2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head
*l
)
87 list_for_each_entry_safe(page
, page2
, l
, lru
) {
88 if (unlikely(PageHuge(page
))) {
89 putback_active_hugepage(page
);
93 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
94 page_is_file_cache(page
));
95 if (unlikely(isolated_balloon_page(page
)))
96 balloon_page_putback(page
);
98 putback_lru_page(page
);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
106 unsigned long addr
, void *old
)
108 struct mm_struct
*mm
= vma
->vm_mm
;
114 if (unlikely(PageHuge(new))) {
115 ptep
= huge_pte_offset(mm
, addr
);
118 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
120 pmd
= mm_find_pmd(mm
, addr
);
123 if (pmd_trans_huge(*pmd
))
126 ptep
= pte_offset_map(pmd
, addr
);
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
133 ptl
= pte_lockptr(mm
, pmd
);
138 if (!is_swap_pte(pte
))
141 entry
= pte_to_swp_entry(pte
);
143 if (!is_migration_entry(entry
) ||
144 migration_entry_to_page(entry
) != old
)
148 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
149 if (pte_swp_soft_dirty(*ptep
))
150 pte
= pte_mksoft_dirty(pte
);
151 if (is_write_migration_entry(entry
))
152 pte
= pte_mkwrite(pte
);
153 #ifdef CONFIG_HUGETLB_PAGE
155 pte
= pte_mkhuge(pte
);
156 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
159 flush_dcache_page(new);
160 set_pte_at(mm
, addr
, ptep
, pte
);
164 hugepage_add_anon_rmap(new, vma
, addr
);
167 } else if (PageAnon(new))
168 page_add_anon_rmap(new, vma
, addr
);
170 page_add_file_rmap(new);
172 /* No need to invalidate - it was non-present before */
173 update_mmu_cache(vma
, addr
, ptep
);
175 pte_unmap_unlock(ptep
, ptl
);
181 * Get rid of all migration entries and replace them by
182 * references to the indicated page.
184 static void remove_migration_ptes(struct page
*old
, struct page
*new)
186 struct rmap_walk_control rwc
= {
187 .rmap_one
= remove_migration_pte
,
191 rmap_walk(new, &rwc
);
195 * Something used the pte of a page under migration. We need to
196 * get to the page and wait until migration is finished.
197 * When we return from this function the fault will be retried.
199 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
208 if (!is_swap_pte(pte
))
211 entry
= pte_to_swp_entry(pte
);
212 if (!is_migration_entry(entry
))
215 page
= migration_entry_to_page(entry
);
218 * Once radix-tree replacement of page migration started, page_count
219 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 * against a page without get_page().
221 * So, we use get_page_unless_zero(), here. Even failed, page fault
224 if (!get_page_unless_zero(page
))
226 pte_unmap_unlock(ptep
, ptl
);
227 wait_on_page_locked(page
);
231 pte_unmap_unlock(ptep
, ptl
);
234 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
235 unsigned long address
)
237 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
238 pte_t
*ptep
= pte_offset_map(pmd
, address
);
239 __migration_entry_wait(mm
, ptep
, ptl
);
242 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
243 struct mm_struct
*mm
, pte_t
*pte
)
245 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
246 __migration_entry_wait(mm
, pte
, ptl
);
250 /* Returns true if all buffers are successfully locked */
251 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
252 enum migrate_mode mode
)
254 struct buffer_head
*bh
= head
;
256 /* Simple case, sync compaction */
257 if (mode
!= MIGRATE_ASYNC
) {
261 bh
= bh
->b_this_page
;
263 } while (bh
!= head
);
268 /* async case, we cannot block on lock_buffer so use trylock_buffer */
271 if (!trylock_buffer(bh
)) {
273 * We failed to lock the buffer and cannot stall in
274 * async migration. Release the taken locks
276 struct buffer_head
*failed_bh
= bh
;
279 while (bh
!= failed_bh
) {
282 bh
= bh
->b_this_page
;
287 bh
= bh
->b_this_page
;
288 } while (bh
!= head
);
292 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
293 enum migrate_mode mode
)
297 #endif /* CONFIG_BLOCK */
300 * Replace the page in the mapping.
