bnx2x_release_phy_lock(bp
);
2365 bnx2x_init_dropless_fc(bp
);
2367 bnx2x_calc_fc_adv(bp
);
2369 BNX2X_ERR("Bootcode is missing - can not set link\n");
2372 static void bnx2x__link_reset(struct bnx2x
*bp
)
2374 if (!BP_NOMCP(bp
)) {
2375 bnx2x_acquire_phy_lock(bp
);
2376 bnx2x_lfa_reset(&bp
->link_params
, &bp
->link_vars
);
2377 bnx2x_release_phy_lock(bp
);
2379 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2382 void bnx2x_force_link_reset(struct bnx2x
*bp
)
2384 bnx2x_acquire_phy_lock(bp
);
2385 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2386 bnx2x_release_phy_lock(bp
);
2389 u8
bnx2x_link_test(struct bnx2x
*bp
, u8 is_serdes
)
2393 if (!BP_NOMCP(bp
)) {
2394 bnx2x_acquire_phy_lock(bp
);
2395 rc
= bnx2x_test_link(&bp
->link_params
, &bp
->link_vars
,
2397 bnx2x_release_phy_lock(bp
);
2399 BNX2X_ERR("Bootcode is missing - can not test link\n");
2404 /* Calculates the sum of vn_min_rates.
2405 It's needed for further normalizing of the min_rates.
2407 sum of vn_min_rates.
2409 0 - if all the min_rates are 0.
2410 In the later case fairness algorithm should be deactivated.
2411 If not all min_rates are zero then those that are zeroes will be set to 1.
2413 static void bnx2x_calc_vn_min(struct bnx2x
*bp
,
2414 struct cmng_init_input
*input
)
2419 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2420 u32 vn_cfg
= bp
->mf_config
[vn
];
2421 u32 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2422 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2424 /* Skip hidden vns */
2425 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2427 /* If min rate is zero - set it to 1 */
2428 else if (!vn_min_rate
)
2429 vn_min_rate
= DEF_MIN_RATE
;
2433 input
->vnic_min_rate
[vn
] = vn_min_rate
;
2436 /* if ETS or all min rates are zeros - disable fairness */
2437 if (BNX2X_IS_ETS_ENABLED(bp
)) {
2438 input
->flags
.cmng_enables
&=
2439 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2440 DP(NETIF_MSG_IFUP
, "Fairness will be disabled due to ETS\n");
2441 } else if (all_zero
) {
2442 input
->flags
.cmng_enables
&=
2443 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2445 "All MIN values are zeroes fairness will be disabled\n");
2447 input
->flags
.cmng_enables
|=
2448 CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2451 static void bnx2x_calc_vn_max(struct bnx2x
*bp
, int vn
,
2452 struct cmng_init_input
*input
)
2455 u32 vn_cfg
= bp
->mf_config
[vn
];
2457 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2460 u32 maxCfg
= bnx2x_extract_max_cfg(bp
, vn_cfg
);
2463 /* maxCfg in percents of linkspeed */
2464 vn_max_rate
= (bp
->link_vars
.line_speed
* maxCfg
) / 100;
2465 } else /* SD modes */
2466 /* maxCfg is absolute in 100Mb units */
2467 vn_max_rate
= maxCfg
* 100;
2470 DP(NETIF_MSG_IFUP
, "vn %d: vn_max_rate %d\n", vn
, vn_max_rate
);
2472 input
->vnic_max_rate
[vn
] = vn_max_rate
;
2475 static int bnx2x_get_cmng_fns_mode(struct bnx2x
*bp
)
2477 if (CHIP_REV_IS_SLOW(bp
))
2478 return CMNG_FNS_NONE
;
2480 return CMNG_FNS_MINMAX
;
2482 return CMNG_FNS_NONE
;
2485 void bnx2x_read_mf_cfg(struct bnx2x
*bp
)
2487 int vn
, n
= (CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1);
2490 return; /* what should be the default value in this case */
2492 /* For 2 port configuration the absolute function number formula
2494 * abs_func = 2 * vn + BP_PORT + BP_PATH
2496 * and there are 4 functions per port
2498 * For 4 port configuration it is
2499 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2501 * and there are 2 functions per port
2503 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2504 int /*abs*/func
= n
* (2 * vn
+ BP_PORT(bp
)) + BP_PATH(bp
);
2506 if (func
>= E1H_FUNC_MAX
)
2510 MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2512 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
2513 DP(NETIF_MSG_IFUP
, "mf_cfg function disabled\n");
2514 bp
->flags
|= MF_FUNC_DIS
;
2516 DP(NETIF_MSG_IFUP
, "mf_cfg function enabled\n");
2517 bp
->flags
&= ~MF_FUNC_DIS
;
2521 static void bnx2x_cmng_fns_init(struct bnx2x
*bp
, u8 read_cfg
, u8 cmng_type
)
2523 struct cmng_init_input input
;
2524 memset(&input
, 0, sizeof(struct cmng_init_input
));
2526 input
.port_rate
= bp
->link_vars
.line_speed
;
2528 if (cmng_type
== CMNG_FNS_MINMAX
&& input
.port_rate
) {
2531 /* read mf conf from shmem */
2533 bnx2x_read_mf_cfg(bp
);
2535 /* vn_weight_sum and enable fairness if not 0 */
2536 bnx2x_calc_vn_min(bp
, &input
);
2538 /* calculate and set min-max rate for each vn */
2540 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++)
2541 bnx2x_calc_vn_max(bp
, vn
, &input
);
2543 /* always enable rate shaping and fairness */
2544 input
.flags
.cmng_enables
|=
2545 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN
;
2547 bnx2x_init_cmng(&input
, &bp
->cmng
);
2551 /* rate shaping and fairness are disabled */
2553 "rate shaping and fairness are disabled\n");
2556 static void storm_memset_cmng(struct bnx2x
*bp
,
2557 struct cmng_init
*cmng
,
2561 size_t size
= sizeof(struct cmng_struct_per_port
);
2563 u32 addr
= BAR_XSTRORM_INTMEM
+
2564 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port
);
2566 __storm_memset_struct(bp
, addr
, size
, (u32
*)&cmng
->port
);
2568 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2569 int func
= func_by_vn(bp
, vn
);
2571 addr
= BAR_XSTRORM_INTMEM
+
2572 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func
);
2573 size
= sizeof(struct rate_shaping_vars_per_vn
);
2574 __storm_memset_struct(bp
, addr
, size
,
2575 (u32
*)&cmng
->vnic
.vnic_max_rate
[vn
]);
2577 addr
= BAR_XSTRORM_INTMEM
+
2578 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func
);
2579 size
= sizeof(struct fairness_vars_per_vn
);
2580 __storm_memset_struct(bp
, addr
, size
,
2581 (u32
*)&cmng
->vnic
.vnic_min_rate
[vn
]);
2585 /* init cmng mode in HW according to local configuration */
2586 void bnx2x_set_local_cmng(struct bnx2x
*bp
)
2588 int cmng_fns
= bnx2x_get_cmng_fns_mode(bp
);
2590 if (cmng_fns
!= CMNG_FNS_NONE
) {
2591 bnx2x_cmng_fns_init(bp
, false, cmng_fns
);
2592 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2594 /* rate shaping and fairness are disabled */
2596 "single function mode without fairness\n");
2600 /* This function is called upon link interrupt */
2601 static void bnx2x_link_attn(struct bnx2x
*bp
)
2603 /* Make sure that we are synced with the current statistics */
2604 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2606 bnx2x_link_update(&bp
->link_params
, &bp
->link_vars
);
2608 bnx2x_init_dropless_fc(bp
);
2610 if (bp
->link_vars
.link_up
) {
2612 if (bp
->link_vars
.mac_type
!= MAC_TYPE_EMAC
) {
2613 struct host_port_stats
*pstats
;
2615 pstats
= bnx2x_sp(bp
, port_stats
);
2616 /* reset old mac stats */
2617 memset(&(pstats
->mac_stx
[0]), 0,
2618 sizeof(struct mac_stx
));
2620 if (bp
->state
== BNX2X_STATE_OPEN
)
2621 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2624 if (bp
->link_vars
.link_up
&& bp
->link_vars
.line_speed
)
2625 bnx2x_set_local_cmng(bp
);
2627 __bnx2x_link_report(bp
);
2630 bnx2x_link_sync_notify(bp
);
2633 void bnx2x__link_status_update(struct bnx2x
*bp
)
2635 if (bp
->state
!= BNX2X_STATE_OPEN
)
2638 /* read updated dcb configuration */
2640 bnx2x_dcbx_pmf_update(bp
);
2641 bnx2x_link_status_update(&bp
->link_params
, &bp
->link_vars
);
2642 if (bp
->link_vars
.link_up
)
2643 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2645 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2646 /* indicate link status */
2647 bnx2x_link_report(bp
);
2650 bp
->port
.supported
[0] |= (SUPPORTED_10baseT_Half
|
2651 SUPPORTED_10baseT_Full
|
2652 SUPPORTED_100baseT_Half
|
2653 SUPPORTED_100baseT_Full
|
2654 SUPPORTED_1000baseT_Full
|
2655 SUPPORTED_2500baseX_Full
|
2656 SUPPORTED_10000baseT_Full
|
2661 SUPPORTED_Asym_Pause
);
2662 bp
->port
.advertising
[0] = bp
->port
.supported
[0];
2664 bp
->link_params
.bp
= bp
;
2665 bp
->link_params
.port
= BP_PORT(bp
);
2666 bp
->link_params
.req_duplex
[0] = DUPLEX_FULL
;
2667 bp
->link_params
.req_flow_ctrl
[0] = BNX2X_FLOW_CTRL_NONE
;
2668 bp
->link_params
.req_line_speed
[0] = SPEED_10000
;
2669 bp
->link_params
.speed_cap_mask
[0] = 0x7f0000;
2670 bp
->link_params
.switch_cfg
= SWITCH_CFG_10G
;
2671 bp
->link_vars
.mac_type
= MAC_TYPE_BMAC
;
2672 bp
->link_vars
.line_speed
= SPEED_10000
;
2673 bp
->link_vars
.link_status
=
2674 (LINK_STATUS_LINK_UP
|
2675 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD
);
2676 bp
->link_vars
.link_up
= 1;
2677 bp
->link_vars
.duplex
= DUPLEX_FULL
;
2678 bp
->link_vars
.flow_ctrl
= BNX2X_FLOW_CTRL_NONE
;
2679 __bnx2x_link_report(bp
);
2680 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2684 static int bnx2x_afex_func_update(struct bnx2x
*bp
, u16 vifid
,
2685 u16 vlan_val
, u8 allowed_prio
)
2687 struct bnx2x_func_state_params func_params
= {NULL
};
2688 struct bnx2x_func_afex_update_params
*f_update_params
=
2689 &func_params
.params
.afex_update
;
2691 func_params
.f_obj
= &bp
->func_obj
;
2692 func_params
.cmd
= BNX2X_F_CMD_AFEX_UPDATE
;
2694 /* no need to wait for RAMROD completion, so don't
2695 * set RAMROD_COMP_WAIT flag
2698 f_update_params
->vif_id
= vifid
;
2699 f_update_params
->afex_default_vlan
= vlan_val
;
2700 f_update_params
->allowed_priorities
= allowed_prio
;
2702 /* if ramrod can not be sent, response to MCP immediately */
2703 if (bnx2x_func_state_change(bp
, &func_params
) < 0)
2704 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
2709 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x
*bp
, u8 cmd_type
,
2710 u16 vif_index
, u8 func_bit_map
)
2712 struct bnx2x_func_state_params func_params
= {NULL
};
2713 struct bnx2x_func_afex_viflists_params
*update_params
=
2714 &func_params
.params
.afex_viflists
;
2718 /* validate only LIST_SET and LIST_GET are received from switch */
2719 if ((cmd_type
!= VIF_LIST_RULE_GET
) && (cmd_type
!= VIF_LIST_RULE_SET
))
2720 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2723 func_params
.f_obj
= &bp
->func_obj
;
2724 func_params
.cmd
= BNX2X_F_CMD_AFEX_VIFLISTS
;
2726 /* set parameters according to cmd_type */
2727 update_params
->afex_vif_list_command
= cmd_type
;
2728 update_params
->vif_list_index
= vif_index
;
2729 update_params
->func_bit_map
=
2730 (cmd_type
== VIF_LIST_RULE_GET
) ? 0 : func_bit_map
;
2731 update_params
->func_to_clear
= 0;
2733 (cmd_type
== VIF_LIST_RULE_GET
) ?
2734 DRV_MSG_CODE_AFEX_LISTGET_ACK
:
2735 DRV_MSG_CODE_AFEX_LISTSET_ACK
;
2737 /* if ramrod can not be sent, respond to MCP immediately for
2738 * SET and GET requests (other are not triggered from MCP)
2740 rc
= bnx2x_func_state_change(bp
, &func_params
);
2742 bnx2x_fw_command(bp
, drv_msg_code
, 0);
2747 static void bnx2x_handle_afex_cmd(struct bnx2x
*bp
, u32 cmd
)
2749 struct afex_stats afex_stats
;
2750 u32 func
= BP_ABS_FUNC(bp
);
2757 u32 addr_to_write
, vifid
, addrs
, stats_type
, i
;
2759 if (cmd
& DRV_STATUS_AFEX_LISTGET_REQ
) {
2760 vifid
= SHMEM2_RD(bp
, afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2762 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid
);
2763 bnx2x_afex_handle_vif_list_cmd(bp
, VIF_LIST_RULE_GET
, vifid
, 0);
2766 if (cmd
& DRV_STATUS_AFEX_LISTSET_REQ
) {
2767 vifid
= SHMEM2_RD(bp
, afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2768 addrs
= SHMEM2_RD(bp
, afex_param2_to_driver
[BP_FW_MB_IDX(bp
)]);
2770 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2772 bnx2x_afex_handle_vif_list_cmd(bp
, VIF_LIST_RULE_SET
, vifid
,
2776 if (cmd
& DRV_STATUS_AFEX_STATSGET_REQ
) {
2777 addr_to_write
= SHMEM2_RD(bp
,
2778 afex_scratchpad_addr_to_write
[BP_FW_MB_IDX(bp
)]);
2779 stats_type
= SHMEM2_RD(bp
,
2780 afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2783 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2786 bnx2x_afex_collect_stats(bp
, (void *)&afex_stats
, stats_type
);
2788 /* write response to scratchpad, for MCP */
2789 for (i
= 0; i
< (sizeof(struct afex_stats
)/sizeof(u32
)); i
++)
2790 REG_WR(bp
, addr_to_write
+ i
*sizeof(u32
),
2791 *(((u32
*)(&afex_stats
))+i
));
2793 /* send ack message to MCP */
2794 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_STATSGET_ACK
, 0);
2797 if (cmd
& DRV_STATUS_AFEX_VIFSET_REQ
) {
2798 mf_config
= MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2799 bp
->mf_config
[BP_VN(bp
)] = mf_config
;
2801 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2804 /* if VIF_SET is "enabled" */
2805 if (!(mf_config
& FUNC_MF_CFG_FUNC_DISABLED
)) {
2806 /* set rate limit directly to internal RAM */
2807 struct cmng_init_input cmng_input
;
2808 struct rate_shaping_vars_per_vn m_rs_vn
;
2809 size_t size
= sizeof(struct rate_shaping_vars_per_vn
);
2810 u32 addr
= BAR_XSTRORM_INTMEM
+
2811 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp
));
2813 bp
->mf_config
[BP_VN(bp
)] = mf_config
;
2815 bnx2x_calc_vn_max(bp
, BP_VN(bp
), &cmng_input
);
2816 m_rs_vn
.vn_counter
.rate
=
2817 cmng_input
.vnic_max_rate
[BP_VN(bp
)];
2818 m_rs_vn
.vn_counter
.quota
=
2819 (m_rs_vn
.vn_counter
.rate
*
2820 RS_PERIODIC_TIMEOUT_USEC
) / 8;
2822 __storm_memset_struct(bp
, addr
, size
, (u32
*)&m_rs_vn
);
2824 /* read relevant values from mf_cfg struct in shmem */
2826 (MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
2827 FUNC_MF_CFG_E1HOV_TAG_MASK
) >>
2828 FUNC_MF_CFG_E1HOV_TAG_SHIFT
;
2830 (MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
2831 FUNC_MF_CFG_AFEX_VLAN_MASK
) >>
2832 FUNC_MF_CFG_AFEX_VLAN_SHIFT
;
2833 vlan_prio
= (mf_config
&
2834 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK
) >>
2835 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT
;
2836 vlan_val
|= (vlan_prio
<< VLAN_PRIO_SHIFT
);
2839 func_mf_config
[func
].afex_config
) &
2840 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK
) >>
2841 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT
;
2844 func_mf_config
[func
].afex_config
) &
2845 FUNC_MF_CFG_AFEX_COS_FILTER_MASK
) >>
2846 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT
;
2848 /* send ramrod to FW, return in case of failure */
2849 if (bnx2x_afex_func_update(bp
, vif_id
, vlan_val
,
2853 bp
->afex_def_vlan_tag
= vlan_val
;
2854 bp
->afex_vlan_mode
= vlan_mode
;
2856 /* notify link down because BP->flags is disabled */
2857 bnx2x_link_report(bp
);
2859 /* send INVALID VIF ramrod to FW */
2860 bnx2x_afex_func_update(bp
, 0xFFFF, 0, 0);
2862 /* Reset the default afex VLAN */
2863 bp
->afex_def_vlan_tag
= -1;
2868 static void bnx2x_pmf_update(struct bnx2x
*bp
)
2870 int port
= BP_PORT(bp
);
2874 DP(BNX2X_MSG_MCP
, "pmf %d\n", bp
->port
.pmf
);
2877 * We need the mb() to ensure the ordering between the writing to
2878 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2882 /* queue a periodic task */
2883 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2885 bnx2x_dcbx_pmf_update(bp
);
2887 /* enable nig attention */
2888 val
= (0xff0f | (1 << (BP_VN(bp
) + 4)));
2889 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
2890 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
2891 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
2892 } else if (!CHIP_IS_E1x(bp
)) {
2893 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
2894 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
2897 bnx2x_stats_handle(bp
, STATS_EVENT_PMF
);
2905 * General service functions
2908 /* send the MCP a request, block until there is a reply */
2909 u32
bnx2x_fw_command(struct bnx2x
*bp
, u32 command
, u32 param
)
2911 int mb_idx
= BP_FW_MB_IDX(bp
);
2915 u8 delay
= CHIP_REV_IS_SLOW(bp
) ? 100 : 10;
2917 mutex_lock(&bp
->fw_mb_mutex
);
2919 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_param
, param
);
2920 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_header
, (command
| seq
));
2922 DP(BNX2X_MSG_MCP
, "wrote command (%x) to FW MB param 0x%08x\n",
2923 (command
| seq
), param
);
2926 /* let the FW do it's magic ... */
2929 rc
= SHMEM_RD(bp
, func_mb
[mb_idx
].fw_mb_header
);
2931 /* Give the FW up to 5 second (500*10ms) */
2932 } while ((seq
!= (rc
& FW_MSG_SEQ_NUMBER_MASK
)) && (cnt
++ < 500));
2934 DP(BNX2X_MSG_MCP
, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935 cnt
*delay
, rc
, seq
);
2937 /* is this a reply to our command? */
2938 if (seq
== (rc
& FW_MSG_SEQ_NUMBER_MASK
))
2939 rc
&= FW_MSG_CODE_MASK
;
2942 BNX2X_ERR("FW failed to respond!\n");
2946 mutex_unlock(&bp
->fw_mb_mutex
);
2951 static void storm_memset_func_cfg(struct bnx2x
*bp
,
2952 struct tstorm_eth_function_common_config
*tcfg
,
2955 size_t size
= sizeof(struct tstorm_eth_function_common_config
);
2957 u32 addr
= BAR_TSTRORM_INTMEM
+
2958 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid
);
2960 __storm_memset_struct(bp
, addr
, size
, (u32
*)tcfg
);
2963 void bnx2x_func_init(struct bnx2x
*bp
, struct bnx2x_func_init_params
*p
)
2965 if (CHIP_IS_E1x(bp
)) {
2966 struct tstorm_eth_function_common_config tcfg
= {0};
2968 storm_memset_func_cfg(bp
, &tcfg
, p
->func_id
);
2971 /* Enable the function in the FW */
2972 storm_memset_vf_to_pf(bp
, p
->func_id
, p
->pf_id
);
2973 storm_memset_func_en(bp
, p
->func_id
, 1);
2976 if (p
->func_flgs
& FUNC_FLG_SPQ
) {
2977 storm_memset_spq_addr(bp
, p
->spq_map
, p
->func_id
);
2978 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+
2979 XSTORM_SPQ_PROD_OFFSET(p
->func_id
), p
->spq_prod
);
2984 * bnx2x_get_common_flags - Return common flags
2988 * @zero_stats TRUE if statistics zeroing is needed
2990 * Return the flags that are common for the Tx-only and not normal connections.
2992 static unsigned long bnx2x_get_common_flags(struct bnx2x
*bp
,
2993 struct bnx2x_fastpath
*fp
,
2996 unsigned long flags
= 0;
2998 /* PF driver will always initialize the Queue to an ACTIVE state */
2999 __set_bit(BNX2X_Q_FLG_ACTIVE
, &flags
);
3001 /* tx only connections collect statistics (on the same index as the
3002 * parent connection). The statistics are zeroed when the parent
3003 * connection is initialized.
3006 __set_bit(BNX2X_Q_FLG_STATS
, &flags
);
3008 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &flags
);
3010 if (bp
->flags
& TX_SWITCHING
)
3011 __set_bit(BNX2X_Q_FLG_TX_SWITCH
, &flags
);
3013 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT
, &flags
);
3014 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID
, &flags
);
3016 #ifdef BNX2X_STOP_ON_ERROR
3017 __set_bit(BNX2X_Q_FLG_TX_SEC
, &flags
);
3023 static unsigned long bnx2x_get_q_flags(struct bnx2x
*bp
,
3024 struct bnx2x_fastpath
*fp
,
3027 unsigned long flags
= 0;
3029 /* calculate other queue flags */
3031 __set_bit(BNX2X_Q_FLG_OV
, &flags
);
3033 if (IS_FCOE_FP(fp
)) {
3034 __set_bit(BNX2X_Q_FLG_FCOE
, &flags
);
3035 /* For FCoE - force usage of default priority (for afex) */
3036 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI
, &flags
);
3039 if (!fp
->disable_tpa
) {
3040 __set_bit(BNX2X_Q_FLG_TPA
, &flags
);
3041 __set_bit(BNX2X_Q_FLG_TPA_IPV6
, &flags
);
3042 if (fp
->mode
== TPA_MODE_GRO
)
3043 __set_bit(BNX2X_Q_FLG_TPA_GRO
, &flags
);
3047 __set_bit(BNX2X_Q_FLG_LEADING_RSS
, &flags
);
3048 __set_bit(BNX2X_Q_FLG_MCAST
, &flags
);
3051 /* Always set HW VLAN stripping */
3052 __set_bit(BNX2X_Q_FLG_VLAN
, &flags
);
3054 /* configure silent vlan removal */
3056 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM
, &flags
);
3058 return flags
| bnx2x_get_common_flags(bp
, fp
, true);
3061 static void bnx2x_pf_q_prep_general(struct bnx2x
*bp
,
3062 struct bnx2x_fastpath
*fp
, struct bnx2x_general_setup_params
*gen_init
,
3065 gen_init
->stat_id
= bnx2x_stats_id(fp
);
3066 gen_init
->spcl_id
= fp
->cl_id
;
3068 /* Always use mini-jumbo MTU for FCoE L2 ring */
3070 gen_init
->mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
3072 gen_init
->mtu
= bp
->dev
->mtu
;
3074 gen_init
->cos
= cos
;
3077 static void bnx2x_pf_rx_q_prep(struct bnx2x
*bp
,
3078 struct bnx2x_fastpath
*fp
, struct rxq_pause_params
*pause
,
3079 struct bnx2x_rxq_setup_params
*rxq_init
)
3083 u16 tpa_agg_size
= 0;
3085 if (!fp
->disable_tpa
) {
3086 pause
->sge_th_lo
= SGE_TH_LO(bp
);
3087 pause
->sge_th_hi
= SGE_TH_HI(bp
);
3089 /* validate SGE ring has enough to cross high threshold */
3090 WARN_ON(bp
->dropless_fc
&&
3091 pause
->sge_th_hi
+ FW_PREFETCH_CNT
>
3092 MAX_RX_SGE_CNT
* NUM_RX_SGE_PAGES
);
3094 tpa_agg_size
= TPA_AGG_SIZE
;
3095 max_sge
= SGE_PAGE_ALIGN(bp
->dev
->mtu
) >>
3097 max_sge
= ((max_sge
+ PAGES_PER_SGE
- 1) &
3098 (~(PAGES_PER_SGE
-1))) >> PAGES_PER_SGE_SHIFT
;
3099 sge_sz
= (u16
)min_t(u32
, SGE_PAGES
, 0xffff);
3102 /* pause - not for e1 */
3103 if (!CHIP_IS_E1(bp
)) {
3104 pause
->bd_th_lo
= BD_TH_LO(bp
);
3105 pause
->bd_th_hi
= BD_TH_HI(bp
);
3107 pause
->rcq_th_lo
= RCQ_TH_LO(bp
);
3108 pause
->rcq_th_hi
= RCQ_TH_HI(bp
);
3110 * validate that rings have enough entries to cross
3113 WARN_ON(bp
->dropless_fc
&&
3114 pause
->bd_th_hi
+ FW_PREFETCH_CNT
>
3116 WARN_ON(bp
->dropless_fc
&&
3117 pause
->rcq_th_hi
+ FW_PREFETCH_CNT
>
3118 NUM_RCQ_RINGS
* MAX_RCQ_DESC_CNT
);
3124 rxq_init
->dscr_map
= fp
->rx_desc_mapping
;
3125 rxq_init
->sge_map
= fp
->rx_sge_mapping
;
3126 rxq_init
->rcq_map
= fp
->rx_comp_mapping
;
3127 rxq_init
->rcq_np_map
= fp
->rx_comp_mapping
+ BCM_PAGE_SIZE
;
3129 /* This should be a maximum number of data bytes that may be
3130 * placed on the BD (not including paddings).
3132 rxq_init
->buf_sz
= fp
->rx_buf_size
- BNX2X_FW_RX_ALIGN_START
-
3133 BNX2X_FW_RX_ALIGN_END
- IP_HEADER_ALIGNMENT_PADDING
;
3135 rxq_init
->cl_qzone_id
= fp
->cl_qzone_id
;
3136 rxq_init
->tpa_agg_sz
= tpa_agg_size
;
3137 rxq_init
->sge_buf_sz
= sge_sz
;
3138 rxq_init
->max_sges_pkt
= max_sge
;
3139 rxq_init
->rss_engine_id
= BP_FUNC(bp
);
3140 rxq_init
->mcast_engine_id
= BP_FUNC(bp
);
3142 /* Maximum number or simultaneous TPA aggregation for this Queue.
3144 * For PF Clients it should be the maximum available number.
3145 * VF driver(s) may want to define it to a smaller value.
3147 rxq_init
->max_tpa_queues
= MAX_AGG_QS(bp
);
3149 rxq_init
->cache_line_log
= BNX2X_RX_ALIGN_SHIFT
;
3150 rxq_init
->fw_sb_id
= fp
->fw_sb_id
;
3153 rxq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS
;
3155 rxq_init
->sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
3156 /* configure silent vlan removal
3157 * if multi function mode is afex, then mask default vlan
3159 if (IS_MF_AFEX(bp
)) {
3160 rxq_init
->silent_removal_value
= bp
->afex_def_vlan_tag
;
3161 rxq_init
->silent_removal_mask
= VLAN_VID_MASK
;
3165 static void bnx2x_pf_tx_q_prep(struct bnx2x
*bp
,
3166 struct bnx2x_fastpath
*fp
, struct bnx2x_txq_setup_params
*txq_init
,
3169 txq_init
->dscr_map
= fp
->txdata_ptr
[cos
]->tx_desc_mapping
;
3170 txq_init
->sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
+ cos
;
3171 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_NW
;
3172 txq_init
->fw_sb_id
= fp
->fw_sb_id
;
3175 * set the tss leading client id for TX classification ==
3176 * leading RSS client id
3178 txq_init
->tss_leading_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
3180 if (IS_FCOE_FP(fp
)) {
3181 txq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS
;
3182 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_FCOE
;
3186 static void bnx2x_pf_init(struct bnx2x
*bp
)
3188 struct bnx2x_func_init_params func_init
= {0};
3189 struct event_ring_data eq_data
= { {0} };
3192 if (!CHIP_IS_E1x(bp
)) {
3193 /* reset IGU PF statistics: MSIX + ATTN */
3195 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
3196 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
3197 (CHIP_MODE_IS_4_PORT(bp
) ?
3198 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
3200 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
3201 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
3202 BNX2X_IGU_STAS_MSG_PF_CNT
*4 +
3203 (CHIP_MODE_IS_4_PORT(bp
) ?
3204 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
3207 /* function setup flags */
3208 flags
= (FUNC_FLG_STATS
| FUNC_FLG_LEADING
| FUNC_FLG_SPQ
);
3210 /* This flag is relevant for E1x only.
3211 * E2 doesn't have a TPA configuration in a function level.
3213 flags
|= (bp
->flags
& TPA_ENABLE_FLAG
) ? FUNC_FLG_TPA
: 0;
3215 func_init
.func_flgs
= flags
;
3216 func_init
.pf_id
= BP_FUNC(bp
);
3217 func_init
.func_id
= BP_FUNC(bp
);
3218 func_init
.spq_map
= bp
->spq_mapping
;
3219 func_init
.spq_prod
= bp
->spq_prod_idx
;
3221 bnx2x_func_init(bp
, &func_init
);
3223 memset(&(bp
->cmng
), 0, sizeof(struct cmng_struct_per_port
));
3226 * Congestion management values depend on the link rate
3227 * There is no active link so initial link rate is set to 10 Gbps.
3228 * When the link comes up The congestion management values are
3229 * re-calculated according to the actual link rate.
3231 bp
->link_vars
.line_speed
= SPEED_10000
;
3232 bnx2x_cmng_fns_init(bp
, true, bnx2x_get_cmng_fns_mode(bp
));
3234 /* Only the PMF sets the HW */
3236 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
3238 /* init Event Queue - PCI bus guarantees correct endianity*/
3239 eq_data
.base_addr
.hi
= U64_HI(bp
->eq_mapping
);
3240 eq_data
.base_addr
.lo
= U64_LO(bp
->eq_mapping
);
3241 eq_data
.producer
= bp
->eq_prod
;
3242 eq_data
.index_id
= HC_SP_INDEX_EQ_CONS
;
3243 eq_data
.sb_id
= DEF_SB_ID
;
3244 storm_memset_eq_data(bp
, &eq_data
, BP_FUNC(bp
));
3247 static void bnx2x_e1h_disable(struct bnx2x
*bp
)
3249 int port
= BP_PORT(bp
);
3251 bnx2x_tx_disable(bp
);
3253 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
3256 static void bnx2x_e1h_enable(struct bnx2x
*bp
)
3258 int port
= BP_PORT(bp
);
3260 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
3262 /* Tx queue should be only re-enabled */
3263 netif_tx_wake_all_queues(bp
->dev
);
3266 * Should not call netif_carrier_on since it will be called if the link
3267 * is up when checking for link state
3271 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3273 static void bnx2x_drv_info_ether_stat(struct bnx2x
*bp
)
3275 struct eth_stats_info
*ether_stat
=
3276 &bp
->slowpath
->drv_info_to_mcp
.ether_stat
;
3277 struct bnx2x_vlan_mac_obj
*mac_obj
=
3278 &bp
->sp_objs
->mac_obj
;
3281 strlcpy(ether_stat
->version
, DRV_MODULE_VERSION
,
3282 ETH_STAT_INFO_VERSION_LEN
);
3284 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3285 * mac_local field in ether_stat struct. The base address is offset by 2
3286 * bytes to account for the field being 8 bytes but a mac address is
3287 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3288 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3289 * allocated by the ether_stat struct, so the macs will land in their
3292 for (i
= 0; i
< DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
; i
++)
3293 memset(ether_stat
->mac_local
+ i
, 0,
3294 sizeof(ether_stat
->mac_local
[0]));
3295 mac_obj
->get_n_elements(bp
, &bp
->sp_objs
[0].mac_obj
,
3296 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
,
3297 ether_stat
->mac_local
+ MAC_PAD
, MAC_PAD
,
3299 ether_stat
->mtu_size
= bp
->dev
->mtu
;
3300 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
3301 ether_stat
->feature_flags
|= FEATURE_ETH_CHKSUM_OFFLOAD_MASK
;
3302 if (bp
->dev
->features
& NETIF_F_TSO
)
3303 ether_stat
->feature_flags
|= FEATURE_ETH_LSO_MASK
;
3304 ether_stat
->feature_flags
|= bp
->common
.boot_mode
;
3306 ether_stat
->promiscuous_mode
= (bp
->dev
->flags
& IFF_PROMISC
) ? 1 : 0;
3308 ether_stat
->txq_size
= bp
->tx_ring_size
;
3309 ether_stat
->rxq_size
= bp
->rx_ring_size
;
3311 #ifdef CONFIG_BNX2X_SRIOV
3312 ether_stat
->vf_cnt
= IS_SRIOV(bp
) ? bp
->vfdb
->sriov
.nr_virtfn
: 0;
3316 static void bnx2x_drv_info_fcoe_stat(struct bnx2x
*bp
)
3318 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
3319 struct fcoe_stats_info
*fcoe_stat
=
3320 &bp
->slowpath
->drv_info_to_mcp
.fcoe_stat
;
3322 if (!CNIC_LOADED(bp
))
3325 memcpy(fcoe_stat
->mac_local
+ MAC_PAD
, bp
->fip_mac
, ETH_ALEN
);
3327 fcoe_stat
->qos_priority
=
3328 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_FCOE
];
3330 /* insert FCoE stats from ramrod response */
3332 struct tstorm_per_queue_stats
*fcoe_q_tstorm_stats
=
3333 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX(bp
)].
3334 tstorm_queue_statistics
;
3336 struct xstorm_per_queue_stats
*fcoe_q_xstorm_stats
=
3337 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX(bp
)].
3338 xstorm_queue_statistics
;
3340 struct fcoe_statistics_params
*fw_fcoe_stat
=
3341 &bp
->fw_stats_data
->fcoe
;
3343 ADD_64_LE(fcoe_stat
->rx_bytes_hi
, LE32_0
,
3344 fcoe_stat
->rx_bytes_lo
,
3345 fw_fcoe_stat
->rx_stat0
.fcoe_rx_byte_cnt
);
3347 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3348 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.hi
,
3349 fcoe_stat
->rx_bytes_lo
,
3350 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.lo
);
3352 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3353 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.hi
,
3354 fcoe_stat
->rx_bytes_lo
,
3355 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.lo
);
3357 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3358 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.hi
,
3359 fcoe_stat
->rx_bytes_lo
,
3360 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.lo
);
3362 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3363 fcoe_stat
->rx_frames_lo
,
3364 fw_fcoe_stat
->rx_stat0
.fcoe_rx_pkt_cnt
);
3366 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3367 fcoe_stat
->rx_frames_lo
,
3368 fcoe_q_tstorm_stats
->rcv_ucast_pkts
);
3370 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3371 fcoe_stat
->rx_frames_lo
,
3372 fcoe_q_tstorm_stats
->rcv_bcast_pkts
);
3374 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3375 fcoe_stat
->rx_frames_lo
,
3376 fcoe_q_tstorm_stats
->rcv_mcast_pkts
);
3378 ADD_64_LE(fcoe_stat
->tx_bytes_hi
, LE32_0
,
3379 fcoe_stat
->tx_bytes_lo
,
3380 fw_fcoe_stat
->tx_stat
.fcoe_tx_byte_cnt
);
3382 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3383 fcoe_q_xstorm_stats
->ucast_bytes_sent
.hi
,
3384 fcoe_stat
->tx_bytes_lo
,
3385 fcoe_q_xstorm_stats
->ucast_bytes_sent
.lo
);
3387 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3388 fcoe_q_xstorm_stats
->bcast_bytes_sent
.hi
,
3389 fcoe_stat
->tx_bytes_lo
,
3390 fcoe_q_xstorm_stats
->bcast_bytes_sent
.lo
);
3392 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3393 fcoe_q_xstorm_stats
->mcast_bytes_sent
.hi
,
3394 fcoe_stat
->tx_bytes_lo
,
3395 fcoe_q_xstorm_stats
->mcast_bytes_sent
.lo
);
3397 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3398 fcoe_stat
->tx_frames_lo
,
3399 fw_fcoe_stat
->tx_stat
.fcoe_tx_pkt_cnt
);
3401 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3402 fcoe_stat
->tx_frames_lo
,
3403 fcoe_q_xstorm_stats
->ucast_pkts_sent
);
3405 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3406 fcoe_stat
->tx_frames_lo
,
3407 fcoe_q_xstorm_stats
->bcast_pkts_sent
);
3409 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3410 fcoe_stat
->tx_frames_lo
,
3411 fcoe_q_xstorm_stats
->mcast_pkts_sent
);
3414 /* ask L5 driver to add data to the struct */
3415 bnx2x_cnic_notify(bp
, CNIC_CTL_FCOE_STATS_GET_CMD
);
3418 static void bnx2x_drv_info_iscsi_stat(struct bnx2x
*bp
)
3420 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
3421 struct iscsi_stats_info
*iscsi_stat
=
3422 &bp
->slowpath
->drv_info_to_mcp
.iscsi_stat
;
3424 if (!CNIC_LOADED(bp
))
3427 memcpy(iscsi_stat
->mac_local
+ MAC_PAD
, bp
->cnic_eth_dev
.iscsi_mac
,
3430 iscsi_stat
->qos_priority
=
3431 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_ISCSI
];
3433 /* ask L5 driver to add data to the struct */
3434 bnx2x_cnic_notify(bp
, CNIC_CTL_ISCSI_STATS_GET_CMD
);
3437 /* called due to MCP event (on pmf):
3438 * reread new bandwidth configuration
3440 * notify others function about the change
3442 static void bnx2x_config_mf_bw(struct bnx2x
*bp
)
3444 if (bp
->link_vars
.link_up
) {
3445 bnx2x_cmng_fns_init(bp
, true, CMNG_FNS_MINMAX
);
3446 bnx2x_link_sync_notify(bp
);
3448 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
3451 static void bnx2x_set_mf_bw(struct bnx2x
*bp
)
3453 bnx2x_config_mf_bw(bp
);
3454 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW_ACK
, 0);
3457 static void bnx2x_handle_eee_event(struct bnx2x
*bp
)
3459 DP(BNX2X_MSG_MCP
, "EEE - LLDP event\n");
3460 bnx2x_fw_command(bp
, DRV_MSG_CODE_EEE_RESULTS_ACK
, 0);
3463 static void bnx2x_handle_drv_info_req(struct bnx2x
*bp
)
3465 enum drv_info_opcode op_code
;
3466 u32 drv_info_ctl
= SHMEM2_RD(bp
, drv_info_control
);
3468 /* if drv_info version supported by MFW doesn't match - send NACK */
3469 if ((drv_info_ctl
& DRV_INFO_CONTROL_VER_MASK
) != DRV_INFO_CUR_VER
) {
3470 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3474 op_code
= (drv_info_ctl
& DRV_INFO_CONTROL_OP_CODE_MASK
) >>
3475 DRV_INFO_CONTROL_OP_CODE_SHIFT
;
3477 memset(&bp
->slowpath
->drv_info_to_mcp
, 0,
3478 sizeof(union drv_info_to_mcp
));
3481 case ETH_STATS_OPCODE
:
3482 bnx2x_drv_info_ether_stat(bp
);
3484 case FCOE_STATS_OPCODE
:
3485 bnx2x_drv_info_fcoe_stat(bp
);
3487 case ISCSI_STATS_OPCODE
:
3488 bnx2x_drv_info_iscsi_stat(bp
);
3491 /* if op code isn't supported - send NACK */
3492 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3496 /* if we got drv_info attn from MFW then these fields are defined in
3499 SHMEM2_WR(bp
, drv_info_host_addr_lo
,
3500 U64_LO(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3501 SHMEM2_WR(bp
, drv_info_host_addr_hi
,
3502 U64_HI(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3504 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_ACK
, 0);
3507 static void bnx2x_dcc_event(struct bnx2x
*bp
, u32 dcc_event
)
3509 DP(BNX2X_MSG_MCP
, "dcc_event 0x%x\n", dcc_event
);
3511 if (dcc_event
& DRV_STATUS_DCC_DISABLE_ENABLE_PF
) {
3514 * This is the only place besides the function initialization
3515 * where the bp->flags can change so it is done without any
3518 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
3519 DP(BNX2X_MSG_MCP
, "mf_cfg function disabled\n");
3520 bp
->flags
|= MF_FUNC_DIS
;
3522 bnx2x_e1h_disable(bp
);
3524 DP(BNX2X_MSG_MCP
, "mf_cfg function enabled\n");
3525 bp
->flags
&= ~MF_FUNC_DIS
;
3527 bnx2x_e1h_enable(bp
);
3529 dcc_event
&= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF
;
3531 if (dcc_event
& DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
) {
3532 bnx2x_config_mf_bw(bp
);
3533 dcc_event
&= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
;
3536 /* Report results to MCP */
3538 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_FAILURE
, 0);
3540 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_OK
, 0);
3543 /* must be called under the spq lock */
3544 static struct eth_spe
*bnx2x_sp_get_next(struct bnx2x
*bp
)
3546 struct eth_spe
*next_spe
= bp
->spq_prod_bd
;
3548 if (bp
->spq_prod_bd
== bp
->spq_last_bd
) {
3549 bp
->spq_prod_bd
= bp
->spq
;
3550 bp
->spq_prod_idx
= 0;
3551 DP(BNX2X_MSG_SP
, "end of spq\n");
3559 /* must be called under the spq lock */
3560 static void bnx2x_sp_prod_update(struct bnx2x
*bp
)
3562 int func
= BP_FUNC(bp
);
3565 * Make sure that BD data is updated before writing the producer:
3566 * BD data is written to the memory, the producer is read from the
3567 * memory, thus we need a full memory barrier to ensure the ordering.
3571 REG_WR16(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_PROD_OFFSET(func
),
3577 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3579 * @cmd: command to check
3580 * @cmd_type: command type
3582 static bool bnx2x_is_contextless_ramrod(int cmd
, int cmd_type
)
3584 if ((cmd_type
== NONE_CONNECTION_TYPE
) ||
3585 (cmd
== RAMROD_CMD_ID_ETH_FORWARD_SETUP
) ||
3586 (cmd
== RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
) ||
3587 (cmd
== RAMROD_CMD_ID_ETH_FILTER_RULES
) ||
3588 (cmd
== RAMROD_CMD_ID_ETH_MULTICAST_RULES
) ||
3589 (cmd
== RAMROD_CMD_ID_ETH_SET_MAC
) ||
3590 (cmd
== RAMROD_CMD_ID_ETH_RSS_UPDATE
))
3597 * bnx2x_sp_post - place a single command on an SP ring
3599 * @bp: driver handle
3600 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3601 * @cid: SW CID the command is related to
3602 * @data_hi: command private data address (high 32 bits)
3603 * @data_lo: command private data address (low 32 bits)
3604 * @cmd_type: command type (e.g. NONE, ETH)
3606 * SP data is handled as if it's always an address pair, thus data fields are
3607 * not swapped to little endian in upper functions. Instead this function swaps
3608 * data as if it's two u32 fields.
3610 int bnx2x_sp_post(struct bnx2x
*bp
, int command
, int cid
,
3611 u32 data_hi
, u32 data_lo
, int cmd_type
)
3613 struct eth_spe
*spe
;
3615 bool common
= bnx2x_is_contextless_ramrod(command
, cmd_type
);
3617 #ifdef BNX2X_STOP_ON_ERROR
3618 if (unlikely(bp
->panic
)) {
3619 BNX2X_ERR("Can't post SP when there is panic\n");
3624 spin_lock_bh(&bp
->spq_lock
);
3627 if (!atomic_read(&bp
->eq_spq_left
)) {
3628 BNX2X_ERR("BUG! EQ ring full!\n");
3629 spin_unlock_bh(&bp
->spq_lock
);
3633 } else if (!atomic_read(&bp
->cq_spq_left
)) {
3634 BNX2X_ERR("BUG! SPQ ring full!\n");
3635 spin_unlock_bh(&bp
->spq_lock
);
3640 spe
= bnx2x_sp_get_next(bp
);
3642 /* CID needs port number to be encoded int it */
3643 spe
->hdr
.conn_and_cmd_data
=
3644 cpu_to_le32((command
<< SPE_HDR_CMD_ID_SHIFT
) |
3647 type
= (cmd_type
<< SPE_HDR_CONN_TYPE_SHIFT
) & SPE_HDR_CONN_TYPE
;
3649 type
|= ((BP_FUNC(bp
) << SPE_HDR_FUNCTION_ID_SHIFT
) &
3650 SPE_HDR_FUNCTION_ID
);
3652 spe
->hdr
.type
= cpu_to_le16(type
);
3654 spe
->data
.update_data_addr
.hi
= cpu_to_le32(data_hi
);
3655 spe
->data
.update_data_addr
.lo
= cpu_to_le32(data_lo
);
3658 * It's ok if the actual decrement is issued towards the memory
3659 * somewhere between the spin_lock and spin_unlock. Thus no
3660 * more explicit memory barrier is needed.
