2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl
) = {
70 { PCI_VDEVICE(TEHUTI
, 0x3009), },
71 { PCI_VDEVICE(TEHUTI
, 0x3010), },
72 { PCI_VDEVICE(TEHUTI
, 0x3014), },
76 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
80 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
81 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv
*priv
);
88 static int bdx_rx_init(struct bdx_priv
*priv
);
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv
*priv
);
92 static void bdx_tx_free(struct bdx_priv
*priv
);
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device
*netdev
);
97 /*************************************************************************
99 *************************************************************************/
101 static void print_hw_id(struct pci_dev
*pdev
)
103 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
104 u16 pci_link_status
= 0;
107 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
108 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
110 pr_info("%s%s\n", BDX_NIC_NAME
,
111 nic
->port_num
== 1 ? "" : ", 2-Port");
112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
114 readl(nic
->regs
+ FPGA_SEED
),
115 GET_LINK_STATUS_LANES(pci_link_status
),
116 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
119 static void print_fw_id(struct pci_nic
*nic
)
121 pr_info("fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
124 static void print_eth_id(struct net_device
*ndev
)
126 netdev_info(ndev
, "%s, Port %c\n",
127 BDX_NIC_NAME
, (ndev
->if_port
== 0) ? 'A' : 'B');
131 /*************************************************************************
133 *************************************************************************/
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
142 * @priv: NIC private structure
143 * @f: fifo to initialize
144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
145 * @reg_XXX: offsets of registers relative to base address
147 * 1K extra space is allocated at the end of the fifo to simplify
148 * processing of descriptors that wraps around fifo's end
150 * Returns 0 on success, negative value on failure
154 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
155 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
157 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
159 memset(f
, 0, sizeof(struct fifo
));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f
->va
= pci_alloc_consistent(priv
->pdev
,
162 memsz
+ FIFO_EXTRA_SPACE
, &f
->da
);
164 pr_err("pci_alloc_consistent failed\n");
167 f
->reg_CFG0
= reg_CFG0
;
168 f
->reg_CFG1
= reg_CFG1
;
169 f
->reg_RPTR
= reg_RPTR
;
170 f
->reg_WPTR
= reg_WPTR
;
174 f
->size_mask
= memsz
- 1;
175 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
176 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
182 * bdx_fifo_free - free all resources used by fifo
183 * @priv: NIC private structure
184 * @f: fifo to release
186 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
190 pci_free_consistent(priv
->pdev
,
191 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
198 * bdx_link_changed - notifies OS about hw link state.
199 * @priv: hw adapter structure
201 static void bdx_link_changed(struct bdx_priv
*priv
)
203 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
206 if (netif_carrier_ok(priv
->ndev
)) {
207 netif_stop_queue(priv
->ndev
);
208 netif_carrier_off(priv
->ndev
);
209 netdev_err(priv
->ndev
, "Link Down\n");
212 if (!netif_carrier_ok(priv
->ndev
)) {
213 netif_wake_queue(priv
->ndev
);
214 netif_carrier_on(priv
->ndev
);
215 netdev_err(priv
->ndev
, "Link Up\n");
220 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
222 if (isr
& IR_RX_FREE_0
) {
223 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
227 if (isr
& IR_LNKCHG0
)
228 bdx_link_changed(priv
);
230 if (isr
& IR_PCIE_LINK
)
231 netdev_err(priv
->ndev
, "PCI-E Link Fault\n");
233 if (isr
& IR_PCIE_TOUT
)
234 netdev_err(priv
->ndev
, "PCI-E Time Out\n");
239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
240 * @irq: interrupt number
241 * @dev: network device
243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
246 * Reasons of interest are:
247 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
248 * RX_FREE - number of free Rx buffers in RXF fifo gets low
249 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
252 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
254 struct net_device
*ndev
= dev
;
255 struct bdx_priv
*priv
= netdev_priv(ndev
);
259 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
260 if (unlikely(!isr
)) {
261 bdx_enable_interrupts(priv
);
262 return IRQ_NONE
; /* Not our interrupt */
266 bdx_isr_extra(priv
, isr
);
268 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
269 if (likely(napi_schedule_prep(&priv
->napi
))) {
270 __napi_schedule(&priv
->napi
);
273 /* NOTE: we get here if intr has slipped into window
274 * between these lines in bdx_poll:
275 * bdx_enable_interrupts(priv);
277 * currently intrs are disabled (since we read ISR),
278 * and we have failed to register next poll.
279 * so we read the regs to trigger chip
280 * and allow further interupts. */
281 READ_REG(priv
, regTXF_WPTR_0
);
282 READ_REG(priv
, regRXD_WPTR_0
);
286 bdx_enable_interrupts(priv
);
290 static int bdx_poll(struct napi_struct
*napi
, int budget
)
292 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
296 bdx_tx_cleanup(priv
);
297 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
298 if ((work_done
< budget
) ||
299 (priv
->napi_stop
++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
307 bdx_enable_interrupts(priv
);
313 * bdx_fw_load - loads firmware to NIC
314 * @priv: NIC private structure
316 * Firmware is loaded via TXD fifo, so it must be initialized first.
317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
318 * can have few of them). So all drivers use semaphore register to choose one
319 * that will actually load FW to NIC.
