1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
26 static char version
[] =
27 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
29 static int mtu
[MAX_UNITS
];
30 static int vlan
[MAX_UNITS
];
31 static int jumbo
[MAX_UNITS
];
32 static char *media
[MAX_UNITS
];
33 static int tx_flow
=-1;
34 static int rx_flow
=-1;
35 static int copy_thresh
;
36 static int rx_coalesce
=10; /* Rx frame count each interrupt */
37 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu
, int, NULL
, 0);
45 module_param_array(media
, charp
, NULL
, 0);
46 module_param_array(vlan
, int, NULL
, 0);
47 module_param_array(jumbo
, int, NULL
, 0);
48 module_param(tx_flow
, int, 0);
49 module_param(rx_flow
, int, 0);
50 module_param(copy_thresh
, int, 0);
51 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
60 static void dl2k_enable_int(struct netdev_private
*np
)
62 void __iomem
*ioaddr
= np
->ioaddr
;
64 dw16(IntEnable
, DEFAULT_INTR
);
67 static const int max_intrloop
= 50;
68 static const int multicast_filter_limit
= 0x40;
70 static int rio_open (struct net_device
*dev
);
71 static void rio_timer (unsigned long data
);
72 static void rio_tx_timeout (struct net_device
*dev
);
73 static void alloc_list (struct net_device
*dev
);
74 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
75 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
76 static void rio_free_tx (struct net_device
*dev
, int irq
);
77 static void tx_error (struct net_device
*dev
, int tx_status
);
78 static int receive_packet (struct net_device
*dev
);
79 static void rio_error (struct net_device
*dev
, int int_status
);
80 static int change_mtu (struct net_device
*dev
, int new_mtu
);
81 static void set_multicast (struct net_device
*dev
);
82 static struct net_device_stats
*get_stats (struct net_device
*dev
);
83 static int clear_stats (struct net_device
*dev
);
84 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
85 static int rio_close (struct net_device
*dev
);
86 static int find_miiphy (struct net_device
*dev
);
87 static int parse_eeprom (struct net_device
*dev
);
88 static int read_eeprom (struct netdev_private
*, int eep_addr
);
89 static int mii_wait_link (struct net_device
*dev
, int wait
);
90 static int mii_set_media (struct net_device
*dev
);
91 static int mii_get_media (struct net_device
*dev
);
92 static int mii_set_media_pcs (struct net_device
*dev
);
93 static int mii_get_media_pcs (struct net_device
*dev
);
94 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
95 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
98 static const struct ethtool_ops ethtool_ops
;
100 static const struct net_device_ops netdev_ops
= {
101 .ndo_open
= rio_open
,
102 .ndo_start_xmit
= start_xmit
,
103 .ndo_stop
= rio_close
,
104 .ndo_get_stats
= get_stats
,
105 .ndo_validate_addr
= eth_validate_addr
,
106 .ndo_set_mac_address
= eth_mac_addr
,
107 .ndo_set_rx_mode
= set_multicast
,
108 .ndo_do_ioctl
= rio_ioctl
,
109 .ndo_tx_timeout
= rio_tx_timeout
,
110 .ndo_change_mtu
= change_mtu
,
114 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
116 struct net_device
*dev
;
117 struct netdev_private
*np
;
119 int chip_idx
= ent
->driver_data
;
121 void __iomem
*ioaddr
;
122 static int version_printed
;
126 if (!version_printed
++)
127 printk ("%s", version
);
129 err
= pci_enable_device (pdev
);
134 err
= pci_request_regions (pdev
, "dl2k");
136 goto err_out_disable
;
138 pci_set_master (pdev
);
142 dev
= alloc_etherdev (sizeof (*np
));
145 SET_NETDEV_DEV(dev
, &pdev
->dev
);
147 np
= netdev_priv(dev
);
149 /* IO registers range. */
150 ioaddr
= pci_iomap(pdev
, 0, 0);
153 np
->eeprom_addr
= ioaddr
;
156 /* MM registers range. */
157 ioaddr
= pci_iomap(pdev
, 1, 0);
159 goto err_out_iounmap
;
162 np
->chip_id
= chip_idx
;
164 spin_lock_init (&np
->tx_lock
);
165 spin_lock_init (&np
->rx_lock
);
167 /* Parse manual configuration */
170 if (card_idx
< MAX_UNITS
) {
171 if (media
[card_idx
] != NULL
) {
173 if (strcmp (media
[card_idx
], "auto") == 0 ||
174 strcmp (media
[card_idx
], "autosense") == 0 ||
175 strcmp (media
[card_idx
], "0") == 0 ) {
177 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
178 strcmp (media
[card_idx
], "4") == 0) {
181 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
182 strcmp (media
[card_idx
], "3") == 0) {
185 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
186 strcmp (media
[card_idx
], "2") == 0) {
189 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
190 strcmp (media
[card_idx
], "1") == 0) {
193 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
194 strcmp (media
[card_idx
], "6") == 0) {
197 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
198 strcmp (media
[card_idx
], "5") == 0) {
205 if (jumbo
[card_idx
] != 0) {
207 dev
->mtu
= MAX_JUMBO
;
210 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
211 dev
->mtu
= mtu
[card_idx
];
213 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
215 if (rx_coalesce
> 0 && rx_timeout
> 0) {
216 np
->rx_coalesce
= rx_coalesce
;
217 np
->rx_timeout
= rx_timeout
;
220 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
221 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
225 else if (tx_coalesce
> TX_RING_SIZE
-1)
226 tx_coalesce
= TX_RING_SIZE
- 1;
228 dev
->netdev_ops
= &netdev_ops
;
229 dev
->watchdog_timeo
= TX_TIMEOUT
