1 /* bnx2x_sp.c: Broadcom Everest network driver.
3 * Copyright (c) 2011-2013 Broadcom Corporation
5 * Unless you and Broadcom execute a separate written software license
6 * agreement governing use of this software, this software is licensed to you
7 * under the terms of the GNU General Public License version 2, available
8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
10 * Notwithstanding the above, under no circumstances may you combine this
11 * software in any way with any other Broadcom software provided under a
12 * license other than the GPL, without Broadcom's express prior written
15 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16 * Written by: Vladislav Zolotarov
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/module.h>
23 #include <linux/crc32.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/crc32c.h>
28 #include "bnx2x_cmn.h"
31 #define BNX2X_MAX_EMUL_MULTI 16
33 /**** Exe Queue interfaces ****/
36 * bnx2x_exe_queue_init - init the Exe Queue object
38 * @o: pointer to the object
40 * @owner: pointer to the owner
41 * @validate: validate function pointer
42 * @optimize: optimize function pointer
43 * @exec: execute function pointer
44 * @get: get function pointer
46 static inline void bnx2x_exe_queue_init(struct bnx2x
*bp
,
47 struct bnx2x_exe_queue_obj
*o
,
49 union bnx2x_qable_obj
*owner
,
50 exe_q_validate validate
,
52 exe_q_optimize optimize
,
56 memset(o
, 0, sizeof(*o
));
58 INIT_LIST_HEAD(&o
->exe_queue
);
59 INIT_LIST_HEAD(&o
->pending_comp
);
61 spin_lock_init(&o
->lock
);
63 o
->exe_chunk_len
= exe_len
;
66 /* Owner specific callbacks */
67 o
->validate
= validate
;
69 o
->optimize
= optimize
;
73 DP(BNX2X_MSG_SP
, "Setup the execution queue with the chunk length of %d\n",
77 static inline void bnx2x_exe_queue_free_elem(struct bnx2x
*bp
,
78 struct bnx2x_exeq_elem
*elem
)
80 DP(BNX2X_MSG_SP
, "Deleting an exe_queue element\n");
84 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj
*o
)
86 struct bnx2x_exeq_elem
*elem
;
89 spin_lock_bh(&o
->lock
);
91 list_for_each_entry(elem
, &o
->exe_queue
, link
)
94 spin_unlock_bh(&o
->lock
);
100 * bnx2x_exe_queue_add - add a new element to the execution queue
104 * @cmd: new command to add
105 * @restore: true - do not optimize the command
107 * If the element is optimized or is illegal, frees it.
109 static inline int bnx2x_exe_queue_add(struct bnx2x
*bp
,
110 struct bnx2x_exe_queue_obj
*o
,
111 struct bnx2x_exeq_elem
*elem
,
116 spin_lock_bh(&o
->lock
);
119 /* Try to cancel this element queue */
120 rc
= o
->optimize(bp
, o
->owner
, elem
);
124 /* Check if this request is ok */
125 rc
= o
->validate(bp
, o
->owner
, elem
);
127 DP(BNX2X_MSG_SP
, "Preamble failed: %d\n", rc
);
132 /* If so, add it to the execution queue */
133 list_add_tail(&elem
->link
, &o
->exe_queue
);
135 spin_unlock_bh(&o
->lock
);
140 bnx2x_exe_queue_free_elem(bp
, elem
);
142 spin_unlock_bh(&o
->lock
);
147 static inline void __bnx2x_exe_queue_reset_pending(
149 struct bnx2x_exe_queue_obj
*o
)
151 struct bnx2x_exeq_elem
*elem
;
153 while (!list_empty(&o
->pending_comp
)) {
154 elem
= list_first_entry(&o
->pending_comp
,
155 struct bnx2x_exeq_elem
, link
);
157 list_del(&elem
->link
);
158 bnx2x_exe_queue_free_elem(bp
, elem
);
163 * bnx2x_exe_queue_step - execute one execution chunk atomically
167 * @ramrod_flags: flags
169 * (Should be called while holding the exe_queue->lock).
171 static inline int bnx2x_exe_queue_step(struct bnx2x
*bp
,
172 struct bnx2x_exe_queue_obj
*o
,
173 unsigned long *ramrod_flags
)
175 struct bnx2x_exeq_elem
*elem
, spacer
;
178 memset(&spacer
, 0, sizeof(spacer
));
180 /* Next step should not be performed until the current is finished,
181 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
182 * properly clear object internals without sending any command to the FW
183 * which also implies there won't be any completion to clear the
186 if (!list_empty(&o
->pending_comp
)) {
187 if (test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
)) {
188 DP(BNX2X_MSG_SP
, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
189 __bnx2x_exe_queue_reset_pending(bp
, o
);
195 /* Run through the pending commands list and create a next
198 while (!list_empty(&o
->exe_queue
)) {
199 elem
= list_first_entry(&o
->exe_queue
, struct bnx2x_exeq_elem
,
201 WARN_ON(!elem
->cmd_len
);
203 if (cur_len
+ elem
->cmd_len
<= o
->exe_chunk_len
) {
204 cur_len
+= elem
->cmd_len
;
205 /* Prevent from both lists being empty when moving an
206 * element. This will allow the call of
207 * bnx2x_exe_queue_empty() without locking.
209 list_add_tail(&spacer
.link
, &o
->pending_comp
);
211 list_move_tail(&elem
->link
, &o
->pending_comp
);
212 list_del(&spacer
.link
);
221 rc
= o
->execute(bp
, o
->owner
, &o
->pending_comp
, ramrod_flags
);
223 /* In case of an error return the commands back to the queue
224 * and reset the pending_comp.
226 list_splice_init(&o
->pending_comp
, &o
->exe_queue
);
228 /* If zero is returned, means there are no outstanding pending
229 * completions and we may dismiss the pending list.
231 __bnx2x_exe_queue_reset_pending(bp
, o
);
236 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj
*o
)
238 bool empty
= list_empty(&o
->exe_queue
);
240 /* Don't reorder!!! */
243 return empty
&& list_empty(&o
->pending_comp
);
246 static inline struct bnx2x_exeq_elem
*bnx2x_exe_queue_alloc_elem(
249 DP(BNX2X_MSG_SP
, "Allocating a new exe_queue element\n");
250 return kzalloc(sizeof(struct bnx2x_exeq_elem
), GFP_ATOMIC
);
253 /************************ raw_obj functions ***********************************/
254 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj
*o
)
256 return !!test_bit(o
->state
, o
->pstate
);
259 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj
*o
)
261 smp_mb__before_clear_bit();
262 clear_bit(o
->state
, o
->pstate
);
263 smp_mb__after_clear_bit();
266 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj
*o
)
268 smp_mb__before_clear_bit();
269 set_bit(o
->state
, o
->pstate
);
270 smp_mb__after_clear_bit();
274 * bnx2x_state_wait - wait until the given bit(state) is cleared
277 * @state: state which is to be cleared
278 * @state_p: state buffer
281 static inline int bnx2x_state_wait(struct bnx2x
*bp
, int state
,
282 unsigned long *pstate
)
284 /* can take a while if any port is running */
287 if (CHIP_REV_IS_EMUL(bp
))
290 DP(BNX2X_MSG_SP
, "waiting for state to become %d\n", state
);
294 if (!test_bit(state
, pstate
)) {
295 #ifdef BNX2X_STOP_ON_ERROR
296 DP(BNX2X_MSG_SP
, "exit (cnt %d)\n", 5000 - cnt
);
301 usleep_range(1000, 2000);
308 BNX2X_ERR("timeout waiting for state %d\n", state
);
309 #ifdef BNX2X_STOP_ON_ERROR
316 static int bnx2x_raw_wait(struct bnx2x
*bp
, struct bnx2x_raw_obj
*raw
)
318 return bnx2x_state_wait(bp
, raw
->state
, raw
->pstate
);
321 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
322 /* credit handling callbacks */
323 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj
*o
, int *offset
)
325 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
329 return mp
->get_entry(mp
, offset
);
332 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj
*o
)
334 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
338 return mp
->get(mp
, 1);
341 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj
*o
, int *offset
)
343 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
347 return vp
->get_entry(vp
, offset
);
350 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj
*o
)
352 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
356 return vp
->get(vp
, 1);
358 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj
*o
, int offset
)
360 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
362 return mp
->put_entry(mp
, offset
);
365 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj
*o
)
367 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
369 return mp
->put(mp
, 1);
372 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj
*o
, int offset
)
374 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
376 return vp
->put_entry(vp
, offset
);
379 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj
*o
)
381 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
383 return vp
->put(vp
, 1);
387 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
390 * @o: vlan_mac object
392 * @details: Non-blocking implementation; should be called under execution
395 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x
*bp
,
396 struct bnx2x_vlan_mac_obj
*o
)
398 if (o
->head_reader
) {
399 DP(BNX2X_MSG_SP
, "vlan_mac_lock writer - There are readers; Busy\n");
403 DP(BNX2X_MSG_SP
, "vlan_mac_lock writer - Taken\n");
408 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
411 * @o: vlan_mac object
413 * @details Should be called under execution queue lock; notice it might release
414 * and reclaim it during its run.
416 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x
*bp
,
417 struct bnx2x_vlan_mac_obj
*o
)
420 unsigned long ramrod_flags
= o
->saved_ramrod_flags
;
422 DP(BNX2X_MSG_SP
, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
424 o
->head_exe_request
= false;
425 o
->saved_ramrod_flags
= 0;
426 rc
= bnx2x_exe_queue_step(bp
, &o
->exe_queue
, &ramrod_flags
);
428 BNX2X_ERR("execution of pending commands failed with rc %d\n",
430 #ifdef BNX2X_STOP_ON_ERROR
437 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
440 * @o: vlan_mac object
441 * @ramrod_flags: ramrod flags of missed execution
443 * @details Should be called under execution queue lock.
445 static void __bnx2x_vlan_mac_h_pend(struct bnx2x
*bp
,
446 struct bnx2x_vlan_mac_obj
*o
,
447 unsigned long ramrod_flags
)
449 o
->head_exe_request
= true;
450 o
->saved_ramrod_flags
= ramrod_flags
;
451 DP(BNX2X_MSG_SP
, "Placing pending execution with ramrod flags %lu\n",
456 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
459 * @o: vlan_mac object
461 * @details Should be called under execution queue lock. Notice if a pending
462 * execution exists, it would perform it - possibly releasing and
463 * reclaiming the execution queue lock.
465 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x
*bp
,
466 struct bnx2x_vlan_mac_obj
*o
)
468 /* It's possible a new pending execution was added since this writer
469 * executed. If so, execute again. [Ad infinitum]
471 while (o
->head_exe_request
) {
472 DP(BNX2X_MSG_SP
, "vlan_mac_lock - writer release encountered a pending request\n");
473 __bnx2x_vlan_mac_h_exec_pending(bp
, o
);
479 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
482 * @o: vlan_mac object
484 * @details Should be called under the execution queue lock. May sleep. May
485 * release and reclaim execution queue lock during its run.
487 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x
*bp
,
488 struct bnx2x_vlan_mac_obj
*o
)
490 /* If we got here, we're holding lock --> no WRITER exists */
492 DP(BNX2X_MSG_SP
, "vlan_mac_lock - locked reader - number %d\n",
499 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
502 * @o: vlan_mac object
504 * @details May sleep. Claims and releases execution queue lock during its run.
506 int bnx2x_vlan_mac_h_read_lock(struct bnx2x
*bp
,
507 struct bnx2x_vlan_mac_obj
*o
)
511 spin_lock_bh(&o
->exe_queue
.lock
);
512 rc
= __bnx2x_vlan_mac_h_read_lock(bp
, o
);
513 spin_unlock_bh(&o
->exe_queue
.lock
);
519 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
522 * @o: vlan_mac object
524 * @details Should be called under execution queue lock. Notice if a pending
525 * execution exists, it would be performed if this was the last
526 * reader. possibly releasing and reclaiming the execution queue lock.
528 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x
*bp
,
529 struct bnx2x_vlan_mac_obj
*o
)
531 if (!o
->head_reader
) {
532 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
533 #ifdef BNX2X_STOP_ON_ERROR
538 DP(BNX2X_MSG_SP
, "vlan_mac_lock - decreased readers to %d\n",
542 /* It's possible a new pending execution was added, and that this reader
543 * was last - if so we need to execute the command.
545 if (!o
->head_reader
&& o
->head_exe_request
) {
546 DP(BNX2X_MSG_SP
, "vlan_mac_lock - reader release encountered a pending request\n");
548 /* Writer release will do the trick */
549 __bnx2x_vlan_mac_h_write_unlock(bp
, o
);
554 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
557 * @o: vlan_mac object
559 * @details Notice if a pending execution exists, it would be performed if this
560 * was the last reader. Claims and releases the execution queue lock
563 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x
*bp
,
564 struct bnx2x_vlan_mac_obj
*o
)
566 spin_lock_bh(&o
->exe_queue
.lock
);
567 __bnx2x_vlan_mac_h_read_unlock(bp
, o
);
568 spin_unlock_bh(&o
->exe_queue
.lock
);
571 static int bnx2x_get_n_elements(struct bnx2x
*bp
, struct bnx2x_vlan_mac_obj
*o
,
572 int n
, u8
*base
, u8 stride
, u8 size
)
574 struct bnx2x_vlan_mac_registry_elem
*pos
;
579 DP(BNX2X_MSG_SP
, "get_n_elements - taking vlan_mac_lock (reader)\n");
580 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, o
);
582 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
585 list_for_each_entry(pos
, &o
->head
, link
) {
587 memcpy(next
, &pos
->u
, size
);
589 DP(BNX2X_MSG_SP
, "copied element number %d to address %p element was:\n",
591 next
+= stride
+ size
;
595 if (read_lock
== 0) {
596 DP(BNX2X_MSG_SP
, "get_n_elements - releasing vlan_mac_lock (reader)\n");
597 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
600 return counter
* ETH_ALEN
;
603 /* check_add() callbacks */
604 static int bnx2x_check_mac_add(struct bnx2x
*bp
,
605 struct bnx2x_vlan_mac_obj
*o
,
606 union bnx2x_classification_ramrod_data
*data
)
608 struct bnx2x_vlan_mac_registry_elem
*pos
;
610 DP(BNX2X_MSG_SP
, "Checking MAC %pM for ADD command\n", data
->mac
.mac
);
612 if (!is_valid_ether_addr(data
->mac
.mac
))
615 /* Check if a requested MAC already exists */
616 list_for_each_entry(pos
, &o
->head
, link
)
617 if (ether_addr_equal(data
->mac
.mac
, pos
->u
.mac
.mac
) &&
618 (data
->mac
.is_inner_mac
== pos
->u
.mac
.is_inner_mac
))
624 static int bnx2x_check_vlan_add(struct bnx2x
*bp
,
625 struct bnx2x_vlan_mac_obj
*o
,
626 union bnx2x_classification_ramrod_data
*data
)
628 struct bnx2x_vlan_mac_registry_elem
*pos
;
630 DP(BNX2X_MSG_SP
, "Checking VLAN %d for ADD command\n", data
->vlan
.vlan
);
632 list_for_each_entry(pos
, &o
->head
, link
)
633 if (data
->vlan
.vlan
== pos
->u
.vlan
.vlan
)
639 /* check_del() callbacks */
640 static struct bnx2x_vlan_mac_registry_elem
*
641 bnx2x_check_mac_del(struct bnx2x
*bp
,
642 struct bnx2x_vlan_mac_obj
*o
,
643 union bnx2x_classification_ramrod_data
*data
)
645 struct bnx2x_vlan_mac_registry_elem
*pos
;
647 DP(BNX2X_MSG_SP
, "Checking MAC %pM for DEL command\n", data
->mac
.mac
);
649 list_for_each_entry(pos
, &o
->head
, link
)
650 if (ether_addr_equal(data
->mac
.mac
, pos
->u
.mac
.mac
) &&
651 (data
->mac
.is_inner_mac
== pos
->u
.mac
.is_inner_mac
))
657 static struct bnx2x_vlan_mac_registry_elem
*
658 bnx2x_check_vlan_del(struct bnx2x
*bp
,
659 struct bnx2x_vlan_mac_obj
*o
,
660 union bnx2x_classification_ramrod_data
*data
)
662 struct bnx2x_vlan_mac_registry_elem
*pos
;
664 DP(BNX2X_MSG_SP
, "Checking VLAN %d for DEL command\n", data
->vlan
.vlan
);
666 list_for_each_entry(pos
, &o
->head
, link
)
667 if (data
->vlan
.vlan
== pos
->u
.vlan
.vlan
)
673 /* check_move() callback */
674 static bool bnx2x_check_move(struct bnx2x
*bp
,
675 struct bnx2x_vlan_mac_obj
*src_o
,
676 struct bnx2x_vlan_mac_obj
*dst_o
,
677 union bnx2x_classification_ramrod_data
*data
)
679 struct bnx2x_vlan_mac_registry_elem
*pos
;
682 /* Check if we can delete the requested configuration from the first
685 pos
= src_o
->check_del(bp
, src_o
, data
);
687 /* check if configuration can be added */
688 rc
= dst_o
->check_add(bp
, dst_o
, data
);
690 /* If this classification can not be added (is already set)
691 * or can't be deleted - return an error.
699 static bool bnx2x_check_move_always_err(
701 struct bnx2x_vlan_mac_obj
*src_o
,
702 struct bnx2x_vlan_mac_obj
*dst_o
,
703 union bnx2x_classification_ramrod_data
*data
)
708 static inline u8
bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj
*o
)
710 struct bnx2x_raw_obj
*raw
= &o
->raw
;
713 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_TX
) ||
714 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
715 rx_tx_flag
|= ETH_CLASSIFY_CMD_HEADER_TX_CMD
;
717 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_RX
) ||
718 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
719 rx_tx_flag
|= ETH_CLASSIFY_CMD_HEADER_RX_CMD
;
724 static void bnx2x_set_mac_in_nig(struct bnx2x
*bp
,
725 bool add
, unsigned char *dev_addr
, int index
)
728 u32 reg_offset
= BP_PORT(bp
) ? NIG_REG_LLH1_FUNC_MEM
:
729 NIG_REG_LLH0_FUNC_MEM
;
731 if (!IS_MF_SI(bp
) && !IS_MF_AFEX(bp
))
734 if (index
> BNX2X_LLH_CAM_MAX_PF_LINE
)
737 DP(BNX2X_MSG_SP
, "Going to %s LLH configuration at entry %d\n",
738 (add
? "ADD" : "DELETE"), index
);
741 /* LLH_FUNC_MEM is a u64 WB register */
742 reg_offset
+= 8*index
;
744 wb_data
[0] = ((dev_addr
[2] << 24) | (dev_addr
[3] << 16) |
745 (dev_addr
[4] << 8) | dev_addr
[5]);
746 wb_data
[1] = ((dev_addr
[0] << 8) | dev_addr
[1]);
748 REG_WR_DMAE(bp
, reg_offset
, wb_data
, 2);
751 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_FUNC_MEM_ENABLE
:
752 NIG_REG_LLH0_FUNC_MEM_ENABLE
) + 4*index
, add
);
756 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
759 * @o: queue for which we want to configure this rule
760 * @add: if true the command is an ADD command, DEL otherwise
761 * @opcode: CLASSIFY_RULE_OPCODE_XXX
762 * @hdr: pointer to a header to setup
765 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x
*bp
,
766 struct bnx2x_vlan_mac_obj
*o
, bool add
, int opcode
,
767 struct eth_classify_cmd_header
*hdr
)
769 struct bnx2x_raw_obj
*raw
= &o
->raw
;
771 hdr
->client_id
= raw
->cl_id
;
772 hdr
->func_id
= raw
->func_id
;
774 /* Rx or/and Tx (internal switching) configuration ? */
775 hdr
->cmd_general_data
|=
776 bnx2x_vlan_mac_get_rx_tx_flag(o
);
779 hdr
->cmd_general_data
|= ETH_CLASSIFY_CMD_HEADER_IS_ADD
;
781 hdr
->cmd_general_data
|=
782 (opcode
<< ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT
);
786 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
788 * @cid: connection id
789 * @type: BNX2X_FILTER_XXX_PENDING
790 * @hdr: pointer to header to setup
793 * currently we always configure one rule and echo field to contain a CID and an
796 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid
, int type
,
797 struct eth_classify_header
*hdr
, int rule_cnt
)
799 hdr
->echo
= cpu_to_le32((cid
& BNX2X_SWCID_MASK
) |
800 (type
<< BNX2X_SWCID_SHIFT
));
801 hdr
->rule_cnt
= (u8
)rule_cnt
;
804 /* hw_config() callbacks */
805 static void bnx2x_set_one_mac_e2(struct bnx2x
*bp
,
806 struct bnx2x_vlan_mac_obj
*o
,
807 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
810 struct bnx2x_raw_obj
*raw
= &o
->raw
;
811 struct eth_classify_rules_ramrod_data
*data
=
812 (struct eth_classify_rules_ramrod_data
*)(raw
->rdata
);
813 int rule_cnt
= rule_idx
+ 1, cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
814 union eth_classify_rule_cmd
*rule_entry
= &data
->rules
[rule_idx
];
815 bool add
= (cmd
== BNX2X_VLAN_MAC_ADD
) ? true : false;
816 unsigned long *vlan_mac_flags
= &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
;
817 u8
*mac
= elem
->cmd_data
.vlan_mac
.u
.mac
.mac
;
819 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
820 * relevant. In addition, current implementation is tuned for a
823 * When multiple unicast ETH MACs PF configuration in switch
824 * independent mode is required (NetQ, multiple netdev MACs,
825 * etc.), consider better utilisation of 8 per function MAC
826 * entries in the LLH register. There is also
827 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
828 * total number of CAM entries to 16.
830 * Currently we won't configure NIG for MACs other than a primary ETH
831 * MAC and iSCSI L2 MAC.
833 * If this MAC is moving from one Queue to another, no need to change
836 if (cmd
!= BNX2X_VLAN_MAC_MOVE
) {
837 if (test_bit(BNX2X_ISCSI_ETH_MAC
, vlan_mac_flags
))
838 bnx2x_set_mac_in_nig(bp
, add
, mac
,
839 BNX2X_LLH_CAM_ISCSI_ETH_LINE
);
840 else if (test_bit(BNX2X_ETH_MAC
, vlan_mac_flags
))
841 bnx2x_set_mac_in_nig(bp
, add
, mac
,
842 BNX2X_LLH_CAM_ETH_LINE
);
845 /* Reset the ramrod data buffer for the first rule */
847 memset(data
, 0, sizeof(*data
));
849 /* Setup a command header */
850 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, o
, add
, CLASSIFY_RULE_OPCODE_MAC
,
851 &rule_entry
->mac
.header
);
853 DP(BNX2X_MSG_SP
, "About to %s MAC %pM for Queue %d\n",
854 (add
? "add" : "delete"), mac
, raw
->cl_id
);
856 /* Set a MAC itself */
857 bnx2x_set_fw_mac_addr(&rule_entry
->mac
.mac_msb
,
858 &rule_entry
->mac
.mac_mid
,
859 &rule_entry
->mac
.mac_lsb
, mac
);
860 rule_entry
->mac
.inner_mac
=
861 cpu_to_le16(elem
->cmd_data
.vlan_mac
.u
.mac
.is_inner_mac
);
863 /* MOVE: Add a rule that will add this MAC to the target Queue */
864 if (cmd
== BNX2X_VLAN_MAC_MOVE
) {
868 /* Setup ramrod data */
869 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
,
870 elem
->cmd_data
.vlan_mac
.target_obj
,
871 true, CLASSIFY_RULE_OPCODE_MAC
,
872 &rule_entry
->mac
.header
);
874 /* Set a MAC itself */
875 bnx2x_set_fw_mac_addr(&rule_entry
->mac
.mac_msb
,
876 &rule_entry
->mac
.mac_mid
,
877 &rule_entry
->mac
.mac_lsb
, mac
);
878 rule_entry
->mac
.inner_mac
=
879 cpu_to_le16(elem
->cmd_data
.vlan_mac
.