322 static int bdx_fw_load(struct bdx_priv
*priv
)
324 const struct firmware
*fw
= NULL
;
329 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
330 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
331 rc
= request_firmware(&fw
, "tehuti/bdx.bin", &priv
->pdev
->dev
);
334 bdx_tx_push_desc_safe(priv
, (char *)fw
->data
, fw
->size
);
337 for (i
= 0; i
< 200; i
++) {
338 if (READ_REG(priv
, regINIT_STATUS
)) {
347 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
349 release_firmware(fw
);
352 netdev_err(priv
->ndev
, "firmware loading failed\n");
354 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
355 READ_REG(priv
, regVPC
),
356 READ_REG(priv
, regVIC
),
357 READ_REG(priv
, regINIT_STATUS
), i
);
360 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
365 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
370 DBG("mac0=%x mac1=%x mac2=%x\n",
371 READ_REG(priv
, regUNC_MAC0_A
),
372 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
374 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
375 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
376 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
377 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
378 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
379 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
381 DBG("mac0=%x mac1=%x mac2=%x\n",
382 READ_REG(priv
, regUNC_MAC0_A
),
383 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
389 * @priv: NIC private structure
391 static int bdx_hw_start(struct bdx_priv
*priv
)
394 struct net_device
*ndev
= priv
->ndev
;
397 bdx_link_changed(priv
);
399 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
400 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
401 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
402 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
403 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
404 WRITE_REG(priv
, regRX_FULLNESS
, 0);
405 WRITE_REG(priv
, regTX_FULLNESS
, 0);
406 WRITE_REG(priv
, regCTRLST
,
407 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
409 WRITE_REG(priv
, regVGLB
, 0);
410 WRITE_REG(priv
, regMAX_FRAME_A
,
411 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
413 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
414 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
415 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
417 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
418 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
420 /* Enable timer interrupt once in 2 secs. */
421 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
422 bdx_restore_mac(priv
->ndev
, priv
);
424 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
425 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
427 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
429 rc
= request_irq(priv
->pdev
->irq
, bdx_isr_napi
, BDX_IRQ_TYPE
,
433 bdx_enable_interrupts(priv
);
441 static void bdx_hw_stop(struct bdx_priv
*priv
)
444 bdx_disable_interrupts(priv
);
445 free_irq(priv
->pdev
->irq
, priv
->ndev
);
447 netif_carrier_off(priv
->ndev
);
448 netif_stop_queue(priv
->ndev
);
453 static int bdx_hw_reset_direct(void __iomem
*regs
)
458 /* reset sequences: read, write 1, read, write 0 */
459 val
= readl(regs
+ regCLKPLL
);
460 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
462 val
= readl(regs
+ regCLKPLL
);
463 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
465 /* check that the PLLs are locked and reset ended */
466 for (i
= 0; i
< 70; i
++, mdelay(10))
467 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
468 /* do any PCI-E read transaction */
469 readl(regs
+ regRXD_CFG0_0
);
472 pr_err("HW reset failed\n");
473 return 1; /* failure */
476 static int bdx_hw_reset(struct bdx_priv
*priv
)
481 if (priv
->port
== 0) {
482 /* reset sequences: read, write 1, read, write 0 */
483 val
= READ_REG(priv
, regCLKPLL
);
484 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
486 val
= READ_REG(priv
, regCLKPLL
);
487 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
489 /* check that the PLLs are locked and reset ended */
490 for (i
= 0; i
< 70; i
++, mdelay(10))
491 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
492 /* do any PCI-E read transaction */
493 READ_REG(priv
, regRXD_CFG0_0
);
496 pr_err("HW reset failed\n");
497 return 1; /* failure */
500 static int bdx_sw_reset(struct bdx_priv
*priv
)
505 /* 1. load MAC (obsolete) */
506 /* 2. disable Rx (and Tx) */
507 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
509 /* 3. disable port */
510 WRITE_REG(priv
, regDIS_PORT
, 1);
511 /* 4. disable queue */
512 WRITE_REG(priv
, regDIS_QU
, 1);
513 /* 5. wait until hw is disabled */
514 for (i
= 0; i
< 50; i
++) {
515 if (READ_REG(priv
, regRST_PORT
) & 1)
520 netdev_err(priv
->ndev
, "SW reset timeout. continuing anyway\n");
522 /* 6. disable intrs */
523 WRITE_REG(priv
, regRDINTCM0
, 0);
524 WRITE_REG(priv
, regTDINTCM0
, 0);
525 WRITE_REG(priv
, regIMR
, 0);
526 READ_REG(priv
, regISR
);
529 WRITE_REG(priv
, regRST_QU
, 1);
531 WRITE_REG(priv
, regRST_PORT
, 1);
532 /* 9. zero all read and write pointers */
533 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
534 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
535 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
536 WRITE_REG(priv
, i
, 0);
537 /* 10. unseet port disable */
538 WRITE_REG(priv
, regDIS_PORT
, 0);
539 /* 11. unset queue disable */
540 WRITE_REG(priv
, regDIS_QU
, 0);
541 /* 12. unset queue reset */
542 WRITE_REG(priv
, regRST_QU
, 0);
543 /* 13. unset port reset */
544 WRITE_REG(priv
, regRST_PORT
, 0);
546 /* skiped. will be done later */
547 /* 15. save MAC (obsolete) */
548 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
549 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
554 /* bdx_reset - performs right type of reset depending on hw type */
555 static int bdx_reset(struct bdx_priv
*priv
)
558 RET((priv
->pdev
->device
== 0x3009)
560 : bdx_sw_reset(priv
));
564 * bdx_close - Disables a network interface
565 * @netdev: network interface device structure
567 * Returns 0, this is not allowed to fail
569 * The close entry point is called when an interface is de-activated
570 * by the OS. The hardware is still under the drivers control, but
571 * needs to be disabled. A global MAC reset is issued to stop the
572 * hardware, and all transmit and receive resources are freed.
574 static int bdx_close(struct net_device
*ndev
)
576 struct bdx_priv
*priv
= NULL
;
579 priv
= netdev_priv(ndev
);
581 napi_disable(&priv
->napi
);
591 * bdx_open - Called when a network interface is made active
592 * @netdev: network interface device structure
594 * Returns 0 on success, negative value on failure
596 * The open entry point is called when a network interface is made
597 * active by the system (IFF_UP). At this point all resources needed
598 * for transmit and receive operations are allocated, the interrupt
599 * handler is registered with the OS, the watchdog timer is started,
600 * and the stack is notified that the interface is ready.
602 static int bdx_open(struct net_device
*ndev
)
604 struct bdx_priv
*priv
;
608 priv
= netdev_priv(ndev
);
610 if (netif_running(ndev
))
611 netif_stop_queue(priv
->ndev
);
613 if ((rc
= bdx_tx_init(priv
)) ||
614 (rc
= bdx_rx_init(priv
)) ||
615 (rc
= bdx_fw_load(priv
)))
618 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
620 rc
= bdx_hw_start(priv
);
624 napi_enable(&priv
->napi
);
626 print_fw_id(priv
->nic
);
635 static int bdx_range_check(struct bdx_priv
*priv
, u32 offset
)
637 return (offset
> (u32
) (BDX_REGS_SIZE
/ priv
->nic
->port_num
)) ?
