2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
28 #include <linux/gpio.h>
30 /* SPI register offsets */
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
66 #define SPI_MSTR_OFFSET 0
67 #define SPI_MSTR_SIZE 1
68 #define SPI_PS_OFFSET 1
70 #define SPI_PCSDEC_OFFSET 2
71 #define SPI_PCSDEC_SIZE 1
72 #define SPI_FDIV_OFFSET 3
73 #define SPI_FDIV_SIZE 1
74 #define SPI_MODFDIS_OFFSET 4
75 #define SPI_MODFDIS_SIZE 1
76 #define SPI_WDRBT_OFFSET 5
77 #define SPI_WDRBT_SIZE 1
78 #define SPI_LLB_OFFSET 7
79 #define SPI_LLB_SIZE 1
80 #define SPI_PCS_OFFSET 16
81 #define SPI_PCS_SIZE 4
82 #define SPI_DLYBCS_OFFSET 24
83 #define SPI_DLYBCS_SIZE 8
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET 0
87 #define SPI_RD_SIZE 16
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET 0
91 #define SPI_TD_SIZE 16
94 #define SPI_RDRF_OFFSET 0
95 #define SPI_RDRF_SIZE 1
96 #define SPI_TDRE_OFFSET 1
97 #define SPI_TDRE_SIZE 1
98 #define SPI_MODF_OFFSET 2
99 #define SPI_MODF_SIZE 1
100 #define SPI_OVRES_OFFSET 3
101 #define SPI_OVRES_SIZE 1
102 #define SPI_ENDRX_OFFSET 4
103 #define SPI_ENDRX_SIZE 1
104 #define SPI_ENDTX_OFFSET 5
105 #define SPI_ENDTX_SIZE 1
106 #define SPI_RXBUFF_OFFSET 6
107 #define SPI_RXBUFF_SIZE 1
108 #define SPI_TXBUFE_OFFSET 7
109 #define SPI_TXBUFE_SIZE 1
110 #define SPI_NSSR_OFFSET 8
111 #define SPI_NSSR_SIZE 1
112 #define SPI_TXEMPTY_OFFSET 9
113 #define SPI_TXEMPTY_SIZE 1
114 #define SPI_SPIENS_OFFSET 16
115 #define SPI_SPIENS_SIZE 1
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET 0
119 #define SPI_CPOL_SIZE 1
120 #define SPI_NCPHA_OFFSET 1
121 #define SPI_NCPHA_SIZE 1
122 #define SPI_CSAAT_OFFSET 3
123 #define SPI_CSAAT_SIZE 1
124 #define SPI_BITS_OFFSET 4
125 #define SPI_BITS_SIZE 4
126 #define SPI_SCBR_OFFSET 8
127 #define SPI_SCBR_SIZE 8
128 #define SPI_DLYBS_OFFSET 16
129 #define SPI_DLYBS_SIZE 8
130 #define SPI_DLYBCT_OFFSET 24
131 #define SPI_DLYBCT_SIZE 8
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET 0
135 #define SPI_RXCTR_SIZE 16
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET 0
139 #define SPI_TXCTR_SIZE 16
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET 0
143 #define SPI_RXNCR_SIZE 16
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET 0
147 #define SPI_TXNCR_SIZE 16
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET 0
151 #define SPI_RXTEN_SIZE 1
152 #define SPI_RXTDIS_OFFSET 1
153 #define SPI_RXTDIS_SIZE 1
154 #define SPI_TXTEN_OFFSET 8
155 #define SPI_TXTEN_SIZE 1
156 #define SPI_TXTDIS_OFFSET 9
157 #define SPI_TXTDIS_SIZE 1
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT 0
161 #define SPI_BITS_9_BPT 1
162 #define SPI_BITS_10_BPT 2
163 #define SPI_BITS_11_BPT 3
164 #define SPI_BITS_12_BPT 4
165 #define SPI_BITS_13_BPT 5
166 #define SPI_BITS_14_BPT 6
167 #define SPI_BITS_15_BPT 7
168 #define SPI_BITS_16_BPT 8
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 (1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name, value) \
174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name, value) \
176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name, value, old) \
178 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 | SPI_BF(name, value))
181 /* Register access macros */
182 #define spi_readl(port, reg) \
183 __raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port, reg, value) \
185 __raw_writel((value), (port)->regs + SPI_##reg)
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
190 #define DMA_MIN_BYTES 16
192 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
194 struct atmel_spi_dma
{
195 struct dma_chan
*chan_rx
;
196 struct dma_chan
*chan_tx
;
197 struct scatterlist sgrx
;
198 struct scatterlist sgtx
;
199 struct dma_async_tx_descriptor
*data_desc_rx
;
200 struct dma_async_tx_descriptor
*data_desc_tx
;
202 struct at_dma_slave dma_slave
;
205 struct atmel_spi_caps
{
208 bool has_dma_support
;
212 * The core SPI transfer engine just talks to a register bank to set up
213 * DMA transfers; transfer queue progress is driven by IRQs. The clock
214 * framework provides the base clock, subdivided for each spi_device.