883 /* Set the ramrod data header */
884 /* TODO: take this to the higher level in order to prevent multiple
886 bnx2x_vlan_mac_set_rdata_hdr_e2(raw
->cid
, raw
->state
, &data
->header
,
891 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
896 * @cam_offset: offset in cam memory
897 * @hdr: pointer to a header to setup
901 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x
*bp
,
902 struct bnx2x_vlan_mac_obj
*o
, int type
, int cam_offset
,
903 struct mac_configuration_hdr
*hdr
)
905 struct bnx2x_raw_obj
*r
= &o
->raw
;
908 hdr
->offset
= (u8
)cam_offset
;
909 hdr
->client_id
= cpu_to_le16(0xff);
910 hdr
->echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
911 (type
<< BNX2X_SWCID_SHIFT
));
914 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x
*bp
,
915 struct bnx2x_vlan_mac_obj
*o
, bool add
, int opcode
, u8
*mac
,
916 u16 vlan_id
, struct mac_configuration_entry
*cfg_entry
)
918 struct bnx2x_raw_obj
*r
= &o
->raw
;
919 u32 cl_bit_vec
= (1 << r
->cl_id
);
921 cfg_entry
->clients_bit_vector
= cpu_to_le32(cl_bit_vec
);
922 cfg_entry
->pf_id
= r
->func_id
;
923 cfg_entry
->vlan_id
= cpu_to_le16(vlan_id
);
926 SET_FLAG(cfg_entry
->flags
, MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
927 T_ETH_MAC_COMMAND_SET
);
928 SET_FLAG(cfg_entry
->flags
,
929 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE
, opcode
);
931 /* Set a MAC in a ramrod data */
932 bnx2x_set_fw_mac_addr(&cfg_entry
->msb_mac_addr
,
933 &cfg_entry
->middle_mac_addr
,
934 &cfg_entry
->lsb_mac_addr
, mac
);
936 SET_FLAG(cfg_entry
->flags
, MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
937 T_ETH_MAC_COMMAND_INVALIDATE
);
940 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x
*bp
,
941 struct bnx2x_vlan_mac_obj
*o
, int type
, int cam_offset
, bool add
,
942 u8
*mac
, u16 vlan_id
, int opcode
, struct mac_configuration_cmd
*config
)
944 struct mac_configuration_entry
*cfg_entry
= &config
->config_table
[0];
945 struct bnx2x_raw_obj
*raw
= &o
->raw
;
947 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp
, o
, type
, cam_offset
,
949 bnx2x_vlan_mac_set_cfg_entry_e1x(bp
, o
, add
, opcode
, mac
, vlan_id
,
952 DP(BNX2X_MSG_SP
, "%s MAC %pM CLID %d CAM offset %d\n",
953 (add
? "setting" : "clearing"),
954 mac
, raw
->cl_id
, cam_offset
);
958 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
961 * @o: bnx2x_vlan_mac_obj
962 * @elem: bnx2x_exeq_elem
963 * @rule_idx: rule_idx
964 * @cam_offset: cam_offset
966 static void bnx2x_set_one_mac_e1x(struct bnx2x
*bp
,
967 struct bnx2x_vlan_mac_obj
*o
,
968 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
971 struct bnx2x_raw_obj
*raw
= &o
->raw
;
972 struct mac_configuration_cmd
*config
=
973 (struct mac_configuration_cmd
*)(raw
->rdata
);
974 /* 57710 and 57711 do not support MOVE command,
975 * so it's either ADD or DEL
977 bool add
= (elem
->cmd_data
.vlan_mac
.cmd
== BNX2X_VLAN_MAC_ADD
) ?
980 /* Reset the ramrod data buffer */
981 memset(config
, 0, sizeof(*config
));
983 bnx2x_vlan_mac_set_rdata_e1x(bp
, o
, raw
->state
,
985 elem
->cmd_data
.vlan_mac
.u
.mac
.mac
, 0,
986 ETH_VLAN_FILTER_ANY_VLAN
, config
);
989 static void bnx2x_set_one_vlan_e2(struct bnx2x
*bp
,
990 struct bnx2x_vlan_mac_obj
*o
,
991 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
994 struct bnx2x_raw_obj
*raw
= &o
->raw
;
995 struct eth_classify_rules_ramrod_data
*data
=
996 (struct eth_classify_rules_ramrod_data
*)(raw
->rdata
);
997 int rule_cnt
= rule_idx
+ 1;
998 union eth_classify_rule_cmd
*rule_entry
= &data
->rules
[rule_idx
];
999 enum bnx2x_vlan_mac_cmd cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1000 bool add
= (cmd
== BNX2X_VLAN_MAC_ADD
) ? true : false;
1001 u16 vlan
= elem
->cmd_data
.vlan_mac
.u
.vlan
.vlan
;
1003 /* Reset the ramrod data buffer for the first rule */
1005 memset(data
, 0, sizeof(*data
));
1007 /* Set a rule header */
1008 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, o
, add
, CLASSIFY_RULE_OPCODE_VLAN
,
1009 &rule_entry
->vlan
.header
);
1011 DP(BNX2X_MSG_SP
, "About to %s VLAN %d\n", (add
? "add" : "delete"),
1014 /* Set a VLAN itself */
1015 rule_entry
->vlan
.vlan
= cpu_to_le16(vlan
);
1017 /* MOVE: Add a rule that will add this MAC to the target Queue */
1018 if (cmd
== BNX2X_VLAN_MAC_MOVE
) {
1022 /* Setup ramrod data */
1023 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
,
1024 elem
->cmd_data
.vlan_mac
.target_obj
,
1025 true, CLASSIFY_RULE_OPCODE_VLAN
,
1026 &rule_entry
->vlan
.header
);
1028 /* Set a VLAN itself */
1029 rule_entry
->vlan
.vlan
= cpu_to_le16(vlan
);
1032 /* Set the ramrod data header */
1033 /* TODO: take this to the higher level in order to prevent multiple
1035 bnx2x_vlan_mac_set_rdata_hdr_e2(raw
->cid
, raw
->state
, &data
->header
,
1040 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1042 * @bp: device handle
1043 * @p: command parameters
1044 * @ppos: pointer to the cookie
1046 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1047 * previously configured elements list.
1049 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1052 * pointer to the cookie - that should be given back in the next call to make
1053 * function handle the next element. If *ppos is set to NULL it will restart the
1054 * iterator. If returned *ppos == NULL this means that the last element has been
1058 static int bnx2x_vlan_mac_restore(struct bnx2x
*bp
,
1059 struct bnx2x_vlan_mac_ramrod_params
*p
,
1060 struct bnx2x_vlan_mac_registry_elem
**ppos
)
1062 struct bnx2x_vlan_mac_registry_elem
*pos
;
1063 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1065 /* If list is empty - there is nothing to do here */
1066 if (list_empty(&o
->head
)) {
1071 /* make a step... */
1073 *ppos
= list_first_entry(&o
->head
,
1074 struct bnx2x_vlan_mac_registry_elem
,
1077 *ppos
= list_next_entry(*ppos
, link
);
1081 /* If it's the last step - return NULL */
1082 if (list_is_last(&pos
->link
, &o
->head
))
1085 /* Prepare a 'user_req' */
1086 memcpy(&p
->user_req
.u
, &pos
->u
, sizeof(pos
->u
));
1088 /* Set the command */
1089 p
->user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
1091 /* Set vlan_mac_flags */
1092 p
->user_req
.vlan_mac_flags
= pos
->vlan_mac_flags
;
1094 /* Set a restore bit */
1095 __set_bit(RAMROD_RESTORE
, &p
->ramrod_flags
);
1097 return bnx2x_config_vlan_mac(bp
, p
);
1100 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1101 * pointer to an element with a specific criteria and NULL if such an element
1102 * hasn't been found.
1104 static struct bnx2x_exeq_elem
*bnx2x_exeq_get_mac(
1105 struct bnx2x_exe_queue_obj
*o
,
1106 struct bnx2x_exeq_elem
*elem
)
1108 struct bnx2x_exeq_elem
*pos
;
1109 struct bnx2x_mac_ramrod_data
*data
= &elem
->cmd_data
.vlan_mac
.u
.mac
;
1111 /* Check pending for execution commands */
1112 list_for_each_entry(pos
, &o
->exe_queue
, link
)
1113 if (!memcmp(&pos
->cmd_data
.vlan_mac
.u
.mac
, data
,
1115 (pos
->cmd_data
.vlan_mac
.cmd
== elem
->cmd_data
.vlan_mac
.cmd
))
1121 static struct bnx2x_exeq_elem
*bnx2x_exeq_get_vlan(
1122 struct bnx2x_exe_queue_obj
*o
,
1123 struct bnx2x_exeq_elem
*elem
)
1125 struct bnx2x_exeq_elem
*pos
;
1126 struct bnx2x_vlan_ramrod_data
*data
= &elem
->cmd_data
.vlan_mac
.u
.vlan
;
1128 /* Check pending for execution commands */
1129 list_for_each_entry(pos
, &o
->exe_queue
, link
)
1130 if (!memcmp(&pos
->cmd_data
.vlan_mac
.u
.vlan
, data
,
1132 (pos
->cmd_data
.vlan_mac
.cmd
== elem
->cmd_data
.vlan_mac
.cmd
))
1139 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1141 * @bp: device handle
1142 * @qo: bnx2x_qable_obj
1143 * @elem: bnx2x_exeq_elem
1145 * Checks that the requested configuration can be added. If yes and if
1146 * requested, consume CAM credit.
1148 * The 'validate' is run after the 'optimize'.
1151 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x
*bp
,
1152 union bnx2x_qable_obj
*qo
,
1153 struct bnx2x_exeq_elem
*elem
)
1155 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1156 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1159 /* Check the registry */
1160 rc
= o
->check_add(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1162 DP(BNX2X_MSG_SP
, "ADD command is not allowed considering current registry state.\n");
1166 /* Check if there is a pending ADD command for this
1167 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1169 if (exeq
->get(exeq
, elem
)) {
1170 DP(BNX2X_MSG_SP
, "There is a pending ADD command already\n");
1174 /* TODO: Check the pending MOVE from other objects where this
1175 * object is a destination object.
1178 /* Consume the credit if not requested not to */
1179 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1180 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1188 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1190 * @bp: device handle
1191 * @qo: quable object to check
1192 * @elem: element that needs to be deleted
1194 * Checks that the requested configuration can be deleted. If yes and if
1195 * requested, returns a CAM credit.
1197 * The 'validate' is run after the 'optimize'.
1199 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x
*bp
,
1200 union bnx2x_qable_obj
*qo
,
1201 struct bnx2x_exeq_elem
*elem
)
1203 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1204 struct bnx2x_vlan_mac_registry_elem
*pos
;
1205 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1206 struct bnx2x_exeq_elem query_elem
;
1208 /* If this classification can not be deleted (doesn't exist)
1209 * - return a BNX2X_EXIST.
1211 pos
= o
->check_del(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1213 DP(BNX2X_MSG_SP
, "DEL command is not allowed considering current registry state\n");
1217 /* Check if there are pending DEL or MOVE commands for this
1218 * MAC/VLAN/VLAN-MAC. Return an error if so.
1220 memcpy(&query_elem
, elem
, sizeof(query_elem
));
1222 /* Check for MOVE commands */
1223 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_MOVE
;
1224 if (exeq
->get(exeq
, &query_elem
)) {
1225 BNX2X_ERR("There is a pending MOVE command already\n");
1229 /* Check for DEL commands */
1230 if (exeq
->get(exeq
, elem
)) {
1231 DP(BNX2X_MSG_SP
, "There is a pending DEL command already\n");
1235 /* Return the credit to the credit pool if not requested not to */
1236 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1237 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1238 o
->put_credit(o
))) {
1239 BNX2X_ERR("Failed to return a credit\n");
1247 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1249 * @bp: device handle
1250 * @qo: quable object to check (source)
1251 * @elem: element that needs to be moved
1253 * Checks that the requested configuration can be moved. If yes and if
1254 * requested, returns a CAM credit.
1256 * The 'validate' is run after the 'optimize'.
1258 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x
*bp
,
1259 union bnx2x_qable_obj
*qo
,
1260 struct bnx2x_exeq_elem
*elem
)
1262 struct bnx2x_vlan_mac_obj
*src_o
= &qo
->vlan_mac
;
1263 struct bnx2x_vlan_mac_obj
*dest_o
= elem
->cmd_data
.vlan_mac
.target_obj
;
1264 struct bnx2x_exeq_elem query_elem
;
1265 struct bnx2x_exe_queue_obj
*src_exeq
= &src_o
->exe_queue
;
1266 struct bnx2x_exe_queue_obj
*dest_exeq
= &dest_o
->exe_queue
;
1268 /* Check if we can perform this operation based on the current registry
1271 if (!src_o
->check_move(bp
, src_o
, dest_o
,
1272 &elem
->cmd_data
.vlan_mac
.u
)) {
1273 DP(BNX2X_MSG_SP
, "MOVE command is not allowed considering current registry state\n");
1277 /* Check if there is an already pending DEL or MOVE command for the
1278 * source object or ADD command for a destination object. Return an
1281 memcpy(&query_elem
, elem
, sizeof(query_elem
));
1283 /* Check DEL on source */
1284 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_DEL
;
1285 if (src_exeq
->get(src_exeq
, &query_elem
)) {
1286 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1290 /* Check MOVE on source */
1291 if (src_exeq
->get(src_exeq
, elem
)) {
1292 DP(BNX2X_MSG_SP
, "There is a pending MOVE command already\n");
1296 /* Check ADD on destination */
1297 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_ADD
;
1298 if (dest_exeq
->get(dest_exeq
, &query_elem
)) {
1299 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1303 /* Consume the credit if not requested not to */
1304 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST
,
1305 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1306 dest_o
->get_credit(dest_o
)))
1309 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1310 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1311 src_o
->put_credit(src_o
))) {
1312 /* return the credit taken from dest... */
1313 dest_o
->put_credit(dest_o
);
1320 static int bnx2x_validate_vlan_mac(struct bnx2x
*bp
,
1321 union bnx2x_qable_obj
*qo
,
1322 struct bnx2x_exeq_elem
*elem
)
1324 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1325 case BNX2X_VLAN_MAC_ADD
:
1326 return bnx2x_validate_vlan_mac_add(bp
, qo
, elem
);
1327 case BNX2X_VLAN_MAC_DEL
:
1328 return bnx2x_validate_vlan_mac_del(bp
, qo
, elem
);
1329 case BNX2X_VLAN_MAC_MOVE
:
1330 return bnx2x_validate_vlan_mac_move(bp
, qo
, elem
);
1336 static int bnx2x_remove_vlan_mac(struct bnx2x
*bp
,
1337 union bnx2x_qable_obj
*qo
,
1338 struct bnx2x_exeq_elem
*elem
)
1342 /* If consumption wasn't required, nothing to do */
1343 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1344 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
))
1347 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1348 case BNX2X_VLAN_MAC_ADD
:
1349 case BNX2X_VLAN_MAC_MOVE
:
1350 rc
= qo
->vlan_mac
.put_credit(&qo
->vlan_mac
);
1352 case BNX2X_VLAN_MAC_DEL
:
1353 rc
= qo
->vlan_mac
.get_credit(&qo
->vlan_mac
);
1366 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1368 * @bp: device handle
1369 * @o: bnx2x_vlan_mac_obj
1372 static int bnx2x_wait_vlan_mac(struct bnx2x
*bp
,
1373 struct bnx2x_vlan_mac_obj
*o
)
1376 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1377 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1380 /* Wait for the current command to complete */
1381 rc
= raw
->wait_comp(bp
, raw
);
1385 /* Wait until there are no pending commands */
1386 if (!bnx2x_exe_queue_empty(exeq
))
1387 usleep_range(1000, 2000);
1395 static int __bnx2x_vlan_mac_execute_step(struct bnx2x
*bp
,
1396 struct bnx2x_vlan_mac_obj
*o
,
1397 unsigned long *ramrod_flags
)
1401 spin_lock_bh(&o
->exe_queue
.lock
);
1403 DP(BNX2X_MSG_SP
, "vlan_mac_execute_step - trying to take writer lock\n");
1404 rc
= __bnx2x_vlan_mac_h_write_trylock(bp
, o
);
1407 __bnx2x_vlan_mac_h_pend(bp
, o
, *ramrod_flags
);
1409 /* Calling function should not diffrentiate between this case
1410 * and the case in which there is already a pending ramrod
1414 rc
= bnx2x_exe_queue_step(bp
, &o
->exe_queue
, ramrod_flags
);
1416 spin_unlock_bh(&o
->exe_queue
.lock
);
1422 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1424 * @bp: device handle
1425 * @o: bnx2x_vlan_mac_obj
1427 * @cont: if true schedule next execution chunk
1430 static int bnx2x_complete_vlan_mac(struct bnx2x
*bp
,
1431 struct bnx2x_vlan_mac_obj
*o
,
1432 union event_ring_elem
*cqe
,
1433 unsigned long *ramrod_flags
)
1435 struct bnx2x_raw_obj
*r
= &o
->raw
;
1438 /* Clearing the pending list & raw state should be made
1439 * atomically (as execution flow assumes they represent the same).
1441 spin_lock_bh(&o
->exe_queue
.lock
);
1443 /* Reset pending list */
1444 __bnx2x_exe_queue_reset_pending(bp
, &o
->exe_queue
);
1447 r
->clear_pending(r
);
1449 spin_unlock_bh(&o
->exe_queue
.lock
);
1451 /* If ramrod failed this is most likely a SW bug */
1452 if (cqe
->message
.error
)
1455 /* Run the next bulk of pending commands if requested */
1456 if (test_bit(RAMROD_CONT
, ramrod_flags
)) {
1457 rc
= __bnx2x_vlan_mac_execute_step(bp
, o
, ramrod_flags
);
1463 /* If there is more work to do return PENDING */
1464 if (!bnx2x_exe_queue_empty(&o
->exe_queue
))
1471 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1473 * @bp: device handle
1474 * @o: bnx2x_qable_obj
1475 * @elem: bnx2x_exeq_elem
1477 static int bnx2x_optimize_vlan_mac(struct bnx2x
*bp
,
1478 union bnx2x_qable_obj
*qo
,
1479 struct bnx2x_exeq_elem
*elem
)
1481 struct bnx2x_exeq_elem query
, *pos
;
1482 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1483 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1485 memcpy(&query
, elem
, sizeof(query
));
1487 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1488 case BNX2X_VLAN_MAC_ADD
:
1489 query
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_DEL
;
1491 case BNX2X_VLAN_MAC_DEL
:
1492 query
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_ADD
;
1495 /* Don't handle anything other than ADD or DEL */
1499 /* If we found the appropriate element - delete it */
1500 pos
= exeq
->get(exeq
, &query
);
1503 /* Return the credit of the optimized command */
1504 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1505 &pos
->cmd_data
.vlan_mac
.vlan_mac_flags
)) {
1506 if ((query
.cmd_data
.vlan_mac
.cmd
==
1507 BNX2X_VLAN_MAC_ADD
) && !o
->put_credit(o
)) {
1508 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1510 } else if (!o
->get_credit(o
)) { /* VLAN_MAC_DEL */
1511 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1516 DP(BNX2X_MSG_SP
, "Optimizing %s command\n",
1517 (elem
->cmd_data
.vlan_mac
.cmd
== BNX2X_VLAN_MAC_ADD
) ?
1520 list_del(&pos
->link
);
1521 bnx2x_exe_queue_free_elem(bp
, pos
);
1529 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1531 * @bp: device handle
1537 * prepare a registry element according to the current command request.
1539 static inline int bnx2x_vlan_mac_get_registry_elem(
1541 struct bnx2x_vlan_mac_obj
*o
,
1542 struct bnx2x_exeq_elem
*elem
,
1544 struct bnx2x_vlan_mac_registry_elem
**re
)
1546 enum bnx2x_vlan_mac_cmd cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1547 struct bnx2x_vlan_mac_registry_elem
*reg_elem
;
1549 /* Allocate a new registry element if needed. */
1551 ((cmd
== BNX2X_VLAN_MAC_ADD
) || (cmd
== BNX2X_VLAN_MAC_MOVE
))) {
1552 reg_elem
= kzalloc(sizeof(*reg_elem
), GFP_ATOMIC
);
1556 /* Get a new CAM offset */
1557 if (!o
->get_cam_offset(o
, ®_elem
->cam_offset
)) {
1558 /* This shall never happen, because we have checked the
1559 * CAM availability in the 'validate'.
1566 DP(BNX2X_MSG_SP
, "Got cam offset %d\n", reg_elem
->cam_offset
);
1568 /* Set a VLAN-MAC data */
1569 memcpy(®_elem
->u
, &elem
->cmd_data
.vlan_mac
.u
,
1570 sizeof(reg_elem
->u
));
1572 /* Copy the flags (needed for DEL and RESTORE flows) */
1573 reg_elem
->vlan_mac_flags
=
1574 elem
->cmd_data
.vlan_mac
.vlan_mac_flags
;
1575 } else /* DEL, RESTORE */
1576 reg_elem
= o
->check_del(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1583 * bnx2x_execute_vlan_mac - execute vlan mac command
1585 * @bp: device handle
1590 * go and send a ramrod!
1592 static int bnx2x_execute_vlan_mac(struct bnx2x
*bp
,
1593 union bnx2x_qable_obj
*qo
,
1594 struct list_head
*exe_chunk
,
1595 unsigned long *ramrod_flags
)
1597 struct bnx2x_exeq_elem
*elem
;
1598 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
, *cam_obj
;
1599 struct bnx2x_raw_obj
*r
= &o
->raw
;
1601 bool restore
= test_bit(RAMROD_RESTORE
, ramrod_flags
);
1602 bool drv_only
= test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
);
1603 struct bnx2x_vlan_mac_registry_elem
*reg_elem
;
1604 enum bnx2x_vlan_mac_cmd cmd
;
1606 /* If DRIVER_ONLY execution is requested, cleanup a registry
1607 * and exit. Otherwise send a ramrod to FW.
1610 WARN_ON(r
->check_pending(r
));
1615 /* Fill the ramrod data */
1616 list_for_each_entry(elem
, exe_chunk
, link
) {
1617 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1618 /* We will add to the target object in MOVE command, so
1619 * change the object for a CAM search.
1621 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1622 cam_obj
= elem
->cmd_data
.vlan_mac
.target_obj
;
1626 rc
= bnx2x_vlan_mac_get_registry_elem(bp
, cam_obj
,
1634 /* Push a new entry into the registry */
1636 ((cmd
== BNX2X_VLAN_MAC_ADD
) ||
1637 (cmd
== BNX2X_VLAN_MAC_MOVE
)))
1638 list_add(®_elem
->link
, &cam_obj
->head
);
1640 /* Configure a single command in a ramrod data buffer */
1641 o
->set_one_rule(bp
, o
, elem
, idx
,
1642 reg_elem
->cam_offset
);
1644 /* MOVE command consumes 2 entries in the ramrod data */
1645 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1651 /* No need for an explicit memory barrier here as long we would
1652 * need to ensure the ordering of writing to the SPQ element
1653 * and updating of the SPQ producer which involves a memory
1654 * read and we will have to put a full memory barrier there
1655 * (inside bnx2x_sp_post()).