3663 atomic_dec(&bp
->eq_spq_left
);
3665 atomic_dec(&bp
->cq_spq_left
);
3668 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3669 bp
->spq_prod_idx
, (u32
)U64_HI(bp
->spq_mapping
),
3670 (u32
)(U64_LO(bp
->spq_mapping
) +
3671 (void *)bp
->spq_prod_bd
- (void *)bp
->spq
), command
, common
,
3672 HW_CID(bp
, cid
), data_hi
, data_lo
, type
,
3673 atomic_read(&bp
->cq_spq_left
), atomic_read(&bp
->eq_spq_left
));
3675 bnx2x_sp_prod_update(bp
);
3676 spin_unlock_bh(&bp
->spq_lock
);
3680 /* acquire split MCP access lock register */
3681 static int bnx2x_acquire_alr(struct bnx2x
*bp
)
3687 for (j
= 0; j
< 1000; j
++) {
3688 REG_WR(bp
, MCP_REG_MCPR_ACCESS_LOCK
, MCPR_ACCESS_LOCK_LOCK
);
3689 val
= REG_RD(bp
, MCP_REG_MCPR_ACCESS_LOCK
);
3690 if (val
& MCPR_ACCESS_LOCK_LOCK
)
3693 usleep_range(5000, 10000);
3695 if (!(val
& MCPR_ACCESS_LOCK_LOCK
)) {
3696 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3703 /* release split MCP access lock register */
3704 static void bnx2x_release_alr(struct bnx2x
*bp
)
3706 REG_WR(bp
, MCP_REG_MCPR_ACCESS_LOCK
, 0);
3709 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3710 #define BNX2X_DEF_SB_IDX 0x0002
3712 static u16
bnx2x_update_dsb_idx(struct bnx2x
*bp
)
3714 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
3717 barrier(); /* status block is written to by the chip */
3718 if (bp
->def_att_idx
!= def_sb
->atten_status_block
.attn_bits_index
) {
3719 bp
->def_att_idx
= def_sb
->atten_status_block
.attn_bits_index
;
3720 rc
|= BNX2X_DEF_SB_ATT_IDX
;
3723 if (bp
->def_idx
!= def_sb
->sp_sb
.running_index
) {
3724 bp
->def_idx
= def_sb
->sp_sb
.running_index
;
3725 rc
|= BNX2X_DEF_SB_IDX
;
3728 /* Do not reorder: indices reading should complete before handling */
3734 * slow path service functions
3737 static void bnx2x_attn_int_asserted(struct bnx2x
*bp
, u32 asserted
)
3739 int port
= BP_PORT(bp
);
3740 u32 aeu_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
3741 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
3742 u32 nig_int_mask_addr
= port
? NIG_REG_MASK_INTERRUPT_PORT1
:
3743 NIG_REG_MASK_INTERRUPT_PORT0
;
3748 if (bp
->attn_state
& asserted
)
3749 BNX2X_ERR("IGU ERROR\n");
3751 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3752 aeu_mask
= REG_RD(bp
, aeu_addr
);
3754 DP(NETIF_MSG_HW
, "aeu_mask %x newly asserted %x\n",
3755 aeu_mask
, asserted
);
3756 aeu_mask
&= ~(asserted
& 0x3ff);
3757 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
3759 REG_WR(bp
, aeu_addr
, aeu_mask
);
3760 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3762 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
3763 bp
->attn_state
|= asserted
;
3764 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
3766 if (asserted
& ATTN_HARD_WIRED_MASK
) {
3767 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3769 bnx2x_acquire_phy_lock(bp
);
3771 /* save nig interrupt mask */
3772 nig_mask
= REG_RD(bp
, nig_int_mask_addr
);
3774 /* If nig_mask is not set, no need to call the update
3778 REG_WR(bp
, nig_int_mask_addr
, 0);
3780 bnx2x_link_attn(bp
);
3783 /* handle unicore attn? */
3785 if (asserted
& ATTN_SW_TIMER_4_FUNC
)
3786 DP(NETIF_MSG_HW
, "ATTN_SW_TIMER_4_FUNC!\n");
3788 if (asserted
& GPIO_2_FUNC
)
3789 DP(NETIF_MSG_HW
, "GPIO_2_FUNC!\n");
3791 if (asserted
& GPIO_3_FUNC
)
3792 DP(NETIF_MSG_HW
, "GPIO_3_FUNC!\n");
3794 if (asserted
& GPIO_4_FUNC
)
3795 DP(NETIF_MSG_HW
, "GPIO_4_FUNC!\n");
3798 if (asserted
& ATTN_GENERAL_ATTN_1
) {
3799 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_1!\n");
3800 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_1
, 0x0);
3802 if (asserted
& ATTN_GENERAL_ATTN_2
) {
3803 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_2!\n");
3804 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_2
, 0x0);
3806 if (asserted
& ATTN_GENERAL_ATTN_3
) {
3807 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_3!\n");
3808 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_3
, 0x0);
3811 if (asserted
& ATTN_GENERAL_ATTN_4
) {
3812 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_4!\n");
3813 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_4
, 0x0);
3815 if (asserted
& ATTN_GENERAL_ATTN_5
) {
3816 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_5!\n");
3817 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_5
, 0x0);
3819 if (asserted
& ATTN_GENERAL_ATTN_6
) {
3820 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_6!\n");
3821 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_6
, 0x0);
3825 } /* if hardwired */
3827 if (bp
->common
.int_block
== INT_BLOCK_HC
)
3828 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
3829 COMMAND_REG_ATTN_BITS_SET
);
3831 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_SET_UPPER
*8);
3833 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", asserted
,
3834 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
3835 REG_WR(bp
, reg_addr
, asserted
);
3837 /* now set back the mask */
3838 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3839 /* Verify that IGU ack through BAR was written before restoring
3840 * NIG mask. This loop should exit after 2-3 iterations max.
3842 if (bp
->common
.int_block
!= INT_BLOCK_HC
) {
3843 u32 cnt
= 0, igu_acked
;
3845 igu_acked
= REG_RD(bp
,
3846 IGU_REG_ATTENTION_ACK_BITS
);
3847 } while (((igu_acked
& ATTN_NIG_FOR_FUNC
) == 0) &&
3848 (++cnt
< MAX_IGU_ATTN_ACK_TO
));
3851 "Failed to verify IGU ack on time\n");
3854 REG_WR(bp
, nig_int_mask_addr
, nig_mask
);
3855 bnx2x_release_phy_lock(bp
);
3859 static void bnx2x_fan_failure(struct bnx2x
*bp
)
3861 int port
= BP_PORT(bp
);
3863 /* mark the failure */
3866 dev_info
.port_hw_config
[port
].external_phy_config
);
3868 ext_phy_config
&= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK
;
3869 ext_phy_config
|= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
;
3870 SHMEM_WR(bp
, dev_info
.port_hw_config
[port
].external_phy_config
,
3873 /* log the failure */
3874 netdev_err(bp
->dev
, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3875 "Please contact OEM Support for assistance\n");
3877 /* Schedule device reset (unload)
3878 * This is due to some boards consuming sufficient power when driver is
3879 * up to overheat if fan fails.
3881 smp_mb__before_clear_bit();
3882 set_bit(BNX2X_SP_RTNL_FAN_FAILURE
, &bp
->sp_rtnl_state
);
3883 smp_mb__after_clear_bit();
3884 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
3887 static void bnx2x_attn_int_deasserted0(struct bnx2x
*bp
, u32 attn
)
3889 int port
= BP_PORT(bp
);
3893 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
3894 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
3896 if (attn
& AEU_INPUTS_ATTN_BITS_SPIO5
) {
3898 val
= REG_RD(bp
, reg_offset
);
3899 val
&= ~AEU_INPUTS_ATTN_BITS_SPIO5
;
3900 REG_WR(bp
, reg_offset
, val
);
3902 BNX2X_ERR("SPIO5 hw attention\n");
3904 /* Fan failure attention */
3905 bnx2x_hw_reset_phy(&bp
->link_params
);
3906 bnx2x_fan_failure(bp
);
3909 if ((attn
& bp
->link_vars
.aeu_int_mask
) && bp
->port
.pmf
) {
3910 bnx2x_acquire_phy_lock(bp
);
3911 bnx2x_handle_module_detect_int(&bp
->link_params
);
3912 bnx2x_release_phy_lock(bp
);
3915 if (attn
& HW_INTERRUT_ASSERT_SET_0
) {
3917 val
= REG_RD(bp
, reg_offset
);
3918 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_0
);
3919 REG_WR(bp
, reg_offset
, val
);
3921 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3922 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_0
));
3927 static void bnx2x_attn_int_deasserted1(struct bnx2x
*bp
, u32 attn
)
3931 if (attn
& AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT
) {
3933 val
= REG_RD(bp
, DORQ_REG_DORQ_INT_STS_CLR
);
3934 BNX2X_ERR("DB hw attention 0x%x\n", val
);
3935 /* DORQ discard attention */
3937 BNX2X_ERR("FATAL error from DORQ\n");
3940 if (attn
& HW_INTERRUT_ASSERT_SET_1
) {
3942 int port
= BP_PORT(bp
);
3945 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1
:
3946 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1
);
3948 val
= REG_RD(bp
, reg_offset
);
3949 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_1
);
3950 REG_WR(bp
, reg_offset
, val
);
3952 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3953 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_1
));
3958 static void bnx2x_attn_int_deasserted2(struct bnx2x
*bp
, u32 attn
)
3962 if (attn
& AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT
) {
3964 val
= REG_RD(bp
, CFC_REG_CFC_INT_STS_CLR
);
3965 BNX2X_ERR("CFC hw attention 0x%x\n", val
);
3966 /* CFC error attention */
3968 BNX2X_ERR("FATAL error from CFC\n");
3971 if (attn
& AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT
) {
3972 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_0
);
3973 BNX2X_ERR("PXP hw attention-0 0x%x\n", val
);
3974 /* RQ_USDMDP_FIFO_OVERFLOW */
3976 BNX2X_ERR("FATAL error from PXP\n");
3978 if (!CHIP_IS_E1x(bp
)) {
3979 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_1
);
3980 BNX2X_ERR("PXP hw attention-1 0x%x\n", val
);
3984 if (attn
& HW_INTERRUT_ASSERT_SET_2
) {
3986 int port
= BP_PORT(bp
);
3989 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2
:
3990 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2
);
3992 val
= REG_RD(bp
, reg_offset
);
3993 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_2
);
3994 REG_WR(bp
, reg_offset
, val
);
3996 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3997 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_2
));
4002 static void bnx2x_attn_int_deasserted3(struct bnx2x
*bp
, u32 attn
)
4006 if (attn
& EVEREST_GEN_ATTN_IN_USE_MASK
) {
4008 if (attn
& BNX2X_PMF_LINK_ASSERT
) {
4009 int func
= BP_FUNC(bp
);
4011 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
4012 bnx2x_read_mf_cfg(bp
);
4013 bp
->mf_config
[BP_VN(bp
)] = MF_CFG_RD(bp
,
4014 func_mf_config
[BP_ABS_FUNC(bp
)].config
);
4016 func_mb
[BP_FW_MB_IDX(bp
)].drv_status
);
4017 if (val
& DRV_STATUS_DCC_EVENT_MASK
)
4019 (val
& DRV_STATUS_DCC_EVENT_MASK
));
4021 if (val
& DRV_STATUS_SET_MF_BW
)
4022 bnx2x_set_mf_bw(bp
);
4024 if (val
& DRV_STATUS_DRV_INFO_REQ
)
4025 bnx2x_handle_drv_info_req(bp
);
4027 if (val
& DRV_STATUS_VF_DISABLED
)
4028 bnx2x_vf_handle_flr_event(bp
);
4030 if ((bp
->port
.pmf
== 0) && (val
& DRV_STATUS_PMF
))
4031 bnx2x_pmf_update(bp
);
4034 (val
& DRV_STATUS_DCBX_NEGOTIATION_RESULTS
) &&
4035 bp
->dcbx_enabled
> 0)
4036 /* start dcbx state machine */
4037 bnx2x_dcbx_set_params(bp
,
4038 BNX2X_DCBX_STATE_NEG_RECEIVED
);
4039 if (val
& DRV_STATUS_AFEX_EVENT_MASK
)
4040 bnx2x_handle_afex_cmd(bp
,
4041 val
& DRV_STATUS_AFEX_EVENT_MASK
);
4042 if (val
& DRV_STATUS_EEE_NEGOTIATION_RESULTS
)
4043 bnx2x_handle_eee_event(bp
);
4044 if (bp
->link_vars
.periodic_flags
&
4045 PERIODIC_FLAGS_LINK_EVENT
) {
4046 /* sync with link */
4047 bnx2x_acquire_phy_lock(bp
);
4048 bp
->link_vars
.periodic_flags
&=
4049 ~PERIODIC_FLAGS_LINK_EVENT
;
4050 bnx2x_release_phy_lock(bp
);
4052 bnx2x_link_sync_notify(bp
);
4053 bnx2x_link_report(bp
);
4055 /* Always call it here: bnx2x_link_report() will
4056 * prevent the link indication duplication.
4058 bnx2x__link_status_update(bp
);
4059 } else if (attn
& BNX2X_MC_ASSERT_BITS
) {
4061 BNX2X_ERR("MC assert!\n");
4062 bnx2x_mc_assert(bp
);
4063 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_10
, 0);
4064 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_9
, 0);
4065 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_8
, 0);
4066 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_7
, 0);
4069 } else if (attn
& BNX2X_MCP_ASSERT
) {
4071 BNX2X_ERR("MCP assert!\n");
4072 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_11
, 0);
4076 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn
);
4079 if (attn
& EVEREST_LATCHED_ATTN_IN_USE_MASK
) {
4080 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn
);
4081 if (attn
& BNX2X_GRC_TIMEOUT
) {
4082 val
= CHIP_IS_E1(bp
) ? 0 :
4083 REG_RD(bp
, MISC_REG_GRC_TIMEOUT_ATTN
);
4084 BNX2X_ERR("GRC time-out 0x%08x\n", val
);
4086 if (attn
& BNX2X_GRC_RSV
) {
4087 val
= CHIP_IS_E1(bp
) ? 0 :
4088 REG_RD(bp
, MISC_REG_GRC_RSV_ATTN
);
4089 BNX2X_ERR("GRC reserved 0x%08x\n", val
);
4091 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
, 0x7ff);
4097 * 0-7 - Engine0 load counter.
4098 * 8-15 - Engine1 load counter.
4099 * 16 - Engine0 RESET_IN_PROGRESS bit.
4100 * 17 - Engine1 RESET_IN_PROGRESS bit.
4101 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4103 * 19 - Engine1 ONE_IS_LOADED.
4104 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4105 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4106 * just the one belonging to its engine).
4109 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4111 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4112 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4113 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4114 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4115 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4116 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4117 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4120 * Set the GLOBAL_RESET bit.
4122 * Should be run under rtnl lock
4124 void bnx2x_set_reset_global(struct bnx2x
*bp
)
4127 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4128 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4129 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
| BNX2X_GLOBAL_RESET_BIT
);
4130 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4134 * Clear the GLOBAL_RESET bit.
4136 * Should be run under rtnl lock
4138 static void bnx2x_clear_reset_global(struct bnx2x
*bp
)
4141 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4142 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4143 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~BNX2X_GLOBAL_RESET_BIT
));
4144 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4148 * Checks the GLOBAL_RESET bit.
4150 * should be run under rtnl lock
4152 static bool bnx2x_reset_is_global(struct bnx2x
*bp
)
4154 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4156 DP(NETIF_MSG_HW
, "GEN_REG_VAL=0x%08x\n", val
);
4157 return (val
& BNX2X_GLOBAL_RESET_BIT
) ? true : false;
4161 * Clear RESET_IN_PROGRESS bit for the current engine.
4163 * Should be run under rtnl lock
4165 static void bnx2x_set_reset_done(struct bnx2x
*bp
)
4168 u32 bit
= BP_PATH(bp
) ?
4169 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4170 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4171 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4175 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4177 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4181 * Set RESET_IN_PROGRESS for the current engine.
4183 * should be run under rtnl lock
4185 void bnx2x_set_reset_in_progress(struct bnx2x
*bp
)
4188 u32 bit
= BP_PATH(bp
) ?
4189 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4190 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4191 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4195 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4196 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4200 * Checks the RESET_IN_PROGRESS bit for the given engine.
4201 * should be run under rtnl lock
4203 bool bnx2x_reset_is_done(struct bnx2x
*bp
, int engine
)
4205 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4207 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4209 /* return false if bit is set */
4210 return (val
& bit
) ? false : true;
4214 * set pf load for the current pf.
4216 * should be run under rtnl lock
4218 void bnx2x_set_pf_load(struct bnx2x
*bp
)
4221 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
4222 BNX2X_PATH0_LOAD_CNT_MASK
;
4223 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4224 BNX2X_PATH0_LOAD_CNT_SHIFT
;
4226 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4227 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4229 DP(NETIF_MSG_IFUP
, "Old GEN_REG_VAL=0x%08x\n", val
);
4231 /* get the current counter value */
4232 val1
= (val
& mask
) >> shift
;
4234 /* set bit of that PF */
4235 val1
|= (1 << bp
->pf_num
);
4237 /* clear the old value */
4240 /* set the new one */
4241 val
|= ((val1
<< shift
) & mask
);
4243 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4244 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4248 * bnx2x_clear_pf_load - clear pf load mark
4250 * @bp: driver handle
4252 * Should be run under rtnl lock.
4253 * Decrements the load counter for the current engine. Returns
4254 * whether other functions are still loaded
4256 bool bnx2x_clear_pf_load(struct bnx2x
*bp
)
4259 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
4260 BNX2X_PATH0_LOAD_CNT_MASK
;
4261 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4262 BNX2X_PATH0_LOAD_CNT_SHIFT
;
4264 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4265 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4266 DP(NETIF_MSG_IFDOWN
, "Old GEN_REG_VAL=0x%08x\n", val
);
4268 /* get the current counter value */
4269 val1
= (val
& mask
) >> shift
;
4271 /* clear bit of that PF */
4272 val1
&= ~(1 << bp
->pf_num
);
4274 /* clear the old value */
4277 /* set the new one */
4278 val
|= ((val1
<< shift
) & mask
);
4280 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4281 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4286 * Read the load status for the current engine.
4288 * should be run under rtnl lock
4290 static bool bnx2x_get_load_status(struct bnx2x
*bp
, int engine
)
4292 u32 mask
= (engine
? BNX2X_PATH1_LOAD_CNT_MASK
:
4293 BNX2X_PATH0_LOAD_CNT_MASK
);
4294 u32 shift
= (engine
? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4295 BNX2X_PATH0_LOAD_CNT_SHIFT
);
4296 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4298 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "GLOB_REG=0x%08x\n", val
);
4300 val
= (val
& mask
) >> shift
;
4302 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "load mask for engine %d = 0x%x\n",
4308 static void _print_parity(struct bnx2x
*bp
, u32 reg
)
4310 pr_cont(" [0x%08x] ", REG_RD(bp
, reg
));
4313 static void _print_next_block(int idx
, const char *blk
)
4315 pr_cont("%s%s", idx
? ", " : "", blk
);
4318 static bool bnx2x_check_blocks_with_parity0(struct bnx2x
*bp
, u32 sig
,
4319 int *par_num
, bool print
)
4327 for (i
= 0; sig
; i
++) {
4328 cur_bit
= (0x1UL
<< i
);
4329 if (sig
& cur_bit
) {
4330 res
|= true; /* Each bit is real error! */
4334 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR
:
4335 _print_next_block((*par_num
)++, "BRB");
4337 BRB1_REG_BRB1_PRTY_STS
);
4339 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR
:
4340 _print_next_block((*par_num
)++,
4342 _print_parity(bp
, PRS_REG_PRS_PRTY_STS
);
4344 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR
:
4345 _print_next_block((*par_num
)++, "TSDM");
4347 TSDM_REG_TSDM_PRTY_STS
);
4349 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR
:
4350 _print_next_block((*par_num
)++,
4352 _print_parity(bp
, SRC_REG_SRC_PRTY_STS
);
4354 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR
:
4355 _print_next_block((*par_num
)++, "TCM");
4356 _print_parity(bp
, TCM_REG_TCM_PRTY_STS
);
4358 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR
:
4359 _print_next_block((*par_num
)++,
4362 TSEM_REG_TSEM_PRTY_STS_0
);
4364 TSEM_REG_TSEM_PRTY_STS_1
);
4366 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR
:
4367 _print_next_block((*par_num
)++, "XPB");
4368 _print_parity(bp
, GRCBASE_XPB
+
4369 PB_REG_PB_PRTY_STS
);
4382 static bool bnx2x_check_blocks_with_parity1(struct bnx2x
*bp
, u32 sig
,
4383 int *par_num
, bool *global
,
4392 for (i
= 0; sig
; i
++) {
4393 cur_bit
= (0x1UL
<< i
);
4394 if (sig
& cur_bit
) {
4395 res
|= true; /* Each bit is real error! */
4397 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR
:
4399 _print_next_block((*par_num
)++, "PBF");
4400 _print_parity(bp
, PBF_REG_PBF_PRTY_STS
);
4403 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR
:
4405 _print_next_block((*par_num
)++, "QM");
4406 _print_parity(bp
, QM_REG_QM_PRTY_STS
);
4409 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR
:
4411 _print_next_block((*par_num
)++, "TM");
4412 _print_parity(bp
, TM_REG_TM_PRTY_STS
);
4415 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR
:
4417 _print_next_block((*par_num
)++, "XSDM");
4419 XSDM_REG_XSDM_PRTY_STS
);
4422 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR
:
4424 _print_next_block((*par_num
)++, "XCM");
4425 _print_parity(bp
, XCM_REG_XCM_PRTY_STS
);
4428 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR
:
4430 _print_next_block((*par_num
)++,
4433 XSEM_REG_XSEM_PRTY_STS_0
);
4435 XSEM_REG_XSEM_PRTY_STS_1
);
4438 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR
:
4440 _print_next_block((*par_num
)++,
4443 DORQ_REG_DORQ_PRTY_STS
);
4446 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR
:
4448 _print_next_block((*par_num
)++, "NIG");
4449 if (CHIP_IS_E1x(bp
)) {
4451 NIG_REG_NIG_PRTY_STS
);
4454 NIG_REG_NIG_PRTY_STS_0
);
4456 NIG_REG_NIG_PRTY_STS_1
);
4460 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR
:
4462 _print_next_block((*par_num
)++,
4466 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR
:
4468 _print_next_block((*par_num
)++,
4470 _print_parity(bp
, DBG_REG_DBG_PRTY_STS
);
4473 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR
:
4475 _print_next_block((*par_num
)++, "USDM");
4477 USDM_REG_USDM_PRTY_STS
);
4480 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR
:
4482 _print_next_block((*par_num
)++, "UCM");
4483 _print_parity(bp
, UCM_REG_UCM_PRTY_STS
);
4486 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR
:
4488 _print_next_block((*par_num
)++,
4491 USEM_REG_USEM_PRTY_STS_0
);
4493 USEM_REG_USEM_PRTY_STS_1
);
4496 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR
:
4498 _print_next_block((*par_num
)++, "UPB");
4499 _print_parity(bp
, GRCBASE_UPB
+
4500 PB_REG_PB_PRTY_STS
);
4503 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR
:
4505 _print_next_block((*par_num
)++, "CSDM");
4507 CSDM_REG_CSDM_PRTY_STS
);
4510 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR
:
4512 _print_next_block((*par_num
)++, "CCM");
4513 _print_parity(bp
, CCM_REG_CCM_PRTY_STS
);
4526 static bool bnx2x_check_blocks_with_parity2(struct bnx2x
*bp
, u32 sig
,
4527 int *par_num
, bool print
)
4535 for (i
= 0; sig
; i
++) {
4536 cur_bit
= (0x1UL
<< i
);
4537 if (sig
& cur_bit
) {
4538 res
|= true; /* Each bit is real error! */
4541 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR
:
4542 _print_next_block((*par_num
)++,
4545 CSEM_REG_CSEM_PRTY_STS_0
);
4547 CSEM_REG_CSEM_PRTY_STS_1
);
4549 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR
:
4550 _print_next_block((*par_num
)++, "PXP");
4551 _print_parity(bp
, PXP_REG_PXP_PRTY_STS
);
4553 PXP2_REG_PXP2_PRTY_STS_0
);
4555 PXP2_REG_PXP2_PRTY_STS_1
);
4557 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
:
4558 _print_next_block((*par_num
)++,
4559 "PXPPCICLOCKCLIENT");
4561 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR
:
4562 _print_next_block((*par_num
)++, "CFC");
4564 CFC_REG_CFC_PRTY_STS
);
4566 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR
:
4567 _print_next_block((*par_num
)++, "CDU");
4568 _print_parity(bp
, CDU_REG_CDU_PRTY_STS
);
4570 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR
:
4571 _print_next_block((*par_num
)++, "DMAE");
4573 DMAE_REG_DMAE_PRTY_STS
);
4575 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR
:
4576 _print_next_block((*par_num
)++, "IGU");
4577 if (CHIP_IS_E1x(bp
))
4579 HC_REG_HC_PRTY_STS
);
4582 IGU_REG_IGU_PRTY_STS
);
4584 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR
:
4585 _print_next_block((*par_num
)++, "MISC");
4587 MISC_REG_MISC_PRTY_STS
);
4600 static bool bnx2x_check_blocks_with_parity3(struct bnx2x
*bp
, u32 sig
,
4601 int *par_num
, bool *global
,
4608 for (i
= 0; sig
; i
++) {
4609 cur_bit
= (0x1UL
<< i
);
4610 if (sig
& cur_bit
) {
4612 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY
:
4614 _print_next_block((*par_num
)++,
4619 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY
:
4621 _print_next_block((*par_num
)++,
4626 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY
:
4628 _print_next_block((*par_num
)++,
4633 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
:
4635 _print_next_block((*par_num
)++,
4637 /* clear latched SCPAD PATIRY from MCP */
4638 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
,
4651 static bool bnx2x_check_blocks_with_parity4(struct bnx2x
*bp
, u32 sig
,
4652 int *par_num
, bool print
)
4660 for (i
= 0; sig
; i
++) {
4661 cur_bit
= (0x1UL
<< i
);
4662 if (sig
& cur_bit
) {
4663 res
|= true; /* Each bit is real error! */
4666 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
:
4667 _print_next_block((*par_num
)++,
4670 PGLUE_B_REG_PGLUE_B_PRTY_STS
);
4672 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
:
4673 _print_next_block((*par_num
)++, "ATC");
4675 ATC_REG_ATC_PRTY_STS
);
4687 static bool bnx2x_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
,
4692 if ((sig
[0] & HW_PRTY_ASSERT_SET_0
) ||
4693 (sig
[1] & HW_PRTY_ASSERT_SET_1
) ||
4694 (sig
[2] & HW_PRTY_ASSERT_SET_2
) ||
4695 (sig
[3] & HW_PRTY_ASSERT_SET_3
) ||
4696 (sig
[4] & HW_PRTY_ASSERT_SET_4
)) {
4698 DP(NETIF_MSG_HW
, "Was parity error: HW block parity attention:\n"
4699 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4700 sig
[0] & HW_PRTY_ASSERT_SET_0
,
4701 sig
[1] & HW_PRTY_ASSERT_SET_1
,
4702 sig
[2] & HW_PRTY_ASSERT_SET_2
,
4703 sig
[3] & HW_PRTY_ASSERT_SET_3
,
4704 sig
[4] & HW_PRTY_ASSERT_SET_4
);
4707 "Parity errors detected in blocks: ");
4708 res
|= bnx2x_check_blocks_with_parity0(bp
,
4709 sig
[0] & HW_PRTY_ASSERT_SET_0
, &par_num
, print
);
4710 res
|= bnx2x_check_blocks_with_parity1(bp
,
4711 sig
[1] & HW_PRTY_ASSERT_SET_1
, &par_num
, global
, print
);
4712 res
|= bnx2x_check_blocks_with_parity2(bp
,
4713 sig
[2] & HW_PRTY_ASSERT_SET_2
, &par_num
, print
);
4714 res
|= bnx2x_check_blocks_with_parity3(bp
,
4715 sig
[3] & HW_PRTY_ASSERT_SET_3
, &par_num
, global
, print
);
4716 res
|= bnx2x_check_blocks_with_parity4(bp
,
4717 sig
[4] & HW_PRTY_ASSERT_SET_4
, &par_num
, print
);
4727 * bnx2x_chk_parity_attn - checks for parity attentions.
4729 * @bp: driver handle
4730 * @global: true if there was a global attention
4731 * @print: show parity attention in syslog
4733 bool bnx2x_chk_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
)
4735 struct attn_route attn
= { {0} };
4736 int port
= BP_PORT(bp
);
4738 attn
.sig
[0] = REG_RD(bp
,
4739 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+
4741 attn
.sig
[1] = REG_RD(bp
,
4742 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+
4744 attn
.sig
[2] = REG_RD(bp
,
4745 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+
4747 attn
.sig
[3] = REG_RD(bp
,
4748 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+
4750 /* Since MCP attentions can't be disabled inside the block, we need to
4751 * read AEU registers to see whether they're currently disabled
4753 attn
.sig
[3] &= ((REG_RD(bp
,
4754 !port
? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4755 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0
) &
4756 MISC_AEU_ENABLE_MCP_PRTY_BITS
) |
4757 ~MISC_AEU_ENABLE_MCP_PRTY_BITS
);
4759 if (!CHIP_IS_E1x(bp
))
4760 attn
.sig
[4] = REG_RD(bp
,
4761 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+
4764 return bnx2x_parity_attn(bp
, global
, print
, attn
.sig
);
4767 static void bnx2x_attn_int_deasserted4(struct bnx2x
*bp
, u32 attn
)
4770 if (attn
& AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT
) {
4772 val
= REG_RD(bp
, PGLUE_B_REG_PGLUE_B_INT_STS_CLR
);
4773 BNX2X_ERR("PGLUE hw attention 0x%x\n", val
);
4774 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR
)
4775 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4776 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR
)
4777 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4778 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
)
4779 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4780 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN
)
4781 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4783 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN
)
4784 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4786 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN
)
4787 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4788 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN
)
4789 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4790 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN
)
4791 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4792 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW
)
4793 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4795 if (attn
& AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT
) {
4796 val
= REG_RD(bp
, ATC_REG_ATC_INT_STS_CLR
);
4797 BNX2X_ERR("ATC hw attention 0x%x\n", val
);
4798 if (val
& ATC_ATC_INT_STS_REG_ADDRESS_ERROR
)
4799 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4800 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND
)
4801 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4802 if (val
& ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS
)
4803 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4804 if (val
& ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT
)
4805 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4806 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR
)
4807 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4808 if (val
& ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU
)
4809 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4812 if (attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4813 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)) {
4814 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4815 (u32
)(attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4816 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)));
4820 static void bnx2x_attn_int_deasserted(struct bnx2x
*bp
, u32 deasserted
)
4822 struct attn_route attn
, *group_mask
;
4823 int port
= BP_PORT(bp
);
4828 bool global
= false;
4830 /* need to take HW lock because MCP or other port might also
4831 try to handle this event */
4832 bnx2x_acquire_alr(bp
);
4834 if (bnx2x_chk_parity_attn(bp
, &global
, true)) {
4835 #ifndef BNX2X_STOP_ON_ERROR
4836 bp
->recovery_state
= BNX2X_RECOVERY_INIT
;
4837 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
4838 /* Disable HW interrupts */
4839 bnx2x_int_disable(bp
);
4840 /* In case of parity errors don't handle attentions so that
4841 * other function would "see" parity errors.
4846 bnx2x_release_alr(bp
);
4850 attn
.sig
[0] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ port
*4);
4851 attn
.sig
[1] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+ port
*4);
4852 attn
.sig
[2] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+ port
*4);
4853 attn
.sig
[3] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+ port
*4);
4854 if (!CHIP_IS_E1x(bp
))
4856 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+ port
*4);
4860 DP(NETIF_MSG_HW
, "attn: %08x %08x %08x %08x %08x\n",
4861 attn
.sig
[0], attn
.sig
[1], attn
.sig
[2], attn
.sig
[3], attn
.sig
[4]);
4863 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
4864 if (deasserted
& (1 << index
)) {
4865 group_mask
= &bp
->attn_group
[index
];
4867 DP(NETIF_MSG_HW
, "group[%d]: %08x %08x %08x %08x %08x\n",
4869 group_mask
->sig
[0], group_mask
->sig
[1],
4870 group_mask
->sig
[2], group_mask
->sig
[3],
4871 group_mask
->sig
[4]);
4873 bnx2x_attn_int_deasserted4(bp
,
4874 attn
.sig
[4] & group_mask
->sig
[4]);
4875 bnx2x_attn_int_deasserted3(bp
,
4876 attn
.sig
[3] & group_mask
->sig
[3]);
4877 bnx2x_attn_int_deasserted1(bp
,
4878 attn
.sig
[1] & group_mask
->sig
[1]);
4879 bnx2x_attn_int_deasserted2(bp
,
4880 attn
.sig
[2] & group_mask
->sig
[2]);
4881 bnx2x_attn_int_deasserted0(bp
,
4882 attn
.sig
[0] & group_mask
->sig
[0]);
4886 bnx2x_release_alr(bp
);
4888 if (bp
->common
.int_block
== INT_BLOCK_HC
)
4889 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
4890 COMMAND_REG_ATTN_BITS_CLR
);
4892 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_CLR_UPPER
*8);
4895 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", val
,
4896 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
4897 REG_WR(bp
, reg_addr
, val
);
4899 if (~bp
->attn_state
& deasserted
)
4900 BNX2X_ERR("IGU ERROR\n");
4902 reg_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
4903 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
4905 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4906 aeu_mask
= REG_RD(bp
, reg_addr
);
4908 DP(NETIF_MSG_HW
, "aeu_mask %x newly deasserted %x\n",
4909 aeu_mask
, deasserted
);
4910 aeu_mask
|= (deasserted
& 0x3ff);
4911 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
4913 REG_WR(bp
, reg_addr
, aeu_mask
);
4914 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4916 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
4917 bp
->attn_state
&= ~deasserted
;
4918 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
4921 static void bnx2x_attn_int(struct bnx2x
*bp
)
4923 /* read local copy of bits */
4924 u32 attn_bits
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4926 u32 attn_ack
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4928 u32 attn_state
= bp
->attn_state
;
4930 /* look for changed bits */
4931 u32 asserted
= attn_bits
& ~attn_ack
& ~attn_state
;
4932 u32 deasserted
= ~attn_bits
& attn_ack
& attn_state
;
4935 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4936 attn_bits
, attn_ack
, asserted
, deasserted
);
4938 if (~(attn_bits
^ attn_ack
) & (attn_bits
^ attn_state
))
4939 BNX2X_ERR("BAD attention state\n");
4941 /* handle bits that were raised */
4943 bnx2x_attn_int_asserted(bp
, asserted
);
4946 bnx2x_attn_int_deasserted(bp
, deasserted
);
4949 void bnx2x_igu_ack_sb(struct bnx2x
*bp
, u8 igu_sb_id
, u8 segment
,
4950 u16 index
, u8 op
, u8 update
)
4952 u32 igu_addr
= bp
->igu_base_addr
;
4953 igu_addr
+= (IGU_CMD_INT_ACK_BASE
+ igu_sb_id
)*8;
4954 bnx2x_igu_ack_sb_gen(bp
, igu_sb_id
, segment
, index
, op
, update
,
4958 static void bnx2x_update_eq_prod(struct bnx2x
*bp
, u16 prod
)
4960 /* No memory barriers */
4961 storm_memset_eq_prod(bp
, prod
, BP_FUNC(bp
));
4962 mmiowb(); /* keep prod updates ordered */
4965 static int bnx2x_cnic_handle_cfc_del(struct bnx2x
*bp
, u32 cid
,
4966 union event_ring_elem
*elem
)
4968 u8 err
= elem
->message
.error
;
4970 if (!bp
->cnic_eth_dev
.starting_cid
||
4971 (cid
< bp
->cnic_eth_dev
.starting_cid
&&
4972 cid
!= bp
->cnic_eth_dev
.iscsi_l2_cid
))
4975 DP(BNX2X_MSG_SP
, "got delete ramrod for CNIC CID %d\n", cid
);
4977 if (unlikely(err
)) {
4979 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4981 bnx2x_panic_dump(bp
, false);
4983 bnx2x_cnic_cfc_comp(bp
, cid
, err
);
4987 static void bnx2x_handle_mcast_eqe(struct bnx2x
*bp
)
4989 struct bnx2x_mcast_ramrod_params rparam
;
4992 memset(&rparam
, 0, sizeof(rparam
));
4994 rparam
.mcast_obj
= &bp
->mcast_obj
;
4996 netif_addr_lock_bh(bp
->dev
);
4998 /* Clear pending state for the last command */
4999 bp
->mcast_obj
.raw
.clear_pending(&bp
->mcast_obj
.raw
);
5001 /* If there are pending mcast commands - send them */
5002 if (bp
->mcast_obj
.check_pending(&bp
->mcast_obj
)) {
5003 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
5005 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5009 netif_addr_unlock_bh(bp
->dev
);
5012 static void bnx2x_handle_classification_eqe(struct bnx2x
*bp
,
5013 union event_ring_elem
*elem
)
5015 unsigned long ramrod_flags
= 0;
5017 u32 cid
= elem
->message
.data
.eth_event
.echo
& BNX2X_SWCID_MASK
;
5018 struct bnx2x_vlan_mac_obj
*vlan_mac_obj
;
5020 /* Always push next commands out, don't wait here */
5021 __set_bit(RAMROD_CONT
, &ramrod_flags
);
5023 switch (le32_to_cpu((__force __le32
)elem
->message
.data
.eth_event
.echo
)
5024 >> BNX2X_SWCID_SHIFT
) {
5025 case BNX2X_FILTER_MAC_PENDING
:
5026 DP(BNX2X_MSG_SP
, "Got SETUP_MAC completions\n");
5027 if (CNIC_LOADED(bp
) && (cid
== BNX2X_ISCSI_ETH_CID(bp
)))
5028 vlan_mac_obj
= &bp
->iscsi_l2_mac_obj
;
5030 vlan_mac_obj
= &bp
->sp_objs
[cid
].mac_obj
;
5033 case BNX2X_FILTER_MCAST_PENDING
:
5034 DP(BNX2X_MSG_SP
, "Got SETUP_MCAST completions\n");
5035 /* This is only relevant for 57710 where multicast MACs are
5036 * configured as unicast MACs using the same ramrod.
5038 bnx2x_handle_mcast_eqe(bp
);
5041 BNX2X_ERR("Unsupported classification command: %d\n",
5042 elem
->message
.data
.eth_event
.echo
);
5046 rc
= vlan_mac_obj
->complete(bp
, vlan_mac_obj
, elem
, &ramrod_flags
);
5049 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
5051 DP(BNX2X_MSG_SP
, "Scheduled next pending commands...\n");
5054 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
);
5056 static void bnx2x_handle_rx_mode_eqe(struct bnx2x
*bp
)
5058 netif_addr_lock_bh(bp
->dev
);
5060 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
5062 /* Send rx_mode command again if was requested */
5063 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
))
5064 bnx2x_set_storm_rx_mode(bp
);
5065 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
,
5067 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
5068 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
,
5070 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
5072 netif_addr_unlock_bh(bp
->dev
);
5075 static void bnx2x_after_afex_vif_lists(struct bnx2x
*bp
,
5076 union event_ring_elem
*elem
)
5078 if (elem
->message
.data
.vif_list_event
.echo
== VIF_LIST_RULE_GET
) {
5080 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5081 elem
->message
.data
.vif_list_event
.func_bit_map
);
5082 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_LISTGET_ACK
,
5083 elem
->message
.data
.vif_list_event
.func_bit_map
);
5084 } else if (elem
->message
.data
.vif_list_event
.echo
==
5085 VIF_LIST_RULE_SET
) {
5086 DP(BNX2X_MSG_SP
, "afex: ramrod completed VIF LIST_SET\n");
5087 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_LISTSET_ACK
, 0);
5091 /* called with rtnl_lock */
5092 static void bnx2x_after_function_update(struct bnx2x
*bp
)
5095 struct bnx2x_fastpath
*fp
;
5096 struct bnx2x_queue_state_params queue_params
= {NULL
};
5097 struct bnx2x_queue_update_params
*q_update_params
=
5098 &queue_params
.params
.update
;
5100 /* Send Q update command with afex vlan removal values for all Qs */
5101 queue_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
5103 /* set silent vlan removal values according to vlan mode */
5104 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
5105 &q_update_params
->update_flags
);
5106 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
5107 &q_update_params
->update_flags
);
5108 __set_bit(RAMROD_COMP_WAIT
, &queue_params
.ramrod_flags
);
5110 /* in access mode mark mask and value are 0 to strip all vlans */
5111 if (bp
->afex_vlan_mode
== FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE
) {
5112 q_update_params
->silent_removal_value
= 0;
5113 q_update_params
->silent_removal_mask
= 0;
5115 q_update_params
->silent_removal_value
=
5116 (bp
->afex_def_vlan_tag
& VLAN_VID_MASK
);
5117 q_update_params
->silent_removal_mask
= VLAN_VID_MASK
;
5120 for_each_eth_queue(bp
, q
) {
5121 /* Set the appropriate Queue object */
5123 queue_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
5125 /* send the ramrod */
5126 rc
= bnx2x_queue_state_change(bp
, &queue_params
);
5128 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5132 if (!NO_FCOE(bp
) && CNIC_ENABLED(bp
)) {
5133 fp
= &bp
->fp
[FCOE_IDX(bp
)];
5134 queue_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
5136 /* clear pending completion bit */
5137 __clear_bit(RAMROD_COMP_WAIT
, &queue_params
.ramrod_flags
);
5139 /* mark latest Q bit */
5140 smp_mb__before_clear_bit();
5141 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
);
5142 smp_mb__after_clear_bit();
5144 /* send Q update ramrod for FCoE Q */
5145 rc
= bnx2x_queue_state_change(bp
, &queue_params
);
5147 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5150 /* If no FCoE ring - ACK MCP now */
5151 bnx2x_link_report(bp
);
5152 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
5156 static struct bnx2x_queue_sp_obj
*bnx2x_cid_to_q_obj(
5157 struct bnx2x
*bp
, u32 cid
)
5159 DP(BNX2X_MSG_SP
, "retrieving fp from cid %d\n", cid
);
5161 if (CNIC_LOADED(bp
) && (cid
== BNX2X_FCOE_ETH_CID(bp
)))
5162 return &bnx2x_fcoe_sp_obj(bp
, q_obj
);
5164 return &bp
->sp_objs
[CID_TO_FP(cid
, bp
)].q_obj
;
5167 static void bnx2x_eq_int(struct bnx2x
*bp
)
5169 u16 hw_cons
, sw_cons
, sw_prod
;
5170 union event_ring_elem
*elem
;
5174 int rc
, spqe_cnt
= 0;
5175 struct bnx2x_queue_sp_obj
*q_obj
;
5176 struct bnx2x_func_sp_obj
*f_obj
= &bp
->func_obj
;
5177 struct bnx2x_raw_obj
*rss_raw
= &bp
->rss_conf_obj
.raw
;
5179 hw_cons
= le16_to_cpu(*bp
->eq_cons_sb
);
5181 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5182 * when we get the next-page we need to adjust so the loop
5183 * condition below will be met. The next element is the size of a
5184 * regular element and hence incrementing by 1
5186 if ((hw_cons
& EQ_DESC_MAX_PAGE
) == EQ_DESC_MAX_PAGE
)
5189 /* This function may never run in parallel with itself for a
5190 * specific bp, thus there is no need in "paired" read memory
5193 sw_cons
= bp
->eq_cons
;
5194 sw_prod
= bp
->eq_prod
;
5196 DP(BNX2X_MSG_SP
, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5197 hw_cons
, sw_cons
, atomic_read(&bp
->eq_spq_left
));
5199 for (; sw_cons
!= hw_cons
;
5200 sw_prod
= NEXT_EQ_IDX(sw_prod
), sw_cons
= NEXT_EQ_IDX(sw_cons
)) {
5202 elem
= &bp
->eq_ring
[EQ_DESC(sw_cons
)];
5204 rc
= bnx2x_iov_eq_sp_event(bp
, elem
);
5206 DP(BNX2X_MSG_IOV
, "bnx2x_iov_eq_sp_event returned %d\n",
5211 /* elem CID originates from FW; actually LE */
5212 cid
= SW_CID((__force __le32
)
5213 elem
->message
.data
.cfc_del_event
.cid
);
5214 opcode
= elem
->message
.opcode
;
5216 /* handle eq element */
5218 case EVENT_RING_OPCODE_VF_PF_CHANNEL
:
5219 DP(BNX2X_MSG_IOV
, "vf pf channel element on eq\n");
5220 bnx2x_vf_mbx(bp
, &elem
->message
.data
.vf_pf_event
);
5223 case EVENT_RING_OPCODE_STAT_QUERY
:
5224 DP(BNX2X_MSG_SP
| BNX2X_MSG_STATS
,
5225 "got statistics comp event %d\n",
5227 /* nothing to do with stats comp */
5230 case EVENT_RING_OPCODE_CFC_DEL
:
5231 /* handle according to cid range */
5233 * we may want to verify here that the bp state is
5237 "got delete ramrod for MULTI[%d]\n", cid
);
5239 if (CNIC_LOADED(bp
) &&
5240 !bnx2x_cnic_handle_cfc_del(bp
, cid
, elem
))
5243 q_obj
= bnx2x_cid_to_q_obj(bp
, cid
);
5245 if (q_obj
->complete_cmd(bp
, q_obj
, BNX2X_Q_CMD_CFC_DEL
))
5250 case EVENT_RING_OPCODE_STOP_TRAFFIC
:
5251 DP(BNX2X_MSG_SP
| BNX2X_MSG_DCB
, "got STOP TRAFFIC\n");
5252 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_PAUSED
);
5253 if (f_obj
->complete_cmd(bp
, f_obj
,
5254 BNX2X_F_CMD_TX_STOP
))
5258 case EVENT_RING_OPCODE_START_TRAFFIC
:
5259 DP(BNX2X_MSG_SP
| BNX2X_MSG_DCB
, "got START TRAFFIC\n");
5260 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_RELEASED
);
5261 if (f_obj
->complete_cmd(bp
, f_obj
,
5262 BNX2X_F_CMD_TX_START
))
5266 case EVENT_RING_OPCODE_FUNCTION_UPDATE
:
5267 echo
= elem
->message
.data
.function_update_event
.echo
;
5268 if (echo
== SWITCH_UPDATE
) {
5269 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5270 "got FUNC_SWITCH_UPDATE ramrod\n");
5271 if (f_obj
->complete_cmd(
5272 bp
, f_obj
, BNX2X_F_CMD_SWITCH_UPDATE
))
5276 DP(BNX2X_MSG_SP
| BNX2X_MSG_MCP
,
5277 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5278 f_obj
->complete_cmd(bp
, f_obj
,
5279 BNX2X_F_CMD_AFEX_UPDATE
);
5281 /* We will perform the Queues update from
5282 * sp_rtnl task as all Queue SP operations
5283 * should run under rtnl_lock.