641 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
643 struct bdx_priv
*priv
= netdev_priv(ndev
);
649 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
650 if (cmd
!= SIOCDEVPRIVATE
) {
651 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
653 pr_err("can't copy from user\n");
656 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
659 if (!capable(CAP_SYS_RAWIO
))
665 error
= bdx_range_check(priv
, data
[1]);
668 data
[2] = READ_REG(priv
, data
[1]);
669 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
671 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
677 error
= bdx_range_check(priv
, data
[1]);
680 WRITE_REG(priv
, data
[1], data
[2]);
681 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
690 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
693 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
694 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
701 * @ndev: network device
703 * @op: add or kill operation
705 * Passes VLAN filter table to hardware
707 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
709 struct bdx_priv
*priv
= netdev_priv(ndev
);
713 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
714 if (unlikely(vid
>= 4096)) {
715 pr_err("invalid VID: %u (> 4096)\n", vid
);
718 reg
= regVLAN_0
+ (vid
/ 32) * 4;
720 val
= READ_REG(priv
, reg
);
721 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
726 DBG2("new val %x\n", val
);
727 WRITE_REG(priv
, reg
, val
);
732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
733 * @ndev: network device
734 * @vid: VLAN vid to add
736 static int bdx_vlan_rx_add_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
738 __bdx_vlan_rx_vid(ndev
, vid
, 1);
743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
744 * @ndev: network device
745 * @vid: VLAN vid to kill
747 static int bdx_vlan_rx_kill_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
749 __bdx_vlan_rx_vid(ndev
, vid
, 0);
754 * bdx_change_mtu - Change the Maximum Transfer Unit
755 * @netdev: network interface device structure
756 * @new_mtu: new value for maximum frame size
758 * Returns 0 on success, negative on failure
760 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
764 if (new_mtu
== ndev
->mtu
)
767 /* enforce minimum frame size */
768 if (new_mtu
< ETH_ZLEN
) {
769 netdev_err(ndev
, "mtu %d is less then minimal %d\n",
775 if (netif_running(ndev
)) {
782 static void bdx_setmulti(struct net_device
*ndev
)
784 struct bdx_priv
*priv
= netdev_priv(ndev
);
787 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
791 /* IMF - imperfect (hash) rx multicat filter */
792 /* PMF - perfect rx multicat filter */
794 /* FIXME: RXE(OFF) */
795 if (ndev
->flags
& IFF_PROMISC
) {
796 rxf_val
|= GMAC_RX_FILTER_PRM
;
797 } else if (ndev
->flags
& IFF_ALLMULTI
) {
798 /* set IMF to accept all multicast frmaes */
799 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
800 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
801 } else if (!netdev_mc_empty(ndev
)) {
803 struct netdev_hw_addr
*ha
;
806 /* set IMF to deny all multicast frames */
807 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
808 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
809 /* set PMF to deny all multicast frames */
810 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
811 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
812 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
815 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
816 /* TBD: sort addresses and write them in ascending order
817 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
818 * multicast frames throu IMF */
819 /* accept the rest of addresses throu IMF */
820 netdev_for_each_mc_addr(ha
, ndev
) {
822 for (i
= 0; i
< ETH_ALEN
; i
++)
824 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
825 val
= READ_REG(priv
, reg
);
826 val
|= (1 << (hash
% 32));
827 WRITE_REG(priv
, reg
, val
);
831 DBG("only own mac %d\n", netdev_mc_count(ndev
));
832 rxf_val
|= GMAC_RX_FILTER_AB
;
834 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
840 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
842 struct bdx_priv
*priv
= netdev_priv(ndev
);
843 struct sockaddr
*addr
= p
;
847 if (netif_running(dev))
850 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
851 bdx_restore_mac(ndev
, priv
);
855 static int bdx_read_mac(struct bdx_priv
*priv
)
857 u16 macAddress
[3], i
;
860 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
861 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
862 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
863 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
864 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
865 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
866 for (i
= 0; i
< 3; i
++) {
867 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
868 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
873 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
877 val
= READ_REG(priv
, reg
);
878 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
882 /*Do the statistics-update work*/
883 static void bdx_update_stats(struct bdx_priv
*priv
)
885 struct bdx_stats
*stats
= &priv
->hw_stats
;
886 u64
*stats_vector
= (u64
*) stats
;
890 /*Fill HW structure */
892 /*First 12 statistics - 0x7200 - 0x72B0 */
893 for (i
= 0; i
< 12; i
++) {
894 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
897 BDX_ASSERT(addr
!= 0x72C0);
898 /* 0x72C0-0x72E0 RSRV */
900 for (; i
< 16; i
++) {
901 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
904 BDX_ASSERT(addr
!= 0x7330);
905 /* 0x7330-0x7360 RSRV */
907 for (; i
< 19; i
++) {
908 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
911 BDX_ASSERT(addr
!= 0x73A0);
912 /* 0x73A0-0x73B0 RSRV */
914 for (; i
< 23; i
++) {
915 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
918 BDX_ASSERT(addr
!= 0x7400);
919 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
922 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
924 static void print_rxfd(struct rxf_desc
*rxfd
);
926 /*************************************************************************
928 *************************************************************************/
930 static void bdx_rxdb_destroy(struct rxdb
*db
)
935 static struct rxdb
*bdx_rxdb_create(int nelem
)
940 db
= vmalloc(sizeof(struct rxdb
)
941 + (nelem
* sizeof(int))
942 + (nelem
* sizeof(struct rx_map
)));
943 if (likely(db
!= NULL
)) {
944 db
->stack
= (int *)(db
+ 1);
945 db
->elems
= (void *)(db
->stack
+ nelem
);
948 for (i
= 0; i
< nelem
; i
++)
949 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
956 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
958 BDX_ASSERT(db
->top
<= 0);
959 return db
->stack
[--(db
->top
)];
962 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
964 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
965 return db
->elems
+ n
;
968 static inline int bdx_rxdb_available(struct rxdb
*db
)
973 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
975 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
976 db
->stack
[(db
->top
)++] = n
;
979 /*************************************************************************
981 *************************************************************************/
984 * bdx_rx_init - initialize RX all related HW and SW resources
985 * @priv: NIC private structure
987 * Returns 0 on success, negative value on failure
989 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
990 * skb for rx. It assumes that Rx is desabled in HW
991 * funcs are grouped for better cache usage
993 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
994 * filled and packets will be dropped by nic without getting into host or
995 * cousing interrupt. Anyway, in that condition, host has no chance to process
996 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
999 /* TBD: ensure proper packet size */
1001 static int bdx_rx_init(struct bdx_priv
*priv
)
1005 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
1006 regRXD_CFG0_0
, regRXD_CFG1_0
,
1007 regRXD_RPTR_0
, regRXD_WPTR_0
))
1009 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
1010 regRXF_CFG0_0
, regRXF_CFG1_0
,
1011 regRXF_RPTR_0
, regRXF_WPTR_0
))
1013 priv
->rxdb
= bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1014 sizeof(struct rxf_desc
));
1018 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1022 netdev_err(priv
->ndev
, "Rx init failed\n");
1027 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1028 * @priv: NIC private structure
1031 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1034 struct rxdb
*db
= priv
->rxdb
;
1038 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1039 db
->nelem
- bdx_rxdb_available(db
));
1040 while (bdx_rxdb_available(db
) > 0) {
1041 i
= bdx_rxdb_alloc_elem(db
);
1042 dm
= bdx_rxdb_addr_elem(db
, i
);
1045 for (i
= 0; i
< db
->nelem
; i
++) {
1046 dm
= bdx_rxdb_addr_elem(db
, i
);
1048 pci_unmap_single(priv
->pdev
,
1049 dm
->dma
, f
->m
.pktsz
,
1050 PCI_DMA_FROMDEVICE
);
1051 dev_kfree_skb(dm
->skb
);
1057 * bdx_rx_free - release all Rx resources
1058 * @priv: NIC private structure
1060 * It assumes that Rx is desabled in HW
1062 static void bdx_rx_free(struct bdx_priv
*priv
)
1066 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1067 bdx_rxdb_destroy(priv
->rxdb
);
1070 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1071 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1076 /*************************************************************************
1078 *************************************************************************/
1081 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1082 * @priv: nic's private structure
1083 * @f: RXF fifo that needs skbs
1085 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1086 * skb's virtual and physical addresses are stored in skb db.
