PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / ethernet / sis / sis900.c
blobff57a46388eefed67c81b70dc67e8ddd6a698826
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
79 #include "sis900.h"
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
84 static const char version[] =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
101 enum {
102 SIS_900 = 0,
103 SIS_7016
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
161 struct sis900_private {
162 struct pci_dev * pci_dev;
164 spinlock_t lock;
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
171 void __iomem *ioaddr;
173 struct timer_list timer; /* Link status detection timer. */
174 u8 autong_complete; /* 1: auto-negotiate complete */
176 u32 msg_enable;
178 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 unsigned int cur_tx, dirty_tx;
181 /* The saved address of a sent/receive-in-place packet buffer */
182 struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 BufferDesc *tx_ring;
185 BufferDesc *rx_ring;
187 dma_addr_t tx_ring_dma;
188 dma_addr_t rx_ring_dma;
190 unsigned int tx_full; /* The Tx queue is full. */
191 u8 host_bridge_rev;
192 u8 chipset_rev;
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
206 #define sw32(reg, val) iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val) iowrite8(val, ioaddr + (reg))
208 #define sr32(reg) ioread32(ioaddr + (reg))
209 #define sr16(reg) ioread16(ioaddr + (reg))
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
245 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246 * @pci_dev: the sis900 pci device
247 * @net_dev: the net device to get address for
249 * Older SiS900 and friends, use EEPROM to store MAC address.
250 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
253 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
254 struct net_device *net_dev)
256 struct sis900_private *sis_priv = netdev_priv(net_dev);
257 void __iomem *ioaddr = sis_priv->ioaddr;
258 u16 signature;
259 int i;
261 /* check to see if we have sane EEPROM */
262 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 if (signature == 0xffff || signature == 0x0000) {
264 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 pci_name(pci_dev), signature);
266 return 0;
269 /* get MAC address from EEPROM */
270 for (i = 0; i < 3; i++)
271 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273 return 1;
277 * sis630e_get_mac_addr - Get MAC address for SiS630E model
278 * @pci_dev: the sis900 pci device
279 * @net_dev: the net device to get address for
281 * SiS630E model, use APC CMOS RAM to store MAC address.
282 * APC CMOS RAM is accessed through ISA bridge.
283 * MAC address is read into @net_dev->dev_addr.
286 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
287 struct net_device *net_dev)
289 struct pci_dev *isa_bridge = NULL;
290 u8 reg;
291 int i;
293 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
294 if (!isa_bridge)
295 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
296 if (!isa_bridge) {
297 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
298 pci_name(pci_dev));
299 return 0;
301 pci_read_config_byte(isa_bridge, 0x48, &reg);
302 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
304 for (i = 0; i < 6; i++) {
305 outb(0x09 + i, 0x70);
306 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
309 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
310 pci_dev_put(isa_bridge);
312 return 1;
317 * sis635_get_mac_addr - Get MAC address for SIS635 model
318 * @pci_dev: the sis900 pci device
319 * @net_dev: the net device to get address for
321 * SiS635 model, set MAC Reload Bit to load Mac address from APC
322 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
323 * @net_dev->dev_addr.
326 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
327 struct net_device *net_dev)
329 struct sis900_private *sis_priv = netdev_priv(net_dev);
330 void __iomem *ioaddr = sis_priv->ioaddr;
331 u32 rfcrSave;
332 u32 i;
334 rfcrSave = sr32(rfcr);
336 sw32(cr, rfcrSave | RELOAD);
337 sw32(cr, 0);
339 /* disable packet filtering before setting filter */
340 sw32(rfcr, rfcrSave & ~RFEN);
342 /* load MAC addr to filter data register */
343 for (i = 0 ; i < 3 ; i++) {
344 sw32(rfcr, (i << RFADDR_shift));
345 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
348 /* enable packet filtering */
349 sw32(rfcr, rfcrSave | RFEN);
351 return 1;
355 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
356 * @pci_dev: the sis900 pci device
357 * @net_dev: the net device to get address for
359 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
360 * is shared by
361 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
362 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
363 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
364 * EEDONE signal to refuse EEPROM access by LAN.
365 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
366 * The signature field in SiS962 or SiS963 spec is meaningless.
367 * MAC address is read into @net_dev->dev_addr.
370 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
371 struct net_device *net_dev)
373 struct sis900_private *sis_priv = netdev_priv(net_dev);
374 void __iomem *ioaddr = sis_priv->ioaddr;
375 int wait, rc = 0;
377 sw32(mear, EEREQ);
378 for (wait = 0; wait < 2000; wait++) {
379 if (sr32(mear) & EEGNT) {
380 u16 *mac = (u16 *)net_dev->dev_addr;
381 int i;
383 /* get MAC address from EEPROM */
384 for (i = 0; i < 3; i++)
385 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
387 rc = 1;
388 break;
390 udelay(1);
392 sw32(mear, EEDONE);
393 return rc;
396 static const struct net_device_ops sis900_netdev_ops = {
397 .ndo_open = sis900_open,
398 .ndo_stop = sis900_close,
399 .ndo_start_xmit = sis900_start_xmit,
400 .ndo_set_config = sis900_set_config,
401 .ndo_set_rx_mode = set_rx_mode,
402 .ndo_change_mtu = eth_change_mtu,
403 .ndo_validate_addr = eth_validate_addr,
404 .ndo_set_mac_address = eth_mac_addr,
405 .ndo_do_ioctl = mii_ioctl,
406 .ndo_tx_timeout = sis900_tx_timeout,
407 #ifdef CONFIG_NET_POLL_CONTROLLER
408 .ndo_poll_controller = sis900_poll,
409 #endif
413 * sis900_probe - Probe for sis900 device
414 * @pci_dev: the sis900 pci device
415 * @pci_id: the pci device ID
417 * Check and probe sis900 net device for @pci_dev.
418 * Get mac address according to the chip revision,
419 * and assign SiS900-specific entries in the device structure.
420 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
423 static int sis900_probe(struct pci_dev *pci_dev,
424 const struct pci_device_id *pci_id)
426 struct sis900_private *sis_priv;
427 struct net_device *net_dev;
428 struct pci_dev *dev;
429 dma_addr_t ring_dma;
430 void *ring_space;
431 void __iomem *ioaddr;
432 int i, ret;
433 const char *card_name = card_names[pci_id->driver_data];
434 const char *dev_name = pci_name(pci_dev);
436 /* when built into the kernel, we only print version if device is found */
437 #ifndef MODULE
438 static int printed_version;
439 if (!printed_version++)
440 printk(version);
441 #endif
443 /* setup various bits in PCI command register */
444 ret = pci_enable_device(pci_dev);
445 if(ret) return ret;
447 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
448 if(i){
449 printk(KERN_ERR "sis900.c: architecture does not support "
450 "32bit PCI busmaster DMA\n");
451 return i;
454 pci_set_master(pci_dev);
456 net_dev = alloc_etherdev(sizeof(struct sis900_private));
457 if (!net_dev)
458 return -ENOMEM;
459 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
461 /* We do a request_region() to register /proc/ioports info. */
462 ret = pci_request_regions(pci_dev, "sis900");
463 if (ret)
464 goto err_out;
466 /* IO region. */
467 ioaddr = pci_iomap(pci_dev, 0, 0);
468 if (!ioaddr) {
469 ret = -ENOMEM;
470 goto err_out_cleardev;
473 sis_priv = netdev_priv(net_dev);
474 sis_priv->ioaddr = ioaddr;
475 sis_priv->pci_dev = pci_dev;
476 spin_lock_init(&sis_priv->lock);
478 pci_set_drvdata(pci_dev, net_dev);
480 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 if (!ring_space) {
482 ret = -ENOMEM;
483 goto err_out_unmap;
485 sis_priv->tx_ring = ring_space;
486 sis_priv->tx_ring_dma = ring_dma;
488 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 if (!ring_space) {
490 ret = -ENOMEM;
491 goto err_unmap_tx;
493 sis_priv->rx_ring = ring_space;
494 sis_priv->rx_ring_dma = ring_dma;
496 /* The SiS900-specific entries in the device structure. */
497 net_dev->netdev_ops = &sis900_netdev_ops;
498 net_dev->watchdog_timeo = TX_TIMEOUT;
499 net_dev->ethtool_ops = &sis900_ethtool_ops;
501 if (sis900_debug > 0)
502 sis_priv->msg_enable = sis900_debug;
503 else
504 sis_priv->msg_enable = SIS900_DEF_MSG;
506 sis_priv->mii_info.dev = net_dev;
507 sis_priv->mii_info.mdio_read = mdio_read;
508 sis_priv->mii_info.mdio_write = mdio_write;
509 sis_priv->mii_info.phy_id_mask = 0x1f;
510 sis_priv->mii_info.reg_num_mask = 0x1f;
512 /* Get Mac address according to the chip revision */
513 sis_priv->chipset_rev = pci_dev->revision;
514 if(netif_msg_probe(sis_priv))
515 printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 "trying to get MAC address...\n",
517 dev_name, sis_priv->chipset_rev);
519 ret = 0;
520 if (sis_priv->chipset_rev == SIS630E_900_REV)
521 ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 ret = sis635_get_mac_addr(pci_dev, net_dev);
524 else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 else
527 ret = sis900_get_mac_addr(pci_dev, net_dev);
529 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 eth_hw_addr_random(net_dev);
531 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 "using random generated one\n", dev_name);
535 /* 630ET : set the mii access mode as software-mode */
536 if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 sw32(cr, ACCESSMODE | sr32(cr));
539 /* probe for mii transceiver */
540 if (sis900_mii_probe(net_dev) == 0) {
541 printk(KERN_WARNING "%s: Error probing MII device.\n",
542 dev_name);
543 ret = -ENODEV;
544 goto err_unmap_rx;
547 /* save our host bridge revision */
548 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 if (dev) {
550 sis_priv->host_bridge_rev = dev->revision;
551 pci_dev_put(dev);
554 ret = register_netdev(net_dev);
555 if (ret)
556 goto err_unmap_rx;
558 /* print some information about our NIC */
559 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
560 net_dev->name, card_name, ioaddr, pci_dev->irq,
561 net_dev->dev_addr);
563 /* Detect Wake on Lan support */
564 ret = (sr32(CFGPMC) & PMESP) >> 27;
565 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
568 return 0;
570 err_unmap_rx:
571 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 sis_priv->tx_ring_dma);
576 err_out_unmap:
577 pci_iounmap(pci_dev, ioaddr);
578 err_out_cleardev:
579 pci_release_regions(pci_dev);
580 err_out:
581 free_netdev(net_dev);
582 return ret;
586 * sis900_mii_probe - Probe MII PHY for sis900
587 * @net_dev: the net device to probe for
589 * Search for total of 32 possible mii phy addresses.