1658 rc
= bnx2x_sp_post(bp
, o
->ramrod_cmd
, r
->cid
,
1659 U64_HI(r
->rdata_mapping
),
1660 U64_LO(r
->rdata_mapping
),
1661 ETH_CONNECTION_TYPE
);
1666 /* Now, when we are done with the ramrod - clean up the registry */
1667 list_for_each_entry(elem
, exe_chunk
, link
) {
1668 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1669 if ((cmd
== BNX2X_VLAN_MAC_DEL
) ||
1670 (cmd
== BNX2X_VLAN_MAC_MOVE
)) {
1671 reg_elem
= o
->check_del(bp
, o
,
1672 &elem
->cmd_data
.vlan_mac
.u
);
1676 o
->put_cam_offset(o
, reg_elem
->cam_offset
);
1677 list_del(®_elem
->link
);
1688 r
->clear_pending(r
);
1690 /* Cleanup a registry in case of a failure */
1691 list_for_each_entry(elem
, exe_chunk
, link
) {
1692 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1694 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1695 cam_obj
= elem
->cmd_data
.vlan_mac
.target_obj
;
1699 /* Delete all newly added above entries */
1701 ((cmd
== BNX2X_VLAN_MAC_ADD
) ||
1702 (cmd
== BNX2X_VLAN_MAC_MOVE
))) {
1703 reg_elem
= o
->check_del(bp
, cam_obj
,
1704 &elem
->cmd_data
.vlan_mac
.u
);
1706 list_del(®_elem
->link
);
1715 static inline int bnx2x_vlan_mac_push_new_cmd(
1717 struct bnx2x_vlan_mac_ramrod_params
*p
)
1719 struct bnx2x_exeq_elem
*elem
;
1720 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1721 bool restore
= test_bit(RAMROD_RESTORE
, &p
->ramrod_flags
);
1723 /* Allocate the execution queue element */
1724 elem
= bnx2x_exe_queue_alloc_elem(bp
);
1728 /* Set the command 'length' */
1729 switch (p
->user_req
.cmd
) {
1730 case BNX2X_VLAN_MAC_MOVE
:
1737 /* Fill the object specific info */
1738 memcpy(&elem
->cmd_data
.vlan_mac
, &p
->user_req
, sizeof(p
->user_req
));
1740 /* Try to add a new command to the pending list */
1741 return bnx2x_exe_queue_add(bp
, &o
->exe_queue
, elem
, restore
);
1745 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1747 * @bp: device handle
1751 int bnx2x_config_vlan_mac(struct bnx2x
*bp
,
1752 struct bnx2x_vlan_mac_ramrod_params
*p
)
1755 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1756 unsigned long *ramrod_flags
= &p
->ramrod_flags
;
1757 bool cont
= test_bit(RAMROD_CONT
, ramrod_flags
);
1758 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1761 * Add new elements to the execution list for commands that require it.
1764 rc
= bnx2x_vlan_mac_push_new_cmd(bp
, p
);
1769 /* If nothing will be executed further in this iteration we want to
1770 * return PENDING if there are pending commands
1772 if (!bnx2x_exe_queue_empty(&o
->exe_queue
))
1775 if (test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
)) {
1776 DP(BNX2X_MSG_SP
, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1777 raw
->clear_pending(raw
);
1780 /* Execute commands if required */
1781 if (cont
|| test_bit(RAMROD_EXEC
, ramrod_flags
) ||
1782 test_bit(RAMROD_COMP_WAIT
, ramrod_flags
)) {
1783 rc
= __bnx2x_vlan_mac_execute_step(bp
, p
->vlan_mac_obj
,
1789 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1790 * then user want to wait until the last command is done.
1792 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
)) {
1793 /* Wait maximum for the current exe_queue length iterations plus
1794 * one (for the current pending command).
1796 int max_iterations
= bnx2x_exe_queue_length(&o
->exe_queue
) + 1;
1798 while (!bnx2x_exe_queue_empty(&o
->exe_queue
) &&
1801 /* Wait for the current command to complete */
1802 rc
= raw
->wait_comp(bp
, raw
);
1806 /* Make a next step */
1807 rc
= __bnx2x_vlan_mac_execute_step(bp
,
1821 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
1823 * @bp: device handle
1826 * @ramrod_flags: execution flags to be used for this deletion
1828 * if the last operation has completed successfully and there are no
1829 * more elements left, positive value if the last operation has completed
1830 * successfully and there are more previously configured elements, negative
1831 * value is current operation has failed.
1833 static int bnx2x_vlan_mac_del_all(struct bnx2x
*bp
,
1834 struct bnx2x_vlan_mac_obj
*o
,
1835 unsigned long *vlan_mac_flags
,
1836 unsigned long *ramrod_flags
)
1838 struct bnx2x_vlan_mac_registry_elem
*pos
= NULL
;
1839 struct bnx2x_vlan_mac_ramrod_params p
;
1840 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1841 struct bnx2x_exeq_elem
*exeq_pos
, *exeq_pos_n
;
1842 unsigned long flags
;
1846 /* Clear pending commands first */
1848 spin_lock_bh(&exeq
->lock
);
1850 list_for_each_entry_safe(exeq_pos
, exeq_pos_n
, &exeq
->exe_queue
, link
) {
1851 flags
= exeq_pos
->cmd_data
.vlan_mac
.vlan_mac_flags
;
1852 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags
) ==
1853 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags
)) {
1854 rc
= exeq
->remove(bp
, exeq
->owner
, exeq_pos
);
1856 BNX2X_ERR("Failed to remove command\n");
1857 spin_unlock_bh(&exeq
->lock
);
1860 list_del(&exeq_pos
->link
);
1861 bnx2x_exe_queue_free_elem(bp
, exeq_pos
);
1865 spin_unlock_bh(&exeq
->lock
);
1867 /* Prepare a command request */
1868 memset(&p
, 0, sizeof(p
));
1870 p
.ramrod_flags
= *ramrod_flags
;
1871 p
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
1873 /* Add all but the last VLAN-MAC to the execution queue without actually
1874 * execution anything.
1876 __clear_bit(RAMROD_COMP_WAIT
, &p
.ramrod_flags
);
1877 __clear_bit(RAMROD_EXEC
, &p
.ramrod_flags
);
1878 __clear_bit(RAMROD_CONT
, &p
.ramrod_flags
);
1880 DP(BNX2X_MSG_SP
, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
1881 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, o
);
1885 list_for_each_entry(pos
, &o
->head
, link
) {
1886 flags
= pos
->vlan_mac_flags
;
1887 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags
) ==
1888 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags
)) {
1889 p
.user_req
.vlan_mac_flags
= pos
->vlan_mac_flags
;
1890 memcpy(&p
.user_req
.u
, &pos
->u
, sizeof(pos
->u
));
1891 rc
= bnx2x_config_vlan_mac(bp
, &p
);
1893 BNX2X_ERR("Failed to add a new DEL command\n");
1894 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
1900 DP(BNX2X_MSG_SP
, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
1901 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
1903 p
.ramrod_flags
= *ramrod_flags
;
1904 __set_bit(RAMROD_CONT
, &p
.ramrod_flags
);
1906 return bnx2x_config_vlan_mac(bp
, &p
);
1909 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj
*raw
, u8 cl_id
,
1910 u32 cid
, u8 func_id
, void *rdata
, dma_addr_t rdata_mapping
, int state
,
1911 unsigned long *pstate
, bnx2x_obj_type type
)
1913 raw
->func_id
= func_id
;
1917 raw
->rdata_mapping
= rdata_mapping
;
1919 raw
->pstate
= pstate
;
1920 raw
->obj_type
= type
;
1921 raw
->check_pending
= bnx2x_raw_check_pending
;
1922 raw
->clear_pending
= bnx2x_raw_clear_pending
;
1923 raw
->set_pending
= bnx2x_raw_set_pending
;
1924 raw
->wait_comp
= bnx2x_raw_wait
;
1927 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj
*o
,
1928 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
, dma_addr_t rdata_mapping
,
1929 int state
, unsigned long *pstate
, bnx2x_obj_type type
,
1930 struct bnx2x_credit_pool_obj
*macs_pool
,
1931 struct bnx2x_credit_pool_obj
*vlans_pool
)
1933 INIT_LIST_HEAD(&o
->head
);
1935 o
->head_exe_request
= false;
1936 o
->saved_ramrod_flags
= 0;
1938 o
->macs_pool
= macs_pool
;
1939 o
->vlans_pool
= vlans_pool
;
1941 o
->delete_all
= bnx2x_vlan_mac_del_all
;
1942 o
->restore
= bnx2x_vlan_mac_restore
;
1943 o
->complete
= bnx2x_complete_vlan_mac
;
1944 o
->wait
= bnx2x_wait_vlan_mac
;
1946 bnx2x_init_raw_obj(&o
->raw
, cl_id
, cid
, func_id
, rdata
, rdata_mapping
,
1947 state
, pstate
, type
);
1950 void bnx2x_init_mac_obj(struct bnx2x
*bp
,
1951 struct bnx2x_vlan_mac_obj
*mac_obj
,
1952 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
,
1953 dma_addr_t rdata_mapping
, int state
,
1954 unsigned long *pstate
, bnx2x_obj_type type
,
1955 struct bnx2x_credit_pool_obj
*macs_pool
)
1957 union bnx2x_qable_obj
*qable_obj
= (union bnx2x_qable_obj
*)mac_obj
;
1959 bnx2x_init_vlan_mac_common(mac_obj
, cl_id
, cid
, func_id
, rdata
,
1960 rdata_mapping
, state
, pstate
, type
,
1963 /* CAM credit pool handling */
1964 mac_obj
->get_credit
= bnx2x_get_credit_mac
;
1965 mac_obj
->put_credit
= bnx2x_put_credit_mac
;
1966 mac_obj
->get_cam_offset
= bnx2x_get_cam_offset_mac
;
1967 mac_obj
->put_cam_offset
= bnx2x_put_cam_offset_mac
;
1969 if (CHIP_IS_E1x(bp
)) {
1970 mac_obj
->set_one_rule
= bnx2x_set_one_mac_e1x
;
1971 mac_obj
->check_del
= bnx2x_check_mac_del
;
1972 mac_obj
->check_add
= bnx2x_check_mac_add
;
1973 mac_obj
->check_move
= bnx2x_check_move_always_err
;
1974 mac_obj
->ramrod_cmd
= RAMROD_CMD_ID_ETH_SET_MAC
;
1977 bnx2x_exe_queue_init(bp
,
1978 &mac_obj
->exe_queue
, 1, qable_obj
,
1979 bnx2x_validate_vlan_mac
,
1980 bnx2x_remove_vlan_mac
,
1981 bnx2x_optimize_vlan_mac
,
1982 bnx2x_execute_vlan_mac
,
1983 bnx2x_exeq_get_mac
);
1985 mac_obj
->set_one_rule
= bnx2x_set_one_mac_e2
;
1986 mac_obj
->check_del
= bnx2x_check_mac_del
;
1987 mac_obj
->check_add
= bnx2x_check_mac_add
;
1988 mac_obj
->check_move
= bnx2x_check_move
;
1989 mac_obj
->ramrod_cmd
=
1990 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
;
1991 mac_obj
->get_n_elements
= bnx2x_get_n_elements
;
1994 bnx2x_exe_queue_init(bp
,
1995 &mac_obj
->exe_queue
, CLASSIFY_RULES_COUNT
,
1996 qable_obj
, bnx2x_validate_vlan_mac
,
1997 bnx2x_remove_vlan_mac
,
1998 bnx2x_optimize_vlan_mac
,
1999 bnx2x_execute_vlan_mac
,
2000 bnx2x_exeq_get_mac
);
2004 void bnx2x_init_vlan_obj(struct bnx2x
*bp
,
2005 struct bnx2x_vlan_mac_obj
*vlan_obj
,
2006 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
,
2007 dma_addr_t rdata_mapping
, int state
,
2008 unsigned long *pstate
, bnx2x_obj_type type
,
2009 struct bnx2x_credit_pool_obj
*vlans_pool
)
2011 union bnx2x_qable_obj
*qable_obj
= (union bnx2x_qable_obj
*)vlan_obj
;
2013 bnx2x_init_vlan_mac_common(vlan_obj
, cl_id
, cid
, func_id
, rdata
,
2014 rdata_mapping
, state
, pstate
, type
, NULL
,
2017 vlan_obj
->get_credit
= bnx2x_get_credit_vlan
;
2018 vlan_obj
->put_credit
= bnx2x_put_credit_vlan
;
2019 vlan_obj
->get_cam_offset
= bnx2x_get_cam_offset_vlan
;
2020 vlan_obj
->put_cam_offset
= bnx2x_put_cam_offset_vlan
;
2022 if (CHIP_IS_E1x(bp
)) {
2023 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2026 vlan_obj
->set_one_rule
= bnx2x_set_one_vlan_e2
;
2027 vlan_obj
->check_del
= bnx2x_check_vlan_del
;
2028 vlan_obj
->check_add
= bnx2x_check_vlan_add
;
2029 vlan_obj
->check_move
= bnx2x_check_move
;
2030 vlan_obj
->ramrod_cmd
=
2031 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
;
2032 vlan_obj
->get_n_elements
= bnx2x_get_n_elements
;
2035 bnx2x_exe_queue_init(bp
,
2036 &vlan_obj
->exe_queue
, CLASSIFY_RULES_COUNT
,
2037 qable_obj
, bnx2x_validate_vlan_mac
,
2038 bnx2x_remove_vlan_mac
,
2039 bnx2x_optimize_vlan_mac
,
2040 bnx2x_execute_vlan_mac
,
2041 bnx2x_exeq_get_vlan
);
2045 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2046 static inline void __storm_memset_mac_filters(struct bnx2x
*bp
,
2047 struct tstorm_eth_mac_filter_config
*mac_filters
,
2050 size_t size
= sizeof(struct tstorm_eth_mac_filter_config
);
2052 u32 addr
= BAR_TSTRORM_INTMEM
+
2053 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id
);
2055 __storm_memset_struct(bp
, addr
, size
, (u32
*)mac_filters
);
2058 static int bnx2x_set_rx_mode_e1x(struct bnx2x
*bp
,
2059 struct bnx2x_rx_mode_ramrod_params
*p
)
2061 /* update the bp MAC filter structure */
2062 u32 mask
= (1 << p
->cl_id
);
2064 struct tstorm_eth_mac_filter_config
*mac_filters
=
2065 (struct tstorm_eth_mac_filter_config
*)p
->rdata
;
2067 /* initial setting is drop-all */
2068 u8 drop_all_ucast
= 1, drop_all_mcast
= 1;
2069 u8 accp_all_ucast
= 0, accp_all_bcast
= 0, accp_all_mcast
= 0;
2070 u8 unmatched_unicast
= 0;
2072 /* In e1x there we only take into account rx accept flag since tx switching
2074 if (test_bit(BNX2X_ACCEPT_UNICAST
, &p
->rx_accept_flags
))
2075 /* accept matched ucast */
2078 if (test_bit(BNX2X_ACCEPT_MULTICAST
, &p
->rx_accept_flags
))
2079 /* accept matched mcast */
2082 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST
, &p
->rx_accept_flags
)) {
2083 /* accept all mcast */
2087 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &p
->rx_accept_flags
)) {
2088 /* accept all mcast */
2092 if (test_bit(BNX2X_ACCEPT_BROADCAST
, &p
->rx_accept_flags
))
2093 /* accept (all) bcast */
2095 if (test_bit(BNX2X_ACCEPT_UNMATCHED
, &p
->rx_accept_flags
))
2096 /* accept unmatched unicasts */
2097 unmatched_unicast
= 1;
2099 mac_filters
->ucast_drop_all
= drop_all_ucast
?
2100 mac_filters
->ucast_drop_all
| mask
:
2101 mac_filters
->ucast_drop_all
& ~mask
;
2103 mac_filters
->mcast_drop_all
= drop_all_mcast
?
2104 mac_filters
->mcast_drop_all
| mask
:
2105 mac_filters
->mcast_drop_all
& ~mask
;
2107 mac_filters
->ucast_accept_all
= accp_all_ucast
?
2108 mac_filters
->ucast_accept_all
| mask
:
2109 mac_filters
->ucast_accept_all
& ~mask
;
2111 mac_filters
->mcast_accept_all
= accp_all_mcast
?
2112 mac_filters
->mcast_accept_all
| mask
:
2113 mac_filters
->mcast_accept_all
& ~mask
;
2115 mac_filters
->bcast_accept_all
= accp_all_bcast
?
2116 mac_filters
->bcast_accept_all
| mask
:
2117 mac_filters
->bcast_accept_all
& ~mask
;
2119 mac_filters
->unmatched_unicast
= unmatched_unicast
?
2120 mac_filters
->unmatched_unicast
| mask
:
2121 mac_filters
->unmatched_unicast
& ~mask
;
2123 DP(BNX2X_MSG_SP
, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2124 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2125 mac_filters
->ucast_drop_all
, mac_filters
->mcast_drop_all
,
2126 mac_filters
->ucast_accept_all
, mac_filters
->mcast_accept_all
,
2127 mac_filters
->bcast_accept_all
);
2129 /* write the MAC filter structure*/
2130 __storm_memset_mac_filters(bp
, mac_filters
, p
->func_id
);
2132 /* The operation is completed */
2133 clear_bit(p
->state
, p
->pstate
);
2134 smp_mb__after_clear_bit();
2139 /* Setup ramrod data */
2140 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid
,
2141 struct eth_classify_header
*hdr
,
2144 hdr
->echo
= cpu_to_le32(cid
);
2145 hdr
->rule_cnt
= rule_cnt
;
2148 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x
*bp
,
2149 unsigned long *accept_flags
,
2150 struct eth_filter_rules_cmd
*cmd
,
2151 bool clear_accept_all
)
2155 /* start with 'drop-all' */
2156 state
= ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
|
2157 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2159 if (test_bit(BNX2X_ACCEPT_UNICAST
, accept_flags
))
2160 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2162 if (test_bit(BNX2X_ACCEPT_MULTICAST
, accept_flags
))
2163 state
&= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2165 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST
, accept_flags
)) {
2166 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2167 state
|= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL
;
2170 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST
, accept_flags
)) {
2171 state
|= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL
;
2172 state
&= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2175 if (test_bit(BNX2X_ACCEPT_BROADCAST
, accept_flags
))
2176 state
|= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL
;
2178 if (test_bit(BNX2X_ACCEPT_UNMATCHED
, accept_flags
)) {
2179 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2180 state
|= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED
;
2183 if (test_bit(BNX2X_ACCEPT_ANY_VLAN
, accept_flags
))
2184 state
|= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN
;
2186 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2187 if (clear_accept_all
) {
2188 state
&= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL
;
2189 state
&= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL
;
2190 state
&= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL
;
2191 state
&= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED
;
2194 cmd
->state
= cpu_to_le16(state
);
2197 static int bnx2x_set_rx_mode_e2(struct bnx2x
*bp
,
2198 struct bnx2x_rx_mode_ramrod_params
*p
)
2200 struct eth_filter_rules_ramrod_data
*data
= p
->rdata
;
2204 /* Reset the ramrod data buffer */
2205 memset(data
, 0, sizeof(*data
));
2207 /* Setup ramrod data */
2209 /* Tx (internal switching) */
2210 if (test_bit(RAMROD_TX
, &p
->ramrod_flags
)) {
2211 data
->rules
[rule_idx
].client_id
= p
->cl_id
;
2212 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2214 data
->rules
[rule_idx
].cmd_general_data
=
2215 ETH_FILTER_RULES_CMD_TX_CMD
;
2217 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->tx_accept_flags
,
2218 &(data
->rules
[rule_idx
++]),
2223 if (test_bit(RAMROD_RX
, &p
->ramrod_flags
)) {
2224 data
->rules
[rule_idx
].client_id
= p
->cl_id
;
2225 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2227 data
->rules
[rule_idx
].cmd_general_data
=
2228 ETH_FILTER_RULES_CMD_RX_CMD
;
2230 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->rx_accept_flags
,
2231 &(data
->rules
[rule_idx
++]),
2235 /* If FCoE Queue configuration has been requested configure the Rx and
2236 * internal switching modes for this queue in separate rules.
2238 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2239 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2241 if (test_bit(BNX2X_RX_MODE_FCOE_ETH
, &p
->rx_mode_flags
)) {
2242 /* Tx (internal switching) */
2243 if (test_bit(RAMROD_TX
, &p
->ramrod_flags
)) {
2244 data
->rules
[rule_idx
].client_id
= bnx2x_fcoe(bp
, cl_id
);
2245 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2247 data
->rules
[rule_idx
].cmd_general_data
=
2248 ETH_FILTER_RULES_CMD_TX_CMD
;
2250 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->tx_accept_flags
,
2251 &(data
->rules
[rule_idx
]),
2257 if (test_bit(RAMROD_RX
, &p
->ramrod_flags
)) {
2258 data
->rules
[rule_idx
].client_id
= bnx2x_fcoe(bp
, cl_id
);
2259 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2261 data
->rules
[rule_idx
].cmd_general_data
=
2262 ETH_FILTER_RULES_CMD_RX_CMD
;
2264 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->rx_accept_flags
,
2265 &(data
->rules
[rule_idx
]),
2271 /* Set the ramrod header (most importantly - number of rules to
2274 bnx2x_rx_mode_set_rdata_hdr_e2(p
->cid
, &data
->header
, rule_idx
);
2276 DP(BNX2X_MSG_SP
, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2277 data
->header
.rule_cnt
, p
->rx_accept_flags
,
2278 p
->tx_accept_flags
);
2280 /* No need for an explicit memory barrier here as long we would
2281 * need to ensure the ordering of writing to the SPQ element
2282 * and updating of the SPQ producer which involves a memory
2283 * read and we will have to put a full memory barrier there
2284 * (inside bnx2x_sp_post()).