5285 smp_mb__before_clear_bit();
5286 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE
,
5287 &bp
->sp_rtnl_state
);
5288 smp_mb__after_clear_bit();
5290 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
5295 case EVENT_RING_OPCODE_AFEX_VIF_LISTS
:
5296 f_obj
->complete_cmd(bp
, f_obj
,
5297 BNX2X_F_CMD_AFEX_VIFLISTS
);
5298 bnx2x_after_afex_vif_lists(bp
, elem
);
5300 case EVENT_RING_OPCODE_FUNCTION_START
:
5301 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5302 "got FUNC_START ramrod\n");
5303 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_START
))
5308 case EVENT_RING_OPCODE_FUNCTION_STOP
:
5309 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5310 "got FUNC_STOP ramrod\n");
5311 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_STOP
))
5317 switch (opcode
| bp
->state
) {
5318 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
5320 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
5321 BNX2X_STATE_OPENING_WAIT4_PORT
):
5322 cid
= elem
->message
.data
.eth_event
.echo
&
5324 DP(BNX2X_MSG_SP
, "got RSS_UPDATE ramrod. CID %d\n",
5326 rss_raw
->clear_pending(rss_raw
);
5329 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_OPEN
):
5330 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_DIAG
):
5331 case (EVENT_RING_OPCODE_SET_MAC
|
5332 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5333 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5335 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5337 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5338 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5339 DP(BNX2X_MSG_SP
, "got (un)set mac ramrod\n");
5340 bnx2x_handle_classification_eqe(bp
, elem
);
5343 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5345 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5347 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5348 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5349 DP(BNX2X_MSG_SP
, "got mcast ramrod\n");
5350 bnx2x_handle_mcast_eqe(bp
);
5353 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5355 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5357 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5358 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5359 DP(BNX2X_MSG_SP
, "got rx_mode ramrod\n");
5360 bnx2x_handle_rx_mode_eqe(bp
);
5363 /* unknown event log error and continue */
5364 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5365 elem
->message
.opcode
, bp
->state
);
5371 smp_mb__before_atomic_inc();
5372 atomic_add(spqe_cnt
, &bp
->eq_spq_left
);
5374 bp
->eq_cons
= sw_cons
;
5375 bp
->eq_prod
= sw_prod
;
5376 /* Make sure that above mem writes were issued towards the memory */
5379 /* update producer */
5380 bnx2x_update_eq_prod(bp
, bp
->eq_prod
);
5383 static void bnx2x_sp_task(struct work_struct
*work
)
5385 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_task
.work
);
5387 DP(BNX2X_MSG_SP
, "sp task invoked\n");
5389 /* make sure the atomic interrupt_occurred has been written */
5391 if (atomic_read(&bp
->interrupt_occurred
)) {
5393 /* what work needs to be performed? */
5394 u16 status
= bnx2x_update_dsb_idx(bp
);
5396 DP(BNX2X_MSG_SP
, "status %x\n", status
);
5397 DP(BNX2X_MSG_SP
, "setting interrupt_occurred to 0\n");
5398 atomic_set(&bp
->interrupt_occurred
, 0);
5401 if (status
& BNX2X_DEF_SB_ATT_IDX
) {
5403 status
&= ~BNX2X_DEF_SB_ATT_IDX
;
5406 /* SP events: STAT_QUERY and others */
5407 if (status
& BNX2X_DEF_SB_IDX
) {
5408 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
5410 if (FCOE_INIT(bp
) &&
5411 (bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
5412 /* Prevent local bottom-halves from running as
5413 * we are going to change the local NAPI list.
5416 napi_schedule(&bnx2x_fcoe(bp
, napi
));
5420 /* Handle EQ completions */
5422 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
,
5423 le16_to_cpu(bp
->def_idx
), IGU_INT_NOP
, 1);
5425 status
&= ~BNX2X_DEF_SB_IDX
;
5428 /* if status is non zero then perhaps something went wrong */
5429 if (unlikely(status
))
5431 "got an unknown interrupt! (status 0x%x)\n", status
);
5433 /* ack status block only if something was actually handled */
5434 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, ATTENTION_ID
,
5435 le16_to_cpu(bp
->def_att_idx
), IGU_INT_ENABLE
, 1);
5438 /* must be called after the EQ processing (since eq leads to sriov
5439 * ramrod completion flows).
5440 * This flow may have been scheduled by the arrival of a ramrod
5441 * completion, or by the sriov code rescheduling itself.
5443 bnx2x_iov_sp_task(bp
);
5445 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5446 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK
,
5448 bnx2x_link_report(bp
);
5449 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
5453 irqreturn_t
bnx2x_msix_sp_int(int irq
, void *dev_instance
)
5455 struct net_device
*dev
= dev_instance
;
5456 struct bnx2x
*bp
= netdev_priv(dev
);
5458 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0,
5459 IGU_INT_DISABLE
, 0);
5461 #ifdef BNX2X_STOP_ON_ERROR
5462 if (unlikely(bp
->panic
))
5466 if (CNIC_LOADED(bp
)) {
5467 struct cnic_ops
*c_ops
;
5470 c_ops
= rcu_dereference(bp
->cnic_ops
);
5472 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
5476 /* schedule sp task to perform default status block work, ack
5477 * attentions and enable interrupts.
5479 bnx2x_schedule_sp_task(bp
);
5484 /* end of slow path */
5486 void bnx2x_drv_pulse(struct bnx2x
*bp
)
5488 SHMEM_WR(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
,
5489 bp
->fw_drv_pulse_wr_seq
);
5492 static void bnx2x_timer(unsigned long data
)
5494 struct bnx2x
*bp
= (struct bnx2x
*) data
;
5496 if (!netif_running(bp
->dev
))
5501 int mb_idx
= BP_FW_MB_IDX(bp
);
5505 ++bp
->fw_drv_pulse_wr_seq
;
5506 bp
->fw_drv_pulse_wr_seq
&= DRV_PULSE_SEQ_MASK
;
5507 drv_pulse
= bp
->fw_drv_pulse_wr_seq
;
5508 bnx2x_drv_pulse(bp
);
5510 mcp_pulse
= (SHMEM_RD(bp
, func_mb
[mb_idx
].mcp_pulse_mb
) &
5511 MCP_PULSE_SEQ_MASK
);
5512 /* The delta between driver pulse and mcp response
5513 * should not get too big. If the MFW is more than 5 pulses
5514 * behind, we should worry about it enough to generate an error
5517 if (((drv_pulse
- mcp_pulse
) & MCP_PULSE_SEQ_MASK
) > 5)
5518 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5519 drv_pulse
, mcp_pulse
);
5522 if (bp
->state
== BNX2X_STATE_OPEN
)
5523 bnx2x_stats_handle(bp
, STATS_EVENT_UPDATE
);
5525 /* sample pf vf bulletin board for new posts from pf */
5527 bnx2x_timer_sriov(bp
);
5529 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5532 /* end of Statistics */
5537 * nic init service functions
5540 static void bnx2x_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
5543 if (!(len
%4) && !(addr
%4))
5544 for (i
= 0; i
< len
; i
+= 4)
5545 REG_WR(bp
, addr
+ i
, fill
);
5547 for (i
= 0; i
< len
; i
++)
5548 REG_WR8(bp
, addr
+ i
, fill
);
5551 /* helper: writes FP SP data to FW - data_size in dwords */
5552 static void bnx2x_wr_fp_sb_data(struct bnx2x
*bp
,
5558 for (index
= 0; index
< data_size
; index
++)
5559 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
5560 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id
) +
5562 *(sb_data_p
+ index
));
5565 static void bnx2x_zero_fp_sb(struct bnx2x
*bp
, int fw_sb_id
)
5569 struct hc_status_block_data_e2 sb_data_e2
;
5570 struct hc_status_block_data_e1x sb_data_e1x
;
5572 /* disable the function first */
5573 if (!CHIP_IS_E1x(bp
)) {
5574 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
5575 sb_data_e2
.common
.state
= SB_DISABLED
;
5576 sb_data_e2
.common
.p_func
.vf_valid
= false;
5577 sb_data_p
= (u32
*)&sb_data_e2
;
5578 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
5580 memset(&sb_data_e1x
, 0,
5581 sizeof(struct hc_status_block_data_e1x
));
5582 sb_data_e1x
.common
.state
= SB_DISABLED
;
5583 sb_data_e1x
.common
.p_func
.vf_valid
= false;
5584 sb_data_p
= (u32
*)&sb_data_e1x
;
5585 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
5587 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
5589 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5590 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id
), 0,
5591 CSTORM_STATUS_BLOCK_SIZE
);
5592 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5593 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id
), 0,
5594 CSTORM_SYNC_BLOCK_SIZE
);
5597 /* helper: writes SP SB data to FW */
5598 static void bnx2x_wr_sp_sb_data(struct bnx2x
*bp
,
5599 struct hc_sp_status_block_data
*sp_sb_data
)
5601 int func
= BP_FUNC(bp
);
5603 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
5604 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
5605 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
5607 *((u32
*)sp_sb_data
+ i
));
5610 static void bnx2x_zero_sp_sb(struct bnx2x
*bp
)
5612 int func
= BP_FUNC(bp
);
5613 struct hc_sp_status_block_data sp_sb_data
;
5614 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
5616 sp_sb_data
.state
= SB_DISABLED
;
5617 sp_sb_data
.p_func
.vf_valid
= false;
5619 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
5621 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5622 CSTORM_SP_STATUS_BLOCK_OFFSET(func
), 0,
5623 CSTORM_SP_STATUS_BLOCK_SIZE
);
5624 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5625 CSTORM_SP_SYNC_BLOCK_OFFSET(func
), 0,
5626 CSTORM_SP_SYNC_BLOCK_SIZE
);
5629 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm
*hc_sm
,
5630 int igu_sb_id
, int igu_seg_id
)
5632 hc_sm
->igu_sb_id
= igu_sb_id
;
5633 hc_sm
->igu_seg_id
= igu_seg_id
;
5634 hc_sm
->timer_value
= 0xFF;
5635 hc_sm
->time_to_expire
= 0xFFFFFFFF;
5638 /* allocates state machine ids. */
5639 static void bnx2x_map_sb_state_machines(struct hc_index_data
*index_data
)
5641 /* zero out state machine indices */
5643 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5646 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5647 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5648 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5649 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5653 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
|=
5654 SM_RX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5657 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
|=
5658 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5659 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
|=
5660 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5661 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
|=
5662 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5663 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
|=
5664 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5667 void bnx2x_init_sb(struct bnx2x
*bp
, dma_addr_t mapping
, int vfid
,
5668 u8 vf_valid
, int fw_sb_id
, int igu_sb_id
)
5672 struct hc_status_block_data_e2 sb_data_e2
;
5673 struct hc_status_block_data_e1x sb_data_e1x
;
5674 struct hc_status_block_sm
*hc_sm_p
;
5678 if (CHIP_INT_MODE_IS_BC(bp
))
5679 igu_seg_id
= HC_SEG_ACCESS_NORM
;
5681 igu_seg_id
= IGU_SEG_ACCESS_NORM
;
5683 bnx2x_zero_fp_sb(bp
, fw_sb_id
);
5685 if (!CHIP_IS_E1x(bp
)) {
5686 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
5687 sb_data_e2
.common
.state
= SB_ENABLED
;
5688 sb_data_e2
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5689 sb_data_e2
.common
.p_func
.vf_id
= vfid
;
5690 sb_data_e2
.common
.p_func
.vf_valid
= vf_valid
;
5691 sb_data_e2
.common
.p_func
.vnic_id
= BP_VN(bp
);
5692 sb_data_e2
.common
.same_igu_sb_1b
= true;
5693 sb_data_e2
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5694 sb_data_e2
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5695 hc_sm_p
= sb_data_e2
.common
.state_machine
;
5696 sb_data_p
= (u32
*)&sb_data_e2
;
5697 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
5698 bnx2x_map_sb_state_machines(sb_data_e2
.index_data
);
5700 memset(&sb_data_e1x
, 0,
5701 sizeof(struct hc_status_block_data_e1x
));
5702 sb_data_e1x
.common
.state
= SB_ENABLED
;
5703 sb_data_e1x
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5704 sb_data_e1x
.common
.p_func
.vf_id
= 0xff;
5705 sb_data_e1x
.common
.p_func
.vf_valid
= false;
5706 sb_data_e1x
.common
.p_func
.vnic_id
= BP_VN(bp
);
5707 sb_data_e1x
.common
.same_igu_sb_1b
= true;
5708 sb_data_e1x
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5709 sb_data_e1x
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5710 hc_sm_p
= sb_data_e1x
.common
.state_machine
;
5711 sb_data_p
= (u32
*)&sb_data_e1x
;
5712 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
5713 bnx2x_map_sb_state_machines(sb_data_e1x
.index_data
);
5716 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_RX_ID
],
5717 igu_sb_id
, igu_seg_id
);
5718 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_TX_ID
],
5719 igu_sb_id
, igu_seg_id
);
5721 DP(NETIF_MSG_IFUP
, "Init FW SB %d\n", fw_sb_id
);
5723 /* write indices to HW - PCI guarantees endianity of regpairs */
5724 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
5727 static void bnx2x_update_coalesce_sb(struct bnx2x
*bp
, u8 fw_sb_id
,
5728 u16 tx_usec
, u16 rx_usec
)
5730 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
, HC_INDEX_ETH_RX_CQ_CONS
,
5732 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5733 HC_INDEX_ETH_TX_CQ_CONS_COS0
, false,
5735 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5736 HC_INDEX_ETH_TX_CQ_CONS_COS1
, false,
5738 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5739 HC_INDEX_ETH_TX_CQ_CONS_COS2
, false,
5743 static void bnx2x_init_def_sb(struct bnx2x
*bp
)
5745 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
5746 dma_addr_t mapping
= bp
->def_status_blk_mapping
;
5747 int igu_sp_sb_index
;
5749 int port
= BP_PORT(bp
);
5750 int func
= BP_FUNC(bp
);
5751 int reg_offset
, reg_offset_en5
;
5754 struct hc_sp_status_block_data sp_sb_data
;
5755 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
5757 if (CHIP_INT_MODE_IS_BC(bp
)) {
5758 igu_sp_sb_index
= DEF_SB_IGU_ID
;
5759 igu_seg_id
= HC_SEG_ACCESS_DEF
;
5761 igu_sp_sb_index
= bp
->igu_dsb_id
;
5762 igu_seg_id
= IGU_SEG_ACCESS_DEF
;
5766 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
5767 atten_status_block
);
5768 def_sb
->atten_status_block
.status_block_id
= igu_sp_sb_index
;
5772 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
5773 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
5774 reg_offset_en5
= (port
? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0
:
5775 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0
);
5776 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
5778 /* take care of sig[0]..sig[4] */
5779 for (sindex
= 0; sindex
< 4; sindex
++)
5780 bp
->attn_group
[index
].sig
[sindex
] =
5781 REG_RD(bp
, reg_offset
+ sindex
*0x4 + 0x10*index
);
5783 if (!CHIP_IS_E1x(bp
))
5785 * enable5 is separate from the rest of the registers,
5786 * and therefore the address skip is 4
5787 * and not 16 between the different groups
5789 bp
->attn_group
[index
].sig
[4] = REG_RD(bp
,
5790 reg_offset_en5
+ 0x4*index
);
5792 bp
->attn_group
[index
].sig
[4] = 0;
5795 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
5796 reg_offset
= (port
? HC_REG_ATTN_MSG1_ADDR_L
:
5797 HC_REG_ATTN_MSG0_ADDR_L
);
5799 REG_WR(bp
, reg_offset
, U64_LO(section
));
5800 REG_WR(bp
, reg_offset
+ 4, U64_HI(section
));
5801 } else if (!CHIP_IS_E1x(bp
)) {
5802 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_L
, U64_LO(section
));
5803 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_H
, U64_HI(section
));
5806 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
5809 bnx2x_zero_sp_sb(bp
);
5811 /* PCI guarantees endianity of regpairs */
5812 sp_sb_data
.state
= SB_ENABLED
;
5813 sp_sb_data
.host_sb_addr
.lo
= U64_LO(section
);
5814 sp_sb_data
.host_sb_addr
.hi
= U64_HI(section
);
5815 sp_sb_data
.igu_sb_id
= igu_sp_sb_index
;
5816 sp_sb_data
.igu_seg_id
= igu_seg_id
;
5817 sp_sb_data
.p_func
.pf_id
= func
;
5818 sp_sb_data
.p_func
.vnic_id
= BP_VN(bp
);
5819 sp_sb_data
.p_func
.vf_id
= 0xff;
5821 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
5823 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
5826 void bnx2x_update_coalesce(struct bnx2x
*bp
)
5830 for_each_eth_queue(bp
, i
)
5831 bnx2x_update_coalesce_sb(bp
, bp
->fp
[i
].fw_sb_id
,
5832 bp
->tx_ticks
, bp
->rx_ticks
);
5835 static void bnx2x_init_sp_ring(struct bnx2x
*bp
)
5837 spin_lock_init(&bp
->spq_lock
);
5838 atomic_set(&bp
->cq_spq_left
, MAX_SPQ_PENDING
);
5840 bp
->spq_prod_idx
= 0;
5841 bp
->dsb_sp_prod
= BNX2X_SP_DSB_INDEX
;
5842 bp
->spq_prod_bd
= bp
->spq
;
5843 bp
->spq_last_bd
= bp
->spq_prod_bd
+ MAX_SP_DESC_CNT
;
5846 static void bnx2x_init_eq_ring(struct bnx2x
*bp
)
5849 for (i
= 1; i
<= NUM_EQ_PAGES
; i
++) {
5850 union event_ring_elem
*elem
=
5851 &bp
->eq_ring
[EQ_DESC_CNT_PAGE
* i
- 1];
5853 elem
->next_page
.addr
.hi
=
5854 cpu_to_le32(U64_HI(bp
->eq_mapping
+
5855 BCM_PAGE_SIZE
* (i
% NUM_EQ_PAGES
)));
5856 elem
->next_page
.addr
.lo
=
5857 cpu_to_le32(U64_LO(bp
->eq_mapping
+
5858 BCM_PAGE_SIZE
*(i
% NUM_EQ_PAGES
)));
5861 bp
->eq_prod
= NUM_EQ_DESC
;
5862 bp
->eq_cons_sb
= BNX2X_EQ_INDEX
;
5863 /* we want a warning message before it gets wrought... */
5864 atomic_set(&bp
->eq_spq_left
,
5865 min_t(int, MAX_SP_DESC_CNT
- MAX_SPQ_PENDING
, NUM_EQ_DESC
) - 1);
5868 /* called with netif_addr_lock_bh() */
5869 static int bnx2x_set_q_rx_mode(struct bnx2x
*bp
, u8 cl_id
,
5870 unsigned long rx_mode_flags
,
5871 unsigned long rx_accept_flags
,
5872 unsigned long tx_accept_flags
,
5873 unsigned long ramrod_flags
)
5875 struct bnx2x_rx_mode_ramrod_params ramrod_param
;
5878 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
5880 /* Prepare ramrod parameters */
5881 ramrod_param
.cid
= 0;
5882 ramrod_param
.cl_id
= cl_id
;
5883 ramrod_param
.rx_mode_obj
= &bp
->rx_mode_obj
;
5884 ramrod_param
.func_id
= BP_FUNC(bp
);
5886 ramrod_param
.pstate
= &bp
->sp_state
;
5887 ramrod_param
.state
= BNX2X_FILTER_RX_MODE_PENDING
;
5889 ramrod_param
.rdata
= bnx2x_sp(bp
, rx_mode_rdata
);
5890 ramrod_param
.rdata_mapping
= bnx2x_sp_mapping(bp
, rx_mode_rdata
);
5892 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
5894 ramrod_param
.ramrod_flags
= ramrod_flags
;
5895 ramrod_param
.rx_mode_flags
= rx_mode_flags
;
5897 ramrod_param
.rx_accept_flags
= rx_accept_flags
;
5898 ramrod_param
.tx_accept_flags
= tx_accept_flags
;
5900 rc
= bnx2x_config_rx_mode(bp
, &ramrod_param
);
5902 BNX2X_ERR("Set rx_mode %d failed\n", bp
->rx_mode
);
5909 static int bnx2x_fill_accept_flags(struct bnx2x
*bp
, u32 rx_mode
,
5910 unsigned long *rx_accept_flags
,
5911 unsigned long *tx_accept_flags
)
5913 /* Clear the flags first */
5914 *rx_accept_flags
= 0;
5915 *tx_accept_flags
= 0;
5918 case BNX2X_RX_MODE_NONE
:
5920 * 'drop all' supersedes any accept flags that may have been
5921 * passed to the function.
5924 case BNX2X_RX_MODE_NORMAL
:
5925 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
5926 __set_bit(BNX2X_ACCEPT_MULTICAST
, rx_accept_flags
);
5927 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
5929 /* internal switching mode */
5930 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
5931 __set_bit(BNX2X_ACCEPT_MULTICAST
, tx_accept_flags
);
5932 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
5935 case BNX2X_RX_MODE_ALLMULTI
:
5936 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
5937 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, rx_accept_flags
);
5938 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
5940 /* internal switching mode */
5941 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
5942 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, tx_accept_flags
);
5943 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
5946 case BNX2X_RX_MODE_PROMISC
:
5947 /* According to definition of SI mode, iface in promisc mode
5948 * should receive matched and unmatched (in resolution of port)
5951 __set_bit(BNX2X_ACCEPT_UNMATCHED
, rx_accept_flags
);
5952 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
5953 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, rx_accept_flags
);
5954 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
5956 /* internal switching mode */
5957 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, tx_accept_flags
);
5958 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
5961 __set_bit(BNX2X_ACCEPT_ALL_UNICAST
, tx_accept_flags
);
5963 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
5967 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode
);
5971 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5972 if (bp
->rx_mode
!= BNX2X_RX_MODE_NONE
) {
5973 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, rx_accept_flags
);
5974 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, tx_accept_flags
);
5980 /* called with netif_addr_lock_bh() */
5981 static int bnx2x_set_storm_rx_mode(struct bnx2x
*bp
)
5983 unsigned long rx_mode_flags
= 0, ramrod_flags
= 0;
5984 unsigned long rx_accept_flags
= 0, tx_accept_flags
= 0;
5988 /* Configure rx_mode of FCoE Queue */
5989 __set_bit(BNX2X_RX_MODE_FCOE_ETH
, &rx_mode_flags
);
5991 rc
= bnx2x_fill_accept_flags(bp
, bp
->rx_mode
, &rx_accept_flags
,
5996 __set_bit(RAMROD_RX
, &ramrod_flags
);
5997 __set_bit(RAMROD_TX
, &ramrod_flags
);
5999 return bnx2x_set_q_rx_mode(bp
, bp
->fp
->cl_id
, rx_mode_flags
,
6000 rx_accept_flags
, tx_accept_flags
,
6004 static void bnx2x_init_internal_common(struct bnx2x
*bp
)
6010 * In switch independent mode, the TSTORM needs to accept
6011 * packets that failed classification, since approximate match
6012 * mac addresses aren't written to NIG LLH
6014 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
6015 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 2);
6016 else if (!CHIP_IS_E1(bp
)) /* 57710 doesn't support MF */
6017 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
6018 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 0);
6020 /* Zero this manually as its initialization is
6021 currently missing in the initTool */
6022 for (i
= 0; i
< (USTORM_AGG_DATA_SIZE
>> 2); i
++)
6023 REG_WR(bp
, BAR_USTRORM_INTMEM
+
6024 USTORM_AGG_DATA_OFFSET
+ i
* 4, 0);
6025 if (!CHIP_IS_E1x(bp
)) {
6026 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_IGU_MODE_OFFSET
,
6027 CHIP_INT_MODE_IS_BC(bp
) ?
6028 HC_IGU_BC_MODE
: HC_IGU_NBC_MODE
);
6032 static void bnx2x_init_internal(struct bnx2x
*bp
, u32 load_code
)
6034 switch (load_code
) {
6035 case FW_MSG_CODE_DRV_LOAD_COMMON
:
6036 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
6037 bnx2x_init_internal_common(bp
);
6040 case FW_MSG_CODE_DRV_LOAD_PORT
:
6044 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
6045 /* internal memory per function is
6046 initialized inside bnx2x_pf_init */
6050 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
6055 static inline u8
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath
*fp
)
6057 return fp
->bp
->igu_base_sb
+ fp
->index
+ CNIC_SUPPORT(fp
->bp
);
6060 static inline u8
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath
*fp
)
6062 return fp
->bp
->base_fw_ndsb
+ fp
->index
+ CNIC_SUPPORT(fp
->bp
);
6065 static u8
bnx2x_fp_cl_id(struct bnx2x_fastpath
*fp
)
6067 if (CHIP_IS_E1x(fp
->bp
))
6068 return BP_L_ID(fp
->bp
) + fp
->index
;
6069 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6070 return bnx2x_fp_igu_sb_id(fp
);
6073 static void bnx2x_init_eth_fp(struct bnx2x
*bp
, int fp_idx
)
6075 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_idx
];
6077 unsigned long q_type
= 0;
6078 u32 cids
[BNX2X_MULTI_TX_COS
] = { 0 };
6079 fp
->rx_queue
= fp_idx
;
6081 fp
->cl_id
= bnx2x_fp_cl_id(fp
);
6082 fp
->fw_sb_id
= bnx2x_fp_fw_sb_id(fp
);
6083 fp
->igu_sb_id
= bnx2x_fp_igu_sb_id(fp
);
6084 /* qZone id equals to FW (per path) client id */
6085 fp
->cl_qzone_id
= bnx2x_fp_qzone_id(fp
);
6088 fp
->ustorm_rx_prods_offset
= bnx2x_rx_ustorm_prods_offset(fp
);
6090 /* Setup SB indices */
6091 fp
->rx_cons_sb
= BNX2X_RX_SB_INDEX
;
6093 /* Configure Queue State object */
6094 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
6095 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
6097 BUG_ON(fp
->max_cos
> BNX2X_MULTI_TX_COS
);
6100 for_each_cos_in_tx_queue(fp
, cos
) {
6101 bnx2x_init_txdata(bp
, fp
->txdata_ptr
[cos
],
6102 CID_COS_TO_TX_ONLY_CID(fp
->cid
, cos
, bp
),
6103 FP_COS_TO_TXQ(fp
, cos
, bp
),
6104 BNX2X_TX_SB_INDEX_BASE
+ cos
, fp
);
6105 cids
[cos
] = fp
->txdata_ptr
[cos
]->cid
;
6108 /* nothing more for vf to do here */
6112 bnx2x_init_sb(bp
, fp
->status_blk_mapping
, BNX2X_VF_ID_INVALID
, false,
6113 fp
->fw_sb_id
, fp
->igu_sb_id
);
6114 bnx2x_update_fpsb_idx(fp
);
6115 bnx2x_init_queue_obj(bp
, &bnx2x_sp_obj(bp
, fp
).q_obj
, fp
->cl_id
, cids
,
6116 fp
->max_cos
, BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
6117 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
6120 * Configure classification DBs: Always enable Tx switching
6122 bnx2x_init_vlan_mac_fp_objs(fp
, BNX2X_OBJ_TYPE_RX_TX
);
6125 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6126 fp_idx
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
6130 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata
*txdata
)
6134 for (i
= 1; i
<= NUM_TX_RINGS
; i
++) {
6135 struct eth_tx_next_bd
*tx_next_bd
=
6136 &txdata
->tx_desc_ring
[TX_DESC_CNT
* i
- 1].next_bd
;
6138 tx_next_bd
->addr_hi
=
6139 cpu_to_le32(U64_HI(txdata
->tx_desc_mapping
+
6140 BCM_PAGE_SIZE
*(i
% NUM_TX_RINGS
)));
6141 tx_next_bd
->addr_lo
=
6142 cpu_to_le32(U64_LO(txdata
->tx_desc_mapping
+
6143 BCM_PAGE_SIZE
*(i
% NUM_TX_RINGS
)));
6146 *txdata
->tx_cons_sb
= cpu_to_le16(0);
6148 SET_FLAG(txdata
->tx_db
.data
.header
.header
, DOORBELL_HDR_DB_TYPE
, 1);
6149 txdata
->tx_db
.data
.zero_fill1
= 0;
6150 txdata
->tx_db
.data
.prod
= 0;
6152 txdata
->tx_pkt_prod
= 0;
6153 txdata
->tx_pkt_cons
= 0;
6154 txdata
->tx_bd_prod
= 0;
6155 txdata
->tx_bd_cons
= 0;
6159 static void bnx2x_init_tx_rings_cnic(struct bnx2x
*bp
)
6163 for_each_tx_queue_cnic(bp
, i
)
6164 bnx2x_init_tx_ring_one(bp
->fp
[i
].txdata_ptr
[0]);
6167 static void bnx2x_init_tx_rings(struct bnx2x
*bp
)
6172 for_each_eth_queue(bp
, i
)
6173 for_each_cos_in_tx_queue(&bp
->fp
[i
], cos
)
6174 bnx2x_init_tx_ring_one(bp
->fp
[i
].txdata_ptr
[cos
]);
6177 static void bnx2x_init_fcoe_fp(struct bnx2x
*bp
)
6179 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
6180 unsigned long q_type
= 0;
6182 bnx2x_fcoe(bp
, rx_queue
) = BNX2X_NUM_ETH_QUEUES(bp
);
6183 bnx2x_fcoe(bp
, cl_id
) = bnx2x_cnic_eth_cl_id(bp
,
6184 BNX2X_FCOE_ETH_CL_ID_IDX
);
6185 bnx2x_fcoe(bp
, cid
) = BNX2X_FCOE_ETH_CID(bp
);
6186 bnx2x_fcoe(bp
, fw_sb_id
) = DEF_SB_ID
;
6187 bnx2x_fcoe(bp
, igu_sb_id
) = bp
->igu_dsb_id
;
6188 bnx2x_fcoe(bp
, rx_cons_sb
) = BNX2X_FCOE_L2_RX_INDEX
;
6189 bnx2x_init_txdata(bp
, bnx2x_fcoe(bp
, txdata_ptr
[0]),
6190 fp
->cid
, FCOE_TXQ_IDX(bp
), BNX2X_FCOE_L2_TX_INDEX
,
6193 DP(NETIF_MSG_IFUP
, "created fcoe tx data (fp index %d)\n", fp
->index
);
6195 /* qZone id equals to FW (per path) client id */
6196 bnx2x_fcoe(bp
, cl_qzone_id
) = bnx2x_fp_qzone_id(fp
);
6198 bnx2x_fcoe(bp
, ustorm_rx_prods_offset
) =
6199 bnx2x_rx_ustorm_prods_offset(fp
);
6201 /* Configure Queue State object */
6202 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
6203 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
6205 /* No multi-CoS for FCoE L2 client */
6206 BUG_ON(fp
->max_cos
!= 1);
6208 bnx2x_init_queue_obj(bp
, &bnx2x_sp_obj(bp
, fp
).q_obj
, fp
->cl_id
,
6209 &fp
->cid
, 1, BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
6210 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
6213 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6214 fp
->index
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
6218 void bnx2x_nic_init_cnic(struct bnx2x
*bp
)
6221 bnx2x_init_fcoe_fp(bp
);
6223 bnx2x_init_sb(bp
, bp
->cnic_sb_mapping
,
6224 BNX2X_VF_ID_INVALID
, false,
6225 bnx2x_cnic_fw_sb_id(bp
), bnx2x_cnic_igu_sb_id(bp
));
6227 /* ensure status block indices were read */
6229 bnx2x_init_rx_rings_cnic(bp
);
6230 bnx2x_init_tx_rings_cnic(bp
);
6237 void bnx2x_pre_irq_nic_init(struct bnx2x
*bp
)
6241 /* Setup NIC internals and enable interrupts */
6242 for_each_eth_queue(bp
, i
)
6243 bnx2x_init_eth_fp(bp
, i
);
6245 /* ensure status block indices were read */
6247 bnx2x_init_rx_rings(bp
);
6248 bnx2x_init_tx_rings(bp
);
6251 /* Initialize MOD_ABS interrupts */
6252 bnx2x_init_mod_abs_int(bp
, &bp
->link_vars
, bp
->common
.chip_id
,
6253 bp
->common
.shmem_base
,
6254 bp
->common
.shmem2_base
, BP_PORT(bp
));
6256 /* initialize the default status block and sp ring */
6257 bnx2x_init_def_sb(bp
);
6258 bnx2x_update_dsb_idx(bp
);
6259 bnx2x_init_sp_ring(bp
);
6261 bnx2x_memset_stats(bp
);
6265 void bnx2x_post_irq_nic_init(struct bnx2x
*bp
, u32 load_code
)
6267 bnx2x_init_eq_ring(bp
);
6268 bnx2x_init_internal(bp
, load_code
);
6270 bnx2x_stats_init(bp
);
6272 /* flush all before enabling interrupts */
6276 bnx2x_int_enable(bp
);
6278 /* Check for SPIO5 */
6279 bnx2x_attn_int_deasserted0(bp
,
6280 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ BP_PORT(bp
)*4) &
6281 AEU_INPUTS_ATTN_BITS_SPIO5
);
6284 /* gzip service functions */
6285 static int bnx2x_gunzip_init(struct bnx2x
*bp
)
6287 bp
->gunzip_buf
= dma_alloc_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
,
6288 &bp
->gunzip_mapping
, GFP_KERNEL
);
6289 if (bp
->gunzip_buf
== NULL
)
6292 bp
->strm
= kmalloc(sizeof(*bp
->strm
), GFP_KERNEL
);
6293 if (bp
->strm
== NULL
)
6296 bp
->strm
->workspace
= vmalloc(zlib_inflate_workspacesize());
6297 if (bp
->strm
->workspace
== NULL
)
6307 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
6308 bp
->gunzip_mapping
);
6309 bp
->gunzip_buf
= NULL
;
6312 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6316 static void bnx2x_gunzip_end(struct bnx2x
*bp
)
6319 vfree(bp
->strm
->workspace
);
6324 if (bp
->gunzip_buf
) {
6325 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
6326 bp
->gunzip_mapping
);
6327 bp
->gunzip_buf
= NULL
;
6331 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
)
6335 /* check gzip header */
6336 if ((zbuf
[0] != 0x1f) || (zbuf
[1] != 0x8b) || (zbuf
[2] != Z_DEFLATED
)) {
6337 BNX2X_ERR("Bad gzip header\n");
6345 if (zbuf
[3] & FNAME
)
6346 while ((zbuf
[n
++] != 0) && (n
< len
));
6348 bp
->strm
->next_in
= (typeof(bp
->strm
->next_in
))zbuf
+ n
;
6349 bp
->strm
->avail_in
= len
- n
;
6350 bp
->strm
->next_out
= bp
->gunzip_buf
;
6351 bp
->strm
->avail_out
= FW_BUF_SIZE
;
6353 rc
= zlib_inflateInit2(bp
->strm
, -MAX_WBITS
);
6357 rc
= zlib_inflate(bp
->strm
, Z_FINISH
);
6358 if ((rc
!= Z_OK
) && (rc
!= Z_STREAM_END
))
6359 netdev_err(bp
->dev
, "Firmware decompression error: %s\n",
6362 bp
->gunzip_outlen
= (FW_BUF_SIZE
- bp
->strm
->avail_out
);
6363 if (bp
->gunzip_outlen
& 0x3)
6365 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6367 bp
->gunzip_outlen
>>= 2;
6369 zlib_inflateEnd(bp
->strm
);
6371 if (rc
== Z_STREAM_END
)
6377 /* nic load/unload */
6380 * General service functions
6383 /* send a NIG loopback debug packet */
6384 static void bnx2x_lb_pckt(struct bnx2x
*bp
)
6388 /* Ethernet source and destination addresses */
6389 wb_write
[0] = 0x55555555;
6390 wb_write
[1] = 0x55555555;
6391 wb_write
[2] = 0x20; /* SOP */
6392 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
6394 /* NON-IP protocol */
6395 wb_write
[0] = 0x09000000;
6396 wb_write
[1] = 0x55555555;
6397 wb_write
[2] = 0x10; /* EOP, eop_bvalid = 0 */
6398 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
6401 /* some of the internal memories
6402 * are not directly readable from the driver
6403 * to test them we send debug packets
6405 static int bnx2x_int_mem_test(struct bnx2x
*bp
)
6411 if (CHIP_REV_IS_FPGA(bp
))
6413 else if (CHIP_REV_IS_EMUL(bp
))
6418 /* Disable inputs of parser neighbor blocks */
6419 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
6420 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
6421 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
6422 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
6424 /* Write 0 to parser credits for CFC search request */
6425 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
6427 /* send Ethernet packet */
6430 /* TODO do i reset NIG statistic? */
6431 /* Wait until NIG register shows 1 packet of size 0x10 */
6432 count
= 1000 * factor
;
6435 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6436 val
= *bnx2x_sp(bp
, wb_data
[0]);
6440 usleep_range(10000, 20000);
6444 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
6448 /* Wait until PRS register shows 1 packet */
6449 count
= 1000 * factor
;
6451 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6455 usleep_range(10000, 20000);
6459 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6463 /* Reset and init BRB, PRS */
6464 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
6466 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
6468 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6469 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6471 DP(NETIF_MSG_HW
, "part2\n");
6473 /* Disable inputs of parser neighbor blocks */
6474 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
6475 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
6476 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
6477 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
6479 /* Write 0 to parser credits for CFC search request */
6480 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
6482 /* send 10 Ethernet packets */
6483 for (i
= 0; i
< 10; i
++)
6486 /* Wait until NIG register shows 10 + 1
6487 packets of size 11*0x10 = 0xb0 */
6488 count
= 1000 * factor
;
6491 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6492 val
= *bnx2x_sp(bp
, wb_data
[0]);
6496 usleep_range(10000, 20000);
6500 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
6504 /* Wait until PRS register shows 2 packets */
6505 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6507 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6509 /* Write 1 to parser credits for CFC search request */
6510 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x1);
6512 /* Wait until PRS register shows 3 packets */
6513 msleep(10 * factor
);
6514 /* Wait until NIG register shows 1 packet of size 0x10 */
6515 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6517 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6519 /* clear NIG EOP FIFO */
6520 for (i
= 0; i
< 11; i
++)
6521 REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_FIFO
);
6522 val
= REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_EMPTY
);
6524 BNX2X_ERR("clear of NIG failed\n");
6528 /* Reset and init BRB, PRS, NIG */
6529 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
6531 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
6533 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6534 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6535 if (!CNIC_SUPPORT(bp
))
6537 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
6539 /* Enable inputs of parser neighbor blocks */
6540 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x7fffffff);
6541 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x1);
6542 REG_WR(bp
, CFC_REG_DEBUG0
, 0x0);
6543 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x1);
6545 DP(NETIF_MSG_HW
, "done\n");
6550 static void bnx2x_enable_blocks_attention(struct bnx2x
*bp
)
6554 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
6555 if (!CHIP_IS_E1x(bp
))
6556 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0x40);
6558 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0);
6559 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
6560 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
6562 * mask read length error interrupts in brb for parser
6563 * (parsing unit and 'checksum and crc' unit)
6564 * these errors are legal (PU reads fixed length and CAC can cause
6565 * read length error on truncated packets)
6567 REG_WR(bp
, BRB1_REG_BRB1_INT_MASK
, 0xFC00);
6568 REG_WR(bp
, QM_REG_QM_INT_MASK
, 0);
6569 REG_WR(bp
, TM_REG_TM_INT_MASK
, 0);
6570 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_0
, 0);
6571 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_1
, 0);
6572 REG_WR(bp
, XCM_REG_XCM_INT_MASK
, 0);
6573 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6574 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6575 REG_WR(bp
, USDM_REG_USDM_INT_MASK_0
, 0);
6576 REG_WR(bp
, USDM_REG_USDM_INT_MASK_1
, 0);
6577 REG_WR(bp
, UCM_REG_UCM_INT_MASK
, 0);
6578 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6579 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6580 REG_WR(bp
, GRCBASE_UPB
+ PB_REG_PB_INT_MASK
, 0);
6581 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_0
, 0);
6582 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_1
, 0);
6583 REG_WR(bp
, CCM_REG_CCM_INT_MASK
, 0);
6584 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6585 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6587 val
= PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
|
6588 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
|
6589 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
;
6590 if (!CHIP_IS_E1x(bp
))
6591 val
|= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
|
6592 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED
;
6593 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, val
);
6595 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_0
, 0);
6596 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_1
, 0);
6597 REG_WR(bp
, TCM_REG_TCM_INT_MASK
, 0);
6598 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6600 if (!CHIP_IS_E1x(bp
))
6601 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6602 REG_WR(bp
, TSEM_REG_TSEM_INT_MASK_1
, 0x07ff);
6604 REG_WR(bp
, CDU_REG_CDU_INT_MASK
, 0);
6605 REG_WR(bp
, DMAE_REG_DMAE_INT_MASK
, 0);
6606 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6607 REG_WR(bp
, PBF_REG_PBF_INT_MASK
, 0x18); /* bit 3,4 masked */
6610 static void bnx2x_reset_common(struct bnx2x
*bp
)
6615 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
6618 if (CHIP_IS_E3(bp
)) {
6619 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
6620 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
6623 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
, val
);
6626 static void bnx2x_setup_dmae(struct bnx2x
*bp
)
6629 spin_lock_init(&bp
->dmae_lock
);
6632 static void bnx2x_init_pxp(struct bnx2x
*bp
)
6635 int r_order
, w_order
;
6637 pcie_capability_read_word(bp
->pdev
, PCI_EXP_DEVCTL
, &devctl
);
6638 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
6639 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
6641 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
6643 DP(NETIF_MSG_HW
, "force read order to %d\n", bp
->mrrs
);
6647 bnx2x_init_pxp_arb(bp
, r_order
, w_order
);
6650 static void bnx2x_setup_fan_failure_detection(struct bnx2x
*bp
)
6660 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config2
) &
6661 SHARED_HW_CFG_FAN_FAILURE_MASK
;
6663 if (val
== SHARED_HW_CFG_FAN_FAILURE_ENABLED
)
6667 * The fan failure mechanism is usually related to the PHY type since
6668 * the power consumption of the board is affected by the PHY. Currently,
6669 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6671 else if (val
== SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE
)
6672 for (port
= PORT_0
; port
< PORT_MAX
; port
++) {
6674 bnx2x_fan_failure_det_req(
6676 bp
->common
.shmem_base
,
6677 bp
->common
.shmem2_base
,
6681 DP(NETIF_MSG_HW
, "fan detection setting: %d\n", is_required
);
6683 if (is_required
== 0)
6686 /* Fan failure is indicated by SPIO 5 */
6687 bnx2x_set_spio(bp
, MISC_SPIO_SPIO5
, MISC_SPIO_INPUT_HI_Z
);
6689 /* set to active low mode */
6690 val
= REG_RD(bp
, MISC_REG_SPIO_INT
);
6691 val
|= (MISC_SPIO_SPIO5
<< MISC_SPIO_INT_OLD_SET_POS
);
6692 REG_WR(bp
, MISC_REG_SPIO_INT
, val
);
6694 /* enable interrupt to signal the IGU */
6695 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
6696 val
|= MISC_SPIO_SPIO5
;
6697 REG_WR(bp
, MISC_REG_SPIO_EVENT_EN
, val
);
6700 void bnx2x_pf_disable(struct bnx2x
*bp
)
6702 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
6703 val
&= ~IGU_PF_CONF_FUNC_EN
;
6705 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
6706 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
6707 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 0);
6710 static void bnx2x__common_init_phy(struct bnx2x
*bp
)
6712 u32 shmem_base
[2], shmem2_base
[2];
6713 /* Avoid common init in case MFW supports LFA */
6714 if (SHMEM2_RD(bp
, size
) >
6715 (u32
)offsetof(struct shmem2_region
, lfa_host_addr
[BP_PORT(bp
)]))
6717 shmem_base
[0] = bp
->common
.shmem_base
;
6718 shmem2_base
[0] = bp
->common
.shmem2_base
;
6719 if (!CHIP_IS_E1x(bp
)) {
6721 SHMEM2_RD(bp
, other_shmem_base_addr
);
6723 SHMEM2_RD(bp
, other_shmem2_base_addr
);
6725 bnx2x_acquire_phy_lock(bp
);
6726 bnx2x_common_init_phy(bp
, shmem_base
, shmem2_base
,
6727 bp
->common
.chip_id
);
6728 bnx2x_release_phy_lock(bp
);
6732 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6734 * @bp: driver handle
6736 static int bnx2x_init_hw_common(struct bnx2x
*bp
)
6740 DP(NETIF_MSG_HW
, "starting common init func %d\n", BP_ABS_FUNC(bp
));
6743 * take the RESET lock to protect undi_unload flow from accessing
6744 * registers while we're resetting the chip
6746 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
6748 bnx2x_reset_common(bp
);
6749 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0xffffffff);
6752 if (CHIP_IS_E3(bp
)) {
6753 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
6754 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
6756 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
, val
);
6758 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
6760 bnx2x_init_block(bp
, BLOCK_MISC
, PHASE_COMMON
);
6762 if (!CHIP_IS_E1x(bp
)) {
6766 * 4-port mode or 2-port mode we need to turn of master-enable
6767 * for everyone, after that, turn it back on for self.
