1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * http://www.chelsio.com *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
26 * Maintainers: maintainers@chelsio.com *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
37 ****************************************************************************/
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
50 #include <linux/tcp.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
83 #define TX_RECLAIM_PERIOD (HZ / 4)
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
95 * Command queue, receive buffer list, and response queue descriptors.
97 #if defined(__BIG_ENDIAN_BITFIELD)
114 u32 Cmdq1CreditReturn
: 5;
115 u32 Cmdq1DmaComplete
: 5;
116 u32 Cmdq0CreditReturn
: 5;
117 u32 Cmdq0DmaComplete
: 5;
124 u32 GenerationBit
: 1;
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
144 u32 GenerationBit
: 1;
151 u32 Cmdq0DmaComplete
: 5;
152 u32 Cmdq0CreditReturn
: 5;
153 u32 Cmdq1DmaComplete
: 5;
154 u32 Cmdq1CreditReturn
: 5;
160 * SW Context Command and Freelist Queue Descriptors
164 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
165 DEFINE_DMA_UNMAP_LEN(dma_len
);
170 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
171 DEFINE_DMA_UNMAP_LEN(dma_len
);
175 * SW command, freelist and response rings
178 unsigned long status
; /* HW DMA fetch status */
179 unsigned int in_use
; /* # of in-use command descriptors */
180 unsigned int size
; /* # of descriptors */
181 unsigned int processed
; /* total # of descs HW has processed */
182 unsigned int cleaned
; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres
; /* SW TX queue suspend threshold */
184 u16 pidx
; /* producer index (SW) */
185 u16 cidx
; /* consumer index (HW) */
186 u8 genbit
; /* current generation (=valid) bit */
187 u8 sop
; /* is next entry start of packet? */
188 struct cmdQ_e
*entries
; /* HW command descriptor Q */
189 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
190 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
191 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
195 unsigned int credits
; /* # of available RX buffers */
196 unsigned int size
; /* free list capacity */
197 u16 pidx
; /* producer index (SW) */
198 u16 cidx
; /* consumer index (HW) */
199 u16 rx_buffer_size
; /* Buffer size on this free list */
200 u16 dma_offset
; /* DMA offset to align IP headers */
201 u16 recycleq_idx
; /* skb recycle q to use */
202 u8 genbit
; /* current generation (=valid) bit */
203 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
204 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
209 unsigned int credits
; /* credits to be returned to SGE */
210 unsigned int size
; /* # of response Q descriptors */
211 u16 cidx
; /* consumer index (SW) */
212 u8 genbit
; /* current generation(=valid) bit */
213 struct respQ_e
*entries
; /* HW response descriptor Q */
214 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
217 /* Bit flags for cmdQ.status */
219 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
223 /* T204 TX SW scheduler */
225 /* Per T204 TX port */
227 unsigned int avail
; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns
; /* drain rate */
229 unsigned int speed
; /* drain rate, mbps */
230 unsigned int mtu
; /* mtu size */
231 struct sk_buff_head skbq
; /* pending skbs */
234 /* Per T204 device */
236 ktime_t last_updated
; /* last time quotas were computed */
237 unsigned int max_avail
; /* max bits to be sent to any port */
238 unsigned int port
; /* port index (round robin ports) */
239 unsigned int num
; /* num skbs in per port queues */
240 struct sched_port p
[MAX_NPORTS
];
241 struct tasklet_struct sched_tsk
;/* tasklet used to run scheduler */
243 static void restart_sched(unsigned long);
247 * Main SGE data structure
249 * Interrupts are handled by a single CPU and it is likely that on a MP system
250 * the application is migrated to another CPU. In that scenario, we try to
251 * separate the RX(in irq context) and TX state in order to decrease memory
255 struct adapter
*adapter
; /* adapter backpointer */
256 struct net_device
*netdev
; /* netdevice backpointer */
257 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
258 struct respQ respQ
; /* response Q */
259 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
260 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
261 unsigned int jumbo_fl
; /* jumbo freelist Q index */
262 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
263 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
264 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
265 struct timer_list espibug_timer
;
266 unsigned long espibug_timeout
;
267 struct sk_buff
*espibug_skb
[MAX_NPORTS
];
268 u32 sge_control
; /* shadow value of sge control reg */
269 struct sge_intr_counts stats
;
270 struct sge_port_stats __percpu
*port_stats
[MAX_NPORTS
];
271 struct sched
*tx_sched
;
272 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
275 static const u8 ch_mac_addr
[ETH_ALEN
] = {
276 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
280 * stop tasklet and free all pending skb's
282 static void tx_sched_stop(struct sge
*sge
)
284 struct sched
*s
= sge
->tx_sched
;
287 tasklet_kill(&s
->sched_tsk
);
289 for (i
= 0; i
< MAX_NPORTS
; i
++)
290 __skb_queue_purge(&s
->p
[s
->port
].skbq
);
294 * t1_sched_update_parms() is called when the MTU or link speed changes. It
295 * re-computes scheduler parameters to scope with the change.
297 unsigned int t1_sched_update_parms(struct sge
*sge
, unsigned int port
,
298 unsigned int mtu
, unsigned int speed
)
300 struct sched
*s
= sge
->tx_sched
;
301 struct sched_port
*p
= &s
->p
[port
];
302 unsigned int max_avail_segs
;
304 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu
, speed
);
311 unsigned long long drain
= 1024ULL * p
->speed
* (p
->mtu
- 40);
312 do_div(drain
, (p
->mtu
+ 50) * 1000);
313 p
->drain_bits_per_1024ns
= (unsigned int) drain
;
316 p
->drain_bits_per_1024ns
=
317 90 * p
->drain_bits_per_1024ns
/ 100;
320 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
) {
321 p
->drain_bits_per_1024ns
-= 16;
322 s
->max_avail
= max(4096U, p
->mtu
+ 16 + 14 + 4);
323 max_avail_segs
= max(1U, 4096 / (p
->mtu
- 40));
325 s
->max_avail
= 16384;
326 max_avail_segs
= max(1U, 9000 / (p
->mtu
- 40));
329 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
330 "max_avail_segs %u drain_bits_per_1024ns %u\n", p
->mtu
,
331 p
->speed
, s
->max_avail
, max_avail_segs
,
332 p
->drain_bits_per_1024ns
);
334 return max_avail_segs
* (p
->mtu
- 40);
340 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
341 * data that can be pushed per port.