2288 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_FILTER_RULES
, p
->cid
,
2289 U64_HI(p
->rdata_mapping
),
2290 U64_LO(p
->rdata_mapping
),
2291 ETH_CONNECTION_TYPE
);
2295 /* Ramrod completion is pending */
2299 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x
*bp
,
2300 struct bnx2x_rx_mode_ramrod_params
*p
)
2302 return bnx2x_state_wait(bp
, p
->state
, p
->pstate
);
2305 static int bnx2x_empty_rx_mode_wait(struct bnx2x
*bp
,
2306 struct bnx2x_rx_mode_ramrod_params
*p
)
2312 int bnx2x_config_rx_mode(struct bnx2x
*bp
,
2313 struct bnx2x_rx_mode_ramrod_params
*p
)
2317 /* Configure the new classification in the chip */
2318 rc
= p
->rx_mode_obj
->config_rx_mode(bp
, p
);
2322 /* Wait for a ramrod completion if was requested */
2323 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
)) {
2324 rc
= p
->rx_mode_obj
->wait_comp(bp
, p
);
2332 void bnx2x_init_rx_mode_obj(struct bnx2x
*bp
,
2333 struct bnx2x_rx_mode_obj
*o
)
2335 if (CHIP_IS_E1x(bp
)) {
2336 o
->wait_comp
= bnx2x_empty_rx_mode_wait
;
2337 o
->config_rx_mode
= bnx2x_set_rx_mode_e1x
;
2339 o
->wait_comp
= bnx2x_wait_rx_mode_comp_e2
;
2340 o
->config_rx_mode
= bnx2x_set_rx_mode_e2
;
2344 /********************* Multicast verbs: SET, CLEAR ****************************/
2345 static inline u8
bnx2x_mcast_bin_from_mac(u8
*mac
)
2347 return (crc32c_le(0, mac
, ETH_ALEN
) >> 24) & 0xff;
2350 struct bnx2x_mcast_mac_elem
{
2351 struct list_head link
;
2353 u8 pad
[2]; /* For a natural alignment of the following buffer */
2356 struct bnx2x_pending_mcast_cmd
{
2357 struct list_head link
;
2358 int type
; /* BNX2X_MCAST_CMD_X */
2360 struct list_head macs_head
;
2361 u32 macs_num
; /* Needed for DEL command */
2362 int next_bin
; /* Needed for RESTORE flow with aprox match */
2365 bool done
; /* set to true, when the command has been handled,
2366 * practically used in 57712 handling only, where one pending
2367 * command may be handled in a few operations. As long as for
2368 * other chips every operation handling is completed in a
2369 * single ramrod, there is no need to utilize this field.
2373 static int bnx2x_mcast_wait(struct bnx2x
*bp
,
2374 struct bnx2x_mcast_obj
*o
)
2376 if (bnx2x_state_wait(bp
, o
->sched_state
, o
->raw
.pstate
) ||
2377 o
->raw
.wait_comp(bp
, &o
->raw
))
2383 static int bnx2x_mcast_enqueue_cmd(struct bnx2x
*bp
,
2384 struct bnx2x_mcast_obj
*o
,
2385 struct bnx2x_mcast_ramrod_params
*p
,
2386 enum bnx2x_mcast_cmd cmd
)
2389 struct bnx2x_pending_mcast_cmd
*new_cmd
;
2390 struct bnx2x_mcast_mac_elem
*cur_mac
= NULL
;
2391 struct bnx2x_mcast_list_elem
*pos
;
2392 int macs_list_len
= ((cmd
== BNX2X_MCAST_CMD_ADD
) ?
2393 p
->mcast_list_len
: 0);
2395 /* If the command is empty ("handle pending commands only"), break */
2396 if (!p
->mcast_list_len
)
2399 total_sz
= sizeof(*new_cmd
) +
2400 macs_list_len
* sizeof(struct bnx2x_mcast_mac_elem
);
2402 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2403 new_cmd
= kzalloc(total_sz
, GFP_ATOMIC
);
2408 DP(BNX2X_MSG_SP
, "About to enqueue a new %d command. macs_list_len=%d\n",
2409 cmd
, macs_list_len
);
2411 INIT_LIST_HEAD(&new_cmd
->data
.macs_head
);
2413 new_cmd
->type
= cmd
;
2414 new_cmd
->done
= false;
2417 case BNX2X_MCAST_CMD_ADD
:
2418 cur_mac
= (struct bnx2x_mcast_mac_elem
*)
2419 ((u8
*)new_cmd
+ sizeof(*new_cmd
));
2421 /* Push the MACs of the current command into the pending command
2424 list_for_each_entry(pos
, &p
->mcast_list
, link
) {
2425 memcpy(cur_mac
->mac
, pos
->mac
, ETH_ALEN
);
2426 list_add_tail(&cur_mac
->link
, &new_cmd
->data
.macs_head
);
2432 case BNX2X_MCAST_CMD_DEL
:
2433 new_cmd
->data
.macs_num
= p
->mcast_list_len
;
2436 case BNX2X_MCAST_CMD_RESTORE
:
2437 new_cmd
->data
.next_bin
= 0;
2442 BNX2X_ERR("Unknown command: %d\n", cmd
);
2446 /* Push the new pending command to the tail of the pending list: FIFO */
2447 list_add_tail(&new_cmd
->link
, &o
->pending_cmds_head
);
2455 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2458 * @last: index to start looking from (including)
2460 * returns the next found (set) bin or a negative value if none is found.
2462 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj
*o
, int last
)
2464 int i
, j
, inner_start
= last
% BIT_VEC64_ELEM_SZ
;
2466 for (i
= last
/ BIT_VEC64_ELEM_SZ
; i
< BNX2X_MCAST_VEC_SZ
; i
++) {
2467 if (o
->registry
.aprox_match
.vec
[i
])
2468 for (j
= inner_start
; j
< BIT_VEC64_ELEM_SZ
; j
++) {
2469 int cur_bit
= j
+ BIT_VEC64_ELEM_SZ
* i
;
2470 if (BIT_VEC64_TEST_BIT(o
->registry
.aprox_match
.
2483 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2487 * returns the index of the found bin or -1 if none is found
2489 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj
*o
)
2491 int cur_bit
= bnx2x_mcast_get_next_bin(o
, 0);
2494 BIT_VEC64_CLEAR_BIT(o
->registry
.aprox_match
.vec
, cur_bit
);
2499 static inline u8
bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj
*o
)
2501 struct bnx2x_raw_obj
*raw
= &o
->raw
;
2504 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_TX
) ||
2505 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
2506 rx_tx_flag
|= ETH_MULTICAST_RULES_CMD_TX_CMD
;
2508 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_RX
) ||
2509 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
2510 rx_tx_flag
|= ETH_MULTICAST_RULES_CMD_RX_CMD
;
2515 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x
*bp
,
2516 struct bnx2x_mcast_obj
*o
, int idx
,
2517 union bnx2x_mcast_config_data
*cfg_data
,
2518 enum bnx2x_mcast_cmd cmd
)
2520 struct bnx2x_raw_obj
*r
= &o
->raw
;
2521 struct eth_multicast_rules_ramrod_data
*data
=
2522 (struct eth_multicast_rules_ramrod_data
*)(r
->rdata
);
2523 u8 func_id
= r
->func_id
;
2524 u8 rx_tx_add_flag
= bnx2x_mcast_get_rx_tx_flag(o
);
2527 if ((cmd
== BNX2X_MCAST_CMD_ADD
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
))
2528 rx_tx_add_flag
|= ETH_MULTICAST_RULES_CMD_IS_ADD
;
2530 data
->rules
[idx
].cmd_general_data
|= rx_tx_add_flag
;
2532 /* Get a bin and update a bins' vector */
2534 case BNX2X_MCAST_CMD_ADD
:
2535 bin
= bnx2x_mcast_bin_from_mac(cfg_data
->mac
);
2536 BIT_VEC64_SET_BIT(o
->registry
.aprox_match
.vec
, bin
);
2539 case BNX2X_MCAST_CMD_DEL
:
2540 /* If there were no more bins to clear
2541 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2542 * clear any (0xff) bin.
2543 * See bnx2x_mcast_validate_e2() for explanation when it may
2546 bin
= bnx2x_mcast_clear_first_bin(o
);
2549 case BNX2X_MCAST_CMD_RESTORE
:
2550 bin
= cfg_data
->bin
;
2554 BNX2X_ERR("Unknown command: %d\n", cmd
);
2558 DP(BNX2X_MSG_SP
, "%s bin %d\n",
2559 ((rx_tx_add_flag
& ETH_MULTICAST_RULES_CMD_IS_ADD
) ?
2560 "Setting" : "Clearing"), bin
);
2562 data
->rules
[idx
].bin_id
= (u8
)bin
;
2563 data
->rules
[idx
].func_id
= func_id
;
2564 data
->rules
[idx
].engine_id
= o
->engine_id
;
2568 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2570 * @bp: device handle
2572 * @start_bin: index in the registry to start from (including)
2573 * @rdata_idx: index in the ramrod data to start from
2575 * returns last handled bin index or -1 if all bins have been handled
2577 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2578 struct bnx2x
*bp
, struct bnx2x_mcast_obj
*o
, int start_bin
,
2581 int cur_bin
, cnt
= *rdata_idx
;
2582 union bnx2x_mcast_config_data cfg_data
= {NULL
};
2584 /* go through the registry and configure the bins from it */
2585 for (cur_bin
= bnx2x_mcast_get_next_bin(o
, start_bin
); cur_bin
>= 0;
2586 cur_bin
= bnx2x_mcast_get_next_bin(o
, cur_bin
+ 1)) {
2588 cfg_data
.bin
= (u8
)cur_bin
;
2589 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
,
2590 BNX2X_MCAST_CMD_RESTORE
);
2594 DP(BNX2X_MSG_SP
, "About to configure a bin %d\n", cur_bin
);
2596 /* Break if we reached the maximum number
2599 if (cnt
>= o
->max_cmd_len
)
2608 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x
*bp
,
2609 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
2612 struct bnx2x_mcast_mac_elem
*pmac_pos
, *pmac_pos_n
;
2613 int cnt
= *line_idx
;
2614 union bnx2x_mcast_config_data cfg_data
= {NULL
};
2616 list_for_each_entry_safe(pmac_pos
, pmac_pos_n
, &cmd_pos
->data
.macs_head
,
2619 cfg_data
.mac
= &pmac_pos
->mac
[0];
2620 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, cmd_pos
->type
);
2624 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
2627 list_del(&pmac_pos
->link
);
2629 /* Break if we reached the maximum number
2632 if (cnt
>= o
->max_cmd_len
)
2638 /* if no more MACs to configure - we are done */
2639 if (list_empty(&cmd_pos
->data
.macs_head
))
2640 cmd_pos
->done
= true;
2643 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x
*bp
,
2644 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
2647 int cnt
= *line_idx
;
2649 while (cmd_pos
->data
.macs_num
) {
2650 o
->set_one_rule(bp
, o
, cnt
, NULL
, cmd_pos
->type
);
2654 cmd_pos
->data
.macs_num
--;
2656 DP(BNX2X_MSG_SP
, "Deleting MAC. %d left,cnt is %d\n",
2657 cmd_pos
->data
.macs_num
, cnt
);
2659 /* Break if we reached the maximum
2662 if (cnt
>= o
->max_cmd_len
)
2668 /* If we cleared all bins - we are done */
2669 if (!cmd_pos
->data
.macs_num
)
2670 cmd_pos
->done
= true;
2673 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x
*bp
,
2674 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
2677 cmd_pos
->data
.next_bin
= o
->hdl_restore(bp
, o
, cmd_pos
->data
.next_bin
,
2680 if (cmd_pos
->data
.next_bin
< 0)
2681 /* If o->set_restore returned -1 we are done */
2682 cmd_pos
->done
= true;
2684 /* Start from the next bin next time */
2685 cmd_pos
->data
.next_bin
++;
2688 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x
*bp
,
2689 struct bnx2x_mcast_ramrod_params
*p
)
2691 struct bnx2x_pending_mcast_cmd
*cmd_pos
, *cmd_pos_n
;
2693 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
2695 list_for_each_entry_safe(cmd_pos
, cmd_pos_n
, &o
->pending_cmds_head
,
2697 switch (cmd_pos
->type
) {
2698 case BNX2X_MCAST_CMD_ADD
:
2699 bnx2x_mcast_hdl_pending_add_e2(bp
, o
, cmd_pos
, &cnt
);
2702 case BNX2X_MCAST_CMD_DEL
:
2703 bnx2x_mcast_hdl_pending_del_e2(bp
, o
, cmd_pos
, &cnt
);
2706 case BNX2X_MCAST_CMD_RESTORE
:
2707 bnx2x_mcast_hdl_pending_restore_e2(bp
, o
, cmd_pos
,
2712 BNX2X_ERR("Unknown command: %d\n", cmd_pos
->type
);
2716 /* If the command has been completed - remove it from the list
2717 * and free the memory
2719 if (cmd_pos
->done
) {
2720 list_del(&cmd_pos
->link
);
2724 /* Break if we reached the maximum number of rules */
2725 if (cnt
>= o
->max_cmd_len
)
2732 static inline void bnx2x_mcast_hdl_add(struct bnx2x
*bp
,
2733 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
2736 struct bnx2x_mcast_list_elem
*mlist_pos
;
2737 union bnx2x_mcast_config_data cfg_data
= {NULL
};
2738 int cnt
= *line_idx
;
2740 list_for_each_entry(mlist_pos
, &p
->mcast_list
, link
) {
2741 cfg_data
.mac
= mlist_pos
->mac
;
2742 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, BNX2X_MCAST_CMD_ADD
);
2746 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
2753 static inline void bnx2x_mcast_hdl_del(struct bnx2x
*bp
,
2754 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
2757 int cnt
= *line_idx
, i
;
2759 for (i
= 0; i
< p
->mcast_list_len
; i
++) {
2760 o
->set_one_rule(bp
, o
, cnt
, NULL
, BNX2X_MCAST_CMD_DEL
);
2764 DP(BNX2X_MSG_SP
, "Deleting MAC. %d left\n",
2765 p
->mcast_list_len
- i
- 1);
2772 * bnx2x_mcast_handle_current_cmd -
2774 * @bp: device handle
2777 * @start_cnt: first line in the ramrod data that may be used
2779 * This function is called iff there is enough place for the current command in
2781 * Returns number of lines filled in the ramrod data in total.
2783 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x
*bp
,
2784 struct bnx2x_mcast_ramrod_params
*p
,
2785 enum bnx2x_mcast_cmd cmd
,
2788 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
2789 int cnt
= start_cnt
;
2791 DP(BNX2X_MSG_SP
, "p->mcast_list_len=%d\n", p
->mcast_list_len
);
2794 case BNX2X_MCAST_CMD_ADD
:
2795 bnx2x_mcast_hdl_add(bp
, o
, p
, &cnt
);
2798 case BNX2X_MCAST_CMD_DEL
:
2799 bnx2x_mcast_hdl_del(bp
, o
, p
, &cnt
);
2802 case BNX2X_MCAST_CMD_RESTORE
:
2803 o
->hdl_restore(bp
, o
, 0, &cnt
);
2807 BNX2X_ERR("Unknown command: %d\n", cmd
);
2811 /* The current command has been handled */
2812 p
->mcast_list_len
= 0;
2817 static int bnx2x_mcast_validate_e2(struct bnx2x
*bp
,
2818 struct bnx2x_mcast_ramrod_params
*p
,
2819 enum bnx2x_mcast_cmd cmd
)
2821 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
2822 int reg_sz
= o
->get_registry_size(o
);
2825 /* DEL command deletes all currently configured MACs */
2826 case BNX2X_MCAST_CMD_DEL
:
2827 o
->set_registry_size(o
, 0);
2830 /* RESTORE command will restore the entire multicast configuration */
2831 case BNX2X_MCAST_CMD_RESTORE
:
2832 /* Here we set the approximate amount of work to do, which in
2833 * fact may be only less as some MACs in postponed ADD
2834 * command(s) scheduled before this command may fall into
2835 * the same bin and the actual number of bins set in the
2836 * registry would be less than we estimated here. See
2837 * bnx2x_mcast_set_one_rule_e2() for further details.
2839 p
->mcast_list_len
= reg_sz
;
2842 case BNX2X_MCAST_CMD_ADD
:
2843 case BNX2X_MCAST_CMD_CONT
:
2844 /* Here we assume that all new MACs will fall into new bins.
2845 * However we will correct the real registry size after we
2846 * handle all pending commands.
2848 o
->set_registry_size(o
, reg_sz
+ p
->mcast_list_len
);
2852 BNX2X_ERR("Unknown command: %d\n", cmd
);
2856 /* Increase the total number of MACs pending to be configured */
2857 o
->total_pending_num
+= p
->mcast_list_len
;
2862 static void bnx2x_mcast_revert_e2(struct bnx2x
*bp
,
2863 struct bnx2x_mcast_ramrod_params
*p
,
2866 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
2868 o
->set_registry_size(o
, old_num_bins
);
2869 o
->total_pending_num
-= p
->mcast_list_len
;
2873 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
2875 * @bp: device handle
2877 * @len: number of rules to handle
2879 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x
*bp
,
2880 struct bnx2x_mcast_ramrod_params
*p
,
2883 struct bnx2x_raw_obj
*r
= &p
->mcast_obj
->raw
;
2884 struct eth_multicast_rules_ramrod_data
*data
=
2885 (struct eth_multicast_rules_ramrod_data
*)(r
->rdata
);
2887 data
->header
.echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
2888 (BNX2X_FILTER_MCAST_PENDING
<<
2889 BNX2X_SWCID_SHIFT
));
2890 data
->header
.rule_cnt
= len
;
2894 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
2896 * @bp: device handle
2899 * Recalculate the actual number of set bins in the registry using Brian
2900 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
2902 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
2904 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x
*bp
,
2905 struct bnx2x_mcast_obj
*o
)
2910 for (i
= 0; i
< BNX2X_MCAST_VEC_SZ
; i
++) {
2911 elem
= o
->registry
.aprox_match
.vec
[i
];
2916 o
->set_registry_size(o
, cnt
);
2921 static int bnx2x_mcast_setup_e2(struct bnx2x
*bp
,
2922 struct bnx2x_mcast_ramrod_params
*p
,
2923 enum bnx2x_mcast_cmd cmd
)
2925 struct bnx2x_raw_obj
*raw
= &p
->mcast_obj
->raw
;
2926 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
2927 struct eth_multicast_rules_ramrod_data
*data
=
2928 (struct eth_multicast_rules_ramrod_data
*)(raw
->rdata
);
2931 /* Reset the ramrod data buffer */
2932 memset(data
, 0, sizeof(*data
));
2934 cnt
= bnx2x_mcast_handle_pending_cmds_e2(bp
, p
);
2936 /* If there are no more pending commands - clear SCHEDULED state */
2937 if (list_empty(&o
->pending_cmds_head
))
2940 /* The below may be true iff there was enough room in ramrod
2941 * data for all pending commands and for the current
2942 * command. Otherwise the current command would have been added
2943 * to the pending commands and p->mcast_list_len would have been
2946 if (p
->mcast_list_len
> 0)
2947 cnt
= bnx2x_mcast_handle_current_cmd(bp
, p
, cmd
, cnt
);
2949 /* We've pulled out some MACs - update the total number of
2952 o
->total_pending_num
-= cnt
;
2955 WARN_ON(o
->total_pending_num
< 0);
2956 WARN_ON(cnt
> o
->max_cmd_len
);
2958 bnx2x_mcast_set_rdata_hdr_e2(bp
, p
, (u8
)cnt
);
2960 /* Update a registry size if there are no more pending operations.
2962 * We don't want to change the value of the registry size if there are
2963 * pending operations because we want it to always be equal to the
2964 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
2965 * set bins after the last requested operation in order to properly
2966 * evaluate the size of the next DEL/RESTORE operation.
2968 * Note that we update the registry itself during command(s) handling
2969 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
2970 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
2971 * with a limited amount of update commands (per MAC/bin) and we don't
2972 * know in this scope what the actual state of bins configuration is
2973 * going to be after this ramrod.
2975 if (!o
->total_pending_num
)
2976 bnx2x_mcast_refresh_registry_e2(bp
, o
);
2978 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
2979 * RAMROD_PENDING status immediately.
2981 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
2982 raw
->clear_pending(raw
);
2985 /* No need for an explicit memory barrier here as long we would
2986 * need to ensure the ordering of writing to the SPQ element
2987 * and updating of the SPQ producer which involves a memory
2988 * read and we will have to put a full memory barrier there
2989 * (inside bnx2x_sp_post()).
2993 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_MULTICAST_RULES
,
2994 raw
->cid
, U64_HI(raw
->rdata_mapping
),
2995 U64_LO(raw
->rdata_mapping
),
2996 ETH_CONNECTION_TYPE
);
3000 /* Ramrod completion is pending */
3005 static int bnx2x_mcast_validate_e1h(struct bnx2x
*bp
,
3006 struct bnx2x_mcast_ramrod_params
*p
,
3007 enum bnx2x_mcast_cmd cmd
)
3009 /* Mark, that there is a work to do */
3010 if ((cmd
== BNX2X_MCAST_CMD_DEL
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
))
3011 p
->mcast_list_len
= 1;
3016 static void bnx2x_mcast_revert_e1h(struct bnx2x
*bp
,
3017 struct bnx2x_mcast_ramrod_params
*p
,
3023 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3025 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3028 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x
*bp
,
3029 struct bnx2x_mcast_obj
*o
,
3030 struct bnx2x_mcast_ramrod_params
*p
,
3033 struct bnx2x_mcast_list_elem
*mlist_pos
;
3036 list_for_each_entry(mlist_pos
, &p
->mcast_list
, link
) {
3037 bit
= bnx2x_mcast_bin_from_mac(mlist_pos
->mac
);
3038 BNX2X_57711_SET_MC_FILTER(mc_filter
, bit
);
3040 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC, bin %d\n",
3041 mlist_pos
->mac
, bit
);
3043 /* bookkeeping... */
3044 BIT_VEC64_SET_BIT(o
->registry
.aprox_match
.vec
,
3049 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x
*bp
,
3050 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
3055 for (bit
= bnx2x_mcast_get_next_bin(o
, 0);
3057 bit
= bnx2x_mcast_get_next_bin(o
, bit
+ 1)) {
3058 BNX2X_57711_SET_MC_FILTER(mc_filter
, bit
);
3059 DP(BNX2X_MSG_SP
, "About to set bin %d\n", bit
);
3063 /* On 57711 we write the multicast MACs' approximate match
3064 * table by directly into the TSTORM's internal RAM. So we don't
3065 * really need to handle any tricks to make it work.
3067 static int bnx2x_mcast_setup_e1h(struct bnx2x
*bp
,
3068 struct bnx2x_mcast_ramrod_params
*p
,
3069 enum bnx2x_mcast_cmd cmd
)
3072 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3073 struct bnx2x_raw_obj
*r
= &o
->raw
;
3075 /* If CLEAR_ONLY has been requested - clear the registry
3076 * and clear a pending bit.
3078 if (!test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
3079 u32 mc_filter
[MC_HASH_SIZE
] = {0};
3081 /* Set the multicast filter bits before writing it into
3082 * the internal memory.
3085 case BNX2X_MCAST_CMD_ADD
:
3086 bnx2x_mcast_hdl_add_e1h(bp
, o
, p
, mc_filter
);
3089 case BNX2X_MCAST_CMD_DEL
:
3091 "Invalidating multicast MACs configuration\n");
3093 /* clear the registry */
3094 memset(o
->registry
.aprox_match
.vec
, 0,
3095 sizeof(o
->registry
.aprox_match
.vec
));
3098 case BNX2X_MCAST_CMD_RESTORE
:
3099 bnx2x_mcast_hdl_restore_e1h(bp
, o
, p
, mc_filter
);
3103 BNX2X_ERR("Unknown command: %d\n", cmd
);
3107 /* Set the mcast filter in the internal memory */
3108 for (i
= 0; i
< MC_HASH_SIZE
; i
++)
3109 REG_WR(bp
, MC_HASH_OFFSET(bp
, i
), mc_filter
[i
]);
3111 /* clear the registry */
3112 memset(o
->registry
.aprox_match
.vec
, 0,
3113 sizeof(o
->registry
.aprox_match
.vec
));
3116 r
->clear_pending(r
);
3121 static int bnx2x_mcast_validate_e1(struct bnx2x
*bp
,
3122 struct bnx2x_mcast_ramrod_params
*p
,
3123 enum bnx2x_mcast_cmd cmd
)
3125 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3126 int reg_sz
= o
->get_registry_size(o
);
3129 /* DEL command deletes all currently configured MACs */
3130 case BNX2X_MCAST_CMD_DEL
:
3131 o
->set_registry_size(o
, 0);
3134 /* RESTORE command will restore the entire multicast configuration */
3135 case BNX2X_MCAST_CMD_RESTORE
:
3136 p
->mcast_list_len
= reg_sz
;
3137 DP(BNX2X_MSG_SP
, "Command %d, p->mcast_list_len=%d\n",
3138 cmd
, p
->mcast_list_len
);
3141 case BNX2X_MCAST_CMD_ADD
:
3142 case BNX2X_MCAST_CMD_CONT
:
3143 /* Multicast MACs on 57710 are configured as unicast MACs and
3144 * there is only a limited number of CAM entries for that
3147 if (p
->mcast_list_len
> o
->max_cmd_len
) {
3148 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3152 /* Every configured MAC should be cleared if DEL command is
3153 * called. Only the last ADD command is relevant as long as
3154 * every ADD commands overrides the previous configuration.