;
230 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
232 dev
->features
= NETIF_F_IP_CSUM
;
234 pci_set_drvdata (pdev
, dev
);
236 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
238 goto err_out_iounmap
;
239 np
->tx_ring
= ring_space
;
240 np
->tx_ring_dma
= ring_dma
;
242 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
244 goto err_out_unmap_tx
;
245 np
->rx_ring
= ring_space
;
246 np
->rx_ring_dma
= ring_dma
;
248 /* Parse eeprom data */
251 /* Find PHY address */
252 err
= find_miiphy (dev
);
254 goto err_out_unmap_rx
;
257 np
->phy_media
= (dr16(ASICCtrl
) & PhyMedia
) ? 1 : 0;
259 /* Set media and reset PHY */
261 /* default Auto-Negotiation for fiber deivices */
262 if (np
->an_enable
== 2) {
265 mii_set_media_pcs (dev
);
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np
->speed
== 1000)
274 err
= register_netdev (dev
);
276 goto err_out_unmap_rx
;
280 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
281 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
283 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
287 "rx_coalesce:\t%d packets\n"
288 "rx_timeout: \t%d ns\n",
289 np
->rx_coalesce
, np
->rx_timeout
*640);
291 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
295 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
297 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
300 pci_iounmap(pdev
, np
->ioaddr
);
302 pci_iounmap(pdev
, np
->eeprom_addr
);
306 pci_release_regions (pdev
);
308 pci_disable_device (pdev
);
313 find_miiphy (struct net_device
*dev
)
315 struct netdev_private
*np
= netdev_priv(dev
);
316 int i
, phy_found
= 0;
317 np
= netdev_priv(dev
);
320 for (i
= 31; i
>= 0; i
--) {
321 int mii_status
= mii_read (dev
, i
, 1);
322 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
328 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
335 parse_eeprom (struct net_device
*dev
)
337 struct netdev_private
*np
= netdev_priv(dev
);
338 void __iomem
*ioaddr
= np
->ioaddr
;
343 PSROM_t psrom
= (PSROM_t
) sromdata
;
347 for (i
= 0; i
< 128; i
++)
348 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom(np
, i
));
350 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
352 crc
= ~ether_crc_le (256 - 4, sromdata
);
353 if (psrom
->crc
!= cpu_to_le32(crc
)) {
354 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
360 /* Set MAC address */
361 for (i
= 0; i
< 6; i
++)
362 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
364 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
368 /* Parse Software Information Block */
370 psib
= (u8
*) sromdata
;
374 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
375 printk (KERN_ERR
"Cell data error\n");
379 case 0: /* Format version */
381 case 1: /* End of cell */
383 case 2: /* Duplex Polarity */
384 np
->duplex_polarity
= psib
[i
];
385 dw8(PhyCtrl
, dr8(PhyCtrl
) | psib
[i
]);
387 case 3: /* Wake Polarity */
388 np
->wake_polarity
= psib
[i
];
390 case 9: /* Adapter description */
391 j
= (next
- i
> 255) ? 255 : next
- i
;
392 memcpy (np
->name
, &(psib
[i
]), j
);
398 case 8: /* Reversed */
400 default: /* Unknown cell */
410 rio_open (struct net_device
*dev
)
412 struct netdev_private
*np
= netdev_priv(dev
);
413 void __iomem
*ioaddr
= np
->ioaddr
;
414 const int irq
= np
->pdev
->irq
;
418 i
= request_irq(irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
422 /* Reset all logic functions */
424 GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
);
427 /* DebugCtrl bit 4, 5, 9 must set */
428 dw32(DebugCtrl
, dr32(DebugCtrl
) | 0x0230);
432 dw16(MaxFrameSize
, MAX_JUMBO
+14);
436 /* Get station address */
437 for (i
= 0; i
< 6; i
++)
438 dw8(StationAddr0
+ i
, dev
->dev_addr
[i
]);
442 dw32(RxDMAIntCtrl
, np
->rx_coalesce
| np
->rx_timeout
<< 16);
444 /* Set RIO to poll every N*320nsec. */
445 dw8(RxDMAPollPeriod
, 0x20);
446 dw8(TxDMAPollPeriod
, 0xff);
447 dw8(RxDMABurstThresh
, 0x30);
448 dw8(RxDMAUrgentThresh
, 0x30);
449 dw32(RmonStatMask
, 0x0007ffff);
450 /* clear statistics */
455 /* priority field in RxDMAIntCtrl */
456 dw32(RxDMAIntCtrl
, dr32(RxDMAIntCtrl
) | 0x7 << 10);
458 dw16(VLANId
, np
->vlan
);
459 /* Length/Type should be 0x8100 */
460 dw32(VLANTag
, 0x8100 << 16 | np
->vlan
);
461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 VLAN information tagged by TFC' VID, CFI fields. */
463 dw32(MACCtrl
, dr32(MACCtrl
) | AutoVLANuntagging
);
466 init_timer (&np
->timer
);
467 np
->timer
.expires
= jiffies
+ 1*HZ
;
468 np
->timer
.data
= (unsigned long) dev
;
469 np
->timer
.function
= rio_timer
;
470 add_timer (&np
->timer
);
473 dw32(MACCtrl
, dr32(MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
);
476 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
477 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
478 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
479 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
480 dw16(MACCtrl
, macctrl
);
482 netif_start_queue (dev
);
489 rio_timer (unsigned long data
)
491 struct net_device
*dev
= (struct net_device
*)data
;
492 struct netdev_private
*np
= netdev_priv(dev
);
494 int next_tick
= 1*HZ
;
497 spin_lock_irqsave(&np
->rx_lock
, flags
);
498 /* Recover rx ring exhausted error */
499 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
500 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