224 struct platform_device
*pdev
;
226 struct spi_transfer
*current_transfer
;
227 unsigned long current_remaining_bytes
;
230 struct completion xfer_completion
;
234 dma_addr_t buffer_dma
;
236 struct atmel_spi_caps caps
;
241 struct atmel_spi_dma dma
;
247 /* Controller-specific per-slave state */
248 struct atmel_spi_device
{
249 unsigned int npcs_pin
;
253 #define BUFFER_SIZE PAGE_SIZE
254 #define INVALID_DMA_ADDRESS 0xffffffff
257 * Version 2 of the SPI controller has
259 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
260 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
262 * - SPI_CSRx.SBCR allows faster clocking
264 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
266 return as
->caps
.is_spi2
;
270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
271 * they assume that spi slave device state will not change on deselect, so
272 * that automagic deselection is OK. ("NPCSx rises if no data is to be
273 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
274 * controllers have CSAAT and friends.
276 * Since the CSAAT functionality is a bit weird on newer controllers as
277 * well, we use GPIO to control nCSx pins on all controllers, updating
278 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
279 * support active-high chipselects despite the controller's belief that
280 * only active-low devices/systems exists.
282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
283 * right when driven with GPIO. ("Mode Fault does not allow more than one
284 * Master on Chip Select 0.") No workaround exists for that ... so for
285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
286 * and (c) will trigger that first erratum in some cases.
289 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
291 struct atmel_spi_device
*asd
= spi
->controller_state
;
292 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
295 if (atmel_spi_is_v2(as
)) {
296 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
297 /* For the low SPI version, there is a issue that PDC transfer
298 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
300 spi_writel(as
, CSR0
, asd
->csr
);
301 if (as
->caps
.has_wdrbt
) {
303 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
309 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
314 mr
= spi_readl(as
, MR
);
315 gpio_set_value(asd
->npcs_pin
, active
);
317 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
321 /* Make sure clock polarity is correct */
322 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
323 csr
= spi_readl(as
, CSR0
+ 4 * i
);
324 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
325 spi_writel(as
, CSR0
+ 4 * i
,
326 csr
^ SPI_BIT(CPOL
));
329 mr
= spi_readl(as
, MR
);
330 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
331 if (spi
->chip_select
!= 0)
332 gpio_set_value(asd
->npcs_pin
, active
);
333 spi_writel(as
, MR
, mr
);
336 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
337 asd
->npcs_pin
, active
? " (high)" : "",
341 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
343 struct atmel_spi_device
*asd
= spi
->controller_state
;
344 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
347 /* only deactivate *this* device; sometimes transfers to
348 * another device may be active when this routine is called.