343 void t1_sched_set_max_avail_bytes(struct sge
*sge
, unsigned int val
)
345 struct sched
*s
= sge
->tx_sched
;
349 for (i
= 0; i
< MAX_NPORTS
; i
++)
350 t1_sched_update_parms(sge
, i
, 0, 0);
354 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 void t1_sched_set_drain_bits_per_us(struct sge
*sge
, unsigned int port
,
360 struct sched
*s
= sge
->tx_sched
;
361 struct sched_port
*p
= &s
->p
[port
];
362 p
->drain_bits_per_1024ns
= val
* 1024 / 1000;
363 t1_sched_update_parms(sge
, port
, 0, 0);
369 * tx_sched_init() allocates resources and does basic initialization.
371 static int tx_sched_init(struct sge
*sge
)
376 s
= kzalloc(sizeof (struct sched
), GFP_KERNEL
);
380 pr_debug("tx_sched_init\n");
381 tasklet_init(&s
->sched_tsk
, restart_sched
, (unsigned long) sge
);
384 for (i
= 0; i
< MAX_NPORTS
; i
++) {
385 skb_queue_head_init(&s
->p
[i
].skbq
);
386 t1_sched_update_parms(sge
, i
, 1500, 1000);
393 * sched_update_avail() computes the delta since the last time it was called
394 * and updates the per port quota (number of bits that can be sent to the any
397 static inline int sched_update_avail(struct sge
*sge
)
399 struct sched
*s
= sge
->tx_sched
;
400 ktime_t now
= ktime_get();
402 long long delta_time_ns
;
404 delta_time_ns
= ktime_to_ns(ktime_sub(now
, s
->last_updated
));
406 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns
);
407 if (delta_time_ns
< 15000)
410 for (i
= 0; i
< MAX_NPORTS
; i
++) {
411 struct sched_port
*p
= &s
->p
[i
];
412 unsigned int delta_avail
;
414 delta_avail
= (p
->drain_bits_per_1024ns
* delta_time_ns
) >> 13;
415 p
->avail
= min(p
->avail
+ delta_avail
, s
->max_avail
);
418 s
->last_updated
= now
;
424 * sched_skb() is called from two different places. In the tx path, any
425 * packet generating load on an output port will call sched_skb()
426 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
427 * context (skb == NULL).
428 * The scheduler only returns a skb (which will then be sent) if the
429 * length of the skb is <= the current quota of the output port.
431 static struct sk_buff
*sched_skb(struct sge
*sge
, struct sk_buff
*skb
,
432 unsigned int credits
)
434 struct sched
*s
= sge
->tx_sched
;
435 struct sk_buff_head
*skbq
;
436 unsigned int i
, len
, update
= 1;
438 pr_debug("sched_skb %p\n", skb
);
443 skbq
= &s
->p
[skb
->dev
->if_port
].skbq
;
444 __skb_queue_tail(skbq
, skb
);
449 if (credits
< MAX_SKB_FRAGS
+ 1)
453 for (i
= 0; i
< MAX_NPORTS
; i
++) {
454 s
->port
= (s
->port
+ 1) & (MAX_NPORTS
- 1);
455 skbq
= &s
->p
[s
->port
].skbq
;
457 skb
= skb_peek(skbq
);
463 if (len
<= s
->p
[s
->port
].avail
) {
464 s
->p
[s
->port
].avail
-= len
;
466 __skb_unlink(skb
, skbq
);
472 if (update
-- && sched_update_avail(sge
))
476 /* If there are more pending skbs, we use the hardware to schedule us
479 if (s
->num
&& !skb
) {
480 struct cmdQ
*q
= &sge
->cmdQ
[0];
481 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
482 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
483 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
484 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
487 pr_debug("sched_skb ret %p\n", skb
);
493 * PIO to indicate that memory mapped Q contains valid descriptor(s).
495 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
498 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
502 * Frees all RX buffers on the freelist Q. The caller must make sure that
503 * the SGE is turned off before calling this function.
505 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
507 unsigned int cidx
= q
->cidx
;
509 while (q
->credits
--) {
510 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
512 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
513 dma_unmap_len(ce
, dma_len
),
515 dev_kfree_skb(ce
->skb
);
517 if (++cidx
== q
->size
)
523 * Free RX free list and response queue resources.
525 static void free_rx_resources(struct sge
*sge
)
527 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
528 unsigned int size
, i
;
530 if (sge
->respQ
.entries
) {
531 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
532 pci_free_consistent(pdev
, size
, sge
->respQ
.entries
,
533 sge
->respQ
.dma_addr
);
536 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
537 struct freelQ
*q
= &sge
->freelQ
[i
];
540 free_freelQ_buffers(pdev
, q
);
544 size
= sizeof(struct freelQ_e
) * q
->size
;
545 pci_free_consistent(pdev
, size
, q
->entries
,
552 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
555 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
557 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
558 unsigned int size
, i
;
560 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
561 struct freelQ
*q
= &sge
->freelQ
[i
];
564 q
->size
= p
->freelQ_size
[i
];
565 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
566 size
= sizeof(struct freelQ_e
) * q
->size
;
567 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
571 size
= sizeof(struct freelQ_ce
) * q
->size
;
572 q
->centries
= kzalloc(size
, GFP_KERNEL
);
578 * Calculate the buffer sizes for the two free lists. FL0 accommodates
579 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
580 * including all the sk_buff overhead.
582 * Note: For T2 FL0 and FL1 are reversed.
584 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
585 sizeof(struct cpl_rx_data
) +
586 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
589 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
591 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= size
;
594 * Setup which skb recycle Q should be used when recycling buffers from
597 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
598 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
600 sge
->respQ
.genbit
= 1;
601 sge
->respQ
.size
= SGE_RESPQ_E_N
;
602 sge
->respQ
.credits
= 0;
603 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
605 pci_alloc_consistent(pdev
, size
, &sge
->respQ
.dma_addr
);
606 if (!sge
->respQ
.entries
)
611 free_rx_resources(sge
);
616 * Reclaims n TX descriptors and frees the buffers associated with them.