590 * Identify and set current phy if found one,
591 * return error if it failed to found.
594 static int sis900_mii_probe(struct net_device *net_dev)
596 struct sis900_private *sis_priv = netdev_priv(net_dev);
597 const char *dev_name = pci_name(sis_priv->pci_dev);
598 u16 poll_bit = MII_STAT_LINK, status = 0;
599 unsigned long timeout = jiffies + 5 * HZ;
600 int phy_addr;
602 sis_priv->mii = NULL;
604 /* search for total of 32 possible mii phy addresses */
605 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
606 struct mii_phy * mii_phy = NULL;
607 u16 mii_status;
608 int i;
610 mii_phy = NULL;
611 for(i = 0; i < 2; i++)
612 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
614 if (mii_status == 0xffff || mii_status == 0x0000) {
615 if (netif_msg_probe(sis_priv))
616 printk(KERN_DEBUG "%s: MII at address %d"
617 " not accessible\n",
618 dev_name, phy_addr);
619 continue;
622 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
623 mii_phy = sis_priv->first_mii;
624 while (mii_phy) {
625 struct mii_phy *phy;
626 phy = mii_phy;
627 mii_phy = mii_phy->next;
628 kfree(phy);
630 return 0;
633 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635 mii_phy->phy_addr = phy_addr;
636 mii_phy->status = mii_status;
637 mii_phy->next = sis_priv->mii;
638 sis_priv->mii = mii_phy;
639 sis_priv->first_mii = mii_phy;
641 for (i = 0; mii_chip_table[i].phy_id1; i++)
642 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644 mii_phy->phy_types = mii_chip_table[i].phy_types;
645 if (mii_chip_table[i].phy_types == MIX)
646 mii_phy->phy_types =
647 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648 printk(KERN_INFO "%s: %s transceiver found "
649 "at address %d.\n",
650 dev_name,
651 mii_chip_table[i].name,
652 phy_addr);
653 break;
656 if( !mii_chip_table[i].phy_id1 ) {
657 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658 dev_name, phy_addr);
659 mii_phy->phy_types = UNKNOWN;
663 if (sis_priv->mii == NULL) {
664 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665 return 0;
668 /* select default PHY for mac */
669 sis_priv->mii = NULL;
670 sis900_default_phy( net_dev );
672 /* Reset phy if default phy is internal sis900 */
673 if ((sis_priv->mii->phy_id0 == 0x001D) &&
674 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677 /* workaround for ICS1893 PHY */
678 if ((sis_priv->mii->phy_id0 == 0x0015) &&
679 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682 if(status & MII_STAT_LINK){
683 while (poll_bit) {
684 yield();
686 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687 if (time_after_eq(jiffies, timeout)) {
688 printk(KERN_WARNING "%s: reset phy and link down now\n",
689 dev_name);
690 return -ETIME;
695 if (sis_priv->chipset_rev == SIS630E_900_REV) {
696 /* SiS 630E has some bugs on default value of PHY registers */
697 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
704 if (sis_priv->mii->status & MII_STAT_LINK)
705 netif_carrier_on(net_dev);
706 else
707 netif_carrier_off(net_dev);
709 return 1;
713 * sis900_default_phy - Select default PHY for sis900 mac.
714 * @net_dev: the net device to probe for
716 * Select first detected PHY with link as default.
717 * If no one is link on, select PHY whose types is HOME as default.
718 * If HOME doesn't exist, select LAN.
721 static u16 sis900_default_phy(struct net_device * net_dev)
723 struct sis900_private *sis_priv = netdev_priv(net_dev);
724 struct mii_phy *phy = NULL, *phy_home = NULL,
725 *default_phy = NULL, *phy_lan = NULL;
726 u16 status;
728 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732 /* Link ON & Not select default PHY & not ghost PHY */
733 if ((status & MII_STAT_LINK) && !default_phy &&
734 (phy->phy_types != UNKNOWN))
735 default_phy = phy;
736 else {
737 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740 if (phy->phy_types == HOME)
741 phy_home = phy;
742 else if(phy->phy_types == LAN)
743 phy_lan = phy;
747 if (!default_phy && phy_home)
748 default_phy = phy_home;
749 else if (!default_phy && phy_lan)
750 default_phy = phy_lan;
751 else if (!default_phy)
752 default_phy = sis_priv->first_mii;
754 if (sis_priv->mii != default_phy) {
755 sis_priv->mii = default_phy;
756 sis_priv->cur_phy = default_phy->phy_addr;
757 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
761 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764 status &= (~MII_CNTL_ISOLATE);
766 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770 return status;
775 * sis900_set_capability - set the media capability of network adapter.
776 * @net_dev : the net device to probe for
777 * @phy : default PHY
779 * Set the media capability of network adapter according to
780 * mii status register. It's necessary before auto-negotiate.
783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785 u16 cap;
786 u16 status;
788 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791 cap = MII_NWAY_CSMA_CD |
792 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
794 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
797 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
801 /* Delay between EEPROM clock transitions. */
802 #define eeprom_delay() sr32(mear)
805 * read_eeprom - Read Serial EEPROM
806 * @ioaddr: base i/o address
807 * @location: the EEPROM location to read
809 * Read Serial EEPROM through EEPROM Access Register.