350 mr
= spi_readl(as
, MR
);
351 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
352 mr
= SPI_BFINS(PCS
, 0xf, mr
);
353 spi_writel(as
, MR
, mr
);
356 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
357 asd
->npcs_pin
, active
? " (low)" : "",
360 if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
361 gpio_set_value(asd
->npcs_pin
, !active
);
364 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
366 spin_lock_irqsave(&as
->lock
, as
->flags
);
369 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
371 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
374 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
375 struct spi_transfer
*xfer
)
377 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
380 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
381 struct dma_slave_config
*slave_config
,
386 if (bits_per_word
> 8) {
387 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
388 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
390 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
391 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
394 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
395 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
396 slave_config
->src_maxburst
= 1;
397 slave_config
->dst_maxburst
= 1;
398 slave_config
->device_fc
= false;
400 slave_config
->direction
= DMA_MEM_TO_DEV
;
401 if (dmaengine_slave_config(as
->dma
.chan_tx
, slave_config
)) {
402 dev_err(&as
->pdev
->dev
,
403 "failed to configure tx dma channel\n");
407 slave_config
->direction
= DMA_DEV_TO_MEM
;
408 if (dmaengine_slave_config(as
->dma
.chan_rx
, slave_config
)) {
409 dev_err(&as
->pdev
->dev
,
410 "failed to configure rx dma channel\n");
417 static bool filter(struct dma_chan
*chan
, void *pdata
)
419 struct atmel_spi_dma
*sl_pdata
= pdata
;
420 struct at_dma_slave
*sl
;
425 sl
= &sl_pdata
->dma_slave
;
426 if (sl
->dma_dev
== chan
->device
->dev
) {
434 static int atmel_spi_configure_dma(struct atmel_spi
*as
)
436 struct dma_slave_config slave_config
;
437 struct device
*dev
= &as
->pdev
->dev
;
442 dma_cap_set(DMA_SLAVE
, mask
);
444 as
->dma
.chan_tx
= dma_request_slave_channel_compat(mask
, filter
,
447 if (!as
->dma
.chan_tx
) {
449 "DMA TX channel not available, SPI unable to use DMA\n");
454 as
->dma
.chan_rx
= dma_request_slave_channel_compat(mask
, filter
,
458 if (!as
->dma
.chan_rx
) {
460 "DMA RX channel not available, SPI unable to use DMA\n");
465 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
469 dev_info(&as
->pdev
->dev
,
470 "Using %s (tx) and %s (rx) for DMA transfers\n",
471 dma_chan_name(as
->dma
.chan_tx
),
472 dma_chan_name(as
->dma
.chan_rx
));
476 dma_release_channel(as
->dma
.chan_rx
);
478 dma_release_channel(as
->dma
.chan_tx
);
482 static void atmel_spi_stop_dma(struct atmel_spi
*as
)
485 as
->dma
.chan_rx
->device
->device_control(as
->dma
.chan_rx
,
486 DMA_TERMINATE_ALL
, 0);
488 as
->dma
.chan_tx
->device
->device_control(as
->dma
.chan_tx
,
489 DMA_TERMINATE_ALL
, 0);
492 static void atmel_spi_release_dma(struct atmel_spi
*as
)
495 dma_release_channel(as
->dma
.chan_rx
);
497 dma_release_channel(as
->dma
.chan_tx
);
500 /* This function is called by the DMA driver from tasklet context */
501 static void dma_callback(void *data
)
503 struct spi_master
*master
= data
;
504 struct atmel_spi
*as
= spi_master_get_devdata(master
);
506 complete(&as
->xfer_completion
);
510 * Next transfer using PIO.
512 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
513 struct spi_transfer
*xfer
)
515 struct atmel_spi
*as
= spi_master_get_devdata(master
);
516 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
518 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
520 /* Make sure data is not remaining in RDR */
522 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
528 if (xfer
->bits_per_word
> 8)
529 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
531 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
533 spi_writel(as
, TDR
, 0);
536 dev_dbg(master
->dev
.parent
,
537 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
539 xfer
->bits_per_word
);
541 /* Enable relevant interrupts */
542 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
546 * Submit next transfer for DMA.