6768 * so, we disregard multi-function or not, and always disable
6769 * for all functions on the given path, this means 0,2,4,6 for
6770 * path 0 and 1,3,5,7 for path 1
6772 for (abs_func_id
= BP_PATH(bp
);
6773 abs_func_id
< E2_FUNC_MAX
*2; abs_func_id
+= 2) {
6774 if (abs_func_id
== BP_ABS_FUNC(bp
)) {
6776 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
,
6781 bnx2x_pretend_func(bp
, abs_func_id
);
6782 /* clear pf enable */
6783 bnx2x_pf_disable(bp
);
6784 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
6788 bnx2x_init_block(bp
, BLOCK_PXP
, PHASE_COMMON
);
6789 if (CHIP_IS_E1(bp
)) {
6790 /* enable HW interrupt from PXP on USDM overflow
6791 bit 16 on INT_MASK_0 */
6792 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
6795 bnx2x_init_block(bp
, BLOCK_PXP2
, PHASE_COMMON
);
6799 REG_WR(bp
, PXP2_REG_RQ_QM_ENDIAN_M
, 1);
6800 REG_WR(bp
, PXP2_REG_RQ_TM_ENDIAN_M
, 1);
6801 REG_WR(bp
, PXP2_REG_RQ_SRC_ENDIAN_M
, 1);
6802 REG_WR(bp
, PXP2_REG_RQ_CDU_ENDIAN_M
, 1);
6803 REG_WR(bp
, PXP2_REG_RQ_DBG_ENDIAN_M
, 1);
6804 /* make sure this value is 0 */
6805 REG_WR(bp
, PXP2_REG_RQ_HC_ENDIAN_M
, 0);
6807 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6808 REG_WR(bp
, PXP2_REG_RD_QM_SWAP_MODE
, 1);
6809 REG_WR(bp
, PXP2_REG_RD_TM_SWAP_MODE
, 1);
6810 REG_WR(bp
, PXP2_REG_RD_SRC_SWAP_MODE
, 1);
6811 REG_WR(bp
, PXP2_REG_RD_CDURD_SWAP_MODE
, 1);
6814 bnx2x_ilt_init_page_size(bp
, INITOP_SET
);
6816 if (CHIP_REV_IS_FPGA(bp
) && CHIP_IS_E1H(bp
))
6817 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x1);
6819 /* let the HW do it's magic ... */
6821 /* finish PXP init */
6822 val
= REG_RD(bp
, PXP2_REG_RQ_CFG_DONE
);
6824 BNX2X_ERR("PXP2 CFG failed\n");
6827 val
= REG_RD(bp
, PXP2_REG_RD_INIT_DONE
);
6829 BNX2X_ERR("PXP2 RD_INIT failed\n");
6833 /* Timers bug workaround E2 only. We need to set the entire ILT to
6834 * have entries with value "0" and valid bit on.
6835 * This needs to be done by the first PF that is loaded in a path
6836 * (i.e. common phase)
6838 if (!CHIP_IS_E1x(bp
)) {
6839 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6840 * (i.e. vnic3) to start even if it is marked as "scan-off".
6841 * This occurs when a different function (func2,3) is being marked
6842 * as "scan-off". Real-life scenario for example: if a driver is being
6843 * load-unloaded while func6,7 are down. This will cause the timer to access
6844 * the ilt, translate to a logical address and send a request to read/write.
6845 * Since the ilt for the function that is down is not valid, this will cause
6846 * a translation error which is unrecoverable.
6847 * The Workaround is intended to make sure that when this happens nothing fatal
6848 * will occur. The workaround:
6849 * 1. First PF driver which loads on a path will:
6850 * a. After taking the chip out of reset, by using pretend,
6851 * it will write "0" to the following registers of
6853 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6854 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6855 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6856 * And for itself it will write '1' to
6857 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6858 * dmae-operations (writing to pram for example.)
6859 * note: can be done for only function 6,7 but cleaner this
6861 * b. Write zero+valid to the entire ILT.
6862 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6863 * VNIC3 (of that port). The range allocated will be the
6864 * entire ILT. This is needed to prevent ILT range error.
6865 * 2. Any PF driver load flow:
6866 * a. ILT update with the physical addresses of the allocated
6868 * b. Wait 20msec. - note that this timeout is needed to make
6869 * sure there are no requests in one of the PXP internal
6870 * queues with "old" ILT addresses.
6871 * c. PF enable in the PGLC.
6872 * d. Clear the was_error of the PF in the PGLC. (could have
6873 * occurred while driver was down)
6874 * e. PF enable in the CFC (WEAK + STRONG)
6875 * f. Timers scan enable
6876 * 3. PF driver unload flow:
6877 * a. Clear the Timers scan_en.
6878 * b. Polling for scan_on=0 for that PF.
6879 * c. Clear the PF enable bit in the PXP.
6880 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6881 * e. Write zero+valid to all ILT entries (The valid bit must
6883 * f. If this is VNIC 3 of a port then also init
6884 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6885 * to the last entry in the ILT.
6888 * Currently the PF error in the PGLC is non recoverable.
6889 * In the future the there will be a recovery routine for this error.
6890 * Currently attention is masked.
6891 * Having an MCP lock on the load/unload process does not guarantee that
6892 * there is no Timer disable during Func6/7 enable. This is because the
6893 * Timers scan is currently being cleared by the MCP on FLR.
6894 * Step 2.d can be done only for PF6/7 and the driver can also check if
6895 * there is error before clearing it. But the flow above is simpler and
6897 * All ILT entries are written by zero+valid and not just PF6/7
6898 * ILT entries since in the future the ILT entries allocation for
6899 * PF-s might be dynamic.
6901 struct ilt_client_info ilt_cli
;
6902 struct bnx2x_ilt ilt
;
6903 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
6904 memset(&ilt
, 0, sizeof(struct bnx2x_ilt
));
6906 /* initialize dummy TM client */
6908 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
6909 ilt_cli
.client_num
= ILT_CLIENT_TM
;
6911 /* Step 1: set zeroes to all ilt page entries with valid bit on
6912 * Step 2: set the timers first/last ilt entry to point
6913 * to the entire range to prevent ILT range error for 3rd/4th
6914 * vnic (this code assumes existence of the vnic)
6916 * both steps performed by call to bnx2x_ilt_client_init_op()
6917 * with dummy TM client
6919 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6920 * and his brother are split registers
6922 bnx2x_pretend_func(bp
, (BP_PATH(bp
) + 6));
6923 bnx2x_ilt_client_init_op_ilt(bp
, &ilt
, &ilt_cli
, INITOP_CLEAR
);
6924 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
6926 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN
, BNX2X_PXP_DRAM_ALIGN
);
6927 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_RD
, BNX2X_PXP_DRAM_ALIGN
);
6928 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_SEL
, 1);
6931 REG_WR(bp
, PXP2_REG_RQ_DISABLE_INPUTS
, 0);
6932 REG_WR(bp
, PXP2_REG_RD_DISABLE_INPUTS
, 0);
6934 if (!CHIP_IS_E1x(bp
)) {
6935 int factor
= CHIP_REV_IS_EMUL(bp
) ? 1000 :
6936 (CHIP_REV_IS_FPGA(bp
) ? 400 : 0);
6937 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, PHASE_COMMON
);
6939 bnx2x_init_block(bp
, BLOCK_ATC
, PHASE_COMMON
);
6941 /* let the HW do it's magic ... */
6944 val
= REG_RD(bp
, ATC_REG_ATC_INIT_DONE
);
6945 } while (factor
-- && (val
!= 1));
6948 BNX2X_ERR("ATC_INIT failed\n");
6953 bnx2x_init_block(bp
, BLOCK_DMAE
, PHASE_COMMON
);
6955 bnx2x_iov_init_dmae(bp
);
6957 /* clean the DMAE memory */
6959 bnx2x_init_fill(bp
, TSEM_REG_PRAM
, 0, 8, 1);
6961 bnx2x_init_block(bp
, BLOCK_TCM
, PHASE_COMMON
);
6963 bnx2x_init_block(bp
, BLOCK_UCM
, PHASE_COMMON
);
6965 bnx2x_init_block(bp
, BLOCK_CCM
, PHASE_COMMON
);
6967 bnx2x_init_block(bp
, BLOCK_XCM
, PHASE_COMMON
);
6969 bnx2x_read_dmae(bp
, XSEM_REG_PASSIVE_BUFFER
, 3);
6970 bnx2x_read_dmae(bp
, CSEM_REG_PASSIVE_BUFFER
, 3);
6971 bnx2x_read_dmae(bp
, TSEM_REG_PASSIVE_BUFFER
, 3);
6972 bnx2x_read_dmae(bp
, USEM_REG_PASSIVE_BUFFER
, 3);
6974 bnx2x_init_block(bp
, BLOCK_QM
, PHASE_COMMON
);
6976 /* QM queues pointers table */
6977 bnx2x_qm_init_ptr_table(bp
, bp
->qm_cid_count
, INITOP_SET
);
6979 /* soft reset pulse */
6980 REG_WR(bp
, QM_REG_SOFT_RESET
, 1);
6981 REG_WR(bp
, QM_REG_SOFT_RESET
, 0);
6983 if (CNIC_SUPPORT(bp
))
6984 bnx2x_init_block(bp
, BLOCK_TM
, PHASE_COMMON
);
6986 bnx2x_init_block(bp
, BLOCK_DORQ
, PHASE_COMMON
);
6988 if (!CHIP_REV_IS_SLOW(bp
))
6989 /* enable hw interrupt from doorbell Q */
6990 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
6992 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6994 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6995 REG_WR(bp
, PRS_REG_A_PRSU_20
, 0xf);
6997 if (!CHIP_IS_E1(bp
))
6998 REG_WR(bp
, PRS_REG_E1HOV_MODE
, bp
->path_has_ovlan
);
7000 if (!CHIP_IS_E1x(bp
) && !CHIP_IS_E3B0(bp
)) {
7001 if (IS_MF_AFEX(bp
)) {
7002 /* configure that VNTag and VLAN headers must be
7003 * received in afex mode
7005 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
, 0xE);
7006 REG_WR(bp
, PRS_REG_MUST_HAVE_HDRS
, 0xA);
7007 REG_WR(bp
, PRS_REG_HDRS_AFTER_TAG_0
, 0x6);
7008 REG_WR(bp
, PRS_REG_TAG_ETHERTYPE_0
, 0x8926);
7009 REG_WR(bp
, PRS_REG_TAG_LEN_0
, 0x4);
7011 /* Bit-map indicating which L2 hdrs may appear
7012 * after the basic Ethernet header
7014 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
,
7015 bp
->path_has_ovlan
? 7 : 6);
7019 bnx2x_init_block(bp
, BLOCK_TSDM
, PHASE_COMMON
);
7020 bnx2x_init_block(bp
, BLOCK_CSDM
, PHASE_COMMON
);
7021 bnx2x_init_block(bp
, BLOCK_USDM
, PHASE_COMMON
);
7022 bnx2x_init_block(bp
, BLOCK_XSDM
, PHASE_COMMON
);
7024 if (!CHIP_IS_E1x(bp
)) {
7025 /* reset VFC memories */
7026 REG_WR(bp
, TSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
7027 VFC_MEMORIES_RST_REG_CAM_RST
|
7028 VFC_MEMORIES_RST_REG_RAM_RST
);
7029 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
7030 VFC_MEMORIES_RST_REG_CAM_RST
|
7031 VFC_MEMORIES_RST_REG_RAM_RST
);
7036 bnx2x_init_block(bp
, BLOCK_TSEM
, PHASE_COMMON
);
7037 bnx2x_init_block(bp
, BLOCK_USEM
, PHASE_COMMON
);
7038 bnx2x_init_block(bp
, BLOCK_CSEM
, PHASE_COMMON
);
7039 bnx2x_init_block(bp
, BLOCK_XSEM
, PHASE_COMMON
);
7042 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
7044 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
7047 bnx2x_init_block(bp
, BLOCK_UPB
, PHASE_COMMON
);
7048 bnx2x_init_block(bp
, BLOCK_XPB
, PHASE_COMMON
);
7049 bnx2x_init_block(bp
, BLOCK_PBF
, PHASE_COMMON
);
7051 if (!CHIP_IS_E1x(bp
)) {
7052 if (IS_MF_AFEX(bp
)) {
7053 /* configure that VNTag and VLAN headers must be
7056 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
, 0xE);
7057 REG_WR(bp
, PBF_REG_MUST_HAVE_HDRS
, 0xA);
7058 REG_WR(bp
, PBF_REG_HDRS_AFTER_TAG_0
, 0x6);
7059 REG_WR(bp
, PBF_REG_TAG_ETHERTYPE_0
, 0x8926);
7060 REG_WR(bp
, PBF_REG_TAG_LEN_0
, 0x4);
7062 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
,
7063 bp
->path_has_ovlan
? 7 : 6);
7067 REG_WR(bp
, SRC_REG_SOFT_RST
, 1);
7069 bnx2x_init_block(bp
, BLOCK_SRC
, PHASE_COMMON
);
7071 if (CNIC_SUPPORT(bp
)) {
7072 REG_WR(bp
, SRC_REG_KEYSEARCH_0
, 0x63285672);
7073 REG_WR(bp
, SRC_REG_KEYSEARCH_1
, 0x24b8f2cc);
7074 REG_WR(bp
, SRC_REG_KEYSEARCH_2
, 0x223aef9b);
7075 REG_WR(bp
, SRC_REG_KEYSEARCH_3
, 0x26001e3a);
7076 REG_WR(bp
, SRC_REG_KEYSEARCH_4
, 0x7ae91116);
7077 REG_WR(bp
, SRC_REG_KEYSEARCH_5
, 0x5ce5230b);
7078 REG_WR(bp
, SRC_REG_KEYSEARCH_6
, 0x298d8adf);
7079 REG_WR(bp
, SRC_REG_KEYSEARCH_7
, 0x6eb0ff09);
7080 REG_WR(bp
, SRC_REG_KEYSEARCH_8
, 0x1830f82f);
7081 REG_WR(bp
, SRC_REG_KEYSEARCH_9
, 0x01e46be7);
7083 REG_WR(bp
, SRC_REG_SOFT_RST
, 0);
7085 if (sizeof(union cdu_context
) != 1024)
7086 /* we currently assume that a context is 1024 bytes */
7087 dev_alert(&bp
->pdev
->dev
,
7088 "please adjust the size of cdu_context(%ld)\n",
7089 (long)sizeof(union cdu_context
));
7091 bnx2x_init_block(bp
, BLOCK_CDU
, PHASE_COMMON
);
7092 val
= (4 << 24) + (0 << 12) + 1024;
7093 REG_WR(bp
, CDU_REG_CDU_GLOBAL_PARAMS
, val
);
7095 bnx2x_init_block(bp
, BLOCK_CFC
, PHASE_COMMON
);
7096 REG_WR(bp
, CFC_REG_INIT_REG
, 0x7FF);
7097 /* enable context validation interrupt from CFC */
7098 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
7100 /* set the thresholds to prevent CFC/CDU race */
7101 REG_WR(bp
, CFC_REG_DEBUG0
, 0x20020000);
7103 bnx2x_init_block(bp
, BLOCK_HC
, PHASE_COMMON
);
7105 if (!CHIP_IS_E1x(bp
) && BP_NOMCP(bp
))
7106 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x36);
7108 bnx2x_init_block(bp
, BLOCK_IGU
, PHASE_COMMON
);
7109 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, PHASE_COMMON
);
7111 /* Reset PCIE errors for debug */
7112 REG_WR(bp
, 0x2814, 0xffffffff);
7113 REG_WR(bp
, 0x3820, 0xffffffff);
7115 if (!CHIP_IS_E1x(bp
)) {
7116 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_CONTROL_5
,
7117 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1
|
7118 PXPCS_TL_CONTROL_5_ERR_UNSPPORT
));
7119 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC345_STAT
,
7120 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4
|
7121 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3
|
7122 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2
));
7123 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC678_STAT
,
7124 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7
|
7125 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6
|
7126 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5
));
7129 bnx2x_init_block(bp
, BLOCK_NIG
, PHASE_COMMON
);
7130 if (!CHIP_IS_E1(bp
)) {
7131 /* in E3 this done in per-port section */
7132 if (!CHIP_IS_E3(bp
))
7133 REG_WR(bp
, NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
7135 if (CHIP_IS_E1H(bp
))
7136 /* not applicable for E2 (and above ...) */
7137 REG_WR(bp
, NIG_REG_LLH_E1HOV_MODE
, IS_MF_SD(bp
));
7139 if (CHIP_REV_IS_SLOW(bp
))
7142 /* finish CFC init */
7143 val
= reg_poll(bp
, CFC_REG_LL_INIT_DONE
, 1, 100, 10);
7145 BNX2X_ERR("CFC LL_INIT failed\n");
7148 val
= reg_poll(bp
, CFC_REG_AC_INIT_DONE
, 1, 100, 10);
7150 BNX2X_ERR("CFC AC_INIT failed\n");
7153 val
= reg_poll(bp
, CFC_REG_CAM_INIT_DONE
, 1, 100, 10);
7155 BNX2X_ERR("CFC CAM_INIT failed\n");
7158 REG_WR(bp
, CFC_REG_DEBUG0
, 0);
7160 if (CHIP_IS_E1(bp
)) {
7161 /* read NIG statistic
7162 to see if this is our first up since powerup */
7163 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
7164 val
= *bnx2x_sp(bp
, wb_data
[0]);
7166 /* do internal memory self test */
7167 if ((val
== 0) && bnx2x_int_mem_test(bp
)) {
7168 BNX2X_ERR("internal mem self test failed\n");
7173 bnx2x_setup_fan_failure_detection(bp
);
7175 /* clear PXP2 attentions */
7176 REG_RD(bp
, PXP2_REG_PXP2_INT_STS_CLR_0
);
7178 bnx2x_enable_blocks_attention(bp
);
7179 bnx2x_enable_blocks_parity(bp
);
7181 if (!BP_NOMCP(bp
)) {
7182 if (CHIP_IS_E1x(bp
))
7183 bnx2x__common_init_phy(bp
);
7185 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7191 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7193 * @bp: driver handle
7195 static int bnx2x_init_hw_common_chip(struct bnx2x
*bp
)
7197 int rc
= bnx2x_init_hw_common(bp
);
7202 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7204 bnx2x__common_init_phy(bp
);
7209 static int bnx2x_init_hw_port(struct bnx2x
*bp
)
7211 int port
= BP_PORT(bp
);
7212 int init_phase
= port
? PHASE_PORT1
: PHASE_PORT0
;
7216 DP(NETIF_MSG_HW
, "starting port init port %d\n", port
);
7218 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
7220 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
7221 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
7222 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
7224 /* Timers bug workaround: disables the pf_master bit in pglue at
7225 * common phase, we need to enable it here before any dmae access are
7226 * attempted. Therefore we manually added the enable-master to the
7227 * port phase (it also happens in the function phase)
7229 if (!CHIP_IS_E1x(bp
))
7230 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
7232 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
7233 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
7234 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
7235 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
7237 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
7238 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
7239 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
7240 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
7242 /* QM cid (connection) count */
7243 bnx2x_qm_init_cid_count(bp
, bp
->qm_cid_count
, INITOP_SET
);
7245 if (CNIC_SUPPORT(bp
)) {
7246 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
7247 REG_WR(bp
, TM_REG_LIN0_SCAN_TIME
+ port
*4, 20);
7248 REG_WR(bp
, TM_REG_LIN0_MAX_ACTIVE_CID
+ port
*4, 31);
7251 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
7253 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
7255 if (CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) {
7258 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 160 : 246);
7259 else if (bp
->dev
->mtu
> 4096) {
7260 if (bp
->flags
& ONE_PORT_FLAG
)
7264 /* (24*1024 + val*4)/256 */
7265 low
= 96 + (val
/64) +
7266 ((val
% 64) ? 1 : 0);
7269 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 80 : 160);
7270 high
= low
+ 56; /* 14*1024/256 */
7271 REG_WR(bp
, BRB1_REG_PAUSE_LOW_THRESHOLD_0
+ port
*4, low
);
7272 REG_WR(bp
, BRB1_REG_PAUSE_HIGH_THRESHOLD_0
+ port
*4, high
);
7275 if (CHIP_MODE_IS_4_PORT(bp
))
7276 REG_WR(bp
, (BP_PORT(bp
) ?
7277 BRB1_REG_MAC_GUARANTIED_1
:
7278 BRB1_REG_MAC_GUARANTIED_0
), 40);
7280 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
7281 if (CHIP_IS_E3B0(bp
)) {
7282 if (IS_MF_AFEX(bp
)) {
7283 /* configure headers for AFEX mode */
7284 REG_WR(bp
, BP_PORT(bp
) ?
7285 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
7286 PRS_REG_HDRS_AFTER_BASIC_PORT_0
, 0xE);
7287 REG_WR(bp
, BP_PORT(bp
) ?
7288 PRS_REG_HDRS_AFTER_TAG_0_PORT_1
:
7289 PRS_REG_HDRS_AFTER_TAG_0_PORT_0
, 0x6);
7290 REG_WR(bp
, BP_PORT(bp
) ?
7291 PRS_REG_MUST_HAVE_HDRS_PORT_1
:
7292 PRS_REG_MUST_HAVE_HDRS_PORT_0
, 0xA);
7294 /* Ovlan exists only if we are in multi-function +
7295 * switch-dependent mode, in switch-independent there
7296 * is no ovlan headers
7298 REG_WR(bp
, BP_PORT(bp
) ?
7299 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
7300 PRS_REG_HDRS_AFTER_BASIC_PORT_0
,
7301 (bp
->path_has_ovlan
? 7 : 6));
7305 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
7306 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
7307 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
7308 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
7310 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
7311 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
7312 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
7313 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
7315 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
7316 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
7318 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
7320 if (CHIP_IS_E1x(bp
)) {
7321 /* configure PBF to work without PAUSE mtu 9000 */
7322 REG_WR(bp
, PBF_REG_P0_PAUSE_ENABLE
+ port
*4, 0);
7324 /* update threshold */
7325 REG_WR(bp
, PBF_REG_P0_ARB_THRSH
+ port
*4, (9040/16));
7326 /* update init credit */
7327 REG_WR(bp
, PBF_REG_P0_INIT_CRD
+ port
*4, (9040/16) + 553 - 22);
7330 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 1);
7332 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 0);
7335 if (CNIC_SUPPORT(bp
))
7336 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
7338 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
7339 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
7341 if (CHIP_IS_E1(bp
)) {
7342 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
7343 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
7345 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
7347 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
7349 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
7350 /* init aeu_mask_attn_func_0/1:
7351 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7352 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7353 * bits 4-7 are used for "per vn group attention" */
7354 val
= IS_MF(bp
) ? 0xF7 : 0x7;
7355 /* Enable DCBX attention for all but E1 */
7356 val
|= CHIP_IS_E1(bp
) ? 0 : 0x10;
7357 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, val
);
7359 /* SCPAD_PARITY should NOT trigger close the gates */
7360 reg
= port
? MISC_REG_AEU_ENABLE4_NIG_1
: MISC_REG_AEU_ENABLE4_NIG_0
;
7363 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
);
7365 reg
= port
? MISC_REG_AEU_ENABLE4_PXP_1
: MISC_REG_AEU_ENABLE4_PXP_0
;
7368 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
);
7370 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
7372 if (!CHIP_IS_E1x(bp
)) {
7373 /* Bit-map indicating which L2 hdrs may appear after the
7374 * basic Ethernet header
7377 REG_WR(bp
, BP_PORT(bp
) ?
7378 NIG_REG_P1_HDRS_AFTER_BASIC
:
7379 NIG_REG_P0_HDRS_AFTER_BASIC
, 0xE);
7381 REG_WR(bp
, BP_PORT(bp
) ?
7382 NIG_REG_P1_HDRS_AFTER_BASIC
:
7383 NIG_REG_P0_HDRS_AFTER_BASIC
,
7384 IS_MF_SD(bp
) ? 7 : 6);
7387 REG_WR(bp
, BP_PORT(bp
) ?
7388 NIG_REG_LLH1_MF_MODE
:
7389 NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
7391 if (!CHIP_IS_E3(bp
))
7392 REG_WR(bp
, NIG_REG_XGXS_SERDES0_MODE_SEL
+ port
*4, 1);
7394 if (!CHIP_IS_E1(bp
)) {
7395 /* 0x2 disable mf_ov, 0x1 enable */
7396 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK_MF
+ port
*4,
7397 (IS_MF_SD(bp
) ? 0x1 : 0x2));
7399 if (!CHIP_IS_E1x(bp
)) {
7401 switch (bp
->mf_mode
) {
7402 case MULTI_FUNCTION_SD
:
7405 case MULTI_FUNCTION_SI
:
7406 case MULTI_FUNCTION_AFEX
:
7411 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_CLS_TYPE
:
7412 NIG_REG_LLH0_CLS_TYPE
), val
);
7415 REG_WR(bp
, NIG_REG_LLFC_ENABLE_0
+ port
*4, 0);
7416 REG_WR(bp
, NIG_REG_LLFC_OUT_EN_0
+ port
*4, 0);
7417 REG_WR(bp
, NIG_REG_PAUSE_ENABLE_0
+ port
*4, 1);
7421 /* If SPIO5 is set to generate interrupts, enable it for this port */
7422 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
7423 if (val
& MISC_SPIO_SPIO5
) {
7424 u32 reg_addr
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
7425 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
7426 val
= REG_RD(bp
, reg_addr
);
7427 val
|= AEU_INPUTS_ATTN_BITS_SPIO5
;
7428 REG_WR(bp
, reg_addr
, val
);
7434 static void bnx2x_ilt_wr(struct bnx2x
*bp
, u32 index
, dma_addr_t addr
)
7440 reg
= PXP2_REG_RQ_ONCHIP_AT
+ index
*8;
7442 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ index
*8;
7444 wb_write
[0] = ONCHIP_ADDR1(addr
);
7445 wb_write
[1] = ONCHIP_ADDR2(addr
);
7446 REG_WR_DMAE(bp
, reg
, wb_write
, 2);
7449 void bnx2x_igu_clear_sb_gen(struct bnx2x
*bp
, u8 func
, u8 idu_sb_id
, bool is_pf
)
7451 u32 data
, ctl
, cnt
= 100;
7452 u32 igu_addr_data
= IGU_REG_COMMAND_REG_32LSB_DATA
;
7453 u32 igu_addr_ctl
= IGU_REG_COMMAND_REG_CTRL
;
7454 u32 igu_addr_ack
= IGU_REG_CSTORM_TYPE_0_SB_CLEANUP
+ (idu_sb_id
/32)*4;
7455 u32 sb_bit
= 1 << (idu_sb_id
%32);
7456 u32 func_encode
= func
| (is_pf
? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT
;
7457 u32 addr_encode
= IGU_CMD_E2_PROD_UPD_BASE
+ idu_sb_id
;
7459 /* Not supported in BC mode */
7460 if (CHIP_INT_MODE_IS_BC(bp
))
7463 data
= (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7464 << IGU_REGULAR_CLEANUP_TYPE_SHIFT
) |
7465 IGU_REGULAR_CLEANUP_SET
|
7466 IGU_REGULAR_BCLEANUP
;
7468 ctl
= addr_encode
<< IGU_CTRL_REG_ADDRESS_SHIFT
|
7469 func_encode
<< IGU_CTRL_REG_FID_SHIFT
|
7470 IGU_CTRL_CMD_TYPE_WR
<< IGU_CTRL_REG_TYPE_SHIFT
;
7472 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7473 data
, igu_addr_data
);
7474 REG_WR(bp
, igu_addr_data
, data
);
7477 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7479 REG_WR(bp
, igu_addr_ctl
, ctl
);
7483 /* wait for clean up to finish */
7484 while (!(REG_RD(bp
, igu_addr_ack
) & sb_bit
) && --cnt
)
7487 if (!(REG_RD(bp
, igu_addr_ack
) & sb_bit
)) {
7489 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7490 idu_sb_id
, idu_sb_id
/32, idu_sb_id
%32, cnt
);
7494 static void bnx2x_igu_clear_sb(struct bnx2x
*bp
, u8 idu_sb_id
)
7496 bnx2x_igu_clear_sb_gen(bp
, BP_FUNC(bp
), idu_sb_id
, true /*PF*/);
7499 static void bnx2x_clear_func_ilt(struct bnx2x
*bp
, u32 func
)
7501 u32 i
, base
= FUNC_ILT_BASE(func
);
7502 for (i
= base
; i
< base
+ ILT_PER_FUNC
; i
++)
7503 bnx2x_ilt_wr(bp
, i
, 0);
7506 static void bnx2x_init_searcher(struct bnx2x
*bp
)
7508 int port
= BP_PORT(bp
);
7509 bnx2x_src_init_t2(bp
, bp
->t2
, bp
->t2_mapping
, SRC_CONN_NUM
);
7510 /* T1 hash bits value determines the T1 number of entries */
7511 REG_WR(bp
, SRC_REG_NUMBER_HASH_BITS0
+ port
*4, SRC_HASH_BITS
);
7514 static inline int bnx2x_func_switch_update(struct bnx2x
*bp
, int suspend
)
7517 struct bnx2x_func_state_params func_params
= {NULL
};
7518 struct bnx2x_func_switch_update_params
*switch_update_params
=
7519 &func_params
.params
.switch_update
;
7521 /* Prepare parameters for function state transitions */
7522 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7523 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
7525 func_params
.f_obj
= &bp
->func_obj
;
7526 func_params
.cmd
= BNX2X_F_CMD_SWITCH_UPDATE
;
7528 /* Function parameters */
7529 switch_update_params
->suspend
= suspend
;
7531 rc
= bnx2x_func_state_change(bp
, &func_params
);
7536 static int bnx2x_reset_nic_mode(struct bnx2x
*bp
)
7538 int rc
, i
, port
= BP_PORT(bp
);
7539 int vlan_en
= 0, mac_en
[NUM_MACS
];
7541 /* Close input from network */
7542 if (bp
->mf_mode
== SINGLE_FUNCTION
) {
7543 bnx2x_set_rx_filter(&bp
->link_params
, 0);
7545 vlan_en
= REG_RD(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7546 NIG_REG_LLH0_FUNC_EN
);
7547 REG_WR(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7548 NIG_REG_LLH0_FUNC_EN
, 0);
7549 for (i
= 0; i
< NUM_MACS
; i
++) {
7550 mac_en
[i
] = REG_RD(bp
, port
?
7551 (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7553 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+
7555 REG_WR(bp
, port
? (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7557 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+ 4 * i
), 0);
7561 /* Close BMC to host */
7562 REG_WR(bp
, port
? NIG_REG_P0_TX_MNG_HOST_ENABLE
:
7563 NIG_REG_P1_TX_MNG_HOST_ENABLE
, 0);
7565 /* Suspend Tx switching to the PF. Completion of this ramrod
7566 * further guarantees that all the packets of that PF / child
7567 * VFs in BRB were processed by the Parser, so it is safe to
7568 * change the NIC_MODE register.
7570 rc
= bnx2x_func_switch_update(bp
, 1);
7572 BNX2X_ERR("Can't suspend tx-switching!\n");
7576 /* Change NIC_MODE register */
7577 REG_WR(bp
, PRS_REG_NIC_MODE
, 0);
7579 /* Open input from network */
7580 if (bp
->mf_mode
== SINGLE_FUNCTION
) {
7581 bnx2x_set_rx_filter(&bp
->link_params
, 1);
7583 REG_WR(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7584 NIG_REG_LLH0_FUNC_EN
, vlan_en
);
7585 for (i
= 0; i
< NUM_MACS
; i
++) {
7586 REG_WR(bp
, port
? (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7588 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+ 4 * i
),
7593 /* Enable BMC to host */
7594 REG_WR(bp
, port
? NIG_REG_P0_TX_MNG_HOST_ENABLE
:
7595 NIG_REG_P1_TX_MNG_HOST_ENABLE
, 1);
7597 /* Resume Tx switching to the PF */
7598 rc
= bnx2x_func_switch_update(bp
, 0);
7600 BNX2X_ERR("Can't resume tx-switching!\n");
7604 DP(NETIF_MSG_IFUP
, "NIC MODE disabled\n");
7608 int bnx2x_init_hw_func_cnic(struct bnx2x
*bp
)
7612 bnx2x_ilt_init_op_cnic(bp
, INITOP_SET
);
7614 if (CONFIGURE_NIC_MODE(bp
)) {
7615 /* Configure searcher as part of function hw init */
7616 bnx2x_init_searcher(bp
);
7618 /* Reset NIC mode */
7619 rc
= bnx2x_reset_nic_mode(bp
);
7621 BNX2X_ERR("Can't change NIC mode!\n");
7628 static int bnx2x_init_hw_func(struct bnx2x
*bp
)
7630 int port
= BP_PORT(bp
);
7631 int func
= BP_FUNC(bp
);
7632 int init_phase
= PHASE_PF0
+ func
;
7633 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
7636 u32 main_mem_base
, main_mem_size
, main_mem_prty_clr
;
7637 int i
, main_mem_width
, rc
;
7639 DP(NETIF_MSG_HW
, "starting func init func %d\n", func
);
7641 /* FLR cleanup - hmmm */
7642 if (!CHIP_IS_E1x(bp
)) {
7643 rc
= bnx2x_pf_flr_clnup(bp
);
7650 /* set MSI reconfigure capability */
7651 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
7652 addr
= (port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
);
7653 val
= REG_RD(bp
, addr
);
7654 val
|= HC_CONFIG_0_REG_MSI_ATTN_EN_0
;
7655 REG_WR(bp
, addr
, val
);
7658 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
7659 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
7662 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
7665 cdu_ilt_start
+= BNX2X_FIRST_VF_CID
/ILT_PAGE_CIDS
;
7666 cdu_ilt_start
= bnx2x_iov_init_ilt(bp
, cdu_ilt_start
);
7668 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7669 * those of the VFs, so start line should be reset
7671 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
7672 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++) {
7673 ilt
->lines
[cdu_ilt_start
+ i
].page
= bp
->context
[i
].vcxt
;
7674 ilt
->lines
[cdu_ilt_start
+ i
].page_mapping
=
7675 bp
->context
[i
].cxt_mapping
;
7676 ilt
->lines
[cdu_ilt_start
+ i
].size
= bp
->context
[i
].size
;
7679 bnx2x_ilt_init_op(bp
, INITOP_SET
);
7681 if (!CONFIGURE_NIC_MODE(bp
)) {
7682 bnx2x_init_searcher(bp
);
7683 REG_WR(bp
, PRS_REG_NIC_MODE
, 0);
7684 DP(NETIF_MSG_IFUP
, "NIC MODE disabled\n");
7687 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
7688 DP(NETIF_MSG_IFUP
, "NIC MODE configured\n");
7691 if (!CHIP_IS_E1x(bp
)) {
7692 u32 pf_conf
= IGU_PF_CONF_FUNC_EN
;
7694 /* Turn on a single ISR mode in IGU if driver is going to use
7697 if (!(bp
->flags
& USING_MSIX_FLAG
))
7698 pf_conf
|= IGU_PF_CONF_SINGLE_ISR_EN
;
7700 * Timers workaround bug: function init part.
7701 * Need to wait 20msec after initializing ILT,
7702 * needed to make sure there are no requests in
7703 * one of the PXP internal queues with "old" ILT addresses
7707 * Master enable - Due to WB DMAE writes performed before this
7708 * register is re-initialized as part of the regular function
7711 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
7712 /* Enable the function in IGU */
7713 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, pf_conf
);
7718 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
7720 if (!CHIP_IS_E1x(bp
))
7721 REG_WR(bp
, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
, func
);
7723 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
7724 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
7725 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
7726 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
7727 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
7728 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
7729 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
7730 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
7731 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
7732 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
7733 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
7734 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
7735 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
7737 if (!CHIP_IS_E1x(bp
))
7738 REG_WR(bp
, QM_REG_PF_EN
, 1);
7740 if (!CHIP_IS_E1x(bp
)) {
7741 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
7742 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
7743 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
7744 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
7746 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
7748 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
7749 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
7750 REG_WR(bp
, DORQ_REG_MODE_ACT
, 1); /* no dpm */
7752 bnx2x_iov_init_dq(bp
);
7754 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
7755 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
7756 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
7757 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
7758 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
7759 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
7760 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
7761 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
7762 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
7763 if (!CHIP_IS_E1x(bp
))
7764 REG_WR(bp
, PBF_REG_DISABLE_PF
, 0);
7766 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
7768 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
7770 if (!CHIP_IS_E1x(bp
))
7771 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 1);
7774 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
7775 REG_WR(bp
, NIG_REG_LLH0_FUNC_VLAN_ID
+ port
*8, bp
->mf_ov
);
7778 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
7780 /* HC init per function */
7781 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
7782 if (CHIP_IS_E1H(bp
)) {
7783 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
7785 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
7786 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
7788 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
7791 int num_segs
, sb_idx
, prod_offset
;
7793 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
7795 if (!CHIP_IS_E1x(bp
)) {
7796 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
7797 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
7800 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
7802 if (!CHIP_IS_E1x(bp
)) {
7806 * E2 mode: address 0-135 match to the mapping memory;
7807 * 136 - PF0 default prod; 137 - PF1 default prod;
7808 * 138 - PF2 default prod; 139 - PF3 default prod;
7809 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7810 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7813 * E1.5 mode - In backward compatible mode;
7814 * for non default SB; each even line in the memory
7815 * holds the U producer and each odd line hold
7816 * the C producer. The first 128 producers are for
7817 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7818 * producers are for the DSB for each PF.
7819 * Each PF has five segments: (the order inside each
7820 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7821 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7822 * 144-147 attn prods;
7824 /* non-default-status-blocks */
7825 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
7826 IGU_BC_NDSB_NUM_SEGS
: IGU_NORM_NDSB_NUM_SEGS
;
7827 for (sb_idx
= 0; sb_idx
< bp
->igu_sb_cnt
; sb_idx
++) {
7828 prod_offset
= (bp
->igu_base_sb
+ sb_idx
) *
7831 for (i
= 0; i
< num_segs
; i
++) {
7832 addr
= IGU_REG_PROD_CONS_MEMORY
+
7833 (prod_offset
+ i
) * 4;
7834 REG_WR(bp
, addr
, 0);
7836 /* send consumer update with value 0 */
7837 bnx2x_ack_sb(bp
, bp
->igu_base_sb
+ sb_idx
,
7838 USTORM_ID
, 0, IGU_INT_NOP
, 1);
7839 bnx2x_igu_clear_sb(bp
,
7840 bp
->igu_base_sb
+ sb_idx
);
7843 /* default-status-blocks */
7844 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
7845 IGU_BC_DSB_NUM_SEGS
: IGU_NORM_DSB_NUM_SEGS
;
7847 if (CHIP_MODE_IS_4_PORT(bp
))
7848 dsb_idx
= BP_FUNC(bp
);
7850 dsb_idx
= BP_VN(bp
);
7852 prod_offset
= (CHIP_INT_MODE_IS_BC(bp
) ?
7853 IGU_BC_BASE_DSB_PROD
+ dsb_idx
:
7854 IGU_NORM_BASE_DSB_PROD
+ dsb_idx
);
7857 * igu prods come in chunks of E1HVN_MAX (4) -
7858 * does not matters what is the current chip mode
7860 for (i
= 0; i
< (num_segs
* E1HVN_MAX
);
7862 addr
= IGU_REG_PROD_CONS_MEMORY
+
7863 (prod_offset
+ i
)*4;
7864 REG_WR(bp
, addr
, 0);
7866 /* send consumer update with 0 */
7867 if (CHIP_INT_MODE_IS_BC(bp
)) {
7868 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7869 USTORM_ID
, 0, IGU_INT_NOP
, 1);
7870 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7871 CSTORM_ID
, 0, IGU_INT_NOP
, 1);
7872 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7873 XSTORM_ID
, 0, IGU_INT_NOP
, 1);
7874 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7875 TSTORM_ID
, 0, IGU_INT_NOP
, 1);
7876 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7877 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
7879 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7880 USTORM_ID
, 0, IGU_INT_NOP
, 1);
7881 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
7882 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
7884 bnx2x_igu_clear_sb(bp
, bp
->igu_dsb_id
);
7886 /* !!! These should become driver const once
7887 rf-tool supports split-68 const */
7888 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
7889 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
7890 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
7891 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
7892 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
7893 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
7897 /* Reset PCIE errors for debug */
7898 REG_WR(bp
, 0x2114, 0xffffffff);
7899 REG_WR(bp
, 0x2120, 0xffffffff);
7901 if (CHIP_IS_E1x(bp
)) {
7902 main_mem_size
= HC_REG_MAIN_MEMORY_SIZE
/ 2; /*dwords*/
7903 main_mem_base
= HC_REG_MAIN_MEMORY
+
7904 BP_PORT(bp
) * (main_mem_size
* 4);
7905 main_mem_prty_clr
= HC_REG_HC_PRTY_STS_CLR
;
7908 val
= REG_RD(bp
, main_mem_prty_clr
);
7911 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7914 /* Clear "false" parity errors in MSI-X table */
7915 for (i
= main_mem_base
;
7916 i
< main_mem_base
+ main_mem_size
* 4;
7917 i
+= main_mem_width
) {
7918 bnx2x_read_dmae(bp
, i
, main_mem_width
/ 4);
7919 bnx2x_write_dmae(bp
, bnx2x_sp_mapping(bp
, wb_data
),
7920 i
, main_mem_width
/ 4);
7922 /* Clear HC parity attention */
7923 REG_RD(bp
, main_mem_prty_clr
);
7926 #ifdef BNX2X_STOP_ON_ERROR
7927 /* Enable STORMs SP logging */
7928 REG_WR8(bp
, BAR_USTRORM_INTMEM
+
7929 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
7930 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
7931 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
7932 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7933 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
7934 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+
7935 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
7938 bnx2x_phy_probe(&bp
->link_params
);
7943 void bnx2x_free_mem_cnic(struct bnx2x
*bp
)
7945 bnx2x_ilt_mem_op_cnic(bp
, ILT_MEMOP_FREE
);
7947 if (!CHIP_IS_E1x(bp
))
7948 BNX2X_PCI_FREE(bp
->cnic_sb
.e2_sb
, bp
->cnic_sb_mapping
,
7949 sizeof(struct host_hc_status_block_e2
));
7951 BNX2X_PCI_FREE(bp
->cnic_sb
.e1x_sb
, bp
->cnic_sb_mapping
,
7952 sizeof(struct host_hc_status_block_e1x
));
7954 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
7957 void bnx2x_free_mem(struct bnx2x
*bp
)
7961 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
7962 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
7967 BNX2X_PCI_FREE(bp
->def_status_blk
, bp
->def_status_blk_mapping
,
7968 sizeof(struct host_sp_status_block
));
7970 BNX2X_PCI_FREE(bp
->slowpath
, bp
->slowpath_mapping
,
7971 sizeof(struct bnx2x_slowpath
));
7973 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++)
7974 BNX2X_PCI_FREE(bp
->context
[i
].vcxt
, bp
->context
[i
].cxt_mapping
,
7975 bp
->context
[i
].size
);
7976 bnx2x_ilt_mem_op(bp
, ILT_MEMOP_FREE
);
7978 BNX2X_FREE(bp
->ilt
->lines
);
7980 BNX2X_PCI_FREE(bp
->spq
, bp
->spq_mapping
, BCM_PAGE_SIZE
);
7982 BNX2X_PCI_FREE(bp
->eq_ring
, bp
->eq_mapping
,
7983 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
7985 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
7987 bnx2x_iov_free_mem(bp
);
7990 int bnx2x_alloc_mem_cnic(struct bnx2x
*bp
)
7992 if (!CHIP_IS_E1x(bp
))
7993 /* size = the status block + ramrod buffers */
7994 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e2_sb
, &bp
->cnic_sb_mapping
,
7995 sizeof(struct host_hc_status_block_e2
));
7997 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e1x_sb
,
7998 &bp
->cnic_sb_mapping
,
8000 host_hc_status_block_e1x
));
8002 if (CONFIGURE_NIC_MODE(bp
) && !bp
->t2
)
8003 /* allocate searcher T2 table, as it wasn't allocated before */
8004 BNX2X_PCI_ALLOC(bp
->t2
, &bp
->t2_mapping
, SRC_T2_SZ
);
8006 /* write address to which L5 should insert its values */
8007 bp
->cnic_eth_dev
.addr_drv_info_to_mcp
=
8008 &bp
->slowpath
->drv_info_to_mcp
;
8010 if (bnx2x_ilt_mem_op_cnic(bp
, ILT_MEMOP_ALLOC
))
8016 bnx2x_free_mem_cnic(bp
);
8017 BNX2X_ERR("Can't allocate memory\n");
8021 int bnx2x_alloc_mem(struct bnx2x
*bp
)
8023 int i
, allocated
, context_size
;
8025 if (!CONFIGURE_NIC_MODE(bp
) && !bp
->t2
)
8026 /* allocate searcher T2 table */
8027 BNX2X_PCI_ALLOC(bp
->t2
, &bp
->t2_mapping
, SRC_T2_SZ
);
8029 BNX2X_PCI_ALLOC(bp
->def_status_blk
, &bp
->def_status_blk_mapping
,
8030 sizeof(struct host_sp_status_block
));
8032 BNX2X_PCI_ALLOC(bp
->slowpath
, &bp
->slowpath_mapping
,
8033 sizeof(struct bnx2x_slowpath
));
8035 /* Allocate memory for CDU context:
8036 * This memory is allocated separately and not in the generic ILT
8037 * functions because CDU differs in few aspects:
8038 * 1. There are multiple entities allocating memory for context -
8039 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8040 * its own ILT lines.
8041 * 2. Since CDU page-size is not a single 4KB page (which is the case
8042 * for the other ILT clients), to be efficient we want to support
8043 * allocation of sub-page-size in the last entry.
