2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include <linux/jiffies.h>
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "3.4.0-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION
);
73 MODULE_LICENSE("GPL");
75 static int hpsa_allow_any
;
76 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
77 MODULE_PARM_DESC(hpsa_allow_any
,
78 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode
;
80 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
81 MODULE_PARM_DESC(hpsa_simple_mode
,
82 "Use 'simple mode' rather than 'performant mode'");
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id
[] = {
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1925},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
121 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
122 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
126 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
128 /* board_id = Subsystem Device ID & Vendor ID
129 * product = Marketing Name for the board
130 * access = Address of the struct of function pointers
132 static struct board_type products
[] = {
133 {0x3241103C, "Smart Array P212", &SA5_access
},
134 {0x3243103C, "Smart Array P410", &SA5_access
},
135 {0x3245103C, "Smart Array P410i", &SA5_access
},
136 {0x3247103C, "Smart Array P411", &SA5_access
},
137 {0x3249103C, "Smart Array P812", &SA5_access
},
138 {0x324A103C, "Smart Array P712m", &SA5_access
},
139 {0x324B103C, "Smart Array P711m", &SA5_access
},
140 {0x3350103C, "Smart Array P222", &SA5_access
},
141 {0x3351103C, "Smart Array P420", &SA5_access
},
142 {0x3352103C, "Smart Array P421", &SA5_access
},
143 {0x3353103C, "Smart Array P822", &SA5_access
},
144 {0x3354103C, "Smart Array P420i", &SA5_access
},
145 {0x3355103C, "Smart Array P220i", &SA5_access
},
146 {0x3356103C, "Smart Array P721m", &SA5_access
},
147 {0x1921103C, "Smart Array P830i", &SA5_access
},
148 {0x1922103C, "Smart Array P430", &SA5_access
},
149 {0x1923103C, "Smart Array P431", &SA5_access
},
150 {0x1924103C, "Smart Array P830", &SA5_access
},
151 {0x1926103C, "Smart Array P731m", &SA5_access
},
152 {0x1928103C, "Smart Array P230i", &SA5_access
},
153 {0x1929103C, "Smart Array P530", &SA5_access
},
154 {0x21BD103C, "Smart Array", &SA5_access
},
155 {0x21BE103C, "Smart Array", &SA5_access
},
156 {0x21BF103C, "Smart Array", &SA5_access
},
157 {0x21C0103C, "Smart Array", &SA5_access
},
158 {0x21C1103C, "Smart Array", &SA5_access
},
159 {0x21C2103C, "Smart Array", &SA5_access
},
160 {0x21C3103C, "Smart Array", &SA5_access
},
161 {0x21C4103C, "Smart Array", &SA5_access
},
162 {0x21C5103C, "Smart Array", &SA5_access
},
163 {0x21C7103C, "Smart Array", &SA5_access
},
164 {0x21C8103C, "Smart Array", &SA5_access
},
165 {0x21C9103C, "Smart Array", &SA5_access
},
166 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
169 static int number_of_controllers
;
171 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
172 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
173 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
174 static void start_io(struct ctlr_info
*h
);
177 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
180 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
181 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
);
182 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
183 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
);
184 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
185 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
188 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
189 static void hpsa_scan_start(struct Scsi_Host
*);
190 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
191 unsigned long elapsed_time
);
192 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
193 int qdepth
, int reason
);
195 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
196 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
197 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
198 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
200 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
201 static int check_for_unit_attention(struct ctlr_info
*h
,
202 struct CommandList
*c
);
203 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
204 struct CommandList
*c
);
205 /* performant mode helper functions */
206 static void calc_bucket_map(int *bucket
, int num_buckets
,
207 int nsgs
, int *bucket_map
);
208 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
209 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
210 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
211 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
213 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
214 unsigned long *memory_bar
);
215 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
216 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
218 static inline void finish_cmd(struct CommandList
*c
);
219 #define BOARD_NOT_READY 0
220 #define BOARD_READY 1
222 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
224 unsigned long *priv
= shost_priv(sdev
->host
);
225 return (struct ctlr_info
*) *priv
;
228 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
230 unsigned long *priv
= shost_priv(sh
);
231 return (struct ctlr_info
*) *priv
;
234 static int check_for_unit_attention(struct ctlr_info
*h
,
235 struct CommandList
*c
)
237 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
240 switch (c
->err_info
->SenseInfo
[12]) {
242 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
243 "detected, command retried\n", h
->ctlr
);
246 dev_warn(&h
->pdev
->dev
, HPSA
"%d: LUN failure "
247 "detected, action required\n", h
->ctlr
);
249 case REPORT_LUNS_CHANGED
:
250 dev_warn(&h
->pdev
->dev
, HPSA
"%d: report LUN data "
251 "changed, action required\n", h
->ctlr
);
253 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
254 * target (array) devices.
258 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
259 "or device reset detected\n", h
->ctlr
);
261 case UNIT_ATTENTION_CLEARED
:
262 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
263 "cleared by another initiator\n", h
->ctlr
);
266 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
267 "unit attention detected\n", h
->ctlr
);
273 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
275 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
276 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
277 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
279 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
283 static ssize_t
host_store_rescan(struct device
*dev
,
284 struct device_attribute
*attr
,
285 const char *buf
, size_t count
)
288 struct Scsi_Host
*shost
= class_to_shost(dev
);
289 h
= shost_to_hba(shost
);
290 hpsa_scan_start(h
->scsi_host
);
294 static ssize_t
host_show_firmware_revision(struct device
*dev
,
295 struct device_attribute
*attr
, char *buf
)
298 struct Scsi_Host
*shost
= class_to_shost(dev
);
299 unsigned char *fwrev
;
301 h
= shost_to_hba(shost
);
302 if (!h
->hba_inquiry_data
)
304 fwrev
= &h
->hba_inquiry_data
[32];
305 return snprintf(buf
, 20, "%c%c%c%c\n",
306 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
309 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
310 struct device_attribute
*attr
, char *buf
)
312 struct Scsi_Host
*shost
= class_to_shost(dev
);
313 struct ctlr_info
*h
= shost_to_hba(shost
);
315 return snprintf(buf
, 20, "%d\n", h
->commands_outstanding
);
318 static ssize_t
host_show_transport_mode(struct device
*dev
,
319 struct device_attribute
*attr
, char *buf
)
322 struct Scsi_Host
*shost
= class_to_shost(dev
);
324 h
= shost_to_hba(shost
);
325 return snprintf(buf
, 20, "%s\n",
326 h
->transMethod
& CFGTBL_Trans_Performant
?
327 "performant" : "simple");
330 /* List of controllers which cannot be hard reset on kexec with reset_devices */
331 static u32 unresettable_controller
[] = {
332 0x324a103C, /* Smart Array P712m */
333 0x324b103C, /* SmartArray P711m */
334 0x3223103C, /* Smart Array P800 */
335 0x3234103C, /* Smart Array P400 */
336 0x3235103C, /* Smart Array P400i */
337 0x3211103C, /* Smart Array E200i */
338 0x3212103C, /* Smart Array E200 */
339 0x3213103C, /* Smart Array E200i */
340 0x3214103C, /* Smart Array E200i */
341 0x3215103C, /* Smart Array E200i */
342 0x3237103C, /* Smart Array E500 */
343 0x323D103C, /* Smart Array P700m */
344 0x40800E11, /* Smart Array 5i */
345 0x409C0E11, /* Smart Array 6400 */
346 0x409D0E11, /* Smart Array 6400 EM */
347 0x40700E11, /* Smart Array 5300 */
348 0x40820E11, /* Smart Array 532 */
349 0x40830E11, /* Smart Array 5312 */
350 0x409A0E11, /* Smart Array 641 */
351 0x409B0E11, /* Smart Array 642 */
352 0x40910E11, /* Smart Array 6i */
355 /* List of controllers which cannot even be soft reset */
356 static u32 soft_unresettable_controller
[] = {
357 0x40800E11, /* Smart Array 5i */
358 0x40700E11, /* Smart Array 5300 */
359 0x40820E11, /* Smart Array 532 */
360 0x40830E11, /* Smart Array 5312 */
361 0x409A0E11, /* Smart Array 641 */
362 0x409B0E11, /* Smart Array 642 */
363 0x40910E11, /* Smart Array 6i */
364 /* Exclude 640x boards. These are two pci devices in one slot
365 * which share a battery backed cache module. One controls the
366 * cache, the other accesses the cache through the one that controls
367 * it. If we reset the one controlling the cache, the other will
368 * likely not be happy. Just forbid resetting this conjoined mess.
369 * The 640x isn't really supported by hpsa anyway.
371 0x409C0E11, /* Smart Array 6400 */
372 0x409D0E11, /* Smart Array 6400 EM */
375 static int ctlr_is_hard_resettable(u32 board_id
)
379 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
380 if (unresettable_controller
[i
] == board_id
)
385 static int ctlr_is_soft_resettable(u32 board_id
)
389 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
390 if (soft_unresettable_controller
[i
] == board_id
)
395 static int ctlr_is_resettable(u32 board_id
)
397 return ctlr_is_hard_resettable(board_id
) ||
398 ctlr_is_soft_resettable(board_id
);
401 static ssize_t
host_show_resettable(struct device
*dev
,
402 struct device_attribute
*attr
, char *buf
)
405 struct Scsi_Host
*shost
= class_to_shost(dev
);
407 h
= shost_to_hba(shost
);
408 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
411 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
413 return (scsi3addr
[3] & 0xC0) == 0x40;
416 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
419 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
421 static ssize_t
raid_level_show(struct device
*dev
,
422 struct device_attribute
*attr
, char *buf
)
425 unsigned char rlevel
;
427 struct scsi_device
*sdev
;
428 struct hpsa_scsi_dev_t
*hdev
;
431 sdev
= to_scsi_device(dev
);
432 h
= sdev_to_hba(sdev
);
433 spin_lock_irqsave(&h
->lock
, flags
);
434 hdev
= sdev
->hostdata
;
436 spin_unlock_irqrestore(&h
->lock
, flags
);
440 /* Is this even a logical drive? */
441 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
442 spin_unlock_irqrestore(&h
->lock
, flags
);
443 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
447 rlevel
= hdev
->raid_level
;
448 spin_unlock_irqrestore(&h
->lock
, flags
);
449 if (rlevel
> RAID_UNKNOWN
)
450 rlevel
= RAID_UNKNOWN
;
451 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
455 static ssize_t
lunid_show(struct device
*dev
,
456 struct device_attribute
*attr
, char *buf
)
459 struct scsi_device
*sdev
;
460 struct hpsa_scsi_dev_t
*hdev
;
462 unsigned char lunid
[8];
464 sdev
= to_scsi_device(dev
);
465 h
= sdev_to_hba(sdev
);
466 spin_lock_irqsave(&h
->lock
, flags
);
467 hdev
= sdev
->hostdata
;
469 spin_unlock_irqrestore(&h
->lock
, flags
);
472 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
473 spin_unlock_irqrestore(&h
->lock
, flags
);
474 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
475 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
476 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
479 static ssize_t
unique_id_show(struct device
*dev
,
480 struct device_attribute
*attr
, char *buf
)
483 struct scsi_device
*sdev
;
484 struct hpsa_scsi_dev_t
*hdev
;
486 unsigned char sn
[16];
488 sdev
= to_scsi_device(dev
);
489 h
= sdev_to_hba(sdev
);
490 spin_lock_irqsave(&h
->lock
, flags
);
491 hdev
= sdev
->hostdata
;
493 spin_unlock_irqrestore(&h
->lock
, flags
);
496 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
497 spin_unlock_irqrestore(&h
->lock
, flags
);
498 return snprintf(buf
, 16 * 2 + 2,
499 "%02X%02X%02X%02X%02X%02X%02X%02X"
500 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
501 sn
[0], sn
[1], sn
[2], sn
[3],
502 sn
[4], sn
[5], sn
[6], sn
[7],
503 sn
[8], sn
[9], sn
[10], sn
[11],
504 sn
[12], sn
[13], sn
[14], sn
[15]);
507 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
508 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
509 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
510 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
511 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
512 host_show_firmware_revision
, NULL
);
513 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
514 host_show_commands_outstanding
, NULL
);
515 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
516 host_show_transport_mode
, NULL
);
517 static DEVICE_ATTR(resettable
, S_IRUGO
,
518 host_show_resettable
, NULL
);
520 static struct device_attribute
*hpsa_sdev_attrs
[] = {
521 &dev_attr_raid_level
,
527 static struct device_attribute
*hpsa_shost_attrs
[] = {
529 &dev_attr_firmware_revision
,
530 &dev_attr_commands_outstanding
,
531 &dev_attr_transport_mode
,
532 &dev_attr_resettable
,
536 static struct scsi_host_template hpsa_driver_template
= {
537 .module
= THIS_MODULE
,
540 .queuecommand
= hpsa_scsi_queue_command
,
541 .scan_start
= hpsa_scan_start
,
542 .scan_finished
= hpsa_scan_finished
,
543 .change_queue_depth
= hpsa_change_queue_depth
,
545 .use_clustering
= ENABLE_CLUSTERING
,
546 .eh_abort_handler
= hpsa_eh_abort_handler
,
547 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
549 .slave_alloc
= hpsa_slave_alloc
,
550 .slave_destroy
= hpsa_slave_destroy
,
552 .compat_ioctl
= hpsa_compat_ioctl
,
554 .sdev_attrs
= hpsa_sdev_attrs
,
555 .shost_attrs
= hpsa_shost_attrs
,
561 /* Enqueuing and dequeuing functions for cmdlists. */
562 static inline void addQ(struct list_head
*list
, struct CommandList
*c
)
564 list_add_tail(&c
->list
, list
);
567 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
570 struct reply_pool
*rq
= &h
->reply_queue
[q
];
573 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
574 return h
->access
.command_completed(h
, q
);
576 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
577 a
= rq
->head
[rq
->current_entry
];
579 spin_lock_irqsave(&h
->lock
, flags
);
580 h
->commands_outstanding
--;
581 spin_unlock_irqrestore(&h
->lock
, flags
);
585 /* Check for wraparound */
586 if (rq
->current_entry
== h
->max_commands
) {
587 rq
->current_entry
= 0;
593 /* set_performant_mode: Modify the tag for cciss performant
594 * set bit 0 for pull model, bits 3-1 for block fetch
597 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
599 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
600 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
601 if (likely(h
->msix_vector
))
602 c
->Header
.ReplyQueue
=
603 raw_smp_processor_id() % h
->nreply_queues
;
607 static int is_firmware_flash_cmd(u8
*cdb
)
609 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
613 * During firmware flash, the heartbeat register may not update as frequently
614 * as it should. So we dial down lockup detection during firmware flash. and
615 * dial it back up when firmware flash completes.
617 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
618 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
619 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
620 struct CommandList
*c
)
622 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
624 atomic_inc(&h
->firmware_flash_in_progress
);
625 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
628 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
629 struct CommandList
*c
)
631 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
632 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
633 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
636 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
637 struct CommandList
*c
)
641 set_performant_mode(h
, c
);
642 dial_down_lockup_detection_during_fw_flash(h
, c
);
643 spin_lock_irqsave(&h
->lock
, flags
);
646 spin_unlock_irqrestore(&h
->lock
, flags
);
650 static inline void removeQ(struct CommandList
*c
)
652 if (WARN_ON(list_empty(&c
->list
)))
654 list_del_init(&c
->list
);
657 static inline int is_hba_lunid(unsigned char scsi3addr
[])
659 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
662 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
664 if (!h
->hba_inquiry_data
)
666 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
671 static int hpsa_find_target_lun(struct ctlr_info
*h
,
672 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
674 /* finds an unused bus, target, lun for a new physical device
675 * assumes h->devlock is held
678 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
680 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
682 for (i
= 0; i
< h
->ndevices
; i
++) {
683 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
684 __set_bit(h
->dev
[i
]->target
, lun_taken
);
687 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
688 if (i
< HPSA_MAX_DEVICES
) {
697 /* Add an entry into h->dev[] array. */
698 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
699 struct hpsa_scsi_dev_t
*device
,
700 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
702 /* assumes h->devlock is held */
705 unsigned char addr1
[8], addr2
[8];
706 struct hpsa_scsi_dev_t
*sd
;
708 if (n
>= HPSA_MAX_DEVICES
) {
709 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
714 /* physical devices do not have lun or target assigned until now. */
715 if (device
->lun
!= -1)
716 /* Logical device, lun is already assigned. */
719 /* If this device a non-zero lun of a multi-lun device
720 * byte 4 of the 8-byte LUN addr will contain the logical
721 * unit no, zero otherise.