504 entry
= np
->old_rx
% RX_RING_SIZE
;
505 /* Dropped packets don't need to re-allocate */
506 if (np
->rx_skbuff
[entry
] == NULL
) {
507 skb
= netdev_alloc_skb_ip_align(dev
,
510 np
->rx_ring
[entry
].fraginfo
= 0;
512 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
516 np
->rx_skbuff
[entry
] = skb
;
517 np
->rx_ring
[entry
].fraginfo
=
518 cpu_to_le64 (pci_map_single
519 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
520 PCI_DMA_FROMDEVICE
));
522 np
->rx_ring
[entry
].fraginfo
|=
523 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
524 np
->rx_ring
[entry
].status
= 0;
527 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
528 np
->timer
.expires
= jiffies
+ next_tick
;
529 add_timer(&np
->timer
);
533 rio_tx_timeout (struct net_device
*dev
)
535 struct netdev_private
*np
= netdev_priv(dev
);
536 void __iomem
*ioaddr
= np
->ioaddr
;
538 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev
->name
, dr32(TxStatus
));
542 dev
->trans_start
= jiffies
; /* prevent tx timeout */
545 /* allocate and initialize Tx and Rx descriptors */
547 alloc_list (struct net_device
*dev
)
549 struct netdev_private
*np
= netdev_priv(dev
);
550 void __iomem
*ioaddr
= np
->ioaddr
;
553 np
->cur_rx
= np
->cur_tx
= 0;
554 np
->old_rx
= np
->old_tx
= 0;
555 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
557 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
559 np
->tx_skbuff
[i
] = NULL
;
560 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
561 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
562 ((i
+1)%TX_RING_SIZE
) *
563 sizeof (struct netdev_desc
));
566 /* Initialize Rx descriptors */
567 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
568 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
569 ((i
+ 1) % RX_RING_SIZE
) *
570 sizeof (struct netdev_desc
));
571 np
->rx_ring
[i
].status
= 0;
572 np
->rx_ring
[i
].fraginfo
= 0;
573 np
->rx_skbuff
[i
] = NULL
;
576 /* Allocate the rx buffers */
577 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
578 /* Allocated fixed size of skbuff */
581 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
582 np
->rx_skbuff
[i
] = skb
;
586 /* Rubicon now supports 40 bits of addressing space. */
587 np
->rx_ring
[i
].fraginfo
=
588 cpu_to_le64 ( pci_map_single (
589 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
590 PCI_DMA_FROMDEVICE
));
591 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
595 dw32(RFDListPtr0
, np
->rx_ring_dma
);
596 dw32(RFDListPtr1
, 0);
600 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
602 struct netdev_private
*np
= netdev_priv(dev
);
603 void __iomem
*ioaddr
= np
->ioaddr
;
604 struct netdev_desc
*txdesc
;
606 u64 tfc_vlan_tag
= 0;
608 if (np
->link_status
== 0) { /* Link Down */
612 entry
= np
->cur_tx
% TX_RING_SIZE
;
613 np
->tx_skbuff
[entry
] = skb
;
614 txdesc
= &np
->tx_ring
[entry
];
617 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
619 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
624 tfc_vlan_tag
= VLANTagInsert
|
625 ((u64
)np
->vlan
<< 32) |
626 ((u64
)skb
->priority
<< 45);
628 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
631 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
633 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
634 * Work around: Always use 1 descriptor in 10Mbps mode */
635 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
636 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
639 (1 << FragCountShift
));
641 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
643 (1 << FragCountShift
));
646 dw32(DMACtrl
, dr32(DMACtrl
) | 0x00001000);
648 dw32(CountDown
, 10000);
649 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
650 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
651 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
653 } else if (!netif_queue_stopped(dev
)) {
654 netif_stop_queue (dev
);
657 /* The first TFDListPtr */
658 if (!dr32(TFDListPtr0
)) {
659 dw32(TFDListPtr0
, np
->tx_ring_dma
+
660 entry
* sizeof (struct netdev_desc
));
661 dw32(TFDListPtr1
, 0);
668 rio_interrupt (int irq
, void *dev_instance
)
670 struct net_device
*dev
= dev_instance
;
671 struct netdev_private
*np
= netdev_priv(dev
);
672 void __iomem
*ioaddr
= np
->ioaddr
;
674 int cnt
= max_intrloop
;
678 int_status
= dr16(IntStatus
);
679 dw16(IntStatus
, int_status
);
680 int_status
&= DEFAULT_INTR
;
681 if (int_status
== 0 || --cnt
< 0)
684 /* Processing received packets */
685 if (int_status
& RxDMAComplete
)
686 receive_packet (dev
);
687 /* TxDMAComplete interrupt */
688 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
690 tx_status
= dr32(TxStatus
);
691 if (tx_status
& 0x01)
692 tx_error (dev
, tx_status
);
693 /* Free used tx skbuffs */
694 rio_free_tx (dev
, 1);
697 /* Handle uncommon events */
699 (HostError
| LinkEvent
| UpdateStats
))
700 rio_error (dev
, int_status
);
702 if (np
->cur_tx
!= np
->old_tx
)
703 dw32(CountDown
, 100);
704 return IRQ_RETVAL(handled
);
707 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
709 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
713 rio_free_tx (struct net_device
*dev
, int irq
)
715 struct netdev_private
*np
= netdev_priv(dev
);
716 int entry
= np
->old_tx
% TX_RING_SIZE
;
718 unsigned long flag
= 0;
721 spin_lock(&np
->tx_lock
);