8044 * 3. Context pointers are used by the driver to pass to FW / update
8045 * the context (for the other ILT clients the pointers are used just to
8046 * free the memory during unload).
8048 context_size
= sizeof(union cdu_context
) * BNX2X_L2_CID_COUNT(bp
);
8050 for (i
= 0, allocated
= 0; allocated
< context_size
; i
++) {
8051 bp
->context
[i
].size
= min(CDU_ILT_PAGE_SZ
,
8052 (context_size
- allocated
));
8053 BNX2X_PCI_ALLOC(bp
->context
[i
].vcxt
,
8054 &bp
->context
[i
].cxt_mapping
,
8055 bp
->context
[i
].size
);
8056 allocated
+= bp
->context
[i
].size
;
8058 BNX2X_ALLOC(bp
->ilt
->lines
, sizeof(struct ilt_line
) * ILT_MAX_LINES
);
8060 if (bnx2x_ilt_mem_op(bp
, ILT_MEMOP_ALLOC
))
8063 if (bnx2x_iov_alloc_mem(bp
))
8066 /* Slow path ring */
8067 BNX2X_PCI_ALLOC(bp
->spq
, &bp
->spq_mapping
, BCM_PAGE_SIZE
);
8070 BNX2X_PCI_ALLOC(bp
->eq_ring
, &bp
->eq_mapping
,
8071 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
8077 BNX2X_ERR("Can't allocate memory\n");
8082 * Init service functions
8085 int bnx2x_set_mac_one(struct bnx2x
*bp
, u8
*mac
,
8086 struct bnx2x_vlan_mac_obj
*obj
, bool set
,
8087 int mac_type
, unsigned long *ramrod_flags
)
8090 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
8092 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
8094 /* Fill general parameters */
8095 ramrod_param
.vlan_mac_obj
= obj
;
8096 ramrod_param
.ramrod_flags
= *ramrod_flags
;
8098 /* Fill a user request section if needed */
8099 if (!test_bit(RAMROD_CONT
, ramrod_flags
)) {
8100 memcpy(ramrod_param
.user_req
.u
.mac
.mac
, mac
, ETH_ALEN
);
8102 __set_bit(mac_type
, &ramrod_param
.user_req
.vlan_mac_flags
);
8104 /* Set the command: ADD or DEL */
8106 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
8108 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
8111 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
8113 if (rc
== -EEXIST
) {
8114 DP(BNX2X_MSG_SP
, "Failed to schedule ADD operations: %d\n", rc
);
8115 /* do not treat adding same MAC as error */
8118 BNX2X_ERR("%s MAC failed\n", (set
? "Set" : "Del"));
8123 int bnx2x_del_all_macs(struct bnx2x
*bp
,
8124 struct bnx2x_vlan_mac_obj
*mac_obj
,
8125 int mac_type
, bool wait_for_comp
)
8128 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
8130 /* Wait for completion of requested */
8132 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
8134 /* Set the mac type of addresses we want to clear */
8135 __set_bit(mac_type
, &vlan_mac_flags
);
8137 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
, &ramrod_flags
);
8139 BNX2X_ERR("Failed to delete MACs: %d\n", rc
);
8144 int bnx2x_set_eth_mac(struct bnx2x
*bp
, bool set
)
8146 if (is_zero_ether_addr(bp
->dev
->dev_addr
) &&
8147 (IS_MF_STORAGE_SD(bp
) || IS_MF_FCOE_AFEX(bp
))) {
8148 DP(NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
,
8149 "Ignoring Zero MAC for STORAGE SD mode\n");
8154 unsigned long ramrod_flags
= 0;
8156 DP(NETIF_MSG_IFUP
, "Adding Eth MAC\n");
8157 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
8158 return bnx2x_set_mac_one(bp
, bp
->dev
->dev_addr
,
8159 &bp
->sp_objs
->mac_obj
, set
,
8160 BNX2X_ETH_MAC
, &ramrod_flags
);
8162 return bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
,
8163 bp
->fp
->index
, true);
8167 int bnx2x_setup_leading(struct bnx2x
*bp
)
8170 return bnx2x_setup_queue(bp
, &bp
->fp
[0], true);
8172 return bnx2x_vfpf_setup_q(bp
, &bp
->fp
[0], true);
8176 * bnx2x_set_int_mode - configure interrupt mode
8178 * @bp: driver handle
8180 * In case of MSI-X it will also try to enable MSI-X.
8182 int bnx2x_set_int_mode(struct bnx2x
*bp
)
8186 if (IS_VF(bp
) && int_mode
!= BNX2X_INT_MODE_MSIX
) {
8187 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8192 case BNX2X_INT_MODE_MSIX
:
8193 /* attempt to enable msix */
8194 rc
= bnx2x_enable_msix(bp
);
8200 /* vfs use only msix */
8201 if (rc
&& IS_VF(bp
))
8204 /* failed to enable multiple MSI-X */
8205 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8207 1 + bp
->num_cnic_queues
);
8209 /* falling through... */
8210 case BNX2X_INT_MODE_MSI
:
8211 bnx2x_enable_msi(bp
);
8213 /* falling through... */
8214 case BNX2X_INT_MODE_INTX
:
8215 bp
->num_ethernet_queues
= 1;
8216 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
8217 BNX2X_DEV_INFO("set number of queues to 1\n");
8220 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8226 /* must be called prior to any HW initializations */
8227 static inline u16
bnx2x_cid_ilt_lines(struct bnx2x
*bp
)
8230 return (BNX2X_FIRST_VF_CID
+ BNX2X_VF_CIDS
)/ILT_PAGE_CIDS
;
8231 return L2_ILT_LINES(bp
);
8234 void bnx2x_ilt_set_info(struct bnx2x
*bp
)
8236 struct ilt_client_info
*ilt_client
;
8237 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
8240 ilt
->start_line
= FUNC_ILT_BASE(BP_FUNC(bp
));
8241 DP(BNX2X_MSG_SP
, "ilt starts at line %d\n", ilt
->start_line
);
8244 ilt_client
= &ilt
->clients
[ILT_CLIENT_CDU
];
8245 ilt_client
->client_num
= ILT_CLIENT_CDU
;
8246 ilt_client
->page_size
= CDU_ILT_PAGE_SZ
;
8247 ilt_client
->flags
= ILT_CLIENT_SKIP_MEM
;
8248 ilt_client
->start
= line
;
8249 line
+= bnx2x_cid_ilt_lines(bp
);
8251 if (CNIC_SUPPORT(bp
))
8252 line
+= CNIC_ILT_LINES
;
8253 ilt_client
->end
= line
- 1;
8255 DP(NETIF_MSG_IFUP
, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8258 ilt_client
->page_size
,
8260 ilog2(ilt_client
->page_size
>> 12));
8263 if (QM_INIT(bp
->qm_cid_count
)) {
8264 ilt_client
= &ilt
->clients
[ILT_CLIENT_QM
];
8265 ilt_client
->client_num
= ILT_CLIENT_QM
;
8266 ilt_client
->page_size
= QM_ILT_PAGE_SZ
;
8267 ilt_client
->flags
= 0;
8268 ilt_client
->start
= line
;
8270 /* 4 bytes for each cid */
8271 line
+= DIV_ROUND_UP(bp
->qm_cid_count
* QM_QUEUES_PER_FUNC
* 4,
8274 ilt_client
->end
= line
- 1;
8277 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8280 ilt_client
->page_size
,
8282 ilog2(ilt_client
->page_size
>> 12));
8285 if (CNIC_SUPPORT(bp
)) {
8287 ilt_client
= &ilt
->clients
[ILT_CLIENT_SRC
];
8288 ilt_client
->client_num
= ILT_CLIENT_SRC
;
8289 ilt_client
->page_size
= SRC_ILT_PAGE_SZ
;
8290 ilt_client
->flags
= 0;
8291 ilt_client
->start
= line
;
8292 line
+= SRC_ILT_LINES
;
8293 ilt_client
->end
= line
- 1;
8296 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8299 ilt_client
->page_size
,
8301 ilog2(ilt_client
->page_size
>> 12));
8304 ilt_client
= &ilt
->clients
[ILT_CLIENT_TM
];
8305 ilt_client
->client_num
= ILT_CLIENT_TM
;
8306 ilt_client
->page_size
= TM_ILT_PAGE_SZ
;
8307 ilt_client
->flags
= 0;
8308 ilt_client
->start
= line
;
8309 line
+= TM_ILT_LINES
;
8310 ilt_client
->end
= line
- 1;
8313 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8316 ilt_client
->page_size
,
8318 ilog2(ilt_client
->page_size
>> 12));
8321 BUG_ON(line
> ILT_MAX_LINES
);
8325 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8327 * @bp: driver handle
8328 * @fp: pointer to fastpath
8329 * @init_params: pointer to parameters structure
8331 * parameters configured:
8332 * - HC configuration
8333 * - Queue's CDU context
8335 static void bnx2x_pf_q_prep_init(struct bnx2x
*bp
,
8336 struct bnx2x_fastpath
*fp
, struct bnx2x_queue_init_params
*init_params
)
8339 int cxt_index
, cxt_offset
;
8341 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8342 if (!IS_FCOE_FP(fp
)) {
8343 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->rx
.flags
);
8344 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->tx
.flags
);
8346 /* If HC is supported, enable host coalescing in the transition
8349 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->rx
.flags
);
8350 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->tx
.flags
);
8353 init_params
->rx
.hc_rate
= bp
->rx_ticks
?
8354 (1000000 / bp
->rx_ticks
) : 0;
8355 init_params
->tx
.hc_rate
= bp
->tx_ticks
?
8356 (1000000 / bp
->tx_ticks
) : 0;
8359 init_params
->rx
.fw_sb_id
= init_params
->tx
.fw_sb_id
=
8363 * CQ index among the SB indices: FCoE clients uses the default
8364 * SB, therefore it's different.
8366 init_params
->rx
.sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
8367 init_params
->tx
.sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
;
8370 /* set maximum number of COSs supported by this queue */
8371 init_params
->max_cos
= fp
->max_cos
;
8373 DP(NETIF_MSG_IFUP
, "fp: %d setting queue params max cos to: %d\n",
8374 fp
->index
, init_params
->max_cos
);
8376 /* set the context pointers queue object */
8377 for (cos
= FIRST_TX_COS_INDEX
; cos
< init_params
->max_cos
; cos
++) {
8378 cxt_index
= fp
->txdata_ptr
[cos
]->cid
/ ILT_PAGE_CIDS
;
8379 cxt_offset
= fp
->txdata_ptr
[cos
]->cid
- (cxt_index
*
8381 init_params
->cxts
[cos
] =
8382 &bp
->context
[cxt_index
].vcxt
[cxt_offset
].eth
;
8386 static int bnx2x_setup_tx_only(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
8387 struct bnx2x_queue_state_params
*q_params
,
8388 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
,
8389 int tx_index
, bool leading
)
8391 memset(tx_only_params
, 0, sizeof(*tx_only_params
));
8393 /* Set the command */
8394 q_params
->cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
8396 /* Set tx-only QUEUE flags: don't zero statistics */
8397 tx_only_params
->flags
= bnx2x_get_common_flags(bp
, fp
, false);
8399 /* choose the index of the cid to send the slow path on */
8400 tx_only_params
->cid_index
= tx_index
;
8402 /* Set general TX_ONLY_SETUP parameters */
8403 bnx2x_pf_q_prep_general(bp
, fp
, &tx_only_params
->gen_params
, tx_index
);
8405 /* Set Tx TX_ONLY_SETUP parameters */
8406 bnx2x_pf_tx_q_prep(bp
, fp
, &tx_only_params
->txq_params
, tx_index
);
8409 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8410 tx_index
, q_params
->q_obj
->cids
[FIRST_TX_COS_INDEX
],
8411 q_params
->q_obj
->cids
[tx_index
], q_params
->q_obj
->cl_id
,
8412 tx_only_params
->gen_params
.spcl_id
, tx_only_params
->flags
);
8414 /* send the ramrod */
8415 return bnx2x_queue_state_change(bp
, q_params
);
8419 * bnx2x_setup_queue - setup queue
8421 * @bp: driver handle
8422 * @fp: pointer to fastpath
8423 * @leading: is leading
8425 * This function performs 2 steps in a Queue state machine
8426 * actually: 1) RESET->INIT 2) INIT->SETUP
8429 int bnx2x_setup_queue(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
8432 struct bnx2x_queue_state_params q_params
= {NULL
};
8433 struct bnx2x_queue_setup_params
*setup_params
=
8434 &q_params
.params
.setup
;
8435 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
8436 &q_params
.params
.tx_only
;
8440 DP(NETIF_MSG_IFUP
, "setting up queue %d\n", fp
->index
);
8442 /* reset IGU state skip FCoE L2 queue */
8443 if (!IS_FCOE_FP(fp
))
8444 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0,
8447 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
8448 /* We want to wait for completion in this context */
8449 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
8451 /* Prepare the INIT parameters */
8452 bnx2x_pf_q_prep_init(bp
, fp
, &q_params
.params
.init
);
8454 /* Set the command */
8455 q_params
.cmd
= BNX2X_Q_CMD_INIT
;
8457 /* Change the state to INIT */
8458 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8460 BNX2X_ERR("Queue(%d) INIT failed\n", fp
->index
);
8464 DP(NETIF_MSG_IFUP
, "init complete\n");
8466 /* Now move the Queue to the SETUP state... */
8467 memset(setup_params
, 0, sizeof(*setup_params
));
8469 /* Set QUEUE flags */
8470 setup_params
->flags
= bnx2x_get_q_flags(bp
, fp
, leading
);
8472 /* Set general SETUP parameters */
8473 bnx2x_pf_q_prep_general(bp
, fp
, &setup_params
->gen_params
,
8474 FIRST_TX_COS_INDEX
);
8476 bnx2x_pf_rx_q_prep(bp
, fp
, &setup_params
->pause_params
,
8477 &setup_params
->rxq_params
);
8479 bnx2x_pf_tx_q_prep(bp
, fp
, &setup_params
->txq_params
,
8480 FIRST_TX_COS_INDEX
);
8482 /* Set the command */
8483 q_params
.cmd
= BNX2X_Q_CMD_SETUP
;
8486 bp
->fcoe_init
= true;
8488 /* Change the state to SETUP */
8489 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8491 BNX2X_ERR("Queue(%d) SETUP failed\n", fp
->index
);
8495 /* loop through the relevant tx-only indices */
8496 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
8497 tx_index
< fp
->max_cos
;
8500 /* prepare and send tx-only ramrod*/
8501 rc
= bnx2x_setup_tx_only(bp
, fp
, &q_params
,
8502 tx_only_params
, tx_index
, leading
);
8504 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8505 fp
->index
, tx_index
);
8513 static int bnx2x_stop_queue(struct bnx2x
*bp
, int index
)
8515 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
8516 struct bnx2x_fp_txdata
*txdata
;
8517 struct bnx2x_queue_state_params q_params
= {NULL
};
8520 DP(NETIF_MSG_IFDOWN
, "stopping queue %d cid %d\n", index
, fp
->cid
);
8522 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
8523 /* We want to wait for completion in this context */
8524 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
8526 /* close tx-only connections */
8527 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
8528 tx_index
< fp
->max_cos
;
8531 /* ascertain this is a normal queue*/
8532 txdata
= fp
->txdata_ptr
[tx_index
];
8534 DP(NETIF_MSG_IFDOWN
, "stopping tx-only queue %d\n",
8537 /* send halt terminate on tx-only connection */
8538 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
8539 memset(&q_params
.params
.terminate
, 0,
8540 sizeof(q_params
.params
.terminate
));
8541 q_params
.params
.terminate
.cid_index
= tx_index
;
8543 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8547 /* send halt terminate on tx-only connection */
8548 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
8549 memset(&q_params
.params
.cfc_del
, 0,
8550 sizeof(q_params
.params
.cfc_del
));
8551 q_params
.params
.cfc_del
.cid_index
= tx_index
;
8552 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8556 /* Stop the primary connection: */
8557 /* ...halt the connection */
8558 q_params
.cmd
= BNX2X_Q_CMD_HALT
;
8559 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8563 /* ...terminate the connection */
8564 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
8565 memset(&q_params
.params
.terminate
, 0,
8566 sizeof(q_params
.params
.terminate
));
8567 q_params
.params
.terminate
.cid_index
= FIRST_TX_COS_INDEX
;
8568 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8571 /* ...delete cfc entry */
8572 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
8573 memset(&q_params
.params
.cfc_del
, 0,
8574 sizeof(q_params
.params
.cfc_del
));
8575 q_params
.params
.cfc_del
.cid_index
= FIRST_TX_COS_INDEX
;
8576 return bnx2x_queue_state_change(bp
, &q_params
);
8579 static void bnx2x_reset_func(struct bnx2x
*bp
)
8581 int port
= BP_PORT(bp
);
8582 int func
= BP_FUNC(bp
);
8585 /* Disable the function in the FW */
8586 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(func
), 0);
8587 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(func
), 0);
8588 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(func
), 0);
8589 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(func
), 0);
8592 for_each_eth_queue(bp
, i
) {
8593 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
8594 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8595 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp
->fw_sb_id
),
8599 if (CNIC_LOADED(bp
))
8601 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8602 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8603 (bnx2x_cnic_fw_sb_id(bp
)), SB_DISABLED
);
8606 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8607 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func
),
8610 for (i
= 0; i
< XSTORM_SPQ_DATA_SIZE
/ 4; i
++)
8611 REG_WR(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_DATA_OFFSET(func
),
8615 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
8616 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
8617 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
8619 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
8620 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
8623 if (CNIC_LOADED(bp
)) {
8624 /* Disable Timer scan */
8625 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
8627 * Wait for at least 10ms and up to 2 second for the timers
8630 for (i
= 0; i
< 200; i
++) {
8631 usleep_range(10000, 20000);
8632 if (!REG_RD(bp
, TM_REG_LIN0_SCAN_ON
+ port
*4))
8637 bnx2x_clear_func_ilt(bp
, func
);
8639 /* Timers workaround bug for E2: if this is vnic-3,
8640 * we need to set the entire ilt range for this timers.
8642 if (!CHIP_IS_E1x(bp
) && BP_VN(bp
) == 3) {
8643 struct ilt_client_info ilt_cli
;
8644 /* use dummy TM client */
8645 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
8647 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
8648 ilt_cli
.client_num
= ILT_CLIENT_TM
;
8650 bnx2x_ilt_boundry_init_op(bp
, &ilt_cli
, 0, INITOP_CLEAR
);
8653 /* this assumes that reset_port() called before reset_func()*/
8654 if (!CHIP_IS_E1x(bp
))
8655 bnx2x_pf_disable(bp
);
8660 static void bnx2x_reset_port(struct bnx2x
*bp
)
8662 int port
= BP_PORT(bp
);
8665 /* Reset physical Link */
8666 bnx2x__link_reset(bp
);
8668 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
8670 /* Do not rcv packets to BRB */
8671 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK
+ port
*4, 0x0);
8672 /* Do not direct rcv packets that are not for MCP to the BRB */
8673 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
8674 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
8677 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, 0);
8680 /* Check for BRB port occupancy */
8681 val
= REG_RD(bp
, BRB1_REG_PORT_NUM_OCC_BLOCKS_0
+ port
*4);
8683 DP(NETIF_MSG_IFDOWN
,
8684 "BRB1 is not empty %d blocks are occupied\n", val
);
8686 /* TODO: Close Doorbell port? */
8689 static int bnx2x_reset_hw(struct bnx2x
*bp
, u32 load_code
)
8691 struct bnx2x_func_state_params func_params
= {NULL
};
8693 /* Prepare parameters for function state transitions */
8694 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
8696 func_params
.f_obj
= &bp
->func_obj
;
8697 func_params
.cmd
= BNX2X_F_CMD_HW_RESET
;
8699 func_params
.params
.hw_init
.load_phase
= load_code
;
8701 return bnx2x_func_state_change(bp
, &func_params
);
8704 static int bnx2x_func_stop(struct bnx2x
*bp
)
8706 struct bnx2x_func_state_params func_params
= {NULL
};
8709 /* Prepare parameters for function state transitions */
8710 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
8711 func_params
.f_obj
= &bp
->func_obj
;
8712 func_params
.cmd
= BNX2X_F_CMD_STOP
;
8715 * Try to stop the function the 'good way'. If fails (in case
8716 * of a parity error during bnx2x_chip_cleanup()) and we are
8717 * not in a debug mode, perform a state transaction in order to
8718 * enable further HW_RESET transaction.
8720 rc
= bnx2x_func_state_change(bp
, &func_params
);
8722 #ifdef BNX2X_STOP_ON_ERROR
8725 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8726 __set_bit(RAMROD_DRV_CLR_ONLY
, &func_params
.ramrod_flags
);
8727 return bnx2x_func_state_change(bp
, &func_params
);
8735 * bnx2x_send_unload_req - request unload mode from the MCP.
8737 * @bp: driver handle
8738 * @unload_mode: requested function's unload mode
8740 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8742 u32
bnx2x_send_unload_req(struct bnx2x
*bp
, int unload_mode
)
8745 int port
= BP_PORT(bp
);
8747 /* Select the UNLOAD request mode */
8748 if (unload_mode
== UNLOAD_NORMAL
)
8749 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8751 else if (bp
->flags
& NO_WOL_FLAG
)
8752 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
;
8755 u32 emac_base
= port
? GRCBASE_EMAC1
: GRCBASE_EMAC0
;
8756 u8
*mac_addr
= bp
->dev
->dev_addr
;
8757 struct pci_dev
*pdev
= bp
->pdev
;
8761 /* The mac address is written to entries 1-4 to
8762 * preserve entry 0 which is used by the PMF
8764 u8 entry
= (BP_VN(bp
) + 1)*8;
8766 val
= (mac_addr
[0] << 8) | mac_addr
[1];
8767 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
, val
);
8769 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
8770 (mac_addr
[4] << 8) | mac_addr
[5];
8771 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
+ 4, val
);
8773 /* Enable the PME and clear the status */
8774 pci_read_config_word(pdev
, pdev
->pm_cap
+ PCI_PM_CTRL
, &pmc
);
8775 pmc
|= PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
;
8776 pci_write_config_word(pdev
, pdev
->pm_cap
+ PCI_PM_CTRL
, pmc
);
8778 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_EN
;
8781 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8783 /* Send the request to the MCP */
8785 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
8787 int path
= BP_PATH(bp
);
8789 DP(NETIF_MSG_IFDOWN
, "NO MCP - load counts[%d] %d, %d, %d\n",
8790 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
8791 bnx2x_load_count
[path
][2]);
8792 bnx2x_load_count
[path
][0]--;
8793 bnx2x_load_count
[path
][1 + port
]--;
8794 DP(NETIF_MSG_IFDOWN
, "NO MCP - new load counts[%d] %d, %d, %d\n",
8795 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
8796 bnx2x_load_count
[path
][2]);
8797 if (bnx2x_load_count
[path
][0] == 0)
8798 reset_code
= FW_MSG_CODE_DRV_UNLOAD_COMMON
;
8799 else if (bnx2x_load_count
[path
][1 + port
] == 0)
8800 reset_code
= FW_MSG_CODE_DRV_UNLOAD_PORT
;
8802 reset_code
= FW_MSG_CODE_DRV_UNLOAD_FUNCTION
;
8809 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8811 * @bp: driver handle
8812 * @keep_link: true iff link should be kept up
8814 void bnx2x_send_unload_done(struct bnx2x
*bp
, bool keep_link
)
8816 u32 reset_param
= keep_link
? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET
: 0;
8818 /* Report UNLOAD_DONE to MCP */
8820 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, reset_param
);
8823 static int bnx2x_func_wait_started(struct bnx2x
*bp
)
8826 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
8832 * (assumption: No Attention from MCP at this stage)
8833 * PMF probably in the middle of TX disable/enable transaction
8834 * 1. Sync IRS for default SB
8835 * 2. Sync SP queue - this guarantees us that attention handling started
8836 * 3. Wait, that TX disable/enable transaction completes
8838 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8839 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8840 * received completion for the transaction the state is TX_STOPPED.
8841 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8845 /* make sure default SB ISR is done */
8847 synchronize_irq(bp
->msix_table
[0].vector
);
8849 synchronize_irq(bp
->pdev
->irq
);
8851 flush_workqueue(bnx2x_wq
);
8853 while (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
8854 BNX2X_F_STATE_STARTED
&& tout
--)
8857 if (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
8858 BNX2X_F_STATE_STARTED
) {
8859 #ifdef BNX2X_STOP_ON_ERROR
8860 BNX2X_ERR("Wrong function state\n");
8864 * Failed to complete the transaction in a "good way"
8865 * Force both transactions with CLR bit
8867 struct bnx2x_func_state_params func_params
= {NULL
};
8869 DP(NETIF_MSG_IFDOWN
,
8870 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8872 func_params
.f_obj
= &bp
->func_obj
;
8873 __set_bit(RAMROD_DRV_CLR_ONLY
,
8874 &func_params
.ramrod_flags
);
8876 /* STARTED-->TX_ST0PPED */
8877 func_params
.cmd
= BNX2X_F_CMD_TX_STOP
;
8878 bnx2x_func_state_change(bp
, &func_params
);
8880 /* TX_ST0PPED-->STARTED */
8881 func_params
.cmd
= BNX2X_F_CMD_TX_START
;
8882 return bnx2x_func_state_change(bp
, &func_params
);
8889 void bnx2x_chip_cleanup(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
8891 int port
= BP_PORT(bp
);
8894 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
8897 /* Wait until tx fastpath tasks complete */
8898 for_each_tx_queue(bp
, i
) {
8899 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
8901 for_each_cos_in_tx_queue(fp
, cos
)
8902 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
8903 #ifdef BNX2X_STOP_ON_ERROR
8909 /* Give HW time to discard old tx messages */
8910 usleep_range(1000, 2000);
8912 /* Clean all ETH MACs */
8913 rc
= bnx2x_del_all_macs(bp
, &bp
->sp_objs
[0].mac_obj
, BNX2X_ETH_MAC
,
8916 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc
);
8918 /* Clean up UC list */
8919 rc
= bnx2x_del_all_macs(bp
, &bp
->sp_objs
[0].mac_obj
, BNX2X_UC_LIST_MAC
,
8922 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8926 if (!CHIP_IS_E1(bp
))
8927 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
8929 /* Set "drop all" (stop Rx).
8930 * We need to take a netif_addr_lock() here in order to prevent
8931 * a race between the completion code and this code.
8933 netif_addr_lock_bh(bp
->dev
);
8934 /* Schedule the rx_mode command */
8935 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
8936 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
8938 bnx2x_set_storm_rx_mode(bp
);
8940 /* Cleanup multicast configuration */
8941 rparam
.mcast_obj
= &bp
->mcast_obj
;
8942 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
8944 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc
);
8946 netif_addr_unlock_bh(bp
->dev
);
8948 bnx2x_iov_chip_cleanup(bp
);
8951 * Send the UNLOAD_REQUEST to the MCP. This will return if
8952 * this function should perform FUNC, PORT or COMMON HW
8955 reset_code
= bnx2x_send_unload_req(bp
, unload_mode
);
8958 * (assumption: No Attention from MCP at this stage)
8959 * PMF probably in the middle of TX disable/enable transaction
8961 rc
= bnx2x_func_wait_started(bp
);
8963 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8964 #ifdef BNX2X_STOP_ON_ERROR
8969 /* Close multi and leading connections
8970 * Completions for ramrods are collected in a synchronous way
8972 for_each_eth_queue(bp
, i
)
8973 if (bnx2x_stop_queue(bp
, i
))
8974 #ifdef BNX2X_STOP_ON_ERROR
8980 if (CNIC_LOADED(bp
)) {
8981 for_each_cnic_queue(bp
, i
)
8982 if (bnx2x_stop_queue(bp
, i
))
8983 #ifdef BNX2X_STOP_ON_ERROR
8990 /* If SP settings didn't get completed so far - something
8991 * very wrong has happen.
8993 if (!bnx2x_wait_sp_comp(bp
, ~0x0UL
))
8994 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8996 #ifndef BNX2X_STOP_ON_ERROR
8999 rc
= bnx2x_func_stop(bp
);
9001 BNX2X_ERR("Function stop failed!\n");
9002 #ifdef BNX2X_STOP_ON_ERROR
9007 /* Disable HW interrupts, NAPI */
9008 bnx2x_netif_stop(bp
, 1);
9009 /* Delete all NAPI objects */
9010 bnx2x_del_all_napi(bp
);
9011 if (CNIC_LOADED(bp
))
9012 bnx2x_del_all_napi_cnic(bp
);
9017 /* Reset the chip */
9018 rc
= bnx2x_reset_hw(bp
, reset_code
);
9020 BNX2X_ERR("HW_RESET failed\n");
9022 /* Report UNLOAD_DONE to MCP */
9023 bnx2x_send_unload_done(bp
, keep_link
);
9026 void bnx2x_disable_close_the_gate(struct bnx2x
*bp
)
9030 DP(NETIF_MSG_IFDOWN
, "Disabling \"close the gates\"\n");
9032 if (CHIP_IS_E1(bp
)) {
9033 int port
= BP_PORT(bp
);
9034 u32 addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
9035 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
9037 val
= REG_RD(bp
, addr
);
9039 REG_WR(bp
, addr
, val
);
9041 val
= REG_RD(bp
, MISC_REG_AEU_GENERAL_MASK
);
9042 val
&= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK
|
9043 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK
);
9044 REG_WR(bp
, MISC_REG_AEU_GENERAL_MASK
, val
);
9048 /* Close gates #2, #3 and #4: */
9049 static void bnx2x_set_234_gates(struct bnx2x
*bp
, bool close
)
9053 /* Gates #2 and #4a are closed/opened for "not E1" only */
9054 if (!CHIP_IS_E1(bp
)) {
9056 REG_WR(bp
, PXP_REG_HST_DISCARD_DOORBELLS
, !!close
);
9058 REG_WR(bp
, PXP_REG_HST_DISCARD_INTERNAL_WRITES
, !!close
);
9062 if (CHIP_IS_E1x(bp
)) {
9063 /* Prevent interrupts from HC on both ports */
9064 val
= REG_RD(bp
, HC_REG_CONFIG_1
);
9065 REG_WR(bp
, HC_REG_CONFIG_1
,
9066 (!close
) ? (val
| HC_CONFIG_1_REG_BLOCK_DISABLE_1
) :
9067 (val
& ~(u32
)HC_CONFIG_1_REG_BLOCK_DISABLE_1
));
9069 val
= REG_RD(bp
, HC_REG_CONFIG_0
);
9070 REG_WR(bp
, HC_REG_CONFIG_0
,
9071 (!close
) ? (val
| HC_CONFIG_0_REG_BLOCK_DISABLE_0
) :
9072 (val
& ~(u32
)HC_CONFIG_0_REG_BLOCK_DISABLE_0
));
9074 /* Prevent incoming interrupts in IGU */
9075 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
9077 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
,
9079 (val
| IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
) :
9080 (val
& ~(u32
)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
));
9083 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "%s gates #2, #3 and #4\n",
9084 close
? "closing" : "opening");
9088 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9090 static void bnx2x_clp_reset_prep(struct bnx2x
*bp
, u32
*magic_val
)
9092 /* Do some magic... */
9093 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
9094 *magic_val
= val
& SHARED_MF_CLP_MAGIC
;
9095 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
, val
| SHARED_MF_CLP_MAGIC
);
9099 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9101 * @bp: driver handle
9102 * @magic_val: old value of the `magic' bit.
9104 static void bnx2x_clp_reset_done(struct bnx2x
*bp
, u32 magic_val
)
9106 /* Restore the `magic' bit value... */
9107 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
9108 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
,
9109 (val
& (~SHARED_MF_CLP_MAGIC
)) | magic_val
);
9113 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9115 * @bp: driver handle
9116 * @magic_val: old value of 'magic' bit.
9118 * Takes care of CLP configurations.
9120 static void bnx2x_reset_mcp_prep(struct bnx2x
*bp
, u32
*magic_val
)
9123 u32 validity_offset
;
9125 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "Starting\n");
9127 /* Set `magic' bit in order to save MF config */
9128 if (!CHIP_IS_E1(bp
))
9129 bnx2x_clp_reset_prep(bp
, magic_val
);
9131 /* Get shmem offset */
9132 shmem
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
9134 offsetof(struct shmem_region
, validity_map
[BP_PORT(bp
)]);
9136 /* Clear validity map flags */
9138 REG_WR(bp
, shmem
+ validity_offset
, 0);
9141 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9142 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9145 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9147 * @bp: driver handle
9149 static void bnx2x_mcp_wait_one(struct bnx2x
*bp
)
9151 /* special handling for emulation and FPGA,
9152 wait 10 times longer */
9153 if (CHIP_REV_IS_SLOW(bp
))
9154 msleep(MCP_ONE_TIMEOUT
*10);
9156 msleep(MCP_ONE_TIMEOUT
);
9160 * initializes bp->common.shmem_base and waits for validity signature to appear
9162 static int bnx2x_init_shmem(struct bnx2x
*bp
)
9168 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
9169 if (bp
->common
.shmem_base
) {
9170 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
9171 if (val
& SHR_MEM_VALIDITY_MB
)
9175 bnx2x_mcp_wait_one(bp
);
9177 } while (cnt
++ < (MCP_TIMEOUT
/ MCP_ONE_TIMEOUT
));
9179 BNX2X_ERR("BAD MCP validity signature\n");
9184 static int bnx2x_reset_mcp_comp(struct bnx2x
*bp
, u32 magic_val
)
9186 int rc
= bnx2x_init_shmem(bp
);
9188 /* Restore the `magic' bit value */
9189 if (!CHIP_IS_E1(bp
))
9190 bnx2x_clp_reset_done(bp
, magic_val
);
9195 static void bnx2x_pxp_prep(struct bnx2x
*bp
)
9197 if (!CHIP_IS_E1(bp
)) {
9198 REG_WR(bp
, PXP2_REG_RD_START_INIT
, 0);
9199 REG_WR(bp
, PXP2_REG_RQ_RBC_DONE
, 0);
9205 * Reset the whole chip except for:
9207 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9210 * - MISC (including AEU)
9214 static void bnx2x_process_kill_chip_reset(struct bnx2x
*bp
, bool global
)
9216 u32 not_reset_mask1
, reset_mask1
, not_reset_mask2
, reset_mask2
;
9217 u32 global_bits2
, stay_reset2
;
9220 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9221 * (per chip) blocks.
9224 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU
|
9225 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE
;
9227 /* Don't reset the following blocks.
9228 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9229 * reset, as in 4 port device they might still be owned
9230 * by the MCP (there is only one leader per path).
9233 MISC_REGISTERS_RESET_REG_1_RST_HC
|
9234 MISC_REGISTERS_RESET_REG_1_RST_PXPV
|
9235 MISC_REGISTERS_RESET_REG_1_RST_PXP
;
9238 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO
|
9239 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE
|
9240 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE
|
9241 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE
|
9242 MISC_REGISTERS_RESET_REG_2_RST_RBCN
|
9243 MISC_REGISTERS_RESET_REG_2_RST_GRC
|
9244 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE
|
9245 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B
|
9246 MISC_REGISTERS_RESET_REG_2_RST_ATC
|
9247 MISC_REGISTERS_RESET_REG_2_PGLC
|
9248 MISC_REGISTERS_RESET_REG_2_RST_BMAC0
|
9249 MISC_REGISTERS_RESET_REG_2_RST_BMAC1
|
9250 MISC_REGISTERS_RESET_REG_2_RST_EMAC0
|
9251 MISC_REGISTERS_RESET_REG_2_RST_EMAC1
|
9252 MISC_REGISTERS_RESET_REG_2_UMAC0
|
9253 MISC_REGISTERS_RESET_REG_2_UMAC1
;
9256 * Keep the following blocks in reset:
9257 * - all xxMACs are handled by the bnx2x_link code.
9260 MISC_REGISTERS_RESET_REG_2_XMAC
|
9261 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT
;
9263 /* Full reset masks according to the chip */
9264 reset_mask1
= 0xffffffff;
9267 reset_mask2
= 0xffff;
9268 else if (CHIP_IS_E1H(bp
))
9269 reset_mask2
= 0x1ffff;
9270 else if (CHIP_IS_E2(bp
))
9271 reset_mask2
= 0xfffff;
9272 else /* CHIP_IS_E3 */
9273 reset_mask2
= 0x3ffffff;
9275 /* Don't reset global blocks unless we need to */
9277 reset_mask2
&= ~global_bits2
;
9280 * In case of attention in the QM, we need to reset PXP
9281 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9282 * because otherwise QM reset would release 'close the gates' shortly
9283 * before resetting the PXP, then the PSWRQ would send a write
9284 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9285 * read the payload data from PSWWR, but PSWWR would not
9286 * respond. The write queue in PGLUE would stuck, dmae commands
9287 * would not return. Therefore it's important to reset the second
9288 * reset register (containing the
9289 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9290 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9293 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
9294 reset_mask2
& (~not_reset_mask2
));
9296 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
9297 reset_mask1
& (~not_reset_mask1
));
9302 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
,
9303 reset_mask2
& (~stay_reset2
));
9308 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, reset_mask1
);
9313 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9314 * It should get cleared in no more than 1s.
9316 * @bp: driver handle
9318 * It should get cleared in no more than 1s. Returns 0 if
9319 * pending writes bit gets cleared.
9321 static int bnx2x_er_poll_igu_vq(struct bnx2x
*bp
)
9327 pend_bits
= REG_RD(bp
, IGU_REG_PENDING_BITS_STATUS
);
9332 usleep_range(1000, 2000);
9333 } while (cnt
-- > 0);
9336 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9344 static int bnx2x_process_kill(struct bnx2x
*bp
, bool global
)
9348 u32 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
, pgl_exp_rom2
;
9351 /* Empty the Tetris buffer, wait for 1s */
9353 sr_cnt
= REG_RD(bp
, PXP2_REG_RD_SR_CNT
);
9354 blk_cnt
= REG_RD(bp
, PXP2_REG_RD_BLK_CNT
);
9355 port_is_idle_0
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_0
);
9356 port_is_idle_1
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_1
);
9357 pgl_exp_rom2
= REG_RD(bp
, PXP2_REG_PGL_EXP_ROM2
);
9359 tags_63_32
= REG_RD(bp
, PGLUE_B_REG_TAGS_63_32
);
9361 if ((sr_cnt
== 0x7e) && (blk_cnt
== 0xa0) &&
9362 ((port_is_idle_0
& 0x1) == 0x1) &&
9363 ((port_is_idle_1
& 0x1) == 0x1) &&
9364 (pgl_exp_rom2
== 0xffffffff) &&
9365 (!CHIP_IS_E3(bp
) || (tags_63_32
== 0xffffffff)))
9367 usleep_range(1000, 2000);
9368 } while (cnt
-- > 0);
9371 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9372 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9373 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
,
9380 /* Close gates #2, #3 and #4 */
9381 bnx2x_set_234_gates(bp
, true);
9383 /* Poll for IGU VQs for 57712 and newer chips */
9384 if (!CHIP_IS_E1x(bp
) && bnx2x_er_poll_igu_vq(bp
))
9387 /* TBD: Indicate that "process kill" is in progress to MCP */
9389 /* Clear "unprepared" bit */
9390 REG_WR(bp
, MISC_REG_UNPREPARED
, 0);
9393 /* Make sure all is written to the chip before the reset */
9396 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9397 * PSWHST, GRC and PSWRD Tetris buffer.
9399 usleep_range(1000, 2000);
9401 /* Prepare to chip reset: */
9404 bnx2x_reset_mcp_prep(bp
, &val
);
9410 /* reset the chip */
9411 bnx2x_process_kill_chip_reset(bp
, global
);
9414 /* clear errors in PGB */
9415 if (!CHIP_IS_E1x(bp
))
9416 REG_WR(bp
, PGLUE_B_REG_LATCHED_ERRORS_CLR
, 0x7f);
9418 /* Recover after reset: */
9420 if (global
&& bnx2x_reset_mcp_comp(bp
, val
))
9423 /* TBD: Add resetting the NO_MCP mode DB here */
9425 /* Open the gates #2, #3 and #4 */
9426 bnx2x_set_234_gates(bp
, false);
9428 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9429 * reset state, re-enable attentions. */
9434 static int bnx2x_leader_reset(struct bnx2x
*bp
)
9437 bool global
= bnx2x_reset_is_global(bp
);
9440 /* if not going to reset MCP - load "fake" driver to reset HW while
9441 * driver is owner of the HW
9443 if (!global
&& !BP_NOMCP(bp
)) {
9444 load_code
= bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
,
9445 DRV_MSG_CODE_LOAD_REQ_WITH_LFA
);
9447 BNX2X_ERR("MCP response failure, aborting\n");
9449 goto exit_leader_reset
;
9451 if ((load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) &&
9452 (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
)) {
9453 BNX2X_ERR("MCP unexpected resp, aborting\n");
9455 goto exit_leader_reset2
;
9457 load_code
= bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
9459 BNX2X_ERR("MCP response failure, aborting\n");
9461 goto exit_leader_reset2
;
9465 /* Try to recover after the failure */
9466 if (bnx2x_process_kill(bp
, global
)) {
9467 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9470 goto exit_leader_reset2
;
9474 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9477 bnx2x_set_reset_done(bp
);
9479 bnx2x_clear_reset_global(bp
);
9482 /* unload "fake driver" if it was loaded */
9483 if (!global
&& !BP_NOMCP(bp
)) {
9484 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
9485 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
9489 bnx2x_release_leader_lock(bp
);
9494 static void bnx2x_recovery_failed(struct bnx2x
*bp
)
9496 netdev_err(bp
->dev
, "Recovery has failed. Power cycle is needed.\n");
9498 /* Disconnect this device */
9499 netif_device_detach(bp
->dev
);
9502 * Block ifup for all function on this engine until "process kill"
9505 bnx2x_set_reset_in_progress(bp
);
9507 /* Shut down the power */
9508 bnx2x_set_power_state(bp
, PCI_D3hot
);
9510 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
9516 * Assumption: runs under rtnl lock. This together with the fact
9517 * that it's called only from bnx2x_sp_rtnl() ensure that it
9518 * will never be called when netif_running(bp->dev) is false.
9520 static void bnx2x_parity_recover(struct bnx2x
*bp
)
9522 bool global
= false;
9523 u32 error_recovered
, error_unrecovered
;
9526 DP(NETIF_MSG_HW
, "Handling parity\n");
9528 switch (bp
->recovery_state
) {
9529 case BNX2X_RECOVERY_INIT
:
9530 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_INIT\n");
9531 is_parity
= bnx2x_chk_parity_attn(bp
, &global
, false);
9532 WARN_ON(!is_parity
);
9534 /* Try to get a LEADER_LOCK HW lock */
9535 if (bnx2x_trylock_leader_lock(bp
)) {
9536 bnx2x_set_reset_in_progress(bp
);
9538 * Check if there is a global attention and if
9539 * there was a global attention, set the global
9544 bnx2x_set_reset_global(bp
);
9549 /* Stop the driver */
9550 /* If interface has been removed - break */
9551 if (bnx2x_nic_unload(bp
, UNLOAD_RECOVERY
, false))
9554 bp
->recovery_state
= BNX2X_RECOVERY_WAIT
;
9556 /* Ensure "is_leader", MCP command sequence and
9557 * "recovery_state" update values are seen on other
9563 case BNX2X_RECOVERY_WAIT
:
9564 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_WAIT\n");
9565 if (bp
->is_leader
) {
9566 int other_engine
= BP_PATH(bp
) ? 0 : 1;
9567 bool other_load_status
=
9568 bnx2x_get_load_status(bp
, other_engine
);
9570 bnx2x_get_load_status(bp
, BP_PATH(bp
));
9571 global
= bnx2x_reset_is_global(bp
);
9574 * In case of a parity in a global block, let
9575 * the first leader that performs a
9576 * leader_reset() reset the global blocks in
9577 * order to clear global attentions. Otherwise
9578 * the gates will remain closed for that
9582 (global
&& other_load_status
)) {
9583 /* Wait until all other functions get
9586 schedule_delayed_work(&bp
->sp_rtnl_task
,
9590 /* If all other functions got down -
9591 * try to bring the chip back to
9592 * normal. In any case it's an exit
9593 * point for a leader.
9595 if (bnx2x_leader_reset(bp
)) {
9596 bnx2x_recovery_failed(bp
);
9600 /* If we are here, means that the
9601 * leader has succeeded and doesn't
9602 * want to be a leader any more. Try
9603 * to continue as a none-leader.
9607 } else { /* non-leader */
9608 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
))) {
9609 /* Try to get a LEADER_LOCK HW lock as
9610 * long as a former leader may have
9611 * been unloaded by the user or
9612 * released a leadership by another
9615 if (bnx2x_trylock_leader_lock(bp
)) {
9616 /* I'm a leader now! Restart a
9623 schedule_delayed_work(&bp
->sp_rtnl_task
,
9629 * If there was a global attention, wait
9630 * for it to be cleared.
9632 if (bnx2x_reset_is_global(bp
)) {
9633 schedule_delayed_work(
9640 bp
->eth_stats
.recoverable_error
;
9642 bp
->eth_stats
.unrecoverable_error
;
9643 bp
->recovery_state
=
9644 BNX2X_RECOVERY_NIC_LOADING
;
9645 if (bnx2x_nic_load(bp
, LOAD_NORMAL
)) {
9646 error_unrecovered
++;
9648 "Recovery failed. Power cycle needed\n");
9649 /* Disconnect this device */
9650 netif_device_detach(bp
->dev
);
9651 /* Shut down the power */
9652 bnx2x_set_power_state(
9656 bp
->recovery_state
=
9657 BNX2X_RECOVERY_DONE
;
9661 bp
->eth_stats
.recoverable_error
=
9663 bp
->eth_stats
.unrecoverable_error
=
9675 static int bnx2x_close(struct net_device
*dev
);
9677 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9678 * scheduled on a general queue in order to prevent a dead lock.