618 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
621 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
622 unsigned int cidx
= q
->cidx
;
625 ce
= &q
->centries
[cidx
];
627 if (likely(dma_unmap_len(ce
, dma_len
))) {
628 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
629 dma_unmap_len(ce
, dma_len
),
635 dev_kfree_skb_any(ce
->skb
);
639 if (++cidx
== q
->size
) {
650 * Assumes that SGE is stopped and all interrupts are disabled.
652 static void free_tx_resources(struct sge
*sge
)
654 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
655 unsigned int size
, i
;
657 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
658 struct cmdQ
*q
= &sge
->cmdQ
[i
];
662 free_cmdQ_buffers(sge
, q
, q
->in_use
);
666 size
= sizeof(struct cmdQ_e
) * q
->size
;
667 pci_free_consistent(pdev
, size
, q
->entries
,
674 * Allocates basic TX resources, consisting of memory mapped command Qs.
676 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
678 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
679 unsigned int size
, i
;
681 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
682 struct cmdQ
*q
= &sge
->cmdQ
[i
];
686 q
->size
= p
->cmdQ_size
[i
];
689 q
->processed
= q
->cleaned
= 0;
691 spin_lock_init(&q
->lock
);
692 size
= sizeof(struct cmdQ_e
) * q
->size
;
693 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
697 size
= sizeof(struct cmdQ_ce
) * q
->size
;
698 q
->centries
= kzalloc(size
, GFP_KERNEL
);
704 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
705 * only. For queue 0 set the stop threshold so we can handle one more
706 * packet from each port, plus reserve an additional 24 entries for
707 * Ethernet packets only. Queue 1 never suspends nor do we reserve
708 * space for Ethernet packets.
710 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
715 free_tx_resources(sge
);
719 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
720 u32 size
, int base_reg_lo
,
721 int base_reg_hi
, int size_reg
)
723 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
724 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
725 writel(size
, adapter
->regs
+ size_reg
);
729 * Enable/disable VLAN acceleration.
731 void t1_vlan_mode(struct adapter
*adapter
, netdev_features_t features
)
733 struct sge
*sge
= adapter
->sge
;
735 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
736 sge
->sge_control
|= F_VLAN_XTRACT
;
738 sge
->sge_control
&= ~F_VLAN_XTRACT
;
739 if (adapter
->open_device_map
) {
740 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
741 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
746 * Programs the various SGE registers. However, the engine is not yet enabled,
747 * but sge->sge_control is setup and ready to go.
749 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
751 struct adapter
*ap
= sge
->adapter
;
753 writel(0, ap
->regs
+ A_SG_CONTROL
);
754 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
755 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
756 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
757 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
758 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
759 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
760 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
761 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
762 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
763 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
765 /* The threshold comparison uses <. */
766 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
768 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
769 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
770 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
772 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
773 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
774 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
775 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
777 #if defined(__BIG_ENDIAN_BITFIELD)
778 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
781 /* Initialize no-resource timer */
782 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
784 t1_sge_set_coalesce_params(sge
, p
);
788 * Return the payload capacity of the jumbo free-list buffers.
790 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
792 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
793 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
794 sizeof(struct cpl_rx_data
);
798 * Frees all SGE related resources and the sge structure itself
800 void t1_sge_destroy(struct sge
*sge
)
804 for_each_port(sge
->adapter
, i
)
805 free_percpu(sge
->port_stats
[i
]);
807 kfree(sge
->tx_sched
);
808 free_tx_resources(sge
);
809 free_rx_resources(sge
);
814 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
815 * context Q) until the Q is full or alloc_skb fails.
817 * It is possible that the generation bits already match, indicating that the
818 * buffer is already valid and nothing needs to be done. This happens when we
819 * copied a received buffer into a new sk_buff during the interrupt processing.
821 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
822 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
825 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
827 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
828 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
829 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
830 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
832 while (q
->credits
< q
->size
) {
836 skb
= dev_alloc_skb(q
->rx_buffer_size
);
840 skb_reserve(skb
, q
->dma_offset
);
841 mapping
= pci_map_single(pdev
, skb
->data
, dma_len
,
843 skb_reserve(skb
, sge
->rx_pkt_pad
);
846 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
847 dma_unmap_len_set(ce
, dma_len
, dma_len
);
848 e
->addr_lo
= (u32
)mapping
;
849 e
->addr_hi
= (u64
)mapping
>> 32;
850 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
852 e
->gen2
= V_CMD_GEN2(q
->genbit
);
856 if (++q
->pidx
== q
->size
) {
867 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
868 * of both rings, we go into 'few interrupt mode' in order to give the system
869 * time to free up resources.
871 static void freelQs_empty(struct sge
*sge
)
873 struct adapter
*adapter
= sge
->adapter
;
874 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
877 refill_free_list(sge
, &sge
->freelQ
[0]);
878 refill_free_list(sge
, &sge
->freelQ
[1]);
880 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
881 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
882 irq_reg
|= F_FL_EXHAUSTED
;
883 irqholdoff_reg
= sge
->fixed_intrtimer
;
885 /* Clear the F_FL_EXHAUSTED interrupts for now */
886 irq_reg
&= ~F_FL_EXHAUSTED
;
887 irqholdoff_reg
= sge
->intrtimer_nres
;
889 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
890 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
892 /* We reenable the Qs to force a freelist GTS interrupt later */
893 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
896 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
897 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
898 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
899 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902 * Disable SGE Interrupts
904 void t1_sge_intr_disable(struct sge
*sge
)
906 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
908 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
909 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
913 * Enable SGE interrupts.
915 void t1_sge_intr_enable(struct sge
*sge
)
917 u32 en
= SGE_INT_ENABLE
;
918 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
920 if (sge
->adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
921 en
&= ~F_PACKET_TOO_BIG
;
922 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
923 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
927 * Clear SGE interrupts.