723 spin_lock_irqsave(&np
->tx_lock
, flag
);
725 /* Free used tx skbuffs */
726 while (entry
!= np
->cur_tx
) {
729 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
731 skb
= np
->tx_skbuff
[entry
];
732 pci_unmap_single (np
->pdev
,
733 desc_to_dma(&np
->tx_ring
[entry
]),
734 skb
->len
, PCI_DMA_TODEVICE
);
736 dev_kfree_skb_irq (skb
);
740 np
->tx_skbuff
[entry
] = NULL
;
741 entry
= (entry
+ 1) % TX_RING_SIZE
;
745 spin_unlock(&np
->tx_lock
);
747 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
750 /* If the ring is no longer full, clear tx_full and
751 call netif_wake_queue() */
753 if (netif_queue_stopped(dev
) &&
754 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
755 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
756 netif_wake_queue (dev
);
761 tx_error (struct net_device
*dev
, int tx_status
)
763 struct netdev_private
*np
= netdev_priv(dev
);
764 void __iomem
*ioaddr
= np
->ioaddr
;
768 frame_id
= (tx_status
& 0xffff0000);
769 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
770 dev
->name
, tx_status
, frame_id
);
771 np
->stats
.tx_errors
++;
772 /* Ttransmit Underrun */
773 if (tx_status
& 0x10) {
774 np
->stats
.tx_fifo_errors
++;
775 dw16(TxStartThresh
, dr16(TxStartThresh
) + 0x10);
776 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
778 TxReset
| DMAReset
| FIFOReset
| NetworkReset
);
779 /* Wait for ResetBusy bit clear */
780 for (i
= 50; i
> 0; i
--) {
781 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
785 rio_free_tx (dev
, 1);
786 /* Reset TFDListPtr */
787 dw32(TFDListPtr0
, np
->tx_ring_dma
+
788 np
->old_tx
* sizeof (struct netdev_desc
));
789 dw32(TFDListPtr1
, 0);
791 /* Let TxStartThresh stay default value */
794 if (tx_status
& 0x04) {
795 np
->stats
.tx_fifo_errors
++;
796 /* TxReset and clear FIFO */
797 dw16(ASICCtrl
+ 2, TxReset
| FIFOReset
);
798 /* Wait reset done */
799 for (i
= 50; i
> 0; i
--) {
800 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
804 /* Let TxStartThresh stay default value */
806 /* Maximum Collisions */
808 if (tx_status
& 0x08)
809 np
->stats
.collisions16
++;
811 if (tx_status
& 0x08)
812 np
->stats
.collisions
++;
815 dw32(MACCtrl
, dr16(MACCtrl
) | TxEnable
);
819 receive_packet (struct net_device
*dev
)
821 struct netdev_private
*np
= netdev_priv(dev
);
822 int entry
= np
->cur_rx
% RX_RING_SIZE
;
825 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
827 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
831 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
832 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
833 !(desc
->status
& cpu_to_le64(FrameEnd
)))
836 /* Chip omits the CRC. */
837 frame_status
= le64_to_cpu(desc
->status
);
838 pkt_len
= frame_status
& 0xffff;
841 /* Update rx error statistics, drop packet. */
842 if (frame_status
& RFS_Errors
) {
843 np
->stats
.rx_errors
++;
844 if (frame_status
& (RxRuntFrame
| RxLengthError
))
845 np
->stats
.rx_length_errors
++;
846 if (frame_status
& RxFCSError
)
847 np
->stats
.rx_crc_errors
++;
848 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
849 np
->stats
.rx_frame_errors
++;
850 if (frame_status
& RxFIFOOverrun
)
851 np
->stats
.rx_fifo_errors
++;
855 /* Small skbuffs for short packets */
856 if (pkt_len
> copy_thresh
) {
857 pci_unmap_single (np
->pdev
,
861 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
862 np
->rx_skbuff
[entry
] = NULL
;
863 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
864 pci_dma_sync_single_for_cpu(np
->pdev
,
868 skb_copy_to_linear_data (skb
,
869 np
->rx_skbuff
[entry
]->data
,
871 skb_put (skb
, pkt_len
);
872 pci_dma_sync_single_for_device(np
->pdev
,
877 skb
->protocol
= eth_type_trans (skb
, dev
);
879 /* Checksum done by hw, but csum value unavailable. */
880 if (np
->pdev
->pci_rev_id
>= 0x0c &&
881 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
882 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
887 entry
= (entry
+ 1) % RX_RING_SIZE
;
889 spin_lock(&np
->rx_lock
);
891 /* Re-allocate skbuffs to fill the descriptor ring */
893 while (entry
!= np
->cur_rx
) {
895 /* Dropped packets don't need to re-allocate */
896 if (np
->rx_skbuff
[entry
] == NULL
) {
897 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
899 np
->rx_ring
[entry
].fraginfo
= 0;
901 "%s: receive_packet: "
902 "Unable to re-allocate Rx skbuff.#%d\n",
906 np
->rx_skbuff
[entry
] = skb
;
907 np
->rx_ring
[entry
].fraginfo
=
908 cpu_to_le64 (pci_map_single
909 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
910 PCI_DMA_FROMDEVICE
));
912 np
->rx_ring
[entry
].fraginfo
|=
913 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
914 np
->rx_ring
[entry
].status
= 0;
915 entry
= (entry
+ 1) % RX_RING_SIZE
;
918 spin_unlock(&np
->rx_lock
);
923 rio_error (struct net_device
*dev
, int int_status
)
925 struct netdev_private
*np
= netdev_priv(dev
);
926 void __iomem
*ioaddr
= np
->ioaddr
;
929 /* Link change event */
930 if (int_status
& LinkEvent
) {
931 if (mii_wait_link (dev
, 10) == 0) {
932 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
934 mii_get_media_pcs (dev
);
937 if (np
->speed
== 1000)
938 np
->tx_coalesce
= tx_coalesce
;
942 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
943 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
944 macctrl
|= (np
->tx_flow
) ?
