2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/delay.h>
40 static int t4_fw_upgrade(struct adapter
*adap
, unsigned int mbox
,
41 const u8
*fw_data
, unsigned int size
, int force
);
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
57 static int t4_wait_op_done_val(struct adapter
*adapter
, int reg
, u32 mask
,
58 int polarity
, int attempts
, int delay
, u32
*valp
)
61 u32 val
= t4_read_reg(adapter
, reg
);
63 if (!!(val
& mask
) == polarity
) {
75 static inline int t4_wait_op_done(struct adapter
*adapter
, int reg
, u32 mask
,
76 int polarity
, int attempts
, int delay
)
78 return t4_wait_op_done_val(adapter
, reg
, mask
, polarity
, attempts
,
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
89 * Sets a register field specified by the supplied mask to the
92 void t4_set_reg_field(struct adapter
*adapter
, unsigned int addr
, u32 mask
,
95 u32 v
= t4_read_reg(adapter
, addr
) & ~mask
;
97 t4_write_reg(adapter
, addr
, v
| val
);
98 (void) t4_read_reg(adapter
, addr
); /* flush */
102 * t4_read_indirect - read indirectly addressed registers
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
110 * Reads registers that are accessed indirectly through an address/data
113 void t4_read_indirect(struct adapter
*adap
, unsigned int addr_reg
,
114 unsigned int data_reg
, u32
*vals
,
115 unsigned int nregs
, unsigned int start_idx
)
118 t4_write_reg(adap
, addr_reg
, start_idx
);
119 *vals
++ = t4_read_reg(adap
, data_reg
);
125 * t4_write_indirect - write indirectly addressed registers
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
136 void t4_write_indirect(struct adapter
*adap
, unsigned int addr_reg
,
137 unsigned int data_reg
, const u32
*vals
,
138 unsigned int nregs
, unsigned int start_idx
)
141 t4_write_reg(adap
, addr_reg
, start_idx
++);
142 t4_write_reg(adap
, data_reg
, *vals
++);
147 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
149 static void get_mbox_rpl(struct adapter
*adap
, __be64
*rpl
, int nflit
,
152 for ( ; nflit
; nflit
--, mbox_addr
+= 8)
153 *rpl
++ = cpu_to_be64(t4_read_reg64(adap
, mbox_addr
));
157 * Handle a FW assertion reported in a mailbox.
159 static void fw_asrt(struct adapter
*adap
, u32 mbox_addr
)
161 struct fw_debug_cmd asrt
;
163 get_mbox_rpl(adap
, (__be64
*)&asrt
, sizeof(asrt
) / 8, mbox_addr
);
164 dev_alert(adap
->pdev_dev
,
165 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
166 asrt
.u
.assert.filename_0_7
, ntohl(asrt
.u
.assert.line
),
167 ntohl(asrt
.u
.assert.x
), ntohl(asrt
.u
.assert.y
));
170 static void dump_mbox(struct adapter
*adap
, int mbox
, u32 data_reg
)
172 dev_err(adap
->pdev_dev
,
173 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox
,
174 (unsigned long long)t4_read_reg64(adap
, data_reg
),
175 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 8),
176 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 16),
177 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 24),
178 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 32),
179 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 40),
180 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 48),
181 (unsigned long long)t4_read_reg64(adap
, data_reg
+ 56));
185 * t4_wr_mbox_meat - send a command to FW through the given mailbox
187 * @mbox: index of the mailbox to use
188 * @cmd: the command to write
189 * @size: command length in bytes
190 * @rpl: where to optionally store the reply
191 * @sleep_ok: if true we may sleep while awaiting command completion
193 * Sends the given command to FW through the selected mailbox and waits
194 * for the FW to execute the command. If @rpl is not %NULL it is used to
195 * store the FW's reply to the command. The command and its optional
196 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
197 * to respond. @sleep_ok determines whether we may sleep while awaiting
198 * the response. If sleeping is allowed we use progressive backoff
201 * The return value is 0 on success or a negative errno on failure. A
202 * failure can happen either because we are not able to execute the
203 * command or FW executes it but signals an error. In the latter case
204 * the return value is the error code indicated by FW (negated).
206 int t4_wr_mbox_meat(struct adapter
*adap
, int mbox
, const void *cmd
, int size
,
207 void *rpl
, bool sleep_ok
)
209 static const int delay
[] = {
210 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
215 int i
, ms
, delay_idx
;
216 const __be64
*p
= cmd
;
217 u32 data_reg
= PF_REG(mbox
, CIM_PF_MAILBOX_DATA
);
218 u32 ctl_reg
= PF_REG(mbox
, CIM_PF_MAILBOX_CTRL
);
220 if ((size
& 15) || size
> MBOX_LEN
)
224 * If the device is off-line, as in EEH, commands will time out.
225 * Fail them early so we don't waste time waiting.
227 if (adap
->pdev
->error_state
!= pci_channel_io_normal
)
230 v
= MBOWNER_GET(t4_read_reg(adap
, ctl_reg
));
231 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
232 v
= MBOWNER_GET(t4_read_reg(adap
, ctl_reg
));
234 if (v
!= MBOX_OWNER_DRV
)
235 return v
? -EBUSY
: -ETIMEDOUT
;
237 for (i
= 0; i
< size
; i
+= 8)
238 t4_write_reg64(adap
, data_reg
+ i
, be64_to_cpu(*p
++));
240 t4_write_reg(adap
, ctl_reg
, MBMSGVALID
| MBOWNER(MBOX_OWNER_FW
));
241 t4_read_reg(adap
, ctl_reg
); /* flush write */
246 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
248 ms
= delay
[delay_idx
]; /* last element may repeat */
249 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
255 v
= t4_read_reg(adap
, ctl_reg
);
256 if (MBOWNER_GET(v
) == MBOX_OWNER_DRV
) {
257 if (!(v
& MBMSGVALID
)) {
258 t4_write_reg(adap
, ctl_reg
, 0);
262 res
= t4_read_reg64(adap
, data_reg
);
263 if (FW_CMD_OP_GET(res
>> 32) == FW_DEBUG_CMD
) {
264 fw_asrt(adap
, data_reg
);
265 res
= FW_CMD_RETVAL(EIO
);
267 get_mbox_rpl(adap
, rpl
, size
/ 8, data_reg
);
269 if (FW_CMD_RETVAL_GET((int)res
))
270 dump_mbox(adap
, mbox
, data_reg
);
271 t4_write_reg(adap
, ctl_reg
, 0);
272 return -FW_CMD_RETVAL_GET((int)res
);
276 dump_mbox(adap
, mbox
, data_reg
);
277 dev_err(adap
->pdev_dev
, "command %#x in mailbox %d timed out\n",
278 *(const u8
*)cmd
, mbox
);
283 * t4_mc_read - read from MC through backdoor accesses
285 * @addr: address of first byte requested
286 * @idx: which MC to access
287 * @data: 64 bytes of data containing the requested address
288 * @ecc: where to store the corresponding 64-bit ECC word
290 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
291 * that covers the requested address @addr. If @parity is not %NULL it
292 * is assigned the 64-bit ECC word for the read data.
294 int t4_mc_read(struct adapter
*adap
, int idx
, u32 addr
, __be32
*data
, u64
*ecc
)
297 u32 mc_bist_cmd
, mc_bist_cmd_addr
, mc_bist_cmd_len
;
298 u32 mc_bist_status_rdata
, mc_bist_data_pattern
;
300 if (is_t4(adap
->params
.chip
)) {
301 mc_bist_cmd
= MC_BIST_CMD
;
302 mc_bist_cmd_addr
= MC_BIST_CMD_ADDR
;
303 mc_bist_cmd_len
= MC_BIST_CMD_LEN
;
304 mc_bist_status_rdata
= MC_BIST_STATUS_RDATA
;
305 mc_bist_data_pattern
= MC_BIST_DATA_PATTERN
;
307 mc_bist_cmd
= MC_REG(MC_P_BIST_CMD
, idx
);
308 mc_bist_cmd_addr
= MC_REG(MC_P_BIST_CMD_ADDR
, idx
);
309 mc_bist_cmd_len
= MC_REG(MC_P_BIST_CMD_LEN
, idx
);
310 mc_bist_status_rdata
= MC_REG(MC_P_BIST_STATUS_RDATA
, idx
);
311 mc_bist_data_pattern
= MC_REG(MC_P_BIST_DATA_PATTERN
, idx
);
314 if (t4_read_reg(adap
, mc_bist_cmd
) & START_BIST
)
316 t4_write_reg(adap
, mc_bist_cmd_addr
, addr
& ~0x3fU
);
317 t4_write_reg(adap
, mc_bist_cmd_len
, 64);
318 t4_write_reg(adap
, mc_bist_data_pattern
, 0xc);
319 t4_write_reg(adap
, mc_bist_cmd
, BIST_OPCODE(1) | START_BIST
|
321 i
= t4_wait_op_done(adap
, mc_bist_cmd
, START_BIST
, 0, 10, 1);
325 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
327 for (i
= 15; i
>= 0; i
--)
328 *data
++ = htonl(t4_read_reg(adap
, MC_DATA(i
)));
330 *ecc
= t4_read_reg64(adap
, MC_DATA(16));
336 * t4_edc_read - read from EDC through backdoor accesses
338 * @idx: which EDC to access
339 * @addr: address of first byte requested
340 * @data: 64 bytes of data containing the requested address
341 * @ecc: where to store the corresponding 64-bit ECC word
343 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
344 * that covers the requested address @addr. If @parity is not %NULL it
345 * is assigned the 64-bit ECC word for the read data.
347 int t4_edc_read(struct adapter
*adap
, int idx
, u32 addr
, __be32
*data
, u64
*ecc
)
350 u32 edc_bist_cmd
, edc_bist_cmd_addr
, edc_bist_cmd_len
;
351 u32 edc_bist_cmd_data_pattern
, edc_bist_status_rdata
;
353 if (is_t4(adap
->params
.chip
)) {
354 edc_bist_cmd
= EDC_REG(EDC_BIST_CMD
, idx
);
355 edc_bist_cmd_addr
= EDC_REG(EDC_BIST_CMD_ADDR
, idx
);
356 edc_bist_cmd_len
= EDC_REG(EDC_BIST_CMD_LEN
, idx
);
357 edc_bist_cmd_data_pattern
= EDC_REG(EDC_BIST_DATA_PATTERN
,
359 edc_bist_status_rdata
= EDC_REG(EDC_BIST_STATUS_RDATA
,
362 edc_bist_cmd
= EDC_REG_T5(EDC_H_BIST_CMD
, idx
);
363 edc_bist_cmd_addr
= EDC_REG_T5(EDC_H_BIST_CMD_ADDR
, idx
);
364 edc_bist_cmd_len
= EDC_REG_T5(EDC_H_BIST_CMD_LEN
, idx
);
365 edc_bist_cmd_data_pattern
=
366 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN
, idx
);
367 edc_bist_status_rdata
=
368 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA
, idx
);
371 if (t4_read_reg(adap
, edc_bist_cmd
) & START_BIST
)
373 t4_write_reg(adap
, edc_bist_cmd_addr
, addr
& ~0x3fU
);
374 t4_write_reg(adap
, edc_bist_cmd_len
, 64);
375 t4_write_reg(adap
, edc_bist_cmd_data_pattern
, 0xc);
376 t4_write_reg(adap
, edc_bist_cmd
,
377 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST
);
378 i
= t4_wait_op_done(adap
, edc_bist_cmd
, START_BIST
, 0, 10, 1);
382 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
384 for (i
= 15; i
>= 0; i
--)
385 *data
++ = htonl(t4_read_reg(adap
, EDC_DATA(i
)));
387 *ecc
= t4_read_reg64(adap
, EDC_DATA(16));
393 * t4_mem_win_rw - read/write memory through PCIE memory window
395 * @addr: address of first byte requested
396 * @data: MEMWIN0_APERTURE bytes of data containing the requested address
397 * @dir: direction of transfer 1 => read, 0 => write
399 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
400 * MEMWIN0_APERTURE-byte-aligned address that covers the requested
403 static int t4_mem_win_rw(struct adapter
*adap
, u32 addr
, __be32
*data
, int dir
)
406 u32 win_pf
= is_t4(adap
->params
.chip
) ? 0 : V_PFNUM(adap
->fn
);
409 * Setup offset into PCIE memory window. Address must be a
410 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
411 * ensure that changes propagate before we attempt to use the new
414 t4_write_reg(adap
, PCIE_MEM_ACCESS_OFFSET
,
415 (addr
& ~(MEMWIN0_APERTURE
- 1)) | win_pf
);
416 t4_read_reg(adap
, PCIE_MEM_ACCESS_OFFSET
);
418 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
419 for (i
= 0; i
< MEMWIN0_APERTURE
; i
= i
+0x4) {
421 *data
++ = (__force __be32
) t4_read_reg(adap
,
424 t4_write_reg(adap
, (MEMWIN0_BASE
+ i
),
425 (__force u32
) *data
++);
432 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
434 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
435 * @addr: address within indicated memory type
436 * @len: amount of memory to transfer
437 * @buf: host memory buffer
438 * @dir: direction of transfer 1 => read, 0 => write
440 * Reads/writes an [almost] arbitrary memory region in the firmware: the
441 * firmware memory address, length and host buffer must be aligned on
442 * 32-bit boudaries. The memory is transferred as a raw byte sequence
443 * from/to the firmware's memory. If this memory contains data
444 * structures which contain multi-byte integers, it's the callers
445 * responsibility to perform appropriate byte order conversions.
447 static int t4_memory_rw(struct adapter
*adap
, int mtype
, u32 addr
, u32 len
,
448 __be32
*buf
, int dir
)
450 u32 pos
, start
, end
, offset
, memoffset
;
451 u32 edc_size
, mc_size
;
456 * Argument sanity checks ...
458 if ((addr
& 0x3) || (len
& 0x3))
461 data
= vmalloc(MEMWIN0_APERTURE
);
465 /* Offset into the region of memory which is being accessed
469 * MEM_MC0 = 2 -- For T5
470 * MEM_MC1 = 3 -- For T5
472 edc_size
= EDRAM_SIZE_GET(t4_read_reg(adap
, MA_EDRAM0_BAR
));
473 if (mtype
!= MEM_MC1
)
474 memoffset
= (mtype
* (edc_size
* 1024 * 1024));
476 mc_size
= EXT_MEM_SIZE_GET(t4_read_reg(adap
,
478 memoffset
= (MEM_MC0
* edc_size
+ mc_size
) * 1024 * 1024;
481 /* Determine the PCIE_MEM_ACCESS_OFFSET */
482 addr
= addr
+ memoffset
;
485 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
486 * at a time so we need to round down the start and round up the end.
487 * We'll start copying out of the first line at (addr - start) a word
490 start
= addr
& ~(MEMWIN0_APERTURE
-1);
491 end
= (addr
+ len
+ MEMWIN0_APERTURE
-1) & ~(MEMWIN0_APERTURE
-1);
492 offset
= (addr
- start
)/sizeof(__be32
);
494 for (pos
= start
; pos
< end
; pos
+= MEMWIN0_APERTURE
, offset
= 0) {
497 * If we're writing, copy the data from the caller's memory
502 * If we're doing a partial write, then we need to do
503 * a read-modify-write ...
505 if (offset
|| len
< MEMWIN0_APERTURE
) {
506 ret
= t4_mem_win_rw(adap
, pos
, data
, 1);
510 while (offset
< (MEMWIN0_APERTURE
/sizeof(__be32
)) &&
512 data
[offset
++] = *buf
++;
513 len
-= sizeof(__be32
);
518 * Transfer a block of memory and bail if there's an error.
520 ret
= t4_mem_win_rw(adap
, pos
, data
, dir
);
525 * If we're reading, copy the data into the caller's memory
529 while (offset
< (MEMWIN0_APERTURE
/sizeof(__be32
)) &&
531 *buf
++ = data
[offset
++];
532 len
-= sizeof(__be32
);
540 int t4_memory_write(struct adapter
*adap
, int mtype
, u32 addr
, u32 len
,
543 return t4_memory_rw(adap
, mtype
, addr
, len
, buf
, 0);
546 #define EEPROM_STAT_ADDR 0x7bfc
547 #define VPD_BASE 0x400
548 #define VPD_BASE_OLD 0
552 * t4_seeprom_wp - enable/disable EEPROM write protection
553 * @adapter: the adapter
554 * @enable: whether to enable or disable write protection
556 * Enables or disables write protection on the serial EEPROM.
558 int t4_seeprom_wp(struct adapter
*adapter
, bool enable
)
560 unsigned int v
= enable
? 0xc : 0;
561 int ret
= pci_write_vpd(adapter
->pdev
, EEPROM_STAT_ADDR
, 4, &v
);
562 return ret
< 0 ? ret
: 0;
566 * get_vpd_params - read VPD parameters from VPD EEPROM
567 * @adapter: adapter to read
568 * @p: where to store the parameters
570 * Reads card parameters stored in VPD EEPROM.