3156 DP(BNX2X_MSG_SP
, "p->mcast_list_len=%d\n", p
->mcast_list_len
);
3157 if (p
->mcast_list_len
> 0)
3158 o
->set_registry_size(o
, p
->mcast_list_len
);
3163 BNX2X_ERR("Unknown command: %d\n", cmd
);
3167 /* We want to ensure that commands are executed one by one for 57710.
3168 * Therefore each none-empty command will consume o->max_cmd_len.
3170 if (p
->mcast_list_len
)
3171 o
->total_pending_num
+= o
->max_cmd_len
;
3176 static void bnx2x_mcast_revert_e1(struct bnx2x
*bp
,
3177 struct bnx2x_mcast_ramrod_params
*p
,
3180 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3182 o
->set_registry_size(o
, old_num_macs
);
3184 /* If current command hasn't been handled yet and we are
3185 * here means that it's meant to be dropped and we have to
3186 * update the number of outstanding MACs accordingly.
3188 if (p
->mcast_list_len
)
3189 o
->total_pending_num
-= o
->max_cmd_len
;
3192 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x
*bp
,
3193 struct bnx2x_mcast_obj
*o
, int idx
,
3194 union bnx2x_mcast_config_data
*cfg_data
,
3195 enum bnx2x_mcast_cmd cmd
)
3197 struct bnx2x_raw_obj
*r
= &o
->raw
;
3198 struct mac_configuration_cmd
*data
=
3199 (struct mac_configuration_cmd
*)(r
->rdata
);
3202 if ((cmd
== BNX2X_MCAST_CMD_ADD
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
)) {
3203 bnx2x_set_fw_mac_addr(&data
->config_table
[idx
].msb_mac_addr
,
3204 &data
->config_table
[idx
].middle_mac_addr
,
3205 &data
->config_table
[idx
].lsb_mac_addr
,
3208 data
->config_table
[idx
].vlan_id
= 0;
3209 data
->config_table
[idx
].pf_id
= r
->func_id
;
3210 data
->config_table
[idx
].clients_bit_vector
=
3211 cpu_to_le32(1 << r
->cl_id
);
3213 SET_FLAG(data
->config_table
[idx
].flags
,
3214 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
3215 T_ETH_MAC_COMMAND_SET
);
3220 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3222 * @bp: device handle
3224 * @len: number of rules to handle
3226 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x
*bp
,
3227 struct bnx2x_mcast_ramrod_params
*p
,
3230 struct bnx2x_raw_obj
*r
= &p
->mcast_obj
->raw
;
3231 struct mac_configuration_cmd
*data
=
3232 (struct mac_configuration_cmd
*)(r
->rdata
);
3234 u8 offset
= (CHIP_REV_IS_SLOW(bp
) ?
3235 BNX2X_MAX_EMUL_MULTI
*(1 + r
->func_id
) :
3236 BNX2X_MAX_MULTICAST
*(1 + r
->func_id
));
3238 data
->hdr
.offset
= offset
;
3239 data
->hdr
.client_id
= cpu_to_le16(0xff);
3240 data
->hdr
.echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
3241 (BNX2X_FILTER_MCAST_PENDING
<<
3242 BNX2X_SWCID_SHIFT
));
3243 data
->hdr
.length
= len
;
3247 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3249 * @bp: device handle
3251 * @start_idx: index in the registry to start from
3252 * @rdata_idx: index in the ramrod data to start from
3254 * restore command for 57710 is like all other commands - always a stand alone
3255 * command - start_idx and rdata_idx will always be 0. This function will always
3257 * returns -1 to comply with 57712 variant.
3259 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3260 struct bnx2x
*bp
, struct bnx2x_mcast_obj
*o
, int start_idx
,
3263 struct bnx2x_mcast_mac_elem
*elem
;
3265 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3267 /* go through the registry and configure the MACs from it. */
3268 list_for_each_entry(elem
, &o
->registry
.exact_match
.macs
, link
) {
3269 cfg_data
.mac
= &elem
->mac
[0];
3270 o
->set_one_rule(bp
, o
, i
, &cfg_data
, BNX2X_MCAST_CMD_RESTORE
);
3274 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
3283 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3284 struct bnx2x
*bp
, struct bnx2x_mcast_ramrod_params
*p
)
3286 struct bnx2x_pending_mcast_cmd
*cmd_pos
;
3287 struct bnx2x_mcast_mac_elem
*pmac_pos
;
3288 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3289 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3292 /* If nothing to be done - return */
3293 if (list_empty(&o
->pending_cmds_head
))
3296 /* Handle the first command */
3297 cmd_pos
= list_first_entry(&o
->pending_cmds_head
,
3298 struct bnx2x_pending_mcast_cmd
, link
);
3300 switch (cmd_pos
->type
) {
3301 case BNX2X_MCAST_CMD_ADD
:
3302 list_for_each_entry(pmac_pos
, &cmd_pos
->data
.macs_head
, link
) {
3303 cfg_data
.mac
= &pmac_pos
->mac
[0];
3304 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, cmd_pos
->type
);
3308 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
3313 case BNX2X_MCAST_CMD_DEL
:
3314 cnt
= cmd_pos
->data
.macs_num
;
3315 DP(BNX2X_MSG_SP
, "About to delete %d multicast MACs\n", cnt
);
3318 case BNX2X_MCAST_CMD_RESTORE
:
3319 o
->hdl_restore(bp
, o
, 0, &cnt
);
3323 BNX2X_ERR("Unknown command: %d\n", cmd_pos
->type
);
3327 list_del(&cmd_pos
->link
);
3334 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3341 static inline void bnx2x_get_fw_mac_addr(__le16
*fw_hi
, __le16
*fw_mid
,
3342 __le16
*fw_lo
, u8
*mac
)
3344 mac
[1] = ((u8
*)fw_hi
)[0];
3345 mac
[0] = ((u8
*)fw_hi
)[1];
3346 mac
[3] = ((u8
*)fw_mid
)[0];
3347 mac
[2] = ((u8
*)fw_mid
)[1];
3348 mac
[5] = ((u8
*)fw_lo
)[0];
3349 mac
[4] = ((u8
*)fw_lo
)[1];
3353 * bnx2x_mcast_refresh_registry_e1 -
3355 * @bp: device handle
3358 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3359 * and update the registry correspondingly: if ADD - allocate a memory and add
3360 * the entries to the registry (list), if DELETE - clear the registry and free
3363 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x
*bp
,
3364 struct bnx2x_mcast_obj
*o
)
3366 struct bnx2x_raw_obj
*raw
= &o
->raw
;
3367 struct bnx2x_mcast_mac_elem
*elem
;
3368 struct mac_configuration_cmd
*data
=
3369 (struct mac_configuration_cmd
*)(raw
->rdata
);
3371 /* If first entry contains a SET bit - the command was ADD,
3372 * otherwise - DEL_ALL
3374 if (GET_FLAG(data
->config_table
[0].flags
,
3375 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
)) {
3376 int i
, len
= data
->hdr
.length
;
3378 /* Break if it was a RESTORE command */
3379 if (!list_empty(&o
->registry
.exact_match
.macs
))
3382 elem
= kcalloc(len
, sizeof(*elem
), GFP_ATOMIC
);
3384 BNX2X_ERR("Failed to allocate registry memory\n");
3388 for (i
= 0; i
< len
; i
++, elem
++) {
3389 bnx2x_get_fw_mac_addr(
3390 &data
->config_table
[i
].msb_mac_addr
,
3391 &data
->config_table
[i
].middle_mac_addr
,
3392 &data
->config_table
[i
].lsb_mac_addr
,
3394 DP(BNX2X_MSG_SP
, "Adding registry entry for [%pM]\n",
3396 list_add_tail(&elem
->link
,
3397 &o
->registry
.exact_match
.macs
);
3400 elem
= list_first_entry(&o
->registry
.exact_match
.macs
,
3401 struct bnx2x_mcast_mac_elem
, link
);
3402 DP(BNX2X_MSG_SP
, "Deleting a registry\n");
3404 INIT_LIST_HEAD(&o
->registry
.exact_match
.macs
);
3410 static int bnx2x_mcast_setup_e1(struct bnx2x
*bp
,
3411 struct bnx2x_mcast_ramrod_params
*p
,
3412 enum bnx2x_mcast_cmd cmd
)
3414 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3415 struct bnx2x_raw_obj
*raw
= &o
->raw
;
3416 struct mac_configuration_cmd
*data
=
3417 (struct mac_configuration_cmd
*)(raw
->rdata
);
3420 /* Reset the ramrod data buffer */
3421 memset(data
, 0, sizeof(*data
));
3423 /* First set all entries as invalid */
3424 for (i
= 0; i
< o
->max_cmd_len
; i
++)
3425 SET_FLAG(data
->config_table
[i
].flags
,
3426 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
3427 T_ETH_MAC_COMMAND_INVALIDATE
);
3429 /* Handle pending commands first */
3430 cnt
= bnx2x_mcast_handle_pending_cmds_e1(bp
, p
);
3432 /* If there are no more pending commands - clear SCHEDULED state */
3433 if (list_empty(&o
->pending_cmds_head
))
3436 /* The below may be true iff there were no pending commands */
3438 cnt
= bnx2x_mcast_handle_current_cmd(bp
, p
, cmd
, 0);
3440 /* For 57710 every command has o->max_cmd_len length to ensure that
3441 * commands are done one at a time.
3443 o
->total_pending_num
-= o
->max_cmd_len
;
3447 WARN_ON(cnt
> o
->max_cmd_len
);
3449 /* Set ramrod header (in particular, a number of entries to update) */
3450 bnx2x_mcast_set_rdata_hdr_e1(bp
, p
, (u8
)cnt
);
3452 /* update a registry: we need the registry contents to be always up
3453 * to date in order to be able to execute a RESTORE opcode. Here
3454 * we use the fact that for 57710 we sent one command at a time
3455 * hence we may take the registry update out of the command handling
3456 * and do it in a simpler way here.
3458 rc
= bnx2x_mcast_refresh_registry_e1(bp
, o
);
3462 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3463 * RAMROD_PENDING status immediately.
3465 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
3466 raw
->clear_pending(raw
);
3469 /* No need for an explicit memory barrier here as long we would
3470 * need to ensure the ordering of writing to the SPQ element
3471 * and updating of the SPQ producer which involves a memory
3472 * read and we will have to put a full memory barrier there
3473 * (inside bnx2x_sp_post()).
3477 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_SET_MAC
, raw
->cid
,
3478 U64_HI(raw
->rdata_mapping
),
3479 U64_LO(raw
->rdata_mapping
),
3480 ETH_CONNECTION_TYPE
);
3484 /* Ramrod completion is pending */
3489 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj
*o
)
3491 return o
->registry
.exact_match
.num_macs_set
;
3494 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj
*o
)
3496 return o
->registry
.aprox_match
.num_bins_set
;
3499 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj
*o
,
3502 o
->registry
.exact_match
.num_macs_set
= n
;
3505 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj
*o
,
3508 o
->registry
.aprox_match
.num_bins_set
= n
;
3511 int bnx2x_config_mcast(struct bnx2x
*bp
,
3512 struct bnx2x_mcast_ramrod_params
*p
,
3513 enum bnx2x_mcast_cmd cmd
)
3515 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3516 struct bnx2x_raw_obj
*r
= &o
->raw
;
3517 int rc
= 0, old_reg_size
;
3519 /* This is needed to recover number of currently configured mcast macs
3520 * in case of failure.
3522 old_reg_size
= o
->get_registry_size(o
);
3524 /* Do some calculations and checks */
3525 rc
= o
->validate(bp
, p
, cmd
);
3529 /* Return if there is no work to do */
3530 if ((!p
->mcast_list_len
) && (!o
->check_sched(o
)))
3533 DP(BNX2X_MSG_SP
, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3534 o
->total_pending_num
, p
->mcast_list_len
, o
->max_cmd_len
);
3536 /* Enqueue the current command to the pending list if we can't complete
3537 * it in the current iteration
3539 if (r
->check_pending(r
) ||
3540 ((o
->max_cmd_len
> 0) && (o
->total_pending_num
> o
->max_cmd_len
))) {
3541 rc
= o
->enqueue_cmd(bp
, p
->mcast_obj
, p
, cmd
);
3545 /* As long as the current command is in a command list we
3546 * don't need to handle it separately.
3548 p
->mcast_list_len
= 0;
3551 if (!r
->check_pending(r
)) {
3553 /* Set 'pending' state */
3556 /* Configure the new classification in the chip */
3557 rc
= o
->config_mcast(bp
, p
, cmd
);
3561 /* Wait for a ramrod completion if was requested */
3562 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
))
3563 rc
= o
->wait_comp(bp
, o
);
3569 r
->clear_pending(r
);
3572 o
->revert(bp
, p
, old_reg_size
);
3577 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj
*o
)
3579 smp_mb__before_clear_bit();
3580 clear_bit(o
->sched_state
, o
->raw
.pstate
);
3581 smp_mb__after_clear_bit();
3584 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj
*o
)
3586 smp_mb__before_clear_bit();
3587 set_bit(o
->sched_state
, o
->raw
.pstate
);
3588 smp_mb__after_clear_bit();
3591 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj
*o
)
3593 return !!test_bit(o
->sched_state
, o
->raw
.pstate
);
3596 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj
*o
)
3598 return o
->raw
.check_pending(&o
->raw
) || o
->check_sched(o
);
3601 void bnx2x_init_mcast_obj(struct bnx2x
*bp
,
3602 struct bnx2x_mcast_obj
*mcast_obj
,
3603 u8 mcast_cl_id
, u32 mcast_cid
, u8 func_id
,
3604 u8 engine_id
, void *rdata
, dma_addr_t rdata_mapping
,
3605 int state
, unsigned long *pstate
, bnx2x_obj_type type
)
3607 memset(mcast_obj
, 0, sizeof(*mcast_obj
));
3609 bnx2x_init_raw_obj(&mcast_obj
->raw
, mcast_cl_id
, mcast_cid
, func_id
,
3610 rdata
, rdata_mapping
, state
, pstate
, type
);
3612 mcast_obj
->engine_id
= engine_id
;
3614 INIT_LIST_HEAD(&mcast_obj
->pending_cmds_head
);
3616 mcast_obj
->sched_state
= BNX2X_FILTER_MCAST_SCHED
;
3617 mcast_obj
->check_sched
= bnx2x_mcast_check_sched
;
3618 mcast_obj
->set_sched
= bnx2x_mcast_set_sched
;
3619 mcast_obj
->clear_sched
= bnx2x_mcast_clear_sched
;
3621 if (CHIP_IS_E1(bp
)) {
3622 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e1
;
3623 mcast_obj
->enqueue_cmd
= bnx2x_mcast_enqueue_cmd
;
3624 mcast_obj
->hdl_restore
=
3625 bnx2x_mcast_handle_restore_cmd_e1
;
3626 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
3628 if (CHIP_REV_IS_SLOW(bp
))
3629 mcast_obj
->max_cmd_len
= BNX2X_MAX_EMUL_MULTI
;
3631 mcast_obj
->max_cmd_len
= BNX2X_MAX_MULTICAST
;
3633 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
3634 mcast_obj
->set_one_rule
= bnx2x_mcast_set_one_rule_e1
;
3635 mcast_obj
->validate
= bnx2x_mcast_validate_e1
;
3636 mcast_obj
->revert
= bnx2x_mcast_revert_e1
;
3637 mcast_obj
->get_registry_size
=
3638 bnx2x_mcast_get_registry_size_exact
;
3639 mcast_obj
->set_registry_size
=
3640 bnx2x_mcast_set_registry_size_exact
;
3642 /* 57710 is the only chip that uses the exact match for mcast
3645 INIT_LIST_HEAD(&mcast_obj
->registry
.exact_match
.macs
);
3647 } else if (CHIP_IS_E1H(bp
)) {
3648 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e1h
;
3649 mcast_obj
->enqueue_cmd
= NULL
;
3650 mcast_obj
->hdl_restore
= NULL
;
3651 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
3653 /* 57711 doesn't send a ramrod, so it has unlimited credit
3656 mcast_obj
->max_cmd_len
= -1;
3657 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
3658 mcast_obj
->set_one_rule
= NULL
;
3659 mcast_obj
->validate
= bnx2x_mcast_validate_e1h
;
3660 mcast_obj
->revert
= bnx2x_mcast_revert_e1h
;
3661 mcast_obj
->get_registry_size
=
3662 bnx2x_mcast_get_registry_size_aprox
;
3663 mcast_obj
->set_registry_size
=
3664 bnx2x_mcast_set_registry_size_aprox
;
3666 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e2
;
3667 mcast_obj
->enqueue_cmd
= bnx2x_mcast_enqueue_cmd
;
3668 mcast_obj
->hdl_restore
=
3669 bnx2x_mcast_handle_restore_cmd_e2
;
3670 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
3671 /* TODO: There should be a proper HSI define for this number!!!
3673 mcast_obj
->max_cmd_len
= 16;
3674 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
3675 mcast_obj
->set_one_rule
= bnx2x_mcast_set_one_rule_e2
;
3676 mcast_obj
->validate
= bnx2x_mcast_validate_e2
;
3677 mcast_obj
->revert
= bnx2x_mcast_revert_e2
;
3678 mcast_obj
->get_registry_size
=
3679 bnx2x_mcast_get_registry_size_aprox
;
3680 mcast_obj
->set_registry_size
=
3681 bnx2x_mcast_set_registry_size_aprox
;
3685 /*************************** Credit handling **********************************/
3688 * atomic_add_ifless - add if the result is less than a given value.
3690 * @v: pointer of type atomic_t
3691 * @a: the amount to add to v...
3692 * @u: ...if (v + a) is less than u.
3694 * returns true if (v + a) was less than u, and false otherwise.
3697 static inline bool __atomic_add_ifless(atomic_t
*v
, int a
, int u
)
3703 if (unlikely(c
+ a
>= u
))
3706 old
= atomic_cmpxchg((v
), c
, c
+ a
);
3707 if (likely(old
== c
))
3716 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3718 * @v: pointer of type atomic_t
3719 * @a: the amount to dec from v...
3720 * @u: ...if (v - a) is more or equal than u.
3722 * returns true if (v - a) was more or equal than u, and false
3725 static inline bool __atomic_dec_ifmoe(atomic_t
*v
, int a
, int u
)
3731 if (unlikely(c
- a
< u
))
3734 old
= atomic_cmpxchg((v
), c
, c
- a
);
3735 if (likely(old
== c
))
3743 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj
*o
, int cnt
)
3748 rc
= __atomic_dec_ifmoe(&o
->credit
, cnt
, 0);
3754 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj
*o
, int cnt
)
3760 /* Don't let to refill if credit + cnt > pool_sz */
3761 rc
= __atomic_add_ifless(&o
->credit
, cnt
, o
->pool_sz
+ 1);
3768 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj
*o
)
3773 cur_credit
= atomic_read(&o
->credit
);
3778 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj
*o
,
3784 static bool bnx2x_credit_pool_get_entry(
3785 struct bnx2x_credit_pool_obj
*o
,
3792 /* Find "internal cam-offset" then add to base for this object... */
3793 for (vec
= 0; vec
< BNX2X_POOL_VEC_SIZE
; vec
++) {
3795 /* Skip the current vector if there are no free entries in it */
3796 if (!o
->pool_mirror
[vec
])
3799 /* If we've got here we are going to find a free entry */
3800 for (idx
= vec
* BIT_VEC64_ELEM_SZ
, i
= 0;
3801 i
< BIT_VEC64_ELEM_SZ
; idx
++, i
++)
3803 if (BIT_VEC64_TEST_BIT(o
->pool_mirror
, idx
)) {
3805 BIT_VEC64_CLEAR_BIT(o
->pool_mirror
, idx
);
3806 *offset
= o
->base_pool_offset
+ idx
;
3814 static bool bnx2x_credit_pool_put_entry(
3815 struct bnx2x_credit_pool_obj
*o
,
3818 if (offset
< o
->base_pool_offset
)
3821 offset
-= o
->base_pool_offset
;
3823 if (offset
>= o
->pool_sz
)
3826 /* Return the entry to the pool */
3827 BIT_VEC64_SET_BIT(o
->pool_mirror
, offset
);
3832 static bool bnx2x_credit_pool_put_entry_always_true(
3833 struct bnx2x_credit_pool_obj
*o
,
3839 static bool bnx2x_credit_pool_get_entry_always_true(
3840 struct bnx2x_credit_pool_obj
*o
,
3847 * bnx2x_init_credit_pool - initialize credit pool internals.
3850 * @base: Base entry in the CAM to use.
3851 * @credit: pool size.
3853 * If base is negative no CAM entries handling will be performed.
3854 * If credit is negative pool operations will always succeed (unlimited pool).
