1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 /* Theory of operation:
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
33 * Receive: the packet's reception time is converted to an appropriate
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
47 #include "mcdi_pcol.h"
49 #include "farch_regs.h"
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
83 #define PTP_DPORT_OFFSET 22
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
97 #define PTP_V1_MIN_LENGTH 64
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
119 #define PTP_V2_MIN_LENGTH 63
121 #define PTP_MIN_LENGTH 63
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
130 #define PTP_VERSION_V1 1
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
135 enum ptp_packet_state
{
136 PTP_PACKET_STATE_UNMATCHED
= 0,
137 PTP_PACKET_STATE_MATCHED
,
138 PTP_PACKET_STATE_TIMED_OUT
,
139 PTP_PACKET_STATE_MATCH_UNWANTED
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
159 #define PPB_EXTRA_BITS 2
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
165 #define PTP_SYNC_ATTEMPTS 4
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
175 struct efx_ptp_match
{
176 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
177 unsigned long expiry
;
178 enum ptp_packet_state state
;
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
187 struct efx_ptp_event_rx
{
188 struct list_head link
;
192 unsigned long expiry
;
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @major: Hardware timestamp, major
199 * @minor: Hardware timestamp, minor
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
206 struct efx_ptp_timeset
{
212 u32 window
; /* Derived: end - start, allowing for wrap */
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
221 * @rxq: Receive queue (awaiting timestamps)
222 * @txq: Transmit queue
223 * @evt_list: List of MC receive events awaiting packets
224 * @evt_free_list: List of free events
225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
226 * @evt_overflow: Boolean indicating that event list has overflowed
227 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
228 * @workwq: Work queue for processing pending PTP operations
230 * @reset_required: A serious error has occurred and the PTP task needs to be
231 * reset (disable, enable).
232 * @rxfilter_event: Receive filter when operating
233 * @rxfilter_general: Receive filter when operating
234 * @config: Current timestamp configuration
235 * @enabled: PTP operation enabled
236 * @mode: Mode in which PTP operating (PTP version)
237 * @time_format: Time format supported by this NIC
238 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
239 * @nic_to_kernel_time: Function to convert from NIC to kernel time
240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
241 * @ts_corrections.tx: Required driver correction of transmit timestamps
242 * @ts_corrections.rx: Required driver correction of receive timestamps
243 * @ts_corrections.pps_out: PPS output error (information only)
244 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
245 * @evt_frags: Partly assembled PTP events
246 * @evt_frag_idx: Current fragment number
247 * @evt_code: Last event code
248 * @start: Address at which MC indicates ready for synchronisation
249 * @host_time_pps: Host time at last PPS
250 * @current_adjfreq: Current ppb adjustment.
251 * @phc_clock: Pointer to registered phc device (if primary function)
252 * @phc_clock_info: Registration structure for phc device
253 * @pps_work: pps work task for handling pps events
254 * @pps_workwq: pps work queue
255 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
256 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
257 * allocations in main data path).
258 * @good_syncs: Number of successful synchronisations.
259 * @fast_syncs: Number of synchronisations requiring short delay
260 * @bad_syncs: Number of failed synchronisations.
261 * @sync_timeouts: Number of synchronisation timeouts
262 * @no_time_syncs: Number of synchronisations with no good times.
263 * @invalid_sync_windows: Number of sync windows with bad durations.
264 * @undersize_sync_windows: Number of corrected sync windows that are too small
265 * @oversize_sync_windows: Number of corrected sync windows that are too large
266 * @rx_no_timestamp: Number of packets received without a timestamp.
267 * @timeset: Last set of synchronisation statistics.
269 struct efx_ptp_data
{
271 struct efx_channel
*channel
;
273 struct sk_buff_head rxq
;
274 struct sk_buff_head txq
;
275 struct list_head evt_list
;
276 struct list_head evt_free_list
;
279 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
280 struct workqueue_struct
*workwq
;
281 struct work_struct work
;
284 u32 rxfilter_general
;
285 bool rxfilter_installed
;
286 struct hwtstamp_config config
;
289 unsigned int time_format
;
290 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
291 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
293 unsigned int min_synchronisation_ns
;
300 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
303 struct efx_buffer start
;
304 struct pps_event_time host_time_pps
;
306 struct ptp_clock
*phc_clock
;
307 struct ptp_clock_info phc_clock_info
;
308 struct work_struct pps_work
;
309 struct workqueue_struct
*pps_workwq
;
311 MCDI_DECLARE_BUF(txbuf
, MC_CMD_PTP_IN_TRANSMIT_LENMAX
);
313 unsigned int good_syncs
;
314 unsigned int fast_syncs
;
315 unsigned int bad_syncs
;
316 unsigned int sync_timeouts
;
317 unsigned int no_time_syncs
;
318 unsigned int invalid_sync_windows
;
319 unsigned int undersize_sync_windows
;
320 unsigned int oversize_sync_windows
;
321 unsigned int rx_no_timestamp
;
322 struct efx_ptp_timeset
323 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
326 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
327 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
328 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
);
329 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
330 const struct timespec
*e_ts
);
331 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
332 struct ptp_clock_request
*request
, int on
);
334 #define PTP_SW_STAT(ext_name, field_name) \
335 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
336 #define PTP_MC_STAT(ext_name, mcdi_name) \
337 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
338 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
339 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
340 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
341 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
342 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
343 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
344 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
345 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
346 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
347 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
348 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
349 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
350 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
351 PTP_MC_STAT(ptp_filter_matches
, FM
),
352 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
354 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
355 static const unsigned long efx_ptp_stat_mask
[] = {
356 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
359 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
)
364 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
365 efx_ptp_stat_mask
, strings
);
368 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
370 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
371 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
378 /* Copy software statistics */
379 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
380 if (efx_ptp_stat_desc
[i
].dma_width
)
382 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
383 efx_ptp_stat_desc
[i
].offset
);
386 /* Fetch MC statistics. We *must* fill in all statistics or
387 * risk leaking kernel memory to userland, so if the MCDI
388 * request fails we pretend we got zeroes.