945 TxFlowControlEnable
: 0;
946 macctrl
|= (np
->rx_flow
) ?
947 RxFlowControlEnable
: 0;
948 dw16(MACCtrl
, macctrl
);
950 netif_carrier_on(dev
);
952 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
954 netif_carrier_off(dev
);
958 /* UpdateStats statistics registers */
959 if (int_status
& UpdateStats
) {
963 /* PCI Error, a catastronphic error related to the bus interface
964 occurs, set GlobalReset and HostReset to reset. */
965 if (int_status
& HostError
) {
966 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
967 dev
->name
, int_status
);
968 dw16(ASICCtrl
+ 2, GlobalReset
| HostReset
);
973 static struct net_device_stats
*
974 get_stats (struct net_device
*dev
)
976 struct netdev_private
*np
= netdev_priv(dev
);
977 void __iomem
*ioaddr
= np
->ioaddr
;
981 unsigned int stat_reg
;
983 /* All statistics registers need to be acknowledged,
984 else statistic overflow could cause problems */
986 np
->stats
.rx_packets
+= dr32(FramesRcvOk
);
987 np
->stats
.tx_packets
+= dr32(FramesXmtOk
);
988 np
->stats
.rx_bytes
+= dr32(OctetRcvOk
);
989 np
->stats
.tx_bytes
+= dr32(OctetXmtOk
);
991 np
->stats
.multicast
= dr32(McstFramesRcvdOk
);
992 np
->stats
.collisions
+= dr32(SingleColFrames
)
993 + dr32(MultiColFrames
);
995 /* detailed tx errors */
996 stat_reg
= dr16(FramesAbortXSColls
);
997 np
->stats
.tx_aborted_errors
+= stat_reg
;
998 np
->stats
.tx_errors
+= stat_reg
;
1000 stat_reg
= dr16(CarrierSenseErrors
);
1001 np
->stats
.tx_carrier_errors
+= stat_reg
;
1002 np
->stats
.tx_errors
+= stat_reg
;
1004 /* Clear all other statistic register. */
1005 dr32(McstOctetXmtOk
);
1006 dr16(BcstFramesXmtdOk
);
1007 dr32(McstFramesXmtdOk
);
1008 dr16(BcstFramesRcvdOk
);
1009 dr16(MacControlFramesRcvd
);
1010 dr16(FrameTooLongErrors
);
1011 dr16(InRangeLengthErrors
);
1012 dr16(FramesCheckSeqErrors
);
1013 dr16(FramesLostRxErrors
);
1014 dr32(McstOctetXmtOk
);
1015 dr32(BcstOctetXmtOk
);
1016 dr32(McstFramesXmtdOk
);
1017 dr32(FramesWDeferredXmt
);
1018 dr32(LateCollisions
);
1019 dr16(BcstFramesXmtdOk
);
1020 dr16(MacControlFramesXmtd
);
1021 dr16(FramesWEXDeferal
);
1024 for (i
= 0x100; i
<= 0x150; i
+= 4)
1027 dr16(TxJumboFrames
);
1028 dr16(RxJumboFrames
);
1029 dr16(TCPCheckSumErrors
);
1030 dr16(UDPCheckSumErrors
);
1031 dr16(IPCheckSumErrors
);
1036 clear_stats (struct net_device
*dev
)
1038 struct netdev_private
*np
= netdev_priv(dev
);
1039 void __iomem
*ioaddr
= np
->ioaddr
;
1044 /* All statistics registers need to be acknowledged,
1045 else statistic overflow could cause problems */
1051 dr32(McstFramesRcvdOk
);
1052 dr32(SingleColFrames
);
1053 dr32(MultiColFrames
);
1054 dr32(LateCollisions
);
1055 /* detailed rx errors */
1056 dr16(FrameTooLongErrors
);
1057 dr16(InRangeLengthErrors
);
1058 dr16(FramesCheckSeqErrors
);
1059 dr16(FramesLostRxErrors
);
1061 /* detailed tx errors */
1062 dr16(FramesAbortXSColls
);
1063 dr16(CarrierSenseErrors
);
1065 /* Clear all other statistic register. */
1066 dr32(McstOctetXmtOk
);
1067 dr16(BcstFramesXmtdOk
);
1068 dr32(McstFramesXmtdOk
);
1069 dr16(BcstFramesRcvdOk
);
1070 dr16(MacControlFramesRcvd
);
1071 dr32(McstOctetXmtOk
);
1072 dr32(BcstOctetXmtOk
);
1073 dr32(McstFramesXmtdOk
);
1074 dr32(FramesWDeferredXmt
);
1075 dr16(BcstFramesXmtdOk
);
1076 dr16(MacControlFramesXmtd
);
1077 dr16(FramesWEXDeferal
);
1079 for (i
= 0x100; i
<= 0x150; i
+= 4)
1082 dr16(TxJumboFrames
);
1083 dr16(RxJumboFrames
);
1084 dr16(TCPCheckSumErrors
);
1085 dr16(UDPCheckSumErrors
);
1086 dr16(IPCheckSumErrors
);
1092 change_mtu (struct net_device
*dev
, int new_mtu
)
1094 struct netdev_private
*np
= netdev_priv(dev
);
1095 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1097 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1107 set_multicast (struct net_device
*dev
)
1109 struct netdev_private
*np
= netdev_priv(dev
);
1110 void __iomem
*ioaddr
= np
->ioaddr
;
1114 hash_table
[0] = hash_table
[1] = 0;
1115 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1116 hash_table
[1] |= 0x02000000;
1117 if (dev
->flags
& IFF_PROMISC
) {
1118 /* Receive all frames promiscuously. */
1119 rx_mode
= ReceiveAllFrames
;
1120 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1121 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1122 /* Receive broadcast and multicast frames */
1123 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1124 } else if (!netdev_mc_empty(dev
)) {
1125 struct netdev_hw_addr
*ha
;
1126 /* Receive broadcast frames and multicast frames filtering
1129 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1130 netdev_for_each_mc_addr(ha
, dev
) {
1132 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1133 /* The inverted high significant 6 bits of CRC are
1134 used as an index to hashtable */
1135 for (bit