723 if (device
->scsi3addr
[4] == 0) {
724 /* This is not a non-zero lun of a multi-lun device */
725 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
726 device
->bus
, &device
->target
, &device
->lun
) != 0)
731 /* This is a non-zero lun of a multi-lun device.
732 * Search through our list and find the device which
733 * has the same 8 byte LUN address, excepting byte 4.
734 * Assign the same bus and target for this new LUN.
735 * Use the logical unit number from the firmware.
737 memcpy(addr1
, device
->scsi3addr
, 8);
739 for (i
= 0; i
< n
; i
++) {
741 memcpy(addr2
, sd
->scsi3addr
, 8);
743 /* differ only in byte 4? */
744 if (memcmp(addr1
, addr2
, 8) == 0) {
745 device
->bus
= sd
->bus
;
746 device
->target
= sd
->target
;
747 device
->lun
= device
->scsi3addr
[4];
751 if (device
->lun
== -1) {
752 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
753 " suspect firmware bug or unsupported hardware "
762 added
[*nadded
] = device
;
765 /* initially, (before registering with scsi layer) we don't
766 * know our hostno and we don't want to print anything first
767 * time anyway (the scsi layer's inquiries will show that info)
769 /* if (hostno != -1) */
770 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
771 scsi_device_type(device
->devtype
), hostno
,
772 device
->bus
, device
->target
, device
->lun
);
776 /* Update an entry in h->dev[] array. */
777 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
778 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
780 /* assumes h->devlock is held */
781 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
783 /* Raid level changed. */
784 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
785 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
786 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
787 new_entry
->target
, new_entry
->lun
);
790 /* Replace an entry from h->dev[] array. */
791 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
792 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
793 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
794 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
796 /* assumes h->devlock is held */
797 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
798 removed
[*nremoved
] = h
->dev
[entry
];
802 * New physical devices won't have target/lun assigned yet
803 * so we need to preserve the values in the slot we are replacing.
805 if (new_entry
->target
== -1) {
806 new_entry
->target
= h
->dev
[entry
]->target
;
807 new_entry
->lun
= h
->dev
[entry
]->lun
;
810 h
->dev
[entry
] = new_entry
;
811 added
[*nadded
] = new_entry
;
813 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
814 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
815 new_entry
->target
, new_entry
->lun
);
818 /* Remove an entry from h->dev[] array. */
819 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
820 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
822 /* assumes h->devlock is held */
824 struct hpsa_scsi_dev_t
*sd
;
826 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
829 removed
[*nremoved
] = h
->dev
[entry
];
832 for (i
= entry
; i
< h
->ndevices
-1; i
++)
833 h
->dev
[i
] = h
->dev
[i
+1];
835 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
836 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
840 #define SCSI3ADDR_EQ(a, b) ( \
841 (a)[7] == (b)[7] && \
842 (a)[6] == (b)[6] && \
843 (a)[5] == (b)[5] && \
844 (a)[4] == (b)[4] && \
845 (a)[3] == (b)[3] && \
846 (a)[2] == (b)[2] && \
847 (a)[1] == (b)[1] && \
850 static void fixup_botched_add(struct ctlr_info
*h
,
851 struct hpsa_scsi_dev_t
*added
)
853 /* called when scsi_add_device fails in order to re-adjust
854 * h->dev[] to match the mid layer's view.
859 spin_lock_irqsave(&h
->lock
, flags
);
860 for (i
= 0; i
< h
->ndevices
; i
++) {
861 if (h
->dev
[i
] == added
) {
862 for (j
= i
; j
< h
->ndevices
-1; j
++)
863 h
->dev
[j
] = h
->dev
[j
+1];
868 spin_unlock_irqrestore(&h
->lock
, flags
);
872 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
873 struct hpsa_scsi_dev_t
*dev2
)
875 /* we compare everything except lun and target as these
876 * are not yet assigned. Compare parts likely
879 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
880 sizeof(dev1
->scsi3addr
)) != 0)
882 if (memcmp(dev1
->device_id
, dev2
->device_id
,
883 sizeof(dev1
->device_id
)) != 0)
885 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
887 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
889 if (dev1
->devtype
!= dev2
->devtype
)
891 if (dev1
->bus
!= dev2
->bus
)
896 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
897 struct hpsa_scsi_dev_t
*dev2
)
899 /* Device attributes that can change, but don't mean
900 * that the device is a different device, nor that the OS
901 * needs to be told anything about the change.
903 if (dev1
->raid_level
!= dev2
->raid_level
)
908 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
909 * and return needle location in *index. If scsi3addr matches, but not
910 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
911 * location in *index.
912 * In the case of a minor device attribute change, such as RAID level, just
913 * return DEVICE_UPDATED, along with the updated device's location in index.
914 * If needle not found, return DEVICE_NOT_FOUND.
916 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
917 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
921 #define DEVICE_NOT_FOUND 0
922 #define DEVICE_CHANGED 1
923 #define DEVICE_SAME 2
924 #define DEVICE_UPDATED 3
925 for (i
= 0; i
< haystack_size
; i
++) {
926 if (haystack
[i
] == NULL
) /* previously removed. */
928 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
930 if (device_is_the_same(needle
, haystack
[i
])) {
931 if (device_updated(needle
, haystack
[i
]))
932 return DEVICE_UPDATED
;
935 return DEVICE_CHANGED
;
940 return DEVICE_NOT_FOUND
;
943 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
944 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
946 /* sd contains scsi3 addresses and devtypes, and inquiry
947 * data. This function takes what's in sd to be the current
948 * reality and updates h->dev[] to reflect that reality.
950 int i
, entry
, device_change
, changes
= 0;
951 struct hpsa_scsi_dev_t
*csd
;
953 struct hpsa_scsi_dev_t
**added
, **removed
;
954 int nadded
, nremoved
;
955 struct Scsi_Host
*sh
= NULL
;
957 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
958 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
960 if (!added
|| !removed
) {
961 dev_warn(&h
->pdev
->dev
, "out of memory in "
962 "adjust_hpsa_scsi_table\n");
966 spin_lock_irqsave(&h
->devlock
, flags
);
968 /* find any devices in h->dev[] that are not in
969 * sd[] and remove them from h->dev[], and for any
970 * devices which have changed, remove the old device
971 * info and add the new device info.
972 * If minor device attributes change, just update
973 * the existing device structure.
978 while (i
< h
->ndevices
) {
980 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
981 if (device_change
== DEVICE_NOT_FOUND
) {
983 hpsa_scsi_remove_entry(h
, hostno
, i
,
985 continue; /* remove ^^^, hence i not incremented */
986 } else if (device_change
== DEVICE_CHANGED
) {
988 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
989 added
, &nadded
, removed
, &nremoved
);
990 /* Set it to NULL to prevent it from being freed
991 * at the bottom of hpsa_update_scsi_devices()
994 } else if (device_change
== DEVICE_UPDATED
) {
995 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1000 /* Now, make sure every device listed in sd[] is also
1001 * listed in h->dev[], adding them if they aren't found
1004 for (i
= 0; i
< nsds
; i
++) {
1005 if (!sd
[i
]) /* if already added above. */
1007 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1008 h
->ndevices
, &entry
);
1009 if (device_change
== DEVICE_NOT_FOUND
) {
1011 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1012 added
, &nadded
) != 0)
1014 sd
[i
] = NULL
; /* prevent from being freed later. */
1015 } else if (device_change
== DEVICE_CHANGED
) {
1016 /* should never happen... */
1018 dev_warn(&h
->pdev
->dev
,
1019 "device unexpectedly changed.\n");
1020 /* but if it does happen, we just ignore that device */
1023 spin_unlock_irqrestore(&h
->devlock
, flags
);
1025 /* Don't notify scsi mid layer of any changes the first time through
1026 * (or if there are no changes) scsi_scan_host will do it later the
1027 * first time through.
1029 if (hostno
== -1 || !changes
)
1033 /* Notify scsi mid layer of any removed devices */
1034 for (i
= 0; i
< nremoved
; i
++) {
1035 struct scsi_device
*sdev
=
1036 scsi_device_lookup(sh
, removed
[i
]->bus
,
1037 removed
[i
]->target
, removed
[i
]->lun
);
1039 scsi_remove_device(sdev
);
1040 scsi_device_put(sdev
);
1042 /* We don't expect to get here.
1043 * future cmds to this device will get selection
1044 * timeout as if the device was gone.
1046 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1047 " for removal.", hostno
, removed
[i
]->bus
,
1048 removed
[i
]->target
, removed
[i
]->lun
);
1054 /* Notify scsi mid layer of any added devices */
1055 for (i
= 0; i
< nadded
; i
++) {
1056 if (scsi_add_device(sh
, added
[i
]->bus
,
1057 added
[i
]->target
, added
[i
]->lun
) == 0)
1059 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1060 "device not added.\n", hostno
, added
[i
]->bus
,
1061 added
[i
]->target
, added
[i
]->lun
);
1062 /* now we have to remove it from h->dev,
1063 * since it didn't get added to scsi mid layer
1065 fixup_botched_add(h
, added
[i
]);
1074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1075 * Assume's h->devlock is held.
1077 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1078 int bus
, int target
, int lun
)
1081 struct hpsa_scsi_dev_t
*sd
;
1083 for (i
= 0; i
< h
->ndevices
; i
++) {
1085 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1091 /* link sdev->hostdata to our per-device structure. */
1092 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1094 struct hpsa_scsi_dev_t
*sd
;
1095 unsigned long flags
;
1096 struct ctlr_info
*h
;
1098 h
= sdev_to_hba(sdev
);
1099 spin_lock_irqsave(&h
->devlock
, flags
);
1100 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1101 sdev_id(sdev
), sdev
->lun
);
1103 sdev
->hostdata
= sd
;
1104 spin_unlock_irqrestore(&h
->devlock
, flags
);
1108 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1110 /* nothing to do. */
1113 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1117 if (!h
->cmd_sg_list
)
1119 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1120 kfree(h
->cmd_sg_list
[i
]);
1121 h
->cmd_sg_list
[i
] = NULL
;
1123 kfree(h
->cmd_sg_list
);
1124 h
->cmd_sg_list
= NULL
;
1127 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1131 if (h
->chainsize
<= 0)
1134 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1136 if (!h
->cmd_sg_list
)
1138 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1139 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1140 h
->chainsize
, GFP_KERNEL
);
1141 if (!h
->cmd_sg_list
[i
])
1147 hpsa_free_sg_chain_blocks(h
);
1151 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1152 struct CommandList
*c
)
1154 struct SGDescriptor
*chain_sg
, *chain_block
;
1157 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1158 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1159 chain_sg
->Ext
= HPSA_SG_CHAIN
;
1160 chain_sg
->Len
= sizeof(*chain_sg
) *
1161 (c
->Header
.SGTotal
- h
->max_cmd_sg_entries
);
1162 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_sg
->Len
,
1164 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1165 /* prevent subsequent unmapping */
1166 chain_sg
->Addr
.lower
= 0;
1167 chain_sg
->Addr
.upper
= 0;
1170 chain_sg
->Addr
.lower
= (u32
) (temp64
& 0x0FFFFFFFFULL
);
1171 chain_sg
->Addr
.upper
= (u32
) ((temp64
>> 32) & 0x0FFFFFFFFULL
);
1175 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1176 struct CommandList
*c
)
1178 struct SGDescriptor
*chain_sg
;
1179 union u64bit temp64
;
1181 if (c
->Header
.SGTotal
<= h
->max_cmd_sg_entries
)
1184 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1185 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
1186 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
1187 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
1190 static void complete_scsi_command(struct CommandList
*cp
)
1192 struct scsi_cmnd
*cmd
;
1193 struct ctlr_info
*h
;
1194 struct ErrorInfo
*ei
;
1196 unsigned char sense_key
;
1197 unsigned char asc
; /* additional sense code */
1198 unsigned char ascq
; /* additional sense code qualifier */
1199 unsigned long sense_data_size
;
1202 cmd
= (struct scsi_cmnd
*) cp
->scsi_cmd
;
1205 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1206 if (cp
->Header
.SGTotal
> h
->max_cmd_sg_entries
)
1207 hpsa_unmap_sg_chain_block(h
, cp
);
1209 cmd
->result
= (DID_OK
<< 16); /* host byte */
1210 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1211 cmd
->result
|= ei
->ScsiStatus
;
1213 /* copy the sense data whether we need to or not. */
1214 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1215 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1217 sense_data_size
= sizeof(ei
->SenseInfo
);
1218 if (ei
->SenseLen
< sense_data_size
)
1219 sense_data_size
= ei
->SenseLen
;
1221 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1222 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1224 if (ei
->CommandStatus
== 0) {
1226 cmd
->scsi_done(cmd
);
1230 /* an error has occurred */
1231 switch (ei
->CommandStatus
) {
1233 case CMD_TARGET_STATUS
:
1234 if (ei
->ScsiStatus
) {
1236 sense_key
= 0xf & ei
->SenseInfo
[2];
1237 /* Get additional sense code */
1238 asc
= ei
->SenseInfo
[12];
1239 /* Get addition sense code qualifier */
1240 ascq
= ei
->SenseInfo
[13];
1243 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1244 if (check_for_unit_attention(h
, cp
))
1246 if (sense_key
== ILLEGAL_REQUEST
) {
1248 * SCSI REPORT_LUNS is commonly unsupported on
1249 * Smart Array. Suppress noisy complaint.
1251 if (cp
->Request
.CDB
[0] == REPORT_LUNS
)
1254 /* If ASC/ASCQ indicate Logical Unit
1255 * Not Supported condition,
1257 if ((asc
== 0x25) && (ascq
== 0x0)) {
1258 dev_warn(&h
->pdev
->dev
, "cp %p "
1259 "has check condition\n", cp
);
1264 if (sense_key
== NOT_READY
) {
1265 /* If Sense is Not Ready, Logical Unit
1266 * Not ready, Manual Intervention
1269 if ((asc
== 0x04) && (ascq
== 0x03)) {
1270 dev_warn(&h
->pdev
->dev
, "cp %p "
1271 "has check condition: unit "
1272 "not ready, manual "
1273 "intervention required\n", cp
);
1277 if (sense_key
== ABORTED_COMMAND
) {
1278 /* Aborted command is retryable */
1279 dev_warn(&h
->pdev
->dev
, "cp %p "
1280 "has check condition: aborted command: "
1281 "ASC: 0x%x, ASCQ: 0x%x\n",
1283 cmd
->result
|= DID_SOFT_ERROR
<< 16;
1286 /* Must be some other type of check condition */
1287 dev_dbg(&h
->pdev
->dev
, "cp %p has check condition: "
1289 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1290 "Returning result: 0x%x, "
1291 "cmd=[%02x %02x %02x %02x %02x "
1292 "%02x %02x %02x %02x %02x %02x "
1293 "%02x %02x %02x %02x %02x]\n",
1294 cp
, sense_key
, asc
, ascq
,
1296 cmd
->cmnd
[0], cmd
->cmnd
[1],
1297 cmd
->cmnd
[2], cmd
->cmnd
[3],
1298 cmd
->cmnd
[4], cmd
->cmnd
[5],
1299 cmd
->cmnd
[6], cmd
->cmnd
[7],
1300 cmd
->cmnd
[8], cmd
->cmnd
[9],
1301 cmd
->cmnd
[10], cmd
->cmnd
[11],
1302 cmd
->cmnd
[12], cmd
->cmnd
[13],
1303 cmd
->cmnd
[14], cmd
->cmnd
[15]);
1308 /* Problem was not a check condition
1309 * Pass it up to the upper layers...
1311 if (ei
->ScsiStatus
) {
1312 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1313 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1314 "Returning result: 0x%x\n",
1316 sense_key
, asc
, ascq
,
1318 } else { /* scsi status is zero??? How??? */
1319 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1320 "Returning no connection.\n", cp
),
1322 /* Ordinarily, this case should never happen,
1323 * but there is a bug in some released firmware
1324 * revisions that allows it to happen if, for
1325 * example, a 4100 backplane loses power and
1326 * the tape drive is in it. We assume that
1327 * it's a fatal error of some kind because we
1328 * can't show that it wasn't. We will make it
1329 * look like selection timeout since that is
1330 * the most common reason for this to occur,
1331 * and it's severe enough.