390 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
391 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
392 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
393 outbuf
, sizeof(outbuf
), NULL
);
395 netif_err(efx
, hw
, efx
->net_dev
,
396 "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc
);
397 memset(outbuf
, 0, sizeof(outbuf
));
399 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
401 stats
, _MCDI_PTR(outbuf
, 0), false);
403 return PTP_STAT_COUNT
;
406 /* For Siena platforms NIC time is s and ns */
407 static void efx_ptp_ns_to_s_ns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
409 struct timespec ts
= ns_to_timespec(ns
);
410 *nic_major
= ts
.tv_sec
;
411 *nic_minor
= ts
.tv_nsec
;
414 static ktime_t
efx_ptp_s_ns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
417 ktime_t kt
= ktime_set(nic_major
, nic_minor
);
419 kt
= ktime_add_ns(kt
, (u64
)correction
);
421 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
425 /* To convert from s27 format to ns we multiply then divide by a power of 2.
426 * For the conversion from ns to s27, the operation is also converted to a
427 * multiply and shift.
429 #define S27_TO_NS_SHIFT (27)
430 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
431 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
432 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
434 /* For Huntington platforms NIC time is in seconds and fractions of a second
435 * where the minor register only uses 27 bits in units of 2^-27s.
437 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
439 struct timespec ts
= ns_to_timespec(ns
);
441 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
442 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
444 /* The conversion can result in the minor value exceeding the maximum.
445 * In this case, round up to the next second.
447 if (min
>= S27_MINOR_MAX
) {
448 min
-= S27_MINOR_MAX
;
456 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
458 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
459 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
460 return ktime_set(nic_major
, ns
);
463 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
466 /* Apply the correction and deal with carry */
467 nic_minor
+= correction
;
468 if ((s32
)nic_minor
< 0) {
469 nic_minor
+= S27_MINOR_MAX
;
471 } else if (nic_minor
>= S27_MINOR_MAX
) {
472 nic_minor
-= S27_MINOR_MAX
;
476 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
479 /* Get PTP attributes and set up time conversions */
480 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
482 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
483 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
484 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
489 /* Get the PTP attributes. If the NIC doesn't support the operation we
490 * use the default format for compatibility with older NICs i.e.
491 * seconds and nanoseconds.
493 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
494 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
495 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
496 outbuf
, sizeof(outbuf
), &out_len
);
498 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
499 else if (rc
== -EINVAL
)
500 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
504 if (fmt
== MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
) {
505 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
506 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
507 } else if (fmt
== MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
) {
508 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_ns
;
509 ptp
->nic_to_kernel_time
= efx_ptp_s_ns_to_ktime_correction
;
514 ptp
->time_format
= fmt
;
516 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
517 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
518 * to use for the minimum acceptable corrected synchronization window.
519 * If we have the extra information store it. For older firmware that
520 * does not implement the extended command use the default value.
522 if (rc
== 0 && out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
523 ptp
->min_synchronisation_ns
=
525 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
527 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
532 /* Get PTP timestamp corrections */
533 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
535 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
536 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN
);
539 /* Get the timestamp corrections from the NIC. If this operation is
540 * not supported (older NICs) then no correction is required.
542 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
543 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
544 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
546 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
547 outbuf
, sizeof(outbuf
), NULL
);
549 efx
->ptp_data
->ts_corrections
.tx
= MCDI_DWORD(outbuf
,
550 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
551 efx
->ptp_data
->ts_corrections
.rx
= MCDI_DWORD(outbuf
,
552 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
553 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
554 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
555 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
556 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
557 } else if (rc
== -EINVAL
) {
558 efx
->ptp_data
->ts_corrections
.tx
= 0;
559 efx
->ptp_data
->ts_corrections
.rx
= 0;
560 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
561 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
569 /* Enable MCDI PTP support. */
570 static int efx_ptp_enable(struct efx_nic
*efx
)
572 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
573 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, 0);
576 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
577 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
578 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
579 efx
->ptp_data
->channel
?
580 efx
->ptp_data
->channel
->channel
: 0);
581 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
583 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
584 outbuf
, sizeof(outbuf
), NULL
);
585 rc
= (rc
== -EALREADY
) ? 0 : rc
;
587 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
588 MC_CMD_PTP_IN_ENABLE_LEN
,
589 outbuf
, sizeof(outbuf
), rc
);
593 /* Disable MCDI PTP support.
