2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION
);
77 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
78 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
81 static int debug
= -1; /* defaults above */
82 module_param(debug
, int, 0);
83 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
102 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
104 static int skge_up(struct net_device
*dev
);
105 static int skge_down(struct net_device
*dev
);
106 static void skge_phy_reset(struct skge_port
*skge
);
107 static void skge_tx_clean(struct net_device
*dev
);
108 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
109 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
110 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
111 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
112 static void yukon_init(struct skge_hw
*hw
, int port
);
113 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
114 static void genesis_link_up(struct skge_port
*skge
);
115 static void skge_set_multicast(struct net_device
*dev
);
116 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
118 /* Avoid conditionals by using array */
119 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
120 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
121 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
122 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
123 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
124 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
126 static inline bool is_genesis(const struct skge_hw
*hw
)
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw
->chip_id
== CHIP_ID_GENESIS
;
135 static int skge_get_regs_len(struct net_device
*dev
)
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
145 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
148 const struct skge_port
*skge
= netdev_priv(dev
);
149 const void __iomem
*io
= skge
->hw
->regs
;
152 memset(p
, 0, regs
->len
);
153 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
155 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
156 regs
->len
- B3_RI_WTO_R1
);
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32
wol_supported(const struct skge_hw
*hw
)
165 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
168 return WAKE_MAGIC
| WAKE_PHY
;
171 static void skge_wol_init(struct skge_port
*skge
)
173 struct skge_hw
*hw
= skge
->hw
;
174 int port
= skge
->port
;
177 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
178 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
181 skge_write8(hw
, B0_POWER_CTRL
,
182 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
184 /* WA code for COMA mode -- clear PHY reset */
185 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
186 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
187 u32 reg
= skge_read32(hw
, B2_GP_IO
);
190 skge_write32(hw
, B2_GP_IO
, reg
);
193 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
195 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
196 GPC_ANEG_1
| GPC_RST_SET
);
198 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
200 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
201 GPC_ANEG_1
| GPC_RST_CLR
);
203 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
205 /* Force to 10/100 skge_reset will re-enable on resume */
206 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
207 (PHY_AN_100FULL
| PHY_AN_100HALF
|
208 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
210 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
211 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
212 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
213 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
216 /* Set GMAC to no flow control and auto update for speed/duplex */
217 gma_write16(hw
, port
, GM_GP_CTRL
,
218 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
219 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
221 /* Set WOL address */
222 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
223 skge
->netdev
->dev_addr
, ETH_ALEN
);
225 /* Turn on appropriate WOL control bits */
226 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
228 if (skge
->wol
& WAKE_PHY
)
229 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
231 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
233 if (skge
->wol
& WAKE_MAGIC
)
234 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
236 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
238 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
239 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
242 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
245 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
247 struct skge_port
*skge
= netdev_priv(dev
);
249 wol
->supported
= wol_supported(skge
->hw
);
250 wol
->wolopts
= skge
->wol
;
253 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
255 struct skge_port
*skge
= netdev_priv(dev
);
256 struct skge_hw
*hw
= skge
->hw
;
258 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
259 !device_can_wakeup(&hw
->pdev
->dev
))
262 skge
->wol
= wol
->wolopts
;
264 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
269 /* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
272 static u32
skge_supported_modes(const struct skge_hw
*hw
)
277 supported
= (SUPPORTED_10baseT_Half
|
278 SUPPORTED_10baseT_Full
|
279 SUPPORTED_100baseT_Half
|
280 SUPPORTED_100baseT_Full
|
281 SUPPORTED_1000baseT_Half
|
282 SUPPORTED_1000baseT_Full
|
287 supported
&= ~(SUPPORTED_10baseT_Half
|
288 SUPPORTED_10baseT_Full
|
289 SUPPORTED_100baseT_Half
|
290 SUPPORTED_100baseT_Full
);
292 else if (hw
->chip_id
== CHIP_ID_YUKON
)
293 supported
&= ~SUPPORTED_1000baseT_Half
;
295 supported
= (SUPPORTED_1000baseT_Full
|
296 SUPPORTED_1000baseT_Half
|
303 static int skge_get_settings(struct net_device
*dev
,
304 struct ethtool_cmd
*ecmd
)
306 struct skge_port
*skge
= netdev_priv(dev
);
307 struct skge_hw
*hw
= skge
->hw
;
309 ecmd
->transceiver
= XCVR_INTERNAL
;
310 ecmd
->supported
= skge_supported_modes(hw
);
313 ecmd
->port
= PORT_TP
;
314 ecmd
->phy_address
= hw
->phy_addr
;
316 ecmd
->port
= PORT_FIBRE
;
318 ecmd
->advertising
= skge
->advertising
;
319 ecmd
->autoneg
= skge
->autoneg
;
320 ethtool_cmd_speed_set(ecmd
, skge
->speed
);
321 ecmd
->duplex
= skge
->duplex
;
325 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
327 struct skge_port
*skge
= netdev_priv(dev
);
328 const struct skge_hw
*hw
= skge
->hw
;
329 u32 supported
= skge_supported_modes(hw
);
332 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
333 ecmd
->advertising
= supported
;
338 u32 speed
= ethtool_cmd_speed(ecmd
);
342 if (ecmd
->duplex
== DUPLEX_FULL
)
343 setting
= SUPPORTED_1000baseT_Full
;
344 else if (ecmd
->duplex
== DUPLEX_HALF
)
345 setting
= SUPPORTED_1000baseT_Half
;
350 if (ecmd
->duplex
== DUPLEX_FULL
)
351 setting
= SUPPORTED_100baseT_Full
;
352 else if (ecmd
->duplex
== DUPLEX_HALF
)
353 setting
= SUPPORTED_100baseT_Half
;
359 if (ecmd
->duplex
== DUPLEX_FULL
)
360 setting
= SUPPORTED_10baseT_Full
;
361 else if (ecmd
->duplex
== DUPLEX_HALF
)
362 setting
= SUPPORTED_10baseT_Half
;
370 if ((setting
& supported
) == 0)
374 skge
->duplex
= ecmd
->duplex
;
377 skge
->autoneg
= ecmd
->autoneg
;
378 skge
->advertising
= ecmd
->advertising
;
380 if (netif_running(dev
)) {
392 static void skge_get_drvinfo(struct net_device
*dev
,
393 struct ethtool_drvinfo
*info
)
395 struct skge_port
*skge
= netdev_priv(dev
);
397 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
398 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
399 strlcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
),
400 sizeof(info
->bus_info
));
403 static const struct skge_stat
{
404 char name
[ETH_GSTRING_LEN
];
408 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
409 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
411 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
412 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
413 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
414 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
415 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
416 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
417 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
418 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
420 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
421 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
422 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
423 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
424 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
425 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
427 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
428 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
429 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
430 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
431 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
434 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
438 return ARRAY_SIZE(skge_stats
);
444 static void skge_get_ethtool_stats(struct net_device
*dev
,
445 struct ethtool_stats
*stats
, u64
*data
)
447 struct skge_port
*skge
= netdev_priv(dev
);
449 if (is_genesis(skge
->hw
))
450 genesis_get_stats(skge
, data
);
452 yukon_get_stats(skge
, data
);
455 /* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
459 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
461 struct skge_port
*skge
= netdev_priv(dev
);
462 u64 data
[ARRAY_SIZE(skge_stats
)];
464 if (is_genesis(skge
->hw
))
465 genesis_get_stats(skge
, data
);
467 yukon_get_stats(skge
, data
);
469 dev
->stats
.tx_bytes
= data
[0];
470 dev
->stats
.rx_bytes
= data
[1];
471 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
472 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
473 dev
->stats
.multicast
= data
[3] + data
[5];
474 dev
->stats
.collisions
= data
[10];
475 dev
->stats
.tx_aborted_errors
= data
[12];
480 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
486 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
487 memcpy(data
+ i
* ETH_GSTRING_LEN
,
488 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
493 static void skge_get_ring_param(struct net_device
*dev
,
494 struct ethtool_ringparam
*p
)
496 struct skge_port
*skge
= netdev_priv(dev
);
498 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
499 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
501 p
->rx_pending
= skge
->rx_ring
.count
;
502 p
->tx_pending
= skge
->tx_ring
.count
;
505 static int skge_set_ring_param(struct net_device
*dev
,
506 struct ethtool_ringparam
*p
)
508 struct skge_port
*skge
= netdev_priv(dev
);
511 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
512 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
515 skge
->rx_ring
.count
= p
->rx_pending
;
516 skge
->tx_ring
.count
= p
->tx_pending
;
518 if (netif_running(dev
)) {
528 static u32
skge_get_msglevel(struct net_device
*netdev
)
530 struct skge_port
*skge
= netdev_priv(netdev
);
531 return skge
->msg_enable
;
534 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
536 struct skge_port
*skge
= netdev_priv(netdev
);
537 skge
->msg_enable
= value
;
540 static int skge_nway_reset(struct net_device
*dev
)
542 struct skge_port
*skge
= netdev_priv(dev
);
544 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
547 skge_phy_reset(skge
);
551 static void skge_get_pauseparam(struct net_device
*dev
,
552 struct ethtool_pauseparam
*ecmd
)
554 struct skge_port
*skge
= netdev_priv(dev
);
556 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
557 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
558 ecmd
->tx_pause
= (ecmd
->rx_pause
||
559 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
561 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
564 static int skge_set_pauseparam(struct net_device
*dev
,
565 struct ethtool_pauseparam
*ecmd
)
567 struct skge_port
*skge
= netdev_priv(dev
);
568 struct ethtool_pauseparam old
;
571 skge_get_pauseparam(dev
, &old
);
573 if (ecmd
->autoneg
!= old
.autoneg
)
574 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
576 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
577 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
578 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
579 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
580 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
581 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
583 skge
->flow_control
= FLOW_MODE_NONE
;
586 if (netif_running(dev
)) {
598 /* Chip internal frequency for clock calculations */
599 static inline u32
hwkhz(const struct skge_hw
*hw
)
601 return is_genesis(hw
) ? 53125 : 78125;
604 /* Chip HZ to microseconds */
605 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
607 return (ticks
* 1000) / hwkhz(hw
);
610 /* Microseconds to chip HZ */
611 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
613 return hwkhz(hw
) * usec
/ 1000;
616 static int skge_get_coalesce(struct net_device
*dev
,
617 struct ethtool_coalesce
*ecmd
)
619 struct skge_port
*skge
= netdev_priv(dev
);
620 struct skge_hw
*hw
= skge
->hw
;
621 int port
= skge
->port
;
623 ecmd
->rx_coalesce_usecs
= 0;
624 ecmd
->tx_coalesce_usecs
= 0;
626 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
627 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
628 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
630 if (msk
& rxirqmask
[port
])
631 ecmd
->rx_coalesce_usecs
= delay
;
632 if (msk
& txirqmask
[port
])
633 ecmd
->tx_coalesce_usecs
= delay
;
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device
*dev
,
641 struct ethtool_coalesce
*ecmd
)
643 struct skge_port
*skge
= netdev_priv(dev
);
644 struct skge_hw
*hw
= skge
->hw
;
645 int port
= skge
->port
;
646 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
649 if (ecmd
->rx_coalesce_usecs
== 0)
650 msk
&= ~rxirqmask
[port
];
651 else if (ecmd
->rx_coalesce_usecs
< 25 ||
652 ecmd
->rx_coalesce_usecs
> 33333)
655 msk
|= rxirqmask
[port
];
656 delay
= ecmd
->rx_coalesce_usecs
;
659 if (ecmd
->tx_coalesce_usecs
== 0)
660 msk
&= ~txirqmask
[port
];
661 else if (ecmd
->tx_coalesce_usecs
< 25 ||
662 ecmd
->tx_coalesce_usecs
> 33333)
665 msk
|= txirqmask
[port
];
666 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
669 skge_write32(hw
, B2_IRQM_MSK
, msk
);
671 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
673 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
674 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
679 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
680 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
682 struct skge_hw
*hw
= skge
->hw
;
683 int port
= skge
->port
;
685 spin_lock_bh(&hw
->phy_lock
);
686 if (is_genesis(hw
)) {
689 if (hw
->phy_type
== SK_PHY_BCOM
)
690 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
692 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
693 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
695 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
696 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
697 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
701 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
702 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
704 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
705 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
710 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
711 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
712 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
714 if (hw
->phy_type
== SK_PHY_BCOM
)
715 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
717 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
718 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
719 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
726 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
727 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
728 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
729 PHY_M_LED_MO_10(MO_LED_OFF
) |
730 PHY_M_LED_MO_100(MO_LED_OFF
) |
731 PHY_M_LED_MO_1000(MO_LED_OFF
) |
732 PHY_M_LED_MO_RX(MO_LED_OFF
));
735 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
736 PHY_M_LED_PULS_DUR(PULS_170MS
) |
737 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
741 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
742 PHY_M_LED_MO_RX(MO_LED_OFF
) |
743 (skge
->speed
== SPEED_100
?