548 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
549 struct spi_transfer
*xfer
,
552 struct atmel_spi
*as
= spi_master_get_devdata(master
);
553 struct dma_chan
*rxchan
= as
->dma
.chan_rx
;
554 struct dma_chan
*txchan
= as
->dma
.chan_tx
;
555 struct dma_async_tx_descriptor
*rxdesc
;
556 struct dma_async_tx_descriptor
*txdesc
;
557 struct dma_slave_config slave_config
;
561 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
563 /* Check that the channels are available */
564 if (!rxchan
|| !txchan
)
567 /* release lock for DMA operations */
568 atmel_spi_unlock(as
);
570 /* prepare the RX dma transfer */
571 sg_init_table(&as
->dma
.sgrx
, 1);
573 as
->dma
.sgrx
.dma_address
= xfer
->rx_dma
+ xfer
->len
- *plen
;
575 as
->dma
.sgrx
.dma_address
= as
->buffer_dma
;
576 if (len
> BUFFER_SIZE
)
580 /* prepare the TX dma transfer */
581 sg_init_table(&as
->dma
.sgtx
, 1);
583 as
->dma
.sgtx
.dma_address
= xfer
->tx_dma
+ xfer
->len
- *plen
;
585 as
->dma
.sgtx
.dma_address
= as
->buffer_dma
;
586 if (len
> BUFFER_SIZE
)
588 memset(as
->buffer
, 0, len
);
591 sg_dma_len(&as
->dma
.sgtx
) = len
;
592 sg_dma_len(&as
->dma
.sgrx
) = len
;
596 if (atmel_spi_dma_slave_config(as
, &slave_config
, 8))
599 /* Send both scatterlists */
600 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
604 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
,
609 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
613 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
,
618 dev_dbg(master
->dev
.parent
,
619 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
620 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
621 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
623 /* Enable relevant interrupts */
624 spi_writel(as
, IER
, SPI_BIT(OVRES
));
626 /* Put the callback on the RX transfer only, that should finish last */
627 rxdesc
->callback
= dma_callback
;
628 rxdesc
->callback_param
= master
;
630 /* Submit and fire RX and TX with TX last so we're ready to read! */
631 cookie
= rxdesc
->tx_submit(rxdesc
);
632 if (dma_submit_error(cookie
))
634 cookie
= txdesc
->tx_submit(txdesc
);
635 if (dma_submit_error(cookie
))
637 rxchan
->device
->device_issue_pending(rxchan
);
638 txchan
->device
->device_issue_pending(txchan
);
645 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
646 atmel_spi_stop_dma(as
);
652 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
653 struct spi_transfer
*xfer
,
658 struct atmel_spi
*as
= spi_master_get_devdata(master
);
661 /* use scratch buffer only when rx or tx data is unspecified */
663 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
665 *rx_dma
= as
->buffer_dma
;
666 if (len
> BUFFER_SIZE
)
671 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
673 *tx_dma
= as
->buffer_dma
;
674 if (len
> BUFFER_SIZE
)
676 memset(as
->buffer
, 0, len
);
677 dma_sync_single_for_device(&as
->pdev
->dev
,
678 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
684 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
685 struct spi_device
*spi
,
686 struct spi_transfer
*xfer
)
689 unsigned long bus_hz
;
691 /* v1 chips start out at half the peripheral bus speed. */
692 bus_hz
= clk_get_rate(as
->clk
);
693 if (!atmel_spi_is_v2(as
))
697 * Calculate the lowest divider that satisfies the
698 * constraint, assuming div32/fdiv/mbz == 0.
701 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
704 * This can happend if max_speed is null.
705 * In this case, we set the lowest possible speed
710 * If the resulting divider doesn't fit into the
711 * register bitfield, we can't satisfy the constraint.
713 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
715 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
716 xfer
->speed_hz
, scbr
, bus_hz
/255);
721 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
722 xfer
->speed_hz
, scbr
, bus_hz
);
725 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
726 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
727 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
733 * Submit next transfer for PDC.