= 0; bit
< 6; bit
++)
1136 if (crc
& (1 << (31 - bit
)))
1137 index
|= (1 << bit
);
1138 hash_table
[index
/ 32] |= (1 << (index
% 32));
1141 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1144 /* ReceiveVLANMatch field in ReceiveMode */
1145 rx_mode
|= ReceiveVLANMatch
;
1148 dw32(HashTable0
, hash_table
[0]);
1149 dw32(HashTable1
, hash_table
[1]);
1150 dw16(ReceiveMode
, rx_mode
);
1153 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1155 struct netdev_private
*np
= netdev_priv(dev
);
1157 strlcpy(info
->driver
, "dl2k", sizeof(info
->driver
));
1158 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1159 strlcpy(info
->bus_info
, pci_name(np
->pdev
), sizeof(info
->bus_info
));
1162 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1164 struct netdev_private
*np
= netdev_priv(dev
);
1165 if (np
->phy_media
) {
1167 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1168 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1169 cmd
->port
= PORT_FIBRE
;
1170 cmd
->transceiver
= XCVR_INTERNAL
;
1173 cmd
->supported
= SUPPORTED_10baseT_Half
|
1174 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1175 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1176 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1177 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1178 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1179 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1180 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1181 cmd
->port
= PORT_MII
;
1182 cmd
->transceiver
= XCVR_INTERNAL
;
1184 if ( np
->link_status
) {
1185 ethtool_cmd_speed_set(cmd
, np
->speed
);
1186 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1188 ethtool_cmd_speed_set(cmd
, -1);
1192 cmd
->autoneg
= AUTONEG_ENABLE
;
1194 cmd
->autoneg
= AUTONEG_DISABLE
;
1196 cmd
->phy_address
= np
->phy_addr
;
1200 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1202 struct netdev_private
*np
= netdev_priv(dev
);
1203 netif_carrier_off(dev
);
1204 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1214 if (np
->speed
== 1000) {
1215 ethtool_cmd_speed_set(cmd
, SPEED_100
);
1216 cmd
->duplex
= DUPLEX_FULL
;
1217 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1219 switch (ethtool_cmd_speed(cmd
)) {
1222 np
->full_duplex
= (cmd
->duplex
== DUPLEX_FULL
);
1226 np
->full_duplex
= (cmd
->duplex
== DUPLEX_FULL
);
1228 case SPEED_1000
: /* not supported */
1237 static u32
rio_get_link(struct net_device
*dev
)
1239 struct netdev_private
*np
= netdev_priv(dev
);
1240 return np
->link_status
;
1243 static const struct ethtool_ops ethtool_ops
= {
1244 .get_drvinfo
= rio_get_drvinfo
,
1245 .get_settings
= rio_get_settings
,
1246 .set_settings
= rio_set_settings
,
1247 .get_link
= rio_get_link
,
1251 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1254 struct netdev_private
*np
= netdev_priv(dev
);
1255 struct mii_ioctl_data
*miidata
= if_mii(rq
);
1257 phy_addr
= np
->phy_addr
;
1260 miidata
->phy_id
= phy_addr
;
1263 miidata
->val_out
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1266 if (!capable(CAP_NET_ADMIN
))
1268 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->val_in
);
1276 #define EEP_READ 0x0200
1277 #define EEP_BUSY 0x8000
1278 /* Read the EEPROM word */
1279 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1280 static int read_eeprom(struct netdev_private
*np
, int eep_addr
)
1282 void __iomem
*ioaddr
= np
->eeprom_addr
;
1285 dw16(EepromCtrl
, EEP_READ
| (eep_addr
& 0xff));
1287 if (!(dr16(EepromCtrl
) & EEP_BUSY
))
1288 return dr16(EepromData
);
1293 enum phy_ctrl_bits
{
1294 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1298 #define mii_delay() dr8(PhyCtrl)
1300 mii_sendbit (struct net_device
*dev
, u32 data
)
1302 struct netdev_private
*np
= netdev_priv(dev
);
1303 void __iomem
*ioaddr
= np
->ioaddr
;
1305 data
= ((data
) ? MII_DATA1
: 0) | (dr8(PhyCtrl
) & 0xf8) | MII_WRITE
;
1308 dw8(PhyCtrl
, data
| MII_CLK
);
1313 mii_getbit (struct net_device
*dev
)
1315 struct netdev_private
*np
= netdev_priv(dev
);
1316 void __iomem
*ioaddr
= np
->ioaddr
;
1319 data
= (dr8(PhyCtrl
) & 0xf8) | MII_READ
;
1322 dw8(PhyCtrl
, data
| MII_CLK
);
1324 return (dr8(PhyCtrl
) >> 1) & 1;
1328 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1332 for (i
= len
- 1; i
>= 0; i
--) {
1333 mii_sendbit (dev
, data
& (1 << i
));
1338 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1345 mii_send_bits (dev
, 0xffffffff, 32);
1346 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1347 /* ST,OP = 0110'b for read operation */
1348 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1349 mii_send_bits (dev
, cmd
, 14);
1351 if (mii_getbit (dev
))
1354 for (i
= 0; i
< 16; i
++) {
1355 retval
|= mii_getbit (dev
);
1360 return (retval