1087 * To calculate free space, func uses cached values of RPTR and WPTR
1088 * When needed, it also updates RPTR and WPTR.
1091 /* TBD: do not update WPTR if no desc were written */
1093 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1095 struct sk_buff
*skb
;
1096 struct rxf_desc
*rxfd
;
1098 int dno
, delta
, idx
;
1099 struct rxdb
*db
= priv
->rxdb
;
1102 dno
= bdx_rxdb_available(db
) - 1;
1104 skb
= netdev_alloc_skb(priv
->ndev
, f
->m
.pktsz
+ NET_IP_ALIGN
);
1108 skb_reserve(skb
, NET_IP_ALIGN
);
1110 idx
= bdx_rxdb_alloc_elem(db
);
1111 dm
= bdx_rxdb_addr_elem(db
, idx
);
1112 dm
->dma
= pci_map_single(priv
->pdev
,
1113 skb
->data
, f
->m
.pktsz
,
1114 PCI_DMA_FROMDEVICE
);
1116 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1117 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1119 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1120 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1121 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1124 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1125 delta
= f
->m
.wptr
- f
->m
.memsz
;
1126 if (unlikely(delta
>= 0)) {
1129 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1130 DBG("wrapped descriptor\n");
1135 /*TBD: to do - delayed rxf wptr like in txd */
1136 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1141 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1142 struct sk_buff
*skb
)
1145 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1
));
1146 if (GET_RXD_VTAG(rxd_val1
)) {
1147 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1149 GET_RXD_VLAN_ID(rxd_vlan
),
1150 GET_RXD_VTAG(rxd_val1
));
1151 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), GET_RXD_VLAN_TCI(rxd_vlan
));
1153 netif_receive_skb(skb
);
1156 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1158 struct rxf_desc
*rxfd
;
1162 struct sk_buff
*skb
;
1166 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1167 f
= &priv
->rxf_fifo0
;
1169 DBG("db=%p f=%p\n", db
, f
);
1170 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1173 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1174 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1175 rxfd
->va_lo
= rxdd
->va_lo
;
1176 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1177 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1178 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1181 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1182 delta
= f
->m
.wptr
- f
->m
.memsz
;
1183 if (unlikely(delta
>= 0)) {
1186 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1187 DBG("wrapped descriptor\n");
1194 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1195 * NOTE: a special treatment is given to non-continuous descriptors
1196 * that start near the end, wraps around and continue at the beginning. a second
1197 * part is copied right after the first, and then descriptor is interpreted as
1198 * normal. fifo has an extra space to allow such operations
1199 * @priv: nic's private structure
1200 * @f: RXF fifo that needs skbs
1201 * @budget: maximum number of packets to receive
1204 /* TBD: replace memcpy func call by explicite inline asm */
1206 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1208 struct net_device
*ndev
= priv
->ndev
;
1209 struct sk_buff
*skb
, *skb2
;
1210 struct rxd_desc
*rxdd
;
1212 struct rxf_fifo
*rxf_fifo
;
1215 int max_done
= BDX_MAX_RX_DONE
;
1216 struct rxdb
*db
= NULL
;
1217 /* Unmarshalled descriptor - copy of descriptor in host order */
1225 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1227 size
= f
->m
.wptr
- f
->m
.rptr
;
1229 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1233 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1234 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1236 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1238 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1240 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1242 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1243 BDX_ASSERT(tmp_len
<= 0);
1245 if (size
< 0) /* test for partially arrived descriptor */
1248 f
->m
.rptr
+= tmp_len
;
1250 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1251 if (unlikely(tmp_len
>= 0)) {
1252 f
->m
.rptr
= tmp_len
;
1254 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1255 f
->m
.rptr
, tmp_len
);
1256 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1260 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1261 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1262 ndev
->stats
.rx_errors
++;
1263 bdx_recycle_skb(priv
, rxdd
);
1267 rxf_fifo
= &priv
->rxf_fifo0
;
1269 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1272 if (len
< BDX_COPYBREAK
&&
1273 (skb2
= netdev_alloc_skb(priv
->ndev
, len
+ NET_IP_ALIGN
))) {
1274 skb_reserve(skb2
, NET_IP_ALIGN
);
1275 /*skb_put(skb2, len); */
1276 pci_dma_sync_single_for_cpu(priv
->pdev
,
1277 dm
->dma
, rxf_fifo
->m
.pktsz
,
1278 PCI_DMA_FROMDEVICE
);
1279 memcpy(skb2
->data
, skb
->data
, len
);
1280 bdx_recycle_skb(priv
, rxdd
);
1283 pci_unmap_single(priv
->pdev
,
1284 dm
->dma
, rxf_fifo
->m
.pktsz
,
1285 PCI_DMA_FROMDEVICE
);
1286 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1289 ndev
->stats
.rx_bytes
+= len
;
1292 skb
->protocol
= eth_type_trans(skb
, ndev
);
1294 /* Non-IP packets aren't checksum-offloaded */
1295 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1296 skb_checksum_none_assert(skb
);
1298 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1300 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1302 if (++done
>= max_done
)
1306 ndev
->stats
.rx_packets
+= done
;
1308 /* FIXME: do smth to minimize pci accesses */
1309 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1311 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1316 /*************************************************************************
1317 * Debug / Temprorary Code *
1318 *************************************************************************/
1319 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1322 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1323 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1324 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1325 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1326 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1327 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1331 static void print_rxfd(struct rxf_desc
*rxfd
)
1333 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1334 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1335 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1339 * TX HW/SW interaction overview
1340 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1341 * There are 2 types of TX communication channels between driver and NIC.