810 * Note that location is in word (16 bits) unit
813 static u16 read_eeprom(void __iomem *ioaddr, int location)
815 u32 read_cmd = location | EEread;
816 int i;
817 u16 retval = 0;
819 sw32(mear, 0);
820 eeprom_delay();
821 sw32(mear, EECS);
822 eeprom_delay();
824 /* Shift the read command (9) bits out. */
825 for (i = 8; i >= 0; i--) {
826 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 sw32(mear, dataval);
829 eeprom_delay();
830 sw32(mear, dataval | EECLK);
831 eeprom_delay();
833 sw32(mear, EECS);
834 eeprom_delay();
836 /* read the 16-bits data in */
837 for (i = 16; i > 0; i--) {
838 sw32(mear, EECS);
839 eeprom_delay();
840 sw32(mear, EECS | EECLK);
841 eeprom_delay();
842 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
843 eeprom_delay();
846 /* Terminate the EEPROM access. */
847 sw32(mear, 0);
848 eeprom_delay();
850 return retval;
853 /* Read and write the MII management registers using software-generated
854 serial MDIO protocol. Note that the command bits and data bits are
855 send out separately */
856 #define mdio_delay() sr32(mear)
858 static void mdio_idle(struct sis900_private *sp)
860 void __iomem *ioaddr = sp->ioaddr;
862 sw32(mear, MDIO | MDDIR);
863 mdio_delay();
864 sw32(mear, MDIO | MDDIR | MDC);
867 /* Synchronize the MII management interface by shifting 32 one bits out. */
868 static void mdio_reset(struct sis900_private *sp)
870 void __iomem *ioaddr = sp->ioaddr;
871 int i;
873 for (i = 31; i >= 0; i--) {
874 sw32(mear, MDDIR | MDIO);
875 mdio_delay();
876 sw32(mear, MDDIR | MDIO | MDC);
877 mdio_delay();
882 * mdio_read - read MII PHY register
883 * @net_dev: the net device to read
884 * @phy_id: the phy address to read
885 * @location: the phy regiester id to read
887 * Read MII registers through MDIO and MDC
888 * using MDIO management frame structure and protocol(defined by ISO/IEC).
889 * Please see SiS7014 or ICS spec
892 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
894 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
895 struct sis900_private *sp = netdev_priv(net_dev);
896 void __iomem *ioaddr = sp->ioaddr;
897 u16 retval = 0;
898 int i;
900 mdio_reset(sp);
901 mdio_idle(sp);
903 for (i = 15; i >= 0; i--) {
904 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
906 sw32(mear, dataval);
907 mdio_delay();
908 sw32(mear, dataval | MDC);
909 mdio_delay();
912 /* Read the 16 data bits. */
913 for (i = 16; i > 0; i--) {
914 sw32(mear, 0);
915 mdio_delay();
916 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
917 sw32(mear, MDC);
918 mdio_delay();
920 sw32(mear, 0x00);
922 return retval;
926 * mdio_write - write MII PHY register
927 * @net_dev: the net device to write
928 * @phy_id: the phy address to write
929 * @location: the phy regiester id to write
930 * @value: the register value to write with
932 * Write MII registers with @value through MDIO and MDC
933 * using MDIO management frame structure and protocol(defined by ISO/IEC)
934 * please see SiS7014 or ICS spec
937 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
938 int value)
940 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
941 struct sis900_private *sp = netdev_priv(net_dev);
942 void __iomem *ioaddr = sp->ioaddr;
943 int i;
945 mdio_reset(sp);
946 mdio_idle(sp);
948 /* Shift the command bits out. */
949 for (i = 15; i >= 0; i--) {
950 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
952 sw8(mear, dataval);
953 mdio_delay();
954 sw8(mear, dataval | MDC);
955 mdio_delay();
957 mdio_delay();
959 /* Shift the value bits out. */
960 for (i = 15; i >= 0; i--) {
961 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
963 sw32(mear, dataval);
964 mdio_delay();
965 sw32(mear, dataval | MDC);
966 mdio_delay();
968 mdio_delay();
970 /* Clear out extra bits. */
971 for (i = 2; i > 0; i--) {
972 sw8(mear, 0);
973 mdio_delay();
974 sw8(mear, MDC);
975 mdio_delay();
977 sw32(mear, 0x00);
982 * sis900_reset_phy - reset sis900 mii phy.
983 * @net_dev: the net device to write
984 * @phy_addr: default phy address
986 * Some specific phy can't work properly without reset.
987 * This function will be called during initialization and
988 * link status change from ON to DOWN.
991 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
993 int i;
994 u16 status;
996 for (i = 0; i < 2; i++)
997 status = mdio_read(net_dev, phy_addr, MII_STATUS);
999 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001 return status;
1004 #ifdef CONFIG_NET_POLL_CONTROLLER
1006 * Polling 'interrupt' - used by things like netconsole to send skbs
1007 * without having to re-enable interrupts. It's not called while
1008 * the interrupt routine is executing.
1010 static void sis900_poll(struct net_device *dev)
1012 struct sis900_private *sp = netdev_priv(dev);
1013 const int irq = sp->pci_dev->irq;
1015 disable_irq(irq);
1016 sis900_interrupt(irq, dev);
1017 enable_irq(irq);
1019 #endif
1022 * sis900_open - open sis900 device
1023 * @net_dev: the net device to open
1025 * Do some initialization and start net interface.
1026 * enable interrupts and set sis900 timer.
1029 static int
1030 sis900_open(struct net_device *net_dev)
1032 struct sis900_private *sis_priv = netdev_priv(net_dev);
1033 void __iomem *ioaddr = sis_priv->ioaddr;
1034 int ret;
1036 /* Soft reset the chip. */
1037 sis900_reset(net_dev);
1039 /* Equalizer workaround Rule */
1040 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043 net_dev->name, net_dev);
1044 if (ret)
1045 return ret;
1047 sis900_init_rxfilter(net_dev);
1049 sis900_init_tx_ring(net_dev);
1050 sis900_init_rx_ring(net_dev);
1052 set_rx_mode(net_dev);
1054 netif_start_queue(net_dev);
1056 /* Workaround for EDB */
1057 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059 /* Enable all known interrupts by setting the interrupt mask. */
1060 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1061 sw32(cr, RxENA | sr32(cr));
1062 sw32(ier, IE);
1064 sis900_check_mode(net_dev, sis_priv->mii);
1066 /* Set the timer to switch to check for link beat and perhaps switch
1067 to an alternate media type. */
1068 init_timer(&sis_priv->timer);
1069 sis_priv->timer.expires = jiffies + HZ;
1070 sis_priv->timer.data = (unsigned long)net_dev;
1071 sis_priv->timer.function = sis900_timer;
1072 add_timer(&sis_priv->timer);
1074 return 0;
1078 * sis900_init_rxfilter - Initialize the Rx filter
1079 * @net_dev: the net device to initialize for
1081 * Set receive filter address to our MAC address
1082 * and enable packet filtering.