572 int get_vpd_params(struct adapter
*adapter
, struct vpd_params
*p
)
574 u32 cclk_param
, cclk_val
;
578 unsigned int vpdr_len
, kw_offset
, id_len
;
580 vpd
= vmalloc(VPD_LEN
);
584 ret
= pci_read_vpd(adapter
->pdev
, VPD_BASE
, sizeof(u32
), vpd
);
587 addr
= *vpd
== 0x82 ? VPD_BASE
: VPD_BASE_OLD
;
589 ret
= pci_read_vpd(adapter
->pdev
, addr
, VPD_LEN
, vpd
);
593 if (vpd
[0] != PCI_VPD_LRDT_ID_STRING
) {
594 dev_err(adapter
->pdev_dev
, "missing VPD ID string\n");
599 id_len
= pci_vpd_lrdt_size(vpd
);
603 i
= pci_vpd_find_tag(vpd
, 0, VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
605 dev_err(adapter
->pdev_dev
, "missing VPD-R section\n");
610 vpdr_len
= pci_vpd_lrdt_size(&vpd
[i
]);
611 kw_offset
= i
+ PCI_VPD_LRDT_TAG_SIZE
;
612 if (vpdr_len
+ kw_offset
> VPD_LEN
) {
613 dev_err(adapter
->pdev_dev
, "bad VPD-R length %u\n", vpdr_len
);
618 #define FIND_VPD_KW(var, name) do { \
619 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
621 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
625 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
628 FIND_VPD_KW(i
, "RV");
629 for (csum
= 0; i
>= 0; i
--)
633 dev_err(adapter
->pdev_dev
,
634 "corrupted VPD EEPROM, actual csum %u\n", csum
);
639 FIND_VPD_KW(ec
, "EC");
640 FIND_VPD_KW(sn
, "SN");
643 memcpy(p
->id
, vpd
+ PCI_VPD_LRDT_TAG_SIZE
, id_len
);
645 memcpy(p
->ec
, vpd
+ ec
, EC_LEN
);
647 i
= pci_vpd_info_field_size(vpd
+ sn
- PCI_VPD_INFO_FLD_HDR_SIZE
);
648 memcpy(p
->sn
, vpd
+ sn
, min(i
, SERNUM_LEN
));
652 * Ask firmware for the Core Clock since it knows how to translate the
653 * Reference Clock ('V2') VPD field into a Core Clock value ...
655 cclk_param
= (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
656 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK
));
657 ret
= t4_query_params(adapter
, adapter
->mbox
, 0, 0,
658 1, &cclk_param
, &cclk_val
);
669 /* serial flash and firmware constants */
671 SF_ATTEMPTS
= 10, /* max retries for SF operations */
673 /* flash command opcodes */
674 SF_PROG_PAGE
= 2, /* program page */
675 SF_WR_DISABLE
= 4, /* disable writes */
676 SF_RD_STATUS
= 5, /* read status register */
677 SF_WR_ENABLE
= 6, /* enable writes */
678 SF_RD_DATA_FAST
= 0xb, /* read flash */
679 SF_RD_ID
= 0x9f, /* read ID */
680 SF_ERASE_SECTOR
= 0xd8, /* erase sector */
682 FW_MAX_SIZE
= 512 * 1024,
686 * sf1_read - read data from the serial flash
687 * @adapter: the adapter
688 * @byte_cnt: number of bytes to read
689 * @cont: whether another operation will be chained
690 * @lock: whether to lock SF for PL access only
691 * @valp: where to store the read data
693 * Reads up to 4 bytes of data from the serial flash. The location of
694 * the read needs to be specified prior to calling this by issuing the
695 * appropriate commands to the serial flash.
697 static int sf1_read(struct adapter
*adapter
, unsigned int byte_cnt
, int cont
,
702 if (!byte_cnt
|| byte_cnt
> 4)
704 if (t4_read_reg(adapter
, SF_OP
) & SF_BUSY
)
706 cont
= cont
? SF_CONT
: 0;
707 lock
= lock
? SF_LOCK
: 0;
708 t4_write_reg(adapter
, SF_OP
, lock
| cont
| BYTECNT(byte_cnt
- 1));
709 ret
= t4_wait_op_done(adapter
, SF_OP
, SF_BUSY
, 0, SF_ATTEMPTS
, 5);
711 *valp
= t4_read_reg(adapter
, SF_DATA
);
716 * sf1_write - write data to the serial flash
717 * @adapter: the adapter
718 * @byte_cnt: number of bytes to write
719 * @cont: whether another operation will be chained
720 * @lock: whether to lock SF for PL access only
721 * @val: value to write
723 * Writes up to 4 bytes of data to the serial flash. The location of
724 * the write needs to be specified prior to calling this by issuing the
725 * appropriate commands to the serial flash.
727 static int sf1_write(struct adapter
*adapter
, unsigned int byte_cnt
, int cont
,
730 if (!byte_cnt
|| byte_cnt
> 4)
732 if (t4_read_reg(adapter
, SF_OP
) & SF_BUSY
)
734 cont
= cont
? SF_CONT
: 0;
735 lock
= lock
? SF_LOCK
: 0;
736 t4_write_reg(adapter
, SF_DATA
, val
);
737 t4_write_reg(adapter
, SF_OP
, lock
|
738 cont
| BYTECNT(byte_cnt
- 1) | OP_WR
);
739 return t4_wait_op_done(adapter
, SF_OP
, SF_BUSY
, 0, SF_ATTEMPTS
, 5);
743 * flash_wait_op - wait for a flash operation to complete
744 * @adapter: the adapter
745 * @attempts: max number of polls of the status register
746 * @delay: delay between polls in ms
748 * Wait for a flash operation to complete by polling the status register.
750 static int flash_wait_op(struct adapter
*adapter
, int attempts
, int delay
)
756 if ((ret
= sf1_write(adapter
, 1, 1, 1, SF_RD_STATUS
)) != 0 ||
757 (ret
= sf1_read(adapter
, 1, 0, 1, &status
)) != 0)
769 * t4_read_flash - read words from serial flash
770 * @adapter: the adapter
771 * @addr: the start address for the read
772 * @nwords: how many 32-bit words to read
773 * @data: where to store the read data
774 * @byte_oriented: whether to store data as bytes or as words
776 * Read the specified number of 32-bit words from the serial flash.
777 * If @byte_oriented is set the read data is stored as a byte array
778 * (i.e., big-endian), otherwise as 32-bit words in the platform's
781 static int t4_read_flash(struct adapter
*adapter
, unsigned int addr
,
782 unsigned int nwords
, u32
*data
, int byte_oriented
)
786 if (addr
+ nwords
* sizeof(u32
) > adapter
->params
.sf_size
|| (addr
& 3))
789 addr
= swab32(addr
) | SF_RD_DATA_FAST
;
791 if ((ret
= sf1_write(adapter
, 4, 1, 0, addr
)) != 0 ||
792 (ret
= sf1_read(adapter
, 1, 1, 0, data
)) != 0)
795 for ( ; nwords
; nwords
--, data
++) {
796 ret
= sf1_read(adapter
, 4, nwords
> 1, nwords
== 1, data
);
798 t4_write_reg(adapter
, SF_OP
, 0); /* unlock SF */
802 *data
= (__force __u32
) (htonl(*data
));
808 * t4_write_flash - write up to a page of data to the serial flash
809 * @adapter: the adapter
810 * @addr: the start address to write
811 * @n: length of data to write in bytes
812 * @data: the data to write
814 * Writes up to a page of data (256 bytes) to the serial flash starting
815 * at the given address. All the data must be written to the same page.
817 static int t4_write_flash(struct adapter
*adapter
, unsigned int addr
,
818 unsigned int n
, const u8
*data
)
822 unsigned int i
, c
, left
, val
, offset
= addr
& 0xff;
824 if (addr
>= adapter
->params
.sf_size
|| offset
+ n
> SF_PAGE_SIZE
)
827 val
= swab32(addr
) | SF_PROG_PAGE
;
829 if ((ret
= sf1_write(adapter
, 1, 0, 1, SF_WR_ENABLE
)) != 0 ||
830 (ret
= sf1_write(adapter
, 4, 1, 1, val
)) != 0)
833 for (left
= n
; left
; left
-= c
) {
835 for (val
= 0, i
= 0; i
< c
; ++i
)
836 val
= (val
<< 8) + *data
++;
838 ret
= sf1_write(adapter
, c
, c
!= left
, 1, val
);
842 ret
= flash_wait_op(adapter
, 8, 1);
846 t4_write_reg(adapter
, SF_OP
, 0); /* unlock SF */
848 /* Read the page to verify the write succeeded */
849 ret
= t4_read_flash(adapter
, addr
& ~0xff, ARRAY_SIZE(buf
), buf
, 1);
853 if (memcmp(data
- n
, (u8
*)buf
+ offset
, n
)) {
854 dev_err(adapter
->pdev_dev
,
855 "failed to correctly write the flash page at %#x\n",
862 t4_write_reg(adapter
, SF_OP
, 0); /* unlock SF */
867 * t4_get_fw_version - read the firmware version
868 * @adapter: the adapter
869 * @vers: where to place the version
871 * Reads the FW version from flash.
873 int t4_get_fw_version(struct adapter
*adapter
, u32
*vers
)
875 return t4_read_flash(adapter
, FLASH_FW_START
+
876 offsetof(struct fw_hdr
, fw_ver
), 1,
881 * t4_get_tp_version - read the TP microcode version
882 * @adapter: the adapter
883 * @vers: where to place the version
885 * Reads the TP microcode version from flash.
887 int t4_get_tp_version(struct adapter
*adapter
, u32
*vers
)
889 return t4_read_flash(adapter
, FLASH_FW_START
+
890 offsetof(struct fw_hdr
, tp_microcode_ver
),
894 /* Is the given firmware API compatible with the one the driver was compiled
897 static int fw_compatible(const struct fw_hdr
*hdr1
, const struct fw_hdr
*hdr2
)
900 /* short circuit if it's the exact same firmware version */
901 if (hdr1
->chip
== hdr2
->chip
&& hdr1
->fw_ver
== hdr2
->fw_ver
)
904 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
905 if (hdr1
->chip
== hdr2
->chip
&& SAME_INTF(nic
) && SAME_INTF(vnic
) &&
906 SAME_INTF(ri
) && SAME_INTF(iscsi
) && SAME_INTF(fcoe
))
913 /* The firmware in the filesystem is usable, but should it be installed?
914 * This routine explains itself in detail if it indicates the filesystem
915 * firmware should be installed.
917 static int should_install_fs_fw(struct adapter
*adap
, int card_fw_usable
,
922 if (!card_fw_usable
) {
923 reason
= "incompatible or unusable";
928 reason
= "older than the version supported with this driver";
935 dev_err(adap
->pdev_dev
, "firmware on card (%u.%u.%u.%u) is %s, "
936 "installing firmware %u.%u.%u.%u on card.\n",
937 FW_HDR_FW_VER_MAJOR_GET(c
), FW_HDR_FW_VER_MINOR_GET(c
),
938 FW_HDR_FW_VER_MICRO_GET(c
), FW_HDR_FW_VER_BUILD_GET(c
), reason
,
939 FW_HDR_FW_VER_MAJOR_GET(k
), FW_HDR_FW_VER_MINOR_GET(k
),
940 FW_HDR_FW_VER_MICRO_GET(k
), FW_HDR_FW_VER_BUILD_GET(k
));
945 int t4_prep_fw(struct adapter
*adap
, struct fw_info
*fw_info
,
946 const u8
*fw_data
, unsigned int fw_size
,
947 struct fw_hdr
*card_fw
, enum dev_state state
,
950 int ret
, card_fw_usable
, fs_fw_usable
;
951 const struct fw_hdr
*fs_fw
;
952 const struct fw_hdr
*drv_fw
;
954 drv_fw
= &fw_info
->fw_hdr
;
956 /* Read the header of the firmware on the card */
957 ret
= -t4_read_flash(adap
, FLASH_FW_START
,
958 sizeof(*card_fw
) / sizeof(uint32_t),
959 (uint32_t *)card_fw
, 1);
961 card_fw_usable
= fw_compatible(drv_fw
, (const void *)card_fw
);
963 dev_err(adap
->pdev_dev
,
964 "Unable to read card's firmware header: %d\n", ret
);
968 if (fw_data
!= NULL
) {
969 fs_fw
= (const void *)fw_data
;
970 fs_fw_usable
= fw_compatible(drv_fw
, fs_fw
);
976 if (card_fw_usable
&& card_fw
->fw_ver
== drv_fw
->fw_ver
&&
977 (!fs_fw_usable
|| fs_fw
->fw_ver
== drv_fw
->fw_ver
)) {
978 /* Common case: the firmware on the card is an exact match and
979 * the filesystem one is an exact match too, or the filesystem
980 * one is absent/incompatible.
982 } else if (fs_fw_usable
&& state
== DEV_STATE_UNINIT
&&
983 should_install_fs_fw(adap
, card_fw_usable
,
984 be32_to_cpu(fs_fw
->fw_ver
),
985 be32_to_cpu(card_fw
->fw_ver
))) {
986 ret
= -t4_fw_upgrade(adap
, adap
->mbox
, fw_data
,
989 dev_err(adap
->pdev_dev
,
990 "failed to install firmware: %d\n", ret
);
994 /* Installed successfully, update the cached header too. */
995 memcpy(card_fw
, fs_fw
, sizeof(*card_fw
));
997 *reset
= 0; /* already reset as part of load_fw */
1000 if (!card_fw_usable
) {
1003 d
= be32_to_cpu(drv_fw
->fw_ver
);
1004 c
= be32_to_cpu(card_fw
->fw_ver
);
1005 k
= fs_fw
? be32_to_cpu(fs_fw
->fw_ver
) : 0;
1007 dev_err(adap
->pdev_dev
, "Cannot find a usable firmware: "
1009 "driver compiled with %d.%d.%d.%d, "
1010 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1012 FW_HDR_FW_VER_MAJOR_GET(d
), FW_HDR_FW_VER_MINOR_GET(d
),
1013 FW_HDR_FW_VER_MICRO_GET(d
), FW_HDR_FW_VER_BUILD_GET(d
),
1014 FW_HDR_FW_VER_MAJOR_GET(c
), FW_HDR_FW_VER_MINOR_GET(c
),
1015 FW_HDR_FW_VER_MICRO_GET(c
), FW_HDR_FW_VER_BUILD_GET(c
),
1016 FW_HDR_FW_VER_MAJOR_GET(k
), FW_HDR_FW_VER_MINOR_GET(k
),
1017 FW_HDR_FW_VER_MICRO_GET(k
), FW_HDR_FW_VER_BUILD_GET(k
));
1022 /* We're using whatever's on the card and it's known to be good. */
1023 adap
->params
.fw_vers
= be32_to_cpu(card_fw
->fw_ver
);
1024 adap
->params
.tp_vers
= be32_to_cpu(card_fw
->tp_microcode_ver
);
1031 * t4_flash_erase_sectors - erase a range of flash sectors
1032 * @adapter: the adapter
1033 * @start: the first sector to erase
1034 * @end: the last sector to erase
1036 * Erases the sectors in the given inclusive range.
1038 static int t4_flash_erase_sectors(struct adapter
*adapter
, int start
, int end
)
1042 while (start
<= end
) {
1043 if ((ret
= sf1_write(adapter
, 1, 0, 1, SF_WR_ENABLE
)) != 0 ||
1044 (ret
= sf1_write(adapter
, 4, 0, 1,
1045 SF_ERASE_SECTOR
| (start
<< 8))) != 0 ||
1046 (ret
= flash_wait_op(adapter
, 14, 500)) != 0) {
1047 dev_err(adapter
->pdev_dev
,
1048 "erase of flash sector %d failed, error %d\n",
1054 t4_write_reg(adapter
, SF_OP
, 0); /* unlock SF */
1059 * t4_flash_cfg_addr - return the address of the flash configuration file
1060 * @adapter: the adapter
1062 * Return the address within the flash where the Firmware Configuration
1065 unsigned int t4_flash_cfg_addr(struct adapter
*adapter
)
1067 if (adapter
->params
.sf_size
== 0x100000)
1068 return FLASH_FPGA_CFG_START
;
1070 return FLASH_CFG_START
;
1074 * t4_load_fw - download firmware
1075 * @adap: the adapter
1076 * @fw_data: the firmware image to write
1079 * Write the supplied firmware image to the card's serial flash.
1081 int t4_load_fw(struct adapter
*adap
, const u8
*fw_data
, unsigned int size
)
1086 u8 first_page
[SF_PAGE_SIZE
];
1087 const __be32
*p
= (const __be32
*)fw_data
;
1088 const struct fw_hdr
*hdr
= (const struct fw_hdr
*)fw_data
;
1089 unsigned int sf_sec_size
= adap
->params
.sf_size
/ adap
->params
.sf_nsec
;
1090 unsigned int fw_img_start
= adap
->params
.sf_fw_start
;
1091 unsigned int fw_start_sec
= fw_img_start
/ sf_sec_size
;
1094 dev_err(adap
->pdev_dev
, "FW image has no data\n");
1098 dev_err(adap
->pdev_dev
,
1099 "FW image size not multiple of 512 bytes\n");
1102 if (ntohs(hdr
->len512
) * 512 != size
) {
1103 dev_err(adap
->pdev_dev
,
1104 "FW image size differs from size in FW header\n");
1107 if (size
> FW_MAX_SIZE
) {
1108 dev_err(adap
->pdev_dev
, "FW image too large, max is %u bytes\n",
1113 for (csum
= 0, i
= 0; i
< size
/ sizeof(csum
); i
++)
1114 csum
+= ntohl(p
[i
]);
1116 if (csum
!= 0xffffffff) {
1117 dev_err(adap
->pdev_dev
,
1118 "corrupted firmware image, checksum %#x\n", csum
);
1122 i
= DIV_ROUND_UP(size
, sf_sec_size
); /* # of sectors spanned */
1123 ret
= t4_flash_erase_sectors(adap
, fw_start_sec
, fw_start_sec
+ i
- 1);
1128 * We write the correct version at the end so the driver can see a bad
1129 * version if the FW write fails. Start by writing a copy of the
1130 * first page with a bad version.
1132 memcpy(first_page
, fw_data
, SF_PAGE_SIZE
);
1133 ((struct fw_hdr
*)first_page
)->fw_ver
= htonl(0xffffffff);
1134 ret
= t4_write_flash(adap
, fw_img_start
, SF_PAGE_SIZE
, first_page
);
1138 addr
= fw_img_start
;
1139 for (size
-= SF_PAGE_SIZE
; size
; size
-= SF_PAGE_SIZE
) {
1140 addr
+= SF_PAGE_SIZE
;
1141 fw_data
+= SF_PAGE_SIZE
;
1142 ret
= t4_write_flash(adap
, addr
, SF_PAGE_SIZE
, fw_data
);
1147 ret
= t4_write_flash(adap
,
1148 fw_img_start
+ offsetof(struct fw_hdr
, fw_ver
),
1149 sizeof(hdr
->fw_ver
), (const u8
*)&hdr
->fw_ver
);
1152 dev_err(adap
->pdev_dev
, "firmware download failed, error %d\n",
1157 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1158 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
1161 * t4_link_start - apply link configuration to MAC/PHY
1162 * @phy: the PHY to setup
1163 * @mac: the MAC to setup
1164 * @lc: the requested link configuration
1166 * Set up a port's MAC and PHY according to a desired link configuration.