744 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
747 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
748 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
749 PHY_M_LED_MO_DUP(MO_LED_ON
) |
750 PHY_M_LED_MO_10(MO_LED_ON
) |
751 PHY_M_LED_MO_100(MO_LED_ON
) |
752 PHY_M_LED_MO_1000(MO_LED_ON
) |
753 PHY_M_LED_MO_RX(MO_LED_ON
));
756 spin_unlock_bh(&hw
->phy_lock
);
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device
*dev
,
761 enum ethtool_phys_id_state state
)
763 struct skge_port
*skge
= netdev_priv(dev
);
766 case ETHTOOL_ID_ACTIVE
:
767 return 2; /* cycle on/off twice per second */
770 skge_led(skge
, LED_MODE_TST
);
774 skge_led(skge
, LED_MODE_OFF
);
777 case ETHTOOL_ID_INACTIVE
:
778 /* back to regular LED state */
779 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
785 static int skge_get_eeprom_len(struct net_device
*dev
)
787 struct skge_port
*skge
= netdev_priv(dev
);
790 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
791 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
794 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
798 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
801 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
802 } while (!(offset
& PCI_VPD_ADDR_F
));
804 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
808 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
810 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
811 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
812 offset
| PCI_VPD_ADDR_F
);
815 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
816 } while (offset
& PCI_VPD_ADDR_F
);
819 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
822 struct skge_port
*skge
= netdev_priv(dev
);
823 struct pci_dev
*pdev
= skge
->hw
->pdev
;
824 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
825 int length
= eeprom
->len
;
826 u16 offset
= eeprom
->offset
;
831 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
834 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
835 int n
= min_t(int, length
, sizeof(val
));
837 memcpy(data
, &val
, n
);
845 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
848 struct skge_port
*skge
= netdev_priv(dev
);
849 struct pci_dev
*pdev
= skge
->hw
->pdev
;
850 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
851 int length
= eeprom
->len
;
852 u16 offset
= eeprom
->offset
;
857 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
862 int n
= min_t(int, length
, sizeof(val
));
865 val
= skge_vpd_read(pdev
, cap
, offset
);
866 memcpy(&val
, data
, n
);
868 skge_vpd_write(pdev
, cap
, offset
, val
);
877 static const struct ethtool_ops skge_ethtool_ops
= {
878 .get_settings
= skge_get_settings
,
879 .set_settings
= skge_set_settings
,
880 .get_drvinfo
= skge_get_drvinfo
,
881 .get_regs_len
= skge_get_regs_len
,
882 .get_regs
= skge_get_regs
,
883 .get_wol
= skge_get_wol
,
884 .set_wol
= skge_set_wol
,
885 .get_msglevel
= skge_get_msglevel
,
886 .set_msglevel
= skge_set_msglevel
,
887 .nway_reset
= skge_nway_reset
,
888 .get_link
= ethtool_op_get_link
,
889 .get_eeprom_len
= skge_get_eeprom_len
,
890 .get_eeprom
= skge_get_eeprom
,
891 .set_eeprom
= skge_set_eeprom
,
892 .get_ringparam
= skge_get_ring_param
,
893 .set_ringparam
= skge_set_ring_param
,
894 .get_pauseparam
= skge_get_pauseparam
,
895 .set_pauseparam
= skge_set_pauseparam
,
896 .get_coalesce
= skge_get_coalesce
,
897 .set_coalesce
= skge_set_coalesce
,
898 .get_strings
= skge_get_strings
,
899 .set_phys_id
= skge_set_phys_id
,
900 .get_sset_count
= skge_get_sset_count
,
901 .get_ethtool_stats
= skge_get_ethtool_stats
,
905 * Allocate ring elements and chain them together
906 * One-to-one association of board descriptors with ring elements
908 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
910 struct skge_tx_desc
*d
;
911 struct skge_element
*e
;
914 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
918 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
920 if (i
== ring
->count
- 1) {
921 e
->next
= ring
->start
;
922 d
->next_offset
= base
;
925 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
928 ring
->to_use
= ring
->to_clean
= ring
->start
;
933 /* Allocate and setup a new buffer for receiving */
934 static int skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
935 struct sk_buff
*skb
, unsigned int bufsize
)
937 struct skge_rx_desc
*rd
= e
->desc
;
940 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
943 if (pci_dma_mapping_error(skge
->hw
->pdev
, map
))
946 rd
->dma_lo
= lower_32_bits(map
);
947 rd
->dma_hi
= upper_32_bits(map
);
949 rd
->csum1_start
= ETH_HLEN
;
950 rd
->csum2_start
= ETH_HLEN
;
956 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
957 dma_unmap_addr_set(e
, mapaddr
, map
);
958 dma_unmap_len_set(e
, maplen
, bufsize
);
962 /* Resume receiving using existing skb,
963 * Note: DMA address is not changed by chip.
964 * MTU not changed while receiver active.
966 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
968 struct skge_rx_desc
*rd
= e
->desc
;
971 rd
->csum2_start
= ETH_HLEN
;
975 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
979 /* Free all buffers in receive ring, assumes receiver stopped */
980 static void skge_rx_clean(struct skge_port
*skge
)
982 struct skge_hw
*hw
= skge
->hw
;
983 struct skge_ring
*ring
= &skge
->rx_ring
;
984 struct skge_element
*e
;
988 struct skge_rx_desc
*rd
= e
->desc
;
991 pci_unmap_single(hw
->pdev
,
992 dma_unmap_addr(e
, mapaddr
),
993 dma_unmap_len(e
, maplen
),
995 dev_kfree_skb(e
->skb
);
998 } while ((e
= e
->next
) != ring
->start
);
1002 /* Allocate buffers for receive ring
1003 * For receive: to_clean is next received frame.