929 void t1_sge_intr_clear(struct sge
*sge
)
931 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
932 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
936 * SGE 'Error' interrupt handler
938 int t1_sge_intr_error_handler(struct sge
*sge
)
940 struct adapter
*adapter
= sge
->adapter
;
941 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
943 if (adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
944 cause
&= ~F_PACKET_TOO_BIG
;
945 if (cause
& F_RESPQ_EXHAUSTED
)
946 sge
->stats
.respQ_empty
++;
947 if (cause
& F_RESPQ_OVERFLOW
) {
948 sge
->stats
.respQ_overflow
++;
949 pr_alert("%s: SGE response queue overflow\n",
952 if (cause
& F_FL_EXHAUSTED
) {
953 sge
->stats
.freelistQ_empty
++;
956 if (cause
& F_PACKET_TOO_BIG
) {
957 sge
->stats
.pkt_too_big
++;
958 pr_alert("%s: SGE max packet size exceeded\n",
961 if (cause
& F_PACKET_MISMATCH
) {
962 sge
->stats
.pkt_mismatch
++;
963 pr_alert("%s: SGE packet mismatch\n", adapter
->name
);
965 if (cause
& SGE_INT_FATAL
)
966 t1_fatal_err(adapter
);
968 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
972 const struct sge_intr_counts
*t1_sge_get_intr_counts(const struct sge
*sge
)
977 void t1_sge_get_port_stats(const struct sge
*sge
, int port
,
978 struct sge_port_stats
*ss
)
982 memset(ss
, 0, sizeof(*ss
));
983 for_each_possible_cpu(cpu
) {
984 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[port
], cpu
);
986 ss
->rx_cso_good
+= st
->rx_cso_good
;
987 ss
->tx_cso
+= st
->tx_cso
;
988 ss
->tx_tso
+= st
->tx_tso
;
989 ss
->tx_need_hdrroom
+= st
->tx_need_hdrroom
;
990 ss
->vlan_xtract
+= st
->vlan_xtract
;
991 ss
->vlan_insert
+= st
->vlan_insert
;
996 * recycle_fl_buf - recycle a free list buffer
998 * @idx: index of buffer to recycle
1000 * Recycles the specified buffer on the given free list by adding it at
1001 * the next available slot on the list.
1003 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
1005 struct freelQ_e
*from
= &fl
->entries
[idx
];
1006 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
1008 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
1009 to
->addr_lo
= from
->addr_lo
;
1010 to
->addr_hi
= from
->addr_hi
;
1011 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
1013 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
1016 if (++fl
->pidx
== fl
->size
) {
1022 static int copybreak __read_mostly
= 256;
1023 module_param(copybreak
, int, 0);
1024 MODULE_PARM_DESC(copybreak
, "Receive copy threshold");
1027 * get_packet - return the next ingress packet buffer
1028 * @pdev: the PCI device that received the packet
1029 * @fl: the SGE free list holding the packet
1030 * @len: the actual packet length, excluding any SGE padding
1032 * Get the next packet from a free list and complete setup of the
1033 * sk_buff. If the packet is small we make a copy and recycle the
1034 * original buffer, otherwise we use the original buffer itself. If a
1035 * positive drop threshold is supplied packets are dropped and their
1036 * buffers recycled if (a) the number of remaining buffers is under the
1037 * threshold and the packet is too big to copy, or (b) the packet should
1038 * be copied but there is no memory for the copy.
1040 static inline struct sk_buff
*get_packet(struct pci_dev
*pdev
,
1041 struct freelQ
*fl
, unsigned int len
)
1043 struct sk_buff
*skb
;
1044 const struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1046 if (len
< copybreak
) {
1047 skb
= netdev_alloc_skb_ip_align(NULL
, len
);
1052 pci_dma_sync_single_for_cpu(pdev
,
1053 dma_unmap_addr(ce
, dma_addr
),
1054 dma_unmap_len(ce
, dma_len
),
1055 PCI_DMA_FROMDEVICE
);
1056 skb_copy_from_linear_data(ce
->skb
, skb
->data
, len
);
1057 pci_dma_sync_single_for_device(pdev
,
1058 dma_unmap_addr(ce
, dma_addr
),
1059 dma_unmap_len(ce
, dma_len
),
1060 PCI_DMA_FROMDEVICE
);
1061 recycle_fl_buf(fl
, fl
->cidx
);
1066 if (fl
->credits
< 2) {
1067 recycle_fl_buf(fl
, fl
->cidx
);
1071 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
1072 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1074 prefetch(skb
->data
);
1081 * unexpected_offload - handle an unexpected offload packet
1082 * @adapter: the adapter
1083 * @fl: the free list that received the packet
1085 * Called when we receive an unexpected offload packet (e.g., the TOE
1086 * function is disabled or the card is a NIC). Prints a message and
1087 * recycles the buffer.
1089 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
1091 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1092 struct sk_buff
*skb
= ce
->skb
;
1094 pci_dma_sync_single_for_cpu(adapter
->pdev
, dma_unmap_addr(ce
, dma_addr
),
1095 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1096 pr_err("%s: unexpected offload packet, cmd %u\n",
1097 adapter
->name
, *skb
->data
);
1098 recycle_fl_buf(fl
, fl
->cidx
);
1102 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1103 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1104 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1105 * Note that the *_large_page_tx_descs stuff will be optimized out when
1106 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1108 * compute_large_page_descs() computes how many additional descriptors are
1109 * required to break down the stack's request.
1111 static inline unsigned int compute_large_page_tx_descs(struct sk_buff
*skb
)
1113 unsigned int count
= 0;
1115 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1116 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
1117 unsigned int i
, len
= skb_headlen(skb
);
1118 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1120 len
-= SGE_TX_DESC_MAX_PLEN
;
1122 for (i
= 0; nfrags
--; i
++) {
1123 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1124 len
= skb_frag_size(frag
);
1125 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1127 len
-= SGE_TX_DESC_MAX_PLEN
;
1135 * Write a cmdQ entry.
1137 * Since this function writes the 'flags' field, it must not be used to
1138 * write the first cmdQ entry.
1140 static inline void write_tx_desc(struct cmdQ_e
*e
, dma_addr_t mapping
,
1141 unsigned int len
, unsigned int gen
,
1144 BUG_ON(len
> SGE_TX_DESC_MAX_PLEN
);
1146 e
->addr_lo
= (u32
)mapping
;
1147 e
->addr_hi
= (u64
)mapping
>> 32;
1148 e
->len_gen
= V_CMD_LEN(len
) | V_CMD_GEN1(gen
);
1149 e
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(eop
) | V_CMD_GEN2(gen
);
1153 * See comment for previous function.
1155 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1156 * *desc_len exceeds HW's capability.