302 * The number of remaining references must be:
303 * 1 for anonymous pages without a mapping
304 * 2 for pages with a mapping
305 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
307 int migrate_page_move_mapping(struct address_space
*mapping
,
308 struct page
*newpage
, struct page
*page
,
309 struct buffer_head
*head
, enum migrate_mode mode
,
312 int expected_count
= 1 + extra_count
;
316 /* Anonymous page without mapping */
317 if (page_count(page
) != expected_count
)
319 return MIGRATEPAGE_SUCCESS
;
322 spin_lock_irq(&mapping
->tree_lock
);
324 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
327 expected_count
+= 1 + page_has_private(page
);
328 if (page_count(page
) != expected_count
||
329 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
330 spin_unlock_irq(&mapping
->tree_lock
);
334 if (!page_freeze_refs(page
, expected_count
)) {
335 spin_unlock_irq(&mapping
->tree_lock
);
340 * In the async migration case of moving a page with buffers, lock the
341 * buffers using trylock before the mapping is moved. If the mapping
342 * was moved, we later failed to lock the buffers and could not move
343 * the mapping back due to an elevated page count, we would have to
344 * block waiting on other references to be dropped.
346 if (mode
== MIGRATE_ASYNC
&& head
&&
347 !buffer_migrate_lock_buffers(head
, mode
)) {
348 page_unfreeze_refs(page
, expected_count
);
349 spin_unlock_irq(&mapping
->tree_lock
);
354 * Now we know that no one else is looking at the page.
356 get_page(newpage
); /* add cache reference */
357 if (PageSwapCache(page
)) {
358 SetPageSwapCache(newpage
);
359 set_page_private(newpage
, page_private(page
));
362 radix_tree_replace_slot(pslot
, newpage
);
365 * Drop cache reference from old page by unfreezing
366 * to one less reference.
367 * We know this isn't the last reference.
369 page_unfreeze_refs(page
, expected_count
- 1);
372 * If moved to a different zone then also account
373 * the page for that zone. Other VM counters will be
374 * taken care of when we establish references to the
375 * new page and drop references to the old page.
377 * Note that anonymous pages are accounted for
378 * via NR_FILE_PAGES and NR_ANON_PAGES if they
379 * are mapped to swap space.
381 __dec_zone_page_state(page
, NR_FILE_PAGES
);
382 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
383 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
384 __dec_zone_page_state(page
, NR_SHMEM
);
385 __inc_zone_page_state(newpage
, NR_SHMEM
);
387 spin_unlock_irq(&mapping
->tree_lock
);
389 return MIGRATEPAGE_SUCCESS
;
393 * The expected number of remaining references is the same as that
394 * of migrate_page_move_mapping().