>> 1) & 0xffff;
1366 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1371 mii_send_bits (dev
, 0xffffffff, 32);
1372 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1373 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1374 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1375 mii_send_bits (dev
, cmd
, 32);
1381 mii_wait_link (struct net_device
*dev
, int wait
)
1385 struct netdev_private
*np
;
1387 np
= netdev_priv(dev
);
1388 phy_addr
= np
->phy_addr
;
1391 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1392 if (bmsr
& BMSR_LSTATUS
)
1395 } while (--wait
> 0);
1399 mii_get_media (struct net_device
*dev
)
1406 struct netdev_private
*np
;
1408 np
= netdev_priv(dev
);
1409 phy_addr
= np
->phy_addr
;
1411 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1412 if (np
->an_enable
) {
1413 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1414 /* Auto-Negotiation not completed */
1417 negotiate
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1418 mii_read (dev
, phy_addr
, MII_LPA
);
1419 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1420 mssr
= mii_read (dev
, phy_addr
, MII_STAT1000
);
1421 if (mscr
& ADVERTISE_1000FULL
&& mssr
& LPA_1000FULL
) {
1423 np
->full_duplex
= 1;
1424 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1425 } else if (mscr
& ADVERTISE_1000HALF
&& mssr
& LPA_1000HALF
) {
1427 np
->full_duplex
= 0;
1428 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1429 } else if (negotiate
& ADVERTISE_100FULL
) {
1431 np
->full_duplex
= 1;
1432 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1433 } else if (negotiate
& ADVERTISE_100HALF
) {
1435 np
->full_duplex
= 0;
1436 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1437 } else if (negotiate
& ADVERTISE_10FULL
) {
1439 np
->full_duplex
= 1;
1440 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1441 } else if (negotiate
& ADVERTISE_10HALF
) {
1443 np
->full_duplex
= 0;
1444 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1446 if (negotiate
& ADVERTISE_PAUSE_CAP
) {
1449 } else if (negotiate
& ADVERTISE_PAUSE_ASYM
) {
1453 /* else tx_flow, rx_flow = user select */
1455 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1456 switch (bmcr
& (BMCR_SPEED100
| BMCR_SPEED1000
)) {
1457 case BMCR_SPEED1000
:
1458 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1461 printk (KERN_INFO
"Operating at 100 Mbps, ");
1464 printk (KERN_INFO
"Operating at 10 Mbps, ");
1466 if (bmcr
& BMCR_FULLDPLX
) {
1467 printk (KERN_CONT
"Full duplex\n");
1469 printk (KERN_CONT
"Half duplex\n");
1473 printk(KERN_INFO
"Enable Tx Flow Control\n");
1475 printk(KERN_INFO
"Disable Tx Flow Control\n");
1477 printk(KERN_INFO
"Enable Rx Flow Control\n");
1479 printk(KERN_INFO
"Disable Rx Flow Control\n");
1485 mii_set_media (struct net_device
*dev
)
1492 struct netdev_private
*np
;
1493 np
= netdev_priv(dev
);
1494 phy_addr
= np
->phy_addr
;
1496 /* Does user set speed? */
1497 if (np
->an_enable
) {
1498 /* Advertise capabilities */
1499 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1500 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1501 ~(ADVERTISE_100FULL
| ADVERTISE_10FULL
|
1502 ADVERTISE_100HALF
| ADVERTISE_10HALF
|
1503 ADVERTISE_100BASE4
);
1504 if (bmsr
& BMSR_100FULL
)
1505 anar
|= ADVERTISE_100FULL
;
1506 if (bmsr
& BMSR_100HALF
)
1507 anar
|= ADVERTISE_100HALF
;
1508 if (bmsr
& BMSR_100BASE4
)
1509 anar
|= ADVERTISE_100BASE4
;
1510 if (bmsr
& BMSR_10FULL
)
1511 anar
|= ADVERTISE_10FULL
;
1512 if (bmsr
& BMSR_10HALF
)
1513 anar
|= ADVERTISE_10HALF
;
1514 anar
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1515 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1517 /* Enable Auto crossover */
1518 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1519 pscr
|= 3 << 5; /* 11'b */
1520 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1522 /* Soft reset PHY */
1523 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1524 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1525 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1528 /* Force speed setting */
1529 /* 1) Disable Auto crossover */
1530 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1532 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1535 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1537 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1540 bmcr
= 0x1940; /* must be 0x1940 */
1541 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1542 mdelay (100); /* wait a certain time */
1544 /* 4) Advertise nothing */
1545 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1547 /* 5) Set media and Power Up */
1549 if (np
->speed
== 100) {
1550 bmcr
|= BMCR_SPEED100
;
1551 printk (KERN_INFO
"Manual 100 Mbps, ");
1552 } else if (np
->speed
== 10) {
1553 printk (KERN_INFO