1158 static inline unsigned int write_large_page_tx_descs(unsigned int pidx
,
1160 struct cmdQ_ce
**ce
,
1162 dma_addr_t
*desc_mapping
,
1163 unsigned int *desc_len
,
1164 unsigned int nfrags
,
1167 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1168 struct cmdQ_e
*e1
= *e
;
1169 struct cmdQ_ce
*ce1
= *ce
;
1171 while (*desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1172 *desc_len
-= SGE_TX_DESC_MAX_PLEN
;
1173 write_tx_desc(e1
, *desc_mapping
, SGE_TX_DESC_MAX_PLEN
,
1174 *gen
, nfrags
== 0 && *desc_len
== 0);
1176 dma_unmap_len_set(ce1
, dma_len
, 0);
1177 *desc_mapping
+= SGE_TX_DESC_MAX_PLEN
;
1181 if (++pidx
== q
->size
) {
1196 * Write the command descriptors to transmit the given skb starting at
1197 * descriptor pidx with the given generation.
1199 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
1200 unsigned int pidx
, unsigned int gen
,
1203 dma_addr_t mapping
, desc_mapping
;
1204 struct cmdQ_e
*e
, *e1
;
1206 unsigned int i
, flags
, first_desc_len
, desc_len
,
1207 nfrags
= skb_shinfo(skb
)->nr_frags
;
1209 e
= e1
= &q
->entries
[pidx
];
1210 ce
= &q
->centries
[pidx
];
1212 mapping
= pci_map_single(adapter
->pdev
, skb
->data
,
1213 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1215 desc_mapping
= mapping
;
1216 desc_len
= skb_headlen(skb
);
1218 flags
= F_CMD_DATAVALID
| F_CMD_SOP
|
1219 V_CMD_EOP(nfrags
== 0 && desc_len
<= SGE_TX_DESC_MAX_PLEN
) |
1221 first_desc_len
= (desc_len
<= SGE_TX_DESC_MAX_PLEN
) ?
1222 desc_len
: SGE_TX_DESC_MAX_PLEN
;
1223 e
->addr_lo
= (u32
)desc_mapping
;
1224 e
->addr_hi
= (u64
)desc_mapping
>> 32;
1225 e
->len_gen
= V_CMD_LEN(first_desc_len
) | V_CMD_GEN1(gen
);
1227 dma_unmap_len_set(ce
, dma_len
, 0);
1229 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
&&
1230 desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1231 desc_mapping
+= first_desc_len
;
1232 desc_len
-= first_desc_len
;
1235 if (++pidx
== q
->size
) {
1241 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1242 &desc_mapping
, &desc_len
,
1245 if (likely(desc_len
))
1246 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1251 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1252 dma_unmap_len_set(ce
, dma_len
, skb_headlen(skb
));
1254 for (i
= 0; nfrags
--; i
++) {
1255 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1258 if (++pidx
== q
->size
) {
1265 mapping
= skb_frag_dma_map(&adapter
->pdev
->dev
, frag
, 0,
1266 skb_frag_size(frag
), DMA_TO_DEVICE
);
1267 desc_mapping
= mapping
;
1268 desc_len
= skb_frag_size(frag
);
1270 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1271 &desc_mapping
, &desc_len
,
1273 if (likely(desc_len
))
1274 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1277 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1278 dma_unmap_len_set(ce
, dma_len
, skb_frag_size(frag
));
1286 * Clean up completed Tx buffers.
1288 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
1290 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1293 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1294 q
->processed
, q
->cleaned
);
1295 free_cmdQ_buffers(sge
, q
, reclaim
);
1296 q
->cleaned
+= reclaim
;
1301 * Called from tasklet. Checks the scheduler for any
1302 * pending skbs that can be sent.
1304 static void restart_sched(unsigned long arg
)
1306 struct sge
*sge
= (struct sge
*) arg
;
1307 struct adapter
*adapter
= sge
->adapter
;
1308 struct cmdQ
*q
= &sge
->cmdQ
[0];
1309 struct sk_buff
*skb
;
1310 unsigned int credits
, queued_skb
= 0;
1312 spin_lock(&q
->lock
);
1313 reclaim_completed_tx(sge
, q
);
1315 credits
= q
->size
- q
->in_use
;
1316 pr_debug("restart_sched credits=%d\n", credits
);
1317 while ((skb
= sched_skb(sge
, NULL
, credits
)) != NULL
) {
1318 unsigned int genbit
, pidx
, count
;
1319 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1320 count
+= compute_large_page_tx_descs(skb
);
1325 if (q
->pidx
>= q
->size
) {
1329 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1330 credits
= q
->size
- q
->in_use
;
1335 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1336 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1337 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1338 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1341 spin_unlock(&q
->lock
);
1345 * sge_rx - process an ingress ethernet packet
1346 * @sge: the sge structure
1347 * @fl: the free list that contains the packet buffer
1348 * @len: the packet length
1350 * Process an ingress ethernet pakcet and deliver it to the stack.
1352 static void sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
1354 struct sk_buff
*skb
;
1355 const struct cpl_rx_pkt
*p
;
1356 struct adapter
*adapter
= sge
->adapter
;
1357 struct sge_port_stats
*st
;
1358 struct net_device
*dev
;
1360 skb
= get_packet(adapter
->pdev
, fl
, len
- sge
->rx_pkt_pad
);
1361 if (unlikely(!skb
)) {
1362 sge
->stats
.rx_drops
++;
1366 p
= (const struct cpl_rx_pkt
*) skb
->data
;
1367 if (p
->iff
>= adapter
->params
.nports
) {
1371 __skb_pull(skb
, sizeof(*p
));
1373 st
= this_cpu_ptr(sge
->port_stats
[p
->iff
]);
1374 dev
= adapter
->port
[p
->iff
].dev
;
1376 skb
->protocol
= eth_type_trans(skb
, dev
);
1377 if ((dev
->features
& NETIF_F_RXCSUM
) && p
->csum
== 0xffff &&
1378 skb
->protocol
== htons(ETH_P_IP
) &&
1379 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
1381 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1383 skb_checksum_none_assert(skb
);
1385 if (p
->vlan_valid
) {
1387 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(p
->vlan
));
1389 netif_receive_skb(skb
);
1393 * Returns true if a command queue has enough available descriptors that
1394 * we can resume Tx operation after temporarily disabling its packet queue.