396 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
397 struct page
*newpage
, struct page
*page
)
403 if (page_count(page
) != 1)
405 return MIGRATEPAGE_SUCCESS
;
408 spin_lock_irq(&mapping
->tree_lock
);
410 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
413 expected_count
= 2 + page_has_private(page
);
414 if (page_count(page
) != expected_count
||
415 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
416 spin_unlock_irq(&mapping
->tree_lock
);
420 if (!page_freeze_refs(page
, expected_count
)) {
421 spin_unlock_irq(&mapping
->tree_lock
);
427 radix_tree_replace_slot(pslot
, newpage
);
429 page_unfreeze_refs(page
, expected_count
- 1);
431 spin_unlock_irq(&mapping
->tree_lock
);
432 return MIGRATEPAGE_SUCCESS
;
436 * Gigantic pages are so large that we do not guarantee that page++ pointer
437 * arithmetic will work across the entire page. We need something more
440 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
444 struct page
*dst_base
= dst
;
445 struct page
*src_base
= src
;
447 for (i
= 0; i
< nr_pages
; ) {
449 copy_highpage(dst
, src
);
452 dst
= mem_map_next(dst
, dst_base
, i
);
453 src
= mem_map_next(src
, src_base
, i
);
457 static void copy_huge_page(struct page
*dst
, struct page
*src
)
464 struct hstate
*h
= page_hstate(src
);
465 nr_pages
= pages_per_huge_page(h
);
467 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
468 __copy_gigantic_page(dst
, src
, nr_pages
);
473 BUG_ON(!PageTransHuge(src
));
474 nr_pages
= hpage_nr_pages(src
);
477 for (i
= 0; i
< nr_pages
; i
++) {
479 copy_highpage(dst
+ i
, src
+ i
);
484 * Copy the page to its new location
486 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
490 if (PageHuge(page
) || PageTransHuge(page
))
491 copy_huge_page(newpage
, page
);
493 copy_highpage(newpage
, page
);
496 SetPageError(newpage
);
497 if (PageReferenced(page
))
498 SetPageReferenced(newpage
);
499 if (PageUptodate(page
))
500 SetPageUptodate(newpage
);
501 if (TestClearPageActive(page
)) {
502 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
503 SetPageActive(newpage
);
504 } else if (TestClearPageUnevictable(page
))
505 SetPageUnevictable(newpage
);
506 if (PageChecked(page
))
507 SetPageChecked(newpage
);
508 if (PageMappedToDisk(page
))
509 SetPageMappedToDisk(newpage
);
511 if (PageDirty(page
)) {
512 clear_page_dirty_for_io(page
);
514 * Want to mark the page and the radix tree as dirty, and
515 * redo the accounting that clear_page_dirty_for_io undid,
516 * but we can't use set_page_dirty because that function
517 * is actually a signal that all of the page has become dirty.
518 * Whereas only part of our page may be dirty.
520 if (PageSwapBacked(page
))
521 SetPageDirty(newpage
);
523 __set_page_dirty_nobuffers(newpage
);
527 * Copy NUMA information to the new page, to prevent over-eager
528 * future migrations of this same page.
530 cpupid
= page_cpupid_xchg_last(page
, -1);
531 page_cpupid_xchg_last(newpage
, cpupid
);
533 mlock_migrate_page(newpage
, page
);
534 ksm_migrate_page(newpage
, page
);
536 * Please do not reorder this without considering how mm/ksm.c's
537 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
539 ClearPageSwapCache(page
);
540 ClearPagePrivate(page
);
541 set_page_private(page
, 0);
544 * If any waiters have accumulated on the new page then
547 if (PageWriteback(newpage
))
548 end_page_writeback(newpage
);
551 /************************************************************
552 * Migration functions
553 ***********************************************************/
556 * Common logic to directly migrate a single page suitable for
557 * pages that do not use PagePrivate/PagePrivate2.
559 * Pages are locked upon entry and exit.