734 * lock is held, spi irq is blocked
736 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
737 struct spi_message
*msg
,
738 struct spi_transfer
*xfer
)
740 struct atmel_spi
*as
= spi_master_get_devdata(master
);
742 dma_addr_t tx_dma
, rx_dma
;
744 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
746 len
= as
->current_remaining_bytes
;
747 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
748 as
->current_remaining_bytes
-= len
;
750 spi_writel(as
, RPR
, rx_dma
);
751 spi_writel(as
, TPR
, tx_dma
);
753 if (msg
->spi
->bits_per_word
> 8)
755 spi_writel(as
, RCR
, len
);
756 spi_writel(as
, TCR
, len
);
758 dev_dbg(&msg
->spi
->dev
,
759 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 xfer
, xfer
->len
, xfer
->tx_buf
,
761 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
762 (unsigned long long)xfer
->rx_dma
);
764 if (as
->current_remaining_bytes
) {
765 len
= as
->current_remaining_bytes
;
766 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
767 as
->current_remaining_bytes
-= len
;
769 spi_writel(as
, RNPR
, rx_dma
);
770 spi_writel(as
, TNPR
, tx_dma
);
772 if (msg
->spi
->bits_per_word
> 8)
774 spi_writel(as
, RNCR
, len
);
775 spi_writel(as
, TNCR
, len
);
777 dev_dbg(&msg
->spi
->dev
,
778 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
779 xfer
, xfer
->len
, xfer
->tx_buf
,
780 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
781 (unsigned long long)xfer
->rx_dma
);
784 /* REVISIT: We're waiting for ENDRX before we start the next
785 * transfer because we need to handle some difficult timing
786 * issues otherwise. If we wait for ENDTX in one transfer and
787 * then starts waiting for ENDRX in the next, it's difficult
788 * to tell the difference between the ENDRX interrupt we're
789 * actually waiting for and the ENDRX interrupt of the
792 * It should be doable, though. Just not now...
794 spi_writel(as
, IER
, SPI_BIT(ENDRX
) | SPI_BIT(OVRES
));
795 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
799 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
800 * - The buffer is either valid for CPU access, else NULL
801 * - If the buffer is valid, so is its DMA address
803 * This driver manages the dma address unless message->is_dma_mapped.
806 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
808 struct device
*dev
= &as
->pdev
->dev
;
810 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
812 /* tx_buf is a const void* where we need a void * for the dma
814 void *nonconst_tx
= (void *)xfer
->tx_buf
;
816 xfer
->tx_dma
= dma_map_single(dev
,
817 nonconst_tx
, xfer
->len
,
819 if (dma_mapping_error(dev
, xfer
->tx_dma
))
823 xfer
->rx_dma
= dma_map_single(dev
,
824 xfer
->rx_buf
, xfer
->len
,
826 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
828 dma_unmap_single(dev
,
829 xfer
->tx_dma
, xfer
->len
,
837 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
838 struct spi_transfer
*xfer
)
840 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
841 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
842 xfer
->len
, DMA_TO_DEVICE
);
843 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
844 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
845 xfer
->len
, DMA_FROM_DEVICE
);
848 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
850 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
855 * Must update "current_remaining_bytes" to keep track of data
859 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
863 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
866 if (xfer
->bits_per_word
> 8) {
867 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
868 *rxp16
= spi_readl(as
, RDR
);
870 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
871 *rxp
= spi_readl(as
, RDR
);
876 if (xfer
->bits_per_word
> 8) {
877 as
->current_remaining_bytes
-= 2;
878 if (as
->current_remaining_bytes
< 0)
879 as
->current_remaining_bytes
= 0;
881 as
->current_remaining_bytes
--;
887 * No need for locking in this Interrupt handler: done_status is the
888 * only information modified.
891 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
893 struct spi_master
*master
= dev_id
;
894 struct atmel_spi
*as
= spi_master_get_devdata(master
);
895 u32 status
, pending
, imr
;
896 struct spi_transfer
*xfer
;
899 imr
= spi_readl(as
, IMR
);
900 status
= spi_readl(as
, SR
);
901 pending
= status
& imr
;
903 if (pending
& SPI_BIT(OVRES
)) {
905 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
906 dev_warn(master
->dev
.parent
, "overrun\n");
909 * When we get an overrun, we disregard the current
910 * transfer. Data will not be copied back from any
911 * bounce buffer and msg->actual_len will not be
912 * updated with the last xfer.