3857 static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj
*p
,
3858 int base
, int credit
)
3860 /* Zero the object first */
3861 memset(p
, 0, sizeof(*p
));
3863 /* Set the table to all 1s */
3864 memset(&p
->pool_mirror
, 0xff, sizeof(p
->pool_mirror
));
3866 /* Init a pool as full */
3867 atomic_set(&p
->credit
, credit
);
3869 /* The total poll size */
3870 p
->pool_sz
= credit
;
3872 p
->base_pool_offset
= base
;
3874 /* Commit the change */
3877 p
->check
= bnx2x_credit_pool_check
;
3879 /* if pool credit is negative - disable the checks */
3881 p
->put
= bnx2x_credit_pool_put
;
3882 p
->get
= bnx2x_credit_pool_get
;
3883 p
->put_entry
= bnx2x_credit_pool_put_entry
;
3884 p
->get_entry
= bnx2x_credit_pool_get_entry
;
3886 p
->put
= bnx2x_credit_pool_always_true
;
3887 p
->get
= bnx2x_credit_pool_always_true
;
3888 p
->put_entry
= bnx2x_credit_pool_put_entry_always_true
;
3889 p
->get_entry
= bnx2x_credit_pool_get_entry_always_true
;
3892 /* If base is negative - disable entries handling */
3894 p
->put_entry
= bnx2x_credit_pool_put_entry_always_true
;
3895 p
->get_entry
= bnx2x_credit_pool_get_entry_always_true
;
3899 void bnx2x_init_mac_credit_pool(struct bnx2x
*bp
,
3900 struct bnx2x_credit_pool_obj
*p
, u8 func_id
,
3903 /* TODO: this will be defined in consts as well... */
3904 #define BNX2X_CAM_SIZE_EMUL 5
3908 if (CHIP_IS_E1(bp
)) {
3909 /* In E1, Multicast is saved in cam... */
3910 if (!CHIP_REV_IS_SLOW(bp
))
3911 cam_sz
= (MAX_MAC_CREDIT_E1
/ 2) - BNX2X_MAX_MULTICAST
;
3913 cam_sz
= BNX2X_CAM_SIZE_EMUL
- BNX2X_MAX_EMUL_MULTI
;
3915 bnx2x_init_credit_pool(p
, func_id
* cam_sz
, cam_sz
);
3917 } else if (CHIP_IS_E1H(bp
)) {
3918 /* CAM credit is equaly divided between all active functions
3921 if ((func_num
> 0)) {
3922 if (!CHIP_REV_IS_SLOW(bp
))
3923 cam_sz
= (MAX_MAC_CREDIT_E1H
/ (2*func_num
));
3925 cam_sz
= BNX2X_CAM_SIZE_EMUL
;
3926 bnx2x_init_credit_pool(p
, func_id
* cam_sz
, cam_sz
);
3928 /* this should never happen! Block MAC operations. */
3929 bnx2x_init_credit_pool(p
, 0, 0);
3934 /* CAM credit is equaly divided between all active functions
3937 if ((func_num
> 0)) {
3938 if (!CHIP_REV_IS_SLOW(bp
))
3939 cam_sz
= (MAX_MAC_CREDIT_E2
/ func_num
);
3941 cam_sz
= BNX2X_CAM_SIZE_EMUL
;
3943 /* No need for CAM entries handling for 57712 and
3946 bnx2x_init_credit_pool(p
, -1, cam_sz
);
3948 /* this should never happen! Block MAC operations. */
3949 bnx2x_init_credit_pool(p
, 0, 0);
3954 void bnx2x_init_vlan_credit_pool(struct bnx2x
*bp
,
3955 struct bnx2x_credit_pool_obj
*p
,
3959 if (CHIP_IS_E1x(bp
)) {
3960 /* There is no VLAN credit in HW on 57710 and 57711 only
3961 * MAC / MAC-VLAN can be set
3963 bnx2x_init_credit_pool(p
, 0, -1);
3965 /* CAM credit is equally divided between all active functions
3969 int credit
= MAX_VLAN_CREDIT_E2
/ func_num
;
3970 bnx2x_init_credit_pool(p
, func_id
* credit
, credit
);
3972 /* this should never happen! Block VLAN operations. */
3973 bnx2x_init_credit_pool(p
, 0, 0);
3977 /****************** RSS Configuration ******************/
3979 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
3981 * @bp: driver handle
3982 * @p: pointer to rss configuration
3984 * Prints it when NETIF_MSG_IFUP debug level is configured.
3986 static inline void bnx2x_debug_print_ind_table(struct bnx2x
*bp
,
3987 struct bnx2x_config_rss_params
*p
)
3991 DP(BNX2X_MSG_SP
, "Setting indirection table to:\n");
3992 DP(BNX2X_MSG_SP
, "0x0000: ");
3993 for (i
= 0; i
< T_ETH_INDIRECTION_TABLE_SIZE
; i
++) {
3994 DP_CONT(BNX2X_MSG_SP
, "0x%02x ", p
->ind_table
[i
]);
3996 /* Print 4 bytes in a line */
3997 if ((i
+ 1 < T_ETH_INDIRECTION_TABLE_SIZE
) &&
3998 (((i
+ 1) & 0x3) == 0)) {
3999 DP_CONT(BNX2X_MSG_SP
, "\n");
4000 DP(BNX2X_MSG_SP
, "0x%04x: ", i
+ 1);
4004 DP_CONT(BNX2X_MSG_SP
, "\n");
4008 * bnx2x_setup_rss - configure RSS
4010 * @bp: device handle
4011 * @p: rss configuration
4013 * sends on UPDATE ramrod for that matter.
4015 static int bnx2x_setup_rss(struct bnx2x
*bp
,
4016 struct bnx2x_config_rss_params
*p
)
4018 struct bnx2x_rss_config_obj
*o
= p
->rss_obj
;
4019 struct bnx2x_raw_obj
*r
= &o
->raw
;
4020 struct eth_rss_update_ramrod_data
*data
=
4021 (struct eth_rss_update_ramrod_data
*)(r
->rdata
);
4025 memset(data
, 0, sizeof(*data
));
4027 DP(BNX2X_MSG_SP
, "Configuring RSS\n");
4029 /* Set an echo field */
4030 data
->echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
4031 (r
->state
<< BNX2X_SWCID_SHIFT
));
4034 if (test_bit(BNX2X_RSS_MODE_DISABLED
, &p
->rss_flags
))
4035 rss_mode
= ETH_RSS_MODE_DISABLED
;
4036 else if (test_bit(BNX2X_RSS_MODE_REGULAR
, &p
->rss_flags
))
4037 rss_mode
= ETH_RSS_MODE_REGULAR
;
4039 data
->rss_mode
= rss_mode
;
4041 DP(BNX2X_MSG_SP
, "rss_mode=%d\n", rss_mode
);
4043 /* RSS capabilities */
4044 if (test_bit(BNX2X_RSS_IPV4
, &p
->rss_flags
))
4045 data
->capabilities
|=
4046 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY
;
4048 if (test_bit(BNX2X_RSS_IPV4_TCP
, &p
->rss_flags
))
4049 data
->capabilities
|=
4050 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY
;
4052 if (test_bit(BNX2X_RSS_IPV4_UDP
, &p
->rss_flags
))
4053 data
->capabilities
|=
4054 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY
;
4056 if (test_bit(BNX2X_RSS_IPV6
, &p
->rss_flags
))
4057 data
->capabilities
|=
4058 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY
;
4060 if (test_bit(BNX2X_RSS_IPV6_TCP
, &p
->rss_flags
))
4061 data
->capabilities
|=
4062 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY
;
4064 if (test_bit(BNX2X_RSS_IPV6_UDP
, &p
->rss_flags
))
4065 data
->capabilities
|=
4066 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY
;
4069 data
->rss_result_mask
= p
->rss_result_mask
;
4072 data
->rss_engine_id
= o
->engine_id
;
4074 DP(BNX2X_MSG_SP
, "rss_engine_id=%d\n", data
->rss_engine_id
);
4076 /* Indirection table */
4077 memcpy(data
->indirection_table
, p
->ind_table
,
4078 T_ETH_INDIRECTION_TABLE_SIZE
);
4080 /* Remember the last configuration */
4081 memcpy(o
->ind_table
, p
->ind_table
, T_ETH_INDIRECTION_TABLE_SIZE
);
4083 /* Print the indirection table */
4084 if (netif_msg_ifup(bp
))
4085 bnx2x_debug_print_ind_table(bp
, p
);
4088 if (test_bit(BNX2X_RSS_SET_SRCH
, &p
->rss_flags
)) {
4089 memcpy(&data
->rss_key
[0], &p
->rss_key
[0],
4090 sizeof(data
->rss_key
));
4091 data
->capabilities
|= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY
;
4094 /* No need for an explicit memory barrier here as long we would
4095 * need to ensure the ordering of writing to the SPQ element
4096 * and updating of the SPQ producer which involves a memory
4097 * read and we will have to put a full memory barrier there
4098 * (inside bnx2x_sp_post()).
4102 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_RSS_UPDATE
, r
->cid
,
4103 U64_HI(r
->rdata_mapping
),
4104 U64_LO(r
->rdata_mapping
),
4105 ETH_CONNECTION_TYPE
);
4113 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj
*rss_obj
,
4116 memcpy(ind_table
, rss_obj
->ind_table
, sizeof(rss_obj
->ind_table
));
4119 int bnx2x_config_rss(struct bnx2x
*bp
,
4120 struct bnx2x_config_rss_params
*p
)
4123 struct bnx2x_rss_config_obj
*o
= p
->rss_obj
;
4124 struct bnx2x_raw_obj
*r
= &o
->raw
;
4126 /* Do nothing if only driver cleanup was requested */
4127 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
4128 DP(BNX2X_MSG_SP
, "Not configuring RSS ramrod_flags=%lx\n",
4135 rc
= o
->config_rss(bp
, p
);
4137 r
->clear_pending(r
);
4141 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
))
4142 rc
= r
->wait_comp(bp
, r
);
4147 void bnx2x_init_rss_config_obj(struct bnx2x
*bp
,
4148 struct bnx2x_rss_config_obj
*rss_obj
,
4149 u8 cl_id
, u32 cid
, u8 func_id
, u8 engine_id
,
4150 void *rdata
, dma_addr_t rdata_mapping
,
4151 int state
, unsigned long *pstate
,
4152 bnx2x_obj_type type
)
4154 bnx2x_init_raw_obj(&rss_obj
->raw
, cl_id
, cid
, func_id
, rdata
,
4155 rdata_mapping
, state
, pstate
, type
);
4157 rss_obj
->engine_id
= engine_id
;
4158 rss_obj
->config_rss
= bnx2x_setup_rss
;
4161 int validate_vlan_mac(struct bnx2x
*bp
,
4162 struct bnx2x_vlan_mac_obj
*vlan_mac
)
4164 if (!vlan_mac
->get_n_elements
) {
4165 BNX2X_ERR("vlan mac object was not intialized\n");
4171 /********************** Queue state object ***********************************/
4174 * bnx2x_queue_state_change - perform Queue state change transition
4176 * @bp: device handle
4177 * @params: parameters to perform the transition
4179 * returns 0 in case of successfully completed transition, negative error
4180 * code in case of failure, positive (EBUSY) value if there is a completion
4181 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4182 * not set in params->ramrod_flags for asynchronous commands).
4185 int bnx2x_queue_state_change(struct bnx2x
*bp
,
4186 struct bnx2x_queue_state_params
*params
)
4188 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4189 int rc
, pending_bit
;
4190 unsigned long *pending
= &o
->pending
;
4192 /* Check that the requested transition is legal */
4193 rc
= o
->check_transition(bp
, o
, params
);
4195 BNX2X_ERR("check transition returned an error. rc %d\n", rc
);
4199 /* Set "pending" bit */
4200 DP(BNX2X_MSG_SP
, "pending bit was=%lx\n", o
->pending
);
4201 pending_bit
= o
->set_pending(o
, params
);
4202 DP(BNX2X_MSG_SP
, "pending bit now=%lx\n", o
->pending
);
4204 /* Don't send a command if only driver cleanup was requested */
4205 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
))
4206 o
->complete_cmd(bp
, o
, pending_bit
);
4209 rc
= o
->send_cmd(bp
, params
);
4211 o
->next_state
= BNX2X_Q_STATE_MAX
;
4212 clear_bit(pending_bit
, pending
);
4213 smp_mb__after_clear_bit();
4217 if (test_bit(RAMROD_COMP_WAIT
, ¶ms
->ramrod_flags
)) {
4218 rc
= o
->wait_comp(bp
, o
, pending_bit
);
4226 return !!test_bit(pending_bit
, pending
);
4229 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj
*obj
,
4230 struct bnx2x_queue_state_params
*params
)
4232 enum bnx2x_queue_cmd cmd
= params
->cmd
, bit
;
4234 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4237 if ((cmd
== BNX2X_Q_CMD_ACTIVATE
) ||
4238 (cmd
== BNX2X_Q_CMD_DEACTIVATE
))
4239 bit
= BNX2X_Q_CMD_UPDATE
;
4243 set_bit(bit
, &obj
->pending
);
4247 static int bnx2x_queue_wait_comp(struct bnx2x
*bp
,
4248 struct bnx2x_queue_sp_obj
*o
,
4249 enum bnx2x_queue_cmd cmd
)
4251 return bnx2x_state_wait(bp
, cmd
, &o
->pending
);
4255 * bnx2x_queue_comp_cmd - complete the state change command.
4257 * @bp: device handle
4261 * Checks that the arrived completion is expected.
4263 static int bnx2x_queue_comp_cmd(struct bnx2x
*bp
,
4264 struct bnx2x_queue_sp_obj
*o
,
4265 enum bnx2x_queue_cmd cmd
)
4267 unsigned long cur_pending
= o
->pending
;
4269 if (!test_and_clear_bit(cmd
, &cur_pending
)) {
4270 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4271 cmd
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
4272 o
->state
, cur_pending
, o
->next_state
);
4276 if (o
->next_tx_only
>= o
->max_cos
)
4277 /* >= because tx only must always be smaller than cos since the
4278 * primary connection supports COS 0
4280 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4281 o
->next_tx_only
, o
->max_cos
);
4284 "Completing command %d for queue %d, setting state to %d\n",
4285 cmd
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
], o
->next_state
);
4287 if (o
->next_tx_only
) /* print num tx-only if any exist */
4288 DP(BNX2X_MSG_SP
, "primary cid %d: num tx-only cons %d\n",
4289 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], o
->next_tx_only
);
4291 o
->state
= o
->next_state
;
4292 o
->num_tx_only
= o
->next_tx_only
;
4293 o
->next_state
= BNX2X_Q_STATE_MAX
;
4295 /* It's important that o->state and o->next_state are
4296 * updated before o->pending.
4300 clear_bit(cmd
, &o
->pending
);
4301 smp_mb__after_clear_bit();
4306 static void bnx2x_q_fill_setup_data_e2(struct bnx2x
*bp
,
4307 struct bnx2x_queue_state_params
*cmd_params
,
4308 struct client_init_ramrod_data
*data
)
4310 struct bnx2x_queue_setup_params
*params
= &cmd_params
->params
.setup
;
4314 /* IPv6 TPA supported for E2 and above only */
4315 data
->rx
.tpa_en
|= test_bit(BNX2X_Q_FLG_TPA_IPV6
, ¶ms
->flags
) *
4316 CLIENT_INIT_RX_DATA_TPA_EN_IPV6
;
4319 static void bnx2x_q_fill_init_general_data(struct bnx2x
*bp
,
4320 struct bnx2x_queue_sp_obj
*o
,
4321 struct bnx2x_general_setup_params
*params
,
4322 struct client_init_general_data
*gen_data
,
4323 unsigned long *flags
)
4325 gen_data
->client_id
= o
->cl_id
;
4327 if (test_bit(BNX2X_Q_FLG_STATS
, flags
)) {
4328 gen_data
->statistics_counter_id
=
4330 gen_data
->statistics_en_flg
= 1;
4331 gen_data
->statistics_zero_flg
=
4332 test_bit(BNX2X_Q_FLG_ZERO_STATS
, flags
);
4334 gen_data
->statistics_counter_id
=
4335 DISABLE_STATISTIC_COUNTER_ID_VALUE
;
4337 gen_data
->is_fcoe_flg
= test_bit(BNX2X_Q_FLG_FCOE
, flags
);
4338 gen_data
->activate_flg
= test_bit(BNX2X_Q_FLG_ACTIVE
, flags
);
4339 gen_data
->sp_client_id
= params
->spcl_id
;
4340 gen_data
->mtu
= cpu_to_le16(params
->mtu
);
4341 gen_data
->func_id
= o
->func_id
;
4343 gen_data
->cos
= params
->cos
;
4345 gen_data
->traffic_type
=
4346 test_bit(BNX2X_Q_FLG_FCOE
, flags
) ?
4347 LLFC_TRAFFIC_TYPE_FCOE
: LLFC_TRAFFIC_TYPE_NW
;
4349 DP(BNX2X_MSG_SP
, "flags: active %d, cos %d, stats en %d\n",
4350 gen_data
->activate_flg
, gen_data
->cos
, gen_data
->statistics_en_flg
);
4353 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj
*o
,
4354 struct bnx2x_txq_setup_params
*params
,
4355 struct client_init_tx_data
*tx_data
,
4356 unsigned long *flags
)
4358 tx_data
->enforce_security_flg
=
4359 test_bit(BNX2X_Q_FLG_TX_SEC
, flags
);
4360 tx_data
->default_vlan
=
4361 cpu_to_le16(params
->default_vlan
);
4362 tx_data
->default_vlan_flg
=
4363 test_bit(BNX2X_Q_FLG_DEF_VLAN
, flags
);
4364 tx_data
->tx_switching_flg
=
4365 test_bit(BNX2X_Q_FLG_TX_SWITCH
, flags
);
4366 tx_data
->anti_spoofing_flg
=
4367 test_bit(BNX2X_Q_FLG_ANTI_SPOOF
, flags
);
4368 tx_data
->force_default_pri_flg
=
4369 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI
, flags
);
4371 tx_data
->tunnel_lso_inc_ip_id
=
4372 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID
, flags
);
4373 tx_data
->tunnel_non_lso_pcsum_location
=
4374 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT
, flags
) ? PCSUM_ON_PKT
:
4377 tx_data
->tx_status_block_id
= params
->fw_sb_id
;
4378 tx_data
->tx_sb_index_number
= params
->sb_cq_index
;
4379 tx_data
->tss_leading_client_id
= params
->tss_leading_cl_id
;
4381 tx_data
->tx_bd_page_base
.lo
=
4382 cpu_to_le32(U64_LO(params
->dscr_map
));
4383 tx_data
->tx_bd_page_base
.hi
=
4384 cpu_to_le32(U64_HI(params
->dscr_map
));
4386 /* Don't configure any Tx switching mode during queue SETUP */
4390 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj
*o
,
4391 struct rxq_pause_params
*params
,
4392 struct client_init_rx_data
*rx_data
)
4394 /* flow control data */
4395 rx_data
->cqe_pause_thr_low
= cpu_to_le16(params
->rcq_th_lo
);
4396 rx_data
->cqe_pause_thr_high
= cpu_to_le16(params
->rcq_th_hi
);
4397 rx_data
->bd_pause_thr_low
= cpu_to_le16(params
->bd_th_lo
);
4398 rx_data
->bd_pause_thr_high
= cpu_to_le16(params
->bd_th_hi
);
4399 rx_data
->sge_pause_thr_low
= cpu_to_le16(params
->sge_th_lo
);
4400 rx_data
->sge_pause_thr_high
= cpu_to_le16(params
->sge_th_hi
);
4401 rx_data
->rx_cos_mask
= cpu_to_le16(params
->pri_map
);
4404 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj
*o
,
4405 struct bnx2x_rxq_setup_params
*params
,
4406 struct client_init_rx_data
*rx_data
,
4407 unsigned long *flags
)
4409 rx_data
->tpa_en
= test_bit(BNX2X_Q_FLG_TPA
, flags
) *
4410 CLIENT_INIT_RX_DATA_TPA_EN_IPV4
;
4411 rx_data
->tpa_en
|= test_bit(BNX2X_Q_FLG_TPA_GRO
, flags
) *
4412 CLIENT_INIT_RX_DATA_TPA_MODE
;
4413 rx_data
->vmqueue_mode_en_flg
= 0;
4415 rx_data
->cache_line_alignment_log_size
=
4416 params
->cache_line_log
;
4417 rx_data
->enable_dynamic_hc
=
4418 test_bit(BNX2X_Q_FLG_DHC
, flags
);
4419 rx_data
->max_sges_for_packet
= params
->max_sges_pkt
;
4420 rx_data
->client_qzone_id
= params
->cl_qzone_id
;
4421 rx_data
->max_agg_size
= cpu_to_le16(params
->tpa_agg_sz
);
4423 /* Always start in DROP_ALL mode */
4424 rx_data
->state
= cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL
|
4425 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL
);
4427 /* We don't set drop flags */
4428 rx_data
->drop_ip_cs_err_flg
= 0;
4429 rx_data
->drop_tcp_cs_err_flg
= 0;
4430 rx_data
->drop_ttl0_flg
= 0;
4431 rx_data
->drop_udp_cs_err_flg
= 0;
4432 rx_data
->inner_vlan_removal_enable_flg
=
4433 test_bit(BNX2X_Q_FLG_VLAN
, flags
);
4434 rx_data
->outer_vlan_removal_enable_flg
=
4435 test_bit(BNX2X_Q_FLG_OV
, flags
);
4436 rx_data
->status_block_id
= params
->fw_sb_id
;
4437 rx_data
->rx_sb_index_number
= params
->sb_cq_index
;
4438 rx_data
->max_tpa_queues
= params
->max_tpa_queues
;
4439 rx_data
->max_bytes_on_bd
= cpu_to_le16(params
->buf_sz
);
4440 rx_data
->sge_buff_size
= cpu_to_le16(params
->sge_buf_sz
);
4441 rx_data
->bd_page_base
.lo
=
4442 cpu_to_le32(U64_LO(params
->dscr_map
));
4443 rx_data
->bd_page_base
.hi
=
4444 cpu_to_le32(U64_HI(params
->dscr_map
));
4445 rx_data
->sge_page_base
.lo
=
4446 cpu_to_le32(U64_LO(params
->sge_map
));
4447 rx_data
->sge_page_base
.hi
=
4448 cpu_to_le32(U64_HI(params
->sge_map
));
4449 rx_data
->cqe_page_base
.lo
=
4450 cpu_to_le32(U64_LO(params
->rcq_map
));
4451 rx_data
->cqe_page_base
.hi
=
4452 cpu_to_le32(U64_HI(params
->rcq_map
));
4453 rx_data
->is_leading_rss
= test_bit(BNX2X_Q_FLG_LEADING_RSS
, flags
);
4455 if (test_bit(BNX2X_Q_FLG_MCAST
, flags
)) {
4456 rx_data
->approx_mcast_engine_id
= params
->mcast_engine_id
;
4457 rx_data
->is_approx_mcast
= 1;
4460 rx_data
->rss_engine_id
= params
->rss_engine_id
;
4462 /* silent vlan removal */
4463 rx_data
->silent_vlan_removal_flg
=
4464 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM
, flags
);
4465 rx_data
->silent_vlan_value
=
4466 cpu_to_le16(params
->silent_removal_value
);
4467 rx_data
->silent_vlan_mask
=
4468 cpu_to_le16(params
->silent_removal_mask
);
4471 /* initialize the general, tx and rx parts of a queue object */
4472 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x
*bp
,
4473 struct bnx2x_queue_state_params
*cmd_params
,
4474 struct client_init_ramrod_data
*data
)
4476 bnx2x_q_fill_init_general_data(bp
, cmd_params
->q_obj
,
4477 &cmd_params
->params
.setup
.gen_params
,
4479 &cmd_params
->params
.setup
.flags
);
4481 bnx2x_q_fill_init_tx_data(cmd_params
->q_obj
,
4482 &cmd_params
->params
.setup
.txq_params
,
4484 &cmd_params
->params
.setup
.flags
);
4486 bnx2x_q_fill_init_rx_data(cmd_params
->q_obj
,
4487 &cmd_params
->params
.setup
.rxq_params
,
4489 &cmd_params
->params
.setup
.flags
);
4491 bnx2x_q_fill_init_pause_data(cmd_params
->q_obj
,
4492 &cmd_params
->params
.setup
.pause_params
,
4496 /* initialize the general and tx parts of a tx-only queue object */
4497 static void bnx2x_q_fill_setup_tx_only(struct bnx2x
*bp
,
4498 struct bnx2x_queue_state_params
*cmd_params
,
4499 struct tx_queue_init_ramrod_data
*data
)
4501 bnx2x_q_fill_init_general_data(bp
, cmd_params
->q_obj
,
4502 &cmd_params
->params
.tx_only
.gen_params
,
4504 &cmd_params
->params
.tx_only
.flags
);
4506 bnx2x_q_fill_init_tx_data(cmd_params
->q_obj
,
4507 &cmd_params
->params
.tx_only
.txq_params
,
4509 &cmd_params
->params
.tx_only
.flags
);
4511 DP(BNX2X_MSG_SP
, "cid %d, tx bd page lo %x hi %x",
4512 cmd_params
->q_obj
->cids
[0],
4513 data
->tx
.tx_bd_page_base
.lo
,
4514 data
->tx
.tx_bd_page_base
.hi
);
4518 * bnx2x_q_init - init HW/FW queue
4520 * @bp: device handle
4523 * HW/FW initial Queue configuration:
4525 * - CDU context validation
4528 static inline int bnx2x_q_init(struct bnx2x
*bp
,
4529 struct bnx2x_queue_state_params
*params
)
4531 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4532 struct bnx2x_queue_init_params
*init
= ¶ms
->params
.init
;
4536 /* Tx HC configuration */
4537 if (test_bit(BNX2X_Q_TYPE_HAS_TX
, &o
->type
) &&
4538 test_bit(BNX2X_Q_FLG_HC
, &init
->tx
.flags
)) {
4539 hc_usec
= init
->tx
.hc_rate
? 1000000 / init
->tx
.hc_rate
: 0;
4541 bnx2x_update_coalesce_sb_index(bp
, init
->tx
.fw_sb_id
,
4542 init
->tx
.sb_cq_index
,
4543 !test_bit(BNX2X_Q_FLG_HC_EN
, &init
->tx
.flags
),
4547 /* Rx HC configuration */
4548 if (test_bit(BNX2X_Q_TYPE_HAS_RX
, &o
->type
) &&
4549 test_bit(BNX2X_Q_FLG_HC
, &init
->rx
.flags
)) {
4550 hc_usec
= init
->rx
.hc_rate
? 1000000 / init
->rx
.hc_rate
: 0;
4552 bnx2x_update_coalesce_sb_index(bp
, init
->rx
.fw_sb_id
,
4553 init
->rx
.sb_cq_index
,
4554 !test_bit(BNX2X_Q_FLG_HC_EN
, &init
->rx
.flags
),
4558 /* Set CDU context validation values */
4559 for (cos
= 0; cos
< o
->max_cos
; cos
++) {
4560 DP(BNX2X_MSG_SP
, "setting context validation. cid %d, cos %d\n",
4562 DP(BNX2X_MSG_SP
, "context pointer %p\n", init
->cxts
[cos
]);
4563 bnx2x_set_ctx_validation(bp
, init
->cxts
[cos
], o
->cids
[cos
]);
4566 /* As no ramrod is sent, complete the command immediately */
4567 o
->complete_cmd(bp
, o
, BNX2X_Q_CMD_INIT
);
4575 static inline int bnx2x_q_send_setup_e1x(struct bnx2x
*bp
,
4576 struct bnx2x_queue_state_params
*params
)
4578 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4579 struct client_init_ramrod_data
*rdata
=
4580 (struct client_init_ramrod_data
*)o
->rdata
;
4581 dma_addr_t data_mapping
= o
->rdata_mapping
;
4582 int ramrod
= RAMROD_CMD_ID_ETH_CLIENT_SETUP
;
4584 /* Clear the ramrod data */
4585 memset(rdata
, 0, sizeof(*rdata
));
4587 /* Fill the ramrod data */
4588 bnx2x_q_fill_setup_data_cmn(bp
, params
, rdata
);
4590 /* No need for an explicit memory barrier here as long we would
4591 * need to ensure the ordering of writing to the SPQ element
4592 * and updating of the SPQ producer which involves a memory
4593 * read and we will have to put a full memory barrier there
4594 * (inside bnx2x_sp_post()).