9680 static void bnx2x_sp_rtnl_task(struct work_struct
*work
)
9682 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_rtnl_task
.work
);
9686 if (!netif_running(bp
->dev
)) {
9691 if (unlikely(bp
->recovery_state
!= BNX2X_RECOVERY_DONE
)) {
9692 #ifdef BNX2X_STOP_ON_ERROR
9693 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9694 "you will need to reboot when done\n");
9695 goto sp_rtnl_not_reset
;
9698 * Clear all pending SP commands as we are going to reset the
9701 bp
->sp_rtnl_state
= 0;
9704 bnx2x_parity_recover(bp
);
9710 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT
, &bp
->sp_rtnl_state
)) {
9711 #ifdef BNX2X_STOP_ON_ERROR
9712 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9713 "you will need to reboot when done\n");
9714 goto sp_rtnl_not_reset
;
9718 * Clear all pending SP commands as we are going to reset the
9721 bp
->sp_rtnl_state
= 0;
9724 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
9725 bnx2x_nic_load(bp
, LOAD_NORMAL
);
9730 #ifdef BNX2X_STOP_ON_ERROR
9733 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC
, &bp
->sp_rtnl_state
))
9734 bnx2x_setup_tc(bp
->dev
, bp
->dcbx_port_params
.ets
.num_of_cos
);
9735 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE
, &bp
->sp_rtnl_state
))
9736 bnx2x_after_function_update(bp
);
9738 * in case of fan failure we need to reset id if the "stop on error"
9739 * debug flag is set, since we trying to prevent permanent overheating
9742 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE
, &bp
->sp_rtnl_state
)) {
9743 DP(NETIF_MSG_HW
, "fan failure detected. Unloading driver\n");
9744 netif_device_detach(bp
->dev
);
9745 bnx2x_close(bp
->dev
);
9750 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST
, &bp
->sp_rtnl_state
)) {
9752 "sending set mcast vf pf channel message from rtnl sp-task\n");
9753 bnx2x_vfpf_set_mcast(bp
->dev
);
9755 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN
,
9756 &bp
->sp_rtnl_state
)){
9757 if (!test_bit(__LINK_STATE_NOCARRIER
, &bp
->dev
->state
)) {
9758 bnx2x_tx_disable(bp
);
9759 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9763 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE
, &bp
->sp_rtnl_state
)) {
9764 DP(BNX2X_MSG_SP
, "Handling Rx Mode setting\n");
9765 bnx2x_set_rx_mode_inner(bp
);
9768 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN
,
9769 &bp
->sp_rtnl_state
))
9770 bnx2x_pf_set_vfs_vlan(bp
);
9772 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP
, &bp
->sp_rtnl_state
)) {
9773 bnx2x_dcbx_stop_hw_tx(bp
);
9774 bnx2x_dcbx_resume_hw_tx(bp
);
9777 /* work which needs rtnl lock not-taken (as it takes the lock itself and
9778 * can be called from other contexts as well)
9782 /* enable SR-IOV if applicable */
9783 if (IS_SRIOV(bp
) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV
,
9784 &bp
->sp_rtnl_state
)) {
9785 bnx2x_disable_sriov(bp
);
9786 bnx2x_enable_sriov(bp
);
9790 static void bnx2x_period_task(struct work_struct
*work
)
9792 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, period_task
.work
);
9794 if (!netif_running(bp
->dev
))
9795 goto period_task_exit
;
9797 if (CHIP_REV_IS_SLOW(bp
)) {
9798 BNX2X_ERR("period task called on emulation, ignoring\n");
9799 goto period_task_exit
;
9802 bnx2x_acquire_phy_lock(bp
);
9804 * The barrier is needed to ensure the ordering between the writing to
9805 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9810 bnx2x_period_func(&bp
->link_params
, &bp
->link_vars
);
9812 /* Re-queue task in 1 sec */
9813 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 1*HZ
);
9816 bnx2x_release_phy_lock(bp
);
9822 * Init service functions
9825 static u32
bnx2x_get_pretend_reg(struct bnx2x
*bp
)
9827 u32 base
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
9828 u32 stride
= PXP2_REG_PGL_PRETEND_FUNC_F1
- base
;
9829 return base
+ (BP_ABS_FUNC(bp
)) * stride
;
9832 static void bnx2x_prev_unload_close_mac(struct bnx2x
*bp
,
9833 struct bnx2x_mac_vals
*vals
)
9835 u32 val
, base_addr
, offset
, mask
, reset_reg
;
9836 bool mac_stopped
= false;
9837 u8 port
= BP_PORT(bp
);
9839 /* reset addresses as they also mark which values were changed */
9840 vals
->bmac_addr
= 0;
9841 vals
->umac_addr
= 0;
9842 vals
->xmac_addr
= 0;
9843 vals
->emac_addr
= 0;
9845 reset_reg
= REG_RD(bp
, MISC_REG_RESET_REG_2
);
9847 if (!CHIP_IS_E3(bp
)) {
9848 val
= REG_RD(bp
, NIG_REG_BMAC0_REGS_OUT_EN
+ port
* 4);
9849 mask
= MISC_REGISTERS_RESET_REG_2_RST_BMAC0
<< port
;
9850 if ((mask
& reset_reg
) && val
) {
9852 BNX2X_DEV_INFO("Disable bmac Rx\n");
9853 base_addr
= BP_PORT(bp
) ? NIG_REG_INGRESS_BMAC1_MEM
9854 : NIG_REG_INGRESS_BMAC0_MEM
;
9855 offset
= CHIP_IS_E2(bp
) ? BIGMAC2_REGISTER_BMAC_CONTROL
9856 : BIGMAC_REGISTER_BMAC_CONTROL
;
9859 * use rd/wr since we cannot use dmae. This is safe
9860 * since MCP won't access the bus due to the request
9861 * to unload, and no function on the path can be
9862 * loaded at this time.
9864 wb_data
[0] = REG_RD(bp
, base_addr
+ offset
);
9865 wb_data
[1] = REG_RD(bp
, base_addr
+ offset
+ 0x4);
9866 vals
->bmac_addr
= base_addr
+ offset
;
9867 vals
->bmac_val
[0] = wb_data
[0];
9868 vals
->bmac_val
[1] = wb_data
[1];
9869 wb_data
[0] &= ~BMAC_CONTROL_RX_ENABLE
;
9870 REG_WR(bp
, vals
->bmac_addr
, wb_data
[0]);
9871 REG_WR(bp
, vals
->bmac_addr
+ 0x4, wb_data
[1]);
9873 BNX2X_DEV_INFO("Disable emac Rx\n");
9874 vals
->emac_addr
= NIG_REG_NIG_EMAC0_EN
+ BP_PORT(bp
)*4;
9875 vals
->emac_val
= REG_RD(bp
, vals
->emac_addr
);
9876 REG_WR(bp
, vals
->emac_addr
, 0);
9879 if (reset_reg
& MISC_REGISTERS_RESET_REG_2_XMAC
) {
9880 BNX2X_DEV_INFO("Disable xmac Rx\n");
9881 base_addr
= BP_PORT(bp
) ? GRCBASE_XMAC1
: GRCBASE_XMAC0
;
9882 val
= REG_RD(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
);
9883 REG_WR(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
,
9885 REG_WR(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
,
9887 vals
->xmac_addr
= base_addr
+ XMAC_REG_CTRL
;
9888 vals
->xmac_val
= REG_RD(bp
, vals
->xmac_addr
);
9889 REG_WR(bp
, vals
->xmac_addr
, 0);
9892 mask
= MISC_REGISTERS_RESET_REG_2_UMAC0
<< port
;
9893 if (mask
& reset_reg
) {
9894 BNX2X_DEV_INFO("Disable umac Rx\n");
9895 base_addr
= BP_PORT(bp
) ? GRCBASE_UMAC1
: GRCBASE_UMAC0
;
9896 vals
->umac_addr
= base_addr
+ UMAC_REG_COMMAND_CONFIG
;
9897 vals
->umac_val
= REG_RD(bp
, vals
->umac_addr
);
9898 REG_WR(bp
, vals
->umac_addr
, 0);
9907 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9908 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9909 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9910 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9912 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
9913 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
9914 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
9915 #define BNX2X_PREV_UNDI_MF_PORT(p) (0x1a150c + ((p) << 4))
9916 #define BNX2X_PREV_UNDI_MF_FUNC(f) (0x1a184c + ((f) << 4))
9917 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x
*bp
)
9919 u8 major
, minor
, version
;
9922 /* Must check that FW is loaded */
9923 if (!(REG_RD(bp
, MISC_REG_RESET_REG_1
) &
9924 MISC_REGISTERS_RESET_REG_1_RST_XSEM
)) {
9925 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9929 /* Read Currently loaded FW version */
9930 fw
= REG_RD(bp
, XSEM_REG_PRAM
);
9932 minor
= (fw
>> 0x8) & 0xff;
9933 version
= (fw
>> 0x10) & 0xff;
9934 BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9935 fw
, major
, minor
, version
);
9937 if (major
> BCM_5710_UNDI_FW_MF_MAJOR
)
9940 if ((major
== BCM_5710_UNDI_FW_MF_MAJOR
) &&
9941 (minor
> BCM_5710_UNDI_FW_MF_MINOR
))
9944 if ((major
== BCM_5710_UNDI_FW_MF_MAJOR
) &&
9945 (minor
== BCM_5710_UNDI_FW_MF_MINOR
) &&
9946 (version
>= BCM_5710_UNDI_FW_MF_VERS
))
9952 static void bnx2x_prev_unload_undi_mf(struct bnx2x
*bp
)
9956 /* Due to legacy (FW) code, the first function on each engine has a
9957 * different offset macro from the rest of the functions.
9958 * Setting this for all 8 functions is harmless regardless of whether
9959 * this is actually a multi-function device.
9961 for (i
= 0; i
< 2; i
++)
9962 REG_WR(bp
, BNX2X_PREV_UNDI_MF_PORT(i
), 1);
9964 for (i
= 2; i
< 8; i
++)
9965 REG_WR(bp
, BNX2X_PREV_UNDI_MF_FUNC(i
- 2), 1);
9967 BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9970 static void bnx2x_prev_unload_undi_inc(struct bnx2x
*bp
, u8 port
, u8 inc
)
9973 u32 tmp_reg
= REG_RD(bp
, BNX2X_PREV_UNDI_PROD_ADDR(port
));
9975 rcq
= BNX2X_PREV_UNDI_RCQ(tmp_reg
) + inc
;
9976 bd
= BNX2X_PREV_UNDI_BD(tmp_reg
) + inc
;
9978 tmp_reg
= BNX2X_PREV_UNDI_PROD(rcq
, bd
);
9979 REG_WR(bp
, BNX2X_PREV_UNDI_PROD_ADDR(port
), tmp_reg
);
9981 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9985 static int bnx2x_prev_mcp_done(struct bnx2x
*bp
)
9987 u32 rc
= bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
,
9988 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET
);
9990 BNX2X_ERR("MCP response failure, aborting\n");
9997 static struct bnx2x_prev_path_list
*
9998 bnx2x_prev_path_get_entry(struct bnx2x
*bp
)
10000 struct bnx2x_prev_path_list
*tmp_list
;
10002 list_for_each_entry(tmp_list
, &bnx2x_prev_list
, list
)
10003 if (PCI_SLOT(bp
->pdev
->devfn
) == tmp_list
->slot
&&
10004 bp
->pdev
->bus
->number
== tmp_list
->bus
&&
10005 BP_PATH(bp
) == tmp_list
->path
)
10011 static int bnx2x_prev_path_mark_eeh(struct bnx2x
*bp
)
10013 struct bnx2x_prev_path_list
*tmp_list
;
10016 rc
= down_interruptible(&bnx2x_prev_sem
);
10018 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10022 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10027 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10031 up(&bnx2x_prev_sem
);
10036 static bool bnx2x_prev_is_path_marked(struct bnx2x
*bp
)
10038 struct bnx2x_prev_path_list
*tmp_list
;
10041 if (down_trylock(&bnx2x_prev_sem
))
10044 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10046 if (tmp_list
->aer
) {
10047 DP(NETIF_MSG_HW
, "Path %d was marked by AER\n",
10051 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10056 up(&bnx2x_prev_sem
);
10061 bool bnx2x_port_after_undi(struct bnx2x
*bp
)
10063 struct bnx2x_prev_path_list
*entry
;
10066 down(&bnx2x_prev_sem
);
10068 entry
= bnx2x_prev_path_get_entry(bp
);
10069 val
= !!(entry
&& (entry
->undi
& (1 << BP_PORT(bp
))));
10071 up(&bnx2x_prev_sem
);
10076 static int bnx2x_prev_mark_path(struct bnx2x
*bp
, bool after_undi
)
10078 struct bnx2x_prev_path_list
*tmp_list
;
10081 rc
= down_interruptible(&bnx2x_prev_sem
);
10083 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10087 /* Check whether the entry for this path already exists */
10088 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10090 if (!tmp_list
->aer
) {
10091 BNX2X_ERR("Re-Marking the path.\n");
10093 DP(NETIF_MSG_HW
, "Removing AER indication from path %d\n",
10097 up(&bnx2x_prev_sem
);
10100 up(&bnx2x_prev_sem
);
10102 /* Create an entry for this path and add it */
10103 tmp_list
= kmalloc(sizeof(struct bnx2x_prev_path_list
), GFP_KERNEL
);
10105 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10109 tmp_list
->bus
= bp
->pdev
->bus
->number
;
10110 tmp_list
->slot
= PCI_SLOT(bp
->pdev
->devfn
);
10111 tmp_list
->path
= BP_PATH(bp
);
10113 tmp_list
->undi
= after_undi
? (1 << BP_PORT(bp
)) : 0;
10115 rc
= down_interruptible(&bnx2x_prev_sem
);
10117 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10120 DP(NETIF_MSG_HW
, "Marked path [%d] - finished previous unload\n",
10122 list_add(&tmp_list
->list
, &bnx2x_prev_list
);
10123 up(&bnx2x_prev_sem
);
10129 static int bnx2x_do_flr(struct bnx2x
*bp
)
10131 struct pci_dev
*dev
= bp
->pdev
;
10133 if (CHIP_IS_E1x(bp
)) {
10134 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10138 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10139 if (bp
->common
.bc_ver
< REQ_BC_VER_4_INITIATE_FLR
) {
10140 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10141 bp
->common
.bc_ver
);
10145 if (!pci_wait_for_pending_transaction(dev
))
10146 dev_err(&dev
->dev
, "transaction is not cleared; proceeding with reset anyway\n");
10148 BNX2X_DEV_INFO("Initiating FLR\n");
10149 bnx2x_fw_command(bp
, DRV_MSG_CODE_INITIATE_FLR
, 0);
10154 static int bnx2x_prev_unload_uncommon(struct bnx2x
*bp
)
10158 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10160 /* Test if previous unload process was already finished for this path */
10161 if (bnx2x_prev_is_path_marked(bp
))
10162 return bnx2x_prev_mcp_done(bp
);
10164 BNX2X_DEV_INFO("Path is unmarked\n");
10166 /* If function has FLR capabilities, and existing FW version matches
10167 * the one required, then FLR will be sufficient to clean any residue
10168 * left by previous driver
10170 rc
= bnx2x_compare_fw_ver(bp
, FW_MSG_CODE_DRV_LOAD_FUNCTION
, false);
10173 /* fw version is good */
10174 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10175 rc
= bnx2x_do_flr(bp
);
10179 /* FLR was performed */
10180 BNX2X_DEV_INFO("FLR successful\n");
10184 BNX2X_DEV_INFO("Could not FLR\n");
10186 /* Close the MCP request, return failure*/
10187 rc
= bnx2x_prev_mcp_done(bp
);
10189 rc
= BNX2X_PREV_WAIT_NEEDED
;
10194 static int bnx2x_prev_unload_common(struct bnx2x
*bp
)
10196 u32 reset_reg
, tmp_reg
= 0, rc
;
10197 bool prev_undi
= false;
10198 struct bnx2x_mac_vals mac_vals
;
10200 /* It is possible a previous function received 'common' answer,
10201 * but hasn't loaded yet, therefore creating a scenario of
10202 * multiple functions receiving 'common' on the same path.
10204 BNX2X_DEV_INFO("Common unload Flow\n");
10206 memset(&mac_vals
, 0, sizeof(mac_vals
));
10208 if (bnx2x_prev_is_path_marked(bp
))
10209 return bnx2x_prev_mcp_done(bp
);
10211 reset_reg
= REG_RD(bp
, MISC_REG_RESET_REG_1
);
10213 /* Reset should be performed after BRB is emptied */
10214 if (reset_reg
& MISC_REGISTERS_RESET_REG_1_RST_BRB1
) {
10215 u32 timer_count
= 1000;
10217 /* Close the MAC Rx to prevent BRB from filling up */
10218 bnx2x_prev_unload_close_mac(bp
, &mac_vals
);
10220 /* close LLH filters towards the BRB */
10221 bnx2x_set_rx_filter(&bp
->link_params
, 0);
10223 /* Check if the UNDI driver was previously loaded
10224 * UNDI driver initializes CID offset for normal bell to 0x7
10226 if (reset_reg
& MISC_REGISTERS_RESET_REG_1_RST_DORQ
) {
10227 tmp_reg
= REG_RD(bp
, DORQ_REG_NORM_CID_OFST
);
10228 if (tmp_reg
== 0x7) {
10229 BNX2X_DEV_INFO("UNDI previously loaded\n");
10231 /* clear the UNDI indication */
10232 REG_WR(bp
, DORQ_REG_NORM_CID_OFST
, 0);
10233 /* clear possible idle check errors */
10234 REG_RD(bp
, NIG_REG_NIG_INT_STS_CLR_0
);
10237 if (!CHIP_IS_E1x(bp
))
10238 /* block FW from writing to host */
10239 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
10241 /* wait until BRB is empty */
10242 tmp_reg
= REG_RD(bp
, BRB1_REG_NUM_OF_FULL_BLOCKS
);
10243 while (timer_count
) {
10244 u32 prev_brb
= tmp_reg
;
10246 tmp_reg
= REG_RD(bp
, BRB1_REG_NUM_OF_FULL_BLOCKS
);
10250 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg
);
10252 /* reset timer as long as BRB actually gets emptied */
10253 if (prev_brb
> tmp_reg
)
10254 timer_count
= 1000;
10258 /* New UNDI FW supports MF and contains better
10259 * cleaning methods - might be redundant but harmless.
10261 if (bnx2x_prev_unload_undi_fw_supports_mf(bp
)) {
10262 bnx2x_prev_unload_undi_mf(bp
);
10263 } else if (prev_undi
) {
10264 /* If UNDI resides in memory,
10265 * manually increment it
10267 bnx2x_prev_unload_undi_inc(bp
, BP_PORT(bp
), 1);
10273 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10276 /* No packets are in the pipeline, path is ready for reset */
10277 bnx2x_reset_common(bp
);
10279 if (mac_vals
.xmac_addr
)
10280 REG_WR(bp
, mac_vals
.xmac_addr
, mac_vals
.xmac_val
);
10281 if (mac_vals
.umac_addr
)
10282 REG_WR(bp
, mac_vals
.umac_addr
, mac_vals
.umac_val
);
10283 if (mac_vals
.emac_addr
)
10284 REG_WR(bp
, mac_vals
.emac_addr
, mac_vals
.emac_val
);
10285 if (mac_vals
.bmac_addr
) {
10286 REG_WR(bp
, mac_vals
.bmac_addr
, mac_vals
.bmac_val
[0]);
10287 REG_WR(bp
, mac_vals
.bmac_addr
+ 4, mac_vals
.bmac_val
[1]);
10290 rc
= bnx2x_prev_mark_path(bp
, prev_undi
);
10292 bnx2x_prev_mcp_done(bp
);
10296 return bnx2x_prev_mcp_done(bp
);
10299 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10300 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10301 * the addresses of the transaction, resulting in was-error bit set in the pci
10302 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10303 * to clear the interrupt which detected this from the pglueb and the was done
10306 static void bnx2x_prev_interrupted_dmae(struct bnx2x
*bp
)
10308 if (!CHIP_IS_E1x(bp
)) {
10309 u32 val
= REG_RD(bp
, PGLUE_B_REG_PGLUE_B_INT_STS
);
10310 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
) {
10312 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10313 REG_WR(bp
, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
,
10319 static int bnx2x_prev_unload(struct bnx2x
*bp
)
10321 int time_counter
= 10;
10322 u32 rc
, fw
, hw_lock_reg
, hw_lock_val
;
10323 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10325 /* clear hw from errors which may have resulted from an interrupted
10326 * dmae transaction.
10328 bnx2x_prev_interrupted_dmae(bp
);
10330 /* Release previously held locks */
10331 hw_lock_reg
= (BP_FUNC(bp
) <= 5) ?
10332 (MISC_REG_DRIVER_CONTROL_1
+ BP_FUNC(bp
) * 8) :
10333 (MISC_REG_DRIVER_CONTROL_7
+ (BP_FUNC(bp
) - 6) * 8);
10335 hw_lock_val
= REG_RD(bp
, hw_lock_reg
);
10337 if (hw_lock_val
& HW_LOCK_RESOURCE_NVRAM
) {
10338 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10339 REG_WR(bp
, MCP_REG_MCPR_NVM_SW_ARB
,
10340 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1
<< BP_PORT(bp
)));
10343 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10344 REG_WR(bp
, hw_lock_reg
, 0xffffffff);
10346 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10348 if (MCPR_ACCESS_LOCK_LOCK
& REG_RD(bp
, MCP_REG_MCPR_ACCESS_LOCK
)) {
10349 BNX2X_DEV_INFO("Release previously held alr\n");
10350 bnx2x_release_alr(bp
);
10355 /* Lock MCP using an unload request */
10356 fw
= bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
, 0);
10358 BNX2X_ERR("MCP response failure, aborting\n");
10363 rc
= down_interruptible(&bnx2x_prev_sem
);
10365 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10368 /* If Path is marked by EEH, ignore unload status */
10369 aer
= !!(bnx2x_prev_path_get_entry(bp
) &&
10370 bnx2x_prev_path_get_entry(bp
)->aer
);
10371 up(&bnx2x_prev_sem
);
10374 if (fw
== FW_MSG_CODE_DRV_UNLOAD_COMMON
|| aer
) {
10375 rc
= bnx2x_prev_unload_common(bp
);
10379 /* non-common reply from MCP might require looping */
10380 rc
= bnx2x_prev_unload_uncommon(bp
);
10381 if (rc
!= BNX2X_PREV_WAIT_NEEDED
)
10385 } while (--time_counter
);
10387 if (!time_counter
|| rc
) {
10388 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10389 rc
= -EPROBE_DEFER
;
10392 /* Mark function if its port was used to boot from SAN */
10393 if (bnx2x_port_after_undi(bp
))
10394 bp
->link_params
.feature_config_flags
|=
10395 FEATURE_CONFIG_BOOT_FROM_SAN
;
10397 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc
);
10402 static void bnx2x_get_common_hwinfo(struct bnx2x
*bp
)
10404 u32 val
, val2
, val3
, val4
, id
, boot_mode
;
10407 /* Get the chip revision id and number. */
10408 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10409 val
= REG_RD(bp
, MISC_REG_CHIP_NUM
);
10410 id
= ((val
& 0xffff) << 16);
10411 val
= REG_RD(bp
, MISC_REG_CHIP_REV
);
10412 id
|= ((val
& 0xf) << 12);
10414 /* Metal is read from PCI regs, but we can't access >=0x400 from
10415 * the configuration space (so we need to reg_rd)
10417 val
= REG_RD(bp
, PCICFG_OFFSET
+ PCI_ID_VAL3
);
10418 id
|= (((val
>> 24) & 0xf) << 4);
10419 val
= REG_RD(bp
, MISC_REG_BOND_ID
);
10421 bp
->common
.chip_id
= id
;
10423 /* force 57811 according to MISC register */
10424 if (REG_RD(bp
, MISC_REG_CHIP_TYPE
) & MISC_REG_CHIP_TYPE_57811_MASK
) {
10425 if (CHIP_IS_57810(bp
))
10426 bp
->common
.chip_id
= (CHIP_NUM_57811
<< 16) |
10427 (bp
->common
.chip_id
& 0x0000FFFF);
10428 else if (CHIP_IS_57810_MF(bp
))
10429 bp
->common
.chip_id
= (CHIP_NUM_57811_MF
<< 16) |
10430 (bp
->common
.chip_id
& 0x0000FFFF);
10431 bp
->common
.chip_id
|= 0x1;
10434 /* Set doorbell size */
10435 bp
->db_size
= (1 << BNX2X_DB_SHIFT
);
10437 if (!CHIP_IS_E1x(bp
)) {
10438 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN_OVWR
);
10439 if ((val
& 1) == 0)
10440 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN
);
10442 val
= (val
>> 1) & 1;
10443 BNX2X_DEV_INFO("chip is in %s\n", val
? "4_PORT_MODE" :
10445 bp
->common
.chip_port_mode
= val
? CHIP_4_PORT_MODE
:
10448 if (CHIP_MODE_IS_4_PORT(bp
))
10449 bp
->pfid
= (bp
->pf_num
>> 1); /* 0..3 */
10451 bp
->pfid
= (bp
->pf_num
& 0x6); /* 0, 2, 4, 6 */
10453 bp
->common
.chip_port_mode
= CHIP_PORT_MODE_NONE
; /* N/A */
10454 bp
->pfid
= bp
->pf_num
; /* 0..7 */
10457 BNX2X_DEV_INFO("pf_id: %x", bp
->pfid
);
10459 bp
->link_params
.chip_id
= bp
->common
.chip_id
;
10460 BNX2X_DEV_INFO("chip ID is 0x%x\n", id
);
10462 val
= (REG_RD(bp
, 0x2874) & 0x55);
10463 if ((bp
->common
.chip_id
& 0x1) ||
10464 (CHIP_IS_E1(bp
) && val
) || (CHIP_IS_E1H(bp
) && (val
== 0x55))) {
10465 bp
->flags
|= ONE_PORT_FLAG
;
10466 BNX2X_DEV_INFO("single port device\n");
10469 val
= REG_RD(bp
, MCP_REG_MCPR_NVM_CFG4
);
10470 bp
->common
.flash_size
= (BNX2X_NVRAM_1MB_SIZE
<<
10471 (val
& MCPR_NVM_CFG4_FLASH_SIZE
));
10472 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10473 bp
->common
.flash_size
, bp
->common
.flash_size
);
10475 bnx2x_init_shmem(bp
);
10477 bp
->common
.shmem2_base
= REG_RD(bp
, (BP_PATH(bp
) ?
10478 MISC_REG_GENERIC_CR_1
:
10479 MISC_REG_GENERIC_CR_0
));
10481 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
10482 bp
->link_params
.shmem2_base
= bp
->common
.shmem2_base
;
10483 if (SHMEM2_RD(bp
, size
) >
10484 (u32
)offsetof(struct shmem2_region
, lfa_host_addr
[BP_PORT(bp
)]))
10485 bp
->link_params
.lfa_base
=
10486 REG_RD(bp
, bp
->common
.shmem2_base
+
10487 (u32
)offsetof(struct shmem2_region
,
10488 lfa_host_addr
[BP_PORT(bp
)]));
10490 bp
->link_params
.lfa_base
= 0;
10491 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10492 bp
->common
.shmem_base
, bp
->common
.shmem2_base
);
10494 if (!bp
->common
.shmem_base
) {
10495 BNX2X_DEV_INFO("MCP not active\n");
10496 bp
->flags
|= NO_MCP_FLAG
;
10500 bp
->common
.hw_config
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config
);
10501 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp
->common
.hw_config
);
10503 bp
->link_params
.hw_led_mode
= ((bp
->common
.hw_config
&
10504 SHARED_HW_CFG_LED_MODE_MASK
) >>
10505 SHARED_HW_CFG_LED_MODE_SHIFT
);
10507 bp
->link_params
.feature_config_flags
= 0;
10508 val
= SHMEM_RD(bp
, dev_info
.shared_feature_config
.config
);
10509 if (val
& SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED
)
10510 bp
->link_params
.feature_config_flags
|=
10511 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
10513 bp
->link_params
.feature_config_flags
&=
10514 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
10516 val
= SHMEM_RD(bp
, dev_info
.bc_rev
) >> 8;
10517 bp
->common
.bc_ver
= val
;
10518 BNX2X_DEV_INFO("bc_ver %X\n", val
);
10519 if (val
< BNX2X_BC_VER
) {
10520 /* for now only warn
10521 * later we might need to enforce this */
10522 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10523 BNX2X_BC_VER
, val
);
10525 bp
->link_params
.feature_config_flags
|=
10526 (val
>= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL
) ?
10527 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY
: 0;
10529 bp
->link_params
.feature_config_flags
|=
10530 (val
>= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL
) ?
10531 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY
: 0;
10532 bp
->link_params
.feature_config_flags
|=
10533 (val
>= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED
) ?
10534 FEATURE_CONFIG_BC_SUPPORTS_AFEX
: 0;
10535 bp
->link_params
.feature_config_flags
|=
10536 (val
>= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED
) ?
10537 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED
: 0;
10539 bp
->link_params
.feature_config_flags
|=
10540 (val
>= REQ_BC_VER_4_MT_SUPPORTED
) ?
10541 FEATURE_CONFIG_MT_SUPPORT
: 0;
10543 bp
->flags
|= (val
>= REQ_BC_VER_4_PFC_STATS_SUPPORTED
) ?
10544 BC_SUPPORTS_PFC_STATS
: 0;
10546 bp
->flags
|= (val
>= REQ_BC_VER_4_FCOE_FEATURES
) ?
10547 BC_SUPPORTS_FCOE_FEATURES
: 0;
10549 bp
->flags
|= (val
>= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF
) ?
10550 BC_SUPPORTS_DCBX_MSG_NON_PMF
: 0;
10552 bp
->flags
|= (val
>= REQ_BC_VER_4_RMMOD_CMD
) ?
10553 BC_SUPPORTS_RMMOD_CMD
: 0;
10555 boot_mode
= SHMEM_RD(bp
,
10556 dev_info
.port_feature_config
[BP_PORT(bp
)].mba_config
) &
10557 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK
;
10558 switch (boot_mode
) {
10559 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE
:
10560 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_PXE
;
10562 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB
:
10563 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_ISCSI
;
10565 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT
:
10566 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_FCOE
;
10568 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE
:
10569 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_NONE
;
10573 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_PMC
, &pmc
);
10574 bp
->flags
|= (pmc
& PCI_PM_CAP_PME_D3cold
) ? 0 : NO_WOL_FLAG
;
10576 BNX2X_DEV_INFO("%sWoL capable\n",
10577 (bp
->flags
& NO_WOL_FLAG
) ? "not " : "");
10579 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
);
10580 val2
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[4]);
10581 val3
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[8]);
10582 val4
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[12]);
10584 dev_info(&bp
->pdev
->dev
, "part number %X-%X-%X-%X\n",
10585 val
, val2
, val3
, val4
);
10588 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10589 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10591 static int bnx2x_get_igu_cam_info(struct bnx2x
*bp
)
10593 int pfid
= BP_FUNC(bp
);
10596 u8 fid
, igu_sb_cnt
= 0;
10598 bp
->igu_base_sb
= 0xff;
10599 if (CHIP_INT_MODE_IS_BC(bp
)) {
10600 int vn
= BP_VN(bp
);
10601 igu_sb_cnt
= bp
->igu_sb_cnt
;
10602 bp
->igu_base_sb
= (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
) *
10605 bp
->igu_dsb_id
= E1HVN_MAX
* FP_SB_MAX_E1x
+
10606 (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
);
10611 /* IGU in normal mode - read CAM */
10612 for (igu_sb_id
= 0; igu_sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
;
10614 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ igu_sb_id
* 4);
10615 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
10617 fid
= IGU_FID(val
);
10618 if ((fid
& IGU_FID_ENCODE_IS_PF
)) {
10619 if ((fid
& IGU_FID_PF_NUM_MASK
) != pfid
)
10621 if (IGU_VEC(val
) == 0)
10622 /* default status block */
10623 bp
->igu_dsb_id
= igu_sb_id
;
10625 if (bp
->igu_base_sb
== 0xff)
10626 bp
->igu_base_sb
= igu_sb_id
;
10632 #ifdef CONFIG_PCI_MSI
10633 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10634 * optional that number of CAM entries will not be equal to the value
10635 * advertised in PCI.
10636 * Driver should use the minimal value of both as the actual status
10639 bp
->igu_sb_cnt
= min_t(int, bp
->igu_sb_cnt
, igu_sb_cnt
);
10642 if (igu_sb_cnt
== 0) {
10643 BNX2X_ERR("CAM configuration error\n");
10650 static void bnx2x_link_settings_supported(struct bnx2x
*bp
, u32 switch_cfg
)
10652 int cfg_size
= 0, idx
, port
= BP_PORT(bp
);
10654 /* Aggregation of supported attributes of all external phys */
10655 bp
->port
.supported
[0] = 0;
10656 bp
->port
.supported
[1] = 0;
10657 switch (bp
->link_params
.num_phys
) {
10659 bp
->port
.supported
[0] = bp
->link_params
.phy
[INT_PHY
].supported
;
10663 bp
->port
.supported
[0] = bp
->link_params
.phy
[EXT_PHY1
].supported
;
10667 if (bp
->link_params
.multi_phy_config
&
10668 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
10669 bp
->port
.supported
[1] =
10670 bp
->link_params
.phy
[EXT_PHY1
].supported
;
10671 bp
->port
.supported
[0] =
10672 bp
->link_params
.phy
[EXT_PHY2
].supported
;
10674 bp
->port
.supported
[0] =
10675 bp
->link_params
.phy
[EXT_PHY1
].supported
;
10676 bp
->port
.supported
[1] =
10677 bp
->link_params
.phy
[EXT_PHY2
].supported
;
10683 if (!(bp
->port
.supported
[0] || bp
->port
.supported
[1])) {
10684 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10686 dev_info
.port_hw_config
[port
].external_phy_config
),
10688 dev_info
.port_hw_config
[port
].external_phy_config2
));
10692 if (CHIP_IS_E3(bp
))
10693 bp
->port
.phy_addr
= REG_RD(bp
, MISC_REG_WC0_CTRL_PHY_ADDR
);
10695 switch (switch_cfg
) {
10696 case SWITCH_CFG_1G
:
10697 bp
->port
.phy_addr
= REG_RD(
10698 bp
, NIG_REG_SERDES0_CTRL_PHY_ADDR
+ port
*0x10);
10700 case SWITCH_CFG_10G
:
10701 bp
->port
.phy_addr
= REG_RD(
10702 bp
, NIG_REG_XGXS0_CTRL_PHY_ADDR
+ port
*0x18);
10705 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10706 bp
->port
.link_config
[0]);
10710 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp
->port
.phy_addr
);
10711 /* mask what we support according to speed_cap_mask per configuration */
10712 for (idx
= 0; idx
< cfg_size
; idx
++) {
10713 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10714 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF
))
10715 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Half
;
10717 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10718 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL
))
10719 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Full
;
10721 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10722 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF
))
10723 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Half
;
10725 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10726 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL
))
10727 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Full
;
10729 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10730 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G
))
10731 bp
->port
.supported
[idx
] &= ~(SUPPORTED_1000baseT_Half
|
10732 SUPPORTED_1000baseT_Full
);
10734 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10735 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G
))
10736 bp
->port
.supported
[idx
] &= ~SUPPORTED_2500baseX_Full
;
10738 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10739 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
))
10740 bp
->port
.supported
[idx
] &= ~SUPPORTED_10000baseT_Full
;
10742 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
10743 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G
))
10744 bp
->port
.supported
[idx
] &= ~SUPPORTED_20000baseKR2_Full
;
10747 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp
->port
.supported
[0],
10748 bp
->port
.supported
[1]);
10751 static void bnx2x_link_settings_requested(struct bnx2x
*bp
)
10753 u32 link_config
, idx
, cfg_size
= 0;
10754 bp
->port
.advertising
[0] = 0;
10755 bp
->port
.advertising
[1] = 0;
10756 switch (bp
->link_params
.num_phys
) {
10765 for (idx
= 0; idx
< cfg_size
; idx
++) {
10766 bp
->link_params
.req_duplex
[idx
] = DUPLEX_FULL
;
10767 link_config
= bp
->port
.link_config
[idx
];
10768 switch (link_config
& PORT_FEATURE_LINK_SPEED_MASK
) {
10769 case PORT_FEATURE_LINK_SPEED_AUTO
:
10770 if (bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
) {
10771 bp
->link_params
.req_line_speed
[idx
] =
10773 bp
->port
.advertising
[idx
] |=
10774 bp
->port
.supported
[idx
];
10775 if (bp
->link_params
.phy
[EXT_PHY1
].type
==
10776 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833
)
10777 bp
->port
.advertising
[idx
] |=
10778 (SUPPORTED_100baseT_Half
|
10779 SUPPORTED_100baseT_Full
);
10781 /* force 10G, no AN */
10782 bp
->link_params
.req_line_speed
[idx
] =
10784 bp
->port
.advertising
[idx
] |=
10785 (ADVERTISED_10000baseT_Full
|
10791 case PORT_FEATURE_LINK_SPEED_10M_FULL
:
10792 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Full
) {
10793 bp
->link_params
.req_line_speed
[idx
] =
10795 bp
->port
.advertising
[idx
] |=
10796 (ADVERTISED_10baseT_Full
|
10799 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10801 bp
->link_params
.speed_cap_mask
[idx
]);
10806 case PORT_FEATURE_LINK_SPEED_10M_HALF
:
10807 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Half
) {
10808 bp
->link_params
.req_line_speed
[idx
] =
10810 bp
->link_params
.req_duplex
[idx
] =
10812 bp
->port
.advertising
[idx
] |=
10813 (ADVERTISED_10baseT_Half
|
10816 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10818 bp
->link_params
.speed_cap_mask
[idx
]);
10823 case PORT_FEATURE_LINK_SPEED_100M_FULL
:
10824 if (bp
->port
.supported
[idx
] &
10825 SUPPORTED_100baseT_Full
) {
10826 bp
->link_params
.req_line_speed
[idx
] =
10828 bp
->port
.advertising
[idx
] |=
10829 (ADVERTISED_100baseT_Full
|
10832 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10834 bp
->link_params
.speed_cap_mask
[idx
]);
10839 case PORT_FEATURE_LINK_SPEED_100M_HALF
:
10840 if (bp
->port
.supported
[idx
] &
10841 SUPPORTED_100baseT_Half
) {
10842 bp
->link_params
.req_line_speed
[idx
] =
10844 bp
->link_params
.req_duplex
[idx
] =
10846 bp
->port
.advertising
[idx
] |=
10847 (ADVERTISED_100baseT_Half
|
10850 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10852 bp
->link_params
.speed_cap_mask
[idx
]);
10857 case PORT_FEATURE_LINK_SPEED_1G
:
10858 if (bp
->port
.supported
[idx
] &
10859 SUPPORTED_1000baseT_Full
) {
10860 bp
->link_params
.req_line_speed
[idx
] =
10862 bp
->port
.advertising
[idx
] |=
10863 (ADVERTISED_1000baseT_Full
|
10866 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10868 bp
->link_params
.speed_cap_mask
[idx
]);
10873 case PORT_FEATURE_LINK_SPEED_2_5G
:
10874 if (bp
->port
.supported
[idx
] &
10875 SUPPORTED_2500baseX_Full
) {
10876 bp
->link_params
.req_line_speed
[idx
] =
10878 bp
->port
.advertising
[idx
] |=
10879 (ADVERTISED_2500baseX_Full
|
10882 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10884 bp
->link_params
.speed_cap_mask
[idx
]);
10889 case PORT_FEATURE_LINK_SPEED_10G_CX4
:
10890 if (bp
->port
.supported
[idx
] &
10891 SUPPORTED_10000baseT_Full
) {
10892 bp
->link_params
.req_line_speed
[idx
] =
10894 bp
->port
.advertising
[idx
] |=
10895 (ADVERTISED_10000baseT_Full
|
10898 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10900 bp
->link_params
.speed_cap_mask
[idx
]);
10904 case PORT_FEATURE_LINK_SPEED_20G
:
10905 bp
->link_params
.req_line_speed
[idx
] = SPEED_20000
;
10909 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10911 bp
->link_params
.req_line_speed
[idx
] =
10913 bp
->port
.advertising
[idx
] =
10914 bp
->port
.supported
[idx
];
10918 bp
->link_params
.req_flow_ctrl
[idx
] = (link_config
&
10919 PORT_FEATURE_FLOW_CONTROL_MASK
);
10920 if (bp
->link_params
.req_flow_ctrl
[idx
] ==
10921 BNX2X_FLOW_CTRL_AUTO
) {
10922 if (!(bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
))
10923 bp
->link_params
.req_flow_ctrl
[idx
] =
10924 BNX2X_FLOW_CTRL_NONE
;
10926 bnx2x_set_requested_fc(bp
);
10929 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10930 bp
->link_params
.req_line_speed
[idx
],
10931 bp
->link_params
.req_duplex
[idx
],
10932 bp
->link_params
.req_flow_ctrl
[idx
],
10933 bp
->port
.advertising
[idx
]);
10937 static void bnx2x_set_mac_buf(u8
*mac_buf
, u32 mac_lo
, u16 mac_hi
)
10939 __be16 mac_hi_be
= cpu_to_be16(mac_hi
);
10940 __be32 mac_lo_be
= cpu_to_be32(mac_lo
);
10941 memcpy(mac_buf
, &mac_hi_be
, sizeof(mac_hi_be
));
10942 memcpy(mac_buf
+ sizeof(mac_hi_be
), &mac_lo_be
, sizeof(mac_lo_be
));
10945 static void bnx2x_get_port_hwinfo(struct bnx2x
*bp
)
10947 int port
= BP_PORT(bp
);
10949 u32 ext_phy_type
, ext_phy_config
, eee_mode
;
10951 bp
->link_params
.bp
= bp
;
10952 bp
->link_params
.port
= port
;
10954 bp
->link_params
.lane_config
=
10955 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].lane_config
);
10957 bp
->link_params
.speed_cap_mask
[0] =
10959 dev_info
.port_hw_config
[port
].speed_capability_mask
) &
10960 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK
;
10961 bp
->link_params
.speed_cap_mask
[1] =
10963 dev_info
.port_hw_config
[port
].speed_capability_mask2
) &
10964 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK
;
10965 bp
->port
.link_config
[0] =
10966 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config
);
10968 bp
->port
.link_config
[1] =
10969 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config2
);
10971 bp
->link_params
.multi_phy_config
=
10972 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].multi_phy_config
);
10973 /* If the device is capable of WoL, set the default state according
10976 config
= SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].config
);
10977 bp
->wol
= (!(bp
->flags
& NO_WOL_FLAG
) &&
10978 (config
& PORT_FEATURE_WOL_ENABLED
));
10980 if ((config
& PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK
) ==
10981 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE
&& !IS_MF(bp
))
10982 bp
->flags
|= NO_ISCSI_FLAG
;
10983 if ((config
& PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK
) ==
10984 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI
&& !(IS_MF(bp
)))
10985 bp
->flags
|= NO_FCOE_FLAG
;
10987 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10988 bp
->link_params
.lane_config
,
10989 bp
->link_params
.speed_cap_mask
[0],
10990 bp
->port
.link_config
[0]);
10992 bp
->link_params
.switch_cfg
= (bp
->port
.link_config
[0] &
10993 PORT_FEATURE_CONNECTED_SWITCH_MASK
);
10994 bnx2x_phy_probe(&bp
->link_params
);
10995 bnx2x_link_settings_supported(bp
, bp
->link_params
.switch_cfg
);
10997 bnx2x_link_settings_requested(bp
);
11000 * If connected directly, work with the internal PHY, otherwise, work
11001 * with the external PHY
11005 dev_info
.port_hw_config
[port
].external_phy_config
);
11006 ext_phy_type
= XGXS_EXT_PHY_TYPE(ext_phy_config
);
11007 if (ext_phy_type
== PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT
)
11008 bp
->mdio
.prtad
= bp
->port
.phy_addr
;
11010 else if ((ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
) &&
11011 (ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN
))
11013 XGXS_EXT_PHY_ADDR(ext_phy_config
);
11015 /* Configure link feature according to nvram value */
11016 eee_mode
= (((SHMEM_RD(bp
, dev_info
.
11017 port_feature_config
[port
].eee_power_mode
)) &
11018 PORT_FEAT_CFG_EEE_POWER_MODE_MASK
) >>
11019 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT
);
11020 if (eee_mode
!= PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED
) {
11021 bp
->link_params
.eee_mode
= EEE_MODE_ADV_LPI
|
11022 EEE_MODE_ENABLE_LPI
|
11023 EEE_MODE_OUTPUT_TIME
;
11025 bp
->link_params
.eee_mode
= 0;
11029 void bnx2x_get_iscsi_info(struct bnx2x
*bp
)
11031 u32 no_flags
= NO_ISCSI_FLAG
;
11032 int port
= BP_PORT(bp
);
11033 u32 max_iscsi_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
11034 drv_lic_key
[port
].max_iscsi_conn
);
11036 if (!CNIC_SUPPORT(bp
)) {
11037 bp
->flags
|= no_flags
;
11041 /* Get the number of maximum allowed iSCSI connections */
11042 bp
->cnic_eth_dev
.max_iscsi_conn
=
11043 (max_iscsi_conn
& BNX2X_MAX_ISCSI_INIT_CONN_MASK
) >>
11044 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT
;
11046 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11047 bp
->cnic_eth_dev
.max_iscsi_conn
);
11050 * If maximum allowed number of connections is zero -
11051 * disable the feature.