914 * We will also not process any remaning transfers in
917 as
->done_status
= -EIO
;
920 /* Clear any overrun happening while cleaning up */
923 complete(&as
->xfer_completion
);
925 } else if (pending
& SPI_BIT(RDRF
)) {
928 if (as
->current_remaining_bytes
) {
930 xfer
= as
->current_transfer
;
931 atmel_spi_pump_pio_data(as
, xfer
);
932 if (!as
->current_remaining_bytes
)
933 spi_writel(as
, IDR
, pending
);
935 complete(&as
->xfer_completion
);
938 atmel_spi_unlock(as
);
940 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
942 spi_writel(as
, IDR
, pending
);
949 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
951 struct spi_master
*master
= dev_id
;
952 struct atmel_spi
*as
= spi_master_get_devdata(master
);
953 u32 status
, pending
, imr
;
956 imr
= spi_readl(as
, IMR
);
957 status
= spi_readl(as
, SR
);
958 pending
= status
& imr
;
960 if (pending
& SPI_BIT(OVRES
)) {
964 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
967 /* Clear any overrun happening while cleaning up */
970 as
->done_status
= -EIO
;
972 complete(&as
->xfer_completion
);
974 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
977 spi_writel(as
, IDR
, pending
);
979 complete(&as
->xfer_completion
);
985 static int atmel_spi_setup(struct spi_device
*spi
)
987 struct atmel_spi
*as
;
988 struct atmel_spi_device
*asd
;
990 unsigned int bits
= spi
->bits_per_word
;
991 unsigned int npcs_pin
;
994 as
= spi_master_get_devdata(spi
->master
);
996 if (spi
->chip_select
> spi
->master
->num_chipselect
) {
998 "setup: invalid chipselect %u (%u defined)\n",
999 spi
->chip_select
, spi
->master
->num_chipselect
);
1003 /* see notes above re chipselect */
1004 if (!atmel_spi_is_v2(as
)
1005 && spi
->chip_select
== 0
1006 && (spi
->mode
& SPI_CS_HIGH
)) {
1007 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
1011 csr
= SPI_BF(BITS
, bits
- 8);
1012 if (spi
->mode
& SPI_CPOL
)
1013 csr
|= SPI_BIT(CPOL
);
1014 if (!(spi
->mode
& SPI_CPHA
))
1015 csr
|= SPI_BIT(NCPHA
);
1017 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1019 * DLYBCT would add delays between words, slowing down transfers.
1020 * It could potentially be useful to cope with DMA bottlenecks, but
1021 * in those cases it's probably best to just use a lower bitrate.
1023 csr
|= SPI_BF(DLYBS
, 0);
1024 csr
|= SPI_BF(DLYBCT
, 0);
1026 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1027 npcs_pin
= (unsigned int)spi
->controller_data
;
1029 if (gpio_is_valid(spi
->cs_gpio
))
1030 npcs_pin
= spi
->cs_gpio
;
1032 asd
= spi
->controller_state
;
1034 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1038 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
1044 asd
->npcs_pin
= npcs_pin
;
1045 spi
->controller_state
= asd
;
1046 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
1052 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1053 bits
, spi
->mode
, spi
->chip_select
, csr
);
1055 if (!atmel_spi_is_v2(as
))
1056 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1061 static int atmel_spi_one_transfer(struct spi_master
*master
,
1062 struct spi_message
*msg
,
1063 struct spi_transfer
*xfer
)
1065 struct atmel_spi
*as
;
1066 struct spi_device
*spi
= msg
->spi
;
1069 struct atmel_spi_device
*asd
;
1073 as
= spi_master_get_devdata(master
);
1075 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1076 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1080 if (xfer
->bits_per_word
) {
1081 asd
= spi
->controller_state
;
1082 bits
= (asd
->csr
>> 4) & 0xf;
1083 if (bits
!= xfer
->bits_per_word
- 8) {
1085 "you can't yet change bits_per_word in transfers\n");
1086 return -ENOPROTOOPT
;
1090 if (xfer
->bits_per_word
> 8) {
1091 if (xfer
->len
% 2) {
1093 "buffer len should be 16 bits aligned\n");
1099 * DMA map early, for performance (empties dcache ASAP) and
1100 * better fault reporting.