1334 cmd
->result
= DID_NO_CONNECT
<< 16;
1338 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1340 case CMD_DATA_OVERRUN
:
1341 dev_warn(&h
->pdev
->dev
, "cp %p has"
1342 " completed with data overrun "
1346 /* print_bytes(cp, sizeof(*cp), 1, 0);
1348 /* We get CMD_INVALID if you address a non-existent device
1349 * instead of a selection timeout (no response). You will
1350 * see this if you yank out a drive, then try to access it.
1351 * This is kind of a shame because it means that any other
1352 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1353 * missing target. */
1354 cmd
->result
= DID_NO_CONNECT
<< 16;
1357 case CMD_PROTOCOL_ERR
:
1358 cmd
->result
= DID_ERROR
<< 16;
1359 dev_warn(&h
->pdev
->dev
, "cp %p has "
1360 "protocol error\n", cp
);
1362 case CMD_HARDWARE_ERR
:
1363 cmd
->result
= DID_ERROR
<< 16;
1364 dev_warn(&h
->pdev
->dev
, "cp %p had hardware error\n", cp
);
1366 case CMD_CONNECTION_LOST
:
1367 cmd
->result
= DID_ERROR
<< 16;
1368 dev_warn(&h
->pdev
->dev
, "cp %p had connection lost\n", cp
);
1371 cmd
->result
= DID_ABORT
<< 16;
1372 dev_warn(&h
->pdev
->dev
, "cp %p was aborted with status 0x%x\n",
1373 cp
, ei
->ScsiStatus
);
1375 case CMD_ABORT_FAILED
:
1376 cmd
->result
= DID_ERROR
<< 16;
1377 dev_warn(&h
->pdev
->dev
, "cp %p reports abort failed\n", cp
);
1379 case CMD_UNSOLICITED_ABORT
:
1380 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1381 dev_warn(&h
->pdev
->dev
, "cp %p aborted due to an unsolicited "
1385 cmd
->result
= DID_TIME_OUT
<< 16;
1386 dev_warn(&h
->pdev
->dev
, "cp %p timedout\n", cp
);
1388 case CMD_UNABORTABLE
:
1389 cmd
->result
= DID_ERROR
<< 16;
1390 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1393 cmd
->result
= DID_ERROR
<< 16;
1394 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1395 cp
, ei
->CommandStatus
);
1398 cmd
->scsi_done(cmd
);
1401 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1402 struct CommandList
*c
, int sg_used
, int data_direction
)
1405 union u64bit addr64
;
1407 for (i
= 0; i
< sg_used
; i
++) {
1408 addr64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1409 addr64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1410 pci_unmap_single(pdev
, (dma_addr_t
) addr64
.val
, c
->SG
[i
].Len
,
1415 static int hpsa_map_one(struct pci_dev
*pdev
,
1416 struct CommandList
*cp
,
1423 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1424 cp
->Header
.SGList
= 0;
1425 cp
->Header
.SGTotal
= 0;
1429 addr64
= (u64
) pci_map_single(pdev
, buf
, buflen
, data_direction
);
1430 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
1431 /* Prevent subsequent unmap of something never mapped */
1432 cp
->Header
.SGList
= 0;
1433 cp
->Header
.SGTotal
= 0;
1436 cp
->SG
[0].Addr
.lower
=
1437 (u32
) (addr64
& (u64
) 0x00000000FFFFFFFF);
1438 cp
->SG
[0].Addr
.upper
=
1439 (u32
) ((addr64
>> 32) & (u64
) 0x00000000FFFFFFFF);
1440 cp
->SG
[0].Len
= buflen
;
1441 cp
->Header
.SGList
= (u8
) 1; /* no. SGs contig in this cmd */
1442 cp
->Header
.SGTotal
= (u16
) 1; /* total sgs in this cmd list */
1446 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
1447 struct CommandList
*c
)
1449 DECLARE_COMPLETION_ONSTACK(wait
);
1452 enqueue_cmd_and_start_io(h
, c
);
1453 wait_for_completion(&wait
);
1456 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
1457 struct CommandList
*c
)
1459 unsigned long flags
;
1461 /* If controller lockup detected, fake a hardware error. */
1462 spin_lock_irqsave(&h
->lock
, flags
);
1463 if (unlikely(h
->lockup_detected
)) {
1464 spin_unlock_irqrestore(&h
->lock
, flags
);
1465 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
1467 spin_unlock_irqrestore(&h
->lock
, flags
);
1468 hpsa_scsi_do_simple_cmd_core(h
, c
);
1472 #define MAX_DRIVER_CMD_RETRIES 25
1473 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
1474 struct CommandList
*c
, int data_direction
)
1476 int backoff_time
= 10, retry_count
= 0;
1479 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
1480 hpsa_scsi_do_simple_cmd_core(h
, c
);
1482 if (retry_count
> 3) {
1483 msleep(backoff_time
);
1484 if (backoff_time
< 1000)
1487 } while ((check_for_unit_attention(h
, c
) ||
1488 check_for_busy(h
, c
)) &&
1489 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
1490 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
1493 static void hpsa_scsi_interpret_error(struct CommandList
*cp
)
1495 struct ErrorInfo
*ei
;
1496 struct device
*d
= &cp
->h
->pdev
->dev
;
1499 switch (ei
->CommandStatus
) {
1500 case CMD_TARGET_STATUS
:
1501 dev_warn(d
, "cmd %p has completed with errors\n", cp
);
1502 dev_warn(d
, "cmd %p has SCSI Status = %x\n", cp
,
1504 if (ei
->ScsiStatus
== 0)
1505 dev_warn(d
, "SCSI status is abnormally zero. "
1506 "(probably indicates selection timeout "
1507 "reported incorrectly due to a known "
1508 "firmware bug, circa July, 2001.)\n");
1510 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1511 dev_info(d
, "UNDERRUN\n");
1513 case CMD_DATA_OVERRUN
:
1514 dev_warn(d
, "cp %p has completed with data overrun\n", cp
);
1517 /* controller unfortunately reports SCSI passthru's
1518 * to non-existent targets as invalid commands.
1520 dev_warn(d
, "cp %p is reported invalid (probably means "
1521 "target device no longer present)\n", cp
);
1522 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1526 case CMD_PROTOCOL_ERR
:
1527 dev_warn(d
, "cp %p has protocol error \n", cp
);
1529 case CMD_HARDWARE_ERR
:
1530 /* cmd->result = DID_ERROR << 16; */
1531 dev_warn(d
, "cp %p had hardware error\n", cp
);
1533 case CMD_CONNECTION_LOST
:
1534 dev_warn(d
, "cp %p had connection lost\n", cp
);
1537 dev_warn(d
, "cp %p was aborted\n", cp
);
1539 case CMD_ABORT_FAILED
:
1540 dev_warn(d
, "cp %p reports abort failed\n", cp
);
1542 case CMD_UNSOLICITED_ABORT
:
1543 dev_warn(d
, "cp %p aborted due to an unsolicited abort\n", cp
);
1546 dev_warn(d
, "cp %p timed out\n", cp
);
1548 case CMD_UNABORTABLE
:
1549 dev_warn(d
, "Command unabortable\n");
1552 dev_warn(d
, "cp %p returned unknown status %x\n", cp
,
1557 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1558 unsigned char page
, unsigned char *buf
,
1559 unsigned char bufsize
)
1562 struct CommandList
*c
;
1563 struct ErrorInfo
*ei
;
1565 c
= cmd_special_alloc(h
);
1567 if (c
== NULL
) { /* trouble... */
1568 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1572 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
1573 page
, scsi3addr
, TYPE_CMD
)) {
1577 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1579 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1580 hpsa_scsi_interpret_error(c
);
1584 cmd_special_free(h
, c
);
1588 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
)
1591 struct CommandList
*c
;
1592 struct ErrorInfo
*ei
;
1594 c
= cmd_special_alloc(h
);
1596 if (c
== NULL
) { /* trouble... */
1597 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1601 /* fill_cmd can't fail here, no data buffer to map. */
1602 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
,
1603 NULL
, 0, 0, scsi3addr
, TYPE_MSG
);
1604 hpsa_scsi_do_simple_cmd_core(h
, c
);
1605 /* no unmap needed here because no data xfer. */
1608 if (ei
->CommandStatus
!= 0) {
1609 hpsa_scsi_interpret_error(c
);
1612 cmd_special_free(h
, c
);
1616 static void hpsa_get_raid_level(struct ctlr_info
*h
,
1617 unsigned char *scsi3addr
, unsigned char *raid_level
)
1622 *raid_level
= RAID_UNKNOWN
;
1623 buf
= kzalloc(64, GFP_KERNEL
);
1626 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0xC1, buf
, 64);
1628 *raid_level
= buf
[8];
1629 if (*raid_level
> RAID_UNKNOWN
)
1630 *raid_level
= RAID_UNKNOWN
;
1635 /* Get the device id from inquiry page 0x83 */
1636 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1637 unsigned char *device_id
, int buflen
)
1644 buf
= kzalloc(64, GFP_KERNEL
);
1647 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0x83, buf
, 64);
1649 memcpy(device_id
, &buf
[8], buflen
);
1654 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
1655 struct ReportLUNdata
*buf
, int bufsize
,
1656 int extended_response
)
1659 struct CommandList
*c
;
1660 unsigned char scsi3addr
[8];
1661 struct ErrorInfo
*ei
;
1663 c
= cmd_special_alloc(h
);
1664 if (c
== NULL
) { /* trouble... */
1665 dev_err(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1668 /* address the controller */
1669 memset(scsi3addr
, 0, sizeof(scsi3addr
));
1670 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
1671 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
1675 if (extended_response
)
1676 c
->Request
.CDB
[1] = extended_response
;
1677 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1679 if (ei
->CommandStatus
!= 0 &&
1680 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1681 hpsa_scsi_interpret_error(c
);
1685 cmd_special_free(h
, c
);
1689 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
1690 struct ReportLUNdata
*buf
,
1691 int bufsize
, int extended_response
)
1693 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
, extended_response
);
1696 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
1697 struct ReportLUNdata
*buf
, int bufsize
)
1699 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
1702 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
1703 int bus
, int target
, int lun
)
1706 device
->target
= target
;
1710 static int hpsa_update_device_info(struct ctlr_info
*h
,
1711 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
1712 unsigned char *is_OBDR_device
)
1715 #define OBDR_SIG_OFFSET 43
1716 #define OBDR_TAPE_SIG "$DR-10"
1717 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1718 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1720 unsigned char *inq_buff
;
1721 unsigned char *obdr_sig
;
1723 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
1727 /* Do an inquiry to the device to see what it is. */
1728 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
1729 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
1730 /* Inquiry failed (msg printed already) */
1731 dev_err(&h
->pdev
->dev
,
1732 "hpsa_update_device_info: inquiry failed\n");
1736 this_device
->devtype
= (inq_buff
[0] & 0x1f);
1737 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
1738 memcpy(this_device
->vendor
, &inq_buff
[8],
1739 sizeof(this_device
->vendor
));
1740 memcpy(this_device
->model
, &inq_buff
[16],
1741 sizeof(this_device
->model
));
1742 memset(this_device
->device_id
, 0,
1743 sizeof(this_device
->device_id
));
1744 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
1745 sizeof(this_device
->device_id
));
1747 if (this_device
->devtype
== TYPE_DISK
&&
1748 is_logical_dev_addr_mode(scsi3addr
))
1749 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
1751 this_device
->raid_level
= RAID_UNKNOWN
;
1753 if (is_OBDR_device
) {
1754 /* See if this is a One-Button-Disaster-Recovery device
1755 * by looking for "$DR-10" at offset 43 in inquiry data.
1757 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
1758 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
1759 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
1760 OBDR_SIG_LEN
) == 0);
1771 static unsigned char *ext_target_model
[] = {
1781 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1785 for (i
= 0; ext_target_model
[i
]; i
++)
1786 if (strncmp(device
->model
, ext_target_model
[i
],
1787 strlen(ext_target_model
[i
])) == 0)
1792 /* Helper function to assign bus, target, lun mapping of devices.
1793 * Puts non-external target logical volumes on bus 0, external target logical
1794 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1795 * Logical drive target and lun are assigned at this time, but
1796 * physical device lun and target assignment are deferred (assigned
1797 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1799 static void figure_bus_target_lun(struct ctlr_info
*h
,
1800 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
1802 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
1804 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
1805 /* physical device, target and lun filled in later */
1806 if (is_hba_lunid(lunaddrbytes
))
1807 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
1809 /* defer target, lun assignment for physical devices */
1810 hpsa_set_bus_target_lun(device
, 2, -1, -1);
1813 /* It's a logical device */
1814 if (is_ext_target(h
, device
)) {
1815 /* external target way, put logicals on bus 1
1816 * and match target/lun numbers box
1817 * reports, other smart array, bus 0, target 0, match lunid
1819 hpsa_set_bus_target_lun(device
,
1820 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
1823 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
1827 * If there is no lun 0 on a target, linux won't find any devices.
1828 * For the external targets (arrays), we have to manually detect the enclosure
1829 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1830 * it for some reason. *tmpdevice is the target we're adding,
1831 * this_device is a pointer into the current element of currentsd[]
1832 * that we're building up in update_scsi_devices(), below.
1833 * lunzerobits is a bitmap that tracks which targets already have a
1835 * Returns 1 if an enclosure was added, 0 if not.
1837 static int add_ext_target_dev(struct ctlr_info
*h
,
1838 struct hpsa_scsi_dev_t
*tmpdevice
,
1839 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
1840 unsigned long lunzerobits
[], int *n_ext_target_devs
)
1842 unsigned char scsi3addr
[8];
1844 if (test_bit(tmpdevice
->target
, lunzerobits
))
1845 return 0; /* There is already a lun 0 on this target. */
1847 if (!is_logical_dev_addr_mode(lunaddrbytes
))
1848 return 0; /* It's the logical targets that may lack lun 0. */
1850 if (!is_ext_target(h
, tmpdevice
))
1851 return 0; /* Only external target devices have this problem. */
1853 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
1856 memset(scsi3addr
, 0, 8);
1857 scsi3addr
[3] = tmpdevice
->target
;
1858 if (is_hba_lunid(scsi3addr
))
1859 return 0; /* Don't add the RAID controller here. */
1861 if (is_scsi_rev_5(h
))
1862 return 0; /* p1210m doesn't need to do this. */
1864 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
1865 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
1866 "target devices exceeded. Check your hardware "
1871 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
1873 (*n_ext_target_devs
)++;
1874 hpsa_set_bus_target_lun(this_device
,
1875 tmpdevice
->bus
, tmpdevice
->target
, 0);
1876 set_bit(tmpdevice
->target
, lunzerobits
);
1881 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1882 * logdev. The number of luns in physdev and logdev are returned in
1883 * *nphysicals and *nlogicals, respectively.
1884 * Returns 0 on success, -1 otherwise.
1886 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
1888 struct ReportLUNdata
*physdev
, u32
*nphysicals
,
1889 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
1891 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, reportlunsize
, 0)) {
1892 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
1895 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 8;
1896 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
1897 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded."
1898 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1899 *nphysicals
- HPSA_MAX_PHYS_LUN
);
1900 *nphysicals
= HPSA_MAX_PHYS_LUN
;
1902 if (hpsa_scsi_do_report_log_luns(h
, logdev
, reportlunsize
)) {
1903 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
1906 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
1907 /* Reject Logicals in excess of our max capability. */
1908 if (*nlogicals
> HPSA_MAX_LUN
) {
1909 dev_warn(&h
->pdev
->dev
,
1910 "maximum logical LUNs (%d) exceeded. "
1911 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
1912 *nlogicals
- HPSA_MAX_LUN
);
1913 *nlogicals
= HPSA_MAX_LUN
;
1915 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
1916 dev_warn(&h
->pdev
->dev
,
1917 "maximum logical + physical LUNs (%d) exceeded. "
1918 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1919 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
1920 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
1925 u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
, int i
,
1926 int nphysicals
, int nlogicals
, struct ReportLUNdata
*physdev_list
,
1927 struct ReportLUNdata
*logdev_list
)
1929 /* Helper function, figure out where the LUN ID info is coming from
1930 * given index i, lists of physical and logical devices, where in
1931 * the list the raid controller is supposed to appear (first or last)
1934 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
1935 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
1937 if (i
== raid_ctlr_position
)
1938 return RAID_CTLR_LUNID
;
1940 if (i
< logicals_start
)
1941 return &physdev_list
->LUN
[i
- (raid_ctlr_position
== 0)][0];
1943 if (i
< last_device
)
1944 return &logdev_list
->LUN
[i
- nphysicals
-
1945 (raid_ctlr_position
== 0)][0];
1950 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
1952 /* the idea here is we could get notified
1953 * that some devices have changed, so we do a report
1954 * physical luns and report logical luns cmd, and adjust
1955 * our list of devices accordingly.