1085 static void
1086 sis900_init_rxfilter (struct net_device * net_dev)
1088 struct sis900_private *sis_priv = netdev_priv(net_dev);
1089 void __iomem *ioaddr = sis_priv->ioaddr;
1090 u32 rfcrSave;
1091 u32 i;
1093 rfcrSave = sr32(rfcr);
1095 /* disable packet filtering before setting filter */
1096 sw32(rfcr, rfcrSave & ~RFEN);
1098 /* load MAC addr to filter data register */
1099 for (i = 0 ; i < 3 ; i++) {
1100 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102 sw32(rfcr, i << RFADDR_shift);
1103 sw32(rfdr, w);
1105 if (netif_msg_hw(sis_priv)) {
1106 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1107 net_dev->name, i, sr32(rfdr));
1111 /* enable packet filtering */
1112 sw32(rfcr, rfcrSave | RFEN);
1116 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1117 * @net_dev: the net device to initialize for
1119 * Initialize the Tx descriptor ring,
1122 static void
1123 sis900_init_tx_ring(struct net_device *net_dev)
1125 struct sis900_private *sis_priv = netdev_priv(net_dev);
1126 void __iomem *ioaddr = sis_priv->ioaddr;
1127 int i;
1129 sis_priv->tx_full = 0;
1130 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132 for (i = 0; i < NUM_TX_DESC; i++) {
1133 sis_priv->tx_skbuff[i] = NULL;
1135 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1136 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1137 sis_priv->tx_ring[i].cmdsts = 0;
1138 sis_priv->tx_ring[i].bufptr = 0;
1141 /* load Transmit Descriptor Register */
1142 sw32(txdp, sis_priv->tx_ring_dma);
1143 if (netif_msg_hw(sis_priv))
1144 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1145 net_dev->name, sr32(txdp));
1149 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1150 * @net_dev: the net device to initialize for
1152 * Initialize the Rx descriptor ring,
1153 * and pre-allocate recevie buffers (socket buffer)
1156 static void
1157 sis900_init_rx_ring(struct net_device *net_dev)
1159 struct sis900_private *sis_priv = netdev_priv(net_dev);
1160 void __iomem *ioaddr = sis_priv->ioaddr;
1161 int i;
1163 sis_priv->cur_rx = 0;
1164 sis_priv->dirty_rx = 0;
1166 /* init RX descriptor */
1167 for (i = 0; i < NUM_RX_DESC; i++) {
1168 sis_priv->rx_skbuff[i] = NULL;
1170 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1171 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1172 sis_priv->rx_ring[i].cmdsts = 0;
1173 sis_priv->rx_ring[i].bufptr = 0;
1176 /* allocate sock buffers */
1177 for (i = 0; i < NUM_RX_DESC; i++) {
1178 struct sk_buff *skb;
1180 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1181 /* not enough memory for skbuff, this makes a "hole"
1182 on the buffer ring, it is not clear how the
1183 hardware will react to this kind of degenerated
1184 buffer */
1185 break;
1187 sis_priv->rx_skbuff[i] = skb;
1188 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1189 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1190 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1191 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1192 sis_priv->rx_ring[i].bufptr))) {
1193 dev_kfree_skb(skb);
1194 sis_priv->rx_skbuff[i] = NULL;
1195 break;
1198 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1200 /* load Receive Descriptor Register */
1201 sw32(rxdp, sis_priv->rx_ring_dma);
1202 if (netif_msg_hw(sis_priv))
1203 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1204 net_dev->name, sr32(rxdp));
1208 * sis630_set_eq - set phy equalizer value for 630 LAN
1209 * @net_dev: the net device to set equalizer value
1210 * @revision: 630 LAN revision number
1212 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1213 * PHY register 14h(Test)
1214 * Bit 14: 0 -- Automatically detect (default)
1215 * 1 -- Manually set Equalizer filter
1216 * Bit 13: 0 -- (Default)
1217 * 1 -- Speed up convergence of equalizer setting
1218 * Bit 9 : 0 -- (Default)
1219 * 1 -- Disable Baseline Wander
1220 * Bit 3~7 -- Equalizer filter setting
1221 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1222 * Then calculate equalizer value
1223 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1224 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1225 * Calculate Equalizer value:
1226 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1227 * When the equalizer is stable, this value is not a fixed value. It will be within
1228 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1229 * 0 <= max <= 4 --> set equalizer to max
1230 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1231 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1234 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1236 struct sis900_private *sis_priv = netdev_priv(net_dev);
1237 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1238 int i, maxcount=10;
1240 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1241 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1242 return;
1244 if (netif_carrier_ok(net_dev)) {
1245 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1246 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1247 (0x2200 | reg14h) & 0xBFFF);
1248 for (i=0; i < maxcount; i++) {
1249 eq_value = (0x00F8 & mdio_read(net_dev,
1250 sis_priv->cur_phy, MII_RESV)) >> 3;
1251 if (i == 0)
1252 max_value=min_value=eq_value;
1253 max_value = (eq_value > max_value) ?
1254 eq_value : max_value;
1255 min_value = (eq_value < min_value) ?
1256 eq_value : min_value;
1258 /* 630E rule to determine the equalizer value */
1259 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1260 revision == SIS630ET_900_REV) {
1261 if (max_value < 5)
1262 eq_value = max_value;
1263 else if (max_value >= 5 && max_value < 15)
1264 eq_value = (max_value == min_value) ?
1265 max_value+2 : max_value+1;
1266 else if (max_value >= 15)
1267 eq_value=(max_value == min_value) ?
1268 max_value+6 : max_value+5;
1270 /* 630B0&B1 rule to determine the equalizer value */
1271 if (revision == SIS630A_900_REV &&
1272 (sis_priv->host_bridge_rev == SIS630B0 ||
1273 sis_priv->host_bridge_rev == SIS630B1)) {
1274 if (max_value == 0)
1275 eq_value = 3;
1276 else
1277 eq_value = (max_value + min_value + 1)/2;
1279 /* write equalizer value and setting */
1280 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1281 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1282 reg14h = (reg14h | 0x6000) & 0xFDFF;
1283 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1284 } else {
1285 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1286 if (revision == SIS630A_900_REV &&
1287 (sis_priv->host_bridge_rev == SIS630B0 ||
1288 sis_priv->host_bridge_rev == SIS630B1))
1289 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1290 (reg14h | 0x2200) & 0xBFFF);
1291 else
1292 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1293 (reg14h | 0x2000) & 0xBFFF);
1298 * sis900_timer - sis900 timer routine
1299 * @data: pointer to sis900 net device
1301 * On each timer ticks we check two things,
1302 * link status (ON/OFF) and link mode (10/100/Full/Half)
1305 static void sis900_timer(unsigned long data)
1307 struct net_device *net_dev = (struct net_device *)data;
1308 struct sis900_private *sis_priv = netdev_priv(net_dev);
1309 struct mii_phy *mii_phy = sis_priv->mii;
1310 static const int next_tick = 5*HZ;
1311 int speed = 0, duplex = 0;
1312 u16 status;
1314 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1315 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1317 /* Link OFF -> ON */
1318 if (!netif_carrier_ok(net_dev)) {
1319 LookForLink:
1320 /* Search for new PHY */
1321 status = sis900_default_phy(net_dev);
1322 mii_phy = sis_priv->mii;
1324 if (status & MII_STAT_LINK) {
1325 WARN_ON(!(status & MII_STAT_AUTO_DONE));
1327 sis900_read_mode(net_dev, &speed, &duplex);
1328 if (duplex) {
1329 sis900_set_mode(sis_priv, speed, duplex);
1330 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1331 netif_carrier_on(net_dev);
1334 } else {
1335 /* Link ON -> OFF */
1336 if (!(status & MII_STAT_LINK)){
1337 netif_carrier_off(net_dev);
1338 if(netif_msg_link(sis_priv))
1339 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1341 /* Change mode issue */
1342 if ((mii_phy->phy_id0 == 0x001D) &&
1343 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1344 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1346 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1348 goto LookForLink;
1352 sis_priv->timer.expires = jiffies + next_tick;
1353 add_timer(&sis_priv->timer);
1357 * sis900_check_mode - check the media mode for sis900
1358 * @net_dev: the net device to be checked
1359 * @mii_phy: the mii phy
1361 * Older driver gets the media mode from mii status output
1362 * register. Now we set our media capability and auto-negotiate
1363 * to get the upper bound of speed and duplex between two ends.
1364 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1365 * and autong_complete should be set to 1.
1368 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1370 struct sis900_private *sis_priv = netdev_priv(net_dev);
1371 void __iomem *ioaddr = sis_priv->ioaddr;
1372 int speed, duplex;
1374 if (mii_phy->phy_types == LAN) {
1375 sw32(cfg, ~EXD & sr32(cfg));
1376 sis900_set_capability(net_dev , mii_phy);
1377 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1378 } else {
1379 sw32(cfg, EXD | sr32(cfg));
1380 speed = HW_SPEED_HOME;
1381 duplex = FDX_CAPABLE_HALF_SELECTED;
1382 sis900_set_mode(sis_priv, speed, duplex);
1383 sis_priv->autong_complete = 1;
1388 * sis900_set_mode - Set the media mode of mac register.
1389 * @sp: the device private data
1390 * @speed : the transmit speed to be determined
1391 * @duplex: the duplex mode to be determined
1393 * Set the media mode of mac register txcfg/rxcfg according to
1394 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1395 * bus is used instead of PCI bus. When this bit is set 1, the
1396 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1397 * double words.
1400 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1402 void __iomem *ioaddr = sp->ioaddr;
1403 u32 tx_flags = 0, rx_flags = 0;
1405 if (sr32( cfg) & EDB_MASTER_EN) {
1406 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1407 (TX_FILL_THRESH << TxFILLT_shift);
1408 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1409 } else {
1410 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1411 (TX_FILL_THRESH << TxFILLT_shift);
1412 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1415 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1416 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1417 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1418 } else {
1419 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1420 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1423 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1424 tx_flags |= (TxCSI | TxHBI);
1425 rx_flags |= RxATX;
1428 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1429 /* Can accept Jumbo packet */
1430 rx_flags |= RxAJAB;
1431 #endif
1433 sw32(txcfg, tx_flags);
1434 sw32(rxcfg, rx_flags);
1438 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1439 * @net_dev: the net device to read mode for
1440 * @phy_addr: mii phy address
1442 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1443 * autong_complete should be set to 0 when starting auto-negotiation.
1444 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1445 * sis900_timer will wait for link on again if autong_complete = 0.