1396 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1398 unsigned int r
= q
->processed
- q
->cleaned
;
1400 return q
->in_use
- r
< (q
->size
>> 1);
1404 * Called when sufficient space has become available in the SGE command queues
1405 * after the Tx packet schedulers have been suspended to restart the Tx path.
1407 static void restart_tx_queues(struct sge
*sge
)
1409 struct adapter
*adap
= sge
->adapter
;
1412 if (!enough_free_Tx_descs(&sge
->cmdQ
[0]))
1415 for_each_port(adap
, i
) {
1416 struct net_device
*nd
= adap
->port
[i
].dev
;
1418 if (test_and_clear_bit(nd
->if_port
, &sge
->stopped_tx_queues
) &&
1419 netif_running(nd
)) {
1420 sge
->stats
.cmdQ_restarted
[2]++;
1421 netif_wake_queue(nd
);
1427 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1430 static unsigned int update_tx_info(struct adapter
*adapter
,
1434 struct sge
*sge
= adapter
->sge
;
1435 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1437 cmdq
->processed
+= pr0
;
1438 if (flags
& (F_FL0_ENABLE
| F_FL1_ENABLE
)) {
1440 flags
&= ~(F_FL0_ENABLE
| F_FL1_ENABLE
);
1442 if (flags
& F_CMDQ0_ENABLE
) {
1443 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1445 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1446 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1447 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1448 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1451 tasklet_hi_schedule(&sge
->tx_sched
->sched_tsk
);
1453 flags
&= ~F_CMDQ0_ENABLE
;
1456 if (unlikely(sge
->stopped_tx_queues
!= 0))
1457 restart_tx_queues(sge
);
1463 * Process SGE responses, up to the supplied budget. Returns the number of
1464 * responses processed. A negative budget is effectively unlimited.
1466 static int process_responses(struct adapter
*adapter
, int budget
)
1468 struct sge
*sge
= adapter
->sge
;
1469 struct respQ
*q
= &sge
->respQ
;
1470 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1472 unsigned int flags
= 0;
1473 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1475 while (done
< budget
&& e
->GenerationBit
== q
->genbit
) {
1476 flags
|= e
->Qsleeping
;
1478 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1479 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1481 /* We batch updates to the TX side to avoid cacheline
1482 * ping-pong of TX state information on MP where the sender
1483 * might run on a different CPU than this function...
1485 if (unlikely((flags
& F_CMDQ0_ENABLE
) || cmdq_processed
[0] > 64)) {
1486 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1487 cmdq_processed
[0] = 0;
1490 if (unlikely(cmdq_processed
[1] > 16)) {
1491 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1492 cmdq_processed
[1] = 0;
1495 if (likely(e
->DataValid
)) {
1496 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1498 BUG_ON(!e
->Sop
|| !e
->Eop
);
1499 if (unlikely(e
->Offload
))
1500 unexpected_offload(adapter
, fl
);
1502 sge_rx(sge
, fl
, e
->BufferLength
);
1507 * Note: this depends on each packet consuming a
1508 * single free-list buffer; cf. the BUG above.
1510 if (++fl
->cidx
== fl
->size
)
1512 prefetch(fl
->centries
[fl
->cidx
].skb
);
1514 if (unlikely(--fl
->credits
<
1515 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1516 refill_free_list(sge
, fl
);
1518 sge
->stats
.pure_rsps
++;
1521 if (unlikely(++q
->cidx
== q
->size
)) {
1528 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1529 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1534 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1535 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1540 static inline int responses_pending(const struct adapter
*adapter
)
1542 const struct respQ
*Q
= &adapter
->sge
->respQ
;
1543 const struct respQ_e
*e
= &Q
->entries
[Q
->cidx
];
1545 return e
->GenerationBit
== Q
->genbit
;
1549 * A simpler version of process_responses() that handles only pure (i.e.,
1550 * non data-carrying) responses. Such respones are too light-weight to justify
1551 * calling a softirq when using NAPI, so we handle them specially in hard
1552 * interrupt context. The function is called with a pointer to a response,
1553 * which the caller must ensure is a valid pure response. Returns 1 if it
1554 * encounters a valid data-carrying response, 0 otherwise.
1556 static int process_pure_responses(struct adapter
*adapter
)
1558 struct sge
*sge
= adapter
->sge
;
1559 struct respQ
*q
= &sge
->respQ
;
1560 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1561 const struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1562 unsigned int flags
= 0;
1563 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1565 prefetch(fl
->centries
[fl
->cidx
].skb
);
1570 flags
|= e
->Qsleeping
;
1572 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1573 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1576 if (unlikely(++q
->cidx
== q
->size
)) {
1583 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1584 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1587 sge
->stats
.pure_rsps
++;
1588 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1590 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1591 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1593 return e
->GenerationBit
== q
->genbit
;
1597 * Handler for new data events when using NAPI. This does not need any locking
1598 * or protection from interrupts as data interrupts are off at this point and
1599 * other adapter interrupts do not interfere.
1601 int t1_poll(struct napi_struct
*napi
, int budget
)
1603 struct adapter
*adapter
= container_of(napi
, struct adapter
, napi
);
1604 int work_done
= process_responses(adapter
, budget
);
1606 if (likely(work_done
< budget
)) {
1607 napi_complete(napi
);
1608 writel(adapter
->sge
->respQ
.cidx
,
1609 adapter
->regs
+ A_SG_SLEEPING
);
1614 irqreturn_t
t1_interrupt(int irq
, void *data
)
1616 struct adapter
*adapter
= data
;
1617 struct sge
*sge
= adapter
->sge
;
1620 if (likely(responses_pending(adapter
))) {
1621 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1623 if (napi_schedule_prep(&adapter
->napi
)) {
1624 if (process_pure_responses(adapter
))
1625 __napi_schedule(&adapter
->napi
);
1627 /* no data, no NAPI needed */
1628 writel(sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1629 /* undo schedule_prep */
1630 napi_enable(&adapter
->napi
);
1636 spin_lock(&adapter
->async_lock
);
1637 handled
= t1_slow_intr_handler(adapter
);
1638 spin_unlock(&adapter
->async_lock
);
1641 sge
->stats
.unhandled_irqs
++;
1643 return IRQ_RETVAL(handled
!= 0);
1647 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1649 * The code figures out how many entries the sk_buff will require in the
1650 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1651 * has complete. Then, it doesn't access the global structure anymore, but
1652 * uses the corresponding fields on the stack. In conjunction with a spinlock
1653 * around that code, we can make the function reentrant without holding the
1654 * lock when we actually enqueue (which might be expensive, especially on
1655 * architectures with IO MMUs).