4597 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
4598 U64_HI(data_mapping
),
4599 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
4602 static inline int bnx2x_q_send_setup_e2(struct bnx2x
*bp
,
4603 struct bnx2x_queue_state_params
*params
)
4605 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4606 struct client_init_ramrod_data
*rdata
=
4607 (struct client_init_ramrod_data
*)o
->rdata
;
4608 dma_addr_t data_mapping
= o
->rdata_mapping
;
4609 int ramrod
= RAMROD_CMD_ID_ETH_CLIENT_SETUP
;
4611 /* Clear the ramrod data */
4612 memset(rdata
, 0, sizeof(*rdata
));
4614 /* Fill the ramrod data */
4615 bnx2x_q_fill_setup_data_cmn(bp
, params
, rdata
);
4616 bnx2x_q_fill_setup_data_e2(bp
, params
, rdata
);
4618 /* No need for an explicit memory barrier here as long we would
4619 * need to ensure the ordering of writing to the SPQ element
4620 * and updating of the SPQ producer which involves a memory
4621 * read and we will have to put a full memory barrier there
4622 * (inside bnx2x_sp_post()).
4625 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
4626 U64_HI(data_mapping
),
4627 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
4630 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x
*bp
,
4631 struct bnx2x_queue_state_params
*params
)
4633 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4634 struct tx_queue_init_ramrod_data
*rdata
=
4635 (struct tx_queue_init_ramrod_data
*)o
->rdata
;
4636 dma_addr_t data_mapping
= o
->rdata_mapping
;
4637 int ramrod
= RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
;
4638 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
4639 ¶ms
->params
.tx_only
;
4640 u8 cid_index
= tx_only_params
->cid_index
;
4642 if (cid_index
>= o
->max_cos
) {
4643 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4644 o
->cl_id
, cid_index
);
4648 DP(BNX2X_MSG_SP
, "parameters received: cos: %d sp-id: %d\n",
4649 tx_only_params
->gen_params
.cos
,
4650 tx_only_params
->gen_params
.spcl_id
);
4652 /* Clear the ramrod data */
4653 memset(rdata
, 0, sizeof(*rdata
));
4655 /* Fill the ramrod data */
4656 bnx2x_q_fill_setup_tx_only(bp
, params
, rdata
);
4658 DP(BNX2X_MSG_SP
, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4659 o
->cids
[cid_index
], rdata
->general
.client_id
,
4660 rdata
->general
.sp_client_id
, rdata
->general
.cos
);
4662 /* No need for an explicit memory barrier here as long we would
4663 * need to ensure the ordering of writing to the SPQ element
4664 * and updating of the SPQ producer which involves a memory
4665 * read and we will have to put a full memory barrier there
4666 * (inside bnx2x_sp_post()).
4669 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[cid_index
],
4670 U64_HI(data_mapping
),
4671 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
4674 static void bnx2x_q_fill_update_data(struct bnx2x
*bp
,
4675 struct bnx2x_queue_sp_obj
*obj
,
4676 struct bnx2x_queue_update_params
*params
,
4677 struct client_update_ramrod_data
*data
)
4679 /* Client ID of the client to update */
4680 data
->client_id
= obj
->cl_id
;
4682 /* Function ID of the client to update */
4683 data
->func_id
= obj
->func_id
;
4685 /* Default VLAN value */
4686 data
->default_vlan
= cpu_to_le16(params
->def_vlan
);
4688 /* Inner VLAN stripping */
4689 data
->inner_vlan_removal_enable_flg
=
4690 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM
, ¶ms
->update_flags
);
4691 data
->inner_vlan_removal_change_flg
=
4692 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG
,
4693 ¶ms
->update_flags
);
4695 /* Outer VLAN stripping */
4696 data
->outer_vlan_removal_enable_flg
=
4697 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM
, ¶ms
->update_flags
);
4698 data
->outer_vlan_removal_change_flg
=
4699 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG
,
4700 ¶ms
->update_flags
);
4702 /* Drop packets that have source MAC that doesn't belong to this
4705 data
->anti_spoofing_enable_flg
=
4706 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF
, ¶ms
->update_flags
);
4707 data
->anti_spoofing_change_flg
=
4708 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG
, ¶ms
->update_flags
);
4710 /* Activate/Deactivate */
4711 data
->activate_flg
=
4712 test_bit(BNX2X_Q_UPDATE_ACTIVATE
, ¶ms
->update_flags
);
4713 data
->activate_change_flg
=
4714 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, ¶ms
->update_flags
);
4716 /* Enable default VLAN */
4717 data
->default_vlan_enable_flg
=
4718 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
, ¶ms
->update_flags
);
4719 data
->default_vlan_change_flg
=
4720 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG
,
4721 ¶ms
->update_flags
);
4723 /* silent vlan removal */
4724 data
->silent_vlan_change_flg
=
4725 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
4726 ¶ms
->update_flags
);
4727 data
->silent_vlan_removal_flg
=
4728 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
, ¶ms
->update_flags
);
4729 data
->silent_vlan_value
= cpu_to_le16(params
->silent_removal_value
);
4730 data
->silent_vlan_mask
= cpu_to_le16(params
->silent_removal_mask
);
4733 data
->tx_switching_flg
=
4734 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING
, ¶ms
->update_flags
);
4735 data
->tx_switching_change_flg
=
4736 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG
,
4737 ¶ms
->update_flags
);
4740 static inline int bnx2x_q_send_update(struct bnx2x
*bp
,
4741 struct bnx2x_queue_state_params
*params
)
4743 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4744 struct client_update_ramrod_data
*rdata
=
4745 (struct client_update_ramrod_data
*)o
->rdata
;
4746 dma_addr_t data_mapping
= o
->rdata_mapping
;
4747 struct bnx2x_queue_update_params
*update_params
=
4748 ¶ms
->params
.update
;
4749 u8 cid_index
= update_params
->cid_index
;
4751 if (cid_index
>= o
->max_cos
) {
4752 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4753 o
->cl_id
, cid_index
);
4757 /* Clear the ramrod data */
4758 memset(rdata
, 0, sizeof(*rdata
));
4760 /* Fill the ramrod data */
4761 bnx2x_q_fill_update_data(bp
, o
, update_params
, rdata
);
4763 /* No need for an explicit memory barrier here as long we would
4764 * need to ensure the ordering of writing to the SPQ element
4765 * and updating of the SPQ producer which involves a memory
4766 * read and we will have to put a full memory barrier there
4767 * (inside bnx2x_sp_post()).
4770 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_CLIENT_UPDATE
,
4771 o
->cids
[cid_index
], U64_HI(data_mapping
),
4772 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
4776 * bnx2x_q_send_deactivate - send DEACTIVATE command
4778 * @bp: device handle
4781 * implemented using the UPDATE command.
4783 static inline int bnx2x_q_send_deactivate(struct bnx2x
*bp
,
4784 struct bnx2x_queue_state_params
*params
)
4786 struct bnx2x_queue_update_params
*update
= ¶ms
->params
.update
;
4788 memset(update
, 0, sizeof(*update
));
4790 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, &update
->update_flags
);
4792 return bnx2x_q_send_update(bp
, params
);
4796 * bnx2x_q_send_activate - send ACTIVATE command
4798 * @bp: device handle
4801 * implemented using the UPDATE command.
4803 static inline int bnx2x_q_send_activate(struct bnx2x
*bp
,
4804 struct bnx2x_queue_state_params
*params
)
4806 struct bnx2x_queue_update_params
*update
= ¶ms
->params
.update
;
4808 memset(update
, 0, sizeof(*update
));
4810 __set_bit(BNX2X_Q_UPDATE_ACTIVATE
, &update
->update_flags
);
4811 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, &update
->update_flags
);
4813 return bnx2x_q_send_update(bp
, params
);
4816 static inline int bnx2x_q_send_update_tpa(struct bnx2x
*bp
,
4817 struct bnx2x_queue_state_params
*params
)
4819 /* TODO: Not implemented yet. */
4823 static inline int bnx2x_q_send_halt(struct bnx2x
*bp
,
4824 struct bnx2x_queue_state_params
*params
)
4826 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4828 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_HALT
,
4829 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], 0, o
->cl_id
,
4830 ETH_CONNECTION_TYPE
);
4833 static inline int bnx2x_q_send_cfc_del(struct bnx2x
*bp
,
4834 struct bnx2x_queue_state_params
*params
)
4836 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4837 u8 cid_idx
= params
->params
.cfc_del
.cid_index
;
4839 if (cid_idx
>= o
->max_cos
) {
4840 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4845 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_CFC_DEL
,
4846 o
->cids
[cid_idx
], 0, 0, NONE_CONNECTION_TYPE
);
4849 static inline int bnx2x_q_send_terminate(struct bnx2x
*bp
,
4850 struct bnx2x_queue_state_params
*params
)
4852 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4853 u8 cid_index
= params
->params
.terminate
.cid_index
;
4855 if (cid_index
>= o
->max_cos
) {
4856 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4857 o
->cl_id
, cid_index
);
4861 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_TERMINATE
,
4862 o
->cids
[cid_index
], 0, 0, ETH_CONNECTION_TYPE
);
4865 static inline int bnx2x_q_send_empty(struct bnx2x
*bp
,
4866 struct bnx2x_queue_state_params
*params
)
4868 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4870 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_EMPTY
,
4871 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], 0, 0,
4872 ETH_CONNECTION_TYPE
);
4875 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x
*bp
,
4876 struct bnx2x_queue_state_params
*params
)
4878 switch (params
->cmd
) {
4879 case BNX2X_Q_CMD_INIT
:
4880 return bnx2x_q_init(bp
, params
);
4881 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
4882 return bnx2x_q_send_setup_tx_only(bp
, params
);
4883 case BNX2X_Q_CMD_DEACTIVATE
:
4884 return bnx2x_q_send_deactivate(bp
, params
);
4885 case BNX2X_Q_CMD_ACTIVATE
:
4886 return bnx2x_q_send_activate(bp
, params
);
4887 case BNX2X_Q_CMD_UPDATE
:
4888 return bnx2x_q_send_update(bp
, params
);
4889 case BNX2X_Q_CMD_UPDATE_TPA
:
4890 return bnx2x_q_send_update_tpa(bp
, params
);
4891 case BNX2X_Q_CMD_HALT
:
4892 return bnx2x_q_send_halt(bp
, params
);
4893 case BNX2X_Q_CMD_CFC_DEL
:
4894 return bnx2x_q_send_cfc_del(bp
, params
);
4895 case BNX2X_Q_CMD_TERMINATE
:
4896 return bnx2x_q_send_terminate(bp
, params
);
4897 case BNX2X_Q_CMD_EMPTY
:
4898 return bnx2x_q_send_empty(bp
, params
);
4900 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
4905 static int bnx2x_queue_send_cmd_e1x(struct bnx2x
*bp
,
4906 struct bnx2x_queue_state_params
*params
)
4908 switch (params
->cmd
) {
4909 case BNX2X_Q_CMD_SETUP
:
4910 return bnx2x_q_send_setup_e1x(bp
, params
);
4911 case BNX2X_Q_CMD_INIT
:
4912 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
4913 case BNX2X_Q_CMD_DEACTIVATE
:
4914 case BNX2X_Q_CMD_ACTIVATE
:
4915 case BNX2X_Q_CMD_UPDATE
:
4916 case BNX2X_Q_CMD_UPDATE_TPA
:
4917 case BNX2X_Q_CMD_HALT
:
4918 case BNX2X_Q_CMD_CFC_DEL
:
4919 case BNX2X_Q_CMD_TERMINATE
:
4920 case BNX2X_Q_CMD_EMPTY
:
4921 return bnx2x_queue_send_cmd_cmn(bp
, params
);
4923 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
4928 static int bnx2x_queue_send_cmd_e2(struct bnx2x
*bp
,
4929 struct bnx2x_queue_state_params
*params
)
4931 switch (params
->cmd
) {
4932 case BNX2X_Q_CMD_SETUP
:
4933 return bnx2x_q_send_setup_e2(bp
, params
);
4934 case BNX2X_Q_CMD_INIT
:
4935 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
4936 case BNX2X_Q_CMD_DEACTIVATE
:
4937 case BNX2X_Q_CMD_ACTIVATE
:
4938 case BNX2X_Q_CMD_UPDATE
:
4939 case BNX2X_Q_CMD_UPDATE_TPA
:
4940 case BNX2X_Q_CMD_HALT
:
4941 case BNX2X_Q_CMD_CFC_DEL
:
4942 case BNX2X_Q_CMD_TERMINATE
:
4943 case BNX2X_Q_CMD_EMPTY
:
4944 return bnx2x_queue_send_cmd_cmn(bp
, params
);
4946 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
4952 * bnx2x_queue_chk_transition - check state machine of a regular Queue
4954 * @bp: device handle
4959 * It both checks if the requested command is legal in a current
4960 * state and, if it's legal, sets a `next_state' in the object
4961 * that will be used in the completion flow to set the `state'
4964 * returns 0 if a requested command is a legal transition,
4965 * -EINVAL otherwise.
4967 static int bnx2x_queue_chk_transition(struct bnx2x
*bp
,
4968 struct bnx2x_queue_sp_obj
*o
,
4969 struct bnx2x_queue_state_params
*params
)
4971 enum bnx2x_q_state state
= o
->state
, next_state
= BNX2X_Q_STATE_MAX
;
4972 enum bnx2x_queue_cmd cmd
= params
->cmd
;
4973 struct bnx2x_queue_update_params
*update_params
=
4974 ¶ms
->params
.update
;
4975 u8 next_tx_only
= o
->num_tx_only
;
4977 /* Forget all pending for completion commands if a driver only state
4978 * transition has been requested.
4980 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
4982 o
->next_state
= BNX2X_Q_STATE_MAX
;
4985 /* Don't allow a next state transition if we are in the middle of
4989 BNX2X_ERR("Blocking transition since pending was %lx\n",
4995 case BNX2X_Q_STATE_RESET
:
4996 if (cmd
== BNX2X_Q_CMD_INIT
)
4997 next_state
= BNX2X_Q_STATE_INITIALIZED
;
5000 case BNX2X_Q_STATE_INITIALIZED
:
5001 if (cmd
== BNX2X_Q_CMD_SETUP
) {
5002 if (test_bit(BNX2X_Q_FLG_ACTIVE
,
5003 ¶ms
->params
.setup
.flags
))
5004 next_state
= BNX2X_Q_STATE_ACTIVE
;
5006 next_state
= BNX2X_Q_STATE_INACTIVE
;
5010 case BNX2X_Q_STATE_ACTIVE
:
5011 if (cmd
== BNX2X_Q_CMD_DEACTIVATE
)
5012 next_state
= BNX2X_Q_STATE_INACTIVE
;
5014 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5015 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5016 next_state
= BNX2X_Q_STATE_ACTIVE
;
5018 else if (cmd
== BNX2X_Q_CMD_SETUP_TX_ONLY
) {
5019 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5023 else if (cmd
== BNX2X_Q_CMD_HALT
)
5024 next_state
= BNX2X_Q_STATE_STOPPED
;
5026 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5027 /* If "active" state change is requested, update the
5028 * state accordingly.
5030 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5031 &update_params
->update_flags
) &&
5032 !test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5033 &update_params
->update_flags
))
5034 next_state
= BNX2X_Q_STATE_INACTIVE
;
5036 next_state
= BNX2X_Q_STATE_ACTIVE
;
5040 case BNX2X_Q_STATE_MULTI_COS
:
5041 if (cmd
== BNX2X_Q_CMD_TERMINATE
)
5042 next_state
= BNX2X_Q_STATE_MCOS_TERMINATED
;
5044 else if (cmd
== BNX2X_Q_CMD_SETUP_TX_ONLY
) {
5045 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5046 next_tx_only
= o
->num_tx_only
+ 1;
5049 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5050 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5051 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5053 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5054 /* If "active" state change is requested, update the
5055 * state accordingly.
5057 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5058 &update_params
->update_flags
) &&
5059 !test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5060 &update_params
->update_flags
))
5061 next_state
= BNX2X_Q_STATE_INACTIVE
;
5063 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5067 case BNX2X_Q_STATE_MCOS_TERMINATED
:
5068 if (cmd
== BNX2X_Q_CMD_CFC_DEL
) {
5069 next_tx_only
= o
->num_tx_only
- 1;
5070 if (next_tx_only
== 0)
5071 next_state
= BNX2X_Q_STATE_ACTIVE
;
5073 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5077 case BNX2X_Q_STATE_INACTIVE
:
5078 if (cmd
== BNX2X_Q_CMD_ACTIVATE
)
5079 next_state
= BNX2X_Q_STATE_ACTIVE
;
5081 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5082 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5083 next_state
= BNX2X_Q_STATE_INACTIVE
;
5085 else if (cmd
== BNX2X_Q_CMD_HALT
)
5086 next_state
= BNX2X_Q_STATE_STOPPED
;
5088 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5089 /* If "active" state change is requested, update the
5090 * state accordingly.
5092 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5093 &update_params
->update_flags
) &&
5094 test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5095 &update_params
->update_flags
)){
5096 if (o
->num_tx_only
== 0)
5097 next_state
= BNX2X_Q_STATE_ACTIVE
;
5098 else /* tx only queues exist for this queue */
5099 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5101 next_state
= BNX2X_Q_STATE_INACTIVE
;
5105 case BNX2X_Q_STATE_STOPPED
:
5106 if (cmd
== BNX2X_Q_CMD_TERMINATE
)
5107 next_state
= BNX2X_Q_STATE_TERMINATED
;
5110 case BNX2X_Q_STATE_TERMINATED
:
5111 if (cmd
== BNX2X_Q_CMD_CFC_DEL
)
5112 next_state
= BNX2X_Q_STATE_RESET
;
5116 BNX2X_ERR("Illegal state: %d\n", state
);
5119 /* Transition is assured */
5120 if (next_state
!= BNX2X_Q_STATE_MAX
) {
5121 DP(BNX2X_MSG_SP
, "Good state transition: %d(%d)->%d\n",
5122 state
, cmd
, next_state
);
5123 o
->next_state
= next_state
;
5124 o
->next_tx_only
= next_tx_only
;
5128 DP(BNX2X_MSG_SP
, "Bad state transition request: %d %d\n", state
, cmd
);
5133 void bnx2x_init_queue_obj(struct bnx2x
*bp
,
5134 struct bnx2x_queue_sp_obj
*obj
,
5135 u8 cl_id
, u32
*cids
, u8 cid_cnt
, u8 func_id
,
5137 dma_addr_t rdata_mapping
, unsigned long type
)
5139 memset(obj
, 0, sizeof(*obj
));
5141 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5142 BUG_ON(BNX2X_MULTI_TX_COS
< cid_cnt
);
5144 memcpy(obj
->cids
, cids
, sizeof(obj
->cids
[0]) * cid_cnt
);
5145 obj
->max_cos
= cid_cnt
;
5147 obj
->func_id
= func_id
;
5149 obj
->rdata_mapping
= rdata_mapping
;
5151 obj
->next_state
= BNX2X_Q_STATE_MAX
;
5153 if (CHIP_IS_E1x(bp
))
5154 obj
->send_cmd
= bnx2x_queue_send_cmd_e1x
;
5156 obj
->send_cmd
= bnx2x_queue_send_cmd_e2
;
5158 obj
->check_transition
= bnx2x_queue_chk_transition
;
5160 obj
->complete_cmd
= bnx2x_queue_comp_cmd
;
5161 obj
->wait_comp
= bnx2x_queue_wait_comp
;
5162 obj
->set_pending
= bnx2x_queue_set_pending
;
5165 /* return a queue object's logical state*/
5166 int bnx2x_get_q_logical_state(struct bnx2x
*bp
,
5167 struct bnx2x_queue_sp_obj
*obj
)
5169 switch (obj
->state
) {
5170 case BNX2X_Q_STATE_ACTIVE
:
5171 case BNX2X_Q_STATE_MULTI_COS
:
5172 return BNX2X_Q_LOGICAL_STATE_ACTIVE
;
5173 case BNX2X_Q_STATE_RESET
:
5174 case BNX2X_Q_STATE_INITIALIZED
:
5175 case BNX2X_Q_STATE_MCOS_TERMINATED
:
5176 case BNX2X_Q_STATE_INACTIVE
:
5177 case BNX2X_Q_STATE_STOPPED
:
5178 case BNX2X_Q_STATE_TERMINATED
:
5179 case BNX2X_Q_STATE_FLRED
:
5180 return BNX2X_Q_LOGICAL_STATE_STOPPED
;
5186 /********************** Function state object *********************************/
5187 enum bnx2x_func_state
bnx2x_func_get_state(struct bnx2x
*bp
,
5188 struct bnx2x_func_sp_obj
*o
)
5190 /* in the middle of transaction - return INVALID state */
5192 return BNX2X_F_STATE_MAX
;
5194 /* unsure the order of reading of o->pending and o->state
5195 * o->pending should be read first
5202 static int bnx2x_func_wait_comp(struct bnx2x
*bp
,
5203 struct bnx2x_func_sp_obj
*o
,
5204 enum bnx2x_func_cmd cmd
)
5206 return bnx2x_state_wait(bp
, cmd
, &o
->pending
);
5210 * bnx2x_func_state_change_comp - complete the state machine transition
5212 * @bp: device handle
5216 * Called on state change transition. Completes the state
5217 * machine transition only - no HW interaction.