1448 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1450 struct sis900_private *sis_priv = netdev_priv(net_dev);
1451 int i = 0;
1452 u32 status;
1454 for (i = 0; i < 2; i++)
1455 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1457 if (!(status & MII_STAT_LINK)){
1458 if(netif_msg_link(sis_priv))
1459 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1460 sis_priv->autong_complete = 1;
1461 netif_carrier_off(net_dev);
1462 return;
1465 /* (Re)start AutoNegotiate */
1466 mdio_write(net_dev, phy_addr, MII_CONTROL,
1467 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1468 sis_priv->autong_complete = 0;
1473 * sis900_read_mode - read media mode for sis900 internal phy
1474 * @net_dev: the net device to read mode for
1475 * @speed : the transmit speed to be determined
1476 * @duplex : the duplex mode to be determined
1478 * The capability of remote end will be put in mii register autorec
1479 * after auto-negotiation. Use AND operation to get the upper bound
1480 * of speed and duplex between two ends.
1483 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1485 struct sis900_private *sis_priv = netdev_priv(net_dev);
1486 struct mii_phy *phy = sis_priv->mii;
1487 int phy_addr = sis_priv->cur_phy;
1488 u32 status;
1489 u16 autoadv, autorec;
1490 int i;
1492 for (i = 0; i < 2; i++)
1493 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1495 if (!(status & MII_STAT_LINK))
1496 return;
1498 /* AutoNegotiate completed */
1499 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1500 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1501 status = autoadv & autorec;
1503 *speed = HW_SPEED_10_MBPS;
1504 *duplex = FDX_CAPABLE_HALF_SELECTED;
1506 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1507 *speed = HW_SPEED_100_MBPS;
1508 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1509 *duplex = FDX_CAPABLE_FULL_SELECTED;
1511 sis_priv->autong_complete = 1;
1513 /* Workaround for Realtek RTL8201 PHY issue */
1514 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1515 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1516 *duplex = FDX_CAPABLE_FULL_SELECTED;
1517 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1518 *speed = HW_SPEED_100_MBPS;
1521 if(netif_msg_link(sis_priv))
1522 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1523 net_dev->name,
1524 *speed == HW_SPEED_100_MBPS ?
1525 "100mbps" : "10mbps",
1526 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1527 "full" : "half");
1531 * sis900_tx_timeout - sis900 transmit timeout routine
1532 * @net_dev: the net device to transmit
1534 * print transmit timeout status
1535 * disable interrupts and do some tasks
1538 static void sis900_tx_timeout(struct net_device *net_dev)
1540 struct sis900_private *sis_priv = netdev_priv(net_dev);
1541 void __iomem *ioaddr = sis_priv->ioaddr;
1542 unsigned long flags;
1543 int i;
1545 if (netif_msg_tx_err(sis_priv)) {
1546 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1547 net_dev->name, sr32(cr), sr32(isr));
1550 /* Disable interrupts by clearing the interrupt mask. */
1551 sw32(imr, 0x0000);
1553 /* use spinlock to prevent interrupt handler accessing buffer ring */
1554 spin_lock_irqsave(&sis_priv->lock, flags);
1556 /* discard unsent packets */
1557 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1558 for (i = 0; i < NUM_TX_DESC; i++) {
1559 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1561 if (skb) {
1562 pci_unmap_single(sis_priv->pci_dev,
1563 sis_priv->tx_ring[i].bufptr, skb->len,
1564 PCI_DMA_TODEVICE);
1565 dev_kfree_skb_irq(skb);
1566 sis_priv->tx_skbuff[i] = NULL;
1567 sis_priv->tx_ring[i].cmdsts = 0;
1568 sis_priv->tx_ring[i].bufptr = 0;
1569 net_dev->stats.tx_dropped++;
1572 sis_priv->tx_full = 0;
1573 netif_wake_queue(net_dev);
1575 spin_unlock_irqrestore(&sis_priv->lock, flags);
1577 net_dev->trans_start = jiffies; /* prevent tx timeout */
1579 /* load Transmit Descriptor Register */
1580 sw32(txdp, sis_priv->tx_ring_dma);
1582 /* Enable all known interrupts by setting the interrupt mask. */
1583 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1587 * sis900_start_xmit - sis900 start transmit routine
1588 * @skb: socket buffer pointer to put the data being transmitted
1589 * @net_dev: the net device to transmit with
1591 * Set the transmit buffer descriptor,
1592 * and write TxENA to enable transmit state machine.
1593 * tell upper layer if the buffer is full
1596 static netdev_tx_t
1597 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1599 struct sis900_private *sis_priv = netdev_priv(net_dev);
1600 void __iomem *ioaddr = sis_priv->ioaddr;
1601 unsigned int entry;
1602 unsigned long flags;
1603 unsigned int index_cur_tx, index_dirty_tx;
1604 unsigned int count_dirty_tx;
1606 spin_lock_irqsave(&sis_priv->lock, flags);
1608 /* Calculate the next Tx descriptor entry. */
1609 entry = sis_priv->cur_tx % NUM_TX_DESC;
1610 sis_priv->tx_skbuff[entry] = skb;
1612 /* set the transmit buffer descriptor and enable Transmit State Machine */
1613 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1614 skb->data, skb->len, PCI_DMA_TODEVICE);
1615 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1616 sis_priv->tx_ring[entry].bufptr))) {
1617 dev_kfree_skb(skb);
1618 sis_priv->tx_skbuff[entry] = NULL;
1619 net_dev->stats.tx_dropped++;
1620 spin_unlock_irqrestore(&sis_priv->lock, flags);
1621 return NETDEV_TX_OK;
1623 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1624 sw32(cr, TxENA | sr32(cr));
1626 sis_priv->cur_tx ++;
1627 index_cur_tx = sis_priv->cur_tx;
1628 index_dirty_tx = sis_priv->dirty_tx;
1630 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1631 count_dirty_tx ++;
1633 if (index_cur_tx == index_dirty_tx) {
1634 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1635 sis_priv->tx_full = 1;
1636 netif_stop_queue(net_dev);
1637 } else if (count_dirty_tx < NUM_TX_DESC) {
1638 /* Typical path, tell upper layer that more transmission is possible */
1639 netif_start_queue(net_dev);
1640 } else {
1641 /* buffer full, tell upper layer no more transmission */
1642 sis_priv->tx_full = 1;
1643 netif_stop_queue(net_dev);
1646 spin_unlock_irqrestore(&sis_priv->lock, flags);
1648 if (netif_msg_tx_queued(sis_priv))
1649 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1650 "to slot %d.\n",
1651 net_dev->name, skb->data, (int)skb->len, entry);
1653 return NETDEV_TX_OK;
1657 * sis900_interrupt - sis900 interrupt handler
1658 * @irq: the irq number
1659 * @dev_instance: the client data object
1661 * The interrupt handler does all of the Rx thread work,
1662 * and cleans up after the Tx thread
1665 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1667 struct net_device *net_dev = dev_instance;
1668 struct sis900_private *sis_priv = netdev_priv(net_dev);
1669 int boguscnt = max_interrupt_work;
1670 void __iomem *ioaddr = sis_priv->ioaddr;
1671 u32 status;
1672 unsigned int handled = 0;
1674 spin_lock (&sis_priv->lock);
1676 do {
1677 status = sr32(isr);