561 int migrate_page(struct address_space
*mapping
,
562 struct page
*newpage
, struct page
*page
,
563 enum migrate_mode mode
)
567 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
569 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
571 if (rc
!= MIGRATEPAGE_SUCCESS
)
574 migrate_page_copy(newpage
, page
);
575 return MIGRATEPAGE_SUCCESS
;
577 EXPORT_SYMBOL(migrate_page
);
581 * Migration function for pages with buffers. This function can only be used
582 * if the underlying filesystem guarantees that no other references to "page"
585 int buffer_migrate_page(struct address_space
*mapping
,
586 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
588 struct buffer_head
*bh
, *head
;
591 if (!page_has_buffers(page
))
592 return migrate_page(mapping
, newpage
, page
, mode
);
594 head
= page_buffers(page
);
596 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
598 if (rc
!= MIGRATEPAGE_SUCCESS
)
602 * In the async case, migrate_page_move_mapping locked the buffers
603 * with an IRQ-safe spinlock held. In the sync case, the buffers
604 * need to be locked now
606 if (mode
!= MIGRATE_ASYNC
)
607 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
609 ClearPagePrivate(page
);
610 set_page_private(newpage
, page_private(page
));
611 set_page_private(page
, 0);
617 set_bh_page(bh
, newpage
, bh_offset(bh
));
618 bh
= bh
->b_this_page
;
620 } while (bh
!= head
);
622 SetPagePrivate(newpage
);
624 migrate_page_copy(newpage
, page
);
630 bh
= bh
->b_this_page
;
632 } while (bh
!= head
);
634 return MIGRATEPAGE_SUCCESS
;
636 EXPORT_SYMBOL(buffer_migrate_page
);
640 * Writeback a page to clean the dirty state
642 static int writeout(struct address_space
*mapping
, struct page
*page
)
644 struct writeback_control wbc
= {
645 .sync_mode
= WB_SYNC_NONE
,
648 .range_end
= LLONG_MAX
,
653 if (!mapping
->a_ops
->writepage
)
654 /* No write method for the address space */
657 if (!clear_page_dirty_for_io(page
))
658 /* Someone else already triggered a write */
662 * A dirty page may imply that the underlying filesystem has
663 * the page on some queue. So the page must be clean for
664 * migration. Writeout may mean we loose the lock and the
665 * page state is no longer what we checked for earlier.
666 * At this point we know that the migration attempt cannot
669 remove_migration_ptes(page
, page
);
671 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
673 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
674 /* unlocked. Relock */
677 return (rc
< 0) ? -EIO
: -EAGAIN
;
681 * Default handling if a filesystem does not provide a migration function.
683 static int fallback_migrate_page(struct address_space
*mapping
,
684 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
686 if (PageDirty(page
)) {
687 /* Only writeback pages in full synchronous migration */
688 if (mode
!= MIGRATE_SYNC
)
690 return writeout(mapping
, page
);
694 * Buffers may be managed in a filesystem specific way.
695 * We must have no buffers or drop them.
697 if (page_has_private(page
) &&
698 !try_to_release_page(page
, GFP_KERNEL
))
701 return migrate_page(mapping
, newpage
, page
, mode
);
705 * Move a page to a newly allocated page
706 * The page is locked and all ptes have been successfully removed.
708 * The new page will have replaced the old page if this function
713 * MIGRATEPAGE_SUCCESS - success
715 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
716 int remap_swapcache
, enum migrate_mode mode
)
718 struct address_space
*mapping
;
722 * Block others from accessing the page when we get around to
723 * establishing additional references. We are the only one
724 * holding a reference to the new page at this point.
726 if (!trylock_page(newpage
))
729 /* Prepare mapping for the new page.*/
730 newpage
->index
= page
->index
;
731 newpage
->mapping
= page
->mapping
;
732 if (PageSwapBacked(page
))
733 SetPageSwapBacked(newpage
);
735 mapping
= page_mapping(page
);
737 rc
= migrate_page(mapping
, newpage
, page
, mode
);
738 else if (mapping
->a_ops
->migratepage
)
740 * Most pages have a mapping and most filesystems provide a
741 * migratepage callback. Anonymous pages are part of swap
742 * space which also has its own migratepage callback. This
743 * is the most common path for page migration.
745 rc
= mapping
->a_ops
->migratepage(mapping
,
746 newpage
, page
, mode
);
748 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
750 if (rc
!= MIGRATEPAGE_SUCCESS
) {
751 newpage
->mapping
= NULL
;
754 remove_migration_ptes(page
, newpage
);
755 page
->mapping
= NULL
;
758 unlock_page(newpage
);
763 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
764 int force
, enum migrate_mode mode
)
767 int remap_swapcache
= 1;
768 struct mem_cgroup
*mem
;
769 struct anon_vma
*anon_vma
= NULL
;
771 if (!trylock_page(page
)) {
772 if (!force
|| mode
== MIGRATE_ASYNC
)
776 * It's not safe for direct compaction to call lock_page.