5219 static inline int bnx2x_func_state_change_comp(struct bnx2x
*bp
,
5220 struct bnx2x_func_sp_obj
*o
,
5221 enum bnx2x_func_cmd cmd
)
5223 unsigned long cur_pending
= o
->pending
;
5225 if (!test_and_clear_bit(cmd
, &cur_pending
)) {
5226 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5227 cmd
, BP_FUNC(bp
), o
->state
,
5228 cur_pending
, o
->next_state
);
5233 "Completing command %d for func %d, setting state to %d\n",
5234 cmd
, BP_FUNC(bp
), o
->next_state
);
5236 o
->state
= o
->next_state
;
5237 o
->next_state
= BNX2X_F_STATE_MAX
;
5239 /* It's important that o->state and o->next_state are
5240 * updated before o->pending.
5244 clear_bit(cmd
, &o
->pending
);
5245 smp_mb__after_clear_bit();
5251 * bnx2x_func_comp_cmd - complete the state change command
5253 * @bp: device handle
5257 * Checks that the arrived completion is expected.
5259 static int bnx2x_func_comp_cmd(struct bnx2x
*bp
,
5260 struct bnx2x_func_sp_obj
*o
,
5261 enum bnx2x_func_cmd cmd
)
5263 /* Complete the state machine part first, check if it's a
5266 int rc
= bnx2x_func_state_change_comp(bp
, o
, cmd
);
5271 * bnx2x_func_chk_transition - perform function state machine transition
5273 * @bp: device handle
5277 * It both checks if the requested command is legal in a current
5278 * state and, if it's legal, sets a `next_state' in the object
5279 * that will be used in the completion flow to set the `state'
5282 * returns 0 if a requested command is a legal transition,
5283 * -EINVAL otherwise.
5285 static int bnx2x_func_chk_transition(struct bnx2x
*bp
,
5286 struct bnx2x_func_sp_obj
*o
,
5287 struct bnx2x_func_state_params
*params
)
5289 enum bnx2x_func_state state
= o
->state
, next_state
= BNX2X_F_STATE_MAX
;
5290 enum bnx2x_func_cmd cmd
= params
->cmd
;
5292 /* Forget all pending for completion commands if a driver only state
5293 * transition has been requested.
5295 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
5297 o
->next_state
= BNX2X_F_STATE_MAX
;
5300 /* Don't allow a next state transition if we are in the middle of
5307 case BNX2X_F_STATE_RESET
:
5308 if (cmd
== BNX2X_F_CMD_HW_INIT
)
5309 next_state
= BNX2X_F_STATE_INITIALIZED
;
5312 case BNX2X_F_STATE_INITIALIZED
:
5313 if (cmd
== BNX2X_F_CMD_START
)
5314 next_state
= BNX2X_F_STATE_STARTED
;
5316 else if (cmd
== BNX2X_F_CMD_HW_RESET
)
5317 next_state
= BNX2X_F_STATE_RESET
;
5320 case BNX2X_F_STATE_STARTED
:
5321 if (cmd
== BNX2X_F_CMD_STOP
)
5322 next_state
= BNX2X_F_STATE_INITIALIZED
;
5323 /* afex ramrods can be sent only in started mode, and only
5324 * if not pending for function_stop ramrod completion
5325 * for these events - next state remained STARTED.
5327 else if ((cmd
== BNX2X_F_CMD_AFEX_UPDATE
) &&
5328 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5329 next_state
= BNX2X_F_STATE_STARTED
;
5331 else if ((cmd
== BNX2X_F_CMD_AFEX_VIFLISTS
) &&
5332 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5333 next_state
= BNX2X_F_STATE_STARTED
;
5335 /* Switch_update ramrod can be sent in either started or
5336 * tx_stopped state, and it doesn't change the state.
5338 else if ((cmd
== BNX2X_F_CMD_SWITCH_UPDATE
) &&
5339 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5340 next_state
= BNX2X_F_STATE_STARTED
;
5342 else if (cmd
== BNX2X_F_CMD_TX_STOP
)
5343 next_state
= BNX2X_F_STATE_TX_STOPPED
;
5346 case BNX2X_F_STATE_TX_STOPPED
:
5347 if ((cmd
== BNX2X_F_CMD_SWITCH_UPDATE
) &&
5348 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5349 next_state
= BNX2X_F_STATE_TX_STOPPED
;
5351 else if (cmd
== BNX2X_F_CMD_TX_START
)
5352 next_state
= BNX2X_F_STATE_STARTED
;
5356 BNX2X_ERR("Unknown state: %d\n", state
);
5359 /* Transition is assured */
5360 if (next_state
!= BNX2X_F_STATE_MAX
) {
5361 DP(BNX2X_MSG_SP
, "Good function state transition: %d(%d)->%d\n",
5362 state
, cmd
, next_state
);
5363 o
->next_state
= next_state
;
5367 DP(BNX2X_MSG_SP
, "Bad function state transition request: %d %d\n",
5374 * bnx2x_func_init_func - performs HW init at function stage
5376 * @bp: device handle
5379 * Init HW when the current phase is
5380 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5383 static inline int bnx2x_func_init_func(struct bnx2x
*bp
,
5384 const struct bnx2x_func_sp_drv_ops
*drv
)
5386 return drv
->init_hw_func(bp
);
5390 * bnx2x_func_init_port - performs HW init at port stage
5392 * @bp: device handle
5395 * Init HW when the current phase is
5396 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5397 * FUNCTION-only HW blocks.
5400 static inline int bnx2x_func_init_port(struct bnx2x
*bp
,
5401 const struct bnx2x_func_sp_drv_ops
*drv
)
5403 int rc
= drv
->init_hw_port(bp
);
5407 return bnx2x_func_init_func(bp
, drv
);
5411 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5413 * @bp: device handle
5416 * Init HW when the current phase is
5417 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5418 * PORT-only and FUNCTION-only HW blocks.
5420 static inline int bnx2x_func_init_cmn_chip(struct bnx2x
*bp
,
5421 const struct bnx2x_func_sp_drv_ops
*drv
)
5423 int rc
= drv
->init_hw_cmn_chip(bp
);
5427 return bnx2x_func_init_port(bp
, drv
);
5431 * bnx2x_func_init_cmn - performs HW init at common stage
5433 * @bp: device handle
5436 * Init HW when the current phase is
5437 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5438 * PORT-only and FUNCTION-only HW blocks.
5440 static inline int bnx2x_func_init_cmn(struct bnx2x
*bp
,
5441 const struct bnx2x_func_sp_drv_ops
*drv
)
5443 int rc
= drv
->init_hw_cmn(bp
);
5447 return bnx2x_func_init_port(bp
, drv
);
5450 static int bnx2x_func_hw_init(struct bnx2x
*bp
,
5451 struct bnx2x_func_state_params
*params
)
5453 u32 load_code
= params
->params
.hw_init
.load_phase
;
5454 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5455 const struct bnx2x_func_sp_drv_ops
*drv
= o
->drv
;
5458 DP(BNX2X_MSG_SP
, "function %d load_code %x\n",
5459 BP_ABS_FUNC(bp
), load_code
);
5461 /* Prepare buffers for unzipping the FW */
5462 rc
= drv
->gunzip_init(bp
);
5467 rc
= drv
->init_fw(bp
);
5469 BNX2X_ERR("Error loading firmware\n");
5473 /* Handle the beginning of COMMON_XXX pases separately... */
5474 switch (load_code
) {
5475 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
5476 rc
= bnx2x_func_init_cmn_chip(bp
, drv
);
5481 case FW_MSG_CODE_DRV_LOAD_COMMON
:
5482 rc
= bnx2x_func_init_cmn(bp
, drv
);
5487 case FW_MSG_CODE_DRV_LOAD_PORT
:
5488 rc
= bnx2x_func_init_port(bp
, drv
);
5493 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
5494 rc
= bnx2x_func_init_func(bp
, drv
);
5500 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
5505 drv
->gunzip_end(bp
);
5507 /* In case of success, complete the command immediately: no ramrods
5511 o
->complete_cmd(bp
, o
, BNX2X_F_CMD_HW_INIT
);
5517 * bnx2x_func_reset_func - reset HW at function stage
5519 * @bp: device handle
5522 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5523 * FUNCTION-only HW blocks.
5525 static inline void bnx2x_func_reset_func(struct bnx2x
*bp
,
5526 const struct bnx2x_func_sp_drv_ops
*drv
)
5528 drv
->reset_hw_func(bp
);
5532 * bnx2x_func_reset_port - reset HW at port stage
5534 * @bp: device handle
5537 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5538 * FUNCTION-only and PORT-only HW blocks.
5542 * It's important to call reset_port before reset_func() as the last thing
5543 * reset_func does is pf_disable() thus disabling PGLUE_B, which
5544 * makes impossible any DMAE transactions.
5546 static inline void bnx2x_func_reset_port(struct bnx2x
*bp
,
5547 const struct bnx2x_func_sp_drv_ops
*drv
)
5549 drv
->reset_hw_port(bp
);
5550 bnx2x_func_reset_func(bp
, drv
);
5554 * bnx2x_func_reset_cmn - reset HW at common stage
5556 * @bp: device handle
5559 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5560 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5561 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5563 static inline void bnx2x_func_reset_cmn(struct bnx2x
*bp
,
5564 const struct bnx2x_func_sp_drv_ops
*drv
)
5566 bnx2x_func_reset_port(bp
, drv
);
5567 drv
->reset_hw_cmn(bp
);
5570 static inline int bnx2x_func_hw_reset(struct bnx2x
*bp
,
5571 struct bnx2x_func_state_params
*params
)
5573 u32 reset_phase
= params
->params
.hw_reset
.reset_phase
;
5574 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5575 const struct bnx2x_func_sp_drv_ops
*drv
= o
->drv
;
5577 DP(BNX2X_MSG_SP
, "function %d reset_phase %x\n", BP_ABS_FUNC(bp
),
5580 switch (reset_phase
) {
5581 case FW_MSG_CODE_DRV_UNLOAD_COMMON
:
5582 bnx2x_func_reset_cmn(bp
, drv
);
5584 case FW_MSG_CODE_DRV_UNLOAD_PORT
:
5585 bnx2x_func_reset_port(bp
, drv
);
5587 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION
:
5588 bnx2x_func_reset_func(bp
, drv
);
5591 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5596 /* Complete the command immediately: no ramrods have been sent. */
5597 o
->complete_cmd(bp
, o
, BNX2X_F_CMD_HW_RESET
);
5602 static inline int bnx2x_func_send_start(struct bnx2x
*bp
,
5603 struct bnx2x_func_state_params
*params
)
5605 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5606 struct function_start_data
*rdata
=
5607 (struct function_start_data
*)o
->rdata
;
5608 dma_addr_t data_mapping
= o
->rdata_mapping
;
5609 struct bnx2x_func_start_params
*start_params
= ¶ms
->params
.start
;
5611 memset(rdata
, 0, sizeof(*rdata
));
5613 /* Fill the ramrod data with provided parameters */
5614 rdata
->function_mode
= (u8
)start_params
->mf_mode
;
5615 rdata
->sd_vlan_tag
= cpu_to_le16(start_params
->sd_vlan_tag
);
5616 rdata
->path_id
= BP_PATH(bp
);
5617 rdata
->network_cos_mode
= start_params
->network_cos_mode
;
5618 rdata
->gre_tunnel_mode
= start_params
->gre_tunnel_mode
;
5619 rdata
->gre_tunnel_rss
= start_params
->gre_tunnel_rss
;
5621 /* No need for an explicit memory barrier here as long we would
5622 * need to ensure the ordering of writing to the SPQ element
5623 * and updating of the SPQ producer which involves a memory
5624 * read and we will have to put a full memory barrier there
5625 * (inside bnx2x_sp_post()).
5628 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_START
, 0,
5629 U64_HI(data_mapping
),
5630 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
5633 static inline int bnx2x_func_send_switch_update(struct bnx2x
*bp
,
5634 struct bnx2x_func_state_params
*params
)
5636 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5637 struct function_update_data
*rdata
=
5638 (struct function_update_data
*)o
->rdata
;
5639 dma_addr_t data_mapping
= o
->rdata_mapping
;
5640 struct bnx2x_func_switch_update_params
*switch_update_params
=
5641 ¶ms
->params
.switch_update
;
5643 memset(rdata
, 0, sizeof(*rdata
));
5645 /* Fill the ramrod data with provided parameters */
5646 rdata
->tx_switch_suspend_change_flg
= 1;
5647 rdata
->tx_switch_suspend
= switch_update_params
->suspend
;
5648 rdata
->echo
= SWITCH_UPDATE
;
5650 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE
, 0,
5651 U64_HI(data_mapping
),
5652 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
5655 static inline int bnx2x_func_send_afex_update(struct bnx2x
*bp
,
5656 struct bnx2x_func_state_params
*params
)
5658 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5659 struct function_update_data
*rdata
=
5660 (struct function_update_data
*)o
->afex_rdata
;
5661 dma_addr_t data_mapping
= o
->afex_rdata_mapping
;
5662 struct bnx2x_func_afex_update_params
*afex_update_params
=
5663 ¶ms
->params
.afex_update
;
5665 memset(rdata
, 0, sizeof(*rdata
));
5667 /* Fill the ramrod data with provided parameters */
5668 rdata
->vif_id_change_flg
= 1;
5669 rdata
->vif_id
= cpu_to_le16(afex_update_params
->vif_id
);
5670 rdata
->afex_default_vlan_change_flg
= 1;
5671 rdata
->afex_default_vlan
=
5672 cpu_to_le16(afex_update_params
->afex_default_vlan
);
5673 rdata
->allowed_priorities_change_flg
= 1;
5674 rdata
->allowed_priorities
= afex_update_params
->allowed_priorities
;
5675 rdata
->echo
= AFEX_UPDATE
;
5677 /* No need for an explicit memory barrier here as long we would
5678 * need to ensure the ordering of writing to the SPQ element
5679 * and updating of the SPQ producer which involves a memory
5680 * read and we will have to put a full memory barrier there
5681 * (inside bnx2x_sp_post()).
5684 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
5686 rdata
->afex_default_vlan
, rdata
->allowed_priorities
);
5688 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE
, 0,
5689 U64_HI(data_mapping
),
5690 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
5694 inline int bnx2x_func_send_afex_viflists(struct bnx2x
*bp
,
5695 struct bnx2x_func_state_params
*params
)
5697 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5698 struct afex_vif_list_ramrod_data
*rdata
=
5699 (struct afex_vif_list_ramrod_data
*)o
->afex_rdata
;
5700 struct bnx2x_func_afex_viflists_params
*afex_vif_params
=
5701 ¶ms
->params
.afex_viflists
;
5702 u64
*p_rdata
= (u64
*)rdata
;
5704 memset(rdata
, 0, sizeof(*rdata
));
5706 /* Fill the ramrod data with provided parameters */
5707 rdata
->vif_list_index
= cpu_to_le16(afex_vif_params
->vif_list_index
);
5708 rdata
->func_bit_map
= afex_vif_params
->func_bit_map
;
5709 rdata
->afex_vif_list_command
= afex_vif_params
->afex_vif_list_command
;
5710 rdata
->func_to_clear
= afex_vif_params
->func_to_clear
;
5712 /* send in echo type of sub command */
5713 rdata
->echo
= afex_vif_params
->afex_vif_list_command
;
5715 /* No need for an explicit memory barrier here as long we would
5716 * need to ensure the ordering of writing to the SPQ element
5717 * and updating of the SPQ producer which involves a memory
5718 * read and we will have to put a full memory barrier there
5719 * (inside bnx2x_sp_post()).
5722 DP(BNX2X_MSG_SP
, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
5723 rdata
->afex_vif_list_command
, rdata
->vif_list_index
,
5724 rdata
->func_bit_map
, rdata
->func_to_clear
);
5726 /* this ramrod sends data directly and not through DMA mapping */
5727 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS
, 0,
5728 U64_HI(*p_rdata
), U64_LO(*p_rdata
),
5729 NONE_CONNECTION_TYPE
);
5732 static inline int bnx2x_func_send_stop(struct bnx2x
*bp
,
5733 struct bnx2x_func_state_params
*params
)
5735 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_STOP
, 0, 0, 0,
5736 NONE_CONNECTION_TYPE
);
5739 static inline int bnx2x_func_send_tx_stop(struct bnx2x
*bp
,
5740 struct bnx2x_func_state_params
*params
)
5742 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC
, 0, 0, 0,
5743 NONE_CONNECTION_TYPE
);
5745 static inline int bnx2x_func_send_tx_start(struct bnx2x
*bp
,
5746 struct bnx2x_func_state_params
*params
)
5748 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5749 struct flow_control_configuration
*rdata
=
5750 (struct flow_control_configuration
*)o
->rdata
;
5751 dma_addr_t data_mapping
= o
->rdata_mapping
;
5752 struct bnx2x_func_tx_start_params
*tx_start_params
=
5753 ¶ms
->params
.tx_start
;
5756 memset(rdata
, 0, sizeof(*rdata
));
5758 rdata
->dcb_enabled
= tx_start_params
->dcb_enabled
;
5759 rdata
->dcb_version
= tx_start_params
->dcb_version
;
5760 rdata
->dont_add_pri_0_en
= tx_start_params
->dont_add_pri_0_en
;
5762 for (i
= 0; i
< ARRAY_SIZE(rdata
->traffic_type_to_priority_cos
); i
++)
5763 rdata
->traffic_type_to_priority_cos
[i
] =
5764 tx_start_params
->traffic_type_to_priority_cos
[i
];
5766 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_START_TRAFFIC
, 0,
5767 U64_HI(data_mapping
),
5768 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
5771 static int bnx2x_func_send_cmd(struct bnx2x
*bp
,
5772 struct bnx2x_func_state_params
*params
)
5774 switch (params
->cmd
) {
5775 case BNX2X_F_CMD_HW_INIT
:
5776 return bnx2x_func_hw_init(bp
, params
);
5777 case BNX2X_F_CMD_START
:
5778 return bnx2x_func_send_start(bp
, params
);
5779 case BNX2X_F_CMD_STOP
:
5780 return bnx2x_func_send_stop(bp
, params
);
5781 case BNX2X_F_CMD_HW_RESET
:
5782 return bnx2x_func_hw_reset(bp
, params
);
5783 case BNX2X_F_CMD_AFEX_UPDATE
:
5784 return bnx2x_func_send_afex_update(bp
, params
);
5785 case BNX2X_F_CMD_AFEX_VIFLISTS
:
5786 return bnx2x_func_send_afex_viflists(bp
, params
);
5787 case BNX2X_F_CMD_TX_STOP
:
5788 return bnx2x_func_send_tx_stop(bp
, params
);
5789 case BNX2X_F_CMD_TX_START
:
5790 return bnx2x_func_send_tx_start(bp
, params
);
5791 case BNX2X_F_CMD_SWITCH_UPDATE
:
5792 return bnx2x_func_send_switch_update(bp
, params
);
5794 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
5799 void bnx2x_init_func_obj(struct bnx2x
*bp
,
5800 struct bnx2x_func_sp_obj
*obj
,
5801 void *rdata
, dma_addr_t rdata_mapping
,
5802 void *afex_rdata
, dma_addr_t afex_rdata_mapping
,
5803 struct bnx2x_func_sp_drv_ops
*drv_iface
)
5805 memset(obj
, 0, sizeof(*obj
));
5807 mutex_init(&obj
->one_pending_mutex
);
5810 obj
->rdata_mapping
= rdata_mapping
;
5811 obj
->afex_rdata
= afex_rdata
;
5812 obj
->afex_rdata_mapping
= afex_rdata_mapping
;
5813 obj
->send_cmd
= bnx2x_func_send_cmd
;
5814 obj
->check_transition
= bnx2x_func_chk_transition
;
5815 obj
->complete_cmd
= bnx2x_func_comp_cmd
;
5816 obj
->wait_comp
= bnx2x_func_wait_comp
;
5818 obj
->drv
= drv_iface
;
5822 * bnx2x_func_state_change - perform Function state change transition
5824 * @bp: device handle
5825 * @params: parameters to perform the transaction
5827 * returns 0 in case of successfully completed transition,
5828 * negative error code in case of failure, positive
5829 * (EBUSY) value if there is a completion to that is
5830 * still pending (possible only if RAMROD_COMP_WAIT is
5831 * not set in params->ramrod_flags for asynchronous
5834 int bnx2x_func_state_change(struct bnx2x
*bp
,
5835 struct bnx2x_func_state_params
*params
)
5837 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5839 enum bnx2x_func_cmd cmd
= params
->cmd
;
5840 unsigned long *pending
= &o
->pending
;
5842 mutex_lock(&o
->one_pending_mutex
);
5844 /* Check that the requested transition is legal */
5845 rc
= o
->check_transition(bp
, o
, params
);
5846 if ((rc
== -EBUSY
) &&
5847 (test_bit(RAMROD_RETRY
, ¶ms
->ramrod_flags
))) {
5848 while ((rc
== -EBUSY
) && (--cnt
> 0)) {
5849 mutex_unlock(&o
->one_pending_mutex
);
5851 mutex_lock(&o
->one_pending_mutex
);
5852 rc
= o
->check_transition(bp
, o
, params
);
5855 mutex_unlock(&o
->one_pending_mutex
);
5856 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
5860 mutex_unlock(&o
->one_pending_mutex
);
5864 /* Set "pending" bit */
5865 set_bit(cmd
, pending
);
5867 /* Don't send a command if only driver cleanup was requested */
5868 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
5869 bnx2x_func_state_change_comp(bp
, o
, cmd
);
5870 mutex_unlock(&o
->one_pending_mutex
);
5873 rc
= o
->send_cmd(bp
, params
);
5875 mutex_unlock(&o
->one_pending_mutex
);
5878 o
->next_state
= BNX2X_F_STATE_MAX
;
5879 clear_bit(cmd
, pending
);
5880 smp_mb__after_clear_bit();
5884 if (test_bit(RAMROD_COMP_WAIT
, ¶ms
->ramrod_flags
)) {
5885 rc
= o
->wait_comp(bp
, o
, cmd
);
5893 return !!test_bit(cmd
, pending
);