1679 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1680 /* nothing intresting happened */
1681 break;
1682 handled = 1;
1684 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1685 if (status & (RxORN | RxERR | RxOK))
1686 /* Rx interrupt */
1687 sis900_rx(net_dev);
1689 if (status & (TxURN | TxERR | TxIDLE))
1690 /* Tx interrupt */
1691 sis900_finish_xmit(net_dev);
1693 /* something strange happened !!! */
1694 if (status & HIBERR) {
1695 if(netif_msg_intr(sis_priv))
1696 printk(KERN_INFO "%s: Abnormal interrupt, "
1697 "status %#8.8x.\n", net_dev->name, status);
1698 break;
1700 if (--boguscnt < 0) {
1701 if(netif_msg_intr(sis_priv))
1702 printk(KERN_INFO "%s: Too much work at interrupt, "
1703 "interrupt status = %#8.8x.\n",
1704 net_dev->name, status);
1705 break;
1707 } while (1);
1709 if(netif_msg_intr(sis_priv))
1710 printk(KERN_DEBUG "%s: exiting interrupt, "
1711 "interrupt status = %#8.8x\n",
1712 net_dev->name, sr32(isr));
1714 spin_unlock (&sis_priv->lock);
1715 return IRQ_RETVAL(handled);
1719 * sis900_rx - sis900 receive routine
1720 * @net_dev: the net device which receives data
1722 * Process receive interrupt events,
1723 * put buffer to higher layer and refill buffer pool
1724 * Note: This function is called by interrupt handler,
1725 * don't do "too much" work here
1728 static int sis900_rx(struct net_device *net_dev)
1730 struct sis900_private *sis_priv = netdev_priv(net_dev);
1731 void __iomem *ioaddr = sis_priv->ioaddr;
1732 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1733 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1734 int rx_work_limit;
1736 if (netif_msg_rx_status(sis_priv))
1737 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1738 "status:0x%8.8x\n",
1739 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1740 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1742 while (rx_status & OWN) {
1743 unsigned int rx_size;
1744 unsigned int data_size;
1746 if (--rx_work_limit < 0)
1747 break;
1749 data_size = rx_status & DSIZE;
1750 rx_size = data_size - CRC_SIZE;
1752 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1753 /* ``TOOLONG'' flag means jumbo packet received. */
1754 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1755 rx_status &= (~ ((unsigned int)TOOLONG));
1756 #endif
1758 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1759 /* corrupted packet received */
1760 if (netif_msg_rx_err(sis_priv))
1761 printk(KERN_DEBUG "%s: Corrupted packet "
1762 "received, buffer status = 0x%8.8x/%d.\n",
1763 net_dev->name, rx_status, data_size);
1764 net_dev->stats.rx_errors++;
1765 if (rx_status & OVERRUN)
1766 net_dev->stats.rx_over_errors++;
1767 if (rx_status & (TOOLONG|RUNT))
1768 net_dev->stats.rx_length_errors++;
1769 if (rx_status & (RXISERR | FAERR))
1770 net_dev->stats.rx_frame_errors++;
1771 if (rx_status & CRCERR)
1772 net_dev->stats.rx_crc_errors++;
1773 /* reset buffer descriptor state */
1774 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1775 } else {
1776 struct sk_buff * skb;
1777 struct sk_buff * rx_skb;
1779 pci_unmap_single(sis_priv->pci_dev,
1780 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1781 PCI_DMA_FROMDEVICE);
1783 /* refill the Rx buffer, what if there is not enough
1784 * memory for new socket buffer ?? */
1785 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1787 * Not enough memory to refill the buffer
1788 * so we need to recycle the old one so
1789 * as to avoid creating a memory hole
1790 * in the rx ring
1792 skb = sis_priv->rx_skbuff[entry];
1793 net_dev->stats.rx_dropped++;
1794 goto refill_rx_ring;
1797 /* This situation should never happen, but due to
1798 some unknown bugs, it is possible that
1799 we are working on NULL sk_buff :-( */
1800 if (sis_priv->rx_skbuff[entry] == NULL) {
1801 if (netif_msg_rx_err(sis_priv))
1802 printk(KERN_WARNING "%s: NULL pointer "
1803 "encountered in Rx ring\n"
1804 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1805 net_dev->name, sis_priv->cur_rx,
1806 sis_priv->dirty_rx);
1807 dev_kfree_skb(skb);
1808 break;
1811 /* give the socket buffer to upper layers */
1812 rx_skb = sis_priv->rx_skbuff[entry];
1813 skb_put(rx_skb, rx_size);
1814 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1815 netif_rx(rx_skb);
1817 /* some network statistics */
1818 if ((rx_status & BCAST) == MCAST)
1819 net_dev->stats.multicast++;
1820 net_dev->stats.rx_bytes += rx_size;
1821 net_dev->stats.rx_packets++;
1822 sis_priv->dirty_rx++;
1823 refill_rx_ring:
1824 sis_priv->rx_skbuff[entry] = skb;
1825 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1826 sis_priv->rx_ring[entry].bufptr =
1827 pci_map_single(sis_priv->pci_dev, skb->data,
1828 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1829 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1830 sis_priv->rx_ring[entry].bufptr))) {
1831 dev_kfree_skb_irq(skb);
1832 sis_priv->rx_skbuff[entry] = NULL;
1833 break;
1836 sis_priv->cur_rx++;
1837 entry = sis_priv->cur_rx % NUM_RX_DESC;
1838 rx_status = sis_priv->rx_ring[entry].cmdsts;
1839 } // while
1841 /* refill the Rx buffer, what if the rate of refilling is slower
1842 * than consuming ?? */
1843 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1844 struct sk_buff *skb;
1846 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1848 if (sis_priv->rx_skbuff[entry] == NULL) {
1849 skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1850 if (skb == NULL) {
1851 /* not enough memory for skbuff, this makes a
1852 * "hole" on the buffer ring, it is not clear
1853 * how the hardware will react to this kind
1854 * of degenerated buffer */
1855 net_dev->stats.rx_dropped++;
1856 break;
1858 sis_priv->rx_skbuff[entry] = skb;
1859 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1860 sis_priv->rx_ring[entry].bufptr =
1861 pci_map_single(sis_priv->pci_dev, skb->data,
1862 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1863 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1864 sis_priv->rx_ring[entry].bufptr))) {
1865 dev_kfree_skb_irq(skb);
1866 sis_priv->rx_skbuff[entry] = NULL;
1867 break;
1871 /* re-enable the potentially idle receive state matchine */
1872 sw32(cr , RxENA | sr32(cr));
1874 return 0;
1878 * sis900_finish_xmit - finish up transmission of packets
1879 * @net_dev: the net device to be transmitted on
1881 * Check for error condition and free socket buffer etc
1882 * schedule for more transmission as needed
1883 * Note: This function is called by interrupt handler,
1884 * don't do "too much" work here
1887 static void sis900_finish_xmit (struct net_device *net_dev)
1889 struct sis900_private *sis_priv = netdev_priv(net_dev);
1891 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1892 struct sk_buff *skb;
1893 unsigned int entry;
1894 u32 tx_status;
1896 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1897 tx_status = sis_priv->tx_ring[entry].cmdsts;
1899 if (tx_status & OWN) {
1900 /* The packet is not transmitted yet (owned by hardware) !