1657 * This runs with softirqs disabled.
1659 static int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1660 unsigned int qid
, struct net_device
*dev
)
1662 struct sge
*sge
= adapter
->sge
;
1663 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1664 unsigned int credits
, pidx
, genbit
, count
, use_sched_skb
= 0;
1666 if (!spin_trylock(&q
->lock
))
1667 return NETDEV_TX_LOCKED
;
1669 reclaim_completed_tx(sge
, q
);
1672 credits
= q
->size
- q
->in_use
;
1673 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1674 count
+= compute_large_page_tx_descs(skb
);
1676 /* Ethernet packet */
1677 if (unlikely(credits
< count
)) {
1678 if (!netif_queue_stopped(dev
)) {
1679 netif_stop_queue(dev
);
1680 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1681 sge
->stats
.cmdQ_full
[2]++;
1682 pr_err("%s: Tx ring full while queue awake!\n",
1685 spin_unlock(&q
->lock
);
1686 return NETDEV_TX_BUSY
;
1689 if (unlikely(credits
- count
< q
->stop_thres
)) {
1690 netif_stop_queue(dev
);
1691 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1692 sge
->stats
.cmdQ_full
[2]++;
1695 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1696 * through the scheduler.
1698 if (sge
->tx_sched
&& !qid
&& skb
->dev
) {
1701 /* Note that the scheduler might return a different skb than
1702 * the one passed in.
1704 skb
= sched_skb(sge
, skb
, credits
);
1706 spin_unlock(&q
->lock
);
1707 return NETDEV_TX_OK
;
1710 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1711 count
+= compute_large_page_tx_descs(skb
);
1718 if (q
->pidx
>= q
->size
) {
1722 spin_unlock(&q
->lock
);
1724 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1727 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1728 * the doorbell if the Q is asleep. There is a natural race, where
1729 * the hardware is going to sleep just after we checked, however,
1730 * then the interrupt handler will detect the outstanding TX packet
1731 * and ring the doorbell for us.
1734 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1736 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1737 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1738 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1739 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1743 if (use_sched_skb
) {
1744 if (spin_trylock(&q
->lock
)) {
1745 credits
= q
->size
- q
->in_use
;
1750 return NETDEV_TX_OK
;
1753 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1756 * eth_hdr_len - return the length of an Ethernet header
1757 * @data: pointer to the start of the Ethernet header
1759 * Returns the length of an Ethernet header, including optional VLAN tag.
1761 static inline int eth_hdr_len(const void *data
)
1763 const struct ethhdr
*e
= data
;
1765 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1769 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1771 netdev_tx_t
t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1773 struct adapter
*adapter
= dev
->ml_priv
;
1774 struct sge
*sge
= adapter
->sge
;
1775 struct sge_port_stats
*st
= this_cpu_ptr(sge
->port_stats
[dev
->if_port
]);
1776 struct cpl_tx_pkt
*cpl
;
1777 struct sk_buff
*orig_skb
= skb
;
1780 if (skb
->protocol
== htons(ETH_P_CPL5
))
1784 * We are using a non-standard hard_header_len.
1785 * Allocate more header room in the rare cases it is not big enough.
1787 if (unlikely(skb_headroom(skb
) < dev
->hard_header_len
- ETH_HLEN
)) {
1788 skb
= skb_realloc_headroom(skb
, sizeof(struct cpl_tx_pkt_lso
));
1789 ++st
->tx_need_hdrroom
;
1790 dev_kfree_skb_any(orig_skb
);
1792 return NETDEV_TX_OK
;
1795 if (skb_shinfo(skb
)->gso_size
) {
1797 struct cpl_tx_pkt_lso
*hdr
;
1801 eth_type
= skb_network_offset(skb
) == ETH_HLEN
?
1802 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1804 hdr
= (struct cpl_tx_pkt_lso
*)skb_push(skb
, sizeof(*hdr
));
1805 hdr
->opcode
= CPL_TX_PKT_LSO
;
1806 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1807 hdr
->ip_hdr_words
= ip_hdr(skb
)->ihl
;
1808 hdr
->tcp_hdr_words
= tcp_hdr(skb
)->doff
;
1809 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1810 skb_shinfo(skb
)->gso_size
));
1811 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1812 cpl
= (struct cpl_tx_pkt
*)hdr
;
1815 * Packets shorter than ETH_HLEN can break the MAC, drop them
1816 * early. Also, we may get oversized packets because some
1817 * parts of the kernel don't handle our unusual hard_header_len
1818 * right, drop those too.
1820 if (unlikely(skb
->len
< ETH_HLEN
||
1821 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1822 netdev_dbg(dev
, "packet size %d hdr %d mtu%d\n",
1823 skb
->len
, eth_hdr_len(skb
->data
), dev
->mtu
);
1824 dev_kfree_skb_any(skb
);
1825 return NETDEV_TX_OK
;
1828 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
1829 ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1830 if (unlikely(skb_checksum_help(skb
))) {
1831 netdev_dbg(dev
, "unable to do udp checksum\n");
1832 dev_kfree_skb_any(skb
);
1833 return NETDEV_TX_OK
;
1837 /* Hmmm, assuming to catch the gratious arp... and we'll use
1838 * it to flush out stuck espi packets...
1840 if ((unlikely(!adapter
->sge
->espibug_skb
[dev
->if_port
]))) {
1841 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1842 arp_hdr(skb
)->ar_op
== htons(ARPOP_REQUEST
)) {
1843 adapter
->sge
->espibug_skb
[dev
->if_port
] = skb
;
1844 /* We want to re-use this skb later. We
1845 * simply bump the reference count and it
1846 * will not be freed...