1102 if ((!msg
->is_dma_mapped
)
1103 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
)) {
1104 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1108 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1110 as
->done_status
= 0;
1111 as
->current_transfer
= xfer
;
1112 as
->current_remaining_bytes
= xfer
->len
;
1113 while (as
->current_remaining_bytes
) {
1114 reinit_completion(&as
->xfer_completion
);
1117 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1118 } else if (atmel_spi_use_dma(as
, xfer
)) {
1119 len
= as
->current_remaining_bytes
;
1120 ret
= atmel_spi_next_xfer_dma_submit(master
,
1124 "unable to use DMA, fallback to PIO\n");
1125 atmel_spi_next_xfer_pio(master
, xfer
);
1127 as
->current_remaining_bytes
-= len
;
1130 atmel_spi_next_xfer_pio(master
, xfer
);
1133 ret
= wait_for_completion_timeout(&as
->xfer_completion
,
1135 if (WARN_ON(ret
== 0)) {
1137 "spi trasfer timeout, err %d\n", ret
);
1138 as
->done_status
= -EIO
;
1143 if (as
->done_status
)
1147 if (as
->done_status
) {
1149 dev_warn(master
->dev
.parent
,
1150 "overrun (%u/%u remaining)\n",
1151 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1154 * Clean up DMA registers and make sure the data
1155 * registers are empty.
1157 spi_writel(as
, RNCR
, 0);
1158 spi_writel(as
, TNCR
, 0);
1159 spi_writel(as
, RCR
, 0);
1160 spi_writel(as
, TCR
, 0);
1161 for (timeout
= 1000; timeout
; timeout
--)
1162 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1165 dev_warn(master
->dev
.parent
,
1166 "timeout waiting for TXEMPTY");
1167 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1170 /* Clear any overrun happening while cleaning up */
1173 } else if (atmel_spi_use_dma(as
, xfer
)) {
1174 atmel_spi_stop_dma(as
);
1177 if (!msg
->is_dma_mapped
1178 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1179 atmel_spi_dma_unmap_xfer(master
, xfer
);
1184 /* only update length if no error */
1185 msg
->actual_length
+= xfer
->len
;
1188 if (!msg
->is_dma_mapped
1189 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1190 atmel_spi_dma_unmap_xfer(master
, xfer
);
1192 if (xfer
->delay_usecs
)
1193 udelay(xfer
->delay_usecs
);
1195 if (xfer
->cs_change
) {
1196 if (list_is_last(&xfer
->transfer_list
,
1200 as
->cs_active
= !as
->cs_active
;
1202 cs_activate(as
, msg
->spi
);
1204 cs_deactivate(as
, msg
->spi
);
1211 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1212 struct spi_message
*msg
)
1214 struct atmel_spi
*as
;
1215 struct spi_transfer
*xfer
;
1216 struct spi_device
*spi
= msg
->spi
;
1219 as
= spi_master_get_devdata(master
);
1221 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1222 msg
, dev_name(&spi
->dev
));
1224 if (unlikely(list_empty(&msg
->transfers
)))
1228 cs_activate(as
, spi
);
1230 as
->cs_active
= true;
1231 as
->keep_cs
= false;
1234 msg
->actual_length
= 0;
1236 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1237 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1243 atmel_spi_disable_pdc_transfer(as
);
1245 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1247 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1249 xfer
->tx_buf
, xfer
->tx_dma
,
1250 xfer
->rx_buf
, xfer
->rx_dma
);
1255 cs_deactivate(as
, msg
->spi
);
1257 atmel_spi_unlock(as
);
1259 msg
->status
= as
->done_status
;
1260 spi_finalize_current_message(spi
->master
);
1265 static void atmel_spi_cleanup(struct spi_device
*spi
)
1267 struct atmel_spi_device
*asd
= spi
->controller_state
;
1268 unsigned gpio
= (unsigned) spi
->controller_data
;
1273 spi
->controller_state
= NULL
;
1278 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1280 return spi_readl(as
, VERSION
) & 0x00000fff;
1283 static void atmel_get_caps(struct atmel_spi
*as
)
1285 unsigned int version
;
1287 version
= atmel_get_version(as
);
1288 dev_info(&as
->pdev
->dev
, "version: 0x%x\n", version
);
1290 as
->caps
.is_spi2
= version
> 0x121;
1291 as
->caps
.has_wdrbt
= version
>= 0x210;
1292 as
->caps
.has_dma_support
= version
>= 0x212;
1295 /*-------------------------------------------------------------------------*/
1297 static int atmel_spi_probe(struct platform_device
*pdev
)
1299 struct resource
*regs
;
1303 struct spi_master
*master
;
1304 struct atmel_spi
*as
;
1306 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1310 irq
= platform_get_irq(pdev
, 0);
1314 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1316 return PTR_ERR(clk
);
1318 /* setup spi core then atmel-specific driver state */
1320 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1324 /* the spi->mode bits understood by this driver: */
1325 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1326 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1327 master
->dev
.of_node
= pdev
->dev
.of_node
;
1328 master
->bus_num
= pdev
->id
;
1329 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1330 master
->setup
= atmel_spi_setup
;
1331 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1332 master
->cleanup
= atmel_spi_cleanup
;
1333 platform_set_drvdata(pdev
, master
);
1335 as
= spi_master_get_devdata(master
);
1338 * Scratch buffer is used for throwaway rx and tx data.