595 * Note that this function should never rely on the presence of ptp_data -
596 * may be called before that exists.
598 static int efx_ptp_disable(struct efx_nic
*efx
)
600 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
601 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, 0);
604 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
605 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
606 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
607 outbuf
, sizeof(outbuf
), NULL
);
608 rc
= (rc
== -EALREADY
) ? 0 : rc
;
610 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
611 MC_CMD_PTP_IN_DISABLE_LEN
,
612 outbuf
, sizeof(outbuf
), rc
);
616 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
620 while ((skb
= skb_dequeue(q
))) {
622 netif_receive_skb(skb
);
627 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
629 netif_err(efx
, drv
, efx
->net_dev
,
630 "ERROR: PTP requires MSI-X and 1 additional interrupt"
631 "vector. PTP disabled\n");
634 /* Repeatedly send the host time to the MC which will capture the hardware
637 static void efx_ptp_send_times(struct efx_nic
*efx
,
638 struct pps_event_time
*last_time
)
640 struct pps_event_time now
;
641 struct timespec limit
;
642 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
643 struct timespec start
;
644 int *mc_running
= ptp
->start
.addr
;
649 timespec_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
651 /* Write host time for specified period or until MC is done */
652 while ((timespec_compare(&now
.ts_real
, &limit
) < 0) &&
653 ACCESS_ONCE(*mc_running
)) {
654 struct timespec update_time
;
655 unsigned int host_time
;
657 /* Don't update continuously to avoid saturating the PCIe bus */
658 update_time
= now
.ts_real
;
659 timespec_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
662 } while ((timespec_compare(&now
.ts_real
, &update_time
) < 0) &&
663 ACCESS_ONCE(*mc_running
));
665 /* Synchronise NIC with single word of time only */
666 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
667 now
.ts_real
.tv_nsec
);
668 /* Update host time in NIC memory */
669 efx
->type
->ptp_write_host_time(efx
, host_time
);
674 /* Read a timeset from the MC's results and partial process. */
675 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
676 struct efx_ptp_timeset
*timeset
)
678 unsigned start_ns
, end_ns
;
680 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
681 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
682 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
683 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
684 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
687 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
688 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
689 /* Allow for rollover */
690 if (end_ns
< start_ns
)
691 end_ns
+= NSEC_PER_SEC
;
692 /* Determine duration of operation */
693 timeset
->window
= end_ns
- start_ns
;
696 /* Process times received from MC.
698 * Extract times from returned results, and establish the minimum value
699 * seen. The minimum value represents the "best" possible time and events
700 * too much greater than this are rejected - the machine is, perhaps, too
701 * busy. A number of readings are taken so that, hopefully, at least one good
702 * synchronisation will be seen in the results.
705 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
706 size_t response_length
,
707 const struct pps_event_time
*last_time
)
709 unsigned number_readings
=
710 MCDI_VAR_ARRAY_LEN(response_length
,
711 PTP_OUT_SYNCHRONIZE_TIMESET
);
714 unsigned last_good
= 0;
715 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
718 struct timespec delta
;
721 if (number_readings
== 0)
724 /* Read the set of results and find the last good host-MC
725 * synchronization result. The MC times when it finishes reading the
726 * host time so the corrected window time should be fairly constant
727 * for a given platform. Increment stats for any results that appear
730 for (i
= 0; i
< number_readings
; i
++) {
731 s32 window
, corrected
;
732 struct timespec wait
;
734 efx_ptp_read_timeset(
735 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
736 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
739 wait
= ktime_to_timespec(
740 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
741 window
= ptp
->timeset
[i
].window
;
742 corrected
= window
- wait
.tv_nsec
;
744 /* We expect the uncorrected synchronization window to be at
745 * least as large as the interval between host start and end
746 * times. If it is smaller than this then this is mostly likely
747 * to be a consequence of the host's time being adjusted.
748 * Check that the corrected sync window is in a reasonable
749 * range. If it is out of range it is likely to be because an
750 * interrupt or other delay occurred between reading the system
751 * time and writing it to MC memory.
753 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
754 ++ptp
->invalid_sync_windows
;
755 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
756 ++ptp
->oversize_sync_windows
;
757 } else if (corrected
< ptp
->min_synchronisation_ns
) {
758 ++ptp
->undersize_sync_windows
;
766 netif_warn(efx
, drv
, efx
->net_dev
,
767 "PTP no suitable synchronisations\n");
771 /* Convert the NIC time into kernel time. No correction is required-
772 * this time is the output of a firmware process.