777 * For example, during page readahead pages are added locked
778 * to the LRU. Later, when the IO completes the pages are
779 * marked uptodate and unlocked. However, the queueing
780 * could be merging multiple pages for one bio (e.g.
781 * mpage_readpages). If an allocation happens for the
782 * second or third page, the process can end up locking
783 * the same page twice and deadlocking. Rather than
784 * trying to be clever about what pages can be locked,
785 * avoid the use of lock_page for direct compaction
788 if (current
->flags
& PF_MEMALLOC
)
794 /* charge against new page */
795 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
797 if (PageWriteback(page
)) {
799 * Only in the case of a full synchronous migration is it
800 * necessary to wait for PageWriteback. In the async case,
801 * the retry loop is too short and in the sync-light case,
802 * the overhead of stalling is too much
804 if (mode
!= MIGRATE_SYNC
) {
810 wait_on_page_writeback(page
);
813 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
814 * we cannot notice that anon_vma is freed while we migrates a page.
815 * This get_anon_vma() delays freeing anon_vma pointer until the end
816 * of migration. File cache pages are no problem because of page_lock()
817 * File Caches may use write_page() or lock_page() in migration, then,
818 * just care Anon page here.
820 if (PageAnon(page
) && !PageKsm(page
)) {
822 * Only page_lock_anon_vma_read() understands the subtleties of
823 * getting a hold on an anon_vma from outside one of its mms.
825 anon_vma
= page_get_anon_vma(page
);
830 } else if (PageSwapCache(page
)) {
832 * We cannot be sure that the anon_vma of an unmapped
833 * swapcache page is safe to use because we don't
834 * know in advance if the VMA that this page belonged
835 * to still exists. If the VMA and others sharing the
836 * data have been freed, then the anon_vma could
837 * already be invalid.
839 * To avoid this possibility, swapcache pages get
840 * migrated but are not remapped when migration
849 if (unlikely(balloon_page_movable(page
))) {
851 * A ballooned page does not need any special attention from
852 * physical to virtual reverse mapping procedures.
853 * Skip any attempt to unmap PTEs or to remap swap cache,
854 * in order to avoid burning cycles at rmap level, and perform
855 * the page migration right away (proteced by page lock).
857 rc
= balloon_page_migrate(newpage
, page
, mode
);
862 * Corner case handling:
863 * 1. When a new swap-cache page is read into, it is added to the LRU
864 * and treated as swapcache but it has no rmap yet.
865 * Calling try_to_unmap() against a page->mapping==NULL page will
866 * trigger a BUG. So handle it here.
867 * 2. An orphaned page (see truncate_complete_page) might have
868 * fs-private metadata. The page can be picked up due to memory
869 * offlining. Everywhere else except page reclaim, the page is
870 * invisible to the vm, so the page can not be migrated. So try to
871 * free the metadata, so the page can be freed.
873 if (!page
->mapping
) {
874 VM_BUG_ON_PAGE(PageAnon(page
), page
);
875 if (page_has_private(page
)) {
876 try_to_free_buffers(page
);
882 /* Establish migration ptes or remove ptes */
883 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
886 if (!page_mapped(page
))
887 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
889 if (rc
&& remap_swapcache
)
890 remove_migration_ptes(page
, page
);
892 /* Drop an anon_vma reference if we took one */
894 put_anon_vma(anon_vma
);
897 mem_cgroup_end_migration(mem
, page
, newpage
,
898 (rc
== MIGRATEPAGE_SUCCESS
||
899 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
906 * Obtain the lock on page, remove all ptes and migrate the page
907 * to the newly allocated page in newpage.