1901 * Note: the interrupt is generated only when Tx Machine
1902 * is idle, so this is an almost impossible case */
1903 break;
1906 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1907 /* packet unsuccessfully transmitted */
1908 if (netif_msg_tx_err(sis_priv))
1909 printk(KERN_DEBUG "%s: Transmit "
1910 "error, Tx status %8.8x.\n",
1911 net_dev->name, tx_status);
1912 net_dev->stats.tx_errors++;
1913 if (tx_status & UNDERRUN)
1914 net_dev->stats.tx_fifo_errors++;
1915 if (tx_status & ABORT)
1916 net_dev->stats.tx_aborted_errors++;
1917 if (tx_status & NOCARRIER)
1918 net_dev->stats.tx_carrier_errors++;
1919 if (tx_status & OWCOLL)
1920 net_dev->stats.tx_window_errors++;
1921 } else {
1922 /* packet successfully transmitted */
1923 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1924 net_dev->stats.tx_bytes += tx_status & DSIZE;
1925 net_dev->stats.tx_packets++;
1927 /* Free the original skb. */
1928 skb = sis_priv->tx_skbuff[entry];
1929 pci_unmap_single(sis_priv->pci_dev,
1930 sis_priv->tx_ring[entry].bufptr, skb->len,
1931 PCI_DMA_TODEVICE);
1932 dev_kfree_skb_irq(skb);
1933 sis_priv->tx_skbuff[entry] = NULL;
1934 sis_priv->tx_ring[entry].bufptr = 0;
1935 sis_priv->tx_ring[entry].cmdsts = 0;
1938 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1939 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1940 /* The ring is no longer full, clear tx_full and schedule
1941 * more transmission by netif_wake_queue(net_dev) */
1942 sis_priv->tx_full = 0;
1943 netif_wake_queue (net_dev);
1948 * sis900_close - close sis900 device
1949 * @net_dev: the net device to be closed
1951 * Disable interrupts, stop the Tx and Rx Status Machine
1952 * free Tx and RX socket buffer
1955 static int sis900_close(struct net_device *net_dev)
1957 struct sis900_private *sis_priv = netdev_priv(net_dev);
1958 struct pci_dev *pdev = sis_priv->pci_dev;
1959 void __iomem *ioaddr = sis_priv->ioaddr;
1960 struct sk_buff *skb;
1961 int i;
1963 netif_stop_queue(net_dev);
1965 /* Disable interrupts by clearing the interrupt mask. */
1966 sw32(imr, 0x0000);
1967 sw32(ier, 0x0000);
1969 /* Stop the chip's Tx and Rx Status Machine */
1970 sw32(cr, RxDIS | TxDIS | sr32(cr));
1972 del_timer(&sis_priv->timer);
1974 free_irq(pdev->irq, net_dev);
1976 /* Free Tx and RX skbuff */
1977 for (i = 0; i < NUM_RX_DESC; i++) {
1978 skb = sis_priv->rx_skbuff[i];
1979 if (skb) {
1980 pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1981 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1982 dev_kfree_skb(skb);
1983 sis_priv->rx_skbuff[i] = NULL;
1986 for (i = 0; i < NUM_TX_DESC; i++) {
1987 skb = sis_priv->tx_skbuff[i];
1988 if (skb) {
1989 pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1990 skb->len, PCI_DMA_TODEVICE);
1991 dev_kfree_skb(skb);
1992 sis_priv->tx_skbuff[i] = NULL;
1996 /* Green! Put the chip in low-power mode. */
1998 return 0;
2002 * sis900_get_drvinfo - Return information about driver
2003 * @net_dev: the net device to probe
2004 * @info: container for info returned
2006 * Process ethtool command such as "ehtool -i" to show information
2009 static void sis900_get_drvinfo(struct net_device *net_dev,
2010 struct ethtool_drvinfo *info)
2012 struct sis900_private *sis_priv = netdev_priv(net_dev);
2014 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2015 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2016 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2017 sizeof(info->bus_info));
2020 static u32 sis900_get_msglevel(struct net_device *net_dev)
2022 struct sis900_private *sis_priv = netdev_priv(net_dev);
2023 return sis_priv->msg_enable;
2026 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2028 struct sis900_private *sis_priv = netdev_priv(net_dev);
2029 sis_priv->msg_enable = value;
2032 static u32 sis900_get_link(struct net_device *net_dev)
2034 struct sis900_private *sis_priv = netdev_priv(net_dev);
2035 return mii_link_ok(&sis_priv->mii_info);
2038 static int sis900_get_settings(struct net_device *net_dev,
2039 struct ethtool_cmd *cmd)
2041 struct sis900_private *sis_priv = netdev_priv(net_dev);
2042 spin_lock_irq(&sis_priv->lock);
2043 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2044 spin_unlock_irq(&sis_priv->lock);
2045 return 0;
2048 static int sis900_set_settings(struct net_device *net_dev,
2049 struct ethtool_cmd *cmd)
2051 struct sis900_private *sis_priv = netdev_priv(net_dev);
2052 int rt;
2053 spin_lock_irq(&sis_priv->lock);
2054 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2055 spin_unlock_irq(&sis_priv->lock);
2056 return rt;
2059 static int sis900_nway_reset(struct net_device *net_dev)
2061 struct sis900_private *sis_priv = netdev_priv(net_dev);
2062 return mii_nway_restart(&sis_priv->mii_info);
2066 * sis900_set_wol - Set up Wake on Lan registers
2067 * @net_dev: the net device to probe
2068 * @wol: container for info passed to the driver
2070 * Process ethtool command "wol" to setup wake on lan features.
2071 * SiS900 supports sending WoL events if a correct packet is received,
2072 * but there is no simple way to filter them to only a subset (broadcast,
2073 * multicast, unicast or arp).
2076 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2078 struct sis900_private *sis_priv = netdev_priv(net_dev);
2079 void __iomem *ioaddr = sis_priv->ioaddr;
2080 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2082 if (wol->wolopts == 0) {
2083 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2084 cfgpmcsr &= ~PME_EN;
2085 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2086 sw32(pmctrl, pmctrl_bits);
2087 if (netif_msg_wol(sis_priv))
2088 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2089 return 0;
2092 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2093 | WAKE_BCAST | WAKE_ARP))
2094 return -EINVAL;
2096 if (wol->wolopts & WAKE_MAGIC)
2097 pmctrl_bits |= MAGICPKT;
2098 if (wol->wolopts & WAKE_PHY)
2099 pmctrl_bits |= LINKON;
2101 sw32(pmctrl, pmctrl_bits);
2103 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2104 cfgpmcsr |= PME_EN;
2105 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2106 if (netif_msg_wol(sis_priv))
2107 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2109 return 0;
2112 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2114 struct sis900_private *sp = netdev_priv(net_dev);
2115 void __iomem *ioaddr = sp->ioaddr;
2116 u32 pmctrl_bits;
2118 pmctrl_bits = sr32(pmctrl);
2119 if (pmctrl_bits & MAGICPKT)
2120 wol->wolopts |= WAKE_MAGIC;
2121 if (pmctrl_bits & LINKON)
2122 wol->wolopts |= WAKE_PHY;
2124 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2127 static const struct ethtool_ops sis900_ethtool_ops = {
2128 .get_drvinfo = sis900_get_drvinfo,
2129 .get_msglevel = sis900_get_msglevel,
2130 .set_msglevel = sis900_set_msglevel,
2131 .get_link = sis900_get_link,
2132 .get_settings = sis900_get_settings,
2133 .set_settings = sis900_set_settings,
2134 .nway_reset = sis900_nway_reset,
2135 .get_wol = sis900_get_wol,
2136 .set_wol = sis900_set_wol
2140 * mii_ioctl - process MII i/o control command
2141 * @net_dev: the net device to command for
2142 * @rq: parameter for command
2143 * @cmd: the i/o command
2145 * Process MII command like read/write MII register
2148 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2150 struct sis900_private *sis_priv = netdev_priv(net_dev);
2151 struct mii_ioctl_data *data = if_mii(rq);
2153 switch(cmd) {
2154 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2155 data->phy_id = sis_priv->mii->phy_addr;
2156 /* Fall Through */
2158 case SIOCGMIIREG: /* Read MII PHY register. */
2159 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2160 return 0;
2162 case SIOCSMIIREG: /* Write MII PHY register. */
2163 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2164 return 0;
2165 default:
2166 return -EOPNOTSUPP;
2171 * sis900_set_config - Set media type by net_device.set_config
2172 * @dev: the net device for media type change
2173 * @map: ifmap passed by ifconfig
2175 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2176 * we support only port changes. All other runtime configuration
2177 * changes will be ignored
2180 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2182 struct sis900_private *sis_priv = netdev_priv(dev);
2183 struct mii_phy *mii_phy = sis_priv->mii;
2185 u16 status;
2187 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2188 /* we switch on the ifmap->port field. I couldn't find anything
2189 * like a definition or standard for the values of that field.
2190 * I think the meaning of those values is device specific. But
2191 * since I would like to change the media type via the ifconfig
2192 * command I use the definition from linux/netdevice.h
2193 * (which seems to be different from the ifport(pcmcia) definition) */
2194 switch(map->port){
2195 case IF_PORT_UNKNOWN: /* use auto here */
2196 dev->if_port = map->port;
2197 /* we are going to change the media type, so the Link
2198 * will be temporary down and we need to reflect that
2199 * here. When the Link comes up again, it will be
2200 * sensed by the sis_timer procedure, which also does
2201 * all the rest for us */
2202 netif_carrier_off(dev);
2204 /* read current state */
2205 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207 /* enable auto negotiation and reset the negotioation
2208 * (I don't really know what the auto negatiotiation
2209 * reset really means, but it sounds for me right to
2210 * do one here) */
2211 mdio_write(dev, mii_phy->phy_addr,
2212 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2214 break;
2216 case IF_PORT_10BASET: /* 10BaseT */
2217 dev->if_port = map->port;
2219 /* we are going to change the media type, so the Link
2220 * will be temporary down and we need to reflect that
2221 * here. When the Link comes up again, it will be
2222 * sensed by the sis_timer procedure, which also does
2223 * all the rest for us */
2224 netif_carrier_off(dev);
2226 /* set Speed to 10Mbps */
2227 /* read current state */
2228 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2230 /* disable auto negotiation and force 10MBit mode*/
2231 mdio_write(dev, mii_phy->phy_addr,
2232 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2233 MII_CNTL_AUTO));
2234 break;
2236 case IF_PORT_100BASET: /* 100BaseT */
2237 case IF_PORT_100BASETX: /* 100BaseTx */
2238 dev->if_port = map->port;
2240 /* we are going to change the media type, so the Link
2241 * will be temporary down and we need to reflect that
2242 * here. When the Link comes up again, it will be
2243 * sensed by the sis_timer procedure, which also does
2244 * all the rest for us */
2245 netif_carrier_off(dev);
2247 /* set Speed to 100Mbps */
2248 /* disable auto negotiation and enable 100MBit Mode */
2249 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2250 mdio_write(dev, mii_phy->phy_addr,
2251 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2252 MII_CNTL_SPEED);
2254 break;
2256 case IF_PORT_10BASE2: /* 10Base2 */
2257 case IF_PORT_AUI: /* AUI */
2258 case IF_PORT_100BASEFX: /* 100BaseFx */
2259 /* These Modes are not supported (are they?)*/
2260 return -EOPNOTSUPP;
2261 break;
2263 default:
2264 return -EINVAL;
2267 return 0;
2271 * sis900_mcast_bitnr - compute hashtable index
2272 * @addr: multicast address
2273 * @revision: revision id of chip
2275 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2276 * hash table, which makes this function a little bit different from other drivers
2277 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2278 * multicast hash table.