774 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
775 ptp
->timeset
[last_good
].minor
, 0);
777 /* Calculate delay from actual PPS to last_time */
778 delta
= ktime_to_timespec(mc_time
);
780 last_time
->ts_real
.tv_nsec
-
781 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
783 /* It is possible that the seconds rolled over between taking
784 * the start reading and the last value written by the host. The
785 * timescales are such that a gap of more than one second is never
788 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
789 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
790 if (start_sec
!= last_sec
) {
791 if (((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
792 netif_warn(efx
, hw
, efx
->net_dev
,
793 "PTP bad synchronisation seconds\n");
802 ptp
->host_time_pps
= *last_time
;
803 pps_sub_ts(&ptp
->host_time_pps
, delta
);
808 /* Synchronize times between the host and the MC */
809 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
811 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
812 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
813 size_t response_length
;
815 unsigned long timeout
;
816 struct pps_event_time last_time
= {};
817 unsigned int loops
= 0;
818 int *start
= ptp
->start
.addr
;
820 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
821 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
822 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
824 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
825 ptp
->start
.dma_addr
);
827 /* Clear flag that signals MC ready */
828 ACCESS_ONCE(*start
) = 0;
829 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
830 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
831 EFX_BUG_ON_PARANOID(rc
);
833 /* Wait for start from MCDI (or timeout) */
834 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
835 while (!ACCESS_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
836 udelay(20); /* Usually start MCDI execution quickly */
842 if (!time_before(jiffies
, timeout
))
843 ++ptp
->sync_timeouts
;
845 if (ACCESS_ONCE(*start
))
846 efx_ptp_send_times(efx
, &last_time
);
848 /* Collect results */
849 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
850 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
851 synch_buf
, sizeof(synch_buf
),
854 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
859 ++ptp
->no_time_syncs
;
862 /* Increment the bad syncs counter if the synchronize fails, whatever
871 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
872 static int efx_ptp_xmit_skb(struct efx_nic
*efx
, struct sk_buff
*skb
)
874 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
875 struct skb_shared_hwtstamps timestamps
;
877 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
880 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
881 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
882 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
883 if (skb_shinfo(skb
)->nr_frags
!= 0) {
884 rc
= skb_linearize(skb
);
889 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
890 rc
= skb_checksum_help(skb
);
894 skb_copy_from_linear_data(skb
,
895 MCDI_PTR(ptp_data
->txbuf
,
896 PTP_IN_TRANSMIT_PACKET
),
898 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
899 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
900 txtime
, sizeof(txtime
), &len
);
904 memset(×tamps
, 0, sizeof(timestamps
));
905 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
906 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
907 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
908 ptp_data
->ts_corrections
.tx
);
910 skb_tstamp_tx(skb
, ×tamps
);
920 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
922 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
923 struct list_head
*cursor
;
924 struct list_head
*next
;
926 if (ptp
->rx_ts_inline
)
929 /* Drop time-expired events */
930 spin_lock_bh(&ptp
->evt_lock
);
931 if (!list_empty(&ptp
->evt_list
)) {
932 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
933 struct efx_ptp_event_rx
*evt
;
935 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
937 if (time_after(jiffies
, evt
->expiry
)) {
938 list_move(&evt
->link
, &ptp
->evt_free_list
);
939 netif_warn(efx
, hw
, efx
->net_dev
,
940 "PTP rx event dropped\n");
944 /* If the event overflow flag is set and the event list is now empty
945 * clear the flag to re-enable the overflow warning message.
947 if (ptp
->evt_overflow
&& list_empty(&ptp
->evt_list
))
948 ptp
->evt_overflow
= false;
949 spin_unlock_bh(&ptp
->evt_lock
);
952 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
955 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
957 struct list_head
*cursor
;
958 struct list_head
*next
;
959 struct efx_ptp_match
*match
;
960 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
962 WARN_ON_ONCE(ptp
->rx_ts_inline
);
964 spin_lock_bh(&ptp
->evt_lock
);
965 evts_waiting
= !list_empty(&ptp
->evt_list
);
966 spin_unlock_bh(&ptp
->evt_lock
);
969 return PTP_PACKET_STATE_UNMATCHED
;
971 match
= (struct efx_ptp_match
*)skb
->cb
;
972 /* Look for a matching timestamp in the event queue */
973 spin_lock_bh(&ptp
->evt_lock
);
974 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
975 struct efx_ptp_event_rx
*evt
;
977 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
978 if ((evt
->seq0
== match
->words
[0]) &&
979 (evt
->seq1
== match
->words
[1])) {
980 struct skb_shared_hwtstamps
*timestamps
;
982 /* Match - add in hardware timestamp */
983 timestamps
= skb_hwtstamps(skb
);
984 timestamps
->hwtstamp
= evt
->hwtimestamp
;
986 match
->state
= PTP_PACKET_STATE_MATCHED
;
987 rc
= PTP_PACKET_STATE_MATCHED
;
988 list_move(&evt
->link
, &ptp
->evt_free_list
);
992 /* If the event overflow flag is set and the event list is now empty
993 * clear the flag to re-enable the overflow warning message.
995 if (ptp
->evt_overflow
&& list_empty(&ptp
->evt_list
))
996 ptp
->evt_overflow
= false;
997 spin_unlock_bh(&ptp
->evt_lock
);
1002 /* Process any queued receive events and corresponding packets
1004 * q is returned with all the packets that are ready for delivery.