1342 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1343 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1345 * Currently NIC supports TSO, checksuming and gather DMA
1346 * UFO and IP fragmentation is on the way
1348 * RX SW Data Structures
1349 * ~~~~~~~~~~~~~~~~~~~~~
1350 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1351 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1352 * acknowledges sent by TXF descriptors.
1353 * Implemented as cyclic buffer.
1354 * fifo - keeps info about fifo's size and location, relevant HW registers,
1355 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1356 * Implemented as simple struct.
1358 * TX SW Execution Flow
1359 * ~~~~~~~~~~~~~~~~~~~~
1360 * OS calls driver's hard_xmit method with packet to sent.
1361 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1362 * by updating TXD WPTR.
1363 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1364 * To prevent TXD fifo overflow without reading HW registers every time,
1365 * SW deploys "tx level" technique.
1366 * Upon strart up, tx level is initialized to TXD fifo length.
1367 * For every sent packet, SW gets its TXD descriptor sizei
1368 * (from precalculated array) and substructs it from tx level.
1369 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1370 * original TXD descriptor from txdb and adds it to tx level.
1371 * When Tx level drops under some predefined treshhold, the driver
1372 * stops the TX queue. When TX level rises above that level,
1373 * the tx queue is enabled again.
1375 * This technique avoids eccessive reading of RPTR and WPTR registers.
1376 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1379 /*************************************************************************
1381 *************************************************************************/
1382 static inline int bdx_tx_db_size(struct txdb
*db
)
1384 int taken
= db
->wptr
- db
->rptr
;
1386 taken
= db
->size
+ 1 + taken
; /* (size + 1) equals memsz */
1388 return db
->size
- taken
;
1392 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1394 * @pptr: read or write pointer
1396 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1398 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1400 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1401 *pptr
!= db
->wptr
); /* or write pointer */
1403 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1404 *pptr
>= db
->end
); /* in range */
1407 if (unlikely(*pptr
== db
->end
))
1412 * bdx_tx_db_inc_rptr - increment read pointer
1415 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1417 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1418 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1422 * bdx_tx_db_inc_wptr - increment write pointer
1425 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1427 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1428 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1429 a result of write */
1433 * bdx_tx_db_init - creates and initializes tx db
1435 * @sz_type: size of tx fifo
1437 * Returns 0 on success, error code otherwise
1439 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1441 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1443 d
->start
= vmalloc(memsz
);
1448 * In order to differentiate between db is empty and db is full
1449 * states at least one element should always be empty in order to
1450 * avoid rptr == wptr which means db is empty
1452 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1453 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1455 /* all dbs are created equally empty */
1463 * bdx_tx_db_close - closes tx db and frees all memory
1466 static void bdx_tx_db_close(struct txdb
*d
)
1468 BDX_ASSERT(d
== NULL
);
1474 /*************************************************************************
1476 *************************************************************************/
1478 /* sizes of tx desc (including padding if needed) as function
1479 * of skb's frag number */
1482 u16 qwords
; /* qword = 64 bit */
1483 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1486 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1487 * @priv: NIC private structure
1488 * @skb: socket buffer to map
1489 * @txdd: TX descriptor to use
1491 * It makes dma mappings for skb's data blocks and writes them to PBL of
1492 * new tx descriptor. It also stores them in the tx db, so they could be
1493 * unmaped after data was sent. It is reponsibility of a caller to make
1494 * sure that there is enough space in the tx db. Last element holds pointer
1495 * to skb itself and marked with zero length
1498 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1499 struct txd_desc
*txdd
)
1501 struct txdb
*db
= &priv
->txdb
;
1502 struct pbl
*pbl
= &txdd
->pbl
[0];
1503 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1506 db
->wptr
->len
= skb_headlen(skb
);
1507 db
->wptr
->addr
.dma
= pci_map_single(priv
->pdev
, skb
->data
,
1508 db
->wptr
->len
, PCI_DMA_TODEVICE
);
1509 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1510 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1511 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1512 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1513 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1514 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1515 bdx_tx_db_inc_wptr(db
);
1517 for (i
= 0; i
< nr_frags
; i
++) {
1518 const struct skb_frag_struct
*frag
;
1520 frag
= &skb_shinfo(skb
)->frags
[i
];
1521 db
->wptr
->len
= skb_frag_size(frag
);
1522 db
->wptr
->addr
.dma
= skb_frag_dma_map(&priv
->pdev
->dev
, frag
,
1523 0, skb_frag_size(frag
),
1527 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1528 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1529 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1530 bdx_tx_db_inc_wptr(db
);
1533 /* add skb clean up info. */
1534 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1535 db
->wptr
->addr
.skb
= skb
;
1536 bdx_tx_db_inc_wptr(db
);
1539 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1540 * number of frags is used as index to fetch correct descriptors size,
1541 * instead of calculating it each time */
1542 static void __init
init_txd_sizes(void)
1546 /* 7 - is number of lwords in txd with one phys buffer
1547 * 3 - is number of lwords used for every additional phys buffer */
1548 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1549 lwords
= 7 + (i
* 3);
1551 lwords
++; /* pad it with 1 lword */
1552 txd_sizes
[i
].qwords
= lwords
>> 1;
1553 txd_sizes
[i
].bytes
= lwords
<< 2;
1557 /* bdx_tx_init - initialize all Tx related stuff.
1558 * Namely, TXD and TXF fifos, database etc */
1559 static int bdx_tx_init(struct bdx_priv
*priv
)
1561 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1563 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1565 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1567 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1570 /* The TX db has to keep mappings for all packets sent (on TxD)
1571 * and not yet reclaimed (on TxF) */
1572 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1575 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1576 #ifdef BDX_DELAY_WPTR
1577 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1582 netdev_err(priv
->ndev
, "Tx init failed\n");
1587 * bdx_tx_space - calculates available space in TX fifo
1588 * @priv: NIC private structure
1590 * Returns available space in TX fifo in bytes
1592 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1594 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1597 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1598 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1600 fsize
= f
->m
.memsz
+ fsize
;
1605 * bdx_tx_transmit - send packet to NIC
1606 * @skb: packet to send
1607 * @ndev: network device assigned to NIC
1609 * o NETDEV_TX_OK everything ok.