1005 static int skge_rx_fill(struct net_device
*dev
)
1007 struct skge_port
*skge
= netdev_priv(dev
);
1008 struct skge_ring
*ring
= &skge
->rx_ring
;
1009 struct skge_element
*e
;
1013 struct sk_buff
*skb
;
1015 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1020 skb_reserve(skb
, NET_IP_ALIGN
);
1021 if (skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
) < 0) {
1025 } while ((e
= e
->next
) != ring
->start
);
1027 ring
->to_clean
= ring
->start
;
1031 static const char *skge_pause(enum pause_status status
)
1034 case FLOW_STAT_NONE
:
1036 case FLOW_STAT_REM_SEND
:
1038 case FLOW_STAT_LOC_SEND
:
1040 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1043 return "indeterminated";
1048 static void skge_link_up(struct skge_port
*skge
)
1050 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1051 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1053 netif_carrier_on(skge
->netdev
);
1054 netif_wake_queue(skge
->netdev
);
1056 netif_info(skge
, link
, skge
->netdev
,
1057 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1059 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1060 skge_pause(skge
->flow_status
));
1063 static void skge_link_down(struct skge_port
*skge
)
1065 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1066 netif_carrier_off(skge
->netdev
);
1067 netif_stop_queue(skge
->netdev
);
1069 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1072 static void xm_link_down(struct skge_hw
*hw
, int port
)
1074 struct net_device
*dev
= hw
->dev
[port
];
1075 struct skge_port
*skge
= netdev_priv(dev
);
1077 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1079 if (netif_carrier_ok(dev
))
1080 skge_link_down(skge
);
1083 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1087 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1088 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1090 if (hw
->phy_type
== SK_PHY_XMAC
)
1093 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1094 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1101 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1106 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1109 if (__xm_phy_read(hw
, port
, reg
, &v
))
1110 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1114 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1118 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1119 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1120 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1127 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1128 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1129 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1136 static void genesis_init(struct skge_hw
*hw
)
1138 /* set blink source counter */
1139 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1140 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1142 /* configure mac arbiter */
1143 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1145 /* configure mac arbiter timeout values */
1146 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1147 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1148 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1149 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1151 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1152 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1153 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1154 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1156 /* configure packet arbiter timeout */
1157 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1158 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1159 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1160 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1161 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1164 static void genesis_reset(struct skge_hw
*hw
, int port
)
1166 static const u8 zero
[8] = { 0 };
1169 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1171 /* reset the statistics module */
1172 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1173 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1174 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1175 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1176 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1178 /* disable Broadcom PHY IRQ */
1179 if (hw
->phy_type
== SK_PHY_BCOM
)
1180 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1182 xm_outhash(hw
, port
, XM_HSM
, zero
);
1184 /* Flush TX and RX fifo */
1185 reg
= xm_read32(hw
, port
, XM_MODE
);
1186 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1187 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1190 /* Convert mode to MII values */
1191 static const u16 phy_pause_map
[] = {
1192 [FLOW_MODE_NONE
] = 0,
1193 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1194 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1195 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1198 /* special defines for FIBER (88E1011S only) */
1199 static const u16 fiber_pause_map
[] = {
1200 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1201 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1202 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1203 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1207 /* Check status of Broadcom phy link */
1208 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1210 struct net_device
*dev
= hw
->dev
[port
];
1211 struct skge_port
*skge
= netdev_priv(dev
);
1214 /* read twice because of latch */
1215 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1216 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1218 if ((status
& PHY_ST_LSYNC
) == 0) {
1219 xm_link_down(hw
, port
);
1223 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1226 if (!(status
& PHY_ST_AN_OVER
))
1229 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1230 if (lpa
& PHY_B_AN_RF
) {
1231 netdev_notice(dev
, "remote fault\n");
1235 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1237 /* Check Duplex mismatch */
1238 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1239 case PHY_B_RES_1000FD
:
1240 skge
->duplex
= DUPLEX_FULL
;
1242 case PHY_B_RES_1000HD
:
1243 skge
->duplex
= DUPLEX_HALF
;
1246 netdev_notice(dev
, "duplex mismatch\n");
1250 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1251 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1252 case PHY_B_AS_PAUSE_MSK
:
1253 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1256 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1259 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1262 skge
->flow_status
= FLOW_STAT_NONE
;
1264 skge
->speed
= SPEED_1000
;
1267 if (!netif_carrier_ok(dev
))
1268 genesis_link_up(skge
);
1271 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1272 * Phy on for 100 or 10Mbit operation
1274 static void bcom_phy_init(struct skge_port
*skge
)
1276 struct skge_hw
*hw
= skge
->hw
;
1277 int port
= skge
->port
;
1279 u16 id1
, r
, ext
, ctl
;
1281 /* magic workaround patterns for Broadcom */
1282 static const struct {
1286 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1287 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1288 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1289 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1291 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1292 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1295 /* read Id from external PHY (all have the same address) */
1296 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1298 /* Optimize MDIO transfer by suppressing preamble. */
1299 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1301 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1304 case PHY_BCOM_ID1_C0
:
1306 * Workaround BCOM Errata for the C0 type.
1307 * Write magic patterns to reserved registers.
1309 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1310 xm_phy_write(hw
, port
,
1311 C0hack
[i
].reg
, C0hack
[i
].val
);
1314 case PHY_BCOM_ID1_A1
:
1316 * Workaround BCOM Errata for the A1 type.
1317 * Write magic patterns to reserved registers.
1319 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1320 xm_phy_write(hw
, port
,
1321 A1hack
[i
].reg
, A1hack
[i
].val
);
1326 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1327 * Disable Power Management after reset.
1329 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1330 r
|= PHY_B_AC_DIS_PM
;
1331 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1334 xm_read16(hw
, port
, XM_ISRC
);
1336 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1337 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1339 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1341 * Workaround BCOM Errata #1 for the C5 type.
1342 * 1000Base-T Link Acquisition Failure in Slave Mode
1343 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345 u16 adv
= PHY_B_1000C_RD
;
1346 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1347 adv
|= PHY_B_1000C_AHD
;
1348 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1349 adv
|= PHY_B_1000C_AFD
;
1350 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1352 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1354 if (skge
->duplex
== DUPLEX_FULL
)
1355 ctl
|= PHY_CT_DUP_MD
;
1356 /* Force to slave */
1357 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1360 /* Set autonegotiation pause parameters */
1361 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1362 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1364 /* Handle Jumbo frames */
1365 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1366 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1367 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1369 ext
|= PHY_B_PEC_HIGH_LA
;
1373 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1374 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1376 /* Use link status change interrupt */
1377 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1380 static void xm_phy_init(struct skge_port
*skge
)
1382 struct skge_hw
*hw
= skge
->hw
;
1383 int port
= skge
->port
;
1386 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1387 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1388 ctrl
|= PHY_X_AN_HD
;
1389 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1390 ctrl
|= PHY_X_AN_FD
;
1392 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1394 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1396 /* Restart Auto-negotiation */
1397 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1399 /* Set DuplexMode in Config register */
1400 if (skge
->duplex
== DUPLEX_FULL
)
1401 ctrl
|= PHY_CT_DUP_MD
;
1403 * Do NOT enable Auto-negotiation here. This would hold
1404 * the link down because no IDLEs are transmitted
1408 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1410 /* Poll PHY for status changes */
1411 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1414 static int xm_check_link(struct net_device
*dev
)
1416 struct skge_port
*skge
= netdev_priv(dev
);
1417 struct skge_hw
*hw
= skge
->hw
;
1418 int port
= skge
->port
;
1421 /* read twice because of latch */
1422 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1423 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1425 if ((status
& PHY_ST_LSYNC
) == 0) {
1426 xm_link_down(hw
, port
);
1430 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1433 if (!(status
& PHY_ST_AN_OVER
))
1436 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1437 if (lpa
& PHY_B_AN_RF
) {
1438 netdev_notice(dev
, "remote fault\n");
1442 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1444 /* Check Duplex mismatch */
1445 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1447 skge
->duplex
= DUPLEX_FULL
;
1450 skge
->duplex
= DUPLEX_HALF
;
1453 netdev_notice(dev
, "duplex mismatch\n");
1457 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1458 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1459 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1460 (lpa
& PHY_X_P_SYM_MD
))
1461 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1462 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1463 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1464 /* Enable PAUSE receive, disable PAUSE transmit */
1465 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1466 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1467 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1468 /* Disable PAUSE receive, enable PAUSE transmit */
1469 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1471 skge
->flow_status
= FLOW_STAT_NONE
;
1473 skge
->speed
= SPEED_1000
;
1476 if (!netif_carrier_ok(dev
))
1477 genesis_link_up(skge
);
1481 /* Poll to check for link coming up.
1483 * Since internal PHY is wired to a level triggered pin, can't
1484 * get an interrupt when carrier is detected, need to poll for
1487 static void xm_link_timer(unsigned long arg
)
1489 struct skge_port
*skge
= (struct skge_port
*) arg
;
1490 struct net_device
*dev
= skge
->netdev
;
1491 struct skge_hw
*hw
= skge
->hw
;
1492 int port
= skge
->port
;
1494 unsigned long flags
;
1496 if (!netif_running(dev
))
1499 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1502 * Verify that the link by checking GPIO register three times.
1503 * This pin has the signal from the link_sync pin connected to it.
1505 for (i
= 0; i
< 3; i
++) {
1506 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1510 /* Re-enable interrupt to detect link down */
1511 if (xm_check_link(dev
)) {
1512 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1513 msk
&= ~XM_IS_INP_ASS
;
1514 xm_write16(hw
, port
, XM_IMSK
, msk
);
1515 xm_read16(hw
, port
, XM_ISRC
);
1518 mod_timer(&skge
->link_timer
,
1519 round_jiffies(jiffies
+ LINK_HZ
));
1521 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1524 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1526 struct net_device
*dev
= hw
->dev
[port
];
1527 struct skge_port
*skge
= netdev_priv(dev
);
1528 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1531 static const u8 zero
[6] = { 0 };
1533 for (i
= 0; i
< 10; i
++) {
1534 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1536 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1541 netdev_warn(dev
, "genesis reset failed\n");
1544 /* Unreset the XMAC. */
1545 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1548 * Perform additional initialization for external PHYs,
1549 * namely for the 1000baseTX cards that use the XMAC's
1552 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1553 /* Take external Phy out of reset */
1554 r
= skge_read32(hw
, B2_GP_IO
);
1556 r
|= GP_DIR_0
|GP_IO_0
;
1558 r
|= GP_DIR_2
|GP_IO_2
;
1560 skge_write32(hw
, B2_GP_IO
, r
);
1562 /* Enable GMII interface */
1563 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1567 switch (hw
->phy_type
) {
1572 bcom_phy_init(skge
);
1573 bcom_check_link(hw
, port
);
1576 /* Set Station Address */
1577 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1579 /* We don't use match addresses so clear */
1580 for (i
= 1; i
< 16; i
++)
1581 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1583 /* Clear MIB counters */
1584 xm_write16(hw
, port
, XM_STAT_CMD
,
1585 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1586 /* Clear two times according to Errata #3 */
1587 xm_write16(hw
, port
, XM_STAT_CMD
,
1588 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1590 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1591 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1593 /* We don't need the FCS appended to the packet. */
1594 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1596 r
|= XM_RX_BIG_PK_OK
;
1598 if (skge
->duplex
== DUPLEX_HALF
) {
1600 * If in manual half duplex mode the other side might be in
1601 * full duplex mode, so ignore if a carrier extension is not seen
1602 * on frames received
1604 r
|= XM_RX_DIS_CEXT
;
1606 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1608 /* We want short frames padded to 60 bytes. */
1609 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1611 /* Increase threshold for jumbo frames on dual port */
1612 if (hw
->ports
> 1 && jumbo
)
1613 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1615 xm_write16(hw
, port
, XM_TX_THR
, 512);
1618 * Enable the reception of all error frames. This is is
1619 * a necessary evil due to the design of the XMAC. The
1620 * XMAC's receive FIFO is only 8K in size, however jumbo
1621 * frames can be up to 9000 bytes in length. When bad
1622 * frame filtering is enabled, the XMAC's RX FIFO operates
1623 * in 'store and forward' mode. For this to work, the
1624 * entire frame has to fit into the FIFO, but that means
1625 * that jumbo frames larger than 8192 bytes will be
1626 * truncated. Disabling all bad frame filtering causes
1627 * the RX FIFO to operate in streaming mode, in which
1628 * case the XMAC will start transferring frames out of the
1629 * RX FIFO as soon as the FIFO threshold is reached.
1631 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1635 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1636 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1637 * and 'Octets Rx OK Hi Cnt Ov'.
1639 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1642 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1643 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1644 * and 'Octets Tx OK Hi Cnt Ov'.