1006 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
1008 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1009 struct sk_buff
*skb
;
1011 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
1012 struct efx_ptp_match
*match
;
1014 match
= (struct efx_ptp_match
*)skb
->cb
;
1015 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1016 __skb_queue_tail(q
, skb
);
1017 } else if (efx_ptp_match_rx(efx
, skb
) ==
1018 PTP_PACKET_STATE_MATCHED
) {
1019 __skb_queue_tail(q
, skb
);
1020 } else if (time_after(jiffies
, match
->expiry
)) {
1021 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1022 ++ptp
->rx_no_timestamp
;
1023 __skb_queue_tail(q
, skb
);
1025 /* Replace unprocessed entry and stop */
1026 skb_queue_head(&ptp
->rxq
, skb
);
1032 /* Complete processing of a received packet */
1033 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1036 netif_receive_skb(skb
);
1040 static void efx_ptp_remove_multicast_filters(struct efx_nic
*efx
)
1042 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1044 if (ptp
->rxfilter_installed
) {
1045 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1046 ptp
->rxfilter_general
);
1047 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1048 ptp
->rxfilter_event
);
1049 ptp
->rxfilter_installed
= false;
1053 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1055 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1056 struct efx_filter_spec rxfilter
;
1059 if (!ptp
->channel
|| ptp
->rxfilter_installed
)
1062 /* Must filter on both event and general ports to ensure
1063 * that there is no packet re-ordering.
1065 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1067 efx_channel_get_rx_queue(ptp
->channel
)));
1068 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1070 htons(PTP_EVENT_PORT
));
1074 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1077 ptp
->rxfilter_event
= rc
;
1079 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1081 efx_channel_get_rx_queue(ptp
->channel
)));
1082 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1084 htons(PTP_GENERAL_PORT
));
1088 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1091 ptp
->rxfilter_general
= rc
;
1093 ptp
->rxfilter_installed
= true;
1097 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1098 ptp
->rxfilter_event
);
1102 static int efx_ptp_start(struct efx_nic
*efx
)
1104 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1107 ptp
->reset_required
= false;
1109 rc
= efx_ptp_insert_multicast_filters(efx
);
1113 rc
= efx_ptp_enable(efx
);
1117 ptp
->evt_frag_idx
= 0;
1118 ptp
->current_adjfreq
= 0;
1123 efx_ptp_remove_multicast_filters(efx
);
1127 static int efx_ptp_stop(struct efx_nic
*efx
)
1129 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1130 struct list_head
*cursor
;
1131 struct list_head
*next
;
1137 rc
= efx_ptp_disable(efx
);
1139 efx_ptp_remove_multicast_filters(efx
);
1141 /* Make sure RX packets are really delivered */
1142 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1143 skb_queue_purge(&efx
->ptp_data
->txq
);
1145 /* Drop any pending receive events */
1146 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
1147 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
1148 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
1150 ptp
->evt_overflow
= false;
1151 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
1156 static int efx_ptp_restart(struct efx_nic
*efx
)
1158 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1159 return efx_ptp_start(efx
);
1163 static void efx_ptp_pps_worker(struct work_struct
*work
)
1165 struct efx_ptp_data
*ptp
=
1166 container_of(work
, struct efx_ptp_data
, pps_work
);
1167 struct efx_nic
*efx
= ptp
->efx
;
1168 struct ptp_clock_event ptp_evt
;
1170 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1173 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1174 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1175 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1178 static void efx_ptp_worker(struct work_struct
*work
)
1180 struct efx_ptp_data
*ptp_data
=
1181 container_of(work
, struct efx_ptp_data
, work
);
1182 struct efx_nic
*efx
= ptp_data
->efx
;
1183 struct sk_buff
*skb
;
1184 struct sk_buff_head tempq
;
1186 if (ptp_data
->reset_required
) {
1192 efx_ptp_drop_time_expired_events(efx
);
1194 __skb_queue_head_init(&tempq
);
1195 efx_ptp_process_events(efx
, &tempq
);
1197 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1198 efx_ptp_xmit_skb(efx
, skb
);
1200 while ((skb
= __skb_dequeue(&tempq
)))
1201 efx_ptp_process_rx(efx
, skb
);
1204 static const struct ptp_clock_info efx_phc_clock_info
= {
1205 .owner
= THIS_MODULE
,
1212 .adjfreq
= efx_phc_adjfreq
,
1213 .adjtime
= efx_phc_adjtime
,
1214 .gettime
= efx_phc_gettime
,
1215 .settime
= efx_phc_settime
,
1216 .enable
= efx_phc_enable
,
1219 /* Initialise PTP state. */
1220 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1222 struct efx_ptp_data
*ptp
;
1226 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1227 efx
->ptp_data
= ptp
;
1232 ptp
->channel
= channel
;
1233 ptp
->rx_ts_inline
= efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
;
1235 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1239 skb_queue_head_init(&ptp
->rxq
);
1240 skb_queue_head_init(&ptp
->txq
);
1241 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1247 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1248 ptp
->config
.flags
= 0;
1249 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1250 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1251 INIT_LIST_HEAD(&ptp
->evt_list
);
1252 INIT_LIST_HEAD(&ptp
->evt_free_list
);
1253 spin_lock_init(&ptp
->evt_lock
);
1254 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
1255 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
1256 ptp
->evt_overflow
= false;
1258 /* Get the NIC PTP attributes and set up time conversions */
1259 rc
= efx_ptp_get_attributes(efx
);
1263 /* Get the timestamp corrections */
1264 rc
= efx_ptp_get_timestamp_corrections(efx
);
1268 if (efx
->mcdi
->fn_flags
&
1269 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1270 ptp
->phc_clock_info
= efx_phc_clock_info
;
1271 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1272 &efx
->pci_dev
->dev
);
1273 if (IS_ERR(ptp
->phc_clock
)) {
1274 rc
= PTR_ERR(ptp
->phc_clock
);
1278 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1279 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1280 if (!ptp
->pps_workwq
) {
1285 ptp
->nic_ts_enabled
= false;
1289 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1292 destroy_workqueue(efx
->ptp_data
->workwq
);
1295 efx_nic_free_buffer(efx
, &ptp
->start
);
1298 kfree(efx
->ptp_data
);
1299 efx
->ptp_data
= NULL
;
1304 /* Initialise PTP channel.