1610 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1611 * Usually a bug, means queue start/stop flow control is broken in
1612 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1613 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1615 static netdev_tx_t
bdx_tx_transmit(struct sk_buff
*skb
,
1616 struct net_device
*ndev
)
1618 struct bdx_priv
*priv
= netdev_priv(ndev
);
1619 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1620 int txd_checksum
= 7; /* full checksum */
1622 int txd_vlan_id
= 0;
1626 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1627 struct txd_desc
*txdd
;
1629 unsigned long flags
;
1632 local_irq_save(flags
);
1633 if (!spin_trylock(&priv
->tx_lock
)) {
1634 local_irq_restore(flags
);
1635 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1636 BDX_DRV_NAME
, ndev
->name
);
1637 return NETDEV_TX_LOCKED
;
1640 /* build tx descriptor */
1641 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1642 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1643 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1646 if (skb_shinfo(skb
)->gso_size
) {
1647 txd_mss
= skb_shinfo(skb
)->gso_size
;
1649 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1653 if (vlan_tx_tag_present(skb
)) {
1654 /*Cut VLAN ID to 12 bits */
1655 txd_vlan_id
= vlan_tx_tag_get(skb
) & BITS_MASK(12);
1659 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1660 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1662 CPU_CHIP_SWAP32(TXD_W1_VAL
1663 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1664 txd_lgsnd
, txd_vlan_id
));
1665 DBG("=== TxD desc =====================\n");
1666 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1667 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1669 bdx_tx_map_skb(priv
, skb
, txdd
);
1671 /* increment TXD write pointer. In case of
1672 fifo wrapping copy reminder of the descriptor
1674 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1675 len
= f
->m
.wptr
- f
->m
.memsz
;
1676 if (unlikely(len
>= 0)) {
1679 BDX_ASSERT(len
> f
->m
.memsz
);
1680 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1683 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1685 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1686 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1687 #ifdef BDX_DELAY_WPTR
1688 if (priv
->tx_level
> priv
->tx_update_mark
) {
1689 /* Force memory writes to complete before letting h/w
1690 know there are new descriptors to fetch.
1691 (might be needed on platforms like IA64)
1693 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1695 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1697 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1698 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1702 /* Force memory writes to complete before letting h/w
1703 know there are new descriptors to fetch.
1704 (might be needed on platforms like IA64)
1706 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1710 ndev
->trans_start
= jiffies
; /* NETIF_F_LLTX driver :( */
1712 ndev
->stats
.tx_packets
++;
1713 ndev
->stats
.tx_bytes
+= skb
->len
;
1715 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1716 DBG("%s: %s: TX Q STOP level %d\n",
1717 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1718 netif_stop_queue(ndev
);
1721 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1722 return NETDEV_TX_OK
;
1726 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1727 * @priv: bdx adapter
1729 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1730 * that those packets were sent
1732 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1734 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1735 struct txdb
*db
= &priv
->txdb
;
1739 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1740 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1742 while (f
->m
.wptr
!= f
->m
.rptr
) {
1743 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1744 f
->m
.rptr
&= f
->m
.size_mask
;
1746 /* unmap all the fragments */
1747 /* first has to come tx_maps containing dma */
1748 BDX_ASSERT(db
->rptr
->len
== 0);
1750 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1751 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1752 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1753 bdx_tx_db_inc_rptr(db
);
1754 } while (db
->rptr
->len
> 0);
1755 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1757 /* now should come skb pointer - free it */
1758 dev_kfree_skb_irq(db
->rptr
->addr
.skb
);
1759 bdx_tx_db_inc_rptr(db
);
1762 /* let h/w know which TXF descriptors were cleaned */
1763 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1764 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1766 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1767 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1768 spin_lock(&priv
->tx_lock
);
1769 priv
->tx_level
+= tx_level
;
1770 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1771 #ifdef BDX_DELAY_WPTR
1772 if (priv
->tx_noupd
) {
1774 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1775 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1779 if (unlikely(netif_queue_stopped(priv
->ndev
) &&
1780 netif_carrier_ok(priv
->ndev
) &&
1781 (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1782 DBG("%s: %s: TX Q WAKE level %d\n",
1783 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1784 netif_wake_queue(priv
->ndev
);
1786 spin_unlock(&priv
->tx_lock
);
1790 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1791 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1793 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1795 struct txdb
*db
= &priv
->txdb
;
1798 while (db
->rptr
!= db
->wptr
) {
1799 if (likely(db
->rptr
->len
))
1800 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1801 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1803 dev_kfree_skb(db
->rptr
->addr
.skb
);
1804 bdx_tx_db_inc_rptr(db
);
1809 /* bdx_tx_free - frees all Tx resources */
1810 static void bdx_tx_free(struct bdx_priv
*priv
)
1813 bdx_tx_free_skbs(priv
);
1814 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1815 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1816 bdx_tx_db_close(&priv
->txdb
);
1820 * bdx_tx_push_desc - push descriptor to TxD fifo
1821 * @priv: NIC private structure
1822 * @data: desc's data
1823 * @size: desc's size
1825 * Pushes desc to TxD fifo and overlaps it if needed.
1826 * NOTE: this func does not check for available space. this is responsibility
1827 * of the caller. Neither does it check that data size is smaller than
1830 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1832 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1833 int i
= f
->m
.memsz
- f
->m
.wptr
;
1839 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1842 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1843 f
->m
.wptr
= size
- i
;
1844 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1846 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1850 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1851 * @priv: NIC private structure
1852 * @data: desc's data
1853 * @size: desc's size
1855 * NOTE: this func does check for available space and, if necessary, waits for
1856 * NIC to read existing data before writing new one.
1858 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1864 /* we substruct 8 because when fifo is full rptr == wptr
1865 which also means that fifo is empty, we can understand
1866 the difference, but could hw do the same ??? :) */
1867 int avail
= bdx_tx_space(priv
) - 8;
1869 if (timer
++ > 300) { /* prevent endless loop */
1870 DBG("timeout while writing desc to TxD fifo\n");
1873 udelay(50); /* give hw a chance to clean fifo */
1876 avail
= min(avail
, size
);
1877 DBG("about to push %d bytes starting %p size %d\n", avail
,
1879 bdx_tx_push_desc(priv
, data
, avail
);
1886 static const struct net_device_ops bdx_netdev_ops
= {
1887 .ndo_open
= bdx_open
,
1888 .ndo_stop
= bdx_close
,
1889 .ndo_start_xmit
= bdx_tx_transmit
,
1890 .ndo_validate_addr
= eth_validate_addr
,
1891 .ndo_do_ioctl
= bdx_ioctl
,
1892 .ndo_set_rx_mode
= bdx_setmulti
,
1893 .ndo_change_mtu
= bdx_change_mtu
,
1894 .ndo_set_mac_address
= bdx_set_mac
,
1895 .ndo_vlan_rx_add_vid
= bdx_vlan_rx_add_vid
,
1896 .ndo_vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
,
1900 * bdx_probe - Device Initialization Routine
1901 * @pdev: PCI device information struct
1902 * @ent: entry in bdx_pci_tbl
1904 * Returns 0 on success, negative on failure
1906 * bdx_probe initializes an adapter identified by a pci_dev structure.