1957 * The scsi3addr's of devices won't change so long as the
1958 * adapter is not reset. That means we can rescan and
1959 * tell which devices we already know about, vs. new
1960 * devices, vs. disappearing devices.
1962 struct ReportLUNdata
*physdev_list
= NULL
;
1963 struct ReportLUNdata
*logdev_list
= NULL
;
1966 u32 ndev_allocated
= 0;
1967 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
1969 int reportlunsize
= sizeof(*physdev_list
) + HPSA_MAX_PHYS_LUN
* 8;
1970 int i
, n_ext_target_devs
, ndevs_to_allocate
;
1971 int raid_ctlr_position
;
1972 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
1974 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1975 physdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1976 logdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1977 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
1979 if (!currentsd
|| !physdev_list
|| !logdev_list
|| !tmpdevice
) {
1980 dev_err(&h
->pdev
->dev
, "out of memory\n");
1983 memset(lunzerobits
, 0, sizeof(lunzerobits
));
1985 if (hpsa_gather_lun_info(h
, reportlunsize
, physdev_list
, &nphysicals
,
1986 logdev_list
, &nlogicals
))
1989 /* We might see up to the maximum number of logical and physical disks
1990 * plus external target devices, and a device for the local RAID
1993 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
1995 /* Allocate the per device structures */
1996 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
1997 if (i
>= HPSA_MAX_DEVICES
) {
1998 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
1999 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
2000 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
2004 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
2005 if (!currentsd
[i
]) {
2006 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
2007 __FILE__
, __LINE__
);
2013 if (unlikely(is_scsi_rev_5(h
)))
2014 raid_ctlr_position
= 0;
2016 raid_ctlr_position
= nphysicals
+ nlogicals
;
2018 /* adjust our table of devices */
2019 n_ext_target_devs
= 0;
2020 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
2021 u8
*lunaddrbytes
, is_OBDR
= 0;
2023 /* Figure out where the LUN ID info is coming from */
2024 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
2025 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
2026 /* skip masked physical devices. */
2027 if (lunaddrbytes
[3] & 0xC0 &&
2028 i
< nphysicals
+ (raid_ctlr_position
== 0))
2031 /* Get device type, vendor, model, device id */
2032 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
2034 continue; /* skip it if we can't talk to it. */
2035 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
2036 this_device
= currentsd
[ncurrent
];
2039 * For external target devices, we have to insert a LUN 0 which
2040 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2041 * is nonetheless an enclosure device there. We have to
2042 * present that otherwise linux won't find anything if
2043 * there is no lun 0.
2045 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
2046 lunaddrbytes
, lunzerobits
,
2047 &n_ext_target_devs
)) {
2049 this_device
= currentsd
[ncurrent
];
2052 *this_device
= *tmpdevice
;
2054 switch (this_device
->devtype
) {
2056 /* We don't *really* support actual CD-ROM devices,
2057 * just "One Button Disaster Recovery" tape drive
2058 * which temporarily pretends to be a CD-ROM drive.
2059 * So we check that the device is really an OBDR tape
2060 * device by checking for "$DR-10" in bytes 43-48 of
2072 case TYPE_MEDIUM_CHANGER
:
2076 /* Only present the Smartarray HBA as a RAID controller.
2077 * If it's a RAID controller other than the HBA itself
2078 * (an external RAID controller, MSA500 or similar)
2081 if (!is_hba_lunid(lunaddrbytes
))
2088 if (ncurrent
>= HPSA_MAX_DEVICES
)
2091 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
2094 for (i
= 0; i
< ndev_allocated
; i
++)
2095 kfree(currentsd
[i
]);
2097 kfree(physdev_list
);
2101 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2102 * dma mapping and fills in the scatter gather entries of the
2105 static int hpsa_scatter_gather(struct ctlr_info
*h
,
2106 struct CommandList
*cp
,
2107 struct scsi_cmnd
*cmd
)
2110 struct scatterlist
*sg
;
2112 int use_sg
, i
, sg_index
, chained
;
2113 struct SGDescriptor
*curr_sg
;
2115 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
2117 use_sg
= scsi_dma_map(cmd
);
2122 goto sglist_finished
;
2127 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
2128 if (i
== h
->max_cmd_sg_entries
- 1 &&
2129 use_sg
> h
->max_cmd_sg_entries
) {
2131 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
2134 addr64
= (u64
) sg_dma_address(sg
);
2135 len
= sg_dma_len(sg
);
2136 curr_sg
->Addr
.lower
= (u32
) (addr64
& 0x0FFFFFFFFULL
);
2137 curr_sg
->Addr
.upper
= (u32
) ((addr64
>> 32) & 0x0FFFFFFFFULL
);
2139 curr_sg
->Ext
= 0; /* we are not chaining */
2143 if (use_sg
+ chained
> h
->maxSG
)
2144 h
->maxSG
= use_sg
+ chained
;
2147 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
2148 cp
->Header
.SGTotal
= (u16
) (use_sg
+ 1);
2149 if (hpsa_map_sg_chain_block(h
, cp
)) {
2150 scsi_dma_unmap(cmd
);
2158 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
2159 cp
->Header
.SGTotal
= (u16
) use_sg
; /* total sgs in this cmd list */
2164 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd
*cmd
,
2165 void (*done
)(struct scsi_cmnd
*))
2167 struct ctlr_info
*h
;
2168 struct hpsa_scsi_dev_t
*dev
;
2169 unsigned char scsi3addr
[8];
2170 struct CommandList
*c
;
2171 unsigned long flags
;
2173 /* Get the ptr to our adapter structure out of cmd->host. */
2174 h
= sdev_to_hba(cmd
->device
);
2175 dev
= cmd
->device
->hostdata
;
2177 cmd
->result
= DID_NO_CONNECT
<< 16;
2181 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
2183 spin_lock_irqsave(&h
->lock
, flags
);
2184 if (unlikely(h
->lockup_detected
)) {
2185 spin_unlock_irqrestore(&h
->lock
, flags
);
2186 cmd
->result
= DID_ERROR
<< 16;
2190 spin_unlock_irqrestore(&h
->lock
, flags
);
2192 if (c
== NULL
) { /* trouble... */
2193 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2194 return SCSI_MLQUEUE_HOST_BUSY
;
2197 /* Fill in the command list header */
2199 cmd
->scsi_done
= done
; /* save this for use by completion code */
2201 /* save c in case we have to abort it */
2202 cmd
->host_scribble
= (unsigned char *) c
;
2204 c
->cmd_type
= CMD_SCSI
;
2206 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
2207 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
2208 c
->Header
.Tag
.lower
= (c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
2209 c
->Header
.Tag
.lower
|= DIRECT_LOOKUP_BIT
;
2211 /* Fill in the request block... */
2213 c
->Request
.Timeout
= 0;
2214 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
2215 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
2216 c
->Request
.CDBLen
= cmd
->cmd_len
;
2217 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
2218 c
->Request
.Type
.Type
= TYPE_CMD
;
2219 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2220 switch (cmd
->sc_data_direction
) {
2222 c
->Request
.Type
.Direction
= XFER_WRITE
;
2224 case DMA_FROM_DEVICE
:
2225 c
->Request
.Type
.Direction
= XFER_READ
;
2228 c
->Request
.Type
.Direction
= XFER_NONE
;
2230 case DMA_BIDIRECTIONAL
:
2231 /* This can happen if a buggy application does a scsi passthru
2232 * and sets both inlen and outlen to non-zero. ( see
2233 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2236 c
->Request
.Type
.Direction
= XFER_RSVD
;
2237 /* This is technically wrong, and hpsa controllers should
2238 * reject it with CMD_INVALID, which is the most correct
2239 * response, but non-fibre backends appear to let it
2240 * slide by, and give the same results as if this field
2241 * were set correctly. Either way is acceptable for
2242 * our purposes here.
2248 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
2249 cmd
->sc_data_direction
);
2254 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
2256 return SCSI_MLQUEUE_HOST_BUSY
;
2258 enqueue_cmd_and_start_io(h
, c
);
2259 /* the cmd'll come back via intr handler in complete_scsi_command() */
2263 static DEF_SCSI_QCMD(hpsa_scsi_queue_command
)
2265 static void hpsa_scan_start(struct Scsi_Host
*sh
)
2267 struct ctlr_info
*h
= shost_to_hba(sh
);
2268 unsigned long flags
;
2270 /* wait until any scan already in progress is finished. */
2272 spin_lock_irqsave(&h
->scan_lock
, flags
);
2273 if (h
->scan_finished
)
2275 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2276 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
2277 /* Note: We don't need to worry about a race between this
2278 * thread and driver unload because the midlayer will
2279 * have incremented the reference count, so unload won't
2280 * happen if we're in here.
2283 h
->scan_finished
= 0; /* mark scan as in progress */
2284 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2286 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
2288 spin_lock_irqsave(&h
->scan_lock
, flags
);
2289 h
->scan_finished
= 1; /* mark scan as finished. */
2290 wake_up_all(&h
->scan_wait_queue
);
2291 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2294 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
2295 unsigned long elapsed_time
)
2297 struct ctlr_info
*h
= shost_to_hba(sh
);
2298 unsigned long flags
;
2301 spin_lock_irqsave(&h
->scan_lock
, flags
);
2302 finished
= h
->scan_finished
;
2303 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2307 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
2308 int qdepth
, int reason
)
2310 struct ctlr_info
*h
= sdev_to_hba(sdev
);
2312 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2318 if (qdepth
> h
->nr_cmds
)
2319 qdepth
= h
->nr_cmds
;
2320 scsi_adjust_queue_depth(sdev
, scsi_get_tag_type(sdev
), qdepth
);
2321 return sdev
->queue_depth
;
2324 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
2326 /* we are being forcibly unloaded, and may not refuse. */
2327 scsi_remove_host(h
->scsi_host
);
2328 scsi_host_put(h
->scsi_host
);
2329 h
->scsi_host
= NULL
;
2332 static int hpsa_register_scsi(struct ctlr_info
*h
)
2334 struct Scsi_Host
*sh
;
2337 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
2344 sh
->max_channel
= 3;
2345 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
2346 sh
->max_lun
= HPSA_MAX_LUN
;
2347 sh
->max_id
= HPSA_MAX_LUN
;
2348 sh
->can_queue
= h
->nr_cmds
;
2349 sh
->cmd_per_lun
= h
->nr_cmds
;
2350 sh
->sg_tablesize
= h
->maxsgentries
;
2352 sh
->hostdata
[0] = (unsigned long) h
;
2353 sh
->irq
= h
->intr
[h
->intr_mode
];
2354 sh
->unique_id
= sh
->irq
;
2355 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
2362 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
2363 " failed for controller %d\n", __func__
, h
->ctlr
);
2367 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
2368 " failed for controller %d\n", __func__
, h
->ctlr
);
2372 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
2373 unsigned char lunaddr
[])
2377 int waittime
= 1; /* seconds */
2378 struct CommandList
*c
;
2380 c
= cmd_special_alloc(h
);
2382 dev_warn(&h
->pdev
->dev
, "out of memory in "
2383 "wait_for_device_to_become_ready.\n");
2387 /* Send test unit ready until device ready, or give up. */
2388 while (count
< HPSA_TUR_RETRY_LIMIT
) {
2390 /* Wait for a bit. do this first, because if we send
2391 * the TUR right away, the reset will just abort it.
2393 msleep(1000 * waittime
);
2396 /* Increase wait time with each try, up to a point. */
2397 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
2398 waittime
= waittime
* 2;
2400 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2401 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
2402 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
2403 hpsa_scsi_do_simple_cmd_core(h
, c
);
2404 /* no unmap needed here because no data xfer. */
2406 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2409 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
2410 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
2411 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
2412 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
2415 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
2416 "for device to become ready.\n", waittime
);
2417 rc
= 1; /* device not ready. */
2421 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
2423 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
2425 cmd_special_free(h
, c
);
2429 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2430 * complaining. Doing a host- or bus-reset can't do anything good here.
2432 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
2435 struct ctlr_info
*h
;
2436 struct hpsa_scsi_dev_t
*dev
;
2438 /* find the controller to which the command to be aborted was sent */
2439 h
= sdev_to_hba(scsicmd
->device
);
2440 if (h
== NULL
) /* paranoia */
2442 dev
= scsicmd
->device
->hostdata
;
2444 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
2445 "device lookup failed.\n");
2448 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
2449 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2450 /* send a reset to the SCSI LUN which the command was sent to */
2451 rc
= hpsa_send_reset(h
, dev
->scsi3addr
);
2452 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
2455 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
2459 static void swizzle_abort_tag(u8
*tag
)
2463 memcpy(original_tag
, tag
, 8);
2464 tag
[0] = original_tag
[3];
2465 tag
[1] = original_tag
[2];
2466 tag
[2] = original_tag
[1];
2467 tag
[3] = original_tag
[0];
2468 tag
[4] = original_tag
[7];
2469 tag
[5] = original_tag
[6];
2470 tag
[6] = original_tag
[5];
2471 tag
[7] = original_tag
[4];
2474 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2475 struct CommandList
*abort
, int swizzle
)
2478 struct CommandList
*c
;
2479 struct ErrorInfo
*ei
;
2481 c
= cmd_special_alloc(h
);
2482 if (c
== NULL
) { /* trouble... */
2483 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2487 /* fill_cmd can't fail here, no buffer to map */
2488 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
,
2489 0, 0, scsi3addr
, TYPE_MSG
);
2491 swizzle_abort_tag(&c
->Request
.CDB
[4]);
2492 hpsa_scsi_do_simple_cmd_core(h
, c
);
2493 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2494 __func__
, abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2495 /* no unmap needed here because no data xfer. */
2498 switch (ei
->CommandStatus
) {
2501 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
2505 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2506 __func__
, abort
->Header
.Tag
.upper
,
2507 abort
->Header
.Tag
.lower
);
2508 hpsa_scsi_interpret_error(c
);
2512 cmd_special_free(h
, c
);
2513 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
2514 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2519 * hpsa_find_cmd_in_queue
2521 * Used to determine whether a command (find) is still present
2522 * in queue_head. Optionally excludes the last element of queue_head.
2524 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2525 * not yet been submitted, and so can be aborted by the driver without
2526 * sending an abort to the hardware.
2528 * Returns pointer to command if found in queue, NULL otherwise.
2530 static struct CommandList
*hpsa_find_cmd_in_queue(struct ctlr_info
*h
,
2531 struct scsi_cmnd
*find
, struct list_head
*queue_head
)
2533 unsigned long flags
;
2534 struct CommandList
*c
= NULL
; /* ptr into cmpQ */
2538 spin_lock_irqsave(&h
->lock
, flags
);
2539 list_for_each_entry(c
, queue_head
, list
) {
2540 if (c
->scsi_cmd
== NULL
) /* e.g.: passthru ioctl */
2542 if (c
->scsi_cmd
== find
) {
2543 spin_unlock_irqrestore(&h
->lock
, flags
);
2547 spin_unlock_irqrestore(&h
->lock
, flags
);
2551 static struct CommandList
*hpsa_find_cmd_in_queue_by_tag(struct ctlr_info
*h
,
2552 u8
*tag
, struct list_head
*queue_head
)
2554 unsigned long flags
;
2555 struct CommandList
*c
;
2557 spin_lock_irqsave(&h
->lock
, flags
);
2558 list_for_each_entry(c
, queue_head
, list
) {
2559 if (memcmp(&c
->Header
.Tag
, tag
, 8) != 0)
2561 spin_unlock_irqrestore(&h
->lock
, flags
);
2564 spin_unlock_irqrestore(&h
->lock
, flags
);
2568 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2569 * tell which kind we're dealing with, so we send the abort both ways. There
2570 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2571 * way we construct our tags but we check anyway in case the assumptions which
2572 * make this true someday become false.
2574 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
2575 unsigned char *scsi3addr
, struct CommandList
*abort
)
2578 struct CommandList
*c
;
2579 int rc
= 0, rc2
= 0;
2581 /* we do not expect to find the swizzled tag in our queue, but
2582 * check anyway just to be sure the assumptions which make this
2583 * the case haven't become wrong.