11053 if (!bp
->cnic_eth_dev
.max_iscsi_conn
)
11054 bp
->flags
|= no_flags
;
11057 static void bnx2x_get_ext_wwn_info(struct bnx2x
*bp
, int func
)
11060 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
11061 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_port_name_upper
);
11062 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
11063 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_port_name_lower
);
11066 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
11067 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_node_name_upper
);
11068 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
11069 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_node_name_lower
);
11072 static int bnx2x_shared_fcoe_funcs(struct bnx2x
*bp
)
11079 /* iterate over absolute function ids for this path: */
11080 for (fid
= BP_PATH(bp
); fid
< E2_FUNC_MAX
* 2; fid
+= 2) {
11081 if (IS_MF_SD(bp
)) {
11082 u32 cfg
= MF_CFG_RD(bp
,
11083 func_mf_config
[fid
].config
);
11085 if (!(cfg
& FUNC_MF_CFG_FUNC_HIDE
) &&
11086 ((cfg
& FUNC_MF_CFG_PROTOCOL_MASK
) ==
11087 FUNC_MF_CFG_PROTOCOL_FCOE
))
11090 u32 cfg
= MF_CFG_RD(bp
,
11091 func_ext_config
[fid
].
11094 if ((cfg
& MACP_FUNC_CFG_FLAGS_ENABLED
) &&
11095 (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
))
11100 int port
, port_cnt
= CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1;
11102 for (port
= 0; port
< port_cnt
; port
++) {
11103 u32 lic
= SHMEM_RD(bp
,
11104 drv_lic_key
[port
].max_fcoe_conn
) ^
11105 FW_ENCODE_32BIT_PATTERN
;
11114 static void bnx2x_get_fcoe_info(struct bnx2x
*bp
)
11116 int port
= BP_PORT(bp
);
11117 int func
= BP_ABS_FUNC(bp
);
11118 u32 max_fcoe_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
11119 drv_lic_key
[port
].max_fcoe_conn
);
11120 u8 num_fcoe_func
= bnx2x_shared_fcoe_funcs(bp
);
11122 if (!CNIC_SUPPORT(bp
)) {
11123 bp
->flags
|= NO_FCOE_FLAG
;
11127 /* Get the number of maximum allowed FCoE connections */
11128 bp
->cnic_eth_dev
.max_fcoe_conn
=
11129 (max_fcoe_conn
& BNX2X_MAX_FCOE_INIT_CONN_MASK
) >>
11130 BNX2X_MAX_FCOE_INIT_CONN_SHIFT
;
11132 /* Calculate the number of maximum allowed FCoE tasks */
11133 bp
->cnic_eth_dev
.max_fcoe_exchanges
= MAX_NUM_FCOE_TASKS_PER_ENGINE
;
11135 /* check if FCoE resources must be shared between different functions */
11137 bp
->cnic_eth_dev
.max_fcoe_exchanges
/= num_fcoe_func
;
11139 /* Read the WWN: */
11142 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
11144 dev_info
.port_hw_config
[port
].
11145 fcoe_wwn_port_name_upper
);
11146 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
11148 dev_info
.port_hw_config
[port
].
11149 fcoe_wwn_port_name_lower
);
11152 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
11154 dev_info
.port_hw_config
[port
].
11155 fcoe_wwn_node_name_upper
);
11156 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
11158 dev_info
.port_hw_config
[port
].
11159 fcoe_wwn_node_name_lower
);
11160 } else if (!IS_MF_SD(bp
)) {
11162 * Read the WWN info only if the FCoE feature is enabled for
11165 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp
) && !CHIP_IS_E1x(bp
))
11166 bnx2x_get_ext_wwn_info(bp
, func
);
11168 } else if (IS_MF_FCOE_SD(bp
) && !CHIP_IS_E1x(bp
)) {
11169 bnx2x_get_ext_wwn_info(bp
, func
);
11172 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp
->cnic_eth_dev
.max_fcoe_conn
);
11175 * If maximum allowed number of connections is zero -
11176 * disable the feature.
11178 if (!bp
->cnic_eth_dev
.max_fcoe_conn
)
11179 bp
->flags
|= NO_FCOE_FLAG
;
11182 static void bnx2x_get_cnic_info(struct bnx2x
*bp
)
11185 * iSCSI may be dynamically disabled but reading
11186 * info here we will decrease memory usage by driver
11187 * if the feature is disabled for good
11189 bnx2x_get_iscsi_info(bp
);
11190 bnx2x_get_fcoe_info(bp
);
11193 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x
*bp
)
11196 int func
= BP_ABS_FUNC(bp
);
11197 int port
= BP_PORT(bp
);
11198 u8
*iscsi_mac
= bp
->cnic_eth_dev
.iscsi_mac
;
11199 u8
*fip_mac
= bp
->fip_mac
;
11202 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11203 * FCoE MAC then the appropriate feature should be disabled.
11204 * In non SD mode features configuration comes from struct
11207 if (!IS_MF_SD(bp
) && !CHIP_IS_E1x(bp
)) {
11208 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
11209 if (cfg
& MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD
) {
11210 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
11211 iscsi_mac_addr_upper
);
11212 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
11213 iscsi_mac_addr_lower
);
11214 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
11216 ("Read iSCSI MAC: %pM\n", iscsi_mac
);
11218 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
11221 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
11222 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
11223 fcoe_mac_addr_upper
);
11224 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
11225 fcoe_mac_addr_lower
);
11226 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
11228 ("Read FCoE L2 MAC: %pM\n", fip_mac
);
11230 bp
->flags
|= NO_FCOE_FLAG
;
11233 bp
->mf_ext_config
= cfg
;
11235 } else { /* SD MODE */
11236 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp
)) {
11237 /* use primary mac as iscsi mac */
11238 memcpy(iscsi_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
11240 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11242 ("Read iSCSI MAC: %pM\n", iscsi_mac
);
11243 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp
)) {
11244 /* use primary mac as fip mac */
11245 memcpy(fip_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
11246 BNX2X_DEV_INFO("SD FCoE MODE\n");
11248 ("Read FIP MAC: %pM\n", fip_mac
);
11252 /* If this is a storage-only interface, use SAN mac as
11253 * primary MAC. Notice that for SD this is already the case,
11254 * as the SAN mac was copied from the primary MAC.
11256 if (IS_MF_FCOE_AFEX(bp
))
11257 memcpy(bp
->dev
->dev_addr
, fip_mac
, ETH_ALEN
);
11259 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11261 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11263 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
11265 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11266 fcoe_fip_mac_upper
);
11267 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11268 fcoe_fip_mac_lower
);
11269 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
11272 /* Disable iSCSI OOO if MAC configuration is invalid. */
11273 if (!is_valid_ether_addr(iscsi_mac
)) {
11274 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
11275 memset(iscsi_mac
, 0, ETH_ALEN
);
11278 /* Disable FCoE if MAC configuration is invalid. */
11279 if (!is_valid_ether_addr(fip_mac
)) {
11280 bp
->flags
|= NO_FCOE_FLAG
;
11281 memset(bp
->fip_mac
, 0, ETH_ALEN
);
11285 static void bnx2x_get_mac_hwinfo(struct bnx2x
*bp
)
11288 int func
= BP_ABS_FUNC(bp
);
11289 int port
= BP_PORT(bp
);
11291 /* Zero primary MAC configuration */
11292 memset(bp
->dev
->dev_addr
, 0, ETH_ALEN
);
11294 if (BP_NOMCP(bp
)) {
11295 BNX2X_ERROR("warning: random MAC workaround active\n");
11296 eth_hw_addr_random(bp
->dev
);
11297 } else if (IS_MF(bp
)) {
11298 val2
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_upper
);
11299 val
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_lower
);
11300 if ((val2
!= FUNC_MF_CFG_UPPERMAC_DEFAULT
) &&
11301 (val
!= FUNC_MF_CFG_LOWERMAC_DEFAULT
))
11302 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
11304 if (CNIC_SUPPORT(bp
))
11305 bnx2x_get_cnic_mac_hwinfo(bp
);
11307 /* in SF read MACs from port configuration */
11308 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
11309 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
11310 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
11312 if (CNIC_SUPPORT(bp
))
11313 bnx2x_get_cnic_mac_hwinfo(bp
);
11316 if (!BP_NOMCP(bp
)) {
11317 /* Read physical port identifier from shmem */
11318 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
11319 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
11320 bnx2x_set_mac_buf(bp
->phys_port_id
, val
, val2
);
11321 bp
->flags
|= HAS_PHYS_PORT_ID
;
11324 memcpy(bp
->link_params
.mac_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
11326 if (!bnx2x_is_valid_ether_addr(bp
, bp
->dev
->dev_addr
))
11327 dev_err(&bp
->pdev
->dev
,
11328 "bad Ethernet MAC address configuration: %pM\n"
11329 "change it manually before bringing up the appropriate network interface\n",
11330 bp
->dev
->dev_addr
);
11333 static bool bnx2x_get_dropless_info(struct bnx2x
*bp
)
11341 if (IS_MF(bp
) && !CHIP_IS_E1x(bp
)) {
11342 /* Take function: tmp = func */
11343 tmp
= BP_ABS_FUNC(bp
);
11344 cfg
= MF_CFG_RD(bp
, func_ext_config
[tmp
].func_cfg
);
11345 cfg
= !!(cfg
& MACP_FUNC_CFG_PAUSE_ON_HOST_RING
);
11347 /* Take port: tmp = port */
11350 dev_info
.port_hw_config
[tmp
].generic_features
);
11351 cfg
= !!(cfg
& PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED
);
11356 static int bnx2x_get_hwinfo(struct bnx2x
*bp
)
11358 int /*abs*/func
= BP_ABS_FUNC(bp
);
11363 bnx2x_get_common_hwinfo(bp
);
11366 * initialize IGU parameters
11368 if (CHIP_IS_E1x(bp
)) {
11369 bp
->common
.int_block
= INT_BLOCK_HC
;
11371 bp
->igu_dsb_id
= DEF_SB_IGU_ID
;
11372 bp
->igu_base_sb
= 0;
11374 bp
->common
.int_block
= INT_BLOCK_IGU
;
11376 /* do not allow device reset during IGU info processing */
11377 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
11379 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
11381 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
11384 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11386 val
&= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
);
11387 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
, val
);
11388 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x7f);
11390 while (tout
&& REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
11392 usleep_range(1000, 2000);
11395 if (REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
11396 dev_err(&bp
->pdev
->dev
,
11397 "FORCING Normal Mode failed!!!\n");
11398 bnx2x_release_hw_lock(bp
,
11399 HW_LOCK_RESOURCE_RESET
);
11404 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
11405 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11406 bp
->common
.int_block
|= INT_BLOCK_MODE_BW_COMP
;
11408 BNX2X_DEV_INFO("IGU Normal Mode\n");
11410 rc
= bnx2x_get_igu_cam_info(bp
);
11411 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
11417 * set base FW non-default (fast path) status block id, this value is
11418 * used to initialize the fw_sb_id saved on the fp/queue structure to
11419 * determine the id used by the FW.
11421 if (CHIP_IS_E1x(bp
))
11422 bp
->base_fw_ndsb
= BP_PORT(bp
) * FP_SB_MAX_E1x
+ BP_L_ID(bp
);
11424 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11425 * the same queue are indicated on the same IGU SB). So we prefer
11426 * FW and IGU SBs to be the same value.
11428 bp
->base_fw_ndsb
= bp
->igu_base_sb
;
11430 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11431 "base_fw_ndsb %d\n", bp
->igu_dsb_id
, bp
->igu_base_sb
,
11432 bp
->igu_sb_cnt
, bp
->base_fw_ndsb
);
11435 * Initialize MF configuration
11442 if (!CHIP_IS_E1(bp
) && !BP_NOMCP(bp
)) {
11443 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11444 bp
->common
.shmem2_base
, SHMEM2_RD(bp
, size
),
11445 (u32
)offsetof(struct shmem2_region
, mf_cfg_addr
));
11447 if (SHMEM2_HAS(bp
, mf_cfg_addr
))
11448 bp
->common
.mf_cfg_base
= SHMEM2_RD(bp
, mf_cfg_addr
);
11450 bp
->common
.mf_cfg_base
= bp
->common
.shmem_base
+
11451 offsetof(struct shmem_region
, func_mb
) +
11452 E1H_FUNC_MAX
* sizeof(struct drv_func_mb
);
11454 * get mf configuration:
11455 * 1. Existence of MF configuration
11456 * 2. MAC address must be legal (check only upper bytes)
11457 * for Switch-Independent mode;
11458 * OVLAN must be legal for Switch-Dependent mode
11459 * 3. SF_MODE configures specific MF mode
11461 if (bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
11462 /* get mf configuration */
11464 dev_info
.shared_feature_config
.config
);
11465 val
&= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK
;
11468 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT
:
11469 val
= MF_CFG_RD(bp
, func_mf_config
[func
].
11471 /* check for legal mac (upper bytes)*/
11472 if (val
!= 0xffff) {
11473 bp
->mf_mode
= MULTI_FUNCTION_SI
;
11474 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
11475 func_mf_config
[func
].config
);
11477 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11479 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE
:
11480 if ((!CHIP_IS_E1x(bp
)) &&
11481 (MF_CFG_RD(bp
, func_mf_config
[func
].
11482 mac_upper
) != 0xffff) &&
11484 afex_driver_support
))) {
11485 bp
->mf_mode
= MULTI_FUNCTION_AFEX
;
11486 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
11487 func_mf_config
[func
].config
);
11489 BNX2X_DEV_INFO("can not configure afex mode\n");
11492 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED
:
11493 /* get OV configuration */
11494 val
= MF_CFG_RD(bp
,
11495 func_mf_config
[FUNC_0
].e1hov_tag
);
11496 val
&= FUNC_MF_CFG_E1HOV_TAG_MASK
;
11498 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
11499 bp
->mf_mode
= MULTI_FUNCTION_SD
;
11500 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
11501 func_mf_config
[func
].config
);
11503 BNX2X_DEV_INFO("illegal OV for SD\n");
11505 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF
:
11506 bp
->mf_config
[vn
] = 0;
11509 /* Unknown configuration: reset mf_config */
11510 bp
->mf_config
[vn
] = 0;
11511 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val
);
11515 BNX2X_DEV_INFO("%s function mode\n",
11516 IS_MF(bp
) ? "multi" : "single");
11518 switch (bp
->mf_mode
) {
11519 case MULTI_FUNCTION_SD
:
11520 val
= MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
11521 FUNC_MF_CFG_E1HOV_TAG_MASK
;
11522 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
11524 bp
->path_has_ovlan
= true;
11526 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11527 func
, bp
->mf_ov
, bp
->mf_ov
);
11529 dev_err(&bp
->pdev
->dev
,
11530 "No valid MF OV for func %d, aborting\n",
11535 case MULTI_FUNCTION_AFEX
:
11536 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func
);
11538 case MULTI_FUNCTION_SI
:
11539 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11544 dev_err(&bp
->pdev
->dev
,
11545 "VN %d is in a single function mode, aborting\n",
11552 /* check if other port on the path needs ovlan:
11553 * Since MF configuration is shared between ports
11554 * Possible mixed modes are only
11555 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11557 if (CHIP_MODE_IS_4_PORT(bp
) &&
11558 !bp
->path_has_ovlan
&&
11560 bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
11561 u8 other_port
= !BP_PORT(bp
);
11562 u8 other_func
= BP_PATH(bp
) + 2*other_port
;
11563 val
= MF_CFG_RD(bp
,
11564 func_mf_config
[other_func
].e1hov_tag
);
11565 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
)
11566 bp
->path_has_ovlan
= true;
11570 /* adjust igu_sb_cnt to MF for E1H */
11571 if (CHIP_IS_E1H(bp
) && IS_MF(bp
))
11572 bp
->igu_sb_cnt
= min_t(u8
, bp
->igu_sb_cnt
, E1H_MAX_MF_SB_COUNT
);
11575 bnx2x_get_port_hwinfo(bp
);
11577 /* Get MAC addresses */
11578 bnx2x_get_mac_hwinfo(bp
);
11580 bnx2x_get_cnic_info(bp
);
11585 static void bnx2x_read_fwinfo(struct bnx2x
*bp
)
11587 int cnt
, i
, block_end
, rodi
;
11588 char vpd_start
[BNX2X_VPD_LEN
+1];
11589 char str_id_reg
[VENDOR_ID_LEN
+1];
11590 char str_id_cap
[VENDOR_ID_LEN
+1];
11592 char *vpd_extended_data
= NULL
;
11595 cnt
= pci_read_vpd(bp
->pdev
, 0, BNX2X_VPD_LEN
, vpd_start
);
11596 memset(bp
->fw_ver
, 0, sizeof(bp
->fw_ver
));
11598 if (cnt
< BNX2X_VPD_LEN
)
11599 goto out_not_found
;
11601 /* VPD RO tag should be first tag after identifier string, hence
11602 * we should be able to find it in first BNX2X_VPD_LEN chars
11604 i
= pci_vpd_find_tag(vpd_start
, 0, BNX2X_VPD_LEN
,
11605 PCI_VPD_LRDT_RO_DATA
);
11607 goto out_not_found
;
11609 block_end
= i
+ PCI_VPD_LRDT_TAG_SIZE
+
11610 pci_vpd_lrdt_size(&vpd_start
[i
]);
11612 i
+= PCI_VPD_LRDT_TAG_SIZE
;
11614 if (block_end
> BNX2X_VPD_LEN
) {
11615 vpd_extended_data
= kmalloc(block_end
, GFP_KERNEL
);
11616 if (vpd_extended_data
== NULL
)
11617 goto out_not_found
;
11619 /* read rest of vpd image into vpd_extended_data */
11620 memcpy(vpd_extended_data
, vpd_start
, BNX2X_VPD_LEN
);
11621 cnt
= pci_read_vpd(bp
->pdev
, BNX2X_VPD_LEN
,
11622 block_end
- BNX2X_VPD_LEN
,
11623 vpd_extended_data
+ BNX2X_VPD_LEN
);
11624 if (cnt
< (block_end
- BNX2X_VPD_LEN
))
11625 goto out_not_found
;
11626 vpd_data
= vpd_extended_data
;
11628 vpd_data
= vpd_start
;
11630 /* now vpd_data holds full vpd content in both cases */
11632 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
11633 PCI_VPD_RO_KEYWORD_MFR_ID
);
11635 goto out_not_found
;
11637 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
11639 if (len
!= VENDOR_ID_LEN
)
11640 goto out_not_found
;
11642 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
11644 /* vendor specific info */
11645 snprintf(str_id_reg
, VENDOR_ID_LEN
+ 1, "%04x", PCI_VENDOR_ID_DELL
);
11646 snprintf(str_id_cap
, VENDOR_ID_LEN
+ 1, "%04X", PCI_VENDOR_ID_DELL
);
11647 if (!strncmp(str_id_reg
, &vpd_data
[rodi
], VENDOR_ID_LEN
) ||
11648 !strncmp(str_id_cap
, &vpd_data
[rodi
], VENDOR_ID_LEN
)) {
11650 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
11651 PCI_VPD_RO_KEYWORD_VENDOR0
);
11653 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
11655 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
11657 if (len
< 32 && (len
+ rodi
) <= BNX2X_VPD_LEN
) {
11658 memcpy(bp
->fw_ver
, &vpd_data
[rodi
], len
);
11659 bp
->fw_ver
[len
] = ' ';
11662 kfree(vpd_extended_data
);
11666 kfree(vpd_extended_data
);
11670 static void bnx2x_set_modes_bitmap(struct bnx2x
*bp
)
11674 if (CHIP_REV_IS_FPGA(bp
))
11675 SET_FLAGS(flags
, MODE_FPGA
);
11676 else if (CHIP_REV_IS_EMUL(bp
))
11677 SET_FLAGS(flags
, MODE_EMUL
);
11679 SET_FLAGS(flags
, MODE_ASIC
);
11681 if (CHIP_MODE_IS_4_PORT(bp
))
11682 SET_FLAGS(flags
, MODE_PORT4
);
11684 SET_FLAGS(flags
, MODE_PORT2
);
11686 if (CHIP_IS_E2(bp
))
11687 SET_FLAGS(flags
, MODE_E2
);
11688 else if (CHIP_IS_E3(bp
)) {
11689 SET_FLAGS(flags
, MODE_E3
);
11690 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
11691 SET_FLAGS(flags
, MODE_E3_A0
);
11692 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11693 SET_FLAGS(flags
, MODE_E3_B0
| MODE_COS3
);
11697 SET_FLAGS(flags
, MODE_MF
);
11698 switch (bp
->mf_mode
) {
11699 case MULTI_FUNCTION_SD
:
11700 SET_FLAGS(flags
, MODE_MF_SD
);
11702 case MULTI_FUNCTION_SI
:
11703 SET_FLAGS(flags
, MODE_MF_SI
);
11705 case MULTI_FUNCTION_AFEX
:
11706 SET_FLAGS(flags
, MODE_MF_AFEX
);
11710 SET_FLAGS(flags
, MODE_SF
);
11712 #if defined(__LITTLE_ENDIAN)
11713 SET_FLAGS(flags
, MODE_LITTLE_ENDIAN
);
11714 #else /*(__BIG_ENDIAN)*/
11715 SET_FLAGS(flags
, MODE_BIG_ENDIAN
);
11717 INIT_MODE_FLAGS(bp
) = flags
;
11720 static int bnx2x_init_bp(struct bnx2x
*bp
)
11725 mutex_init(&bp
->port
.phy_mutex
);
11726 mutex_init(&bp
->fw_mb_mutex
);
11727 spin_lock_init(&bp
->stats_lock
);
11728 sema_init(&bp
->stats_sema
, 1);
11730 INIT_DELAYED_WORK(&bp
->sp_task
, bnx2x_sp_task
);
11731 INIT_DELAYED_WORK(&bp
->sp_rtnl_task
, bnx2x_sp_rtnl_task
);
11732 INIT_DELAYED_WORK(&bp
->period_task
, bnx2x_period_task
);
11734 rc
= bnx2x_get_hwinfo(bp
);
11738 eth_zero_addr(bp
->dev
->dev_addr
);
11741 bnx2x_set_modes_bitmap(bp
);
11743 rc
= bnx2x_alloc_mem_bp(bp
);
11747 bnx2x_read_fwinfo(bp
);
11749 func
= BP_FUNC(bp
);
11751 /* need to reset chip if undi was active */
11752 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
11755 SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
11756 DRV_MSG_SEQ_NUMBER_MASK
;
11757 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
11759 rc
= bnx2x_prev_unload(bp
);
11761 bnx2x_free_mem_bp(bp
);
11766 if (CHIP_REV_IS_FPGA(bp
))
11767 dev_err(&bp
->pdev
->dev
, "FPGA detected\n");
11769 if (BP_NOMCP(bp
) && (func
== 0))
11770 dev_err(&bp
->pdev
->dev
, "MCP disabled, must load devices in order!\n");
11772 bp
->disable_tpa
= disable_tpa
;
11773 bp
->disable_tpa
|= IS_MF_STORAGE_SD(bp
) || IS_MF_FCOE_AFEX(bp
);
11775 /* Set TPA flags */
11776 if (bp
->disable_tpa
) {
11777 bp
->flags
&= ~(TPA_ENABLE_FLAG
| GRO_ENABLE_FLAG
);
11778 bp
->dev
->features
&= ~NETIF_F_LRO
;
11780 bp
->flags
|= (TPA_ENABLE_FLAG
| GRO_ENABLE_FLAG
);
11781 bp
->dev
->features
|= NETIF_F_LRO
;
11784 if (CHIP_IS_E1(bp
))
11785 bp
->dropless_fc
= 0;
11787 bp
->dropless_fc
= dropless_fc
| bnx2x_get_dropless_info(bp
);
11791 bp
->tx_ring_size
= IS_MF_FCOE_AFEX(bp
) ? 0 : MAX_TX_AVAIL
;
11793 bp
->rx_ring_size
= MAX_RX_AVAIL
;
11795 /* make sure that the numbers are in the right granularity */
11796 bp
->tx_ticks
= (50 / BNX2X_BTR
) * BNX2X_BTR
;
11797 bp
->rx_ticks
= (25 / BNX2X_BTR
) * BNX2X_BTR
;
11799 bp
->current_interval
= CHIP_REV_IS_SLOW(bp
) ? 5*HZ
: HZ
;
11801 init_timer(&bp
->timer
);
11802 bp
->timer
.expires
= jiffies
+ bp
->current_interval
;
11803 bp
->timer
.data
= (unsigned long) bp
;
11804 bp
->timer
.function
= bnx2x_timer
;
11806 if (SHMEM2_HAS(bp
, dcbx_lldp_params_offset
) &&
11807 SHMEM2_HAS(bp
, dcbx_lldp_dcbx_stat_offset
) &&
11808 SHMEM2_RD(bp
, dcbx_lldp_params_offset
) &&
11809 SHMEM2_RD(bp
, dcbx_lldp_dcbx_stat_offset
)) {
11810 bnx2x_dcbx_set_state(bp
, true, BNX2X_DCBX_ENABLED_ON_NEG_ON
);
11811 bnx2x_dcbx_init_params(bp
);
11813 bnx2x_dcbx_set_state(bp
, false, BNX2X_DCBX_ENABLED_OFF
);
11816 if (CHIP_IS_E1x(bp
))
11817 bp
->cnic_base_cl_id
= FP_SB_MAX_E1x
;
11819 bp
->cnic_base_cl_id
= FP_SB_MAX_E2
;
11821 /* multiple tx priority */
11824 else if (CHIP_IS_E1x(bp
))
11825 bp
->max_cos
= BNX2X_MULTI_TX_COS_E1X
;
11826 else if (CHIP_IS_E2(bp
) || CHIP_IS_E3A0(bp
))
11827 bp
->max_cos
= BNX2X_MULTI_TX_COS_E2_E3A0
;
11828 else if (CHIP_IS_E3B0(bp
))
11829 bp
->max_cos
= BNX2X_MULTI_TX_COS_E3B0
;
11831 BNX2X_ERR("unknown chip %x revision %x\n",
11832 CHIP_NUM(bp
), CHIP_REV(bp
));
11833 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp
->max_cos
);
11835 /* We need at least one default status block for slow-path events,
11836 * second status block for the L2 queue, and a third status block for
11837 * CNIC if supported.
11840 bp
->min_msix_vec_cnt
= 1;
11841 else if (CNIC_SUPPORT(bp
))
11842 bp
->min_msix_vec_cnt
= 3;
11843 else /* PF w/o cnic */
11844 bp
->min_msix_vec_cnt
= 2;
11845 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp
->min_msix_vec_cnt
);
11847 bp
->dump_preset_idx
= 1;
11852 /****************************************************************************
11853 * General service functions
11854 ****************************************************************************/
11857 * net_device service functions
11860 /* called with rtnl_lock */
11861 static int bnx2x_open(struct net_device
*dev
)
11863 struct bnx2x
*bp
= netdev_priv(dev
);
11866 bp
->stats_init
= true;
11868 netif_carrier_off(dev
);
11870 bnx2x_set_power_state(bp
, PCI_D0
);
11872 /* If parity had happen during the unload, then attentions
11873 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11874 * want the first function loaded on the current engine to
11875 * complete the recovery.
11876 * Parity recovery is only relevant for PF driver.
11879 int other_engine
= BP_PATH(bp
) ? 0 : 1;
11880 bool other_load_status
, load_status
;
11881 bool global
= false;
11883 other_load_status
= bnx2x_get_load_status(bp
, other_engine
);
11884 load_status
= bnx2x_get_load_status(bp
, BP_PATH(bp
));
11885 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
)) ||
11886 bnx2x_chk_parity_attn(bp
, &global
, true)) {
11888 /* If there are attentions and they are in a
11889 * global blocks, set the GLOBAL_RESET bit
11890 * regardless whether it will be this function
11891 * that will complete the recovery or not.
11894 bnx2x_set_reset_global(bp
);
11896 /* Only the first function on the current
11897 * engine should try to recover in open. In case
11898 * of attentions in global blocks only the first
11899 * in the chip should try to recover.
11901 if ((!load_status
&&
11902 (!global
|| !other_load_status
)) &&
11903 bnx2x_trylock_leader_lock(bp
) &&
11904 !bnx2x_leader_reset(bp
)) {
11905 netdev_info(bp
->dev
,
11906 "Recovered in open\n");
11910 /* recovery has failed... */
11911 bnx2x_set_power_state(bp
, PCI_D3hot
);
11912 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
11914 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11915 "If you still see this message after a few retries then power cycle is required.\n");
11922 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
11923 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
11929 /* called with rtnl_lock */
11930 static int bnx2x_close(struct net_device
*dev
)
11932 struct bnx2x
*bp
= netdev_priv(dev
);
11934 /* Unload the driver, release IRQs */
11935 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
11940 static int bnx2x_init_mcast_macs_list(struct bnx2x
*bp
,
11941 struct bnx2x_mcast_ramrod_params
*p
)
11943 int mc_count
= netdev_mc_count(bp
->dev
);
11944 struct bnx2x_mcast_list_elem
*mc_mac
=
11945 kzalloc(sizeof(*mc_mac
) * mc_count
, GFP_ATOMIC
);
11946 struct netdev_hw_addr
*ha
;
11951 INIT_LIST_HEAD(&p
->mcast_list
);
11953 netdev_for_each_mc_addr(ha
, bp
->dev
) {
11954 mc_mac
->mac
= bnx2x_mc_addr(ha
);
11955 list_add_tail(&mc_mac
->link
, &p
->mcast_list
);
11959 p
->mcast_list_len
= mc_count
;
11964 static void bnx2x_free_mcast_macs_list(
11965 struct bnx2x_mcast_ramrod_params
*p
)
11967 struct bnx2x_mcast_list_elem
*mc_mac
=
11968 list_first_entry(&p
->mcast_list
, struct bnx2x_mcast_list_elem
,
11976 * bnx2x_set_uc_list - configure a new unicast MACs list.
11978 * @bp: driver handle
11980 * We will use zero (0) as a MAC type for these MACs.
11982 static int bnx2x_set_uc_list(struct bnx2x
*bp
)
11985 struct net_device
*dev
= bp
->dev
;
11986 struct netdev_hw_addr
*ha
;
11987 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
11988 unsigned long ramrod_flags
= 0;
11990 /* First schedule a cleanup up of old configuration */
11991 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, false);
11993 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc
);
11997 netdev_for_each_uc_addr(ha
, dev
) {
11998 rc
= bnx2x_set_mac_one(bp
, bnx2x_uc_addr(ha
), mac_obj
, true,
11999 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
12000 if (rc
== -EEXIST
) {
12002 "Failed to schedule ADD operations: %d\n", rc
);
12003 /* do not treat adding same MAC as error */
12006 } else if (rc
< 0) {
12008 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12014 /* Execute the pending commands */
12015 __set_bit(RAMROD_CONT
, &ramrod_flags
);
12016 return bnx2x_set_mac_one(bp
, NULL
, mac_obj
, false /* don't care */,
12017 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
12020 static int bnx2x_set_mc_list(struct bnx2x
*bp
)
12022 struct net_device
*dev
= bp
->dev
;
12023 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
12026 rparam
.mcast_obj
= &bp
->mcast_obj
;
12028 /* first, clear all configured multicast MACs */
12029 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
12031 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc
);
12035 /* then, configure a new MACs list */
12036 if (netdev_mc_count(dev
)) {
12037 rc
= bnx2x_init_mcast_macs_list(bp
, &rparam
);
12039 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12044 /* Now add the new MACs */
12045 rc
= bnx2x_config_mcast(bp
, &rparam
,
12046 BNX2X_MCAST_CMD_ADD
);
12048 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12051 bnx2x_free_mcast_macs_list(&rparam
);
12057 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12058 static void bnx2x_set_rx_mode(struct net_device
*dev
)
12060 struct bnx2x
*bp
= netdev_priv(dev
);
12062 if (bp
->state
!= BNX2X_STATE_OPEN
) {
12063 DP(NETIF_MSG_IFUP
, "state is %x, returning\n", bp
->state
);
12066 /* Schedule an SP task to handle rest of change */
12067 DP(NETIF_MSG_IFUP
, "Scheduling an Rx mode change\n");
12068 smp_mb__before_clear_bit();
12069 set_bit(BNX2X_SP_RTNL_RX_MODE
, &bp
->sp_rtnl_state
);
12070 smp_mb__after_clear_bit();
12071 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
12075 void bnx2x_set_rx_mode_inner(struct bnx2x
*bp
)
12077 u32 rx_mode
= BNX2X_RX_MODE_NORMAL
;
12079 DP(NETIF_MSG_IFUP
, "dev->flags = %x\n", bp
->dev
->flags
);
12081 netif_addr_lock_bh(bp
->dev
);
12083 if (bp
->dev
->flags
& IFF_PROMISC
) {
12084 rx_mode
= BNX2X_RX_MODE_PROMISC
;
12085 } else if ((bp
->dev
->flags
& IFF_ALLMULTI
) ||
12086 ((netdev_mc_count(bp
->dev
) > BNX2X_MAX_MULTICAST
) &&
12088 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
12091 /* some multicasts */
12092 if (bnx2x_set_mc_list(bp
) < 0)
12093 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
12095 /* release bh lock, as bnx2x_set_uc_list might sleep */
12096 netif_addr_unlock_bh(bp
->dev
);
12097 if (bnx2x_set_uc_list(bp
) < 0)
12098 rx_mode
= BNX2X_RX_MODE_PROMISC
;
12099 netif_addr_lock_bh(bp
->dev
);
12101 /* configuring mcast to a vf involves sleeping (when we
12102 * wait for the pf's response).
12104 smp_mb__before_clear_bit();
12105 set_bit(BNX2X_SP_RTNL_VFPF_MCAST
,
12106 &bp
->sp_rtnl_state
);
12107 smp_mb__after_clear_bit();
12108 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
12112 bp
->rx_mode
= rx_mode
;
12113 /* handle ISCSI SD mode */
12114 if (IS_MF_ISCSI_SD(bp
))
12115 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
12117 /* Schedule the rx_mode command */
12118 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
)) {
12119 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
12120 netif_addr_unlock_bh(bp
->dev
);
12125 bnx2x_set_storm_rx_mode(bp
);
12126 netif_addr_unlock_bh(bp
->dev
);
12128 /* VF will need to request the PF to make this change, and so
12129 * the VF needs to release the bottom-half lock prior to the
12130 * request (as it will likely require sleep on the VF side)
12132 netif_addr_unlock_bh(bp
->dev
);
12133 bnx2x_vfpf_storm_rx_mode(bp
);
12137 /* called with rtnl_lock */
12138 static int bnx2x_mdio_read(struct net_device
*netdev
, int prtad
,
12139 int devad
, u16 addr
)
12141 struct bnx2x
*bp
= netdev_priv(netdev
);
12145 DP(NETIF_MSG_LINK
, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12146 prtad
, devad
, addr
);
12148 /* The HW expects different devad if CL22 is used */
12149 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
12151 bnx2x_acquire_phy_lock(bp
);
12152 rc
= bnx2x_phy_read(&bp
->link_params
, prtad
, devad
, addr
, &value
);
12153 bnx2x_release_phy_lock(bp
);
12154 DP(NETIF_MSG_LINK
, "mdio_read_val 0x%x rc = 0x%x\n", value
, rc
);
12161 /* called with rtnl_lock */
12162 static int bnx2x_mdio_write(struct net_device
*netdev
, int prtad
, int devad
,
12163 u16 addr
, u16 value
)
12165 struct bnx2x
*bp
= netdev_priv(netdev
);
12169 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12170 prtad
, devad
, addr
, value
);
12172 /* The HW expects different devad if CL22 is used */
12173 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
12175 bnx2x_acquire_phy_lock(bp
);
12176 rc
= bnx2x_phy_write(&bp
->link_params
, prtad
, devad
, addr
, value
);
12177 bnx2x_release_phy_lock(bp
);
12181 /* called with rtnl_lock */
12182 static int bnx2x_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
12184 struct bnx2x
*bp
= netdev_priv(dev
);
12185 struct mii_ioctl_data
*mdio
= if_mii(ifr
);
12187 DP(NETIF_MSG_LINK
, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12188 mdio
->phy_id
, mdio
->reg_num
, mdio
->val_in
);
12190 if (!netif_running(dev
))
12193 return mdio_mii_ioctl(&bp
->mdio
, mdio
, cmd
);
12196 #ifdef CONFIG_NET_POLL_CONTROLLER
12197 static void poll_bnx2x(struct net_device
*dev
)
12199 struct bnx2x
*bp
= netdev_priv(dev
);
12202 for_each_eth_queue(bp
, i
) {
12203 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
12204 napi_schedule(&bnx2x_fp(bp
, fp
->index
, napi
));
12209 static int bnx2x_validate_addr(struct net_device
*dev
)
12211 struct bnx2x
*bp
= netdev_priv(dev
);
12213 /* query the bulletin board for mac address configured by the PF */
12215 bnx2x_sample_bulletin(bp
);
12217 if (!bnx2x_is_valid_ether_addr(bp
, dev
->dev_addr
)) {
12218 BNX2X_ERR("Non-valid Ethernet address\n");
12219 return -EADDRNOTAVAIL
;
12224 static int bnx2x_get_phys_port_id(struct net_device
*netdev
,
12225 struct netdev_phys_port_id
*ppid
)
12227 struct bnx2x
*bp
= netdev_priv(netdev
);
12229 if (!(bp
->flags
& HAS_PHYS_PORT_ID
))
12230 return -EOPNOTSUPP
;
12232 ppid
->id_len
= sizeof(bp
->phys_port_id
);
12233 memcpy(ppid
->id
, bp
->phys_port_id
, ppid
->id_len
);
12238 static const struct net_device_ops bnx2x_netdev_ops
= {
12239 .ndo_open
= bnx2x_open
,
12240 .ndo_stop
= bnx2x_close
,
12241 .ndo_start_xmit
= bnx2x_start_xmit
,
12242 .ndo_select_queue
= bnx2x_select_queue
,
12243 .ndo_set_rx_mode
= bnx2x_set_rx_mode
,
12244 .ndo_set_mac_address
= bnx2x_change_mac_addr
,
12245 .ndo_validate_addr
= bnx2x_validate_addr
,
12246 .ndo_do_ioctl
= bnx2x_ioctl
,
12247 .ndo_change_mtu
= bnx2x_change_mtu
,
12248 .ndo_fix_features
= bnx2x_fix_features
,
12249 .ndo_set_features
= bnx2x_set_features
,
12250 .ndo_tx_timeout
= bnx2x_tx_timeout
,
12251 #ifdef CONFIG_NET_POLL_CONTROLLER
12252 .ndo_poll_controller
= poll_bnx2x
,
12254 .ndo_setup_tc
= bnx2x_setup_tc
,
12255 #ifdef CONFIG_BNX2X_SRIOV
12256 .ndo_set_vf_mac
= bnx2x_set_vf_mac
,
12257 .ndo_set_vf_vlan
= bnx2x_set_vf_vlan
,
12258 .ndo_get_vf_config
= bnx2x_get_vf_config
,
12260 #ifdef NETDEV_FCOE_WWNN
12261 .ndo_fcoe_get_wwn
= bnx2x_fcoe_get_wwn
,
12264 #ifdef CONFIG_NET_RX_BUSY_POLL
12265 .ndo_busy_poll
= bnx2x_low_latency_recv
,
12267 .ndo_get_phys_port_id
= bnx2x_get_phys_port_id
,
12270 static int bnx2x_set_coherency_mask(struct bnx2x
*bp
)
12272 struct device
*dev
= &bp
->pdev
->dev
;
12274 if (dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(64)) != 0 &&
12275 dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(32)) != 0) {
12276 dev_err(dev
, "System does not support DMA, aborting\n");
12283 static void bnx2x_disable_pcie_error_reporting(struct bnx2x
*bp
)
12285 if (bp
->flags
& AER_ENABLED
) {
12286 pci_disable_pcie_error_reporting(bp
->pdev
);
12287 bp
->flags
&= ~AER_ENABLED
;
12291 static int bnx2x_init_dev(struct bnx2x
*bp
, struct pci_dev
*pdev
,
12292 struct net_device
*dev
, unsigned long board_type
)
12296 bool chip_is_e1x
= (board_type
== BCM57710
||
12297 board_type
== BCM57711
||
12298 board_type
== BCM57711E
);
12300 SET_NETDEV_DEV(dev
, &pdev
->dev
);
12305 rc
= pci_enable_device(pdev
);
12307 dev_err(&bp
->pdev
->dev
,
12308 "Cannot enable PCI device, aborting\n");
12312 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
12313 dev_err(&bp
->pdev
->dev
,
12314 "Cannot find PCI device base address, aborting\n");
12316 goto err_out_disable
;
12319 if (IS_PF(bp
) && !(pci_resource_flags(pdev
, 2) & IORESOURCE_MEM
)) {
12320 dev_err(&bp
->pdev
->dev
, "Cannot find second PCI device base address, aborting\n");
12322 goto err_out_disable
;
12325 pci_read_config_dword(pdev
, PCICFG_REVISION_ID_OFFSET
, &pci_cfg_dword
);
12326 if ((pci_cfg_dword
& PCICFG_REVESION_ID_MASK
) ==
12327 PCICFG_REVESION_ID_ERROR_VAL
) {
12328 pr_err("PCI device error, probably due to fan failure, aborting\n");
12330 goto err_out_disable
;
12333 if (atomic_read(&pdev
->enable_cnt
) == 1) {
12334 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
12336 dev_err(&bp
->pdev
->dev
,
12337 "Cannot obtain PCI resources, aborting\n");
12338 goto err_out_disable
;
12341 pci_set_master(pdev
);
12342 pci_save_state(pdev
);
12346 if (!pdev
->pm_cap
) {
12347 dev_err(&bp
->pdev
->dev
,
12348 "Cannot find power management capability, aborting\n");
12350 goto err_out_release
;
12354 if (!pci_is_pcie(pdev
)) {
12355 dev_err(&bp
->pdev
->dev
, "Not PCI Express, aborting\n");
12357 goto err_out_release
;
12360 rc
= bnx2x_set_coherency_mask(bp
);
12362 goto err_out_release
;
12364 dev
->mem_start
= pci_resource_start(pdev
, 0);
12365 dev
->base_addr
= dev
->mem_start
;
12366 dev
->mem_end
= pci_resource_end(pdev
, 0);
12368 dev
->irq
= pdev
->irq
;
12370 bp
->regview
= pci_ioremap_bar(pdev
, 0);
12371 if (!bp
->regview
) {
12372 dev_err(&bp
->pdev
->dev
,
12373 "Cannot map register space, aborting\n");
12375 goto err_out_release
;
12378 /* In E1/E1H use pci device function given by kernel.
12379 * In E2/E3 read physical function from ME register since these chips
12380 * support Physical Device Assignment where kernel BDF maybe arbitrary
12381 * (depending on hypervisor).
12384 bp
->pf_num
= PCI_FUNC(pdev
->devfn
);
12387 pci_read_config_dword(bp
->pdev
,
12388 PCICFG_ME_REGISTER
, &pci_cfg_dword
);
12389 bp
->pf_num
= (u8
)((pci_cfg_dword
& ME_REG_ABS_PF_NUM
) >>
12390 ME_REG_ABS_PF_NUM_SHIFT
);
12392 BNX2X_DEV_INFO("me reg PF num: %d\n", bp
->pf_num
);
12394 /* clean indirect addresses */
12395 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
12396 PCICFG_VENDOR_ID_OFFSET
);
12398 /* AER (Advanced Error reporting) configuration */
12399 rc
= pci_enable_pcie_error_reporting(pdev
);
12401 bp
->flags
|= AER_ENABLED
;
12403 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc
);
12406 * Clean the following indirect addresses for all functions since it
12407 * is not used by the driver.