1646 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1648 /* Configure MAC arbiter */
1649 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1651 /* configure timeout values */
1652 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1653 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1654 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1655 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1657 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1658 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1659 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1660 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1662 /* Configure Rx MAC FIFO */
1663 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1664 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1665 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1667 /* Configure Tx MAC FIFO */
1668 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1669 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1670 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1673 /* Enable frame flushing if jumbo frames used */
1674 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1676 /* enable timeout timers if normal frames */
1677 skge_write16(hw
, B3_PA_CTRL
,
1678 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1682 static void genesis_stop(struct skge_port
*skge
)
1684 struct skge_hw
*hw
= skge
->hw
;
1685 int port
= skge
->port
;
1686 unsigned retries
= 1000;
1689 /* Disable Tx and Rx */
1690 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1691 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1692 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1694 genesis_reset(hw
, port
);
1696 /* Clear Tx packet arbiter timeout IRQ */
1697 skge_write16(hw
, B3_PA_CTRL
,
1698 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1701 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1703 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1704 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1706 } while (--retries
> 0);
1708 /* For external PHYs there must be special handling */
1709 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1710 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1718 skge_write32(hw
, B2_GP_IO
, reg
);
1719 skge_read32(hw
, B2_GP_IO
);
1722 xm_write16(hw
, port
, XM_MMU_CMD
,
1723 xm_read16(hw
, port
, XM_MMU_CMD
)
1724 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1726 xm_read16(hw
, port
, XM_MMU_CMD
);
1730 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1732 struct skge_hw
*hw
= skge
->hw
;
1733 int port
= skge
->port
;
1735 unsigned long timeout
= jiffies
+ HZ
;
1737 xm_write16(hw
, port
,
1738 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1740 /* wait for update to complete */
1741 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1742 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1743 if (time_after(jiffies
, timeout
))
1748 /* special case for 64 bit octet counter */
1749 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1750 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1751 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1752 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1754 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1755 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1758 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1760 struct net_device
*dev
= hw
->dev
[port
];
1761 struct skge_port
*skge
= netdev_priv(dev
);
1762 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1764 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1765 "mac interrupt status 0x%x\n", status
);
1767 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1768 xm_link_down(hw
, port
);
1769 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1772 if (status
& XM_IS_TXF_UR
) {
1773 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1774 ++dev
->stats
.tx_fifo_errors
;
1778 static void genesis_link_up(struct skge_port
*skge
)
1780 struct skge_hw
*hw
= skge
->hw
;
1781 int port
= skge
->port
;
1785 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1788 * enabling pause frame reception is required for 1000BT
1789 * because the XMAC is not reset if the link is going down
1791 if (skge
->flow_status
== FLOW_STAT_NONE
||
1792 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1793 /* Disable Pause Frame Reception */
1794 cmd
|= XM_MMU_IGN_PF
;
1796 /* Enable Pause Frame Reception */
1797 cmd
&= ~XM_MMU_IGN_PF
;
1799 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1801 mode
= xm_read32(hw
, port
, XM_MODE
);
1802 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1803 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1805 * Configure Pause Frame Generation
1806 * Use internal and external Pause Frame Generation.
1807 * Sending pause frames is edge triggered.
1808 * Send a Pause frame with the maximum pause time if
1809 * internal oder external FIFO full condition occurs.
1810 * Send a zero pause time frame to re-start transmission.
1812 /* XM_PAUSE_DA = '010000C28001' (default) */
1813 /* XM_MAC_PTIME = 0xffff (maximum) */
1814 /* remember this value is defined in big endian (!) */
1815 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1817 mode
|= XM_PAUSE_MODE
;
1818 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1821 * disable pause frame generation is required for 1000BT
1822 * because the XMAC is not reset if the link is going down
1824 /* Disable Pause Mode in Mode Register */
1825 mode
&= ~XM_PAUSE_MODE
;
1827 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1830 xm_write32(hw
, port
, XM_MODE
, mode
);
1832 /* Turn on detection of Tx underrun */
1833 msk
= xm_read16(hw
, port
, XM_IMSK
);
1834 msk
&= ~XM_IS_TXF_UR
;
1835 xm_write16(hw
, port
, XM_IMSK
, msk
);
1837 xm_read16(hw
, port
, XM_ISRC
);
1839 /* get MMU Command Reg. */
1840 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1841 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1842 cmd
|= XM_MMU_GMII_FD
;
1845 * Workaround BCOM Errata (#10523) for all BCom Phys
1846 * Enable Power Management after link up
1848 if (hw
->phy_type
== SK_PHY_BCOM
) {
1849 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1850 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1851 & ~PHY_B_AC_DIS_PM
);
1852 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1856 xm_write16(hw
, port
, XM_MMU_CMD
,
1857 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1862 static inline void bcom_phy_intr(struct skge_port
*skge
)
1864 struct skge_hw
*hw
= skge
->hw
;
1865 int port
= skge
->port
;
1868 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1869 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1870 "phy interrupt status 0x%x\n", isrc
);
1872 if (isrc
& PHY_B_IS_PSE
)
1873 pr_err("%s: uncorrectable pair swap error\n",
1874 hw
->dev
[port
]->name
);
1876 /* Workaround BCom Errata:
1877 * enable and disable loopback mode if "NO HCD" occurs.
1879 if (isrc
& PHY_B_IS_NO_HDCL
) {
1880 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1881 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1882 ctrl
| PHY_CT_LOOP
);
1883 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1884 ctrl
& ~PHY_CT_LOOP
);
1887 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1888 bcom_check_link(hw
, port
);
1892 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1896 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1897 gma_write16(hw
, port
, GM_SMI_CTRL
,
1898 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1899 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1902 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1906 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1910 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1914 gma_write16(hw
, port
, GM_SMI_CTRL
,
1915 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1916 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1918 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1920 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1926 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1930 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1933 if (__gm_phy_read(hw
, port
, reg
, &v
))
1934 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1938 /* Marvell Phy Initialization */
1939 static void yukon_init(struct skge_hw
*hw
, int port
)
1941 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1942 u16 ctrl
, ct1000
, adv
;
1944 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1945 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1947 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1948 PHY_M_EC_MAC_S_MSK
);
1949 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1951 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1956 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1957 if (skge
->autoneg
== AUTONEG_DISABLE
)
1958 ctrl
&= ~PHY_CT_ANE
;
1960 ctrl
|= PHY_CT_RESET
;
1961 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1967 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1969 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1970 ct1000
|= PHY_M_1000C_AFD
;
1971 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1972 ct1000
|= PHY_M_1000C_AHD
;
1973 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1974 adv
|= PHY_M_AN_100_FD
;
1975 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1976 adv
|= PHY_M_AN_100_HD
;
1977 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1978 adv
|= PHY_M_AN_10_FD
;
1979 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1980 adv
|= PHY_M_AN_10_HD
;
1982 /* Set Flow-control capabilities */
1983 adv
|= phy_pause_map
[skge
->flow_control
];
1985 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1986 adv
|= PHY_M_AN_1000X_AFD
;
1987 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1988 adv
|= PHY_M_AN_1000X_AHD
;
1990 adv
|= fiber_pause_map
[skge
->flow_control
];
1993 /* Restart Auto-negotiation */
1994 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1996 /* forced speed/duplex settings */
1997 ct1000
= PHY_M_1000C_MSE
;
1999 if (skge
->duplex
== DUPLEX_FULL
)
2000 ctrl
|= PHY_CT_DUP_MD
;
2002 switch (skge
->speed
) {
2004 ctrl
|= PHY_CT_SP1000
;
2007 ctrl
|= PHY_CT_SP100
;
2011 ctrl
|= PHY_CT_RESET
;
2014 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2016 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2017 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2019 /* Enable phy interrupt on autonegotiation complete (or link up) */
2020 if (skge
->autoneg
== AUTONEG_ENABLE
)
2021 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2023 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2026 static void yukon_reset(struct skge_hw
*hw
, int port
)
2028 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2029 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2030 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2031 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2032 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2034 gma_write16(hw
, port
, GM_RX_CTRL
,
2035 gma_read16(hw
, port
, GM_RX_CTRL
)
2036 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2039 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2040 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2045 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2048 reg
= skge_read32(hw
, B2_FAR
);
2049 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2050 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2051 skge_write32(hw
, B2_FAR
, reg
);
2055 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2057 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2060 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2062 /* WA code for COMA mode -- set PHY reset */
2063 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2064 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2065 reg
= skge_read32(hw
, B2_GP_IO
);
2066 reg
|= GP_DIR_9
| GP_IO_9
;
2067 skge_write32(hw
, B2_GP_IO
, reg
);
2071 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2072 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2074 /* WA code for COMA mode -- clear PHY reset */
2075 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2076 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2077 reg
= skge_read32(hw
, B2_GP_IO
);
2080 skge_write32(hw
, B2_GP_IO
, reg
);
2083 /* Set hardware config mode */
2084 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2085 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2086 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2088 /* Clear GMC reset */
2089 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2090 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2091 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2093 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2094 reg
= GM_GPCR_AU_ALL_DIS
;
2095 gma_write16(hw
, port
, GM_GP_CTRL
,
2096 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2098 switch (skge
->speed
) {
2100 reg
&= ~GM_GPCR_SPEED_100
;
2101 reg
|= GM_GPCR_SPEED_1000
;
2104 reg
&= ~GM_GPCR_SPEED_1000
;
2105 reg
|= GM_GPCR_SPEED_100
;
2108 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2112 if (skge
->duplex
== DUPLEX_FULL
)
2113 reg
|= GM_GPCR_DUP_FULL
;
2115 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2117 switch (skge
->flow_control
) {
2118 case FLOW_MODE_NONE
:
2119 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2120 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2122 case FLOW_MODE_LOC_SEND
:
2123 /* disable Rx flow-control */
2124 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2126 case FLOW_MODE_SYMMETRIC
:
2127 case FLOW_MODE_SYM_OR_REM
:
2128 /* enable Tx & Rx flow-control */
2132 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2133 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2135 yukon_init(hw
, port
);
2138 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2139 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2141 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2142 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2143 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2145 /* transmit control */
2146 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2148 /* receive control reg: unicast + multicast + no FCS */
2149 gma_write16(hw
, port
, GM_RX_CTRL
,
2150 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2152 /* transmit flow control */
2153 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2155 /* transmit parameter */
2156 gma_write16(hw
, port
, GM_TX_PARAM
,
2157 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2158 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2159 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2161 /* configure the Serial Mode Register */
2162 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2164 | IPG_DATA_VAL(IPG_DATA_DEF
);
2166 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2167 reg
|= GM_SMOD_JUMBO_ENA
;
2169 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2171 /* physical address: used for pause frames */
2172 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2173 /* virtual address for data */
2174 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2176 /* enable interrupt mask for counter overflows */