1907 * The OS initialization, configuring of the adapter private structure,
1908 * and a hardware reset occur.
1910 * functions and their order used as explained in
1911 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1915 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1917 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1919 struct net_device
*ndev
;
1920 struct bdx_priv
*priv
;
1921 int err
, pci_using_dac
, port
;
1922 unsigned long pciaddr
;
1924 struct pci_nic
*nic
;
1928 nic
= vmalloc(sizeof(*nic
));
1932 /************** pci *****************/
1933 err
= pci_enable_device(pdev
);
1934 if (err
) /* it triggers interrupt, dunno why. */
1935 goto err_pci
; /* it's not a problem though */
1937 if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) &&
1938 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64)))) {
1941 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) ||
1942 (err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
1943 pr_err("No usable DMA configuration, aborting\n");
1949 err
= pci_request_regions(pdev
, BDX_DRV_NAME
);
1953 pci_set_master(pdev
);
1955 pciaddr
= pci_resource_start(pdev
, 0);
1958 pr_err("no MMIO resource\n");
1961 regionSize
= pci_resource_len(pdev
, 0);
1962 if (regionSize
< BDX_REGS_SIZE
) {
1964 pr_err("MMIO resource (%x) too small\n", regionSize
);
1968 nic
->regs
= ioremap(pciaddr
, regionSize
);
1971 pr_err("ioremap failed\n");
1975 if (pdev
->irq
< 2) {
1977 pr_err("invalid irq (%d)\n", pdev
->irq
);
1980 pci_set_drvdata(pdev
, nic
);
1982 if (pdev
->device
== 0x3014)
1989 bdx_hw_reset_direct(nic
->regs
);
1991 nic
->irq_type
= IRQ_INTX
;
1993 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1994 err
= pci_enable_msi(pdev
);
1996 pr_err("Can't eneble msi. error is %d\n", err
);
1998 nic
->irq_type
= IRQ_MSI
;
2000 DBG("HW does not support MSI\n");
2003 /************** netdev **************/
2004 for (port
= 0; port
< nic
->port_num
; port
++) {
2005 ndev
= alloc_etherdev(sizeof(struct bdx_priv
));
2011 ndev
->netdev_ops
= &bdx_netdev_ops
;
2012 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
2014 bdx_set_ethtool_ops(ndev
); /* ethtool interface */
2016 /* these fields are used for info purposes only
2017 * so we can have them same for all ports of the board */
2018 ndev
->if_port
= port
;
2019 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
2020 | NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
|
2021 NETIF_F_HW_VLAN_CTAG_FILTER
| NETIF_F_RXCSUM
2023 ndev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
2024 NETIF_F_TSO
| NETIF_F_HW_VLAN_CTAG_TX
;
2027 ndev
->features
|= NETIF_F_HIGHDMA
;
2029 /************** priv ****************/
2030 priv
= nic
->priv
[port
] = netdev_priv(ndev
);
2032 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2037 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2039 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2041 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2042 DBG("HW statistics not supported\n");
2043 priv
->stats_flag
= 0;
2045 priv
->stats_flag
= 1;
2048 /* Initialize fifo sizes. */
2054 /* Initialize the initial coalescing registers. */
2055 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2056 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2058 /* ndev->xmit_lock spinlock is not used.
2059 * Private priv->tx_lock is used for synchronization
2060 * between transmit and TX irq cleanup. In addition
2061 * set multicast list callback has to use priv->tx_lock.
2064 ndev
->features
|= NETIF_F_LLTX
;
2066 spin_lock_init(&priv
->tx_lock
);
2068 /*bdx_hw_reset(priv); */
2069 if (bdx_read_mac(priv
)) {
2070 pr_err("load MAC address failed\n");
2073 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2074 err
= register_netdev(ndev
);
2076 pr_err("register_netdev failed\n");
2079 netif_carrier_off(ndev
);
2080 netif_stop_queue(ndev
);
2091 pci_release_regions(pdev
);
2093 pci_disable_device(pdev
);
2100 /****************** Ethtool interface *********************/
2101 /* get strings for statistics counters */
2103 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2104 "InUCast", /* 0x7200 */
2105 "InMCast", /* 0x7210 */
2106 "InBCast", /* 0x7220 */
2107 "InPkts", /* 0x7230 */
2108 "InErrors", /* 0x7240 */
2109 "InDropped", /* 0x7250 */
2110 "FrameTooLong", /* 0x7260 */
2111 "FrameSequenceErrors", /* 0x7270 */
2112 "InVLAN", /* 0x7280 */
2113 "InDroppedDFE", /* 0x7290 */
2114 "InDroppedIntFull", /* 0x72A0 */
2115 "InFrameAlignErrors", /* 0x72B0 */
2117 /* 0x72C0-0x72E0 RSRV */
2119 "OutUCast", /* 0x72F0 */
2120 "OutMCast", /* 0x7300 */
2121 "OutBCast", /* 0x7310 */
2122 "OutPkts", /* 0x7320 */
2124 /* 0x7330-0x7360 RSRV */
2126 "OutVLAN", /* 0x7370 */
2127 "InUCastOctects", /* 0x7380 */
2128 "OutUCastOctects", /* 0x7390 */
2130 /* 0x73A0-0x73B0 RSRV */
2132 "InBCastOctects", /* 0x73C0 */
2133 "OutBCastOctects", /* 0x73D0 */
2134 "InOctects", /* 0x73E0 */
2135 "OutOctects", /* 0x73F0 */
2139 * bdx_get_settings - get device-specific settings
2143 static int bdx_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
2147 struct bdx_priv
*priv
= netdev_priv(netdev
);
2149 rdintcm
= priv
->rdintcm
;
2150 tdintcm
= priv
->tdintcm
;
2152 ecmd
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
2153 ecmd
->advertising
= (ADVERTISED_10000baseT_Full
| ADVERTISED_FIBRE
);
2154 ethtool_cmd_speed_set(ecmd
, SPEED_10000
);
2155 ecmd
->duplex
= DUPLEX_FULL
;
2156 ecmd
->port
= PORT_FIBRE
;
2157 ecmd
->transceiver
= XCVR_EXTERNAL
; /* what does it mean? */
2158 ecmd
->autoneg
= AUTONEG_DISABLE
;
2160 /* PCK_TH measures in multiples of FIFO bytes
2161 We translate to packets */
2163 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2165 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2171 * bdx_get_drvinfo - report driver information
2176 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2178 struct bdx_priv
*priv
= netdev_priv(netdev
);
2180 strlcpy(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2181 strlcpy(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2182 strlcpy(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2183 strlcpy(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2184 sizeof(drvinfo
->bus_info
));
2186 drvinfo
->n_stats
= ((priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0);
2187 drvinfo
->testinfo_len
= 0;
2188 drvinfo
->regdump_len
= 0;
2189 drvinfo
->eedump_len
= 0;