"Manual 10 Mbps, ");
1555 if (np
->full_duplex
) {
1556 bmcr
|= BMCR_FULLDPLX
;
1557 printk (KERN_CONT
"Full duplex\n");
1559 printk (KERN_CONT
"Half duplex\n");
1562 /* Set 1000BaseT Master/Slave setting */
1563 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1564 mscr
|= MII_MSCR_CFG_ENABLE
;
1565 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1567 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1574 mii_get_media_pcs (struct net_device
*dev
)
1579 struct netdev_private
*np
;
1581 np
= netdev_priv(dev
);
1582 phy_addr
= np
->phy_addr
;
1584 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1585 if (np
->an_enable
) {
1586 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1587 /* Auto-Negotiation not completed */
1590 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1591 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1593 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1594 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1595 np
->full_duplex
= 1;
1597 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1598 np
->full_duplex
= 0;
1600 if (negotiate
& PCS_ANAR_PAUSE
) {
1603 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1607 /* else tx_flow, rx_flow = user select */
1609 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1610 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1611 if (bmcr
& BMCR_FULLDPLX
) {
1612 printk (KERN_CONT
"Full duplex\n");
1614 printk (KERN_CONT
"Half duplex\n");
1618 printk(KERN_INFO
"Enable Tx Flow Control\n");
1620 printk(KERN_INFO
"Disable Tx Flow Control\n");
1622 printk(KERN_INFO
"Enable Rx Flow Control\n");
1624 printk(KERN_INFO
"Disable Rx Flow Control\n");
1630 mii_set_media_pcs (struct net_device
*dev
)
1636 struct netdev_private
*np
;
1637 np
= netdev_priv(dev
);
1638 phy_addr
= np
->phy_addr
;
1640 /* Auto-Negotiation? */
1641 if (np
->an_enable
) {
1642 /* Advertise capabilities */
1643 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1644 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1645 ~PCS_ANAR_HALF_DUPLEX
&
1646 ~PCS_ANAR_FULL_DUPLEX
;
1647 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1648 anar
|= PCS_ANAR_HALF_DUPLEX
;
1649 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1650 anar
|= PCS_ANAR_FULL_DUPLEX
;
1651 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1652 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1654 /* Soft reset PHY */
1655 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1656 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1657 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1660 /* Force speed setting */
1663 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1665 if (np
->full_duplex
) {
1666 bmcr
= BMCR_FULLDPLX
;
1667 printk (KERN_INFO
"Manual full duplex\n");
1670 printk (KERN_INFO
"Manual half duplex\n");
1672 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1675 /* Advertise nothing */
1676 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1683 rio_close (struct net_device
*dev
)
1685 struct netdev_private
*np
= netdev_priv(dev
);
1686 void __iomem
*ioaddr
= np
->ioaddr
;
1688 struct pci_dev
*pdev
= np
->pdev
;
1689 struct sk_buff
*skb
;
1692 netif_stop_queue (dev
);
1694 /* Disable interrupts */
1697 /* Stop Tx and Rx logics */
1698 dw32(MACCtrl
, TxDisable
| RxDisable
| StatsDisable
);
1700 free_irq(pdev
->irq
, dev
);
1701 del_timer_sync (&np
->timer
);
1703 /* Free all the skbuffs in the queue. */
1704 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1705 skb
= np
->rx_skbuff
[i
];
1707 pci_unmap_single(pdev
, desc_to_dma(&np
->rx_ring
[i
]),
1708 skb
->len
, PCI_DMA_FROMDEVICE
);
1709 dev_kfree_skb (skb
);
1710 np
->rx_skbuff
[i
] = NULL
;
1712 np
->rx_ring
[i
].status
= 0;
1713 np
->rx_ring
[i
].fraginfo
= 0;
1715 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1716 skb
= np
->tx_skbuff
[i
];
1718 pci_unmap_single(pdev
, desc_to_dma(&np
->tx_ring
[i
]),
1719 skb
->len
, PCI_DMA_TODEVICE
);
1720 dev_kfree_skb (skb
);
1721 np
->tx_skbuff
[i
] = NULL
;
1729 rio_remove1 (struct pci_dev
*pdev
)
1731 struct net_device
*dev
= pci_get_drvdata (pdev
);
1734 struct netdev_private
*np
= netdev_priv(dev
);
1736 unregister_netdev (dev
);
1737 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1739 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1742 pci_iounmap(pdev
, np
->ioaddr
);
1744 pci_iounmap(pdev
, np
->eeprom_addr
);
1746 pci_release_regions (pdev
);
1747 pci_disable_device (pdev
);
1751 static struct pci_driver rio_driver
= {
1753 .id_table
= rio_pci_tbl
,
1754 .probe
= rio_probe1
,
1755 .remove
= rio_remove1
,
1758 module_pci_driver(rio_driver
);
1763 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1765 Read Documentation/networking/dl2k.txt for details.