2177 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2178 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2179 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2181 /* Initialize Mac Fifo */
2183 /* Configure Rx MAC FIFO */
2184 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2185 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2187 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2188 if (is_yukon_lite_a0(hw
))
2189 reg
&= ~GMF_RX_F_FL_ON
;
2191 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2192 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2194 * because Pause Packet Truncation in GMAC is not working
2195 * we have to increase the Flush Threshold to 64 bytes
2196 * in order to flush pause packets in Rx FIFO on Yukon-1
2198 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2200 /* Configure Tx MAC FIFO */
2201 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2202 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2205 /* Go into power down mode */
2206 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2210 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2211 ctrl
|= PHY_M_PC_POL_R_DIS
;
2212 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2214 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2215 ctrl
|= PHY_CT_RESET
;
2216 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2218 /* switch IEEE compatible power down mode on */
2219 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2220 ctrl
|= PHY_CT_PDOWN
;
2221 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2224 static void yukon_stop(struct skge_port
*skge
)
2226 struct skge_hw
*hw
= skge
->hw
;
2227 int port
= skge
->port
;
2229 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2230 yukon_reset(hw
, port
);
2232 gma_write16(hw
, port
, GM_GP_CTRL
,
2233 gma_read16(hw
, port
, GM_GP_CTRL
)
2234 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2235 gma_read16(hw
, port
, GM_GP_CTRL
);
2237 yukon_suspend(hw
, port
);
2239 /* set GPHY Control reset */
2240 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2241 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2244 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2246 struct skge_hw
*hw
= skge
->hw
;
2247 int port
= skge
->port
;
2250 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2251 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2252 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2253 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2255 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2256 data
[i
] = gma_read32(hw
, port
,
2257 skge_stats
[i
].gma_offset
);
2260 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2262 struct net_device
*dev
= hw
->dev
[port
];
2263 struct skge_port
*skge
= netdev_priv(dev
);
2264 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2266 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2267 "mac interrupt status 0x%x\n", status
);
2269 if (status
& GM_IS_RX_FF_OR
) {
2270 ++dev
->stats
.rx_fifo_errors
;
2271 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2274 if (status
& GM_IS_TX_FF_UR
) {
2275 ++dev
->stats
.tx_fifo_errors
;
2276 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2281 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2283 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2284 case PHY_M_PS_SPEED_1000
:
2286 case PHY_M_PS_SPEED_100
:
2293 static void yukon_link_up(struct skge_port
*skge
)
2295 struct skge_hw
*hw
= skge
->hw
;
2296 int port
= skge
->port
;
2299 /* Enable Transmit FIFO Underrun */
2300 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2302 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2303 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2304 reg
|= GM_GPCR_DUP_FULL
;
2307 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2308 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2310 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2314 static void yukon_link_down(struct skge_port
*skge
)
2316 struct skge_hw
*hw
= skge
->hw
;
2317 int port
= skge
->port
;
2320 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2321 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2322 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2324 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2325 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2326 ctrl
|= PHY_M_AN_ASP
;
2327 /* restore Asymmetric Pause bit */
2328 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2331 skge_link_down(skge
);
2333 yukon_init(hw
, port
);
2336 static void yukon_phy_intr(struct skge_port
*skge
)
2338 struct skge_hw
*hw
= skge
->hw
;
2339 int port
= skge
->port
;
2340 const char *reason
= NULL
;
2341 u16 istatus
, phystat
;
2343 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2344 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2346 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2347 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2349 if (istatus
& PHY_M_IS_AN_COMPL
) {
2350 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2352 reason
= "remote fault";
2356 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2357 reason
= "master/slave fault";
2361 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2362 reason
= "speed/duplex";
2366 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2367 ? DUPLEX_FULL
: DUPLEX_HALF
;
2368 skge
->speed
= yukon_speed(hw
, phystat
);
2370 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2371 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2372 case PHY_M_PS_PAUSE_MSK
:
2373 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2375 case PHY_M_PS_RX_P_EN
:
2376 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2378 case PHY_M_PS_TX_P_EN
:
2379 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2382 skge
->flow_status
= FLOW_STAT_NONE
;
2385 if (skge
->flow_status
== FLOW_STAT_NONE
||
2386 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2387 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2389 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2390 yukon_link_up(skge
);
2394 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2395 skge
->speed
= yukon_speed(hw
, phystat
);
2397 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2398 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2399 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2400 if (phystat
& PHY_M_PS_LINK_UP
)
2401 yukon_link_up(skge
);
2403 yukon_link_down(skge
);
2407 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2409 /* XXX restart autonegotiation? */
2412 static void skge_phy_reset(struct skge_port
*skge
)
2414 struct skge_hw
*hw
= skge
->hw
;
2415 int port
= skge
->port
;
2416 struct net_device
*dev
= hw
->dev
[port
];
2418 netif_stop_queue(skge
->netdev
);
2419 netif_carrier_off(skge
->netdev
);
2421 spin_lock_bh(&hw
->phy_lock
);
2422 if (is_genesis(hw
)) {
2423 genesis_reset(hw
, port
);
2424 genesis_mac_init(hw
, port
);
2426 yukon_reset(hw
, port
);
2427 yukon_init(hw
, port
);
2429 spin_unlock_bh(&hw
->phy_lock
);
2431 skge_set_multicast(dev
);
2434 /* Basic MII support */
2435 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2437 struct mii_ioctl_data
*data
= if_mii(ifr
);
2438 struct skge_port
*skge
= netdev_priv(dev
);
2439 struct skge_hw
*hw
= skge
->hw
;
2440 int err
= -EOPNOTSUPP
;
2442 if (!netif_running(dev
))
2443 return -ENODEV
; /* Phy still in reset */
2447 data
->phy_id
= hw
->phy_addr
;
2452 spin_lock_bh(&hw
->phy_lock
);
2455 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2457 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2458 spin_unlock_bh(&hw
->phy_lock
);
2459 data
->val_out
= val
;
2464 spin_lock_bh(&hw
->phy_lock
);
2466 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2469 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2471 spin_unlock_bh(&hw
->phy_lock
);
2477 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2483 end
= start
+ len
- 1;
2485 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2486 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2487 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2488 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2489 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2491 if (q
== Q_R1
|| q
== Q_R2
) {
2492 /* Set thresholds on receive queue's */
2493 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2495 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2498 /* Enable store & forward on Tx queue's because
2499 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2504 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2507 /* Setup Bus Memory Interface */
2508 static void skge_qset(struct skge_port
*skge
, u16 q
,
2509 const struct skge_element
*e
)
2511 struct skge_hw
*hw
= skge
->hw
;
2512 u32 watermark
= 0x600;
2513 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2515 /* optimization to reduce window on 32bit/33mhz */
2516 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2519 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2520 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2521 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2522 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2525 static int skge_up(struct net_device
*dev
)
2527 struct skge_port
*skge
= netdev_priv(dev
);
2528 struct skge_hw
*hw
= skge
->hw
;
2529 int port
= skge
->port
;
2530 u32 chunk
, ram_addr
;
2531 size_t rx_size
, tx_size
;
2534 if (!is_valid_ether_addr(dev
->dev_addr
))
2537 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2539 if (dev
->mtu
> RX_BUF_SIZE
)
2540 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2542 skge
->rx_buf_size
= RX_BUF_SIZE
;
2545 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2546 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2547 skge
->mem_size
= tx_size
+ rx_size
;
2548 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2552 BUG_ON(skge
->dma
& 7);
2554 if (upper_32_bits(skge
->dma
) != upper_32_bits(skge
->dma
+ skge
->mem_size
)) {
2555 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2560 memset(skge
->mem
, 0, skge
->mem_size
);
2562 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2566 err
= skge_rx_fill(dev
);
2570 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2571 skge
->dma
+ rx_size
);
2575 if (hw
->ports
== 1) {
2576 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2579 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2580 hw
->pdev
->irq
, err
);
2585 /* Initialize MAC */
2586 netif_carrier_off(dev
);
2587 spin_lock_bh(&hw
->phy_lock
);
2589 genesis_mac_init(hw
, port
);
2591 yukon_mac_init(hw
, port
);
2592 spin_unlock_bh(&hw
->phy_lock
);
2594 /* Configure RAMbuffers - equally between ports and tx/rx */
2595 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2596 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2598 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2599 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2601 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2602 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2603 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2605 /* Start receiver BMU */
2607 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2608 skge_led(skge
, LED_MODE_ON
);
2610 spin_lock_irq(&hw
->hw_lock
);
2611 hw
->intr_mask
|= portmask
[port
];
2612 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2613 skge_read32(hw
, B0_IMSK
);
2614 spin_unlock_irq(&hw
->hw_lock
);
2616 napi_enable(&skge
->napi
);
2618 skge_set_multicast(dev
);
2623 kfree(skge
->tx_ring
.start
);
2625 skge_rx_clean(skge
);
2626 kfree(skge
->rx_ring
.start
);
2628 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2635 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2637 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2638 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2639 RB_RST_SET
|RB_DIS_OP_MD
);
2640 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2643 static int skge_down(struct net_device
*dev
)
2645 struct skge_port
*skge
= netdev_priv(dev
);
2646 struct skge_hw
*hw
= skge
->hw
;
2647 int port
= skge
->port
;
2649 if (skge
->mem
== NULL
)
2652 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2654 netif_tx_disable(dev
);
2656 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2657 del_timer_sync(&skge
->link_timer
);
2659 napi_disable(&skge
->napi
);
2660 netif_carrier_off(dev
);
2662 spin_lock_irq(&hw
->hw_lock
);
2663 hw
->intr_mask
&= ~portmask
[port
];
2664 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2665 skge_read32(hw
, B0_IMSK
);
2666 spin_unlock_irq(&hw
->hw_lock
);
2669 free_irq(hw
->pdev
->irq
, hw
);
2671 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2677 /* Stop transmitter */
2678 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2679 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2680 RB_RST_SET
|RB_DIS_OP_MD
);
2683 /* Disable Force Sync bit and Enable Alloc bit */
2684 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2685 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2687 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2688 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2689 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2691 /* Reset PCI FIFO */
2692 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2693 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2695 /* Reset the RAM Buffer async Tx queue */
2696 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2698 skge_rx_stop(hw
, port
);
2700 if (is_genesis(hw
)) {
2701 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2702 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2704 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2705 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2708 skge_led(skge
, LED_MODE_OFF
);
2710 netif_tx_lock_bh(dev
);
2712 netif_tx_unlock_bh(dev
);
2714 skge_rx_clean(skge
);
2716 kfree(skge
->rx_ring
.start
);
2717 kfree(skge
->tx_ring
.start
);
2718 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2723 static inline int skge_avail(const struct skge_ring
*ring
)
2726 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2727 + (ring
->to_clean
- ring
->to_use
) - 1;
2730 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2731 struct net_device
*dev
)
2733 struct skge_port
*skge
= netdev_priv(dev
);
2734 struct skge_hw
*hw
= skge
->hw
;
2735 struct skge_element
*e
;
2736 struct skge_tx_desc
*td
;
2741 if (skb_padto(skb
, ETH_ZLEN
))
2742 return NETDEV_TX_OK
;
2744 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2745 return NETDEV_TX_BUSY
;
2747 e
= skge
->tx_ring
.to_use
;
2749 BUG_ON(td
->control
& BMU_OWN
);
2751 len
= skb_headlen(skb
);
2752 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2753 if (pci_dma_mapping_error(hw
->pdev
, map
))
2756 dma_unmap_addr_set(e
, mapaddr
, map
);
2757 dma_unmap_len_set(e
, maplen
, len
);
2759 td
->dma_lo
= lower_32_bits(map
);
2760 td
->dma_hi
= upper_32_bits(map
);
2762 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2763 const int offset
= skb_checksum_start_offset(skb
);
2765 /* This seems backwards, but it is what the sk98lin
2766 * does. Looks like hardware is wrong?