1167 * - If the PHY can auto-negotiate first decide what to advertise, then
1168 * enable/disable auto-negotiation as desired, and reset.
1169 * - If the PHY does not auto-negotiate just reset it.
1170 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1171 * otherwise do it later based on the outcome of auto-negotiation.
1173 int t4_link_start(struct adapter
*adap
, unsigned int mbox
, unsigned int port
,
1174 struct link_config
*lc
)
1176 struct fw_port_cmd c
;
1177 unsigned int fc
= 0, mdi
= FW_PORT_MDI(FW_PORT_MDI_AUTO
);
1180 if (lc
->requested_fc
& PAUSE_RX
)
1181 fc
|= FW_PORT_CAP_FC_RX
;
1182 if (lc
->requested_fc
& PAUSE_TX
)
1183 fc
|= FW_PORT_CAP_FC_TX
;
1185 memset(&c
, 0, sizeof(c
));
1186 c
.op_to_portid
= htonl(FW_CMD_OP(FW_PORT_CMD
) | FW_CMD_REQUEST
|
1187 FW_CMD_EXEC
| FW_PORT_CMD_PORTID(port
));
1188 c
.action_to_len16
= htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG
) |
1191 if (!(lc
->supported
& FW_PORT_CAP_ANEG
)) {
1192 c
.u
.l1cfg
.rcap
= htonl((lc
->supported
& ADVERT_MASK
) | fc
);
1193 lc
->fc
= lc
->requested_fc
& (PAUSE_RX
| PAUSE_TX
);
1194 } else if (lc
->autoneg
== AUTONEG_DISABLE
) {
1195 c
.u
.l1cfg
.rcap
= htonl(lc
->requested_speed
| fc
| mdi
);
1196 lc
->fc
= lc
->requested_fc
& (PAUSE_RX
| PAUSE_TX
);
1198 c
.u
.l1cfg
.rcap
= htonl(lc
->advertising
| fc
| mdi
);
1200 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
1204 * t4_restart_aneg - restart autonegotiation
1205 * @adap: the adapter
1206 * @mbox: mbox to use for the FW command
1207 * @port: the port id
1209 * Restarts autonegotiation for the selected port.
1211 int t4_restart_aneg(struct adapter
*adap
, unsigned int mbox
, unsigned int port
)
1213 struct fw_port_cmd c
;
1215 memset(&c
, 0, sizeof(c
));
1216 c
.op_to_portid
= htonl(FW_CMD_OP(FW_PORT_CMD
) | FW_CMD_REQUEST
|
1217 FW_CMD_EXEC
| FW_PORT_CMD_PORTID(port
));
1218 c
.action_to_len16
= htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG
) |
1220 c
.u
.l1cfg
.rcap
= htonl(FW_PORT_CAP_ANEG
);
1221 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
1224 typedef void (*int_handler_t
)(struct adapter
*adap
);
1227 unsigned int mask
; /* bits to check in interrupt status */
1228 const char *msg
; /* message to print or NULL */
1229 short stat_idx
; /* stat counter to increment or -1 */
1230 unsigned short fatal
; /* whether the condition reported is fatal */
1231 int_handler_t int_handler
; /* platform-specific int handler */
1235 * t4_handle_intr_status - table driven interrupt handler
1236 * @adapter: the adapter that generated the interrupt
1237 * @reg: the interrupt status register to process
1238 * @acts: table of interrupt actions
1240 * A table driven interrupt handler that applies a set of masks to an
1241 * interrupt status word and performs the corresponding actions if the
1242 * interrupts described by the mask have occurred. The actions include
1243 * optionally emitting a warning or alert message. The table is terminated
1244 * by an entry specifying mask 0. Returns the number of fatal interrupt
1247 static int t4_handle_intr_status(struct adapter
*adapter
, unsigned int reg
,
1248 const struct intr_info
*acts
)
1251 unsigned int mask
= 0;
1252 unsigned int status
= t4_read_reg(adapter
, reg
);
1254 for ( ; acts
->mask
; ++acts
) {
1255 if (!(status
& acts
->mask
))
1259 dev_alert(adapter
->pdev_dev
, "%s (0x%x)\n", acts
->msg
,
1260 status
& acts
->mask
);
1261 } else if (acts
->msg
&& printk_ratelimit())
1262 dev_warn(adapter
->pdev_dev
, "%s (0x%x)\n", acts
->msg
,
1263 status
& acts
->mask
);
1264 if (acts
->int_handler
)
1265 acts
->int_handler(adapter
);
1269 if (status
) /* clear processed interrupts */
1270 t4_write_reg(adapter
, reg
, status
);
1275 * Interrupt handler for the PCIE module.
1277 static void pcie_intr_handler(struct adapter
*adapter
)
1279 static const struct intr_info sysbus_intr_info
[] = {
1280 { RNPP
, "RXNP array parity error", -1, 1 },
1281 { RPCP
, "RXPC array parity error", -1, 1 },
1282 { RCIP
, "RXCIF array parity error", -1, 1 },
1283 { RCCP
, "Rx completions control array parity error", -1, 1 },
1284 { RFTP
, "RXFT array parity error", -1, 1 },
1287 static const struct intr_info pcie_port_intr_info
[] = {
1288 { TPCP
, "TXPC array parity error", -1, 1 },
1289 { TNPP
, "TXNP array parity error", -1, 1 },
1290 { TFTP
, "TXFT array parity error", -1, 1 },
1291 { TCAP
, "TXCA array parity error", -1, 1 },
1292 { TCIP
, "TXCIF array parity error", -1, 1 },
1293 { RCAP
, "RXCA array parity error", -1, 1 },
1294 { OTDD
, "outbound request TLP discarded", -1, 1 },
1295 { RDPE
, "Rx data parity error", -1, 1 },
1296 { TDUE
, "Tx uncorrectable data error", -1, 1 },
1299 static const struct intr_info pcie_intr_info
[] = {
1300 { MSIADDRLPERR
, "MSI AddrL parity error", -1, 1 },
1301 { MSIADDRHPERR
, "MSI AddrH parity error", -1, 1 },
1302 { MSIDATAPERR
, "MSI data parity error", -1, 1 },
1303 { MSIXADDRLPERR
, "MSI-X AddrL parity error", -1, 1 },
1304 { MSIXADDRHPERR
, "MSI-X AddrH parity error", -1, 1 },
1305 { MSIXDATAPERR
, "MSI-X data parity error", -1, 1 },
1306 { MSIXDIPERR
, "MSI-X DI parity error", -1, 1 },
1307 { PIOCPLPERR
, "PCI PIO completion FIFO parity error", -1, 1 },
1308 { PIOREQPERR
, "PCI PIO request FIFO parity error", -1, 1 },
1309 { TARTAGPERR
, "PCI PCI target tag FIFO parity error", -1, 1 },
1310 { CCNTPERR
, "PCI CMD channel count parity error", -1, 1 },
1311 { CREQPERR
, "PCI CMD channel request parity error", -1, 1 },
1312 { CRSPPERR
, "PCI CMD channel response parity error", -1, 1 },
1313 { DCNTPERR
, "PCI DMA channel count parity error", -1, 1 },
1314 { DREQPERR
, "PCI DMA channel request parity error", -1, 1 },
1315 { DRSPPERR
, "PCI DMA channel response parity error", -1, 1 },
1316 { HCNTPERR
, "PCI HMA channel count parity error", -1, 1 },
1317 { HREQPERR
, "PCI HMA channel request parity error", -1, 1 },
1318 { HRSPPERR
, "PCI HMA channel response parity error", -1, 1 },
1319 { CFGSNPPERR
, "PCI config snoop FIFO parity error", -1, 1 },
1320 { FIDPERR
, "PCI FID parity error", -1, 1 },
1321 { INTXCLRPERR
, "PCI INTx clear parity error", -1, 1 },
1322 { MATAGPERR
, "PCI MA tag parity error", -1, 1 },
1323 { PIOTAGPERR
, "PCI PIO tag parity error", -1, 1 },
1324 { RXCPLPERR
, "PCI Rx completion parity error", -1, 1 },
1325 { RXWRPERR
, "PCI Rx write parity error", -1, 1 },
1326 { RPLPERR
, "PCI replay buffer parity error", -1, 1 },
1327 { PCIESINT
, "PCI core secondary fault", -1, 1 },
1328 { PCIEPINT
, "PCI core primary fault", -1, 1 },
1329 { UNXSPLCPLERR
, "PCI unexpected split completion error", -1, 0 },
1333 static struct intr_info t5_pcie_intr_info
[] = {
1334 { MSTGRPPERR
, "Master Response Read Queue parity error",
1336 { MSTTIMEOUTPERR
, "Master Timeout FIFO parity error", -1, 1 },
1337 { MSIXSTIPERR
, "MSI-X STI SRAM parity error", -1, 1 },
1338 { MSIXADDRLPERR
, "MSI-X AddrL parity error", -1, 1 },
1339 { MSIXADDRHPERR
, "MSI-X AddrH parity error", -1, 1 },
1340 { MSIXDATAPERR
, "MSI-X data parity error", -1, 1 },
1341 { MSIXDIPERR
, "MSI-X DI parity error", -1, 1 },
1342 { PIOCPLGRPPERR
, "PCI PIO completion Group FIFO parity error",
1344 { PIOREQGRPPERR
, "PCI PIO request Group FIFO parity error",
1346 { TARTAGPERR
, "PCI PCI target tag FIFO parity error", -1, 1 },
1347 { MSTTAGQPERR
, "PCI master tag queue parity error", -1, 1 },
1348 { CREQPERR
, "PCI CMD channel request parity error", -1, 1 },
1349 { CRSPPERR
, "PCI CMD channel response parity error", -1, 1 },
1350 { DREQWRPERR
, "PCI DMA channel write request parity error",
1352 { DREQPERR
, "PCI DMA channel request parity error", -1, 1 },
1353 { DRSPPERR
, "PCI DMA channel response parity error", -1, 1 },
1354 { HREQWRPERR
, "PCI HMA channel count parity error", -1, 1 },
1355 { HREQPERR
, "PCI HMA channel request parity error", -1, 1 },
1356 { HRSPPERR
, "PCI HMA channel response parity error", -1, 1 },
1357 { CFGSNPPERR
, "PCI config snoop FIFO parity error", -1, 1 },
1358 { FIDPERR
, "PCI FID parity error", -1, 1 },
1359 { VFIDPERR
, "PCI INTx clear parity error", -1, 1 },
1360 { MAGRPPERR
, "PCI MA group FIFO parity error", -1, 1 },
1361 { PIOTAGPERR
, "PCI PIO tag parity error", -1, 1 },
1362 { IPRXHDRGRPPERR
, "PCI IP Rx header group parity error",
1364 { IPRXDATAGRPPERR
, "PCI IP Rx data group parity error", -1, 1 },
1365 { RPLPERR
, "PCI IP replay buffer parity error", -1, 1 },
1366 { IPSOTPERR
, "PCI IP SOT buffer parity error", -1, 1 },
1367 { TRGT1GRPPERR
, "PCI TRGT1 group FIFOs parity error", -1, 1 },
1368 { READRSPERR
, "Outbound read error", -1, 0 },
1374 fat
= t4_handle_intr_status(adapter
,
1375 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS
,
1377 t4_handle_intr_status(adapter
,
1378 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS
,
1379 pcie_port_intr_info
) +
1380 t4_handle_intr_status(adapter
, PCIE_INT_CAUSE
,
1381 is_t4(adapter
->params
.chip
) ?
1382 pcie_intr_info
: t5_pcie_intr_info
);
1385 t4_fatal_err(adapter
);
1389 * TP interrupt handler.
1391 static void tp_intr_handler(struct adapter
*adapter
)
1393 static const struct intr_info tp_intr_info
[] = {
1394 { 0x3fffffff, "TP parity error", -1, 1 },
1395 { FLMTXFLSTEMPTY
, "TP out of Tx pages", -1, 1 },
1399 if (t4_handle_intr_status(adapter
, TP_INT_CAUSE
, tp_intr_info
))
1400 t4_fatal_err(adapter
);
1404 * SGE interrupt handler.
1406 static void sge_intr_handler(struct adapter
*adapter
)
1410 static const struct intr_info sge_intr_info
[] = {
1411 { ERR_CPL_EXCEED_IQE_SIZE
,
1412 "SGE received CPL exceeding IQE size", -1, 1 },
1413 { ERR_INVALID_CIDX_INC
,
1414 "SGE GTS CIDX increment too large", -1, 0 },
1415 { ERR_CPL_OPCODE_0
, "SGE received 0-length CPL", -1, 0 },
1416 { DBFIFO_LP_INT
, NULL
, -1, 0, t4_db_full
},
1417 { DBFIFO_HP_INT
, NULL
, -1, 0, t4_db_full
},
1418 { ERR_DROPPED_DB
, NULL
, -1, 0, t4_db_dropped
},
1419 { ERR_DATA_CPL_ON_HIGH_QID1
| ERR_DATA_CPL_ON_HIGH_QID0
,
1420 "SGE IQID > 1023 received CPL for FL", -1, 0 },
1421 { ERR_BAD_DB_PIDX3
, "SGE DBP 3 pidx increment too large", -1,
1423 { ERR_BAD_DB_PIDX2
, "SGE DBP 2 pidx increment too large", -1,
1425 { ERR_BAD_DB_PIDX1
, "SGE DBP 1 pidx increment too large", -1,
1427 { ERR_BAD_DB_PIDX0
, "SGE DBP 0 pidx increment too large", -1,
1429 { ERR_ING_CTXT_PRIO
,
1430 "SGE too many priority ingress contexts", -1, 0 },
1431 { ERR_EGR_CTXT_PRIO
,
1432 "SGE too many priority egress contexts", -1, 0 },
1433 { INGRESS_SIZE_ERR
, "SGE illegal ingress QID", -1, 0 },
1434 { EGRESS_SIZE_ERR
, "SGE illegal egress QID", -1, 0 },
1438 v
= (u64
)t4_read_reg(adapter
, SGE_INT_CAUSE1
) |
1439 ((u64
)t4_read_reg(adapter
, SGE_INT_CAUSE2
) << 32);
1441 dev_alert(adapter
->pdev_dev
, "SGE parity error (%#llx)\n",
1442 (unsigned long long)v
);
1443 t4_write_reg(adapter
, SGE_INT_CAUSE1
, v
);
1444 t4_write_reg(adapter
, SGE_INT_CAUSE2
, v
>> 32);
1447 if (t4_handle_intr_status(adapter
, SGE_INT_CAUSE3
, sge_intr_info
) ||
1449 t4_fatal_err(adapter
);
1453 * CIM interrupt handler.
1455 static void cim_intr_handler(struct adapter
*adapter
)
1457 static const struct intr_info cim_intr_info
[] = {
1458 { PREFDROPINT
, "CIM control register prefetch drop", -1, 1 },
1459 { OBQPARERR
, "CIM OBQ parity error", -1, 1 },
1460 { IBQPARERR
, "CIM IBQ parity error", -1, 1 },
1461 { MBUPPARERR
, "CIM mailbox uP parity error", -1, 1 },
1462 { MBHOSTPARERR
, "CIM mailbox host parity error", -1, 1 },
1463 { TIEQINPARERRINT
, "CIM TIEQ outgoing parity error", -1, 1 },
1464 { TIEQOUTPARERRINT
, "CIM TIEQ incoming parity error", -1, 1 },
1467 static const struct intr_info cim_upintr_info
[] = {
1468 { RSVDSPACEINT
, "CIM reserved space access", -1, 1 },
1469 { ILLTRANSINT
, "CIM illegal transaction", -1, 1 },
1470 { ILLWRINT
, "CIM illegal write", -1, 1 },
1471 { ILLRDINT
, "CIM illegal read", -1, 1 },
1472 { ILLRDBEINT
, "CIM illegal read BE", -1, 1 },
1473 { ILLWRBEINT
, "CIM illegal write BE", -1, 1 },
1474 { SGLRDBOOTINT
, "CIM single read from boot space", -1, 1 },
1475 { SGLWRBOOTINT
, "CIM single write to boot space", -1, 1 },
1476 { BLKWRBOOTINT
, "CIM block write to boot space", -1, 1 },
1477 { SGLRDFLASHINT
, "CIM single read from flash space", -1, 1 },
1478 { SGLWRFLASHINT
, "CIM single write to flash space", -1, 1 },
1479 { BLKWRFLASHINT
, "CIM block write to flash space", -1, 1 },
1480 { SGLRDEEPROMINT
, "CIM single EEPROM read", -1, 1 },
1481 { SGLWREEPROMINT
, "CIM single EEPROM write", -1, 1 },
1482 { BLKRDEEPROMINT
, "CIM block EEPROM read", -1, 1 },
1483 { BLKWREEPROMINT
, "CIM block EEPROM write", -1, 1 },
1484 { SGLRDCTLINT
, "CIM single read from CTL space", -1, 1 },
1485 { SGLWRCTLINT
, "CIM single write to CTL space", -1, 1 },
1486 { BLKRDCTLINT
, "CIM block read from CTL space", -1, 1 },
1487 { BLKWRCTLINT
, "CIM block write to CTL space", -1, 1 },
1488 { SGLRDPLINT
, "CIM single read from PL space", -1, 1 },
1489 { SGLWRPLINT
, "CIM single write to PL space", -1, 1 },
1490 { BLKRDPLINT
, "CIM block read from PL space", -1, 1 },
1491 { BLKWRPLINT
, "CIM block write to PL space", -1, 1 },
1492 { REQOVRLOOKUPINT
, "CIM request FIFO overwrite", -1, 1 },
1493 { RSPOVRLOOKUPINT
, "CIM response FIFO overwrite", -1, 1 },
1494 { TIMEOUTINT
, "CIM PIF timeout", -1, 1 },
1495 { TIMEOUTMAINT
, "CIM PIF MA timeout", -1, 1 },
1501 fat
= t4_handle_intr_status(adapter
, CIM_HOST_INT_CAUSE
,
1503 t4_handle_intr_status(adapter
, CIM_HOST_UPACC_INT_CAUSE
,
1506 t4_fatal_err(adapter
);
1510 * ULP RX interrupt handler.