1339 * It's coherent to minimize dcache pollution.
1341 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
1342 &as
->buffer_dma
, GFP_KERNEL
);
1346 spin_lock_init(&as
->lock
);
1349 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1350 if (IS_ERR(as
->regs
)) {
1351 ret
= PTR_ERR(as
->regs
);
1352 goto out_free_buffer
;
1354 as
->phybase
= regs
->start
;
1358 init_completion(&as
->xfer_completion
);
1362 as
->use_dma
= false;
1363 as
->use_pdc
= false;
1364 if (as
->caps
.has_dma_support
) {
1365 if (atmel_spi_configure_dma(as
) == 0)
1371 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1372 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1375 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1376 0, dev_name(&pdev
->dev
), master
);
1378 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1379 0, dev_name(&pdev
->dev
), master
);
1382 goto out_unmap_regs
;
1384 /* Initialize the hardware */
1385 ret
= clk_prepare_enable(clk
);
1388 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1389 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1390 if (as
->caps
.has_wdrbt
) {
1391 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1394 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1398 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1399 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1402 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1403 (unsigned long)regs
->start
, irq
);
1405 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1413 atmel_spi_release_dma(as
);
1415 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1416 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1417 clk_disable_unprepare(clk
);
1421 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1424 spi_master_put(master
);
1428 static int atmel_spi_remove(struct platform_device
*pdev
)
1430 struct spi_master
*master
= platform_get_drvdata(pdev
);
1431 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1433 /* reset the hardware and block queue progress */
1434 spin_lock_irq(&as
->lock
);
1436 atmel_spi_stop_dma(as
);
1437 atmel_spi_release_dma(as
);
1440 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1441 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1443 spin_unlock_irq(&as
->lock
);
1445 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1448 clk_disable_unprepare(as
->clk
);
1453 #ifdef CONFIG_PM_SLEEP
1454 static int atmel_spi_suspend(struct device
*dev
)
1456 struct spi_master
*master
= dev_get_drvdata(dev
);
1457 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1459 clk_disable_unprepare(as
->clk
);
1463 static int atmel_spi_resume(struct device
*dev
)
1465 struct spi_master
*master
= dev_get_drvdata(dev
);
1466 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1468 clk_prepare_enable(as
->clk
);
1472 static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops
, atmel_spi_suspend
, atmel_spi_resume
);
1474 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1476 #define ATMEL_SPI_PM_OPS NULL
1479 #if defined(CONFIG_OF)
1480 static const struct of_device_id atmel_spi_dt_ids
[] = {
1481 { .compatible
= "atmel,at91rm9200-spi" },
1485 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1488 static struct platform_driver atmel_spi_driver
= {
1490 .name
= "atmel_spi",
1491 .owner
= THIS_MODULE
,
1492 .pm
= ATMEL_SPI_PM_OPS
,
1493 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1495 .probe
= atmel_spi_probe
,
1496 .remove
= atmel_spi_remove
,
1498 module_platform_driver(atmel_spi_driver
);
1500 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1501 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1502 MODULE_LICENSE("GPL");
1503 MODULE_ALIAS("platform:atmel_spi");