2193 * bdx_get_coalesce - get interrupt coalescing parameters
2198 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2202 struct bdx_priv
*priv
= netdev_priv(netdev
);
2204 rdintcm
= priv
->rdintcm
;
2205 tdintcm
= priv
->tdintcm
;
2207 /* PCK_TH measures in multiples of FIFO bytes
2208 We translate to packets */
2209 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2210 ecoal
->rx_max_coalesced_frames
=
2211 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2213 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2214 ecoal
->tx_max_coalesced_frames
=
2215 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2217 /* adaptive parameters ignored */
2222 * bdx_set_coalesce - set interrupt coalescing parameters
2227 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2231 struct bdx_priv
*priv
= netdev_priv(netdev
);
2237 /* Check for valid input */
2238 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2239 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2240 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2241 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2243 /* Translate from packets to multiples of FIFO bytes */
2245 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2248 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2251 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF) ||
2252 (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2255 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2256 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2257 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2260 priv
->rdintcm
= rdintcm
;
2261 priv
->tdintcm
= tdintcm
;
2263 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2264 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2269 /* Convert RX fifo size to number of pending packets */
2270 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2272 return (FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
);
2275 /* Convert TX fifo size to number of pending packets */
2276 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2278 return (FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
;
2282 * bdx_get_ringparam - report ring sizes
2287 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2289 struct bdx_priv
*priv
= netdev_priv(netdev
);
2291 /*max_pending - the maximum-sized FIFO we allow */
2292 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2293 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2294 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2295 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2299 * bdx_set_ringparam - set ring sizes
2304 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2306 struct bdx_priv
*priv
= netdev_priv(netdev
);
2310 for (; rx_size
< 4; rx_size
++) {
2311 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2317 for (; tx_size
< 4; tx_size
++) {
2318 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2324 /*Is there anything to do? */
2325 if ((rx_size
== priv
->rxf_size
) &&
2326 (tx_size
== priv
->txd_size
))
2329 priv
->rxf_size
= rx_size
;
2331 priv
->rxd_size
= rx_size
- 1;
2333 priv
->rxd_size
= rx_size
;
2335 priv
->txf_size
= priv
->txd_size
= tx_size
;
2337 if (netif_running(netdev
)) {
2345 * bdx_get_strings - return a set of strings that describe the requested objects
2349 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2351 switch (stringset
) {
2353 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2359 * bdx_get_sset_count - return number of statistics or tests
2362 static int bdx_get_sset_count(struct net_device
*netdev
, int stringset
)
2364 struct bdx_priv
*priv
= netdev_priv(netdev
);
2366 switch (stringset
) {
2368 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names
)
2369 != sizeof(struct bdx_stats
) / sizeof(u64
));
2370 return (priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0;
2377 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2382 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2383 struct ethtool_stats
*stats
, u64
*data
)
2385 struct bdx_priv
*priv
= netdev_priv(netdev
);
2387 if (priv
->stats_flag
) {
2389 /* Update stats from HW */
2390 bdx_update_stats(priv
);
2392 /* Copy data to user buffer */
2393 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2398 * bdx_set_ethtool_ops - ethtool interface implementation
2401 static void bdx_set_ethtool_ops(struct net_device
*netdev
)
2403 static const struct ethtool_ops bdx_ethtool_ops
= {
2404 .get_settings
= bdx_get_settings
,
2405 .get_drvinfo
= bdx_get_drvinfo
,
2406 .get_link
= ethtool_op_get_link
,
2407 .get_coalesce
= bdx_get_coalesce
,
2408 .set_coalesce
= bdx_set_coalesce
,
2409 .get_ringparam
= bdx_get_ringparam
,
2410 .set_ringparam
= bdx_set_ringparam
,
2411 .get_strings
= bdx_get_strings
,
2412 .get_sset_count
= bdx_get_sset_count
,
2413 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2416 SET_ETHTOOL_OPS(netdev
, &bdx_ethtool_ops
);
2420 * bdx_remove - Device Removal Routine
2421 * @pdev: PCI device information struct
2423 * bdx_remove is called by the PCI subsystem to alert the driver
2424 * that it should release a PCI device. The could be caused by a
2425 * Hot-Plug event, or because the driver is going to be removed from
2428 static void bdx_remove(struct pci_dev
*pdev
)
2430 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2431 struct net_device
*ndev
;
2434 for (port
= 0; port
< nic
->port_num
; port
++) {
2435 ndev
= nic
->priv
[port
]->ndev
;
2436 unregister_netdev(ndev
);
2440 /*bdx_hw_reset_direct(nic->regs); */
2442 if (nic
->irq_type
== IRQ_MSI
)
2443 pci_disable_msi(pdev
);
2447 pci_release_regions(pdev
);
2448 pci_disable_device(pdev
);
2454 static struct pci_driver bdx_pci_driver
= {
2455 .name
= BDX_DRV_NAME
,
2456 .id_table
= bdx_pci_tbl
,
2458 .remove
= bdx_remove
,
2462 * print_driver_id - print parameters of the driver build
2464 static void __init
print_driver_id(void)
2466 pr_info("%s, %s\n", BDX_DRV_DESC
, BDX_DRV_VERSION
);
2467 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING
);
2470 static int __init
bdx_module_init(void)
2475 RET(pci_register_driver(&bdx_pci_driver
));
2478 module_init(bdx_module_init
);
2480 static void __exit
bdx_module_exit(void)
2483 pci_unregister_driver(&bdx_pci_driver
);
2487 module_exit(bdx_module_exit
);
2489 MODULE_LICENSE("GPL");
2490 MODULE_AUTHOR(DRIVER_AUTHOR
);
2491 MODULE_DESCRIPTION(BDX_DRV_DESC
);
2492 MODULE_FIRMWARE("tehuti/bdx.bin");