1512 static void ulprx_intr_handler(struct adapter
*adapter
)
1514 static const struct intr_info ulprx_intr_info
[] = {
1515 { 0x1800000, "ULPRX context error", -1, 1 },
1516 { 0x7fffff, "ULPRX parity error", -1, 1 },
1520 if (t4_handle_intr_status(adapter
, ULP_RX_INT_CAUSE
, ulprx_intr_info
))
1521 t4_fatal_err(adapter
);
1525 * ULP TX interrupt handler.
1527 static void ulptx_intr_handler(struct adapter
*adapter
)
1529 static const struct intr_info ulptx_intr_info
[] = {
1530 { PBL_BOUND_ERR_CH3
, "ULPTX channel 3 PBL out of bounds", -1,
1532 { PBL_BOUND_ERR_CH2
, "ULPTX channel 2 PBL out of bounds", -1,
1534 { PBL_BOUND_ERR_CH1
, "ULPTX channel 1 PBL out of bounds", -1,
1536 { PBL_BOUND_ERR_CH0
, "ULPTX channel 0 PBL out of bounds", -1,
1538 { 0xfffffff, "ULPTX parity error", -1, 1 },
1542 if (t4_handle_intr_status(adapter
, ULP_TX_INT_CAUSE
, ulptx_intr_info
))
1543 t4_fatal_err(adapter
);
1547 * PM TX interrupt handler.
1549 static void pmtx_intr_handler(struct adapter
*adapter
)
1551 static const struct intr_info pmtx_intr_info
[] = {
1552 { PCMD_LEN_OVFL0
, "PMTX channel 0 pcmd too large", -1, 1 },
1553 { PCMD_LEN_OVFL1
, "PMTX channel 1 pcmd too large", -1, 1 },
1554 { PCMD_LEN_OVFL2
, "PMTX channel 2 pcmd too large", -1, 1 },
1555 { ZERO_C_CMD_ERROR
, "PMTX 0-length pcmd", -1, 1 },
1556 { PMTX_FRAMING_ERROR
, "PMTX framing error", -1, 1 },
1557 { OESPI_PAR_ERROR
, "PMTX oespi parity error", -1, 1 },
1558 { DB_OPTIONS_PAR_ERROR
, "PMTX db_options parity error", -1, 1 },
1559 { ICSPI_PAR_ERROR
, "PMTX icspi parity error", -1, 1 },
1560 { C_PCMD_PAR_ERROR
, "PMTX c_pcmd parity error", -1, 1},
1564 if (t4_handle_intr_status(adapter
, PM_TX_INT_CAUSE
, pmtx_intr_info
))
1565 t4_fatal_err(adapter
);
1569 * PM RX interrupt handler.
1571 static void pmrx_intr_handler(struct adapter
*adapter
)
1573 static const struct intr_info pmrx_intr_info
[] = {
1574 { ZERO_E_CMD_ERROR
, "PMRX 0-length pcmd", -1, 1 },
1575 { PMRX_FRAMING_ERROR
, "PMRX framing error", -1, 1 },
1576 { OCSPI_PAR_ERROR
, "PMRX ocspi parity error", -1, 1 },
1577 { DB_OPTIONS_PAR_ERROR
, "PMRX db_options parity error", -1, 1 },
1578 { IESPI_PAR_ERROR
, "PMRX iespi parity error", -1, 1 },
1579 { E_PCMD_PAR_ERROR
, "PMRX e_pcmd parity error", -1, 1},
1583 if (t4_handle_intr_status(adapter
, PM_RX_INT_CAUSE
, pmrx_intr_info
))
1584 t4_fatal_err(adapter
);
1588 * CPL switch interrupt handler.
1590 static void cplsw_intr_handler(struct adapter
*adapter
)
1592 static const struct intr_info cplsw_intr_info
[] = {
1593 { CIM_OP_MAP_PERR
, "CPLSW CIM op_map parity error", -1, 1 },
1594 { CIM_OVFL_ERROR
, "CPLSW CIM overflow", -1, 1 },
1595 { TP_FRAMING_ERROR
, "CPLSW TP framing error", -1, 1 },
1596 { SGE_FRAMING_ERROR
, "CPLSW SGE framing error", -1, 1 },
1597 { CIM_FRAMING_ERROR
, "CPLSW CIM framing error", -1, 1 },
1598 { ZERO_SWITCH_ERROR
, "CPLSW no-switch error", -1, 1 },
1602 if (t4_handle_intr_status(adapter
, CPL_INTR_CAUSE
, cplsw_intr_info
))
1603 t4_fatal_err(adapter
);
1607 * LE interrupt handler.
1609 static void le_intr_handler(struct adapter
*adap
)
1611 static const struct intr_info le_intr_info
[] = {
1612 { LIPMISS
, "LE LIP miss", -1, 0 },
1613 { LIP0
, "LE 0 LIP error", -1, 0 },
1614 { PARITYERR
, "LE parity error", -1, 1 },
1615 { UNKNOWNCMD
, "LE unknown command", -1, 1 },
1616 { REQQPARERR
, "LE request queue parity error", -1, 1 },
1620 if (t4_handle_intr_status(adap
, LE_DB_INT_CAUSE
, le_intr_info
))
1625 * MPS interrupt handler.
1627 static void mps_intr_handler(struct adapter
*adapter
)
1629 static const struct intr_info mps_rx_intr_info
[] = {
1630 { 0xffffff, "MPS Rx parity error", -1, 1 },
1633 static const struct intr_info mps_tx_intr_info
[] = {
1634 { TPFIFO
, "MPS Tx TP FIFO parity error", -1, 1 },
1635 { NCSIFIFO
, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1636 { TXDATAFIFO
, "MPS Tx data FIFO parity error", -1, 1 },
1637 { TXDESCFIFO
, "MPS Tx desc FIFO parity error", -1, 1 },
1638 { BUBBLE
, "MPS Tx underflow", -1, 1 },
1639 { SECNTERR
, "MPS Tx SOP/EOP error", -1, 1 },
1640 { FRMERR
, "MPS Tx framing error", -1, 1 },
1643 static const struct intr_info mps_trc_intr_info
[] = {
1644 { FILTMEM
, "MPS TRC filter parity error", -1, 1 },
1645 { PKTFIFO
, "MPS TRC packet FIFO parity error", -1, 1 },
1646 { MISCPERR
, "MPS TRC misc parity error", -1, 1 },
1649 static const struct intr_info mps_stat_sram_intr_info
[] = {
1650 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1653 static const struct intr_info mps_stat_tx_intr_info
[] = {
1654 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1657 static const struct intr_info mps_stat_rx_intr_info
[] = {
1658 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1661 static const struct intr_info mps_cls_intr_info
[] = {
1662 { MATCHSRAM
, "MPS match SRAM parity error", -1, 1 },
1663 { MATCHTCAM
, "MPS match TCAM parity error", -1, 1 },
1664 { HASHSRAM
, "MPS hash SRAM parity error", -1, 1 },
1670 fat
= t4_handle_intr_status(adapter
, MPS_RX_PERR_INT_CAUSE
,
1672 t4_handle_intr_status(adapter
, MPS_TX_INT_CAUSE
,
1674 t4_handle_intr_status(adapter
, MPS_TRC_INT_CAUSE
,
1675 mps_trc_intr_info
) +
1676 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_SRAM
,
1677 mps_stat_sram_intr_info
) +
1678 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_TX_FIFO
,
1679 mps_stat_tx_intr_info
) +
1680 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_RX_FIFO
,
1681 mps_stat_rx_intr_info
) +
1682 t4_handle_intr_status(adapter
, MPS_CLS_INT_CAUSE
,
1685 t4_write_reg(adapter
, MPS_INT_CAUSE
, CLSINT
| TRCINT
|
1686 RXINT
| TXINT
| STATINT
);
1687 t4_read_reg(adapter
, MPS_INT_CAUSE
); /* flush */
1689 t4_fatal_err(adapter
);
1692 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
1695 * EDC/MC interrupt handler.
1697 static void mem_intr_handler(struct adapter
*adapter
, int idx
)
1699 static const char name
[3][5] = { "EDC0", "EDC1", "MC" };
1701 unsigned int addr
, cnt_addr
, v
;
1703 if (idx
<= MEM_EDC1
) {
1704 addr
= EDC_REG(EDC_INT_CAUSE
, idx
);
1705 cnt_addr
= EDC_REG(EDC_ECC_STATUS
, idx
);
1707 addr
= MC_INT_CAUSE
;
1708 cnt_addr
= MC_ECC_STATUS
;
1711 v
= t4_read_reg(adapter
, addr
) & MEM_INT_MASK
;
1712 if (v
& PERR_INT_CAUSE
)
1713 dev_alert(adapter
->pdev_dev
, "%s FIFO parity error\n",
1715 if (v
& ECC_CE_INT_CAUSE
) {
1716 u32 cnt
= ECC_CECNT_GET(t4_read_reg(adapter
, cnt_addr
));
1718 t4_write_reg(adapter
, cnt_addr
, ECC_CECNT_MASK
);
1719 if (printk_ratelimit())
1720 dev_warn(adapter
->pdev_dev
,
1721 "%u %s correctable ECC data error%s\n",
1722 cnt
, name
[idx
], cnt
> 1 ? "s" : "");
1724 if (v
& ECC_UE_INT_CAUSE
)
1725 dev_alert(adapter
->pdev_dev
,
1726 "%s uncorrectable ECC data error\n", name
[idx
]);
1728 t4_write_reg(adapter
, addr
, v
);
1729 if (v
& (PERR_INT_CAUSE
| ECC_UE_INT_CAUSE
))
1730 t4_fatal_err(adapter
);
1734 * MA interrupt handler.
1736 static void ma_intr_handler(struct adapter
*adap
)
1738 u32 v
, status
= t4_read_reg(adap
, MA_INT_CAUSE
);
1740 if (status
& MEM_PERR_INT_CAUSE
)
1741 dev_alert(adap
->pdev_dev
,
1742 "MA parity error, parity status %#x\n",
1743 t4_read_reg(adap
, MA_PARITY_ERROR_STATUS
));
1744 if (status
& MEM_WRAP_INT_CAUSE
) {
1745 v
= t4_read_reg(adap
, MA_INT_WRAP_STATUS
);
1746 dev_alert(adap
->pdev_dev
, "MA address wrap-around error by "
1747 "client %u to address %#x\n",
1748 MEM_WRAP_CLIENT_NUM_GET(v
),
1749 MEM_WRAP_ADDRESS_GET(v
) << 4);
1751 t4_write_reg(adap
, MA_INT_CAUSE
, status
);
1756 * SMB interrupt handler.
1758 static void smb_intr_handler(struct adapter
*adap
)
1760 static const struct intr_info smb_intr_info
[] = {
1761 { MSTTXFIFOPARINT
, "SMB master Tx FIFO parity error", -1, 1 },
1762 { MSTRXFIFOPARINT
, "SMB master Rx FIFO parity error", -1, 1 },
1763 { SLVFIFOPARINT
, "SMB slave FIFO parity error", -1, 1 },
1767 if (t4_handle_intr_status(adap
, SMB_INT_CAUSE
, smb_intr_info
))
1772 * NC-SI interrupt handler.
1774 static void ncsi_intr_handler(struct adapter
*adap
)
1776 static const struct intr_info ncsi_intr_info
[] = {
1777 { CIM_DM_PRTY_ERR
, "NC-SI CIM parity error", -1, 1 },
1778 { MPS_DM_PRTY_ERR
, "NC-SI MPS parity error", -1, 1 },
1779 { TXFIFO_PRTY_ERR
, "NC-SI Tx FIFO parity error", -1, 1 },
1780 { RXFIFO_PRTY_ERR
, "NC-SI Rx FIFO parity error", -1, 1 },
1784 if (t4_handle_intr_status(adap
, NCSI_INT_CAUSE
, ncsi_intr_info
))
1789 * XGMAC interrupt handler.
1791 static void xgmac_intr_handler(struct adapter
*adap
, int port
)
1793 u32 v
, int_cause_reg
;
1795 if (is_t4(adap
->params
.chip
))
1796 int_cause_reg
= PORT_REG(port
, XGMAC_PORT_INT_CAUSE
);
1798 int_cause_reg
= T5_PORT_REG(port
, MAC_PORT_INT_CAUSE
);
1800 v
= t4_read_reg(adap
, int_cause_reg
);
1802 v
&= TXFIFO_PRTY_ERR
| RXFIFO_PRTY_ERR
;
1806 if (v
& TXFIFO_PRTY_ERR
)
1807 dev_alert(adap
->pdev_dev
, "XGMAC %d Tx FIFO parity error\n",
1809 if (v
& RXFIFO_PRTY_ERR
)
1810 dev_alert(adap
->pdev_dev
, "XGMAC %d Rx FIFO parity error\n",
1812 t4_write_reg(adap
, PORT_REG(port
, XGMAC_PORT_INT_CAUSE
), v
);
1817 * PL interrupt handler.
1819 static void pl_intr_handler(struct adapter
*adap
)
1821 static const struct intr_info pl_intr_info
[] = {
1822 { FATALPERR
, "T4 fatal parity error", -1, 1 },
1823 { PERRVFID
, "PL VFID_MAP parity error", -1, 1 },
1827 if (t4_handle_intr_status(adap
, PL_PL_INT_CAUSE
, pl_intr_info
))
1831 #define PF_INTR_MASK (PFSW)
1832 #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
1833 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
1834 CPL_SWITCH | SGE | ULP_TX)
1837 * t4_slow_intr_handler - control path interrupt handler
1838 * @adapter: the adapter
1840 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
1841 * The designation 'slow' is because it involves register reads, while
1842 * data interrupts typically don't involve any MMIOs.
1844 int t4_slow_intr_handler(struct adapter
*adapter
)
1846 u32 cause
= t4_read_reg(adapter
, PL_INT_CAUSE
);
1848 if (!(cause
& GLBL_INTR_MASK
))
1851 cim_intr_handler(adapter
);
1853 mps_intr_handler(adapter
);
1855 ncsi_intr_handler(adapter
);
1857 pl_intr_handler(adapter
);
1859 smb_intr_handler(adapter
);
1861 xgmac_intr_handler(adapter
, 0);
1863 xgmac_intr_handler(adapter
, 1);
1864 if (cause
& XGMAC_KR0
)
1865 xgmac_intr_handler(adapter
, 2);
1866 if (cause
& XGMAC_KR1
)
1867 xgmac_intr_handler(adapter
, 3);
1869 pcie_intr_handler(adapter
);
1871 mem_intr_handler(adapter
, MEM_MC
);
1873 mem_intr_handler(adapter
, MEM_EDC0
);
1875 mem_intr_handler(adapter
, MEM_EDC1
);
1877 le_intr_handler(adapter
);
1879 tp_intr_handler(adapter
);
1881 ma_intr_handler(adapter
);
1883 pmtx_intr_handler(adapter
);
1885 pmrx_intr_handler(adapter
);
1887 ulprx_intr_handler(adapter
);
1888 if (cause
& CPL_SWITCH
)
1889 cplsw_intr_handler(adapter
);
1891 sge_intr_handler(adapter
);
1893 ulptx_intr_handler(adapter
);
1895 /* Clear the interrupts just processed for which we are the master. */
1896 t4_write_reg(adapter
, PL_INT_CAUSE
, cause
& GLBL_INTR_MASK
);
1897 (void) t4_read_reg(adapter
, PL_INT_CAUSE
); /* flush */
1902 * t4_intr_enable - enable interrupts
1903 * @adapter: the adapter whose interrupts should be enabled
1905 * Enable PF-specific interrupts for the calling function and the top-level
1906 * interrupt concentrator for global interrupts. Interrupts are already
1907 * enabled at each module, here we just enable the roots of the interrupt
1910 * Note: this function should be called only when the driver manages
1911 * non PF-specific interrupts from the various HW modules. Only one PCI
1912 * function at a time should be doing this.
1914 void t4_intr_enable(struct adapter
*adapter
)
1916 u32 pf
= SOURCEPF_GET(t4_read_reg(adapter
, PL_WHOAMI
));
1918 t4_write_reg(adapter
, SGE_INT_ENABLE3
, ERR_CPL_EXCEED_IQE_SIZE
|
1919 ERR_INVALID_CIDX_INC
| ERR_CPL_OPCODE_0
|
1920 ERR_DROPPED_DB
| ERR_DATA_CPL_ON_HIGH_QID1
|
1921 ERR_DATA_CPL_ON_HIGH_QID0
| ERR_BAD_DB_PIDX3
|
1922 ERR_BAD_DB_PIDX2
| ERR_BAD_DB_PIDX1
|
1923 ERR_BAD_DB_PIDX0
| ERR_ING_CTXT_PRIO
|
1924 ERR_EGR_CTXT_PRIO
| INGRESS_SIZE_ERR
|
1925 DBFIFO_HP_INT
| DBFIFO_LP_INT
|
1927 t4_write_reg(adapter
, MYPF_REG(PL_PF_INT_ENABLE
), PF_INTR_MASK
);
1928 t4_set_reg_field(adapter
, PL_INT_MAP0
, 0, 1 << pf
);
1932 * t4_intr_disable - disable interrupts
1933 * @adapter: the adapter whose interrupts should be disabled
1935 * Disable interrupts. We only disable the top-level interrupt
1936 * concentrators. The caller must be a PCI function managing global
1939 void t4_intr_disable(struct adapter
*adapter
)
1941 u32 pf
= SOURCEPF_GET(t4_read_reg(adapter
, PL_WHOAMI
));
1943 t4_write_reg(adapter
, MYPF_REG(PL_PF_INT_ENABLE
), 0);
1944 t4_set_reg_field(adapter
, PL_INT_MAP0
, 1 << pf
, 0);
1948 * hash_mac_addr - return the hash value of a MAC address
1949 * @addr: the 48-bit Ethernet MAC address
1951 * Hashes a MAC address according to the hash function used by HW inexact
1952 * (hash) address matching.