1306 * Setting core_index to zero causes the queue to be initialised and doesn't
1307 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1309 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1311 struct efx_nic
*efx
= channel
->efx
;
1313 channel
->irq_moderation
= 0;
1314 channel
->rx_queue
.core_index
= 0;
1316 return efx_ptp_probe(efx
, channel
);
1319 void efx_ptp_remove(struct efx_nic
*efx
)
1324 (void)efx_ptp_disable(efx
);
1326 cancel_work_sync(&efx
->ptp_data
->work
);
1327 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1329 skb_queue_purge(&efx
->ptp_data
->rxq
);
1330 skb_queue_purge(&efx
->ptp_data
->txq
);
1332 if (efx
->ptp_data
->phc_clock
) {
1333 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1334 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1337 destroy_workqueue(efx
->ptp_data
->workwq
);
1339 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1340 kfree(efx
->ptp_data
);
1343 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1345 efx_ptp_remove(channel
->efx
);
1348 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1349 char *buf
, size_t len
)
1351 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1354 /* Determine whether this packet should be processed by the PTP module
1355 * or transmitted conventionally.
1357 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1359 return efx
->ptp_data
&&
1360 efx
->ptp_data
->enabled
&&
1361 skb
->len
>= PTP_MIN_LENGTH
&&
1362 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1363 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1364 skb_transport_header_was_set(skb
) &&
1365 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1366 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1368 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1369 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1372 /* Receive a PTP packet. Packets are queued until the arrival of
1373 * the receive timestamp from the MC - this will probably occur after the
1374 * packet arrival because of the processing in the MC.
1376 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1378 struct efx_nic
*efx
= channel
->efx
;
1379 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1380 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1381 u8
*match_data_012
, *match_data_345
;
1382 unsigned int version
;
1384 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1386 /* Correct version? */
1387 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1388 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1391 version
= ntohs(*(__be16
*)&skb
->data
[PTP_V1_VERSION_OFFSET
]);
1392 if (version
!= PTP_VERSION_V1
) {
1396 /* PTP V1 uses all six bytes of the UUID to match the packet
1399 match_data_012
= skb
->data
+ PTP_V1_UUID_OFFSET
;
1400 match_data_345
= skb
->data
+ PTP_V1_UUID_OFFSET
+ 3;
1402 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1405 version
= skb
->data
[PTP_V2_VERSION_OFFSET
];
1406 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1410 /* The original V2 implementation uses bytes 2-7 of
1411 * the UUID to match the packet to the timestamp. This
1412 * discards two of the bytes of the MAC address used
1413 * to create the UUID (SF bug 33070). The PTP V2
1414 * enhanced mode fixes this issue and uses bytes 0-2
1415 * and byte 5-7 of the UUID.
1417 match_data_345
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 5;
1418 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1419 match_data_012
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 2;
1421 match_data_012
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 0;
1422 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1426 /* Does this packet require timestamping? */
1427 if (ntohs(*(__be16
*)&skb
->data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1428 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1430 /* We expect the sequence number to be in the same position in
1431 * the packet for PTP V1 and V2
1433 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1434 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1436 /* Extract UUID/Sequence information */
1437 match
->words
[0] = (match_data_012
[0] |
1438 (match_data_012
[1] << 8) |
1439 (match_data_012
[2] << 16) |
1440 (match_data_345
[0] << 24));
1441 match
->words
[1] = (match_data_345
[1] |
1442 (match_data_345
[2] << 8) |
1443 (skb
->data
[PTP_V1_SEQUENCE_OFFSET
+
1444 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1447 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1450 skb_queue_tail(&ptp
->rxq
, skb
);
1451 queue_work(ptp
->workwq
, &ptp
->work
);
1456 /* Transmit a PTP packet. This has to be transmitted by the MC
1457 * itself, through an MCDI call. MCDI calls aren't permitted
1458 * in the transmit path so defer the actual transmission to a suitable worker.