12410 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F0
, 0);
12411 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F0
, 0);
12412 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F0
, 0);
12413 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F0
, 0);
12416 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F1
, 0);
12417 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F1
, 0);
12418 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F1
, 0);
12419 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F1
, 0);
12422 /* Enable internal target-read (in case we are probed after PF
12423 * FLR). Must be done prior to any BAR read access. Only for
12428 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
12431 dev
->watchdog_timeo
= TX_TIMEOUT
;
12433 dev
->netdev_ops
= &bnx2x_netdev_ops
;
12434 bnx2x_set_ethtool_ops(bp
, dev
);
12436 dev
->priv_flags
|= IFF_UNICAST_FLT
;
12438 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
12439 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
|
12440 NETIF_F_RXCSUM
| NETIF_F_LRO
| NETIF_F_GRO
|
12441 NETIF_F_RXHASH
| NETIF_F_HW_VLAN_CTAG_TX
;
12442 if (!CHIP_IS_E1x(bp
)) {
12443 dev
->hw_features
|= NETIF_F_GSO_GRE
| NETIF_F_GSO_UDP_TUNNEL
|
12444 NETIF_F_GSO_IPIP
| NETIF_F_GSO_SIT
;
12445 dev
->hw_enc_features
=
12446 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
| NETIF_F_SG
|
12447 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
|
12450 NETIF_F_GSO_GRE
| NETIF_F_GSO_UDP_TUNNEL
;
12453 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
12454 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
| NETIF_F_HIGHDMA
;
12456 dev
->features
|= dev
->hw_features
| NETIF_F_HW_VLAN_CTAG_RX
;
12457 dev
->features
|= NETIF_F_HIGHDMA
;
12459 /* Add Loopback capability to the device */
12460 dev
->hw_features
|= NETIF_F_LOOPBACK
;
12463 dev
->dcbnl_ops
= &bnx2x_dcbnl_ops
;
12466 /* get_port_hwinfo() will set prtad and mmds properly */
12467 bp
->mdio
.prtad
= MDIO_PRTAD_NONE
;
12469 bp
->mdio
.mode_support
= MDIO_SUPPORTS_C45
| MDIO_EMULATE_C22
;
12470 bp
->mdio
.dev
= dev
;
12471 bp
->mdio
.mdio_read
= bnx2x_mdio_read
;
12472 bp
->mdio
.mdio_write
= bnx2x_mdio_write
;
12477 if (atomic_read(&pdev
->enable_cnt
) == 1)
12478 pci_release_regions(pdev
);
12481 pci_disable_device(pdev
);
12487 static int bnx2x_check_firmware(struct bnx2x
*bp
)
12489 const struct firmware
*firmware
= bp
->firmware
;
12490 struct bnx2x_fw_file_hdr
*fw_hdr
;
12491 struct bnx2x_fw_file_section
*sections
;
12492 u32 offset
, len
, num_ops
;
12493 __be16
*ops_offsets
;
12497 if (firmware
->size
< sizeof(struct bnx2x_fw_file_hdr
)) {
12498 BNX2X_ERR("Wrong FW size\n");
12502 fw_hdr
= (struct bnx2x_fw_file_hdr
*)firmware
->data
;
12503 sections
= (struct bnx2x_fw_file_section
*)fw_hdr
;
12505 /* Make sure none of the offsets and sizes make us read beyond
12506 * the end of the firmware data */
12507 for (i
= 0; i
< sizeof(*fw_hdr
) / sizeof(*sections
); i
++) {
12508 offset
= be32_to_cpu(sections
[i
].offset
);
12509 len
= be32_to_cpu(sections
[i
].len
);
12510 if (offset
+ len
> firmware
->size
) {
12511 BNX2X_ERR("Section %d length is out of bounds\n", i
);
12516 /* Likewise for the init_ops offsets */
12517 offset
= be32_to_cpu(fw_hdr
->init_ops_offsets
.offset
);
12518 ops_offsets
= (__force __be16
*)(firmware
->data
+ offset
);
12519 num_ops
= be32_to_cpu(fw_hdr
->init_ops
.len
) / sizeof(struct raw_op
);
12521 for (i
= 0; i
< be32_to_cpu(fw_hdr
->init_ops_offsets
.len
) / 2; i
++) {
12522 if (be16_to_cpu(ops_offsets
[i
]) > num_ops
) {
12523 BNX2X_ERR("Section offset %d is out of bounds\n", i
);
12528 /* Check FW version */
12529 offset
= be32_to_cpu(fw_hdr
->fw_version
.offset
);
12530 fw_ver
= firmware
->data
+ offset
;
12531 if ((fw_ver
[0] != BCM_5710_FW_MAJOR_VERSION
) ||
12532 (fw_ver
[1] != BCM_5710_FW_MINOR_VERSION
) ||
12533 (fw_ver
[2] != BCM_5710_FW_REVISION_VERSION
) ||
12534 (fw_ver
[3] != BCM_5710_FW_ENGINEERING_VERSION
)) {
12535 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12536 fw_ver
[0], fw_ver
[1], fw_ver
[2], fw_ver
[3],
12537 BCM_5710_FW_MAJOR_VERSION
,
12538 BCM_5710_FW_MINOR_VERSION
,
12539 BCM_5710_FW_REVISION_VERSION
,
12540 BCM_5710_FW_ENGINEERING_VERSION
);
12547 static void be32_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
12549 const __be32
*source
= (const __be32
*)_source
;
12550 u32
*target
= (u32
*)_target
;
12553 for (i
= 0; i
< n
/4; i
++)
12554 target
[i
] = be32_to_cpu(source
[i
]);
12558 Ops array is stored in the following format:
12559 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12561 static void bnx2x_prep_ops(const u8
*_source
, u8
*_target
, u32 n
)
12563 const __be32
*source
= (const __be32
*)_source
;
12564 struct raw_op
*target
= (struct raw_op
*)_target
;
12567 for (i
= 0, j
= 0; i
< n
/8; i
++, j
+= 2) {
12568 tmp
= be32_to_cpu(source
[j
]);
12569 target
[i
].op
= (tmp
>> 24) & 0xff;
12570 target
[i
].offset
= tmp
& 0xffffff;
12571 target
[i
].raw_data
= be32_to_cpu(source
[j
+ 1]);
12575 /* IRO array is stored in the following format:
12576 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12578 static void bnx2x_prep_iro(const u8
*_source
, u8
*_target
, u32 n
)
12580 const __be32
*source
= (const __be32
*)_source
;
12581 struct iro
*target
= (struct iro
*)_target
;
12584 for (i
= 0, j
= 0; i
< n
/sizeof(struct iro
); i
++) {
12585 target
[i
].base
= be32_to_cpu(source
[j
]);
12587 tmp
= be32_to_cpu(source
[j
]);
12588 target
[i
].m1
= (tmp
>> 16) & 0xffff;
12589 target
[i
].m2
= tmp
& 0xffff;
12591 tmp
= be32_to_cpu(source
[j
]);
12592 target
[i
].m3
= (tmp
>> 16) & 0xffff;
12593 target
[i
].size
= tmp
& 0xffff;
12598 static void be16_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
12600 const __be16
*source
= (const __be16
*)_source
;
12601 u16
*target
= (u16
*)_target
;
12604 for (i
= 0; i
< n
/2; i
++)
12605 target
[i
] = be16_to_cpu(source
[i
]);
12608 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12610 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12611 bp->arr = kmalloc(len, GFP_KERNEL); \
12614 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12615 (u8 *)bp->arr, len); \
12618 static int bnx2x_init_firmware(struct bnx2x
*bp
)
12620 const char *fw_file_name
;
12621 struct bnx2x_fw_file_hdr
*fw_hdr
;
12627 if (CHIP_IS_E1(bp
))
12628 fw_file_name
= FW_FILE_NAME_E1
;
12629 else if (CHIP_IS_E1H(bp
))
12630 fw_file_name
= FW_FILE_NAME_E1H
;
12631 else if (!CHIP_IS_E1x(bp
))
12632 fw_file_name
= FW_FILE_NAME_E2
;
12634 BNX2X_ERR("Unsupported chip revision\n");
12637 BNX2X_DEV_INFO("Loading %s\n", fw_file_name
);
12639 rc
= request_firmware(&bp
->firmware
, fw_file_name
, &bp
->pdev
->dev
);
12641 BNX2X_ERR("Can't load firmware file %s\n",
12643 goto request_firmware_exit
;
12646 rc
= bnx2x_check_firmware(bp
);
12648 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name
);
12649 goto request_firmware_exit
;
12652 fw_hdr
= (struct bnx2x_fw_file_hdr
*)bp
->firmware
->data
;
12654 /* Initialize the pointers to the init arrays */
12656 BNX2X_ALLOC_AND_SET(init_data
, request_firmware_exit
, be32_to_cpu_n
);
12659 BNX2X_ALLOC_AND_SET(init_ops
, init_ops_alloc_err
, bnx2x_prep_ops
);
12662 BNX2X_ALLOC_AND_SET(init_ops_offsets
, init_offsets_alloc_err
,
12665 /* STORMs firmware */
12666 INIT_TSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
12667 be32_to_cpu(fw_hdr
->tsem_int_table_data
.offset
);
12668 INIT_TSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
12669 be32_to_cpu(fw_hdr
->tsem_pram_data
.offset
);
12670 INIT_USEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
12671 be32_to_cpu(fw_hdr
->usem_int_table_data
.offset
);
12672 INIT_USEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
12673 be32_to_cpu(fw_hdr
->usem_pram_data
.offset
);
12674 INIT_XSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
12675 be32_to_cpu(fw_hdr
->xsem_int_table_data
.offset
);
12676 INIT_XSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
12677 be32_to_cpu(fw_hdr
->xsem_pram_data
.offset
);
12678 INIT_CSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
12679 be32_to_cpu(fw_hdr
->csem_int_table_data
.offset
);
12680 INIT_CSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
12681 be32_to_cpu(fw_hdr
->csem_pram_data
.offset
);
12683 BNX2X_ALLOC_AND_SET(iro_arr
, iro_alloc_err
, bnx2x_prep_iro
);
12688 kfree(bp
->init_ops_offsets
);
12689 init_offsets_alloc_err
:
12690 kfree(bp
->init_ops
);
12691 init_ops_alloc_err
:
12692 kfree(bp
->init_data
);
12693 request_firmware_exit
:
12694 release_firmware(bp
->firmware
);
12695 bp
->firmware
= NULL
;
12700 static void bnx2x_release_firmware(struct bnx2x
*bp
)
12702 kfree(bp
->init_ops_offsets
);
12703 kfree(bp
->init_ops
);
12704 kfree(bp
->init_data
);
12705 release_firmware(bp
->firmware
);
12706 bp
->firmware
= NULL
;
12709 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv
= {
12710 .init_hw_cmn_chip
= bnx2x_init_hw_common_chip
,
12711 .init_hw_cmn
= bnx2x_init_hw_common
,
12712 .init_hw_port
= bnx2x_init_hw_port
,
12713 .init_hw_func
= bnx2x_init_hw_func
,
12715 .reset_hw_cmn
= bnx2x_reset_common
,
12716 .reset_hw_port
= bnx2x_reset_port
,
12717 .reset_hw_func
= bnx2x_reset_func
,
12719 .gunzip_init
= bnx2x_gunzip_init
,
12720 .gunzip_end
= bnx2x_gunzip_end
,
12722 .init_fw
= bnx2x_init_firmware
,
12723 .release_fw
= bnx2x_release_firmware
,
12726 void bnx2x__init_func_obj(struct bnx2x
*bp
)
12728 /* Prepare DMAE related driver resources */
12729 bnx2x_setup_dmae(bp
);
12731 bnx2x_init_func_obj(bp
, &bp
->func_obj
,
12732 bnx2x_sp(bp
, func_rdata
),
12733 bnx2x_sp_mapping(bp
, func_rdata
),
12734 bnx2x_sp(bp
, func_afex_rdata
),
12735 bnx2x_sp_mapping(bp
, func_afex_rdata
),
12736 &bnx2x_func_sp_drv
);
12739 /* must be called after sriov-enable */
12740 static int bnx2x_set_qm_cid_count(struct bnx2x
*bp
)
12742 int cid_count
= BNX2X_L2_MAX_CID(bp
);
12745 cid_count
+= BNX2X_VF_CIDS
;
12747 if (CNIC_SUPPORT(bp
))
12748 cid_count
+= CNIC_CID_MAX
;
12750 return roundup(cid_count
, QM_CID_ROUND
);
12754 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12759 static int bnx2x_get_num_non_def_sbs(struct pci_dev
*pdev
, int cnic_cnt
)
12765 * If MSI-X is not supported - return number of SBs needed to support
12766 * one fast path queue: one FP queue + SB for CNIC
12768 if (!pdev
->msix_cap
) {
12769 dev_info(&pdev
->dev
, "no msix capability found\n");
12770 return 1 + cnic_cnt
;
12772 dev_info(&pdev
->dev
, "msix capability found\n");
12775 * The value in the PCI configuration space is the index of the last
12776 * entry, namely one less than the actual size of the table, which is
12777 * exactly what we want to return from this function: number of all SBs
12778 * without the default SB.
12779 * For VFs there is no default SB, then we return (index+1).
12781 pci_read_config_word(pdev
, pdev
->msix_cap
+ PCI_MSI_FLAGS
, &control
);
12783 index
= control
& PCI_MSIX_FLAGS_QSIZE
;
12788 static int set_max_cos_est(int chip_id
)
12794 return BNX2X_MULTI_TX_COS_E1X
;
12797 return BNX2X_MULTI_TX_COS_E2_E3A0
;
12802 case BCM57840_4_10
:
12803 case BCM57840_2_20
:
12809 return BNX2X_MULTI_TX_COS_E3B0
;
12817 pr_err("Unknown board_type (%d), aborting\n", chip_id
);
12822 static int set_is_vf(int chip_id
)
12836 static int bnx2x_init_one(struct pci_dev
*pdev
,
12837 const struct pci_device_id
*ent
)
12839 struct net_device
*dev
= NULL
;
12841 enum pcie_link_width pcie_width
;
12842 enum pci_bus_speed pcie_speed
;
12843 int rc
, max_non_def_sbs
;
12844 int rx_count
, tx_count
, rss_count
, doorbell_size
;
12849 /* An estimated maximum supported CoS number according to the chip
12851 * We will try to roughly estimate the maximum number of CoSes this chip
12852 * may support in order to minimize the memory allocated for Tx
12853 * netdev_queue's. This number will be accurately calculated during the
12854 * initialization of bp->max_cos based on the chip versions AND chip
12855 * revision in the bnx2x_init_bp().
12857 max_cos_est
= set_max_cos_est(ent
->driver_data
);
12858 if (max_cos_est
< 0)
12859 return max_cos_est
;
12860 is_vf
= set_is_vf(ent
->driver_data
);
12861 cnic_cnt
= is_vf
? 0 : 1;
12863 max_non_def_sbs
= bnx2x_get_num_non_def_sbs(pdev
, cnic_cnt
);
12865 /* add another SB for VF as it has no default SB */
12866 max_non_def_sbs
+= is_vf
? 1 : 0;
12868 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12869 rss_count
= max_non_def_sbs
- cnic_cnt
;
12874 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12875 rx_count
= rss_count
+ cnic_cnt
;
12877 /* Maximum number of netdev Tx queues:
12878 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
12880 tx_count
= rss_count
* max_cos_est
+ cnic_cnt
;
12882 /* dev zeroed in init_etherdev */
12883 dev
= alloc_etherdev_mqs(sizeof(*bp
), tx_count
, rx_count
);
12887 bp
= netdev_priv(dev
);
12891 bp
->flags
|= IS_VF_FLAG
;
12893 bp
->igu_sb_cnt
= max_non_def_sbs
;
12894 bp
->igu_base_addr
= IS_VF(bp
) ? PXP_VF_ADDR_IGU_START
: BAR_IGU_INTMEM
;
12895 bp
->msg_enable
= debug
;
12896 bp
->cnic_support
= cnic_cnt
;
12897 bp
->cnic_probe
= bnx2x_cnic_probe
;
12899 pci_set_drvdata(pdev
, dev
);
12901 rc
= bnx2x_init_dev(bp
, pdev
, dev
, ent
->driver_data
);
12907 BNX2X_DEV_INFO("This is a %s function\n",
12908 IS_PF(bp
) ? "physical" : "virtual");
12909 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp
) ? "on" : "off");
12910 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs
);
12911 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12912 tx_count
, rx_count
);
12914 rc
= bnx2x_init_bp(bp
);
12916 goto init_one_exit
;
12918 /* Map doorbells here as we need the real value of bp->max_cos which
12919 * is initialized in bnx2x_init_bp() to determine the number of
12923 bp
->doorbells
= bnx2x_vf_doorbells(bp
);
12924 rc
= bnx2x_vf_pci_alloc(bp
);
12926 goto init_one_exit
;
12928 doorbell_size
= BNX2X_L2_MAX_CID(bp
) * (1 << BNX2X_DB_SHIFT
);
12929 if (doorbell_size
> pci_resource_len(pdev
, 2)) {
12930 dev_err(&bp
->pdev
->dev
,
12931 "Cannot map doorbells, bar size too small, aborting\n");
12933 goto init_one_exit
;
12935 bp
->doorbells
= ioremap_nocache(pci_resource_start(pdev
, 2),
12938 if (!bp
->doorbells
) {
12939 dev_err(&bp
->pdev
->dev
,
12940 "Cannot map doorbell space, aborting\n");
12942 goto init_one_exit
;
12946 rc
= bnx2x_vfpf_acquire(bp
, tx_count
, rx_count
);
12948 goto init_one_exit
;
12951 /* Enable SRIOV if capability found in configuration space */
12952 rc
= bnx2x_iov_init_one(bp
, int_mode
, BNX2X_MAX_NUM_OF_VFS
);
12954 goto init_one_exit
;
12956 /* calc qm_cid_count */
12957 bp
->qm_cid_count
= bnx2x_set_qm_cid_count(bp
);
12958 BNX2X_DEV_INFO("qm_cid_count %d\n", bp
->qm_cid_count
);
12960 /* disable FCOE L2 queue for E1x*/
12961 if (CHIP_IS_E1x(bp
))
12962 bp
->flags
|= NO_FCOE_FLAG
;
12964 /* Set bp->num_queues for MSI-X mode*/
12965 bnx2x_set_num_queues(bp
);
12967 /* Configure interrupt mode: try to enable MSI-X/MSI if
12970 rc
= bnx2x_set_int_mode(bp
);
12972 dev_err(&pdev
->dev
, "Cannot set interrupts\n");
12973 goto init_one_exit
;
12975 BNX2X_DEV_INFO("set interrupts successfully\n");
12977 /* register the net device */
12978 rc
= register_netdev(dev
);
12980 dev_err(&pdev
->dev
, "Cannot register net device\n");
12981 goto init_one_exit
;
12983 BNX2X_DEV_INFO("device name after netdev register %s\n", dev
->name
);
12985 if (!NO_FCOE(bp
)) {
12986 /* Add storage MAC address */
12988 dev_addr_add(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
12991 if (pcie_get_minimum_link(bp
->pdev
, &pcie_speed
, &pcie_width
) ||
12992 pcie_speed
== PCI_SPEED_UNKNOWN
||
12993 pcie_width
== PCIE_LNK_WIDTH_UNKNOWN
)
12994 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12997 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12998 board_info
[ent
->driver_data
].name
,
12999 (CHIP_REV(bp
) >> 12) + 'A', (CHIP_METAL(bp
) >> 4),
13001 pcie_speed
== PCIE_SPEED_2_5GT
? "2.5GHz" :
13002 pcie_speed
== PCIE_SPEED_5_0GT
? "5.0GHz" :
13003 pcie_speed
== PCIE_SPEED_8_0GT
? "8.0GHz" :
13005 dev
->base_addr
, bp
->pdev
->irq
, dev
->dev_addr
);
13010 bnx2x_disable_pcie_error_reporting(bp
);
13013 iounmap(bp
->regview
);
13015 if (IS_PF(bp
) && bp
->doorbells
)
13016 iounmap(bp
->doorbells
);
13020 if (atomic_read(&pdev
->enable_cnt
) == 1)
13021 pci_release_regions(pdev
);
13023 pci_disable_device(pdev
);
13028 static void __bnx2x_remove(struct pci_dev
*pdev
,
13029 struct net_device
*dev
,
13031 bool remove_netdev
)
13033 /* Delete storage MAC address */
13034 if (!NO_FCOE(bp
)) {
13036 dev_addr_del(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
13041 /* Delete app tlvs from dcbnl */
13042 bnx2x_dcbnl_update_applist(bp
, true);
13047 (bp
->flags
& BC_SUPPORTS_RMMOD_CMD
))
13048 bnx2x_fw_command(bp
, DRV_MSG_CODE_RMMOD
, 0);
13050 /* Close the interface - either directly or implicitly */
13051 if (remove_netdev
) {
13052 unregister_netdev(dev
);
13059 bnx2x_iov_remove_one(bp
);
13061 /* Power on: we can't let PCI layer write to us while we are in D3 */
13063 bnx2x_set_power_state(bp
, PCI_D0
);
13065 /* Disable MSI/MSI-X */
13066 bnx2x_disable_msi(bp
);
13070 bnx2x_set_power_state(bp
, PCI_D3hot
);
13072 /* Make sure RESET task is not scheduled before continuing */
13073 cancel_delayed_work_sync(&bp
->sp_rtnl_task
);
13075 /* send message via vfpf channel to release the resources of this vf */
13077 bnx2x_vfpf_release(bp
);
13079 /* Assumes no further PCIe PM changes will occur */
13080 if (system_state
== SYSTEM_POWER_OFF
) {
13081 pci_wake_from_d3(pdev
, bp
->wol
);
13082 pci_set_power_state(pdev
, PCI_D3hot
);
13085 bnx2x_disable_pcie_error_reporting(bp
);
13086 if (remove_netdev
) {
13088 iounmap(bp
->regview
);
13090 /* For vfs, doorbells are part of the regview and were unmapped
13091 * along with it. FW is only loaded by PF.
13095 iounmap(bp
->doorbells
);
13097 bnx2x_release_firmware(bp
);
13099 bnx2x_free_mem_bp(bp
);
13103 if (atomic_read(&pdev
->enable_cnt
) == 1)
13104 pci_release_regions(pdev
);
13106 pci_disable_device(pdev
);
13110 static void bnx2x_remove_one(struct pci_dev
*pdev
)
13112 struct net_device
*dev
= pci_get_drvdata(pdev
);
13116 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
13119 bp
= netdev_priv(dev
);
13121 __bnx2x_remove(pdev
, dev
, bp
, true);
13124 static int bnx2x_eeh_nic_unload(struct bnx2x
*bp
)
13126 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
13128 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
13130 if (CNIC_LOADED(bp
))
13131 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
13134 bnx2x_tx_disable(bp
);
13135 /* Delete all NAPI objects */
13136 bnx2x_del_all_napi(bp
);
13137 if (CNIC_LOADED(bp
))
13138 bnx2x_del_all_napi_cnic(bp
);
13139 netdev_reset_tc(bp
->dev
);
13141 del_timer_sync(&bp
->timer
);
13142 cancel_delayed_work(&bp
->sp_task
);
13143 cancel_delayed_work(&bp
->period_task
);
13145 spin_lock_bh(&bp
->stats_lock
);
13146 bp
->stats_state
= STATS_STATE_DISABLED
;
13147 spin_unlock_bh(&bp
->stats_lock
);
13149 bnx2x_save_statistics(bp
);
13151 netif_carrier_off(bp
->dev
);
13157 * bnx2x_io_error_detected - called when PCI error is detected
13158 * @pdev: Pointer to PCI device
13159 * @state: The current pci connection state
13161 * This function is called after a PCI bus error affecting
13162 * this device has been detected.
13164 static pci_ers_result_t
bnx2x_io_error_detected(struct pci_dev
*pdev
,
13165 pci_channel_state_t state
)
13167 struct net_device
*dev
= pci_get_drvdata(pdev
);
13168 struct bnx2x
*bp
= netdev_priv(dev
);
13172 BNX2X_ERR("IO error detected\n");
13174 netif_device_detach(dev
);
13176 if (state
== pci_channel_io_perm_failure
) {
13178 return PCI_ERS_RESULT_DISCONNECT
;
13181 if (netif_running(dev
))
13182 bnx2x_eeh_nic_unload(bp
);
13184 bnx2x_prev_path_mark_eeh(bp
);
13186 pci_disable_device(pdev
);
13190 /* Request a slot reset */
13191 return PCI_ERS_RESULT_NEED_RESET
;
13195 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13196 * @pdev: Pointer to PCI device
13198 * Restart the card from scratch, as if from a cold-boot.
13200 static pci_ers_result_t
bnx2x_io_slot_reset(struct pci_dev
*pdev
)
13202 struct net_device
*dev
= pci_get_drvdata(pdev
);
13203 struct bnx2x
*bp
= netdev_priv(dev
);
13207 BNX2X_ERR("IO slot reset initializing...\n");
13208 if (pci_enable_device(pdev
)) {
13209 dev_err(&pdev
->dev
,
13210 "Cannot re-enable PCI device after reset\n");
13212 return PCI_ERS_RESULT_DISCONNECT
;
13215 pci_set_master(pdev
);
13216 pci_restore_state(pdev
);
13217 pci_save_state(pdev
);
13219 if (netif_running(dev
))
13220 bnx2x_set_power_state(bp
, PCI_D0
);
13222 if (netif_running(dev
)) {
13223 BNX2X_ERR("IO slot reset --> driver unload\n");
13225 /* MCP should have been reset; Need to wait for validity */
13226 bnx2x_init_shmem(bp
);
13228 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
13232 drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
13233 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
13234 v
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
13236 bnx2x_drain_tx_queues(bp
);
13237 bnx2x_send_unload_req(bp
, UNLOAD_RECOVERY
);
13238 bnx2x_netif_stop(bp
, 1);
13239 bnx2x_free_irq(bp
);
13241 /* Report UNLOAD_DONE to MCP */
13242 bnx2x_send_unload_done(bp
, true);
13247 bnx2x_prev_unload(bp
);
13249 /* We should have reseted the engine, so It's fair to
13250 * assume the FW will no longer write to the bnx2x driver.
13252 bnx2x_squeeze_objects(bp
);
13253 bnx2x_free_skbs(bp
);
13254 for_each_rx_queue(bp
, i
)
13255 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
13256 bnx2x_free_fp_mem(bp
);
13257 bnx2x_free_mem(bp
);
13259 bp
->state
= BNX2X_STATE_CLOSED
;
13264 /* If AER, perform cleanup of the PCIe registers */
13265 if (bp
->flags
& AER_ENABLED
) {
13266 if (pci_cleanup_aer_uncorrect_error_status(pdev
))
13267 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13269 DP(NETIF_MSG_HW
, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13272 return PCI_ERS_RESULT_RECOVERED
;
13276 * bnx2x_io_resume - called when traffic can start flowing again
13277 * @pdev: Pointer to PCI device
13279 * This callback is called when the error recovery driver tells us that
13280 * its OK to resume normal operation.
13282 static void bnx2x_io_resume(struct pci_dev
*pdev
)
13284 struct net_device
*dev
= pci_get_drvdata(pdev
);
13285 struct bnx2x
*bp
= netdev_priv(dev
);
13287 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
13288 netdev_err(bp
->dev
, "Handling parity error recovery. Try again later\n");
13294 bp
->fw_seq
= SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
13295 DRV_MSG_SEQ_NUMBER_MASK
;
13297 if (netif_running(dev
))
13298 bnx2x_nic_load(bp
, LOAD_NORMAL
);
13300 netif_device_attach(dev
);
13305 static const struct pci_error_handlers bnx2x_err_handler
= {
13306 .error_detected
= bnx2x_io_error_detected
,
13307 .slot_reset
= bnx2x_io_slot_reset
,
13308 .resume
= bnx2x_io_resume
,
13311 static void bnx2x_shutdown(struct pci_dev
*pdev
)
13313 struct net_device
*dev
= pci_get_drvdata(pdev
);
13319 bp
= netdev_priv(dev
);
13324 netif_device_detach(dev
);
13327 /* Don't remove the netdevice, as there are scenarios which will cause
13328 * the kernel to hang, e.g., when trying to remove bnx2i while the
13329 * rootfs is mounted from SAN.
13331 __bnx2x_remove(pdev
, dev
, bp
, false);
13334 static struct pci_driver bnx2x_pci_driver
= {
13335 .name
= DRV_MODULE_NAME
,
13336 .id_table
= bnx2x_pci_tbl
,
13337 .probe
= bnx2x_init_one
,
13338 .remove
= bnx2x_remove_one
,
13339 .suspend
= bnx2x_suspend
,
13340 .resume
= bnx2x_resume
,
13341 .err_handler
= &bnx2x_err_handler
,
13342 #ifdef CONFIG_BNX2X_SRIOV
13343 .sriov_configure
= bnx2x_sriov_configure
,
13345 .shutdown
= bnx2x_shutdown
,
13348 static int __init
bnx2x_init(void)
13352 pr_info("%s", version
);
13354 bnx2x_wq
= create_singlethread_workqueue("bnx2x");
13355 if (bnx2x_wq
== NULL
) {
13356 pr_err("Cannot create workqueue\n");
13360 ret
= pci_register_driver(&bnx2x_pci_driver
);
13362 pr_err("Cannot register driver\n");
13363 destroy_workqueue(bnx2x_wq
);
13368 static void __exit
bnx2x_cleanup(void)
13370 struct list_head
*pos
, *q
;
13372 pci_unregister_driver(&bnx2x_pci_driver
);
13374 destroy_workqueue(bnx2x_wq
);
13376 /* Free globally allocated resources */
13377 list_for_each_safe(pos
, q
, &bnx2x_prev_list
) {
13378 struct bnx2x_prev_path_list
*tmp
=
13379 list_entry(pos
, struct bnx2x_prev_path_list
, list
);
13385 void bnx2x_notify_link_changed(struct bnx2x
*bp
)
13387 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ BP_FUNC(bp
)*sizeof(u32
), 1);
13390 module_init(bnx2x_init
);
13391 module_exit(bnx2x_cleanup
);
13394 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13396 * @bp: driver handle
13397 * @set: set or clear the CAM entry
13399 * This function will wait until the ramrod completion returns.
13400 * Return 0 if success, -ENODEV if ramrod doesn't return.
13402 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x
*bp
)
13404 unsigned long ramrod_flags
= 0;
13406 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
13407 return bnx2x_set_mac_one(bp
, bp
->cnic_eth_dev
.iscsi_mac
,
13408 &bp
->iscsi_l2_mac_obj
, true,
13409 BNX2X_ISCSI_ETH_MAC
, &ramrod_flags
);
13412 /* count denotes the number of new completions we have seen */
13413 static void bnx2x_cnic_sp_post(struct bnx2x
*bp
, int count
)
13415 struct eth_spe
*spe
;
13416 int cxt_index
, cxt_offset
;
13418 #ifdef BNX2X_STOP_ON_ERROR
13419 if (unlikely(bp
->panic
))
13423 spin_lock_bh(&bp
->spq_lock
);
13424 BUG_ON(bp
->cnic_spq_pending
< count
);
13425 bp
->cnic_spq_pending
-= count
;
13427 for (; bp
->cnic_kwq_pending
; bp
->cnic_kwq_pending
--) {
13428 u16 type
= (le16_to_cpu(bp
->cnic_kwq_cons
->hdr
.type
)
13429 & SPE_HDR_CONN_TYPE
) >>
13430 SPE_HDR_CONN_TYPE_SHIFT
;
13431 u8 cmd
= (le32_to_cpu(bp
->cnic_kwq_cons
->hdr
.conn_and_cmd_data
)
13432 >> SPE_HDR_CMD_ID_SHIFT
) & 0xff;
13434 /* Set validation for iSCSI L2 client before sending SETUP
13437 if (type
== ETH_CONNECTION_TYPE
) {
13438 if (cmd
== RAMROD_CMD_ID_ETH_CLIENT_SETUP
) {
13439 cxt_index
= BNX2X_ISCSI_ETH_CID(bp
) /
13441 cxt_offset
= BNX2X_ISCSI_ETH_CID(bp
) -
13442 (cxt_index
* ILT_PAGE_CIDS
);
13443 bnx2x_set_ctx_validation(bp
,
13444 &bp
->context
[cxt_index
].
13445 vcxt
[cxt_offset
].eth
,
13446 BNX2X_ISCSI_ETH_CID(bp
));
13451 * There may be not more than 8 L2, not more than 8 L5 SPEs
13452 * and in the air. We also check that number of outstanding
13453 * COMMON ramrods is not more than the EQ and SPQ can
13456 if (type
== ETH_CONNECTION_TYPE
) {
13457 if (!atomic_read(&bp
->cq_spq_left
))
13460 atomic_dec(&bp
->cq_spq_left
);
13461 } else if (type
== NONE_CONNECTION_TYPE
) {
13462 if (!atomic_read(&bp
->eq_spq_left
))
13465 atomic_dec(&bp
->eq_spq_left
);
13466 } else if ((type
== ISCSI_CONNECTION_TYPE
) ||
13467 (type
== FCOE_CONNECTION_TYPE
)) {
13468 if (bp
->cnic_spq_pending
>=
13469 bp
->cnic_eth_dev
.max_kwqe_pending
)
13472 bp
->cnic_spq_pending
++;
13474 BNX2X_ERR("Unknown SPE type: %d\n", type
);
13479 spe
= bnx2x_sp_get_next(bp
);
13480 *spe
= *bp
->cnic_kwq_cons
;
13482 DP(BNX2X_MSG_SP
, "pending on SPQ %d, on KWQ %d count %d\n",
13483 bp
->cnic_spq_pending
, bp
->cnic_kwq_pending
, count
);
13485 if (bp
->cnic_kwq_cons
== bp
->cnic_kwq_last
)
13486 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
13488 bp
->cnic_kwq_cons
++;
13490 bnx2x_sp_prod_update(bp
);
13491 spin_unlock_bh(&bp
->spq_lock
);
13494 static int bnx2x_cnic_sp_queue(struct net_device
*dev
,
13495 struct kwqe_16
*kwqes
[], u32 count
)
13497 struct bnx2x
*bp
= netdev_priv(dev
);
13500 #ifdef BNX2X_STOP_ON_ERROR
13501 if (unlikely(bp
->panic
)) {
13502 BNX2X_ERR("Can't post to SP queue while panic\n");
13507 if ((bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) &&
13508 (bp
->recovery_state
!= BNX2X_RECOVERY_NIC_LOADING
)) {
13509 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13513 spin_lock_bh(&bp
->spq_lock
);
13515 for (i
= 0; i
< count
; i
++) {
13516 struct eth_spe
*spe
= (struct eth_spe
*)kwqes
[i
];
13518 if (bp
->cnic_kwq_pending
== MAX_SP_DESC_CNT
)
13521 *bp
->cnic_kwq_prod
= *spe
;
13523 bp
->cnic_kwq_pending
++;
13525 DP(BNX2X_MSG_SP
, "L5 SPQE %x %x %x:%x pos %d\n",
13526 spe
->hdr
.conn_and_cmd_data
, spe
->hdr
.type
,
13527 spe
->data
.update_data_addr
.hi
,
13528 spe
->data
.update_data_addr
.lo
,
13529 bp
->cnic_kwq_pending
);
13531 if (bp
->cnic_kwq_prod
== bp
->cnic_kwq_last
)
13532 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
13534 bp
->cnic_kwq_prod
++;
13537 spin_unlock_bh(&bp
->spq_lock
);
13539 if (bp
->cnic_spq_pending
< bp
->cnic_eth_dev
.max_kwqe_pending
)
13540 bnx2x_cnic_sp_post(bp
, 0);
13545 static int bnx2x_cnic_ctl_send(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
13547 struct cnic_ops
*c_ops
;
13550 mutex_lock(&bp
->cnic_mutex
);
13551 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
13552 lockdep_is_held(&bp
->cnic_mutex
));
13554 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
13555 mutex_unlock(&bp
->cnic_mutex
);
13560 static int bnx2x_cnic_ctl_send_bh(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
13562 struct cnic_ops
*c_ops
;
13566 c_ops
= rcu_dereference(bp
->cnic_ops
);
13568 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
13575 * for commands that have no data
13577 int bnx2x_cnic_notify(struct bnx2x
*bp
, int cmd
)
13579 struct cnic_ctl_info ctl
= {0};
13583 return bnx2x_cnic_ctl_send(bp
, &ctl
);
13586 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
)
13588 struct cnic_ctl_info ctl
= {0};
13590 /* first we tell CNIC and only then we count this as a completion */
13591 ctl
.cmd
= CNIC_CTL_COMPLETION_CMD
;
13592 ctl
.data
.comp
.cid
= cid
;
13593 ctl
.data
.comp
.error
= err
;
13595 bnx2x_cnic_ctl_send_bh(bp
, &ctl
);
13596 bnx2x_cnic_sp_post(bp
, 0);
13599 /* Called with netif_addr_lock_bh() taken.
13600 * Sets an rx_mode config for an iSCSI ETH client.
13602 * Completion should be checked outside.
13604 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
)
13606 unsigned long accept_flags
= 0, ramrod_flags
= 0;
13607 u8 cl_id
= bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
13608 int sched_state
= BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
;
13611 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13612 * because it's the only way for UIO Queue to accept
13613 * multicasts (in non-promiscuous mode only one Queue per
13614 * function will receive multicast packets (leading in our
13617 __set_bit(BNX2X_ACCEPT_UNICAST
, &accept_flags
);
13618 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &accept_flags
);
13619 __set_bit(BNX2X_ACCEPT_BROADCAST
, &accept_flags
);
13620 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
13622 /* Clear STOP_PENDING bit if START is requested */
13623 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &bp
->sp_state
);
13625 sched_state
= BNX2X_FILTER_ISCSI_ETH_START_SCHED
;
13627 /* Clear START_PENDING bit if STOP is requested */
13628 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &bp
->sp_state
);
13630 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
13631 set_bit(sched_state
, &bp
->sp_state
);
13633 __set_bit(RAMROD_RX
, &ramrod_flags
);
13634 bnx2x_set_q_rx_mode(bp
, cl_id
, 0, accept_flags
, 0,
13639 static int bnx2x_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*ctl
)
13641 struct bnx2x
*bp
= netdev_priv(dev
);
13644 switch (ctl
->cmd
) {
13645 case DRV_CTL_CTXTBL_WR_CMD
: {
13646 u32 index
= ctl
->data
.io
.offset
;
13647 dma_addr_t addr
= ctl
->data
.io
.dma_addr
;
13649 bnx2x_ilt_wr(bp
, index
, addr
);
13653 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD
: {
13654 int count
= ctl
->data
.credit
.credit_count
;
13656 bnx2x_cnic_sp_post(bp
, count
);
13660 /* rtnl_lock is held. */
13661 case DRV_CTL_START_L2_CMD
: {
13662 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13663 unsigned long sp_bits
= 0;
13665 /* Configure the iSCSI classification object */
13666 bnx2x_init_mac_obj(bp
, &bp
->iscsi_l2_mac_obj
,
13667 cp
->iscsi_l2_client_id
,
13668 cp
->iscsi_l2_cid
, BP_FUNC(bp
),
13669 bnx2x_sp(bp
, mac_rdata
),
13670 bnx2x_sp_mapping(bp
, mac_rdata
),
13671 BNX2X_FILTER_MAC_PENDING
,
13672 &bp
->sp_state
, BNX2X_OBJ_TYPE_RX
,
13675 /* Set iSCSI MAC address */
13676 rc
= bnx2x_set_iscsi_eth_mac_addr(bp
);
13683 /* Start accepting on iSCSI L2 ring */
13685 netif_addr_lock_bh(dev
);
13686 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
13687 netif_addr_unlock_bh(dev
);
13689 /* bits to wait on */
13690 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
13691 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &sp_bits
);
13693 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
13694 BNX2X_ERR("rx_mode completion timed out!\n");
13699 /* rtnl_lock is held. */
13700 case DRV_CTL_STOP_L2_CMD
: {
13701 unsigned long sp_bits
= 0;
13703 /* Stop accepting on iSCSI L2 ring */
13704 netif_addr_lock_bh(dev
);
13705 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
13706 netif_addr_unlock_bh(dev
);
13708 /* bits to wait on */
13709 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
13710 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &sp_bits
);
13712 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
13713 BNX2X_ERR("rx_mode completion timed out!\n");
13718 /* Unset iSCSI L2 MAC */
13719 rc
= bnx2x_del_all_macs(bp
, &bp
->iscsi_l2_mac_obj
,
13720 BNX2X_ISCSI_ETH_MAC
, true);
13723 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD
: {
13724 int count
= ctl
->data
.credit
.credit_count
;
13726 smp_mb__before_atomic_inc();
13727 atomic_add(count
, &bp
->cq_spq_left
);
13728 smp_mb__after_atomic_inc();
13731 case DRV_CTL_ULP_REGISTER_CMD
: {
13732 int ulp_type
= ctl
->data
.register_data
.ulp_type
;
13734 if (CHIP_IS_E3(bp
)) {
13735 int idx
= BP_FW_MB_IDX(bp
);
13736 u32 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
13737 int path
= BP_PATH(bp
);
13738 int port
= BP_PORT(bp
);
13740 u32 scratch_offset
;
13743 /* first write capability to shmem2 */
13744 if (ulp_type
== CNIC_ULP_ISCSI
)
13745 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
13746 else if (ulp_type
== CNIC_ULP_FCOE
)
13747 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
13748 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
13750 if ((ulp_type
!= CNIC_ULP_FCOE
) ||
13751 (!SHMEM2_HAS(bp
, ncsi_oem_data_addr
)) ||
13752 (!(bp
->flags
& BC_SUPPORTS_FCOE_FEATURES
)))
13755 /* if reached here - should write fcoe capabilities */
13756 scratch_offset
= SHMEM2_RD(bp
, ncsi_oem_data_addr
);
13757 if (!scratch_offset
)
13759 scratch_offset
+= offsetof(struct glob_ncsi_oem_data
,
13760 fcoe_features
[path
][port
]);
13761 host_addr
= (u32
*) &(ctl
->data
.register_data
.
13763 for (i
= 0; i
< sizeof(struct fcoe_capabilities
);
13765 REG_WR(bp
, scratch_offset
+ i
,
13766 *(host_addr
+ i
/4));
13771 case DRV_CTL_ULP_UNREGISTER_CMD
: {
13772 int ulp_type
= ctl
->data
.ulp_type
;
13774 if (CHIP_IS_E3(bp
)) {
13775 int idx
= BP_FW_MB_IDX(bp
);
13778 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
13779 if (ulp_type
== CNIC_ULP_ISCSI
)
13780 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
13781 else if (ulp_type
== CNIC_ULP_FCOE
)
13782 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
13783 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
13789 BNX2X_ERR("unknown command %x\n", ctl
->cmd
);
13796 void bnx2x_setup_cnic_irq_info(struct bnx2x
*bp
)
13798 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13800 if (bp
->flags
& USING_MSIX_FLAG
) {
13801 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
13802 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
13803 cp
->irq_arr
[0].vector
= bp
->msix_table
[1].vector
;
13805 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
13806 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
13808 if (!CHIP_IS_E1x(bp
))
13809 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e2_sb
;
13811 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e1x_sb
;
13813 cp
->irq_arr
[0].status_blk_num
= bnx2x_cnic_fw_sb_id(bp
);
13814 cp
->irq_arr
[0].status_blk_num2
= bnx2x_cnic_igu_sb_id(bp
);
13815 cp
->irq_arr
[1].status_blk
= bp
->def_status_blk
;
13816 cp
->irq_arr
[1].status_blk_num
= DEF_SB_ID
;
13817 cp
->irq_arr
[1].status_blk_num2
= DEF_SB_IGU_ID
;
13822 void bnx2x_setup_cnic_info(struct bnx2x
*bp
)
13824 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13826 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
13827 bnx2x_cid_ilt_lines(bp
);
13828 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
13829 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID(bp
);
13830 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID(bp
);
13832 DP(NETIF_MSG_IFUP
, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13833 BNX2X_1st_NON_L2_ETH_CID(bp
), cp
->starting_cid
, cp
->fcoe_init_cid
,
13836 if (NO_ISCSI_OOO(bp
))
13837 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
13840 static int bnx2x_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
13843 struct bnx2x
*bp
= netdev_priv(dev
);
13844 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13847 DP(NETIF_MSG_IFUP
, "Register_cnic called\n");
13850 BNX2X_ERR("NULL ops received\n");
13854 if (!CNIC_SUPPORT(bp
)) {
13855 BNX2X_ERR("Can't register CNIC when not supported\n");
13856 return -EOPNOTSUPP
;
13859 if (!CNIC_LOADED(bp
)) {
13860 rc
= bnx2x_load_cnic(bp
);
13862 BNX2X_ERR("CNIC-related load failed\n");
13867 bp
->cnic_enabled
= true;
13869 bp
->cnic_kwq
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
13873 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
13874 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
13875 bp
->cnic_kwq_last
= bp
->cnic_kwq
+ MAX_SP_DESC_CNT
;
13877 bp
->cnic_spq_pending
= 0;
13878 bp
->cnic_kwq_pending
= 0;
13880 bp
->cnic_data
= data
;
13883 cp
->drv_state
|= CNIC_DRV_STATE_REGD
;
13884 cp
->iro_arr
= bp
->iro_arr
;
13886 bnx2x_setup_cnic_irq_info(bp
);
13888 rcu_assign_pointer(bp
->cnic_ops
, ops
);
13893 static int bnx2x_unregister_cnic(struct net_device
*dev
)
13895 struct bnx2x
*bp
= netdev_priv(dev
);
13896 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13898 mutex_lock(&bp
->cnic_mutex
);
13900 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
13901 mutex_unlock(&bp
->cnic_mutex
);
13903 bp
->cnic_enabled
= false;
13904 kfree(bp
->cnic_kwq
);
13905 bp
->cnic_kwq
= NULL
;
13910 static struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
)
13912 struct bnx2x
*bp
= netdev_priv(dev
);
13913 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
13915 /* If both iSCSI and FCoE are disabled - return NULL in
13916 * order to indicate CNIC that it should not try to work
13917 * with this device.
13919 if (NO_ISCSI(bp
) && NO_FCOE(bp
))
13922 cp
->drv_owner
= THIS_MODULE
;
13923 cp
->chip_id
= CHIP_ID(bp
);
13924 cp
->pdev
= bp
->pdev
;
13925 cp
->io_base
= bp
->regview
;
13926 cp
->io_base2
= bp
->doorbells
;
13927 cp
->max_kwqe_pending
= 8;
13928 cp
->ctx_blk_size
= CDU_ILT_PAGE_SZ
;
13929 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
13930 bnx2x_cid_ilt_lines(bp
);
13931 cp
->ctx_tbl_len
= CNIC_ILT_LINES
;
13932 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
13933 cp
->drv_submit_kwqes_16
= bnx2x_cnic_sp_queue
;
13934 cp
->drv_ctl
= bnx2x_drv_ctl
;
13935 cp
->drv_register_cnic
= bnx2x_register_cnic
;
13936 cp
->drv_unregister_cnic
= bnx2x_unregister_cnic
;
13937 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID(bp
);
13938 cp
->iscsi_l2_client_id
=
13939 bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
13940 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID(bp
);
13942 if (NO_ISCSI_OOO(bp
))
13943 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
13946 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI
;
13949 cp
->drv_state
|= CNIC_DRV_STATE_NO_FCOE
;
13952 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13954 cp
->ctx_tbl_offset
,
13960 static u32
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath
*fp
)
13962 struct bnx2x
*bp
= fp
->bp
;
13963 u32 offset
= BAR_USTRORM_INTMEM
;
13966 return bnx2x_vf_ustorm_prods_offset(bp
, fp
);
13967 else if (!CHIP_IS_E1x(bp
))
13968 offset
+= USTORM_RX_PRODS_E2_OFFSET(fp
->cl_qzone_id
);
13970 offset
+= USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp
), fp
->cl_id
);
13975 /* called only on E1H or E2.
13976 * When pretending to be PF, the pretend value is the function number 0...7
13977 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13980 int bnx2x_pretend_func(struct bnx2x
*bp
, u16 pretend_func_val
)
13984 if (CHIP_IS_E1H(bp
) && pretend_func_val
>= E1H_FUNC_MAX
)
13987 /* get my own pretend register */
13988 pretend_reg
= bnx2x_get_pretend_reg(bp
);
13989 REG_WR(bp
, pretend_reg
, pretend_func_val
);
13990 REG_RD(bp
, pretend_reg
);