1954 static int hash_mac_addr(const u8
*addr
)
1956 u32 a
= ((u32
)addr
[0] << 16) | ((u32
)addr
[1] << 8) | addr
[2];
1957 u32 b
= ((u32
)addr
[3] << 16) | ((u32
)addr
[4] << 8) | addr
[5];
1965 * t4_config_rss_range - configure a portion of the RSS mapping table
1966 * @adapter: the adapter
1967 * @mbox: mbox to use for the FW command
1968 * @viid: virtual interface whose RSS subtable is to be written
1969 * @start: start entry in the table to write
1970 * @n: how many table entries to write
1971 * @rspq: values for the response queue lookup table
1972 * @nrspq: number of values in @rspq
1974 * Programs the selected part of the VI's RSS mapping table with the
1975 * provided values. If @nrspq < @n the supplied values are used repeatedly
1976 * until the full table range is populated.
1978 * The caller must ensure the values in @rspq are in the range allowed for
1981 int t4_config_rss_range(struct adapter
*adapter
, int mbox
, unsigned int viid
,
1982 int start
, int n
, const u16
*rspq
, unsigned int nrspq
)
1985 const u16
*rsp
= rspq
;
1986 const u16
*rsp_end
= rspq
+ nrspq
;
1987 struct fw_rss_ind_tbl_cmd cmd
;
1989 memset(&cmd
, 0, sizeof(cmd
));
1990 cmd
.op_to_viid
= htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD
) |
1991 FW_CMD_REQUEST
| FW_CMD_WRITE
|
1992 FW_RSS_IND_TBL_CMD_VIID(viid
));
1993 cmd
.retval_len16
= htonl(FW_LEN16(cmd
));
1995 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
1997 int nq
= min(n
, 32);
1998 __be32
*qp
= &cmd
.iq0_to_iq2
;
2000 cmd
.niqid
= htons(nq
);
2001 cmd
.startidx
= htons(start
);
2009 v
= FW_RSS_IND_TBL_CMD_IQ0(*rsp
);
2010 if (++rsp
>= rsp_end
)
2012 v
|= FW_RSS_IND_TBL_CMD_IQ1(*rsp
);
2013 if (++rsp
>= rsp_end
)
2015 v
|= FW_RSS_IND_TBL_CMD_IQ2(*rsp
);
2016 if (++rsp
>= rsp_end
)
2023 ret
= t4_wr_mbox(adapter
, mbox
, &cmd
, sizeof(cmd
), NULL
);
2031 * t4_config_glbl_rss - configure the global RSS mode
2032 * @adapter: the adapter
2033 * @mbox: mbox to use for the FW command
2034 * @mode: global RSS mode
2035 * @flags: mode-specific flags
2037 * Sets the global RSS mode.
2039 int t4_config_glbl_rss(struct adapter
*adapter
, int mbox
, unsigned int mode
,
2042 struct fw_rss_glb_config_cmd c
;
2044 memset(&c
, 0, sizeof(c
));
2045 c
.op_to_write
= htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD
) |
2046 FW_CMD_REQUEST
| FW_CMD_WRITE
);
2047 c
.retval_len16
= htonl(FW_LEN16(c
));
2048 if (mode
== FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL
) {
2049 c
.u
.manual
.mode_pkd
= htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode
));
2050 } else if (mode
== FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
) {
2051 c
.u
.basicvirtual
.mode_pkd
=
2052 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode
));
2053 c
.u
.basicvirtual
.synmapen_to_hashtoeplitz
= htonl(flags
);
2056 return t4_wr_mbox(adapter
, mbox
, &c
, sizeof(c
), NULL
);
2060 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
2061 * @adap: the adapter
2062 * @v4: holds the TCP/IP counter values
2063 * @v6: holds the TCP/IPv6 counter values
2065 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
2066 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
2068 void t4_tp_get_tcp_stats(struct adapter
*adap
, struct tp_tcp_stats
*v4
,
2069 struct tp_tcp_stats
*v6
)
2071 u32 val
[TP_MIB_TCP_RXT_SEG_LO
- TP_MIB_TCP_OUT_RST
+ 1];
2073 #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
2074 #define STAT(x) val[STAT_IDX(x)]
2075 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
2078 t4_read_indirect(adap
, TP_MIB_INDEX
, TP_MIB_DATA
, val
,
2079 ARRAY_SIZE(val
), TP_MIB_TCP_OUT_RST
);
2080 v4
->tcpOutRsts
= STAT(OUT_RST
);
2081 v4
->tcpInSegs
= STAT64(IN_SEG
);
2082 v4
->tcpOutSegs
= STAT64(OUT_SEG
);
2083 v4
->tcpRetransSegs
= STAT64(RXT_SEG
);
2086 t4_read_indirect(adap
, TP_MIB_INDEX
, TP_MIB_DATA
, val
,
2087 ARRAY_SIZE(val
), TP_MIB_TCP_V6OUT_RST
);
2088 v6
->tcpOutRsts
= STAT(OUT_RST
);
2089 v6
->tcpInSegs
= STAT64(IN_SEG
);
2090 v6
->tcpOutSegs
= STAT64(OUT_SEG
);
2091 v6
->tcpRetransSegs
= STAT64(RXT_SEG
);
2099 * t4_read_mtu_tbl - returns the values in the HW path MTU table
2100 * @adap: the adapter
2101 * @mtus: where to store the MTU values
2102 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
2104 * Reads the HW path MTU table.
2106 void t4_read_mtu_tbl(struct adapter
*adap
, u16
*mtus
, u8
*mtu_log
)
2111 for (i
= 0; i
< NMTUS
; ++i
) {
2112 t4_write_reg(adap
, TP_MTU_TABLE
,
2113 MTUINDEX(0xff) | MTUVALUE(i
));
2114 v
= t4_read_reg(adap
, TP_MTU_TABLE
);
2115 mtus
[i
] = MTUVALUE_GET(v
);
2117 mtu_log
[i
] = MTUWIDTH_GET(v
);
2122 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
2123 * @adap: the adapter
2124 * @addr: the indirect TP register address
2125 * @mask: specifies the field within the register to modify
2126 * @val: new value for the field
2128 * Sets a field of an indirect TP register to the given value.
2130 void t4_tp_wr_bits_indirect(struct adapter
*adap
, unsigned int addr
,
2131 unsigned int mask
, unsigned int val
)
2133 t4_write_reg(adap
, TP_PIO_ADDR
, addr
);
2134 val
|= t4_read_reg(adap
, TP_PIO_DATA
) & ~mask
;
2135 t4_write_reg(adap
, TP_PIO_DATA
, val
);
2139 * init_cong_ctrl - initialize congestion control parameters
2140 * @a: the alpha values for congestion control
2141 * @b: the beta values for congestion control
2143 * Initialize the congestion control parameters.
2145 static void init_cong_ctrl(unsigned short *a
, unsigned short *b
)
2147 a
[0] = a
[1] = a
[2] = a
[3] = a
[4] = a
[5] = a
[6] = a
[7] = a
[8] = 1;
2172 b
[0] = b
[1] = b
[2] = b
[3] = b
[4] = b
[5] = b
[6] = b
[7] = b
[8] = 0;
2175 b
[13] = b
[14] = b
[15] = b
[16] = 3;
2176 b
[17] = b
[18] = b
[19] = b
[20] = b
[21] = 4;
2177 b
[22] = b
[23] = b
[24] = b
[25] = b
[26] = b
[27] = 5;
2182 /* The minimum additive increment value for the congestion control table */
2183 #define CC_MIN_INCR 2U
2186 * t4_load_mtus - write the MTU and congestion control HW tables
2187 * @adap: the adapter
2188 * @mtus: the values for the MTU table
2189 * @alpha: the values for the congestion control alpha parameter
2190 * @beta: the values for the congestion control beta parameter
2192 * Write the HW MTU table with the supplied MTUs and the high-speed
2193 * congestion control table with the supplied alpha, beta, and MTUs.
2194 * We write the two tables together because the additive increments
2195 * depend on the MTUs.
2197 void t4_load_mtus(struct adapter
*adap
, const unsigned short *mtus
,
2198 const unsigned short *alpha
, const unsigned short *beta
)
2200 static const unsigned int avg_pkts
[NCCTRL_WIN
] = {
2201 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2202 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2203 28672, 40960, 57344, 81920, 114688, 163840, 229376
2208 for (i
= 0; i
< NMTUS
; ++i
) {
2209 unsigned int mtu
= mtus
[i
];
2210 unsigned int log2
= fls(mtu
);
2212 if (!(mtu
& ((1 << log2
) >> 2))) /* round */
2214 t4_write_reg(adap
, TP_MTU_TABLE
, MTUINDEX(i
) |
2215 MTUWIDTH(log2
) | MTUVALUE(mtu
));
2217 for (w
= 0; w
< NCCTRL_WIN
; ++w
) {
2220 inc
= max(((mtu
- 40) * alpha
[w
]) / avg_pkts
[w
],
2223 t4_write_reg(adap
, TP_CCTRL_TABLE
, (i
<< 21) |
2224 (w
<< 16) | (beta
[w
] << 13) | inc
);
2230 * get_mps_bg_map - return the buffer groups associated with a port
2231 * @adap: the adapter
2232 * @idx: the port index
2234 * Returns a bitmap indicating which MPS buffer groups are associated
2235 * with the given port. Bit i is set if buffer group i is used by the
2238 static unsigned int get_mps_bg_map(struct adapter
*adap
, int idx
)
2240 u32 n
= NUMPORTS_GET(t4_read_reg(adap
, MPS_CMN_CTL
));
2243 return idx
== 0 ? 0xf : 0;
2245 return idx
< 2 ? (3 << (2 * idx
)) : 0;
2250 * t4_get_port_stats - collect port statistics
2251 * @adap: the adapter
2252 * @idx: the port index
2253 * @p: the stats structure to fill
2255 * Collect statistics related to the given port from HW.
2257 void t4_get_port_stats(struct adapter
*adap
, int idx
, struct port_stats
*p
)
2259 u32 bgmap
= get_mps_bg_map(adap
, idx
);
2261 #define GET_STAT(name) \
2262 t4_read_reg64(adap, \
2263 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
2264 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
2265 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
2267 p
->tx_octets
= GET_STAT(TX_PORT_BYTES
);
2268 p
->tx_frames
= GET_STAT(TX_PORT_FRAMES
);
2269 p
->tx_bcast_frames
= GET_STAT(TX_PORT_BCAST
);
2270 p
->tx_mcast_frames
= GET_STAT(TX_PORT_MCAST
);
2271 p
->tx_ucast_frames
= GET_STAT(TX_PORT_UCAST
);
2272 p
->tx_error_frames
= GET_STAT(TX_PORT_ERROR
);
2273 p
->tx_frames_64
= GET_STAT(TX_PORT_64B
);
2274 p
->tx_frames_65_127
= GET_STAT(TX_PORT_65B_127B
);
2275 p
->tx_frames_128_255
= GET_STAT(TX_PORT_128B_255B
);
2276 p
->tx_frames_256_511
= GET_STAT(TX_PORT_256B_511B
);
2277 p
->tx_frames_512_1023
= GET_STAT(TX_PORT_512B_1023B
);
2278 p
->tx_frames_1024_1518
= GET_STAT(TX_PORT_1024B_1518B
);
2279 p
->tx_frames_1519_max
= GET_STAT(TX_PORT_1519B_MAX
);
2280 p
->tx_drop
= GET_STAT(TX_PORT_DROP
);
2281 p
->tx_pause
= GET_STAT(TX_PORT_PAUSE
);
2282 p
->tx_ppp0
= GET_STAT(TX_PORT_PPP0
);
2283 p
->tx_ppp1
= GET_STAT(TX_PORT_PPP1
);
2284 p
->tx_ppp2
= GET_STAT(TX_PORT_PPP2
);
2285 p
->tx_ppp3
= GET_STAT(TX_PORT_PPP3
);
2286 p
->tx_ppp4
= GET_STAT(TX_PORT_PPP4
);
2287 p
->tx_ppp5
= GET_STAT(TX_PORT_PPP5
);
2288 p
->tx_ppp6
= GET_STAT(TX_PORT_PPP6
);
2289 p
->tx_ppp7
= GET_STAT(TX_PORT_PPP7
);
2291 p
->rx_octets
= GET_STAT(RX_PORT_BYTES
);
2292 p
->rx_frames
= GET_STAT(RX_PORT_FRAMES
);
2293 p
->rx_bcast_frames
= GET_STAT(RX_PORT_BCAST
);
2294 p
->rx_mcast_frames
= GET_STAT(RX_PORT_MCAST
);
2295 p
->rx_ucast_frames
= GET_STAT(RX_PORT_UCAST
);
2296 p
->rx_too_long
= GET_STAT(RX_PORT_MTU_ERROR
);
2297 p
->rx_jabber
= GET_STAT(RX_PORT_MTU_CRC_ERROR
);
2298 p
->rx_fcs_err
= GET_STAT(RX_PORT_CRC_ERROR
);
2299 p
->rx_len_err
= GET_STAT(RX_PORT_LEN_ERROR
);
2300 p
->rx_symbol_err
= GET_STAT(RX_PORT_SYM_ERROR
);
2301 p
->rx_runt
= GET_STAT(RX_PORT_LESS_64B
);
2302 p
->rx_frames_64
= GET_STAT(RX_PORT_64B
);
2303 p
->rx_frames_65_127
= GET_STAT(RX_PORT_65B_127B
);
2304 p
->rx_frames_128_255
= GET_STAT(RX_PORT_128B_255B
);
2305 p
->rx_frames_256_511
= GET_STAT(RX_PORT_256B_511B
);
2306 p
->rx_frames_512_1023
= GET_STAT(RX_PORT_512B_1023B
);
2307 p
->rx_frames_1024_1518
= GET_STAT(RX_PORT_1024B_1518B
);
2308 p
->rx_frames_1519_max
= GET_STAT(RX_PORT_1519B_MAX
);
2309 p
->rx_pause
= GET_STAT(RX_PORT_PAUSE
);
2310 p
->rx_ppp0
= GET_STAT(RX_PORT_PPP0
);
2311 p
->rx_ppp1
= GET_STAT(RX_PORT_PPP1
);
2312 p
->rx_ppp2
= GET_STAT(RX_PORT_PPP2
);
2313 p
->rx_ppp3
= GET_STAT(RX_PORT_PPP3
);
2314 p
->rx_ppp4
= GET_STAT(RX_PORT_PPP4
);
2315 p
->rx_ppp5
= GET_STAT(RX_PORT_PPP5
);
2316 p
->rx_ppp6
= GET_STAT(RX_PORT_PPP6
);
2317 p
->rx_ppp7
= GET_STAT(RX_PORT_PPP7
);
2319 p
->rx_ovflow0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME
) : 0;
2320 p
->rx_ovflow1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME
) : 0;
2321 p
->rx_ovflow2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME
) : 0;
2322 p
->rx_ovflow3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME
) : 0;
2323 p
->rx_trunc0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME
) : 0;
2324 p
->rx_trunc1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME
) : 0;
2325 p
->rx_trunc2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME
) : 0;
2326 p
->rx_trunc3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME
) : 0;
2333 * t4_wol_magic_enable - enable/disable magic packet WoL
2334 * @adap: the adapter
2335 * @port: the physical port index
2336 * @addr: MAC address expected in magic packets, %NULL to disable
2338 * Enables/disables magic packet wake-on-LAN for the selected port.
2340 void t4_wol_magic_enable(struct adapter
*adap
, unsigned int port
,
2343 u32 mag_id_reg_l
, mag_id_reg_h
, port_cfg_reg
;
2345 if (is_t4(adap
->params
.chip
)) {
2346 mag_id_reg_l
= PORT_REG(port
, XGMAC_PORT_MAGIC_MACID_LO
);
2347 mag_id_reg_h
= PORT_REG(port
, XGMAC_PORT_MAGIC_MACID_HI
);
2348 port_cfg_reg
= PORT_REG(port
, XGMAC_PORT_CFG2
);
2350 mag_id_reg_l
= T5_PORT_REG(port
, MAC_PORT_MAGIC_MACID_LO
);
2351 mag_id_reg_h
= T5_PORT_REG(port
, MAC_PORT_MAGIC_MACID_HI
);
2352 port_cfg_reg
= T5_PORT_REG(port
, MAC_PORT_CFG2
);
2356 t4_write_reg(adap
, mag_id_reg_l
,
2357 (addr
[2] << 24) | (addr
[3] << 16) |
2358 (addr
[4] << 8) | addr
[5]);
2359 t4_write_reg(adap
, mag_id_reg_h
,
2360 (addr
[0] << 8) | addr
[1]);
2362 t4_set_reg_field(adap
, port_cfg_reg
, MAGICEN
,
2363 addr
? MAGICEN
: 0);
2367 * t4_wol_pat_enable - enable/disable pattern-based WoL
2368 * @adap: the adapter
2369 * @port: the physical port index
2370 * @map: bitmap of which HW pattern filters to set
2371 * @mask0: byte mask for bytes 0-63 of a packet
2372 * @mask1: byte mask for bytes 64-127 of a packet
2373 * @crc: Ethernet CRC for selected bytes
2374 * @enable: enable/disable switch
2376 * Sets the pattern filters indicated in @map to mask out the bytes
2377 * specified in @mask0/@mask1 in received packets and compare the CRC of
2378 * the resulting packet against @crc. If @enable is %true pattern-based
2379 * WoL is enabled, otherwise disabled.