1460 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1462 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1464 skb_queue_tail(&ptp
->txq
, skb
);
1466 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1467 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1468 efx_xmit_hwtstamp_pending(skb
);
1469 queue_work(ptp
->workwq
, &ptp
->work
);
1471 return NETDEV_TX_OK
;
1474 int efx_ptp_get_mode(struct efx_nic
*efx
)
1476 return efx
->ptp_data
->mode
;
1479 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1480 unsigned int new_mode
)
1482 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1483 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1486 if (enable_wanted
) {
1487 /* Change of mode requires disable */
1488 if (efx
->ptp_data
->enabled
&&
1489 (efx
->ptp_data
->mode
!= new_mode
)) {
1490 efx
->ptp_data
->enabled
= false;
1491 rc
= efx_ptp_stop(efx
);
1496 /* Set new operating mode and establish
1497 * baseline synchronisation, which must
1500 efx
->ptp_data
->mode
= new_mode
;
1501 if (netif_running(efx
->net_dev
))
1502 rc
= efx_ptp_start(efx
);
1504 rc
= efx_ptp_synchronize(efx
,
1505 PTP_SYNC_ATTEMPTS
* 2);
1510 rc
= efx_ptp_stop(efx
);
1516 efx
->ptp_data
->enabled
= enable_wanted
;
1522 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1529 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1530 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1533 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1537 efx
->ptp_data
->config
= *init
;
1541 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1543 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1544 struct efx_nic
*primary
= efx
->primary
;
1551 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1552 SOF_TIMESTAMPING_RX_HARDWARE
|
1553 SOF_TIMESTAMPING_RAW_HARDWARE
);
1554 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1555 ts_info
->phc_index
=
1556 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1557 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1558 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1561 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1563 struct hwtstamp_config config
;
1566 /* Not a PTP enabled port */
1570 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1573 rc
= efx_ptp_ts_init(efx
, &config
);
1577 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1581 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1586 return copy_to_user(ifr
->ifr_data
, &efx
->ptp_data
->config
,
1587 sizeof(efx
->ptp_data
->config
)) ? -EFAULT
: 0;
1590 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1592 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1594 netif_err(efx
, hw
, efx
->net_dev
,
1595 "PTP unexpected event length: got %d expected %d\n",
1596 ptp
->evt_frag_idx
, expected_frag_len
);
1597 ptp
->reset_required
= true;
1598 queue_work(ptp
->workwq
, &ptp
->work
);
1601 /* Process a completed receive event. Put it on the event queue and
1602 * start worker thread. This is required because event and their
1603 * correspoding packets may come in either order.
1605 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1607 struct efx_ptp_event_rx
*evt
= NULL
;
1609 if (WARN_ON_ONCE(ptp
->rx_ts_inline
))
1612 if (ptp
->evt_frag_idx
!= 3) {
1613 ptp_event_failure(efx
, 3);
1617 spin_lock_bh(&ptp
->evt_lock
);
1618 if (!list_empty(&ptp
->evt_free_list
)) {
1619 evt
= list_first_entry(&ptp
->evt_free_list
,
1620 struct efx_ptp_event_rx
, link
);
1621 list_del(&evt
->link
);
1623 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1624 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1626 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1627 MCDI_EVENT_SRC
) << 8) |
1628 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1629 MCDI_EVENT_SRC
) << 16));
1630 evt
->hwtimestamp
= efx
->ptp_data
->nic_to_kernel_time(
1631 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1632 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
),
1633 ptp
->ts_corrections
.rx
);
1634 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1635 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1637 queue_work(ptp
->workwq
, &ptp
->work
);
1638 } else if (!ptp
->evt_overflow
) {
1639 /* Log a warning message and set the event overflow flag.
1640 * The message won't be logged again until the event queue
1643 netif_err(efx
, rx_err
, efx
->net_dev
, "PTP event queue overflow\n");
1644 ptp
->evt_overflow
= true;
1646 spin_unlock_bh(&ptp
->evt_lock
);
1649 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1651 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1652 if (ptp
->evt_frag_idx
!= 1) {
1653 ptp_event_failure(efx
, 1);
1657 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1660 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1662 if (ptp
->nic_ts_enabled
)
1663 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1666 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1668 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1669 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1674 if (ptp
->evt_frag_idx
== 0) {
1675 ptp
->evt_code
= code
;
1676 } else if (ptp
->evt_code
!= code
) {
1677 netif_err(efx
, hw
, efx
->net_dev
,
1678 "PTP out of sequence event %d\n", code
);
1679 ptp
->evt_frag_idx
= 0;
1682 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1683 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1684 /* Process resulting event */
1686 case MCDI_EVENT_CODE_PTP_RX
:
1687 ptp_event_rx(efx
, ptp
);
1689 case MCDI_EVENT_CODE_PTP_FAULT
:
1690 ptp_event_fault(efx
, ptp
);
1692 case MCDI_EVENT_CODE_PTP_PPS
:
1693 ptp_event_pps(efx
, ptp
);
1696 netif_err(efx
, hw
, efx
->net_dev
,
1697 "PTP unknown event %d\n", code
);
1700 ptp
->evt_frag_idx
= 0;
1701 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1702 netif_err(efx
, hw
, efx
->net_dev
,
1703 "PTP too many event fragments\n");
1704 ptp
->evt_frag_idx
= 0;
1708 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1710 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
1711 channel
->sync_timestamp_minor
=
1712 MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_26_19
) << 19;
1713 /* if sync events have been disabled then we want to silently ignore
1714 * this event, so throw away result.