2585 memcpy(swizzled_tag
, &abort
->Request
.CDB
[4], 8);
2586 swizzle_abort_tag(swizzled_tag
);
2587 c
= hpsa_find_cmd_in_queue_by_tag(h
, swizzled_tag
, &h
->cmpQ
);
2589 dev_warn(&h
->pdev
->dev
, "Unexpectedly found byte-swapped tag in completion queue.\n");
2590 return hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2592 rc
= hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2594 /* if the command is still in our queue, we can't conclude that it was
2595 * aborted (it might have just completed normally) but in any case
2596 * we don't need to try to abort it another way.
2598 c
= hpsa_find_cmd_in_queue(h
, abort
->scsi_cmd
, &h
->cmpQ
);
2600 rc2
= hpsa_send_abort(h
, scsi3addr
, abort
, 1);
2604 /* Send an abort for the specified command.
2605 * If the device and controller support it,
2606 * send a task abort request.
2608 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
2612 struct ctlr_info
*h
;
2613 struct hpsa_scsi_dev_t
*dev
;
2614 struct CommandList
*abort
; /* pointer to command to be aborted */
2615 struct CommandList
*found
;
2616 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
2617 char msg
[256]; /* For debug messaging. */
2620 /* Find the controller of the command to be aborted */
2621 h
= sdev_to_hba(sc
->device
);
2623 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2626 /* Check that controller supports some kind of task abort */
2627 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
2628 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
2631 memset(msg
, 0, sizeof(msg
));
2632 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2633 h
->scsi_host
->host_no
, sc
->device
->channel
,
2634 sc
->device
->id
, sc
->device
->lun
);
2636 /* Find the device of the command to be aborted */
2637 dev
= sc
->device
->hostdata
;
2639 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
2644 /* Get SCSI command to be aborted */
2645 abort
= (struct CommandList
*) sc
->host_scribble
;
2646 if (abort
== NULL
) {
2647 dev_err(&h
->pdev
->dev
, "%s FAILED, Command to abort is NULL.\n",
2652 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ",
2653 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2654 as
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
2656 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
2657 as
->cmnd
[0], as
->serial_number
);
2658 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
2659 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
2660 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2662 /* Search reqQ to See if command is queued but not submitted,
2663 * if so, complete the command with aborted status and remove
2666 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->reqQ
);
2668 found
->err_info
->CommandStatus
= CMD_ABORTED
;
2670 dev_info(&h
->pdev
->dev
, "%s Request SUCCEEDED (driver queue).\n",
2675 /* not in reqQ, if also not in cmpQ, must have already completed */
2676 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2678 dev_dbg(&h
->pdev
->dev
, "%s Request SUCCEEDED (not known to driver).\n",
2684 * Command is in flight, or possibly already completed
2685 * by the firmware (but not to the scsi mid layer) but we can't
2686 * distinguish which. Send the abort down.
2688 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
2690 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
2691 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2692 h
->scsi_host
->host_no
,
2693 dev
->bus
, dev
->target
, dev
->lun
);
2696 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
2698 /* If the abort(s) above completed and actually aborted the
2699 * command, then the command to be aborted should already be
2700 * completed. If not, wait around a bit more to see if they
2701 * manage to complete normally.
2703 #define ABORT_COMPLETE_WAIT_SECS 30
2704 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
2705 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2710 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2711 msg
, ABORT_COMPLETE_WAIT_SECS
);
2717 * For operations that cannot sleep, a command block is allocated at init,
2718 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2719 * which ones are free or in use. Lock must be held when calling this.
2720 * cmd_free() is the complement.
2722 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
2724 struct CommandList
*c
;
2726 union u64bit temp64
;
2727 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2728 unsigned long flags
;
2730 spin_lock_irqsave(&h
->lock
, flags
);
2732 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
2733 if (i
== h
->nr_cmds
) {
2734 spin_unlock_irqrestore(&h
->lock
, flags
);
2737 } while (test_and_set_bit
2738 (i
& (BITS_PER_LONG
- 1),
2739 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
2740 spin_unlock_irqrestore(&h
->lock
, flags
);
2742 c
= h
->cmd_pool
+ i
;
2743 memset(c
, 0, sizeof(*c
));
2744 cmd_dma_handle
= h
->cmd_pool_dhandle
2746 c
->err_info
= h
->errinfo_pool
+ i
;
2747 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2748 err_dma_handle
= h
->errinfo_pool_dhandle
2749 + i
* sizeof(*c
->err_info
);
2753 INIT_LIST_HEAD(&c
->list
);
2754 c
->busaddr
= (u32
) cmd_dma_handle
;
2755 temp64
.val
= (u64
) err_dma_handle
;
2756 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2757 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2758 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2764 /* For operations that can wait for kmalloc to possibly sleep,
2765 * this routine can be called. Lock need not be held to call
2766 * cmd_special_alloc. cmd_special_free() is the complement.
2768 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
)
2770 struct CommandList
*c
;
2771 union u64bit temp64
;
2772 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2774 c
= pci_alloc_consistent(h
->pdev
, sizeof(*c
), &cmd_dma_handle
);
2777 memset(c
, 0, sizeof(*c
));
2781 c
->err_info
= pci_alloc_consistent(h
->pdev
, sizeof(*c
->err_info
),
2784 if (c
->err_info
== NULL
) {
2785 pci_free_consistent(h
->pdev
,
2786 sizeof(*c
), c
, cmd_dma_handle
);
2789 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2791 INIT_LIST_HEAD(&c
->list
);
2792 c
->busaddr
= (u32
) cmd_dma_handle
;
2793 temp64
.val
= (u64
) err_dma_handle
;
2794 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2795 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2796 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2802 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
2805 unsigned long flags
;
2807 i
= c
- h
->cmd_pool
;
2808 spin_lock_irqsave(&h
->lock
, flags
);
2809 clear_bit(i
& (BITS_PER_LONG
- 1),
2810 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
2811 spin_unlock_irqrestore(&h
->lock
, flags
);
2814 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
)
2816 union u64bit temp64
;
2818 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
2819 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
2820 pci_free_consistent(h
->pdev
, sizeof(*c
->err_info
),
2821 c
->err_info
, (dma_addr_t
) temp64
.val
);
2822 pci_free_consistent(h
->pdev
, sizeof(*c
),
2823 c
, (dma_addr_t
) (c
->busaddr
& DIRECT_LOOKUP_MASK
));
2826 #ifdef CONFIG_COMPAT
2828 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
, void *arg
)
2830 IOCTL32_Command_struct __user
*arg32
=
2831 (IOCTL32_Command_struct __user
*) arg
;
2832 IOCTL_Command_struct arg64
;
2833 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
2837 memset(&arg64
, 0, sizeof(arg64
));
2839 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2840 sizeof(arg64
.LUN_info
));
2841 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2842 sizeof(arg64
.Request
));
2843 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2844 sizeof(arg64
.error_info
));
2845 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2846 err
|= get_user(cp
, &arg32
->buf
);
2847 arg64
.buf
= compat_ptr(cp
);
2848 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2853 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, (void *)p
);
2856 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2857 sizeof(arg32
->error_info
));
2863 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
2866 BIG_IOCTL32_Command_struct __user
*arg32
=
2867 (BIG_IOCTL32_Command_struct __user
*) arg
;
2868 BIG_IOCTL_Command_struct arg64
;
2869 BIG_IOCTL_Command_struct __user
*p
=
2870 compat_alloc_user_space(sizeof(arg64
));
2874 memset(&arg64
, 0, sizeof(arg64
));
2876 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2877 sizeof(arg64
.LUN_info
));
2878 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2879 sizeof(arg64
.Request
));
2880 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2881 sizeof(arg64
.error_info
));
2882 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2883 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
2884 err
|= get_user(cp
, &arg32
->buf
);
2885 arg64
.buf
= compat_ptr(cp
);
2886 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2891 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, (void *)p
);
2894 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2895 sizeof(arg32
->error_info
));
2901 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
2904 case CCISS_GETPCIINFO
:
2905 case CCISS_GETINTINFO
:
2906 case CCISS_SETINTINFO
:
2907 case CCISS_GETNODENAME
:
2908 case CCISS_SETNODENAME
:
2909 case CCISS_GETHEARTBEAT
:
2910 case CCISS_GETBUSTYPES
:
2911 case CCISS_GETFIRMVER
:
2912 case CCISS_GETDRIVVER
:
2913 case CCISS_REVALIDVOLS
:
2914 case CCISS_DEREGDISK
:
2915 case CCISS_REGNEWDISK
:
2917 case CCISS_RESCANDISK
:
2918 case CCISS_GETLUNINFO
:
2919 return hpsa_ioctl(dev
, cmd
, arg
);
2921 case CCISS_PASSTHRU32
:
2922 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
2923 case CCISS_BIG_PASSTHRU32
:
2924 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
2927 return -ENOIOCTLCMD
;
2932 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2934 struct hpsa_pci_info pciinfo
;
2938 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
2939 pciinfo
.bus
= h
->pdev
->bus
->number
;
2940 pciinfo
.dev_fn
= h
->pdev
->devfn
;
2941 pciinfo
.board_id
= h
->board_id
;
2942 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
2947 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2949 DriverVer_type DriverVer
;
2950 unsigned char vmaj
, vmin
, vsubmin
;
2953 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
2954 &vmaj
, &vmin
, &vsubmin
);
2956 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
2957 "unrecognized.", HPSA_DRIVER_VERSION
);
2962 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
2965 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
2970 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2972 IOCTL_Command_struct iocommand
;
2973 struct CommandList
*c
;
2975 union u64bit temp64
;
2980 if (!capable(CAP_SYS_RAWIO
))
2982 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
2984 if ((iocommand
.buf_size
< 1) &&
2985 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
2988 if (iocommand
.buf_size
> 0) {
2989 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
2992 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
2993 /* Copy the data into the buffer we created */
2994 if (copy_from_user(buff
, iocommand
.buf
,
2995 iocommand
.buf_size
)) {
3000 memset(buff
, 0, iocommand
.buf_size
);
3003 c
= cmd_special_alloc(h
);
3008 /* Fill in the command type */
3009 c
->cmd_type
= CMD_IOCTL_PEND
;
3010 /* Fill in Command Header */
3011 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3012 if (iocommand
.buf_size
> 0) { /* buffer to fill */
3013 c
->Header
.SGList
= 1;
3014 c
->Header
.SGTotal
= 1;
3015 } else { /* no buffers to fill */
3016 c
->Header
.SGList
= 0;
3017 c
->Header
.SGTotal
= 0;
3019 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
3020 /* use the kernel address the cmd block for tag */
3021 c
->Header
.Tag
.lower
= c
->busaddr
;
3023 /* Fill in Request block */
3024 memcpy(&c
->Request
, &iocommand
.Request
,
3025 sizeof(c
->Request
));
3027 /* Fill in the scatter gather information */
3028 if (iocommand
.buf_size
> 0) {
3029 temp64
.val
= pci_map_single(h
->pdev
, buff
,
3030 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
3031 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3032 c
->SG
[0].Addr
.lower
= 0;
3033 c
->SG
[0].Addr
.upper
= 0;
3038 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
3039 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
3040 c
->SG
[0].Len
= iocommand
.buf_size
;
3041 c
->SG
[0].Ext
= 0; /* we are not chaining*/
3043 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3044 if (iocommand
.buf_size
> 0)
3045 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
3046 check_ioctl_unit_attention(h
, c
);
3048 /* Copy the error information out */
3049 memcpy(&iocommand
.error_info
, c
->err_info
,
3050 sizeof(iocommand
.error_info
));
3051 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
3055 if (iocommand
.Request
.Type
.Direction
== XFER_READ
&&
3056 iocommand
.buf_size
> 0) {
3057 /* Copy the data out of the buffer we created */
3058 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
3064 cmd_special_free(h
, c
);
3070 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
3072 BIG_IOCTL_Command_struct
*ioc
;
3073 struct CommandList
*c
;
3074 unsigned char **buff
= NULL
;
3075 int *buff_size
= NULL
;
3076 union u64bit temp64
;
3082 BYTE __user
*data_ptr
;
3086 if (!capable(CAP_SYS_RAWIO
))
3088 ioc
= (BIG_IOCTL_Command_struct
*)
3089 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
3094 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
3098 if ((ioc
->buf_size
< 1) &&
3099 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
3103 /* Check kmalloc limits using all SGs */
3104 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
3108 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
3112 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
3117 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
3122 left
= ioc
->buf_size
;
3123 data_ptr
= ioc
->buf
;
3125 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
3126 buff_size
[sg_used
] = sz
;
3127 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
3128 if (buff
[sg_used
] == NULL
) {
3132 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
3133 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
3138 memset(buff
[sg_used
], 0, sz
);
3143 c
= cmd_special_alloc(h
);
3148 c
->cmd_type
= CMD_IOCTL_PEND
;
3149 c
->Header
.ReplyQueue
= 0;
3150 c
->Header
.SGList
= c
->Header
.SGTotal
= sg_used
;
3151 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
3152 c
->Header
.Tag
.lower
= c
->busaddr
;
3153 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
3154 if (ioc
->buf_size
> 0) {
3156 for (i
= 0; i
< sg_used
; i
++) {
3157 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
],
3158 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
3159 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3160 c
->SG
[i
].Addr
.lower
= 0;
3161 c
->SG
[i
].Addr
.upper
= 0;
3163 hpsa_pci_unmap(h
->pdev
, c
, i
,
3164 PCI_DMA_BIDIRECTIONAL
);
3168 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3169 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3170 c
->SG
[i
].Len
= buff_size
[i
];
3171 /* we are not chaining */
3175 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3177 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
3178 check_ioctl_unit_attention(h
, c
);
3179 /* Copy the error information out */
3180 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
3181 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
3185 if (ioc
->Request
.Type
.Direction
== XFER_READ
&& ioc
->buf_size
> 0) {
3186 /* Copy the data out of the buffer we created */
3187 BYTE __user
*ptr
= ioc
->buf
;
3188 for (i
= 0; i
< sg_used
; i
++) {
3189 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
3193 ptr
+= buff_size
[i
];
3198 cmd_special_free(h
, c
);
3201 for (i
= 0; i
< sg_used
; i
++)
3210 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
3211 struct CommandList
*c
)
3213 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
3214 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
3215 (void) check_for_unit_attention(h
, c
);
3218 static int increment_passthru_count(struct ctlr_info
*h
)
3220 unsigned long flags
;
3222 spin_lock_irqsave(&h
->passthru_count_lock
, flags
);
3223 if (h
->passthru_count
>= HPSA_MAX_CONCURRENT_PASSTHRUS
) {
3224 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
3227 h
->passthru_count
++;
3228 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
3232 static void decrement_passthru_count(struct ctlr_info
*h
)
3234 unsigned long flags
;
3236 spin_lock_irqsave(&h
->passthru_count_lock
, flags
);
3237 if (h
->passthru_count
<= 0) {
3238 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
3239 /* not expecting to get here. */
3240 dev_warn(&h
->pdev
->dev
, "Bug detected, passthru_count seems to be incorrect.\n");
3243 h
->passthru_count
--;
3244 spin_unlock_irqrestore(&h
->passthru_count_lock
, flags
);
3250 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
3252 struct ctlr_info
*h
;
3253 void __user
*argp
= (void __user
*)arg
;
3256 h
= sdev_to_hba(dev
);
3259 case CCISS_DEREGDISK
:
3260 case CCISS_REGNEWDISK
:
3262 hpsa_scan_start(h
->scsi_host
);
3264 case CCISS_GETPCIINFO
:
3265 return hpsa_getpciinfo_ioctl(h
, argp
);
3266 case CCISS_GETDRIVVER
:
3267 return hpsa_getdrivver_ioctl(h
, argp
);
3268 case CCISS_PASSTHRU
:
3269 if (increment_passthru_count(h
))
3271 rc
= hpsa_passthru_ioctl(h
, argp
);
3272 decrement_passthru_count(h
);
3274 case CCISS_BIG_PASSTHRU
:
3275 if (increment_passthru_count(h
))
3277 rc
= hpsa_big_passthru_ioctl(h
, argp
);
3278 decrement_passthru_count(h
);
3285 static int hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3288 struct CommandList
*c
;
3293 /* fill_cmd can't fail here, no data buffer to map */
3294 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
3295 RAID_CTLR_LUNID
, TYPE_MSG
);
3296 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
3298 enqueue_cmd_and_start_io(h
, c
);
3299 /* Don't wait for completion, the reset won't complete. Don't free
3300 * the command either. This is the last command we will send before
3301 * re-initializing everything, so it doesn't matter and won't leak.