2381 int t4_wol_pat_enable(struct adapter
*adap
, unsigned int port
, unsigned int map
,
2382 u64 mask0
, u64 mask1
, unsigned int crc
, bool enable
)
2387 if (is_t4(adap
->params
.chip
))
2388 port_cfg_reg
= PORT_REG(port
, XGMAC_PORT_CFG2
);
2390 port_cfg_reg
= T5_PORT_REG(port
, MAC_PORT_CFG2
);
2393 t4_set_reg_field(adap
, port_cfg_reg
, PATEN
, 0);
2399 #define EPIO_REG(name) \
2400 (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
2401 T5_PORT_REG(port, MAC_PORT_EPIO_##name))
2403 t4_write_reg(adap
, EPIO_REG(DATA1
), mask0
>> 32);
2404 t4_write_reg(adap
, EPIO_REG(DATA2
), mask1
);
2405 t4_write_reg(adap
, EPIO_REG(DATA3
), mask1
>> 32);
2407 for (i
= 0; i
< NWOL_PAT
; i
++, map
>>= 1) {
2411 /* write byte masks */
2412 t4_write_reg(adap
, EPIO_REG(DATA0
), mask0
);
2413 t4_write_reg(adap
, EPIO_REG(OP
), ADDRESS(i
) | EPIOWR
);
2414 t4_read_reg(adap
, EPIO_REG(OP
)); /* flush */
2415 if (t4_read_reg(adap
, EPIO_REG(OP
)) & SF_BUSY
)
2419 t4_write_reg(adap
, EPIO_REG(DATA0
), crc
);
2420 t4_write_reg(adap
, EPIO_REG(OP
), ADDRESS(i
+ 32) | EPIOWR
);
2421 t4_read_reg(adap
, EPIO_REG(OP
)); /* flush */
2422 if (t4_read_reg(adap
, EPIO_REG(OP
)) & SF_BUSY
)
2427 t4_set_reg_field(adap
, PORT_REG(port
, XGMAC_PORT_CFG2
), 0, PATEN
);
2431 /* t4_mk_filtdelwr - create a delete filter WR
2432 * @ftid: the filter ID
2433 * @wr: the filter work request to populate
2434 * @qid: ingress queue to receive the delete notification
2436 * Creates a filter work request to delete the supplied filter. If @qid is
2437 * negative the delete notification is suppressed.
2439 void t4_mk_filtdelwr(unsigned int ftid
, struct fw_filter_wr
*wr
, int qid
)
2441 memset(wr
, 0, sizeof(*wr
));
2442 wr
->op_pkd
= htonl(FW_WR_OP(FW_FILTER_WR
));
2443 wr
->len16_pkd
= htonl(FW_WR_LEN16(sizeof(*wr
) / 16));
2444 wr
->tid_to_iq
= htonl(V_FW_FILTER_WR_TID(ftid
) |
2445 V_FW_FILTER_WR_NOREPLY(qid
< 0));
2446 wr
->del_filter_to_l2tix
= htonl(F_FW_FILTER_WR_DEL_FILTER
);
2448 wr
->rx_chan_rx_rpl_iq
= htons(V_FW_FILTER_WR_RX_RPL_IQ(qid
));
2451 #define INIT_CMD(var, cmd, rd_wr) do { \
2452 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
2453 FW_CMD_REQUEST | FW_CMD_##rd_wr); \
2454 (var).retval_len16 = htonl(FW_LEN16(var)); \
2457 int t4_fwaddrspace_write(struct adapter
*adap
, unsigned int mbox
,
2460 struct fw_ldst_cmd c
;
2462 memset(&c
, 0, sizeof(c
));
2463 c
.op_to_addrspace
= htonl(FW_CMD_OP(FW_LDST_CMD
) | FW_CMD_REQUEST
|
2465 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE
));
2466 c
.cycles_to_len16
= htonl(FW_LEN16(c
));
2467 c
.u
.addrval
.addr
= htonl(addr
);
2468 c
.u
.addrval
.val
= htonl(val
);
2470 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2474 * t4_mem_win_read_len - read memory through PCIE memory window
2475 * @adap: the adapter
2476 * @addr: address of first byte requested aligned on 32b.
2477 * @data: len bytes to hold the data read
2478 * @len: amount of data to read from window. Must be <=
2479 * MEMWIN0_APERATURE after adjusting for 16B for T4 and
2480 * 128B for T5 alignment requirements of the the memory window.
2482 * Read len bytes of data from MC starting at @addr.
2484 int t4_mem_win_read_len(struct adapter
*adap
, u32 addr
, __be32
*data
, int len
)
2487 u32 win_pf
= is_t4(adap
->params
.chip
) ? 0 : V_PFNUM(adap
->fn
);
2489 /* Align on a 2KB boundary.
2491 off
= addr
& MEMWIN0_APERTURE
;
2492 if ((addr
& 3) || (len
+ off
) > MEMWIN0_APERTURE
)
2495 t4_write_reg(adap
, PCIE_MEM_ACCESS_OFFSET
,
2496 (addr
& ~MEMWIN0_APERTURE
) | win_pf
);
2497 t4_read_reg(adap
, PCIE_MEM_ACCESS_OFFSET
);
2499 for (i
= 0; i
< len
; i
+= 4)
2500 *data
++ = (__force __be32
) t4_read_reg(adap
,
2501 (MEMWIN0_BASE
+ off
+ i
));
2507 * t4_mdio_rd - read a PHY register through MDIO
2508 * @adap: the adapter
2509 * @mbox: mailbox to use for the FW command
2510 * @phy_addr: the PHY address
2511 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2512 * @reg: the register to read
2513 * @valp: where to store the value
2515 * Issues a FW command through the given mailbox to read a PHY register.
2517 int t4_mdio_rd(struct adapter
*adap
, unsigned int mbox
, unsigned int phy_addr
,
2518 unsigned int mmd
, unsigned int reg
, u16
*valp
)
2521 struct fw_ldst_cmd c
;
2523 memset(&c
, 0, sizeof(c
));
2524 c
.op_to_addrspace
= htonl(FW_CMD_OP(FW_LDST_CMD
) | FW_CMD_REQUEST
|
2525 FW_CMD_READ
| FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO
));
2526 c
.cycles_to_len16
= htonl(FW_LEN16(c
));
2527 c
.u
.mdio
.paddr_mmd
= htons(FW_LDST_CMD_PADDR(phy_addr
) |
2528 FW_LDST_CMD_MMD(mmd
));
2529 c
.u
.mdio
.raddr
= htons(reg
);
2531 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
2533 *valp
= ntohs(c
.u
.mdio
.rval
);
2538 * t4_mdio_wr - write a PHY register through MDIO
2539 * @adap: the adapter
2540 * @mbox: mailbox to use for the FW command
2541 * @phy_addr: the PHY address
2542 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2543 * @reg: the register to write
2544 * @valp: value to write
2546 * Issues a FW command through the given mailbox to write a PHY register.
2548 int t4_mdio_wr(struct adapter
*adap
, unsigned int mbox
, unsigned int phy_addr
,
2549 unsigned int mmd
, unsigned int reg
, u16 val
)
2551 struct fw_ldst_cmd c
;
2553 memset(&c
, 0, sizeof(c
));
2554 c
.op_to_addrspace
= htonl(FW_CMD_OP(FW_LDST_CMD
) | FW_CMD_REQUEST
|
2555 FW_CMD_WRITE
| FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO
));
2556 c
.cycles_to_len16
= htonl(FW_LEN16(c
));
2557 c
.u
.mdio
.paddr_mmd
= htons(FW_LDST_CMD_PADDR(phy_addr
) |
2558 FW_LDST_CMD_MMD(mmd
));
2559 c
.u
.mdio
.raddr
= htons(reg
);
2560 c
.u
.mdio
.rval
= htons(val
);
2562 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2566 * t4_fw_hello - establish communication with FW
2567 * @adap: the adapter
2568 * @mbox: mailbox to use for the FW command
2569 * @evt_mbox: mailbox to receive async FW events
2570 * @master: specifies the caller's willingness to be the device master
2571 * @state: returns the current device state (if non-NULL)
2573 * Issues a command to establish communication with FW. Returns either
2574 * an error (negative integer) or the mailbox of the Master PF.
2576 int t4_fw_hello(struct adapter
*adap
, unsigned int mbox
, unsigned int evt_mbox
,
2577 enum dev_master master
, enum dev_state
*state
)
2580 struct fw_hello_cmd c
;
2582 unsigned int master_mbox
;
2583 int retries
= FW_CMD_HELLO_RETRIES
;
2586 memset(&c
, 0, sizeof(c
));
2587 INIT_CMD(c
, HELLO
, WRITE
);
2588 c
.err_to_clearinit
= htonl(
2589 FW_HELLO_CMD_MASTERDIS(master
== MASTER_CANT
) |
2590 FW_HELLO_CMD_MASTERFORCE(master
== MASTER_MUST
) |
2591 FW_HELLO_CMD_MBMASTER(master
== MASTER_MUST
? mbox
:
2592 FW_HELLO_CMD_MBMASTER_MASK
) |
2593 FW_HELLO_CMD_MBASYNCNOT(evt_mbox
) |
2594 FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os
) |
2595 FW_HELLO_CMD_CLEARINIT
);
2598 * Issue the HELLO command to the firmware. If it's not successful
2599 * but indicates that we got a "busy" or "timeout" condition, retry
2600 * the HELLO until we exhaust our retry limit.
2602 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
2604 if ((ret
== -EBUSY
|| ret
== -ETIMEDOUT
) && retries
-- > 0)
2609 v
= ntohl(c
.err_to_clearinit
);
2610 master_mbox
= FW_HELLO_CMD_MBMASTER_GET(v
);
2612 if (v
& FW_HELLO_CMD_ERR
)
2613 *state
= DEV_STATE_ERR
;
2614 else if (v
& FW_HELLO_CMD_INIT
)
2615 *state
= DEV_STATE_INIT
;
2617 *state
= DEV_STATE_UNINIT
;
2621 * If we're not the Master PF then we need to wait around for the
2622 * Master PF Driver to finish setting up the adapter.
2624 * Note that we also do this wait if we're a non-Master-capable PF and
2625 * there is no current Master PF; a Master PF may show up momentarily
2626 * and we wouldn't want to fail pointlessly. (This can happen when an
2627 * OS loads lots of different drivers rapidly at the same time). In
2628 * this case, the Master PF returned by the firmware will be
2629 * FW_PCIE_FW_MASTER_MASK so the test below will work ...
2631 if ((v
& (FW_HELLO_CMD_ERR
|FW_HELLO_CMD_INIT
)) == 0 &&
2632 master_mbox
!= mbox
) {
2633 int waiting
= FW_CMD_HELLO_TIMEOUT
;
2636 * Wait for the firmware to either indicate an error or
2637 * initialized state. If we see either of these we bail out
2638 * and report the issue to the caller. If we exhaust the
2639 * "hello timeout" and we haven't exhausted our retries, try
2640 * again. Otherwise bail with a timeout error.
2649 * If neither Error nor Initialialized are indicated
2650 * by the firmware keep waiting till we exaust our
2651 * timeout ... and then retry if we haven't exhausted
2654 pcie_fw
= t4_read_reg(adap
, MA_PCIE_FW
);
2655 if (!(pcie_fw
& (FW_PCIE_FW_ERR
|FW_PCIE_FW_INIT
))) {
2666 * We either have an Error or Initialized condition
2667 * report errors preferentially.
2670 if (pcie_fw
& FW_PCIE_FW_ERR
)
2671 *state
= DEV_STATE_ERR
;
2672 else if (pcie_fw
& FW_PCIE_FW_INIT
)
2673 *state
= DEV_STATE_INIT
;
2677 * If we arrived before a Master PF was selected and
2678 * there's not a valid Master PF, grab its identity
2681 if (master_mbox
== FW_PCIE_FW_MASTER_MASK
&&
2682 (pcie_fw
& FW_PCIE_FW_MASTER_VLD
))
2683 master_mbox
= FW_PCIE_FW_MASTER_GET(pcie_fw
);
2692 * t4_fw_bye - end communication with FW
2693 * @adap: the adapter
2694 * @mbox: mailbox to use for the FW command
2696 * Issues a command to terminate communication with FW.
2698 int t4_fw_bye(struct adapter
*adap
, unsigned int mbox
)
2700 struct fw_bye_cmd c
;
2702 memset(&c
, 0, sizeof(c
));
2703 INIT_CMD(c
, BYE
, WRITE
);
2704 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2708 * t4_init_cmd - ask FW to initialize the device
2709 * @adap: the adapter
2710 * @mbox: mailbox to use for the FW command
2712 * Issues a command to FW to partially initialize the device. This
2713 * performs initialization that generally doesn't depend on user input.
2715 int t4_early_init(struct adapter
*adap
, unsigned int mbox
)
2717 struct fw_initialize_cmd c
;
2719 memset(&c
, 0, sizeof(c
));
2720 INIT_CMD(c
, INITIALIZE
, WRITE
);
2721 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2725 * t4_fw_reset - issue a reset to FW
2726 * @adap: the adapter
2727 * @mbox: mailbox to use for the FW command
2728 * @reset: specifies the type of reset to perform
2730 * Issues a reset command of the specified type to FW.
2732 int t4_fw_reset(struct adapter
*adap
, unsigned int mbox
, int reset
)
2734 struct fw_reset_cmd c
;
2736 memset(&c
, 0, sizeof(c
));
2737 INIT_CMD(c
, RESET
, WRITE
);
2738 c
.val
= htonl(reset
);
2739 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2743 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2744 * @adap: the adapter
2745 * @mbox: mailbox to use for the FW RESET command (if desired)
2746 * @force: force uP into RESET even if FW RESET command fails
2748 * Issues a RESET command to firmware (if desired) with a HALT indication
2749 * and then puts the microprocessor into RESET state. The RESET command
2750 * will only be issued if a legitimate mailbox is provided (mbox <=
2751 * FW_PCIE_FW_MASTER_MASK).
2753 * This is generally used in order for the host to safely manipulate the
2754 * adapter without fear of conflicting with whatever the firmware might
2755 * be doing. The only way out of this state is to RESTART the firmware
2758 static int t4_fw_halt(struct adapter
*adap
, unsigned int mbox
, int force
)
2763 * If a legitimate mailbox is provided, issue a RESET command
2764 * with a HALT indication.
2766 if (mbox
<= FW_PCIE_FW_MASTER_MASK
) {
2767 struct fw_reset_cmd c
;
2769 memset(&c
, 0, sizeof(c
));
2770 INIT_CMD(c
, RESET
, WRITE
);
2771 c
.val
= htonl(PIORST
| PIORSTMODE
);
2772 c
.halt_pkd
= htonl(FW_RESET_CMD_HALT(1U));
2773 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2777 * Normally we won't complete the operation if the firmware RESET
2778 * command fails but if our caller insists we'll go ahead and put the
2779 * uP into RESET. This can be useful if the firmware is hung or even
2780 * missing ... We'll have to take the risk of putting the uP into
2781 * RESET without the cooperation of firmware in that case.
2783 * We also force the firmware's HALT flag to be on in case we bypassed
2784 * the firmware RESET command above or we're dealing with old firmware
2785 * which doesn't have the HALT capability. This will serve as a flag
2786 * for the incoming firmware to know that it's coming out of a HALT
2787 * rather than a RESET ... if it's new enough to understand that ...
2789 if (ret
== 0 || force
) {
2790 t4_set_reg_field(adap
, CIM_BOOT_CFG
, UPCRST
, UPCRST
);
2791 t4_set_reg_field(adap
, PCIE_FW
, FW_PCIE_FW_HALT
,
2796 * And we always return the result of the firmware RESET command
2797 * even when we force the uP into RESET ...
2803 * t4_fw_restart - restart the firmware by taking the uP out of RESET
2804 * @adap: the adapter
2805 * @reset: if we want to do a RESET to restart things
2807 * Restart firmware previously halted by t4_fw_halt(). On successful
2808 * return the previous PF Master remains as the new PF Master and there
2809 * is no need to issue a new HELLO command, etc.
2811 * We do this in two ways:
2813 * 1. If we're dealing with newer firmware we'll simply want to take
2814 * the chip's microprocessor out of RESET. This will cause the
2815 * firmware to start up from its start vector. And then we'll loop
2816 * until the firmware indicates it's started again (PCIE_FW.HALT
2817 * reset to 0) or we timeout.
2819 * 2. If we're dealing with older firmware then we'll need to RESET
2820 * the chip since older firmware won't recognize the PCIE_FW.HALT
2821 * flag and automatically RESET itself on startup.
2823 static int t4_fw_restart(struct adapter
*adap
, unsigned int mbox
, int reset
)
2827 * Since we're directing the RESET instead of the firmware
2828 * doing it automatically, we need to clear the PCIE_FW.HALT
2831 t4_set_reg_field(adap
, PCIE_FW
, FW_PCIE_FW_HALT
, 0);
2834 * If we've been given a valid mailbox, first try to get the
2835 * firmware to do the RESET. If that works, great and we can
2836 * return success. Otherwise, if we haven't been given a
2837 * valid mailbox or the RESET command failed, fall back to
2838 * hitting the chip with a hammer.
2840 if (mbox
<= FW_PCIE_FW_MASTER_MASK
) {
2841 t4_set_reg_field(adap
, CIM_BOOT_CFG
, UPCRST
, 0);
2843 if (t4_fw_reset(adap
, mbox
,
2844 PIORST
| PIORSTMODE
) == 0)
2848 t4_write_reg(adap
, PL_RST
, PIORST
| PIORSTMODE
);
2853 t4_set_reg_field(adap
, CIM_BOOT_CFG
, UPCRST
, 0);
2854 for (ms
= 0; ms
< FW_CMD_MAX_TIMEOUT
; ) {
2855 if (!(t4_read_reg(adap
, PCIE_FW
) & FW_PCIE_FW_HALT
))
2866 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
2867 * @adap: the adapter
2868 * @mbox: mailbox to use for the FW RESET command (if desired)
2869 * @fw_data: the firmware image to write
2871 * @force: force upgrade even if firmware doesn't cooperate
2873 * Perform all of the steps necessary for upgrading an adapter's
2874 * firmware image. Normally this requires the cooperation of the
2875 * existing firmware in order to halt all existing activities
2876 * but if an invalid mailbox token is passed in we skip that step
2877 * (though we'll still put the adapter microprocessor into RESET in
2880 * On successful return the new firmware will have been loaded and
2881 * the adapter will have been fully RESET losing all previous setup
2882 * state. On unsuccessful return the adapter may be completely hosed ...