2281 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2284 u32 crc = ether_crc(6, addr);
2286 /* leave 8 or 7 most siginifant bits */
2287 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2288 return (int)(crc >> 24);
2289 else
2290 return (int)(crc >> 25);
2294 * set_rx_mode - Set SiS900 receive mode
2295 * @net_dev: the net device to be set
2297 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2298 * And set the appropriate multicast filter.
2299 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2302 static void set_rx_mode(struct net_device *net_dev)
2304 struct sis900_private *sis_priv = netdev_priv(net_dev);
2305 void __iomem *ioaddr = sis_priv->ioaddr;
2306 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2307 int i, table_entries;
2308 u32 rx_mode;
2310 /* 635 Hash Table entries = 256(2^16) */
2311 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2312 (sis_priv->chipset_rev == SIS900B_900_REV))
2313 table_entries = 16;
2314 else
2315 table_entries = 8;
2317 if (net_dev->flags & IFF_PROMISC) {
2318 /* Accept any kinds of packets */
2319 rx_mode = RFPromiscuous;
2320 for (i = 0; i < table_entries; i++)
2321 mc_filter[i] = 0xffff;
2322 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2323 (net_dev->flags & IFF_ALLMULTI)) {
2324 /* too many multicast addresses or accept all multicast packet */
2325 rx_mode = RFAAB | RFAAM;
2326 for (i = 0; i < table_entries; i++)
2327 mc_filter[i] = 0xffff;
2328 } else {
2329 /* Accept Broadcast packet, destination address matchs our
2330 * MAC address, use Receive Filter to reject unwanted MCAST
2331 * packets */
2332 struct netdev_hw_addr *ha;
2333 rx_mode = RFAAB;
2335 netdev_for_each_mc_addr(ha, net_dev) {
2336 unsigned int bit_nr;
2338 bit_nr = sis900_mcast_bitnr(ha->addr,
2339 sis_priv->chipset_rev);
2340 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2344 /* update Multicast Hash Table in Receive Filter */
2345 for (i = 0; i < table_entries; i++) {
2346 /* why plus 0x04 ??, That makes the correct value for hash table. */
2347 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2348 sw32(rfdr, mc_filter[i]);
2351 sw32(rfcr, RFEN | rx_mode);
2353 /* sis900 is capable of looping back packets at MAC level for
2354 * debugging purpose */
2355 if (net_dev->flags & IFF_LOOPBACK) {
2356 u32 cr_saved;
2357 /* We must disable Tx/Rx before setting loopback mode */
2358 cr_saved = sr32(cr);
2359 sw32(cr, cr_saved | TxDIS | RxDIS);
2360 /* enable loopback */
2361 sw32(txcfg, sr32(txcfg) | TxMLB);
2362 sw32(rxcfg, sr32(rxcfg) | RxATX);
2363 /* restore cr */
2364 sw32(cr, cr_saved);
2369 * sis900_reset - Reset sis900 MAC
2370 * @net_dev: the net device to reset
2372 * reset sis900 MAC and wait until finished
2373 * reset through command register
2374 * change backoff algorithm for 900B0 & 635 M/B
2377 static void sis900_reset(struct net_device *net_dev)
2379 struct sis900_private *sis_priv = netdev_priv(net_dev);
2380 void __iomem *ioaddr = sis_priv->ioaddr;
2381 u32 status = TxRCMP | RxRCMP;
2382 int i;
2384 sw32(ier, 0);
2385 sw32(imr, 0);
2386 sw32(rfcr, 0);
2388 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2390 /* Check that the chip has finished the reset. */
2391 for (i = 0; status && (i < 1000); i++)
2392 status ^= sr32(isr) & status;
2394 if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2395 sis_priv->chipset_rev == SIS900B_900_REV)
2396 sw32(cfg, PESEL | RND_CNT);
2397 else
2398 sw32(cfg, PESEL);
2402 * sis900_remove - Remove sis900 device
2403 * @pci_dev: the pci device to be removed
2405 * remove and release SiS900 net device
2408 static void sis900_remove(struct pci_dev *pci_dev)
2410 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2411 struct sis900_private *sis_priv = netdev_priv(net_dev);
2413 unregister_netdev(net_dev);
2415 while (sis_priv->first_mii) {
2416 struct mii_phy *phy = sis_priv->first_mii;
2418 sis_priv->first_mii = phy->next;
2419 kfree(phy);
2422 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2423 sis_priv->rx_ring_dma);
2424 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2425 sis_priv->tx_ring_dma);
2426 pci_iounmap(pci_dev, sis_priv->ioaddr);
2427 free_netdev(net_dev);
2428 pci_release_regions(pci_dev);
2431 #ifdef CONFIG_PM
2433 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2435 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2436 struct sis900_private *sis_priv = netdev_priv(net_dev);
2437 void __iomem *ioaddr = sis_priv->ioaddr;
2439 if(!netif_running(net_dev))
2440 return 0;
2442 netif_stop_queue(net_dev);
2443 netif_device_detach(net_dev);
2445 /* Stop the chip's Tx and Rx Status Machine */
2446 sw32(cr, RxDIS | TxDIS | sr32(cr));
2448 pci_set_power_state(pci_dev, PCI_D3hot);
2449 pci_save_state(pci_dev);
2451 return 0;
2454 static int sis900_resume(struct pci_dev *pci_dev)
2456 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2457 struct sis900_private *sis_priv = netdev_priv(net_dev);
2458 void __iomem *ioaddr = sis_priv->ioaddr;
2460 if(!netif_running(net_dev))
2461 return 0;
2462 pci_restore_state(pci_dev);
2463 pci_set_power_state(pci_dev, PCI_D0);
2465 sis900_init_rxfilter(net_dev);
2467 sis900_init_tx_ring(net_dev);
2468 sis900_init_rx_ring(net_dev);
2470 set_rx_mode(net_dev);
2472 netif_device_attach(net_dev);
2473 netif_start_queue(net_dev);
2475 /* Workaround for EDB */
2476 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2478 /* Enable all known interrupts by setting the interrupt mask. */
2479 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2480 sw32(cr, RxENA | sr32(cr));
2481 sw32(ier, IE);
2483 sis900_check_mode(net_dev, sis_priv->mii);
2485 return 0;
2487 #endif /* CONFIG_PM */
2489 static struct pci_driver sis900_pci_driver = {
2490 .name = SIS900_MODULE_NAME,
2491 .id_table = sis900_pci_tbl,
2492 .probe = sis900_probe,
2493 .remove = sis900_remove,
2494 #ifdef CONFIG_PM
2495 .suspend = sis900_suspend,
2496 .resume = sis900_resume,
2497 #endif /* CONFIG_PM */
2500 static int __init sis900_init_module(void)
2502 /* when a module, this is printed whether or not devices are found in probe */
2503 #ifdef MODULE
2504 printk(version);
2505 #endif
2507 return pci_register_driver(&sis900_pci_driver);
2510 static void __exit sis900_cleanup_module(void)
2512 pci_unregister_driver(&sis900_pci_driver);
2515 module_init(sis900_init_module);
2516 module_exit(sis900_cleanup_module);