3306 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
3307 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
3310 int pci_dir
= XFER_NONE
;
3311 struct CommandList
*a
; /* for commands to be aborted */
3313 c
->cmd_type
= CMD_IOCTL_PEND
;
3314 c
->Header
.ReplyQueue
= 0;
3315 if (buff
!= NULL
&& size
> 0) {
3316 c
->Header
.SGList
= 1;
3317 c
->Header
.SGTotal
= 1;
3319 c
->Header
.SGList
= 0;
3320 c
->Header
.SGTotal
= 0;
3322 c
->Header
.Tag
.lower
= c
->busaddr
;
3323 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
3325 c
->Request
.Type
.Type
= cmd_type
;
3326 if (cmd_type
== TYPE_CMD
) {
3329 /* are we trying to read a vital product page */
3330 if (page_code
!= 0) {
3331 c
->Request
.CDB
[1] = 0x01;
3332 c
->Request
.CDB
[2] = page_code
;
3334 c
->Request
.CDBLen
= 6;
3335 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3336 c
->Request
.Type
.Direction
= XFER_READ
;
3337 c
->Request
.Timeout
= 0;
3338 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
3339 c
->Request
.CDB
[4] = size
& 0xFF;
3341 case HPSA_REPORT_LOG
:
3342 case HPSA_REPORT_PHYS
:
3343 /* Talking to controller so It's a physical command
3344 mode = 00 target = 0. Nothing to write.
3346 c
->Request
.CDBLen
= 12;
3347 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3348 c
->Request
.Type
.Direction
= XFER_READ
;
3349 c
->Request
.Timeout
= 0;
3350 c
->Request
.CDB
[0] = cmd
;
3351 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
3352 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
3353 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
3354 c
->Request
.CDB
[9] = size
& 0xFF;
3356 case HPSA_CACHE_FLUSH
:
3357 c
->Request
.CDBLen
= 12;
3358 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3359 c
->Request
.Type
.Direction
= XFER_WRITE
;
3360 c
->Request
.Timeout
= 0;
3361 c
->Request
.CDB
[0] = BMIC_WRITE
;
3362 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
3363 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
3364 c
->Request
.CDB
[8] = size
& 0xFF;
3366 case TEST_UNIT_READY
:
3367 c
->Request
.CDBLen
= 6;
3368 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3369 c
->Request
.Type
.Direction
= XFER_NONE
;
3370 c
->Request
.Timeout
= 0;
3373 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
3377 } else if (cmd_type
== TYPE_MSG
) {
3380 case HPSA_DEVICE_RESET_MSG
:
3381 c
->Request
.CDBLen
= 16;
3382 c
->Request
.Type
.Type
= 1; /* It is a MSG not a CMD */
3383 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3384 c
->Request
.Type
.Direction
= XFER_NONE
;
3385 c
->Request
.Timeout
= 0; /* Don't time out */
3386 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
3387 c
->Request
.CDB
[0] = cmd
;
3388 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
3389 /* If bytes 4-7 are zero, it means reset the */
3391 c
->Request
.CDB
[4] = 0x00;
3392 c
->Request
.CDB
[5] = 0x00;
3393 c
->Request
.CDB
[6] = 0x00;
3394 c
->Request
.CDB
[7] = 0x00;
3396 case HPSA_ABORT_MSG
:
3397 a
= buff
; /* point to command to be aborted */
3398 dev_dbg(&h
->pdev
->dev
, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3399 a
->Header
.Tag
.upper
, a
->Header
.Tag
.lower
,
3400 c
->Header
.Tag
.upper
, c
->Header
.Tag
.lower
);
3401 c
->Request
.CDBLen
= 16;
3402 c
->Request
.Type
.Type
= TYPE_MSG
;
3403 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3404 c
->Request
.Type
.Direction
= XFER_WRITE
;
3405 c
->Request
.Timeout
= 0; /* Don't time out */
3406 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
3407 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
3408 c
->Request
.CDB
[2] = 0x00; /* reserved */
3409 c
->Request
.CDB
[3] = 0x00; /* reserved */
3410 /* Tag to abort goes in CDB[4]-CDB[11] */
3411 c
->Request
.CDB
[4] = a
->Header
.Tag
.lower
& 0xFF;
3412 c
->Request
.CDB
[5] = (a
->Header
.Tag
.lower
>> 8) & 0xFF;
3413 c
->Request
.CDB
[6] = (a
->Header
.Tag
.lower
>> 16) & 0xFF;
3414 c
->Request
.CDB
[7] = (a
->Header
.Tag
.lower
>> 24) & 0xFF;
3415 c
->Request
.CDB
[8] = a
->Header
.Tag
.upper
& 0xFF;
3416 c
->Request
.CDB
[9] = (a
->Header
.Tag
.upper
>> 8) & 0xFF;
3417 c
->Request
.CDB
[10] = (a
->Header
.Tag
.upper
>> 16) & 0xFF;
3418 c
->Request
.CDB
[11] = (a
->Header
.Tag
.upper
>> 24) & 0xFF;
3419 c
->Request
.CDB
[12] = 0x00; /* reserved */
3420 c
->Request
.CDB
[13] = 0x00; /* reserved */
3421 c
->Request
.CDB
[14] = 0x00; /* reserved */
3422 c
->Request
.CDB
[15] = 0x00; /* reserved */
3425 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
3430 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
3434 switch (c
->Request
.Type
.Direction
) {
3436 pci_dir
= PCI_DMA_FROMDEVICE
;
3439 pci_dir
= PCI_DMA_TODEVICE
;
3442 pci_dir
= PCI_DMA_NONE
;
3445 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
3447 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
3453 * Map (physical) PCI mem into (virtual) kernel space
3455 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3457 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3458 ulong page_offs
= ((ulong
) base
) - page_base
;
3459 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
3462 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3465 /* Takes cmds off the submission queue and sends them to the hardware,
3466 * then puts them on the queue of cmds waiting for completion.
3468 static void start_io(struct ctlr_info
*h
)
3470 struct CommandList
*c
;
3471 unsigned long flags
;
3473 spin_lock_irqsave(&h
->lock
, flags
);
3474 while (!list_empty(&h
->reqQ
)) {
3475 c
= list_entry(h
->reqQ
.next
, struct CommandList
, list
);
3476 /* can't do anything if fifo is full */
3477 if ((h
->access
.fifo_full(h
))) {
3478 h
->fifo_recently_full
= 1;
3479 dev_warn(&h
->pdev
->dev
, "fifo full\n");
3482 h
->fifo_recently_full
= 0;
3484 /* Get the first entry from the Request Q */
3488 /* Put job onto the completed Q */
3491 /* Must increment commands_outstanding before unlocking
3492 * and submitting to avoid race checking for fifo full
3495 h
->commands_outstanding
++;
3496 if (h
->commands_outstanding
> h
->max_outstanding
)
3497 h
->max_outstanding
= h
->commands_outstanding
;
3499 /* Tell the controller execute command */
3500 spin_unlock_irqrestore(&h
->lock
, flags
);
3501 h
->access
.submit_command(h
, c
);
3502 spin_lock_irqsave(&h
->lock
, flags
);
3504 spin_unlock_irqrestore(&h
->lock
, flags
);
3507 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
3509 return h
->access
.command_completed(h
, q
);
3512 static inline bool interrupt_pending(struct ctlr_info
*h
)
3514 return h
->access
.intr_pending(h
);
3517 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
3519 return (h
->access
.intr_pending(h
) == 0) ||
3520 (h
->interrupts_enabled
== 0);
3523 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
3526 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3527 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3533 static inline void finish_cmd(struct CommandList
*c
)
3535 unsigned long flags
;
3536 int io_may_be_stalled
= 0;
3537 struct ctlr_info
*h
= c
->h
;
3539 spin_lock_irqsave(&h
->lock
, flags
);
3543 * Check for possibly stalled i/o.
3545 * If a fifo_full condition is encountered, requests will back up
3546 * in h->reqQ. This queue is only emptied out by start_io which is
3547 * only called when a new i/o request comes in. If no i/o's are
3548 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
3549 * start_io from here if we detect such a danger.
3551 * Normally, we shouldn't hit this case, but pounding on the
3552 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
3553 * commands_outstanding is low. We want to avoid calling
3554 * start_io from in here as much as possible, and esp. don't
3555 * want to get in a cycle where we call start_io every time
3558 if (unlikely(h
->fifo_recently_full
) &&
3559 h
->commands_outstanding
< 5)
3560 io_may_be_stalled
= 1;
3562 spin_unlock_irqrestore(&h
->lock
, flags
);
3564 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
3565 if (likely(c
->cmd_type
== CMD_SCSI
))
3566 complete_scsi_command(c
);
3567 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3568 complete(c
->waiting
);
3569 if (unlikely(io_may_be_stalled
))
3573 static inline u32
hpsa_tag_contains_index(u32 tag
)
3575 return tag
& DIRECT_LOOKUP_BIT
;
3578 static inline u32
hpsa_tag_to_index(u32 tag
)
3580 return tag
>> DIRECT_LOOKUP_SHIFT
;
3584 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
3586 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3587 #define HPSA_SIMPLE_ERROR_BITS 0x03
3588 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
3589 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
3590 return tag
& ~HPSA_PERF_ERROR_BITS
;
3593 /* process completion of an indexed ("direct lookup") command */
3594 static inline void process_indexed_cmd(struct ctlr_info
*h
,
3598 struct CommandList
*c
;
3600 tag_index
= hpsa_tag_to_index(raw_tag
);
3601 if (!bad_tag(h
, tag_index
, raw_tag
)) {
3602 c
= h
->cmd_pool
+ tag_index
;
3607 /* process completion of a non-indexed command */
3608 static inline void process_nonindexed_cmd(struct ctlr_info
*h
,
3612 struct CommandList
*c
= NULL
;
3613 unsigned long flags
;
3615 tag
= hpsa_tag_discard_error_bits(h
, raw_tag
);
3616 spin_lock_irqsave(&h
->lock
, flags
);
3617 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3618 if ((c
->busaddr
& 0xFFFFFFE0) == (tag
& 0xFFFFFFE0)) {
3619 spin_unlock_irqrestore(&h
->lock
, flags
);
3624 spin_unlock_irqrestore(&h
->lock
, flags
);
3625 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3628 /* Some controllers, like p400, will give us one interrupt
3629 * after a soft reset, even if we turned interrupts off.
3630 * Only need to check for this in the hpsa_xxx_discard_completions
3633 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
3635 if (likely(!reset_devices
))
3638 if (likely(h
->interrupts_enabled
))
3641 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
3642 "(known firmware bug.) Ignoring.\n");
3648 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3649 * Relies on (h-q[x] == x) being true for x such that
3650 * 0 <= x < MAX_REPLY_QUEUES.
3652 static struct ctlr_info
*queue_to_hba(u8
*queue
)
3654 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
3657 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
3659 struct ctlr_info
*h
= queue_to_hba(queue
);
3660 u8 q
= *(u8
*) queue
;
3663 if (ignore_bogus_interrupt(h
))
3666 if (interrupt_not_for_us(h
))
3668 h
->last_intr_timestamp
= get_jiffies_64();
3669 while (interrupt_pending(h
)) {
3670 raw_tag
= get_next_completion(h
, q
);
3671 while (raw_tag
!= FIFO_EMPTY
)
3672 raw_tag
= next_command(h
, q
);
3677 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
3679 struct ctlr_info
*h
= queue_to_hba(queue
);
3681 u8 q
= *(u8
*) queue
;
3683 if (ignore_bogus_interrupt(h
))
3686 h
->last_intr_timestamp
= get_jiffies_64();
3687 raw_tag
= get_next_completion(h
, q
);
3688 while (raw_tag
!= FIFO_EMPTY
)
3689 raw_tag
= next_command(h
, q
);
3693 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
3695 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
3697 u8 q
= *(u8
*) queue
;
3699 if (interrupt_not_for_us(h
))
3701 h
->last_intr_timestamp
= get_jiffies_64();
3702 while (interrupt_pending(h
)) {
3703 raw_tag
= get_next_completion(h
, q
);
3704 while (raw_tag
!= FIFO_EMPTY
) {
3705 if (likely(hpsa_tag_contains_index(raw_tag
)))
3706 process_indexed_cmd(h
, raw_tag
);
3708 process_nonindexed_cmd(h
, raw_tag
);
3709 raw_tag
= next_command(h
, q
);
3715 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
3717 struct ctlr_info
*h
= queue_to_hba(queue
);
3719 u8 q
= *(u8
*) queue
;
3721 h
->last_intr_timestamp
= get_jiffies_64();
3722 raw_tag
= get_next_completion(h
, q
);
3723 while (raw_tag
!= FIFO_EMPTY
) {
3724 if (likely(hpsa_tag_contains_index(raw_tag
)))
3725 process_indexed_cmd(h
, raw_tag
);
3727 process_nonindexed_cmd(h
, raw_tag
);
3728 raw_tag
= next_command(h
, q
);
3733 /* Send a message CDB to the firmware. Careful, this only works
3734 * in simple mode, not performant mode due to the tag lookup.
3735 * We only ever use this immediately after a controller reset.
3737 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
3741 struct CommandListHeader CommandHeader
;
3742 struct RequestBlock Request
;
3743 struct ErrDescriptor ErrorDescriptor
;
3745 struct Command
*cmd
;
3746 static const size_t cmd_sz
= sizeof(*cmd
) +
3747 sizeof(cmd
->ErrorDescriptor
);
3749 uint32_t paddr32
, tag
;
3750 void __iomem
*vaddr
;
3753 vaddr
= pci_ioremap_bar(pdev
, 0);
3757 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3758 * CCISS commands, so they must be allocated from the lower 4GiB of
3761 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3767 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3773 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3774 * although there's no guarantee, we assume that the address is at
3775 * least 4-byte aligned (most likely, it's page-aligned).
3779 cmd
->CommandHeader
.ReplyQueue
= 0;
3780 cmd
->CommandHeader
.SGList
= 0;
3781 cmd
->CommandHeader
.SGTotal
= 0;
3782 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3783 cmd
->CommandHeader
.Tag
.upper
= 0;
3784 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3786 cmd
->Request
.CDBLen
= 16;
3787 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3788 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3789 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3790 cmd
->Request
.Timeout
= 0; /* Don't time out */
3791 cmd
->Request
.CDB
[0] = opcode
;
3792 cmd
->Request
.CDB
[1] = type
;
3793 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
3794 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(*cmd
);
3795 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3796 cmd
->ErrorDescriptor
.Len
= sizeof(struct ErrorInfo
);
3798 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3800 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
3801 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3802 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr32
)
3804 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
3809 /* we leak the DMA buffer here ... no choice since the controller could
3810 * still complete the command.
3812 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
3813 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
3818 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3820 if (tag
& HPSA_ERROR_BIT
) {
3821 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
3826 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
3831 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3833 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
3834 void * __iomem vaddr
, u32 use_doorbell
)
3840 /* For everything after the P600, the PCI power state method
3841 * of resetting the controller doesn't work, so we have this
3842 * other way using the doorbell register.
3844 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
3845 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
3847 /* PMC hardware guys tell us we need a 5 second delay after
3848 * doorbell reset and before any attempt to talk to the board
3849 * at all to ensure that this actually works and doesn't fall
3850 * over in some weird corner cases.
3853 } else { /* Try to do it the PCI power state way */
3855 /* Quoting from the Open CISS Specification: "The Power
3856 * Management Control/Status Register (CSR) controls the power
3857 * state of the device. The normal operating state is D0,
3858 * CSR=00h. The software off state is D3, CSR=03h. To reset
3859 * the controller, place the interface device in D3 then to D0,
3860 * this causes a secondary PCI reset which will reset the
3863 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3866 "hpsa_reset_controller: "
3867 "PCI PM not supported\n");
3870 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
3871 /* enter the D3hot power management state */
3872 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3873 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3875 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3879 /* enter the D0 power management state */
3880 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3882 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3885 * The P600 requires a small delay when changing states.
3886 * Otherwise we may think the board did not reset and we bail.
3887 * This for kdump only and is particular to the P600.