2883 * positive errno indicates that the adapter is ~probably~ intact, a
2884 * negative errno indicates that things are looking bad ...
2886 static int t4_fw_upgrade(struct adapter
*adap
, unsigned int mbox
,
2887 const u8
*fw_data
, unsigned int size
, int force
)
2889 const struct fw_hdr
*fw_hdr
= (const struct fw_hdr
*)fw_data
;
2892 ret
= t4_fw_halt(adap
, mbox
, force
);
2893 if (ret
< 0 && !force
)
2896 ret
= t4_load_fw(adap
, fw_data
, size
);
2901 * Older versions of the firmware don't understand the new
2902 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
2903 * restart. So for newly loaded older firmware we'll have to do the
2904 * RESET for it so it starts up on a clean slate. We can tell if
2905 * the newly loaded firmware will handle this right by checking
2906 * its header flags to see if it advertises the capability.
2908 reset
= ((ntohl(fw_hdr
->flags
) & FW_HDR_FLAGS_RESET_HALT
) == 0);
2909 return t4_fw_restart(adap
, mbox
, reset
);
2913 * t4_fixup_host_params - fix up host-dependent parameters
2914 * @adap: the adapter
2915 * @page_size: the host's Base Page Size
2916 * @cache_line_size: the host's Cache Line Size
2918 * Various registers in T4 contain values which are dependent on the
2919 * host's Base Page and Cache Line Sizes. This function will fix all of
2920 * those registers with the appropriate values as passed in ...
2922 int t4_fixup_host_params(struct adapter
*adap
, unsigned int page_size
,
2923 unsigned int cache_line_size
)
2925 unsigned int page_shift
= fls(page_size
) - 1;
2926 unsigned int sge_hps
= page_shift
- 10;
2927 unsigned int stat_len
= cache_line_size
> 64 ? 128 : 64;
2928 unsigned int fl_align
= cache_line_size
< 32 ? 32 : cache_line_size
;
2929 unsigned int fl_align_log
= fls(fl_align
) - 1;
2931 t4_write_reg(adap
, SGE_HOST_PAGE_SIZE
,
2932 HOSTPAGESIZEPF0(sge_hps
) |
2933 HOSTPAGESIZEPF1(sge_hps
) |
2934 HOSTPAGESIZEPF2(sge_hps
) |
2935 HOSTPAGESIZEPF3(sge_hps
) |
2936 HOSTPAGESIZEPF4(sge_hps
) |
2937 HOSTPAGESIZEPF5(sge_hps
) |
2938 HOSTPAGESIZEPF6(sge_hps
) |
2939 HOSTPAGESIZEPF7(sge_hps
));
2941 t4_set_reg_field(adap
, SGE_CONTROL
,
2942 INGPADBOUNDARY_MASK
|
2943 EGRSTATUSPAGESIZE_MASK
,
2944 INGPADBOUNDARY(fl_align_log
- 5) |
2945 EGRSTATUSPAGESIZE(stat_len
!= 64));
2948 * Adjust various SGE Free List Host Buffer Sizes.
2950 * This is something of a crock since we're using fixed indices into
2951 * the array which are also known by the sge.c code and the T4
2952 * Firmware Configuration File. We need to come up with a much better
2953 * approach to managing this array. For now, the first four entries
2958 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
2959 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
2961 * For the single-MTU buffers in unpacked mode we need to include
2962 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
2963 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
2964 * Padding boundry. All of these are accommodated in the Factory
2965 * Default Firmware Configuration File but we need to adjust it for
2966 * this host's cache line size.
2968 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0
, page_size
);
2969 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE2
,
2970 (t4_read_reg(adap
, SGE_FL_BUFFER_SIZE2
) + fl_align
-1)
2972 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE3
,
2973 (t4_read_reg(adap
, SGE_FL_BUFFER_SIZE3
) + fl_align
-1)
2976 t4_write_reg(adap
, ULP_RX_TDDP_PSZ
, HPZ0(page_shift
- 12));
2982 * t4_fw_initialize - ask FW to initialize the device
2983 * @adap: the adapter
2984 * @mbox: mailbox to use for the FW command
2986 * Issues a command to FW to partially initialize the device. This
2987 * performs initialization that generally doesn't depend on user input.
2989 int t4_fw_initialize(struct adapter
*adap
, unsigned int mbox
)
2991 struct fw_initialize_cmd c
;
2993 memset(&c
, 0, sizeof(c
));
2994 INIT_CMD(c
, INITIALIZE
, WRITE
);
2995 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
2999 * t4_query_params - query FW or device parameters
3000 * @adap: the adapter
3001 * @mbox: mailbox to use for the FW command
3004 * @nparams: the number of parameters
3005 * @params: the parameter names
3006 * @val: the parameter values
3008 * Reads the value of FW or device parameters. Up to 7 parameters can be
3011 int t4_query_params(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3012 unsigned int vf
, unsigned int nparams
, const u32
*params
,
3016 struct fw_params_cmd c
;
3017 __be32
*p
= &c
.param
[0].mnem
;
3022 memset(&c
, 0, sizeof(c
));
3023 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_PARAMS_CMD
) | FW_CMD_REQUEST
|
3024 FW_CMD_READ
| FW_PARAMS_CMD_PFN(pf
) |
3025 FW_PARAMS_CMD_VFN(vf
));
3026 c
.retval_len16
= htonl(FW_LEN16(c
));
3027 for (i
= 0; i
< nparams
; i
++, p
+= 2)
3028 *p
= htonl(*params
++);
3030 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
3032 for (i
= 0, p
= &c
.param
[0].val
; i
< nparams
; i
++, p
+= 2)
3038 * t4_set_params - sets FW or device parameters
3039 * @adap: the adapter
3040 * @mbox: mailbox to use for the FW command
3043 * @nparams: the number of parameters
3044 * @params: the parameter names
3045 * @val: the parameter values
3047 * Sets the value of FW or device parameters. Up to 7 parameters can be
3048 * specified at once.
3050 int t4_set_params(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3051 unsigned int vf
, unsigned int nparams
, const u32
*params
,
3054 struct fw_params_cmd c
;
3055 __be32
*p
= &c
.param
[0].mnem
;
3060 memset(&c
, 0, sizeof(c
));
3061 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_PARAMS_CMD
) | FW_CMD_REQUEST
|
3062 FW_CMD_WRITE
| FW_PARAMS_CMD_PFN(pf
) |
3063 FW_PARAMS_CMD_VFN(vf
));
3064 c
.retval_len16
= htonl(FW_LEN16(c
));
3066 *p
++ = htonl(*params
++);
3067 *p
++ = htonl(*val
++);
3070 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3074 * t4_cfg_pfvf - configure PF/VF resource limits
3075 * @adap: the adapter
3076 * @mbox: mailbox to use for the FW command
3077 * @pf: the PF being configured
3078 * @vf: the VF being configured
3079 * @txq: the max number of egress queues
3080 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
3081 * @rxqi: the max number of interrupt-capable ingress queues
3082 * @rxq: the max number of interruptless ingress queues
3083 * @tc: the PCI traffic class
3084 * @vi: the max number of virtual interfaces
3085 * @cmask: the channel access rights mask for the PF/VF
3086 * @pmask: the port access rights mask for the PF/VF
3087 * @nexact: the maximum number of exact MPS filters
3088 * @rcaps: read capabilities
3089 * @wxcaps: write/execute capabilities
3091 * Configures resource limits and capabilities for a physical or virtual
3094 int t4_cfg_pfvf(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3095 unsigned int vf
, unsigned int txq
, unsigned int txq_eth_ctrl
,
3096 unsigned int rxqi
, unsigned int rxq
, unsigned int tc
,
3097 unsigned int vi
, unsigned int cmask
, unsigned int pmask
,
3098 unsigned int nexact
, unsigned int rcaps
, unsigned int wxcaps
)
3100 struct fw_pfvf_cmd c
;
3102 memset(&c
, 0, sizeof(c
));
3103 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_PFVF_CMD
) | FW_CMD_REQUEST
|
3104 FW_CMD_WRITE
| FW_PFVF_CMD_PFN(pf
) |
3105 FW_PFVF_CMD_VFN(vf
));
3106 c
.retval_len16
= htonl(FW_LEN16(c
));
3107 c
.niqflint_niq
= htonl(FW_PFVF_CMD_NIQFLINT(rxqi
) |
3108 FW_PFVF_CMD_NIQ(rxq
));
3109 c
.type_to_neq
= htonl(FW_PFVF_CMD_CMASK(cmask
) |
3110 FW_PFVF_CMD_PMASK(pmask
) |
3111 FW_PFVF_CMD_NEQ(txq
));
3112 c
.tc_to_nexactf
= htonl(FW_PFVF_CMD_TC(tc
) | FW_PFVF_CMD_NVI(vi
) |
3113 FW_PFVF_CMD_NEXACTF(nexact
));
3114 c
.r_caps_to_nethctrl
= htonl(FW_PFVF_CMD_R_CAPS(rcaps
) |
3115 FW_PFVF_CMD_WX_CAPS(wxcaps
) |
3116 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl
));
3117 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3121 * t4_alloc_vi - allocate a virtual interface
3122 * @adap: the adapter
3123 * @mbox: mailbox to use for the FW command
3124 * @port: physical port associated with the VI
3125 * @pf: the PF owning the VI
3126 * @vf: the VF owning the VI
3127 * @nmac: number of MAC addresses needed (1 to 5)
3128 * @mac: the MAC addresses of the VI
3129 * @rss_size: size of RSS table slice associated with this VI
3131 * Allocates a virtual interface for the given physical port. If @mac is
3132 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3133 * @mac should be large enough to hold @nmac Ethernet addresses, they are
3134 * stored consecutively so the space needed is @nmac * 6 bytes.
3135 * Returns a negative error number or the non-negative VI id.
3137 int t4_alloc_vi(struct adapter
*adap
, unsigned int mbox
, unsigned int port
,
3138 unsigned int pf
, unsigned int vf
, unsigned int nmac
, u8
*mac
,
3139 unsigned int *rss_size
)
3144 memset(&c
, 0, sizeof(c
));
3145 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_VI_CMD
) | FW_CMD_REQUEST
|
3146 FW_CMD_WRITE
| FW_CMD_EXEC
|
3147 FW_VI_CMD_PFN(pf
) | FW_VI_CMD_VFN(vf
));
3148 c
.alloc_to_len16
= htonl(FW_VI_CMD_ALLOC
| FW_LEN16(c
));
3149 c
.portid_pkd
= FW_VI_CMD_PORTID(port
);
3152 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
3157 memcpy(mac
, c
.mac
, sizeof(c
.mac
));
3160 memcpy(mac
+ 24, c
.nmac3
, sizeof(c
.nmac3
));
3162 memcpy(mac
+ 18, c
.nmac2
, sizeof(c
.nmac2
));
3164 memcpy(mac
+ 12, c
.nmac1
, sizeof(c
.nmac1
));
3166 memcpy(mac
+ 6, c
.nmac0
, sizeof(c
.nmac0
));
3170 *rss_size
= FW_VI_CMD_RSSSIZE_GET(ntohs(c
.rsssize_pkd
));
3171 return FW_VI_CMD_VIID_GET(ntohs(c
.type_viid
));
3175 * t4_set_rxmode - set Rx properties of a virtual interface
3176 * @adap: the adapter
3177 * @mbox: mailbox to use for the FW command
3179 * @mtu: the new MTU or -1
3180 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3181 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3182 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3183 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
3184 * @sleep_ok: if true we may sleep while awaiting command completion
3186 * Sets Rx properties of a virtual interface.
3188 int t4_set_rxmode(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
3189 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
3192 struct fw_vi_rxmode_cmd c
;
3194 /* convert to FW values */
3196 mtu
= FW_RXMODE_MTU_NO_CHG
;
3198 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_MASK
;
3200 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_MASK
;
3202 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_MASK
;
3204 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_MASK
;
3206 memset(&c
, 0, sizeof(c
));
3207 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_RXMODE_CMD
) | FW_CMD_REQUEST
|
3208 FW_CMD_WRITE
| FW_VI_RXMODE_CMD_VIID(viid
));
3209 c
.retval_len16
= htonl(FW_LEN16(c
));
3210 c
.mtu_to_vlanexen
= htonl(FW_VI_RXMODE_CMD_MTU(mtu
) |
3211 FW_VI_RXMODE_CMD_PROMISCEN(promisc
) |
3212 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi
) |
3213 FW_VI_RXMODE_CMD_BROADCASTEN(bcast
) |
3214 FW_VI_RXMODE_CMD_VLANEXEN(vlanex
));
3215 return t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), NULL
, sleep_ok
);
3219 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
3220 * @adap: the adapter
3221 * @mbox: mailbox to use for the FW command
3223 * @free: if true any existing filters for this VI id are first removed
3224 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
3225 * @addr: the MAC address(es)
3226 * @idx: where to store the index of each allocated filter
3227 * @hash: pointer to hash address filter bitmap
3228 * @sleep_ok: call is allowed to sleep
3230 * Allocates an exact-match filter for each of the supplied addresses and
3231 * sets it to the corresponding address. If @idx is not %NULL it should
3232 * have at least @naddr entries, each of which will be set to the index of
3233 * the filter allocated for the corresponding MAC address. If a filter
3234 * could not be allocated for an address its index is set to 0xffff.
3235 * If @hash is not %NULL addresses that fail to allocate an exact filter
3236 * are hashed and update the hash filter bitmap pointed at by @hash.
3238 * Returns a negative error number or the number of filters allocated.
3240 int t4_alloc_mac_filt(struct adapter
*adap
, unsigned int mbox
,
3241 unsigned int viid
, bool free
, unsigned int naddr
,
3242 const u8
**addr
, u16
*idx
, u64
*hash
, bool sleep_ok
)
3245 struct fw_vi_mac_cmd c
;
3246 struct fw_vi_mac_exact
*p
;
3247 unsigned int max_naddr
= is_t4(adap
->params
.chip
) ?
3248 NUM_MPS_CLS_SRAM_L_INSTANCES
:
3249 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
3254 memset(&c
, 0, sizeof(c
));
3255 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_MAC_CMD
) | FW_CMD_REQUEST
|
3256 FW_CMD_WRITE
| (free
? FW_CMD_EXEC
: 0) |
3257 FW_VI_MAC_CMD_VIID(viid
));
3258 c
.freemacs_to_len16
= htonl(FW_VI_MAC_CMD_FREEMACS(free
) |
3259 FW_CMD_LEN16((naddr
+ 2) / 2));
3261 for (i
= 0, p
= c
.u
.exact
; i
< naddr
; i
++, p
++) {
3262 p
->valid_to_idx
= htons(FW_VI_MAC_CMD_VALID
|
3263 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC
));
3264 memcpy(p
->macaddr
, addr
[i
], sizeof(p
->macaddr
));
3267 ret
= t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
3271 for (i
= 0, p
= c
.u
.exact
; i
< naddr
; i
++, p
++) {
3272 u16 index
= FW_VI_MAC_CMD_IDX_GET(ntohs(p
->valid_to_idx
));
3275 idx
[i
] = index
>= max_naddr
? 0xffff : index
;
3276 if (index
< max_naddr
)
3279 *hash
|= (1ULL << hash_mac_addr(addr
[i
]));
3285 * t4_change_mac - modifies the exact-match filter for a MAC address
3286 * @adap: the adapter
3287 * @mbox: mailbox to use for the FW command
3289 * @idx: index of existing filter for old value of MAC address, or -1
3290 * @addr: the new MAC address value
3291 * @persist: whether a new MAC allocation should be persistent
3292 * @add_smt: if true also add the address to the HW SMT
3294 * Modifies an exact-match filter and sets it to the new MAC address.
3295 * Note that in general it is not possible to modify the value of a given
3296 * filter so the generic way to modify an address filter is to free the one
3297 * being used by the old address value and allocate a new filter for the
3298 * new address value. @idx can be -1 if the address is a new addition.
3300 * Returns a negative error number or the index of the filter with the new
3303 int t4_change_mac(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
3304 int idx
, const u8
*addr
, bool persist
, bool add_smt
)
3307 struct fw_vi_mac_cmd c
;
3308 struct fw_vi_mac_exact
*p
= c
.u
.exact
;
3309 unsigned int max_mac_addr
= is_t4(adap
->params
.chip
) ?
3310 NUM_MPS_CLS_SRAM_L_INSTANCES
:
3311 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
3313 if (idx
< 0) /* new allocation */
3314 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
3315 mode
= add_smt
? FW_VI_MAC_SMT_AND_MPSTCAM
: FW_VI_MAC_MPS_TCAM_ENTRY
;
3317 memset(&c
, 0, sizeof(c
));
3318 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_MAC_CMD
) | FW_CMD_REQUEST
|
3319 FW_CMD_WRITE
| FW_VI_MAC_CMD_VIID(viid
));
3320 c
.freemacs_to_len16
= htonl(FW_CMD_LEN16(1));
3321 p
->valid_to_idx
= htons(FW_VI_MAC_CMD_VALID
|
3322 FW_VI_MAC_CMD_SMAC_RESULT(mode
) |
3323 FW_VI_MAC_CMD_IDX(idx
));
3324 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
3326 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
3328 ret
= FW_VI_MAC_CMD_IDX_GET(ntohs(p
->valid_to_idx
));
3329 if (ret
>= max_mac_addr
)
3336 * t4_set_addr_hash - program the MAC inexact-match hash filter
3337 * @adap: the adapter
3338 * @mbox: mailbox to use for the FW command
3340 * @ucast: whether the hash filter should also match unicast addresses
3341 * @vec: the value to be written to the hash filter
3342 * @sleep_ok: call is allowed to sleep
3344 * Sets the 64-bit inexact-match hash filter for a virtual interface.