1852 cpl
= (struct cpl_tx_pkt
*)__skb_push(skb
, sizeof(*cpl
));
1853 cpl
->opcode
= CPL_TX_PKT
;
1854 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1855 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_PARTIAL
? 0 : 1;
1856 /* the length field isn't used so don't bother setting it */
1858 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1860 cpl
->iff
= dev
->if_port
;
1862 if (vlan_tx_tag_present(skb
)) {
1863 cpl
->vlan_valid
= 1;
1864 cpl
->vlan
= htons(vlan_tx_tag_get(skb
));
1867 cpl
->vlan_valid
= 0;
1870 ret
= t1_sge_tx(skb
, adapter
, 0, dev
);
1872 /* If transmit busy, and we reallocated skb's due to headroom limit,
1873 * then silently discard to avoid leak.
1875 if (unlikely(ret
!= NETDEV_TX_OK
&& skb
!= orig_skb
)) {
1876 dev_kfree_skb_any(skb
);
1883 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1885 static void sge_tx_reclaim_cb(unsigned long data
)
1888 struct sge
*sge
= (struct sge
*)data
;
1890 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
1891 struct cmdQ
*q
= &sge
->cmdQ
[i
];
1893 if (!spin_trylock(&q
->lock
))
1896 reclaim_completed_tx(sge
, q
);
1897 if (i
== 0 && q
->in_use
) { /* flush pending credits */
1898 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
1900 spin_unlock(&q
->lock
);
1902 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1906 * Propagate changes of the SGE coalescing parameters to the HW.
1908 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
1910 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
1911 core_ticks_per_usec(sge
->adapter
);
1912 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
1917 * Allocates both RX and TX resources and configures the SGE. However,
1918 * the hardware is not enabled yet.
1920 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
1922 if (alloc_rx_resources(sge
, p
))
1924 if (alloc_tx_resources(sge
, p
)) {
1925 free_rx_resources(sge
);
1928 configure_sge(sge
, p
);
1931 * Now that we have sized the free lists calculate the payload
1932 * capacity of the large buffers. Other parts of the driver use
1933 * this to set the max offload coalescing size so that RX packets
1934 * do not overflow our large buffers.
1936 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
1941 * Disables the DMA engine.
1943 void t1_sge_stop(struct sge
*sge
)
1946 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
1947 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1949 if (is_T2(sge
->adapter
))
1950 del_timer_sync(&sge
->espibug_timer
);
1952 del_timer_sync(&sge
->tx_reclaim_timer
);
1956 for (i
= 0; i
< MAX_NPORTS
; i
++)
1957 kfree_skb(sge
->espibug_skb
[i
]);
1961 * Enables the DMA engine.
1963 void t1_sge_start(struct sge
*sge
)
1965 refill_free_list(sge
, &sge
->freelQ
[0]);
1966 refill_free_list(sge
, &sge
->freelQ
[1]);
1968 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
1969 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
1970 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1972 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1974 if (is_T2(sge
->adapter
))
1975 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1979 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1981 static void espibug_workaround_t204(unsigned long data
)
1983 struct adapter
*adapter
= (struct adapter
*)data
;
1984 struct sge
*sge
= adapter
->sge
;
1985 unsigned int nports
= adapter
->params
.nports
;
1986 u32 seop
[MAX_NPORTS
];
1988 if (adapter
->open_device_map
& PORT_MASK
) {
1991 if (t1_espi_get_mon_t204(adapter
, &(seop
[0]), 0) < 0)
1994 for (i
= 0; i
< nports
; i
++) {
1995 struct sk_buff
*skb
= sge
->espibug_skb
[i
];
1997 if (!netif_running(adapter
->port
[i
].dev
) ||
1998 netif_queue_stopped(adapter
->port
[i
].dev
) ||
1999 !seop
[i
] || ((seop
[i
] & 0xfff) != 0) || !skb
)
2003 skb_copy_to_linear_data_offset(skb
,
2004 sizeof(struct cpl_tx_pkt
),
2007 skb_copy_to_linear_data_offset(skb
,
2014 /* bump the reference count to avoid freeing of
2015 * the skb once the DMA has completed.
2018 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[i
].dev
);
2021 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2024 static void espibug_workaround(unsigned long data
)
2026 struct adapter
*adapter
= (struct adapter
*)data
;
2027 struct sge
*sge
= adapter
->sge
;
2029 if (netif_running(adapter
->port
[0].dev
)) {
2030 struct sk_buff
*skb
= sge
->espibug_skb
[0];
2031 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
2033 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
2035 skb_copy_to_linear_data_offset(skb
,
2036 sizeof(struct cpl_tx_pkt
),
2039 skb_copy_to_linear_data_offset(skb
,
2046 /* bump the reference count to avoid freeing of the
2047 * skb once the DMA has completed.
2050 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
2053 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2057 * Creates a t1_sge structure and returns suggested resource parameters.
2059 struct sge
*t1_sge_create(struct adapter
*adapter
, struct sge_params
*p
)
2061 struct sge
*sge
= kzalloc(sizeof(*sge
), GFP_KERNEL
);
2067 sge
->adapter
= adapter
;
2068 sge
->netdev
= adapter
->port
[0].dev
;
2069 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
2070 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
2072 for_each_port(adapter
, i
) {
2073 sge
->port_stats
[i
] = alloc_percpu(struct sge_port_stats
);
2074 if (!sge
->port_stats
[i
])
2078 init_timer(&sge
->tx_reclaim_timer
);
2079 sge
->tx_reclaim_timer
.data
= (unsigned long)sge
;
2080 sge
->tx_reclaim_timer
.function
= sge_tx_reclaim_cb
;
2082 if (is_T2(sge
->adapter
)) {
2083 init_timer(&sge
->espibug_timer
);
2085 if (adapter
->params
.nports
> 1) {
2087 sge
->espibug_timer
.function
= espibug_workaround_t204
;
2089 sge
->espibug_timer
.function
= espibug_workaround
;
2090 sge
->espibug_timer
.data
= (unsigned long)sge
->adapter
;
2092 sge
->espibug_timeout
= 1;
2093 /* for T204, every 10ms */
2094 if (adapter
->params
.nports
> 1)
2095 sge
->espibug_timeout
= HZ
/100;
2099 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
2100 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
2101 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
2102 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
2103 if (sge
->tx_sched
) {
2104 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
)
2105 p
->rx_coalesce_usecs
= 15;
2107 p
->rx_coalesce_usecs
= 50;
2109 p
->rx_coalesce_usecs
= 50;
2111 p
->coalesce_enable
= 0;
2112 p
->sample_interval_usecs
= 0;
2117 free_percpu(sge
->port_stats
[i
]);