1716 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
1720 /* make some assumptions about the time representation rather than abstract it,
1721 * since we currently only support one type of inline timestamping and only on
1724 #define MINOR_TICKS_PER_SECOND 0x8000000
1725 /* Fuzz factor for sync events to be out of order with RX events */
1726 #define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1727 #define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1729 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
1731 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1732 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
1734 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
1735 return (u32
)data
[0] |
1737 (u32
)data
[2] << 16 |
1742 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
1743 struct sk_buff
*skb
)
1745 struct efx_nic
*efx
= channel
->efx
;
1746 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
1748 struct skb_shared_hwtstamps
*timestamps
;
1750 pkt_timestamp_minor
= (efx_rx_buf_timestamp_minor(efx
,
1751 skb_mac_header(skb
)) +
1752 (u32
) efx
->ptp_data
->ts_corrections
.rx
) &
1753 (MINOR_TICKS_PER_SECOND
- 1);
1755 /* get the difference between the packet and sync timestamps,
1758 diff
= (pkt_timestamp_minor
- channel
->sync_timestamp_minor
) &
1759 (MINOR_TICKS_PER_SECOND
- 1);
1760 /* do we roll over a second boundary and need to carry the one? */
1761 carry
= channel
->sync_timestamp_minor
+ diff
> MINOR_TICKS_PER_SECOND
?
1764 if (diff
<= MINOR_TICKS_PER_SECOND
/ EXPECTED_SYNC_EVENTS_PER_SECOND
+
1766 /* packet is ahead of the sync event by a quarter of a second or
1767 * less (allowing for fuzz)
1769 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
1770 } else if (diff
>= MINOR_TICKS_PER_SECOND
- FUZZ
) {
1771 /* packet is behind the sync event but within the fuzz factor.
1772 * This means the RX packet and sync event crossed as they were
1773 * placed on the event queue, which can sometimes happen.
1775 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
1777 /* it's outside tolerance in both directions. this might be
1778 * indicative of us missing sync events for some reason, so
1779 * we'll call it an error rather than risk giving a bogus
1782 netif_vdbg(efx
, drv
, efx
->net_dev
,
1783 "packet timestamp %x too far from sync event %x:%x\n",
1784 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
1785 channel
->sync_timestamp_minor
);
1789 /* attach the timestamps to the skb */
1790 timestamps
= skb_hwtstamps(skb
);
1791 timestamps
->hwtstamp
=
1792 efx_ptp_s27_to_ktime(pkt_timestamp_major
, pkt_timestamp_minor
);
1795 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
1797 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1798 struct efx_ptp_data
,
1800 struct efx_nic
*efx
= ptp_data
->efx
;
1801 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
1805 if (delta
> MAX_PPB
)
1807 else if (delta
< -MAX_PPB
)
1810 /* Convert ppb to fixed point ns. */
1811 adjustment_ns
= (((s64
)delta
* PPB_SCALE_WORD
) >>
1812 (PPB_EXTRA_BITS
+ MAX_PPB_BITS
));
1814 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1815 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
1816 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
1817 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
1818 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
1819 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
1824 ptp_data
->current_adjfreq
= adjustment_ns
;
1828 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
1830 u32 nic_major
, nic_minor
;
1831 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1832 struct efx_ptp_data
,
1834 struct efx_nic
*efx
= ptp_data
->efx
;
1835 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
1837 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
1839 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1840 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
1841 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
1842 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
1843 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
1844 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1848 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
)
1850 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1851 struct efx_ptp_data
,
1853 struct efx_nic
*efx
= ptp_data
->efx
;
1854 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
1855 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
1859 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
1860 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
1862 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1863 outbuf
, sizeof(outbuf
), NULL
);
1867 kt
= ptp_data
->nic_to_kernel_time(
1868 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
1869 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
1870 *ts
= ktime_to_timespec(kt
);
1874 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
1875 const struct timespec
*e_ts
)
1877 /* Get the current NIC time, efx_phc_gettime.
1878 * Subtract from the desired time to get the offset
1879 * call efx_phc_adjtime with the offset
1882 struct timespec time_now
;
1883 struct timespec delta
;
1885 rc
= efx_phc_gettime(ptp
, &time_now
);
1889 delta
= timespec_sub(*e_ts
, time_now
);
1891 rc
= efx_phc_adjtime(ptp
, timespec_to_ns(&delta
));
1898 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
1899 struct ptp_clock_request
*request
,
1902 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1903 struct efx_ptp_data
,
1905 if (request
->type
!= PTP_CLK_REQ_PPS
)
1908 ptp_data
->nic_ts_enabled
= !!enable
;
1912 static const struct efx_channel_type efx_ptp_channel_type
= {
1913 .handle_no_channel
= efx_ptp_handle_no_channel
,
1914 .pre_probe
= efx_ptp_probe_channel
,
1915 .post_remove
= efx_ptp_remove_channel
,
1916 .get_name
= efx_ptp_get_channel_name
,
1917 /* no copy operation; there is no need to reallocate this channel */
1918 .receive_skb
= efx_ptp_rx
,
1919 .keep_eventq
= false,
1922 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
1924 /* Check whether PTP is implemented on this NIC. The DISABLE
1925 * operation will succeed if and only if it is implemented.
1927 if (efx_ptp_disable(efx
) == 0)
1928 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
1929 &efx_ptp_channel_type
;
1932 void efx_ptp_start_datapath(struct efx_nic
*efx
)
1934 if (efx_ptp_restart(efx
))
1935 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
1936 /* re-enable timestamping if it was previously enabled */
1937 if (efx
->type
->ptp_set_ts_sync_events
)
1938 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
1941 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
1943 /* temporarily disable timestamping */
1944 if (efx
->type
->ptp_set_ts_sync_events
)
1945 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);