3894 static void init_driver_version(char *driver_version
, int len
)
3896 memset(driver_version
, 0, len
);
3897 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
3900 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
3902 char *driver_version
;
3903 int i
, size
= sizeof(cfgtable
->driver_version
);
3905 driver_version
= kmalloc(size
, GFP_KERNEL
);
3906 if (!driver_version
)
3909 init_driver_version(driver_version
, size
);
3910 for (i
= 0; i
< size
; i
++)
3911 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
3912 kfree(driver_version
);
3916 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
3917 unsigned char *driver_ver
)
3921 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
3922 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
3925 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
3928 char *driver_ver
, *old_driver_ver
;
3929 int rc
, size
= sizeof(cfgtable
->driver_version
);
3931 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
3932 if (!old_driver_ver
)
3934 driver_ver
= old_driver_ver
+ size
;
3936 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3937 * should have been changed, otherwise we know the reset failed.
3939 init_driver_version(old_driver_ver
, size
);
3940 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
3941 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
3942 kfree(old_driver_ver
);
3945 /* This does a hard reset of the controller using PCI power management
3946 * states or the using the doorbell register.
3948 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
3952 u64 cfg_base_addr_index
;
3953 void __iomem
*vaddr
;
3954 unsigned long paddr
;
3955 u32 misc_fw_support
;
3957 struct CfgTable __iomem
*cfgtable
;
3960 u16 command_register
;
3962 /* For controllers as old as the P600, this is very nearly
3965 * pci_save_state(pci_dev);
3966 * pci_set_power_state(pci_dev, PCI_D3hot);
3967 * pci_set_power_state(pci_dev, PCI_D0);
3968 * pci_restore_state(pci_dev);
3970 * For controllers newer than the P600, the pci power state
3971 * method of resetting doesn't work so we have another way
3972 * using the doorbell register.
3975 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
3976 if (rc
< 0 || !ctlr_is_resettable(board_id
)) {
3977 dev_warn(&pdev
->dev
, "Not resetting device.\n");
3981 /* if controller is soft- but not hard resettable... */
3982 if (!ctlr_is_hard_resettable(board_id
))
3983 return -ENOTSUPP
; /* try soft reset later. */
3985 /* Save the PCI command register */
3986 pci_read_config_word(pdev
, 4, &command_register
);
3987 /* Turn the board off. This is so that later pci_restore_state()
3988 * won't turn the board on before the rest of config space is ready.
3990 pci_disable_device(pdev
);
3991 pci_save_state(pdev
);
3993 /* find the first memory BAR, so we can find the cfg table */
3994 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
3997 vaddr
= remap_pci_mem(paddr
, 0x250);
4001 /* find cfgtable in order to check if reset via doorbell is supported */
4002 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4003 &cfg_base_addr_index
, &cfg_offset
);
4006 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4007 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4012 rc
= write_driver_ver_to_cfgtable(cfgtable
);
4016 /* If reset via doorbell register is supported, use that.
4017 * There are two such methods. Favor the newest method.
4019 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4020 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
4022 use_doorbell
= DOORBELL_CTLR_RESET2
;
4024 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4026 dev_warn(&pdev
->dev
, "Soft reset not supported. "
4027 "Firmware update is required.\n");
4028 rc
= -ENOTSUPP
; /* try soft reset */
4029 goto unmap_cfgtable
;
4033 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4035 goto unmap_cfgtable
;
4037 pci_restore_state(pdev
);
4038 rc
= pci_enable_device(pdev
);
4040 dev_warn(&pdev
->dev
, "failed to enable device.\n");
4041 goto unmap_cfgtable
;
4043 pci_write_config_word(pdev
, 4, command_register
);
4045 /* Some devices (notably the HP Smart Array 5i Controller)
4046 need a little pause here */
4047 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
4049 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
4051 dev_warn(&pdev
->dev
,
4052 "failed waiting for board to become ready "
4053 "after hard reset\n");
4054 goto unmap_cfgtable
;
4057 rc
= controller_reset_failed(vaddr
);
4059 goto unmap_cfgtable
;
4061 dev_warn(&pdev
->dev
, "Unable to successfully reset "
4062 "controller. Will try soft reset.\n");
4065 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
4077 * We cannot read the structure directly, for portability we must use
4079 * This is for debug only.
4081 static void print_cfg_table(struct device
*dev
, struct CfgTable
*tb
)
4087 dev_info(dev
, "Controller Configuration information\n");
4088 dev_info(dev
, "------------------------------------\n");
4089 for (i
= 0; i
< 4; i
++)
4090 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
4091 temp_name
[4] = '\0';
4092 dev_info(dev
, " Signature = %s\n", temp_name
);
4093 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
4094 dev_info(dev
, " Transport methods supported = 0x%x\n",
4095 readl(&(tb
->TransportSupport
)));
4096 dev_info(dev
, " Transport methods active = 0x%x\n",
4097 readl(&(tb
->TransportActive
)));
4098 dev_info(dev
, " Requested transport Method = 0x%x\n",
4099 readl(&(tb
->HostWrite
.TransportRequest
)));
4100 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
4101 readl(&(tb
->HostWrite
.CoalIntDelay
)));
4102 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
4103 readl(&(tb
->HostWrite
.CoalIntCount
)));
4104 dev_info(dev
, " Max outstanding commands = 0x%d\n",
4105 readl(&(tb
->CmdsOutMax
)));
4106 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
4107 for (i
= 0; i
< 16; i
++)
4108 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
4109 temp_name
[16] = '\0';
4110 dev_info(dev
, " Server Name = %s\n", temp_name
);
4111 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
4112 readl(&(tb
->HeartBeat
)));
4113 #endif /* HPSA_DEBUG */
4116 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
4118 int i
, offset
, mem_type
, bar_type
;
4120 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
4123 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
4124 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
4125 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
4128 mem_type
= pci_resource_flags(pdev
, i
) &
4129 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
4131 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
4132 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
4133 offset
+= 4; /* 32 bit */
4135 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
4138 default: /* reserved in PCI 2.2 */
4139 dev_warn(&pdev
->dev
,
4140 "base address is invalid\n");
4145 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
4151 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4152 * controllers that are capable. If not, we use IO-APIC mode.
4155 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
4157 #ifdef CONFIG_PCI_MSI
4159 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
4161 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
4162 hpsa_msix_entries
[i
].vector
= 0;
4163 hpsa_msix_entries
[i
].entry
= i
;
4166 /* Some boards advertise MSI but don't really support it */
4167 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
4168 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
4169 goto default_int_mode
;
4170 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
4171 dev_info(&h
->pdev
->dev
, "MSIX\n");
4172 err
= pci_enable_msix(h
->pdev
, hpsa_msix_entries
,
4175 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4176 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
4181 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
4182 "available\n", err
);
4183 goto default_int_mode
;
4185 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n",
4187 goto default_int_mode
;
4190 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
4191 dev_info(&h
->pdev
->dev
, "MSI\n");
4192 if (!pci_enable_msi(h
->pdev
))
4195 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
4198 #endif /* CONFIG_PCI_MSI */
4199 /* if we get here we're going to use the default interrupt mode */
4200 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
4203 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
4206 u32 subsystem_vendor_id
, subsystem_device_id
;
4208 subsystem_vendor_id
= pdev
->subsystem_vendor
;
4209 subsystem_device_id
= pdev
->subsystem_device
;
4210 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
4211 subsystem_vendor_id
;
4213 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
4214 if (*board_id
== products
[i
].board_id
)
4217 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
4218 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
4220 dev_warn(&pdev
->dev
, "unrecognized board ID: "
4221 "0x%08x, ignoring.\n", *board_id
);
4224 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
4227 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
4228 unsigned long *memory_bar
)
4232 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4233 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4234 /* addressing mode bits already removed */
4235 *memory_bar
= pci_resource_start(pdev
, i
);
4236 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4240 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4244 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4250 iterations
= HPSA_BOARD_READY_ITERATIONS
;
4252 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
4254 for (i
= 0; i
< iterations
; i
++) {
4255 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4256 if (wait_for_ready
) {
4257 if (scratchpad
== HPSA_FIRMWARE_READY
)
4260 if (scratchpad
!= HPSA_FIRMWARE_READY
)
4263 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
4265 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4269 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4270 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4273 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4274 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4275 *cfg_base_addr
&= (u32
) 0x0000ffff;
4276 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4277 if (*cfg_base_addr_index
== -1) {
4278 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
4284 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
4288 u64 cfg_base_addr_index
;
4292 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4293 &cfg_base_addr_index
, &cfg_offset
);
4296 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4297 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
4300 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
4303 /* Find performant mode table. */
4304 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4305 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4306 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4307 sizeof(*h
->transtable
));
4313 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4315 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4317 /* Limit commands in memory limited kdump scenario. */
4318 if (reset_devices
&& h
->max_commands
> 32)
4319 h
->max_commands
= 32;
4321 if (h
->max_commands
< 16) {
4322 dev_warn(&h
->pdev
->dev
, "Controller reports "
4323 "max supported commands of %d, an obvious lie. "
4324 "Using 16. Ensure that firmware is up to date.\n",
4326 h
->max_commands
= 16;
4330 /* Interrogate the hardware for some limits:
4331 * max commands, max SG elements without chaining, and with chaining,
4332 * SG chain block size, etc.
4334 static void hpsa_find_board_params(struct ctlr_info
*h
)
4336 hpsa_get_max_perf_mode_cmds(h
);
4337 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4338 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
4340 * Limit in-command s/g elements to 32 save dma'able memory.
4341 * Howvever spec says if 0, use 31
4343 h
->max_cmd_sg_entries
= 31;
4344 if (h
->maxsgentries
> 512) {
4345 h
->max_cmd_sg_entries
= 32;
4346 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
+ 1;
4347 h
->maxsgentries
--; /* save one for chain pointer */
4349 h
->maxsgentries
= 31; /* default to traditional values */
4353 /* Find out what task management functions are supported and cache */
4354 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
4357 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
4359 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
4360 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4366 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
4371 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4372 driver_support
= readl(&(h
->cfgtable
->driver_support
));
4373 driver_support
|= ENABLE_SCSI_PREFETCH
;
4375 driver_support
|= ENABLE_UNIT_ATTN
;
4376 writel(driver_support
, &(h
->cfgtable
->driver_support
));
4379 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4380 * in a prefetch beyond physical memory.
4382 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
4386 if (h
->board_id
!= 0x3225103C)
4388 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4389 dma_prefetch
|= 0x8000;
4390 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
4397 unsigned long flags
;
4399 /* under certain very rare conditions, this can take awhile.
4400 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4401 * as we enter this code.)
4403 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
4404 spin_lock_irqsave(&h
->lock
, flags
);
4405 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
4406 spin_unlock_irqrestore(&h
->lock
, flags
);
4407 if (!(doorbell_value
& CFGTBL_ChangeReq
))
4409 /* delay and try again */
4410 usleep_range(10000, 20000);
4414 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
4418 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
4419 if (!(trans_support
& SIMPLE_MODE
))
4422 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
4423 /* Update the field, and then ring the doorbell */
4424 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
4425 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
4426 hpsa_wait_for_mode_change_ack(h
);
4427 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
4428 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
4429 dev_warn(&h
->pdev
->dev
,
4430 "unable to get board into simple mode\n");
4433 h
->transMethod
= CFGTBL_Trans_Simple
;
4437 static int hpsa_pci_init(struct ctlr_info
*h
)
4439 int prod_index
, err
;
4441 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
4444 h
->product_name
= products
[prod_index
].product_name
;
4445 h
->access
= *(products
[prod_index
].access
);
4447 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
4448 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
4450 err
= pci_enable_device(h
->pdev
);
4452 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
4456 /* Enable bus mastering (pci_disable_device may disable this) */
4457 pci_set_master(h
->pdev
);
4459 err
= pci_request_regions(h
->pdev
, HPSA
);
4461 dev_err(&h
->pdev
->dev
,
4462 "cannot obtain PCI resources, aborting\n");
4465 hpsa_interrupt_mode(h
);
4466 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4468 goto err_out_free_res
;
4469 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4472 goto err_out_free_res
;
4474 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4476 goto err_out_free_res
;
4477 err
= hpsa_find_cfgtables(h
);
4479 goto err_out_free_res
;
4480 hpsa_find_board_params(h
);
4482 if (!hpsa_CISS_signature_present(h
)) {
4484 goto err_out_free_res
;
4486 hpsa_set_driver_support_bits(h
);
4487 hpsa_p600_dma_prefetch_quirk(h
);
4488 err
= hpsa_enter_simple_mode(h
);
4490 goto err_out_free_res
;
4495 iounmap(h
->transtable
);
4497 iounmap(h
->cfgtable
);
4500 pci_disable_device(h
->pdev
);
4501 pci_release_regions(h
->pdev
);
4505 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
4509 #define HBA_INQUIRY_BYTE_COUNT 64
4510 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
4511 if (!h
->hba_inquiry_data
)
4513 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
4514 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
4516 kfree(h
->hba_inquiry_data
);
4517 h
->hba_inquiry_data
= NULL
;
4521 static int hpsa_init_reset_devices(struct pci_dev
*pdev
)
4528 /* Reset the controller with a PCI power-cycle or via doorbell */
4529 rc
= hpsa_kdump_hard_reset_controller(pdev
);
4531 /* -ENOTSUPP here means we cannot reset the controller
4532 * but it's already (and still) up and running in
4533 * "performant mode". Or, it might be 640x, which can't reset
4534 * due to concerns about shared bbwc between 6402/6404 pair.
4536 if (rc
== -ENOTSUPP
)
4537 return rc
; /* just try to do the kdump anyhow. */
4541 /* Now try to get the controller to respond to a no-op */
4542 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
4543 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
4544 if (hpsa_noop(pdev
) == 0)
4547 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4548 (i
< 11 ? "; re-trying" : ""));
4553 static int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
4555 h
->cmd_pool_bits
= kzalloc(
4556 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
4557 sizeof(unsigned long), GFP_KERNEL
);
4558 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
4559 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
4560 &(h
->cmd_pool_dhandle
));
4561 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
4562 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
4563 &(h
->errinfo_pool_dhandle
));
4564 if ((h
->cmd_pool_bits
== NULL
)
4565 || (h
->cmd_pool
== NULL
)
4566 || (h
->errinfo_pool
== NULL
)) {
4567 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
4573 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
4575 kfree(h
->cmd_pool_bits
);
4577 pci_free_consistent(h
->pdev
,
4578 h
->nr_cmds
* sizeof(struct CommandList
),
4579 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4580 if (h
->errinfo_pool
)
4581 pci_free_consistent(h
->pdev
,
4582 h
->nr_cmds
* sizeof(struct ErrorInfo
),
4584 h
->errinfo_pool_dhandle
);
4587 static int hpsa_request_irq(struct ctlr_info
*h
,
4588 irqreturn_t (*msixhandler
)(int, void *),
4589 irqreturn_t (*intxhandler
)(int, void *))
4594 * initialize h->q[x] = x so that interrupt handlers know which
4597 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4600 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
) {
4601 /* If performant mode and MSI-X, use multiple reply queues */
4602 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4603 rc
= request_irq(h
->intr
[i
], msixhandler
,
4607 /* Use single reply pool */
4608 if (h
->msix_vector
|| h
->msi_vector
) {
4609 rc
= request_irq(h
->intr
[h
->intr_mode
],
4610 msixhandler
, 0, h
->devname
,
4611 &h
->q
[h
->intr_mode
]);
4613 rc
= request_irq(h
->intr
[h
->intr_mode
],
4614 intxhandler
, IRQF_SHARED
, h
->devname
,
4615 &h
->q
[h
->intr_mode
]);
4619 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
4620 h
->intr
[h
->intr_mode
], h
->devname
);
4626 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
4628 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
4629 HPSA_RESET_TYPE_CONTROLLER
)) {
4630 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
4634 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
4635 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
4636 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
4640 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
4641 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
4642 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
4643 "after soft reset.\n");
4650 static void free_irqs(struct ctlr_info
*h
)
4654 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
4655 /* Single reply queue, only one irq to free */
4657 free_irq(h
->intr
[i
], &h
->q
[i
]);
4661 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4662 free_irq(h
->intr
[i
], &h
->q
[i
]);
4665 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
4668 #ifdef CONFIG_PCI_MSI
4669 if (h
->msix_vector
) {
4670 if (h
->pdev
->msix_enabled
)
4671 pci_disable_msix(h
->pdev
);
4672 } else if (h
->msi_vector
) {
4673 if (h
->pdev
->msi_enabled
)
4674 pci_disable_msi(h
->pdev
);
4676 #endif /* CONFIG_PCI_MSI */
4679 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
4681 hpsa_free_irqs_and_disable_msix(h
);
4682 hpsa_free_sg_chain_blocks(h
);
4683 hpsa_free_cmd_pool(h
);
4684 kfree(h
->blockFetchTable
);
4685 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
4686 h
->reply_pool
, h
->reply_pool_dhandle
);
4690 iounmap(h
->transtable
);
4692 iounmap(h
->cfgtable
);
4693 pci_release_regions(h
->pdev
);
4697 /* Called when controller lockup detected. */
4698 static void fail_all_cmds_on_list(struct ctlr_info
*h
, struct list_head
*list
)
4700 struct CommandList
*c
= NULL
;
4702 assert_spin_locked(&h
->lock
);
4703 /* Mark all outstanding commands as failed and complete them. */
4704 while (!list_empty(list
)) {
4705 c
= list_entry(list
->next
, struct CommandList
, list
);
4706 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4711 static void controller_lockup_detected(struct ctlr_info
*h
)
4713 unsigned long flags
;
4715 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4716 spin_lock_irqsave(&h
->lock
, flags
);
4717 h
->lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4718 spin_unlock_irqrestore(&h
->lock
, flags
);
4719 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
4720 h
->lockup_detected
);
4721 pci_disable_device(h
->pdev
);
4722 spin_lock_irqsave(&h
->lock
, flags
);
4723 fail_all_cmds_on_list(h
, &h
->cmpQ
);
4724 fail_all_cmds_on_list(h
, &h
->reqQ
);
4725 spin_unlock_irqrestore(&h
->lock
, flags
);
4728 static void detect_controller_lockup(struct ctlr_info
*h
)
4732 unsigned long flags
;
4734 now
= get_jiffies_64();
4735 /* If we've received an interrupt recently, we're ok. */
4736 if (time_after64(h
->last_intr_timestamp
+
4737 (h
->heartbeat_sample_interval
), now
))
4741 * If we've already checked the heartbeat recently, we're ok.