3346 int t4_set_addr_hash(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
3347 bool ucast
, u64 vec
, bool sleep_ok
)
3349 struct fw_vi_mac_cmd c
;
3351 memset(&c
, 0, sizeof(c
));
3352 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_MAC_CMD
) | FW_CMD_REQUEST
|
3353 FW_CMD_WRITE
| FW_VI_ENABLE_CMD_VIID(viid
));
3354 c
.freemacs_to_len16
= htonl(FW_VI_MAC_CMD_HASHVECEN
|
3355 FW_VI_MAC_CMD_HASHUNIEN(ucast
) |
3357 c
.u
.hash
.hashvec
= cpu_to_be64(vec
);
3358 return t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), NULL
, sleep_ok
);
3362 * t4_enable_vi - enable/disable a virtual interface
3363 * @adap: the adapter
3364 * @mbox: mailbox to use for the FW command
3366 * @rx_en: 1=enable Rx, 0=disable Rx
3367 * @tx_en: 1=enable Tx, 0=disable Tx
3369 * Enables/disables a virtual interface.
3371 int t4_enable_vi(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
3372 bool rx_en
, bool tx_en
)
3374 struct fw_vi_enable_cmd c
;
3376 memset(&c
, 0, sizeof(c
));
3377 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_ENABLE_CMD
) | FW_CMD_REQUEST
|
3378 FW_CMD_EXEC
| FW_VI_ENABLE_CMD_VIID(viid
));
3379 c
.ien_to_len16
= htonl(FW_VI_ENABLE_CMD_IEN(rx_en
) |
3380 FW_VI_ENABLE_CMD_EEN(tx_en
) | FW_LEN16(c
));
3381 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3385 * t4_identify_port - identify a VI's port by blinking its LED
3386 * @adap: the adapter
3387 * @mbox: mailbox to use for the FW command
3389 * @nblinks: how many times to blink LED at 2.5 Hz
3391 * Identifies a VI's port by blinking its LED.
3393 int t4_identify_port(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
3394 unsigned int nblinks
)
3396 struct fw_vi_enable_cmd c
;
3398 memset(&c
, 0, sizeof(c
));
3399 c
.op_to_viid
= htonl(FW_CMD_OP(FW_VI_ENABLE_CMD
) | FW_CMD_REQUEST
|
3400 FW_CMD_EXEC
| FW_VI_ENABLE_CMD_VIID(viid
));
3401 c
.ien_to_len16
= htonl(FW_VI_ENABLE_CMD_LED
| FW_LEN16(c
));
3402 c
.blinkdur
= htons(nblinks
);
3403 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3407 * t4_iq_free - free an ingress queue and its FLs
3408 * @adap: the adapter
3409 * @mbox: mailbox to use for the FW command
3410 * @pf: the PF owning the queues
3411 * @vf: the VF owning the queues
3412 * @iqtype: the ingress queue type
3413 * @iqid: ingress queue id
3414 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3415 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3417 * Frees an ingress queue and its associated FLs, if any.
3419 int t4_iq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3420 unsigned int vf
, unsigned int iqtype
, unsigned int iqid
,
3421 unsigned int fl0id
, unsigned int fl1id
)
3425 memset(&c
, 0, sizeof(c
));
3426 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_IQ_CMD
) | FW_CMD_REQUEST
|
3427 FW_CMD_EXEC
| FW_IQ_CMD_PFN(pf
) |
3429 c
.alloc_to_len16
= htonl(FW_IQ_CMD_FREE
| FW_LEN16(c
));
3430 c
.type_to_iqandstindex
= htonl(FW_IQ_CMD_TYPE(iqtype
));
3431 c
.iqid
= htons(iqid
);
3432 c
.fl0id
= htons(fl0id
);
3433 c
.fl1id
= htons(fl1id
);
3434 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3438 * t4_eth_eq_free - free an Ethernet egress queue
3439 * @adap: the adapter
3440 * @mbox: mailbox to use for the FW command
3441 * @pf: the PF owning the queue
3442 * @vf: the VF owning the queue
3443 * @eqid: egress queue id
3445 * Frees an Ethernet egress queue.
3447 int t4_eth_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3448 unsigned int vf
, unsigned int eqid
)
3450 struct fw_eq_eth_cmd c
;
3452 memset(&c
, 0, sizeof(c
));
3453 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_ETH_CMD
) | FW_CMD_REQUEST
|
3454 FW_CMD_EXEC
| FW_EQ_ETH_CMD_PFN(pf
) |
3455 FW_EQ_ETH_CMD_VFN(vf
));
3456 c
.alloc_to_len16
= htonl(FW_EQ_ETH_CMD_FREE
| FW_LEN16(c
));
3457 c
.eqid_pkd
= htonl(FW_EQ_ETH_CMD_EQID(eqid
));
3458 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3462 * t4_ctrl_eq_free - free a control egress queue
3463 * @adap: the adapter
3464 * @mbox: mailbox to use for the FW command
3465 * @pf: the PF owning the queue
3466 * @vf: the VF owning the queue
3467 * @eqid: egress queue id
3469 * Frees a control egress queue.
3471 int t4_ctrl_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3472 unsigned int vf
, unsigned int eqid
)
3474 struct fw_eq_ctrl_cmd c
;
3476 memset(&c
, 0, sizeof(c
));
3477 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_CTRL_CMD
) | FW_CMD_REQUEST
|
3478 FW_CMD_EXEC
| FW_EQ_CTRL_CMD_PFN(pf
) |
3479 FW_EQ_CTRL_CMD_VFN(vf
));
3480 c
.alloc_to_len16
= htonl(FW_EQ_CTRL_CMD_FREE
| FW_LEN16(c
));
3481 c
.cmpliqid_eqid
= htonl(FW_EQ_CTRL_CMD_EQID(eqid
));
3482 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3486 * t4_ofld_eq_free - free an offload egress queue
3487 * @adap: the adapter
3488 * @mbox: mailbox to use for the FW command
3489 * @pf: the PF owning the queue
3490 * @vf: the VF owning the queue
3491 * @eqid: egress queue id
3493 * Frees a control egress queue.
3495 int t4_ofld_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
3496 unsigned int vf
, unsigned int eqid
)
3498 struct fw_eq_ofld_cmd c
;
3500 memset(&c
, 0, sizeof(c
));
3501 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_OFLD_CMD
) | FW_CMD_REQUEST
|
3502 FW_CMD_EXEC
| FW_EQ_OFLD_CMD_PFN(pf
) |
3503 FW_EQ_OFLD_CMD_VFN(vf
));
3504 c
.alloc_to_len16
= htonl(FW_EQ_OFLD_CMD_FREE
| FW_LEN16(c
));
3505 c
.eqid_pkd
= htonl(FW_EQ_OFLD_CMD_EQID(eqid
));
3506 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
3510 * t4_handle_fw_rpl - process a FW reply message
3511 * @adap: the adapter
3512 * @rpl: start of the FW message
3514 * Processes a FW message, such as link state change messages.
3516 int t4_handle_fw_rpl(struct adapter
*adap
, const __be64
*rpl
)
3518 u8 opcode
= *(const u8
*)rpl
;
3520 if (opcode
== FW_PORT_CMD
) { /* link/module state change message */
3521 int speed
= 0, fc
= 0;
3522 const struct fw_port_cmd
*p
= (void *)rpl
;
3523 int chan
= FW_PORT_CMD_PORTID_GET(ntohl(p
->op_to_portid
));
3524 int port
= adap
->chan_map
[chan
];
3525 struct port_info
*pi
= adap2pinfo(adap
, port
);
3526 struct link_config
*lc
= &pi
->link_cfg
;
3527 u32 stat
= ntohl(p
->u
.info
.lstatus_to_modtype
);
3528 int link_ok
= (stat
& FW_PORT_CMD_LSTATUS
) != 0;
3529 u32 mod
= FW_PORT_CMD_MODTYPE_GET(stat
);
3531 if (stat
& FW_PORT_CMD_RXPAUSE
)
3533 if (stat
& FW_PORT_CMD_TXPAUSE
)
3535 if (stat
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M
))
3537 else if (stat
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G
))
3539 else if (stat
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G
))
3540 speed
= SPEED_10000
;
3542 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
3543 fc
!= lc
->fc
) { /* something changed */
3544 lc
->link_ok
= link_ok
;
3547 t4_os_link_changed(adap
, port
, link_ok
);
3549 if (mod
!= pi
->mod_type
) {
3551 t4_os_portmod_changed(adap
, port
);
3557 static void get_pci_mode(struct adapter
*adapter
, struct pci_params
*p
)
3561 if (pci_is_pcie(adapter
->pdev
)) {
3562 pcie_capability_read_word(adapter
->pdev
, PCI_EXP_LNKSTA
, &val
);
3563 p
->speed
= val
& PCI_EXP_LNKSTA_CLS
;
3564 p
->width
= (val
& PCI_EXP_LNKSTA_NLW
) >> 4;
3569 * init_link_config - initialize a link's SW state
3570 * @lc: structure holding the link state
3571 * @caps: link capabilities
3573 * Initializes the SW state maintained for each link, including the link's
3574 * capabilities and default speed/flow-control/autonegotiation settings.
3576 static void init_link_config(struct link_config
*lc
, unsigned int caps
)
3578 lc
->supported
= caps
;
3579 lc
->requested_speed
= 0;
3581 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
3582 if (lc
->supported
& FW_PORT_CAP_ANEG
) {
3583 lc
->advertising
= lc
->supported
& ADVERT_MASK
;
3584 lc
->autoneg
= AUTONEG_ENABLE
;
3585 lc
->requested_fc
|= PAUSE_AUTONEG
;
3587 lc
->advertising
= 0;
3588 lc
->autoneg
= AUTONEG_DISABLE
;
3592 int t4_wait_dev_ready(struct adapter
*adap
)
3594 if (t4_read_reg(adap
, PL_WHOAMI
) != 0xffffffff)
3597 return t4_read_reg(adap
, PL_WHOAMI
) != 0xffffffff ? 0 : -EIO
;
3600 static int get_flash_params(struct adapter
*adap
)
3605 ret
= sf1_write(adap
, 1, 1, 0, SF_RD_ID
);
3607 ret
= sf1_read(adap
, 3, 0, 1, &info
);
3608 t4_write_reg(adap
, SF_OP
, 0); /* unlock SF */
3612 if ((info
& 0xff) != 0x20) /* not a Numonix flash */
3614 info
>>= 16; /* log2 of size */
3615 if (info
>= 0x14 && info
< 0x18)
3616 adap
->params
.sf_nsec
= 1 << (info
- 16);
3617 else if (info
== 0x18)
3618 adap
->params
.sf_nsec
= 64;
3621 adap
->params
.sf_size
= 1 << info
;
3622 adap
->params
.sf_fw_start
=
3623 t4_read_reg(adap
, CIM_BOOT_CFG
) & BOOTADDR_MASK
;
3628 * t4_prep_adapter - prepare SW and HW for operation
3629 * @adapter: the adapter
3630 * @reset: if true perform a HW reset
3632 * Initialize adapter SW state for the various HW modules, set initial
3633 * values for some adapter tunables, take PHYs out of reset, and
3634 * initialize the MDIO interface.
3636 int t4_prep_adapter(struct adapter
*adapter
)
3642 ret
= t4_wait_dev_ready(adapter
);
3646 get_pci_mode(adapter
, &adapter
->params
.pci
);
3647 pl_rev
= G_REV(t4_read_reg(adapter
, PL_REV
));
3649 ret
= get_flash_params(adapter
);
3651 dev_err(adapter
->pdev_dev
, "error %d identifying flash\n", ret
);
3655 /* Retrieve adapter's device ID
3657 pci_read_config_word(adapter
->pdev
, PCI_DEVICE_ID
, &device_id
);
3658 ver
= device_id
>> 12;
3659 adapter
->params
.chip
= 0;
3662 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T4
, pl_rev
);
3665 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T5
, pl_rev
);
3668 dev_err(adapter
->pdev_dev
, "Device %d is not supported\n",
3673 init_cong_ctrl(adapter
->params
.a_wnd
, adapter
->params
.b_wnd
);
3676 * Default port for debugging in case we can't reach FW.
3678 adapter
->params
.nports
= 1;
3679 adapter
->params
.portvec
= 1;
3680 adapter
->params
.vpd
.cclk
= 50000;
3685 * t4_init_tp_params - initialize adap->params.tp
3686 * @adap: the adapter
3688 * Initialize various fields of the adapter's TP Parameters structure.
3690 int t4_init_tp_params(struct adapter
*adap
)
3695 v
= t4_read_reg(adap
, TP_TIMER_RESOLUTION
);
3696 adap
->params
.tp
.tre
= TIMERRESOLUTION_GET(v
);
3697 adap
->params
.tp
.dack_re
= DELAYEDACKRESOLUTION_GET(v
);
3699 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
3700 for (chan
= 0; chan
< NCHAN
; chan
++)
3701 adap
->params
.tp
.tx_modq
[chan
] = chan
;
3703 /* Cache the adapter's Compressed Filter Mode and global Incress
3706 t4_read_indirect(adap
, TP_PIO_ADDR
, TP_PIO_DATA
,
3707 &adap
->params
.tp
.vlan_pri_map
, 1,
3709 t4_read_indirect(adap
, TP_PIO_ADDR
, TP_PIO_DATA
,
3710 &adap
->params
.tp
.ingress_config
, 1,
3713 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
3714 * shift positions of several elements of the Compressed Filter Tuple
3715 * for this adapter which we need frequently ...
3717 adap
->params
.tp
.vlan_shift
= t4_filter_field_shift(adap
, F_VLAN
);
3718 adap
->params
.tp
.vnic_shift
= t4_filter_field_shift(adap
, F_VNIC_ID
);
3719 adap
->params
.tp
.port_shift
= t4_filter_field_shift(adap
, F_PORT
);
3720 adap
->params
.tp
.protocol_shift
= t4_filter_field_shift(adap
,
3723 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
3724 * represents the presense of an Outer VLAN instead of a VNIC ID.
3726 if ((adap
->params
.tp
.ingress_config
& F_VNIC
) == 0)
3727 adap
->params
.tp
.vnic_shift
= -1;
3733 * t4_filter_field_shift - calculate filter field shift
3734 * @adap: the adapter
3735 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
3737 * Return the shift position of a filter field within the Compressed
3738 * Filter Tuple. The filter field is specified via its selection bit
3739 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
3741 int t4_filter_field_shift(const struct adapter
*adap
, int filter_sel
)
3743 unsigned int filter_mode
= adap
->params
.tp
.vlan_pri_map
;
3747 if ((filter_mode
& filter_sel
) == 0)
3750 for (sel
= 1, field_shift
= 0; sel
< filter_sel
; sel
<<= 1) {
3751 switch (filter_mode
& sel
) {
3753 field_shift
+= W_FT_FCOE
;
3756 field_shift
+= W_FT_PORT
;
3759 field_shift
+= W_FT_VNIC_ID
;
3762 field_shift
+= W_FT_VLAN
;
3765 field_shift
+= W_FT_TOS
;
3768 field_shift
+= W_FT_PROTOCOL
;
3771 field_shift
+= W_FT_ETHERTYPE
;
3774 field_shift
+= W_FT_MACMATCH
;
3777 field_shift
+= W_FT_MPSHITTYPE
;
3779 case F_FRAGMENTATION
:
3780 field_shift
+= W_FT_FRAGMENTATION
;
3787 int t4_port_init(struct adapter
*adap
, int mbox
, int pf
, int vf
)
3791 struct fw_port_cmd c
;
3792 struct fw_rss_vi_config_cmd rvc
;
3794 memset(&c
, 0, sizeof(c
));
3795 memset(&rvc
, 0, sizeof(rvc
));
3797 for_each_port(adap
, i
) {
3798 unsigned int rss_size
;
3799 struct port_info
*p
= adap2pinfo(adap
, i
);
3801 while ((adap
->params
.portvec
& (1 << j
)) == 0)
3804 c
.op_to_portid
= htonl(FW_CMD_OP(FW_PORT_CMD
) |
3805 FW_CMD_REQUEST
| FW_CMD_READ
|
3806 FW_PORT_CMD_PORTID(j
));
3807 c
.action_to_len16
= htonl(
3808 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO
) |
3810 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
3814 ret
= t4_alloc_vi(adap
, mbox
, j
, pf
, vf
, 1, addr
, &rss_size
);
3821 p
->rss_size
= rss_size
;
3822 memcpy(adap
->port
[i
]->dev_addr
, addr
, ETH_ALEN
);
3824 ret
= ntohl(c
.u
.info
.lstatus_to_modtype
);
3825 p
->mdio_addr
= (ret
& FW_PORT_CMD_MDIOCAP
) ?
3826 FW_PORT_CMD_MDIOADDR_GET(ret
) : -1;
3827 p
->port_type
= FW_PORT_CMD_PTYPE_GET(ret
);
3828 p
->mod_type
= FW_PORT_MOD_TYPE_NA
;
3830 rvc
.op_to_viid
= htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
3831 FW_CMD_REQUEST
| FW_CMD_READ
|
3832 FW_RSS_VI_CONFIG_CMD_VIID(p
->viid
));
3833 rvc
.retval_len16
= htonl(FW_LEN16(rvc
));
3834 ret
= t4_wr_mbox(adap
, mbox
, &rvc
, sizeof(rvc
), &rvc
);
3837 p
->rss_mode
= ntohl(rvc
.u
.basicvirtual
.defaultq_to_udpen
);
3839 init_link_config(&p
->link_cfg
, ntohs(c
.u
.info
.pcap
));