2768 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2769 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2770 control
= BMU_TCP_CHECK
;
2772 control
= BMU_UDP_CHECK
;
2775 td
->csum_start
= offset
;
2776 td
->csum_write
= offset
+ skb
->csum_offset
;
2778 control
= BMU_CHECK
;
2780 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2781 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2783 struct skge_tx_desc
*tf
= td
;
2785 control
|= BMU_STFWD
;
2786 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2787 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2789 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2790 skb_frag_size(frag
), DMA_TO_DEVICE
);
2791 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2792 goto mapping_unwind
;
2797 BUG_ON(tf
->control
& BMU_OWN
);
2799 tf
->dma_lo
= lower_32_bits(map
);
2800 tf
->dma_hi
= upper_32_bits(map
);
2801 dma_unmap_addr_set(e
, mapaddr
, map
);
2802 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2804 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2806 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2808 /* Make sure all the descriptors written */
2810 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2813 netdev_sent_queue(dev
, skb
->len
);
2815 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2817 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2818 "tx queued, slot %td, len %d\n",
2819 e
- skge
->tx_ring
.start
, skb
->len
);
2821 skge
->tx_ring
.to_use
= e
->next
;
2824 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2825 netdev_dbg(dev
, "transmit queue full\n");
2826 netif_stop_queue(dev
);
2829 return NETDEV_TX_OK
;
2832 e
= skge
->tx_ring
.to_use
;
2833 pci_unmap_single(hw
->pdev
,
2834 dma_unmap_addr(e
, mapaddr
),
2835 dma_unmap_len(e
, maplen
),
2839 pci_unmap_page(hw
->pdev
,
2840 dma_unmap_addr(e
, mapaddr
),
2841 dma_unmap_len(e
, maplen
),
2846 if (net_ratelimit())
2847 dev_warn(&hw
->pdev
->dev
, "%s: tx mapping error\n", dev
->name
);
2849 return NETDEV_TX_OK
;
2853 /* Free resources associated with this reing element */
2854 static inline void skge_tx_unmap(struct pci_dev
*pdev
, struct skge_element
*e
,
2857 /* skb header vs. fragment */
2858 if (control
& BMU_STF
)
2859 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2860 dma_unmap_len(e
, maplen
),
2863 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2864 dma_unmap_len(e
, maplen
),
2868 /* Free all buffers in transmit ring */
2869 static void skge_tx_clean(struct net_device
*dev
)
2871 struct skge_port
*skge
= netdev_priv(dev
);
2872 struct skge_element
*e
;
2874 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2875 struct skge_tx_desc
*td
= e
->desc
;
2877 skge_tx_unmap(skge
->hw
->pdev
, e
, td
->control
);
2879 if (td
->control
& BMU_EOF
)
2880 dev_kfree_skb(e
->skb
);
2884 netdev_reset_queue(dev
);
2885 skge
->tx_ring
.to_clean
= e
;
2888 static void skge_tx_timeout(struct net_device
*dev
)
2890 struct skge_port
*skge
= netdev_priv(dev
);
2892 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2894 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2896 netif_wake_queue(dev
);
2899 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2903 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2906 if (!netif_running(dev
)) {
2922 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2928 crc
= ether_crc_le(ETH_ALEN
, addr
);
2930 filter
[bit
/8] |= 1 << (bit
%8);
2933 static void genesis_set_multicast(struct net_device
*dev
)
2935 struct skge_port
*skge
= netdev_priv(dev
);
2936 struct skge_hw
*hw
= skge
->hw
;
2937 int port
= skge
->port
;
2938 struct netdev_hw_addr
*ha
;
2942 mode
= xm_read32(hw
, port
, XM_MODE
);
2943 mode
|= XM_MD_ENA_HASH
;
2944 if (dev
->flags
& IFF_PROMISC
)
2945 mode
|= XM_MD_ENA_PROM
;
2947 mode
&= ~XM_MD_ENA_PROM
;
2949 if (dev
->flags
& IFF_ALLMULTI
)
2950 memset(filter
, 0xff, sizeof(filter
));
2952 memset(filter
, 0, sizeof(filter
));
2954 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2955 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2956 genesis_add_filter(filter
, pause_mc_addr
);
2958 netdev_for_each_mc_addr(ha
, dev
)
2959 genesis_add_filter(filter
, ha
->addr
);
2962 xm_write32(hw
, port
, XM_MODE
, mode
);
2963 xm_outhash(hw
, port
, XM_HSM
, filter
);
2966 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2968 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2969 filter
[bit
/8] |= 1 << (bit
%8);
2972 static void yukon_set_multicast(struct net_device
*dev
)
2974 struct skge_port
*skge
= netdev_priv(dev
);
2975 struct skge_hw
*hw
= skge
->hw
;
2976 int port
= skge
->port
;
2977 struct netdev_hw_addr
*ha
;
2978 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2979 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2983 memset(filter
, 0, sizeof(filter
));
2985 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2986 reg
|= GM_RXCR_UCF_ENA
;
2988 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2989 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2990 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2991 memset(filter
, 0xff, sizeof(filter
));
2992 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2993 reg
&= ~GM_RXCR_MCF_ENA
;
2995 reg
|= GM_RXCR_MCF_ENA
;
2998 yukon_add_filter(filter
, pause_mc_addr
);
3000 netdev_for_each_mc_addr(ha
, dev
)
3001 yukon_add_filter(filter
, ha
->addr
);
3005 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3006 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3007 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3008 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3009 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3010 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3011 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3012 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3014 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3017 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3020 return status
>> XMR_FS_LEN_SHIFT
;
3022 return status
>> GMR_FS_LEN_SHIFT
;
3025 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3028 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3030 return (status
& GMR_FS_ANY_ERR
) ||
3031 (status
& GMR_FS_RX_OK
) == 0;
3034 static void skge_set_multicast(struct net_device
*dev
)
3036 struct skge_port
*skge
= netdev_priv(dev
);
3038 if (is_genesis(skge
->hw
))
3039 genesis_set_multicast(dev
);
3041 yukon_set_multicast(dev
);
3046 /* Get receive buffer from descriptor.
3047 * Handles copy of small buffers and reallocation failures
3049 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3050 struct skge_element
*e
,
3051 u32 control
, u32 status
, u16 csum
)
3053 struct skge_port
*skge
= netdev_priv(dev
);
3054 struct sk_buff
*skb
;
3055 u16 len
= control
& BMU_BBC
;
3057 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3058 "rx slot %td status 0x%x len %d\n",
3059 e
- skge
->rx_ring
.start
, status
, len
);
3061 if (len
> skge
->rx_buf_size
)
3064 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3067 if (bad_phy_status(skge
->hw
, status
))
3070 if (phy_length(skge
->hw
, status
) != len
)
3073 if (len
< RX_COPY_THRESHOLD
) {
3074 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3078 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3079 dma_unmap_addr(e
, mapaddr
),
3080 dma_unmap_len(e
, maplen
),
3081 PCI_DMA_FROMDEVICE
);
3082 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3083 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3084 dma_unmap_addr(e
, mapaddr
),
3085 dma_unmap_len(e
, maplen
),
3086 PCI_DMA_FROMDEVICE
);
3087 skge_rx_reuse(e
, skge
->rx_buf_size
);
3089 struct skge_element ee
;
3090 struct sk_buff
*nskb
;
3092 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3099 prefetch(skb
->data
);
3101 if (skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
) < 0) {
3102 dev_kfree_skb(nskb
);
3106 pci_unmap_single(skge
->hw
->pdev
,
3107 dma_unmap_addr(&ee
, mapaddr
),
3108 dma_unmap_len(&ee
, maplen
),
3109 PCI_DMA_FROMDEVICE
);
3114 if (dev
->features
& NETIF_F_RXCSUM
) {
3116 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3119 skb
->protocol
= eth_type_trans(skb
, dev
);
3124 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3125 "rx err, slot %td control 0x%x status 0x%x\n",
3126 e
- skge
->rx_ring
.start
, control
, status
);
3128 if (is_genesis(skge
->hw
)) {
3129 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3130 dev
->stats
.rx_length_errors
++;
3131 if (status
& XMR_FS_FRA_ERR
)
3132 dev
->stats
.rx_frame_errors
++;
3133 if (status
& XMR_FS_FCS_ERR
)
3134 dev
->stats
.rx_crc_errors
++;
3136 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3137 dev
->stats
.rx_length_errors
++;
3138 if (status
& GMR_FS_FRAGMENT
)
3139 dev
->stats
.rx_frame_errors
++;
3140 if (status
& GMR_FS_CRC_ERR
)
3141 dev
->stats
.rx_crc_errors
++;
3145 skge_rx_reuse(e
, skge
->rx_buf_size
);
3149 /* Free all buffers in Tx ring which are no longer owned by device */
3150 static void skge_tx_done(struct net_device
*dev
)
3152 struct skge_port
*skge
= netdev_priv(dev
);
3153 struct skge_ring
*ring
= &skge
->tx_ring
;
3154 struct skge_element
*e
;
3155 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3157 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3159 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3160 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3162 if (control
& BMU_OWN
)
3165 skge_tx_unmap(skge
->hw
->pdev
, e
, control
);
3167 if (control
& BMU_EOF
) {
3168 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
3169 "tx done slot %td\n",
3170 e
- skge
->tx_ring
.start
);
3173 bytes_compl
+= e
->skb
->len
;
3175 dev_kfree_skb(e
->skb
);
3178 netdev_completed_queue(dev
, pkts_compl
, bytes_compl
);
3179 skge
->tx_ring
.to_clean
= e
;
3181 /* Can run lockless until we need to synchronize to restart queue. */
3184 if (unlikely(netif_queue_stopped(dev
) &&
3185 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3187 if (unlikely(netif_queue_stopped(dev
) &&
3188 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3189 netif_wake_queue(dev
);
3192 netif_tx_unlock(dev
);
3196 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3198 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3199 struct net_device
*dev
= skge
->netdev
;
3200 struct skge_hw
*hw
= skge
->hw
;
3201 struct skge_ring
*ring
= &skge
->rx_ring
;
3202 struct skge_element
*e
;
3207 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3209 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3210 struct skge_rx_desc
*rd
= e
->desc
;
3211 struct sk_buff
*skb
;
3215 control
= rd
->control
;
3216 if (control
& BMU_OWN
)
3219 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3221 napi_gro_receive(napi
, skb
);
3227 /* restart receiver */
3229 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3231 if (work_done
< to_do
) {
3232 unsigned long flags
;
3234 napi_gro_flush(napi
, false);
3235 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3236 __napi_complete(napi
);
3237 hw
->intr_mask
|= napimask
[skge
->port
];
3238 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3239 skge_read32(hw
, B0_IMSK
);
3240 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3246 /* Parity errors seem to happen when Genesis is connected to a switch
3247 * with no other ports present. Heartbeat error??