4742 * This could happen if someone sends us a signal. We
4743 * otherwise don't care about signals in this thread.
4745 if (time_after64(h
->last_heartbeat_timestamp
+
4746 (h
->heartbeat_sample_interval
), now
))
4749 /* If heartbeat has not changed since we last looked, we're not ok. */
4750 spin_lock_irqsave(&h
->lock
, flags
);
4751 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
4752 spin_unlock_irqrestore(&h
->lock
, flags
);
4753 if (h
->last_heartbeat
== heartbeat
) {
4754 controller_lockup_detected(h
);
4759 h
->last_heartbeat
= heartbeat
;
4760 h
->last_heartbeat_timestamp
= now
;
4763 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
4765 unsigned long flags
;
4766 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
4767 struct ctlr_info
, monitor_ctlr_work
);
4768 detect_controller_lockup(h
);
4769 if (h
->lockup_detected
)
4771 spin_lock_irqsave(&h
->lock
, flags
);
4772 if (h
->remove_in_progress
) {
4773 spin_unlock_irqrestore(&h
->lock
, flags
);
4776 schedule_delayed_work(&h
->monitor_ctlr_work
,
4777 h
->heartbeat_sample_interval
);
4778 spin_unlock_irqrestore(&h
->lock
, flags
);
4781 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4784 struct ctlr_info
*h
;
4785 int try_soft_reset
= 0;
4786 unsigned long flags
;
4788 if (number_of_controllers
== 0)
4789 printk(KERN_INFO DRIVER_NAME
"\n");
4791 rc
= hpsa_init_reset_devices(pdev
);
4793 if (rc
!= -ENOTSUPP
)
4795 /* If the reset fails in a particular way (it has no way to do
4796 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4797 * a soft reset once we get the controller configured up to the
4798 * point that it can accept a command.
4804 reinit_after_soft_reset
:
4806 /* Command structures must be aligned on a 32-byte boundary because
4807 * the 5 lower bits of the address are used by the hardware. and by
4808 * the driver. See comments in hpsa.h for more info.
4810 #define COMMANDLIST_ALIGNMENT 32
4811 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
4812 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
4817 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
4818 INIT_LIST_HEAD(&h
->cmpQ
);
4819 INIT_LIST_HEAD(&h
->reqQ
);
4820 spin_lock_init(&h
->lock
);
4821 spin_lock_init(&h
->scan_lock
);
4822 spin_lock_init(&h
->passthru_count_lock
);
4823 rc
= hpsa_pci_init(h
);
4827 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
4828 h
->ctlr
= number_of_controllers
;
4829 number_of_controllers
++;
4831 /* configure PCI DMA stuff */
4832 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4836 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4840 dev_err(&pdev
->dev
, "no suitable DMA available\n");
4845 /* make sure the board interrupts are off */
4846 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4848 if (hpsa_request_irq(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
4850 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
4851 h
->devname
, pdev
->device
,
4852 h
->intr
[h
->intr_mode
], dac
? "" : " not");
4853 if (hpsa_allocate_cmd_pool(h
))
4855 if (hpsa_allocate_sg_chain_blocks(h
))
4857 init_waitqueue_head(&h
->scan_wait_queue
);
4858 h
->scan_finished
= 1; /* no scan currently in progress */
4860 pci_set_drvdata(pdev
, h
);
4862 h
->scsi_host
= NULL
;
4863 spin_lock_init(&h
->devlock
);
4864 hpsa_put_ctlr_into_performant_mode(h
);
4866 /* At this point, the controller is ready to take commands.
4867 * Now, if reset_devices and the hard reset didn't work, try
4868 * the soft reset and see if that works.
4870 if (try_soft_reset
) {
4872 /* This is kind of gross. We may or may not get a completion
4873 * from the soft reset command, and if we do, then the value
4874 * from the fifo may or may not be valid. So, we wait 10 secs
4875 * after the reset throwing away any completions we get during
4876 * that time. Unregister the interrupt handler and register
4877 * fake ones to scoop up any residual completions.
4879 spin_lock_irqsave(&h
->lock
, flags
);
4880 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4881 spin_unlock_irqrestore(&h
->lock
, flags
);
4883 rc
= hpsa_request_irq(h
, hpsa_msix_discard_completions
,
4884 hpsa_intx_discard_completions
);
4886 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
4891 rc
= hpsa_kdump_soft_reset(h
);
4893 /* Neither hard nor soft reset worked, we're hosed. */
4896 dev_info(&h
->pdev
->dev
, "Board READY.\n");
4897 dev_info(&h
->pdev
->dev
,
4898 "Waiting for stale completions to drain.\n");
4899 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4901 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4903 rc
= controller_reset_failed(h
->cfgtable
);
4905 dev_info(&h
->pdev
->dev
,
4906 "Soft reset appears to have failed.\n");
4908 /* since the controller's reset, we have to go back and re-init
4909 * everything. Easiest to just forget what we've done and do it
4912 hpsa_undo_allocations_after_kdump_soft_reset(h
);
4915 /* don't go to clean4, we already unallocated */
4918 goto reinit_after_soft_reset
;
4921 /* Turn the interrupts on so we can service requests */
4922 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4924 hpsa_hba_inquiry(h
);
4925 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
4927 /* Monitor the controller for firmware lockups */
4928 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
4929 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
4930 schedule_delayed_work(&h
->monitor_ctlr_work
,
4931 h
->heartbeat_sample_interval
);
4935 hpsa_free_sg_chain_blocks(h
);
4936 hpsa_free_cmd_pool(h
);
4944 static void hpsa_flush_cache(struct ctlr_info
*h
)
4947 struct CommandList
*c
;
4948 unsigned long flags
;
4950 /* Don't bother trying to flush the cache if locked up */
4951 spin_lock_irqsave(&h
->lock
, flags
);
4952 if (unlikely(h
->lockup_detected
)) {
4953 spin_unlock_irqrestore(&h
->lock
, flags
);
4956 spin_unlock_irqrestore(&h
->lock
, flags
);
4958 flush_buf
= kzalloc(4, GFP_KERNEL
);
4962 c
= cmd_special_alloc(h
);
4964 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
4967 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
4968 RAID_CTLR_LUNID
, TYPE_CMD
)) {
4971 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
4972 if (c
->err_info
->CommandStatus
!= 0)
4974 dev_warn(&h
->pdev
->dev
,
4975 "error flushing cache on controller\n");
4976 cmd_special_free(h
, c
);
4981 static void hpsa_shutdown(struct pci_dev
*pdev
)
4983 struct ctlr_info
*h
;
4985 h
= pci_get_drvdata(pdev
);
4986 /* Turn board interrupts off and send the flush cache command
4987 * sendcmd will turn off interrupt, and send the flush...
4988 * To write all data in the battery backed cache to disks
4990 hpsa_flush_cache(h
);
4991 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4992 hpsa_free_irqs_and_disable_msix(h
);
4995 static void hpsa_free_device_info(struct ctlr_info
*h
)
4999 for (i
= 0; i
< h
->ndevices
; i
++)
5003 static void hpsa_remove_one(struct pci_dev
*pdev
)
5005 struct ctlr_info
*h
;
5006 unsigned long flags
;
5008 if (pci_get_drvdata(pdev
) == NULL
) {
5009 dev_err(&pdev
->dev
, "unable to remove device\n");
5012 h
= pci_get_drvdata(pdev
);
5014 /* Get rid of any controller monitoring work items */
5015 spin_lock_irqsave(&h
->lock
, flags
);
5016 h
->remove_in_progress
= 1;
5017 cancel_delayed_work(&h
->monitor_ctlr_work
);
5018 spin_unlock_irqrestore(&h
->lock
, flags
);
5020 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
5021 hpsa_shutdown(pdev
);
5023 iounmap(h
->transtable
);
5024 iounmap(h
->cfgtable
);
5025 hpsa_free_device_info(h
);
5026 hpsa_free_sg_chain_blocks(h
);
5027 pci_free_consistent(h
->pdev
,
5028 h
->nr_cmds
* sizeof(struct CommandList
),
5029 h
->cmd_pool
, h
->cmd_pool_dhandle
);
5030 pci_free_consistent(h
->pdev
,
5031 h
->nr_cmds
* sizeof(struct ErrorInfo
),
5032 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
5033 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5034 h
->reply_pool
, h
->reply_pool_dhandle
);
5035 kfree(h
->cmd_pool_bits
);
5036 kfree(h
->blockFetchTable
);
5037 kfree(h
->hba_inquiry_data
);
5038 pci_disable_device(pdev
);
5039 pci_release_regions(pdev
);
5043 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
5044 __attribute__((unused
)) pm_message_t state
)
5049 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
5054 static struct pci_driver hpsa_pci_driver
= {
5056 .probe
= hpsa_init_one
,
5057 .remove
= hpsa_remove_one
,
5058 .id_table
= hpsa_pci_device_id
, /* id_table */
5059 .shutdown
= hpsa_shutdown
,
5060 .suspend
= hpsa_suspend
,
5061 .resume
= hpsa_resume
,
5064 /* Fill in bucket_map[], given nsgs (the max number of
5065 * scatter gather elements supported) and bucket[],
5066 * which is an array of 8 integers. The bucket[] array
5067 * contains 8 different DMA transfer sizes (in 16
5068 * byte increments) which the controller uses to fetch
5069 * commands. This function fills in bucket_map[], which
5070 * maps a given number of scatter gather elements to one of
5071 * the 8 DMA transfer sizes. The point of it is to allow the
5072 * controller to only do as much DMA as needed to fetch the
5073 * command, with the DMA transfer size encoded in the lower
5074 * bits of the command address.
5076 static void calc_bucket_map(int bucket
[], int num_buckets
,
5077 int nsgs
, int *bucket_map
)
5081 /* even a command with 0 SGs requires 4 blocks */
5082 #define MINIMUM_TRANSFER_BLOCKS 4
5083 #define NUM_BUCKETS 8
5084 /* Note, bucket_map must have nsgs+1 entries. */
5085 for (i
= 0; i
<= nsgs
; i
++) {
5086 /* Compute size of a command with i SG entries */
5087 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
5088 b
= num_buckets
; /* Assume the biggest bucket */
5089 /* Find the bucket that is just big enough */
5090 for (j
= 0; j
< 8; j
++) {
5091 if (bucket
[j
] >= size
) {
5096 /* for a command with i SG entries, use bucket b. */
5101 static void hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 use_short_tags
)
5104 unsigned long register_value
;
5106 /* This is a bit complicated. There are 8 registers on
5107 * the controller which we write to to tell it 8 different
5108 * sizes of commands which there may be. It's a way of
5109 * reducing the DMA done to fetch each command. Encoded into
5110 * each command's tag are 3 bits which communicate to the controller
5111 * which of the eight sizes that command fits within. The size of
5112 * each command depends on how many scatter gather entries there are.
5113 * Each SG entry requires 16 bytes. The eight registers are programmed
5114 * with the number of 16-byte blocks a command of that size requires.
5115 * The smallest command possible requires 5 such 16 byte blocks.
5116 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5117 * blocks. Note, this only extends to the SG entries contained
5118 * within the command block, and does not extend to chained blocks
5119 * of SG elements. bft[] contains the eight values we write to
5120 * the registers. They are not evenly distributed, but have more
5121 * sizes for small commands, and fewer sizes for larger commands.
5123 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
5124 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
5125 /* 5 = 1 s/g entry or 4k
5126 * 6 = 2 s/g entry or 8k
5127 * 8 = 4 s/g entry or 16k
5128 * 10 = 6 s/g entry or 24k
5131 /* Controller spec: zero out this buffer. */
5132 memset(h
->reply_pool
, 0, h
->reply_pool_size
);
5134 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
5135 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
5136 SG_ENTRIES_IN_CMD
, h
->blockFetchTable
);
5137 for (i
= 0; i
< 8; i
++)
5138 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
5140 /* size of controller ring buffer */
5141 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
5142 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
5143 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
5144 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
5146 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5147 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
5148 writel(h
->reply_pool_dhandle
+
5149 (h
->max_commands
* sizeof(u64
) * i
),
5150 &h
->transtable
->RepQAddr
[i
].lower
);
5153 writel(CFGTBL_Trans_Performant
| use_short_tags
|
5154 CFGTBL_Trans_enable_directed_msix
,
5155 &(h
->cfgtable
->HostWrite
.TransportRequest
));
5156 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
5157 hpsa_wait_for_mode_change_ack(h
);
5158 register_value
= readl(&(h
->cfgtable
->TransportActive
));
5159 if (!(register_value
& CFGTBL_Trans_Performant
)) {
5160 dev_warn(&h
->pdev
->dev
, "unable to get board into"
5161 " performant mode\n");
5164 /* Change the access methods to the performant access methods */
5165 h
->access
= SA5_performant_access
;
5166 h
->transMethod
= CFGTBL_Trans_Performant
;
5169 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
5174 if (hpsa_simple_mode
)
5177 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
5178 if (!(trans_support
& PERFORMANT_MODE
))
5181 h
->nreply_queues
= h
->msix_vector
? MAX_REPLY_QUEUES
: 1;
5182 hpsa_get_max_perf_mode_cmds(h
);
5183 /* Performant mode ring buffer and supporting data structures */
5184 h
->reply_pool_size
= h
->max_commands
* sizeof(u64
) * h
->nreply_queues
;
5185 h
->reply_pool
= pci_alloc_consistent(h
->pdev
, h
->reply_pool_size
,
5186 &(h
->reply_pool_dhandle
));
5188 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5189 h
->reply_queue
[i
].head
= &h
->reply_pool
[h
->max_commands
* i
];
5190 h
->reply_queue
[i
].size
= h
->max_commands
;
5191 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
5192 h
->reply_queue
[i
].current_entry
= 0;
5195 /* Need a block fetch table for performant mode */
5196 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
5197 sizeof(u32
)), GFP_KERNEL
);
5199 if ((h
->reply_pool
== NULL
)
5200 || (h
->blockFetchTable
== NULL
))
5203 hpsa_enter_performant_mode(h
,
5204 trans_support
& CFGTBL_Trans_use_short_tags
);
5210 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5211 h
->reply_pool
, h
->reply_pool_dhandle
);
5212 kfree(h
->blockFetchTable
);
5216 * This is it. Register the PCI driver information for the cards we control
5217 * the OS will call our registered routines when it finds one of our cards.
5219 static int __init
hpsa_init(void)
5221 return pci_register_driver(&hpsa_pci_driver
);
5224 static void __exit
hpsa_cleanup(void)
5226 pci_unregister_driver(&hpsa_pci_driver
);
5229 module_init(hpsa_init
);
5230 module_exit(hpsa_cleanup
);