3249 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3251 struct net_device
*dev
= hw
->dev
[port
];
3253 ++dev
->stats
.tx_heartbeat_errors
;
3256 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3259 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3260 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3261 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3262 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3265 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3268 genesis_mac_intr(hw
, port
);
3270 yukon_mac_intr(hw
, port
);
3273 /* Handle device specific framing and timeout interrupts */
3274 static void skge_error_irq(struct skge_hw
*hw
)
3276 struct pci_dev
*pdev
= hw
->pdev
;
3277 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3279 if (is_genesis(hw
)) {
3280 /* clear xmac errors */
3281 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3282 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3283 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3284 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3286 /* Timestamp (unused) overflow */
3287 if (hwstatus
& IS_IRQ_TIST_OV
)
3288 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3291 if (hwstatus
& IS_RAM_RD_PAR
) {
3292 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3293 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3296 if (hwstatus
& IS_RAM_WR_PAR
) {
3297 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3298 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3301 if (hwstatus
& IS_M1_PAR_ERR
)
3302 skge_mac_parity(hw
, 0);
3304 if (hwstatus
& IS_M2_PAR_ERR
)
3305 skge_mac_parity(hw
, 1);
3307 if (hwstatus
& IS_R1_PAR_ERR
) {
3308 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3310 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3313 if (hwstatus
& IS_R2_PAR_ERR
) {
3314 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3316 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3319 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3320 u16 pci_status
, pci_cmd
;
3322 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3323 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3325 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3326 pci_cmd
, pci_status
);
3328 /* Write the error bits back to clear them. */
3329 pci_status
&= PCI_STATUS_ERROR_BITS
;
3330 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3331 pci_write_config_word(pdev
, PCI_COMMAND
,
3332 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3333 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3334 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3336 /* if error still set then just ignore it */
3337 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3338 if (hwstatus
& IS_IRQ_STAT
) {
3339 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3340 hw
->intr_mask
&= ~IS_HW_ERR
;
3346 * Interrupt from PHY are handled in tasklet (softirq)
3347 * because accessing phy registers requires spin wait which might
3348 * cause excess interrupt latency.
3350 static void skge_extirq(unsigned long arg
)
3352 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3355 for (port
= 0; port
< hw
->ports
; port
++) {
3356 struct net_device
*dev
= hw
->dev
[port
];
3358 if (netif_running(dev
)) {
3359 struct skge_port
*skge
= netdev_priv(dev
);
3361 spin_lock(&hw
->phy_lock
);
3362 if (!is_genesis(hw
))
3363 yukon_phy_intr(skge
);
3364 else if (hw
->phy_type
== SK_PHY_BCOM
)
3365 bcom_phy_intr(skge
);
3366 spin_unlock(&hw
->phy_lock
);
3370 spin_lock_irq(&hw
->hw_lock
);
3371 hw
->intr_mask
|= IS_EXT_REG
;
3372 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3373 skge_read32(hw
, B0_IMSK
);
3374 spin_unlock_irq(&hw
->hw_lock
);
3377 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3379 struct skge_hw
*hw
= dev_id
;
3383 spin_lock(&hw
->hw_lock
);
3384 /* Reading this register masks IRQ */
3385 status
= skge_read32(hw
, B0_SP_ISRC
);
3386 if (status
== 0 || status
== ~0)
3390 status
&= hw
->intr_mask
;
3391 if (status
& IS_EXT_REG
) {
3392 hw
->intr_mask
&= ~IS_EXT_REG
;
3393 tasklet_schedule(&hw
->phy_task
);
3396 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3397 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3398 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3399 napi_schedule(&skge
->napi
);
3402 if (status
& IS_PA_TO_TX1
)
3403 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3405 if (status
& IS_PA_TO_RX1
) {
3406 ++hw
->dev
[0]->stats
.rx_over_errors
;
3407 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3411 if (status
& IS_MAC1
)
3412 skge_mac_intr(hw
, 0);
3415 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3417 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3418 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3419 napi_schedule(&skge
->napi
);
3422 if (status
& IS_PA_TO_RX2
) {
3423 ++hw
->dev
[1]->stats
.rx_over_errors
;
3424 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3427 if (status
& IS_PA_TO_TX2
)
3428 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3430 if (status
& IS_MAC2
)
3431 skge_mac_intr(hw
, 1);
3434 if (status
& IS_HW_ERR
)
3437 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3438 skge_read32(hw
, B0_IMSK
);
3440 spin_unlock(&hw
->hw_lock
);
3442 return IRQ_RETVAL(handled
);
3445 #ifdef CONFIG_NET_POLL_CONTROLLER
3446 static void skge_netpoll(struct net_device
*dev
)
3448 struct skge_port
*skge
= netdev_priv(dev
);
3450 disable_irq(dev
->irq
);
3451 skge_intr(dev
->irq
, skge
->hw
);
3452 enable_irq(dev
->irq
);
3456 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3458 struct skge_port
*skge
= netdev_priv(dev
);
3459 struct skge_hw
*hw
= skge
->hw
;
3460 unsigned port
= skge
->port
;
3461 const struct sockaddr
*addr
= p
;
3464 if (!is_valid_ether_addr(addr
->sa_data
))
3465 return -EADDRNOTAVAIL
;
3467 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3469 if (!netif_running(dev
)) {
3470 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3471 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3474 spin_lock_bh(&hw
->phy_lock
);
3475 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3476 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3478 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3479 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3482 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3484 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3485 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3488 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3489 spin_unlock_bh(&hw
->phy_lock
);
3495 static const struct {
3499 { CHIP_ID_GENESIS
, "Genesis" },
3500 { CHIP_ID_YUKON
, "Yukon" },
3501 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3502 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3505 static const char *skge_board_name(const struct skge_hw
*hw
)
3508 static char buf
[16];
3510 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3511 if (skge_chips
[i
].id
== hw
->chip_id
)
3512 return skge_chips
[i
].name
;
3514 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3520 * Setup the board data structure, but don't bring up
3523 static int skge_reset(struct skge_hw
*hw
)
3526 u16 ctst
, pci_status
;
3527 u8 t8
, mac_cfg
, pmd_type
;
3530 ctst
= skge_read16(hw
, B0_CTST
);
3533 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3534 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3536 /* clear PCI errors, if any */
3537 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3538 skge_write8(hw
, B2_TST_CTRL2
, 0);
3540 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3541 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3542 pci_status
| PCI_STATUS_ERROR_BITS
);
3543 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3544 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3546 /* restore CLK_RUN bits (for Yukon-Lite) */
3547 skge_write16(hw
, B0_CTST
,
3548 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3550 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3551 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3552 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3553 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3555 switch (hw
->chip_id
) {
3556 case CHIP_ID_GENESIS
:
3557 #ifdef CONFIG_SKGE_GENESIS
3558 switch (hw
->phy_type
) {
3560 hw
->phy_addr
= PHY_ADDR_XMAC
;
3563 hw
->phy_addr
= PHY_ADDR_BCOM
;
3566 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3572 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3577 case CHIP_ID_YUKON_LITE
:
3578 case CHIP_ID_YUKON_LP
:
3579 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3582 hw
->phy_addr
= PHY_ADDR_MARV
;
3586 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3591 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3592 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3593 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3595 /* read the adapters RAM size */
3596 t8
= skge_read8(hw
, B2_E_0
);
3597 if (is_genesis(hw
)) {
3599 /* special case: 4 x 64k x 36, offset = 0x80000 */
3600 hw
->ram_size
= 0x100000;
3601 hw
->ram_offset
= 0x80000;
3603 hw
->ram_size
= t8
* 512;
3605 hw
->ram_size
= 0x20000;
3607 hw
->ram_size
= t8
* 4096;
3609 hw
->intr_mask
= IS_HW_ERR
;
3611 /* Use PHY IRQ for all but fiber based Genesis board */
3612 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3613 hw
->intr_mask
|= IS_EXT_REG
;
3618 /* switch power to VCC (WA for VAUX problem) */
3619 skge_write8(hw
, B0_POWER_CTRL
,
3620 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3622 /* avoid boards with stuck Hardware error bits */
3623 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3624 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3625 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3626 hw
->intr_mask
&= ~IS_HW_ERR
;
3629 /* Clear PHY COMA */
3630 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3631 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3632 reg
&= ~PCI_PHY_COMA
;
3633 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3634 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3637 for (i
= 0; i
< hw
->ports
; i
++) {
3638 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3639 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3643 /* turn off hardware timer (unused) */
3644 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3645 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3646 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3648 /* enable the Tx Arbiters */
3649 for (i
= 0; i
< hw
->ports
; i
++)
3650 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3652 /* Initialize ram interface */
3653 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3655 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3656 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3657 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3658 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3659 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3660 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3661 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3662 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3663 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3664 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3665 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3666 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3668 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3670 /* Set interrupt moderation for Transmit only
3671 * Receive interrupts avoided by NAPI
3673 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3674 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3675 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3677 /* Leave irq disabled until first port is brought up. */
3678 skge_write32(hw
, B0_IMSK
, 0);
3680 for (i
= 0; i
< hw
->ports
; i
++) {
3682 genesis_reset(hw
, i
);
3691 #ifdef CONFIG_SKGE_DEBUG
3693 static struct dentry
*skge_debug
;
3695 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3697 struct net_device
*dev
= seq
->private;
3698 const struct skge_port
*skge
= netdev_priv(dev
);
3699 const struct skge_hw
*hw
= skge
->hw
;
3700 const struct skge_element
*e
;
3702 if (!netif_running(dev
))
3705 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3706 skge_read32(hw
, B0_IMSK
));
3708 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3709 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3710 const struct skge_tx_desc
*t
= e
->desc
;
3711 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3712 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3713 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3716 seq_printf(seq
, "\nRx Ring:\n");
3717 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3718 const struct skge_rx_desc
*r
= e
->desc
;
3720 if (r
->control
& BMU_OWN
)
3723 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3724 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3725 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3731 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3733 return single_open(file
, skge_debug_show
, inode
->i_private
);
3736 static const struct file_operations skge_debug_fops
= {
3737 .owner
= THIS_MODULE
,
3738 .open
= skge_debug_open
,
3740 .llseek
= seq_lseek
,
3741 .release
= single_release
,
3745 * Use network device events to create/remove/rename
3746 * debugfs file entries
3748 static int skge_device_event(struct notifier_block
*unused
,
3749 unsigned long event
, void *ptr
)
3751 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
3752 struct skge_port
*skge
;
3755 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3758 skge
= netdev_priv(dev
);
3760 case NETDEV_CHANGENAME
:
3761 if (skge
->debugfs
) {
3762 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3763 skge_debug
, dev
->name
);
3767 netdev_info(dev
, "rename failed\n");
3768 debugfs_remove(skge
->debugfs
);
3773 case NETDEV_GOING_DOWN
:
3774 if (skge
->debugfs
) {
3775 debugfs_remove(skge
->debugfs
);
3776 skge
->debugfs
= NULL
;
3781 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3784 if (!d
|| IS_ERR(d
))
3785 netdev_info(dev
, "debugfs create failed\n");
3795 static struct notifier_block skge_notifier
= {
3796 .notifier_call
= skge_device_event
,
3800 static __init
void skge_debug_init(void)
3804 ent
= debugfs_create_dir("skge", NULL
);
3805 if (!ent
|| IS_ERR(ent
)) {
3806 pr_info("debugfs create directory failed\n");
3811 register_netdevice_notifier(&skge_notifier
);
3814 static __exit
void skge_debug_cleanup(void)
3817 unregister_netdevice_notifier(&skge_notifier
);
3818 debugfs_remove(skge_debug
);
3824 #define skge_debug_init()
3825 #define skge_debug_cleanup()
3828 static const struct net_device_ops skge_netdev_ops
= {
3829 .ndo_open
= skge_up
,
3830 .ndo_stop
= skge_down
,
3831 .ndo_start_xmit
= skge_xmit_frame
,
3832 .ndo_do_ioctl
= skge_ioctl
,
3833 .ndo_get_stats
= skge_get_stats
,
3834 .ndo_tx_timeout
= skge_tx_timeout
,
3835 .ndo_change_mtu
= skge_change_mtu
,
3836 .ndo_validate_addr
= eth_validate_addr
,
3837 .ndo_set_rx_mode
= skge_set_multicast
,
3838 .ndo_set_mac_address
= skge_set_mac_address
,
3839 #ifdef CONFIG_NET_POLL_CONTROLLER
3840 .ndo_poll_controller
= skge_netpoll
,
3845 /* Initialize network device */
3846 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3849 struct skge_port
*skge
;
3850 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3855 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3856 dev
->netdev_ops
= &skge_netdev_ops
;
3857 dev
->ethtool_ops
= &skge_ethtool_ops
;
3858 dev
->watchdog_timeo
= TX_WATCHDOG
;
3859 dev
->irq
= hw
->pdev
->irq
;
3862 dev
->features
|= NETIF_F_HIGHDMA
;
3864 skge
= netdev_priv(dev
);
3865 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3868 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3870 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3871 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3873 /* Auto speed and flow control */
3874 skge
->autoneg
= AUTONEG_ENABLE
;
3875 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3878 skge
->advertising
= skge_supported_modes(hw
);
3880 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3881 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3882 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3885 hw
->dev
[port
] = dev
;
3889 /* Only used for Genesis XMAC */
3891 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3893 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3895 dev
->features
|= dev
->hw_features
;
3898 /* read the mac address */
3899 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3904 static void skge_show_addr(struct net_device
*dev
)
3906 const struct skge_port
*skge
= netdev_priv(dev
);
3908 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3911 static int only_32bit_dma
;
3913 static int skge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3915 struct net_device
*dev
, *dev1
;
3917 int err
, using_dac
= 0;
3919 err
= pci_enable_device(pdev
);
3921 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3925 err
= pci_request_regions(pdev
, DRV_NAME
);
3927 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3928 goto err_out_disable_pdev
;
3931 pci_set_master(pdev
);
3933 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3935 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3936 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3938 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3942 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3943 goto err_out_free_regions
;
3947 /* byte swap descriptors in hardware */
3951 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3952 reg
|= PCI_REV_DESC
;
3953 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3958 /* space for skge@pci:0000:04:00.0 */
3959 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3960 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3962 goto err_out_free_regions
;
3964 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3967 spin_lock_init(&hw
->hw_lock
);
3968 spin_lock_init(&hw
->phy_lock
);
3969 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3971 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3973 dev_err(&pdev
->dev
, "cannot map device registers\n");
3974 goto err_out_free_hw
;
3977 err
= skge_reset(hw
);
3979 goto err_out_iounmap
;
3981 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3983 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3984 skge_board_name(hw
), hw
->chip_rev
);
3986 dev
= skge_devinit(hw
, 0, using_dac
);
3989 goto err_out_led_off
;
3992 /* Some motherboards are broken and has zero in ROM. */
3993 if (!is_valid_ether_addr(dev
->dev_addr
))
3994 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3996 err
= register_netdev(dev
);
3998 dev_err(&pdev
->dev
, "cannot register net device\n");
3999 goto err_out_free_netdev
;
4002 skge_show_addr(dev
);
4004 if (hw
->ports
> 1) {
4005 dev1
= skge_devinit(hw
, 1, using_dac
);
4008 goto err_out_unregister
;
4011 err
= register_netdev(dev1
);
4013 dev_err(&pdev
->dev
, "cannot register second net device\n");
4014 goto err_out_free_dev1
;
4017 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
4020 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
4022 goto err_out_unregister_dev1
;
4025 skge_show_addr(dev1
);
4027 pci_set_drvdata(pdev
, hw
);
4031 err_out_unregister_dev1
:
4032 unregister_netdev(dev1
);
4036 unregister_netdev(dev
);
4037 err_out_free_netdev
:
4040 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4045 err_out_free_regions
:
4046 pci_release_regions(pdev
);
4047 err_out_disable_pdev
:
4048 pci_disable_device(pdev
);
4053 static void skge_remove(struct pci_dev
*pdev
)
4055 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4056 struct net_device
*dev0
, *dev1
;
4063 unregister_netdev(dev1
);
4065 unregister_netdev(dev0
);
4067 tasklet_kill(&hw
->phy_task
);
4069 spin_lock_irq(&hw
->hw_lock
);
4072 if (hw
->ports
> 1) {
4073 skge_write32(hw
, B0_IMSK
, 0);
4074 skge_read32(hw
, B0_IMSK
);
4075 free_irq(pdev
->irq
, hw
);
4077 spin_unlock_irq(&hw
->hw_lock
);
4079 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4080 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4083 free_irq(pdev
->irq
, hw
);
4084 pci_release_regions(pdev
);
4085 pci_disable_device(pdev
);
4094 #ifdef CONFIG_PM_SLEEP
4095 static int skge_suspend(struct device
*dev
)
4097 struct pci_dev
*pdev
= to_pci_dev(dev
);
4098 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4104 for (i
= 0; i
< hw
->ports
; i
++) {
4105 struct net_device
*dev
= hw
->dev
[i
];
4106 struct skge_port
*skge
= netdev_priv(dev
);
4108 if (netif_running(dev
))
4112 skge_wol_init(skge
);
4115 skge_write32(hw
, B0_IMSK
, 0);
4120 static int skge_resume(struct device
*dev
)
4122 struct pci_dev
*pdev
= to_pci_dev(dev
);
4123 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4129 err
= skge_reset(hw
);
4133 for (i
= 0; i
< hw
->ports
; i
++) {
4134 struct net_device
*dev
= hw
->dev
[i
];
4136 if (netif_running(dev
)) {
4140 netdev_err(dev
, "could not up: %d\n", err
);
4150 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4151 #define SKGE_PM_OPS (&skge_pm_ops)
4155 #define SKGE_PM_OPS NULL
4156 #endif /* CONFIG_PM_SLEEP */
4158 static void skge_shutdown(struct pci_dev
*pdev
)
4160 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4166 for (i
= 0; i
< hw
->ports
; i
++) {
4167 struct net_device
*dev
= hw
->dev
[i
];
4168 struct skge_port
*skge
= netdev_priv(dev
);
4171 skge_wol_init(skge
);
4174 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4175 pci_set_power_state(pdev
, PCI_D3hot
);
4178 static struct pci_driver skge_driver
= {
4180 .id_table
= skge_id_table
,
4181 .probe
= skge_probe
,
4182 .remove
= skge_remove
,
4183 .shutdown
= skge_shutdown
,
4184 .driver
.pm
= SKGE_PM_OPS
,
4187 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4189 .ident
= "Gigabyte nForce boards",
4191 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4192 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4196 .ident
= "ASUS P5NSLI",
4198 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTeK Computer INC."),
4199 DMI_MATCH(DMI_BOARD_NAME
, "P5NSLI")
4205 static int __init
skge_init_module(void)
4207 if (dmi_check_system(skge_32bit_dma_boards
))
4210 return pci_register_driver(&skge_driver
);
4213 static void __exit
skge_cleanup_module(void)
4215 pci_unregister_driver(&skge_driver
);
4216 skge_debug_cleanup();
4219 module_init(skge_init_module
);
4220 module_exit(skge_cleanup_module
);