909 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
910 struct page
*page
, int force
, enum migrate_mode mode
)
914 struct page
*newpage
= get_new_page(page
, private, &result
);
919 if (page_count(page
) == 1) {
920 /* page was freed from under us. So we are done. */
924 if (unlikely(PageTransHuge(page
)))
925 if (unlikely(split_huge_page(page
)))
928 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
930 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
932 * A ballooned page has been migrated already.
933 * Now, it's the time to wrap-up counters,
934 * handle the page back to Buddy and return.
936 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
937 page_is_file_cache(page
));
938 balloon_page_free(page
);
939 return MIGRATEPAGE_SUCCESS
;
944 * A page that has been migrated has all references
945 * removed and will be freed. A page that has not been
946 * migrated will have kepts its references and be
949 list_del(&page
->lru
);
950 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
951 page_is_file_cache(page
));
952 putback_lru_page(page
);
955 * Move the new page to the LRU. If migration was not successful
956 * then this will free the page.
958 putback_lru_page(newpage
);
963 *result
= page_to_nid(newpage
);
969 * Counterpart of unmap_and_move_page() for hugepage migration.
971 * This function doesn't wait the completion of hugepage I/O
972 * because there is no race between I/O and migration for hugepage.
973 * Note that currently hugepage I/O occurs only in direct I/O
974 * where no lock is held and PG_writeback is irrelevant,
975 * and writeback status of all subpages are counted in the reference
976 * count of the head page (i.e. if all subpages of a 2MB hugepage are
977 * under direct I/O, the reference of the head page is 512 and a bit more.)
978 * This means that when we try to migrate hugepage whose subpages are
979 * doing direct I/O, some references remain after try_to_unmap() and
980 * hugepage migration fails without data corruption.
982 * There is also no race when direct I/O is issued on the page under migration,
983 * because then pte is replaced with migration swap entry and direct I/O code
984 * will wait in the page fault for migration to complete.
986 static int unmap_and_move_huge_page(new_page_t get_new_page
,
987 unsigned long private, struct page
*hpage
,
988 int force
, enum migrate_mode mode
)
992 struct page
*new_hpage
;
993 struct anon_vma
*anon_vma
= NULL
;
996 * Movability of hugepages depends on architectures and hugepage size.
997 * This check is necessary because some callers of hugepage migration
998 * like soft offline and memory hotremove don't walk through page
999 * tables or check whether the hugepage is pmd-based or not before
1000 * kicking migration.
1002 if (!hugepage_migration_support(page_hstate(hpage
))) {
1003 putback_active_hugepage(hpage
);
1007 new_hpage
= get_new_page(hpage
, private, &result
);
1013 if (!trylock_page(hpage
)) {
1014 if (!force
|| mode
!= MIGRATE_SYNC
)
1019 if (PageAnon(hpage
))
1020 anon_vma
= page_get_anon_vma(hpage
);
1022 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1024 if (!page_mapped(hpage
))
1025 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1028 remove_migration_ptes(hpage
, hpage
);
1031 put_anon_vma(anon_vma
);
1034 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1039 putback_active_hugepage(hpage
);
1040 put_page(new_hpage
);
1045 *result
= page_to_nid(new_hpage
);
1051 * migrate_pages - migrate the pages specified in a list, to the free pages
1052 * supplied as the target for the page migration
1054 * @from: The list of pages to be migrated.
1055 * @get_new_page: The function used to allocate free pages to be used
1056 * as the target of the page migration.
1057 * @private: Private data to be passed on to get_new_page()
1058 * @mode: The migration mode that specifies the constraints for
1059 * page migration, if any.
1060 * @reason: The reason for page migration.
1062 * The function returns after 10 attempts or if no pages are movable any more
1063 * because the list has become empty or no retryable pages exist any more.
1064 * The caller should call putback_lru_pages() to return pages to the LRU
1065 * or free list only if ret != 0.
1067 * Returns the number of pages that were not migrated, or an error code.
1069 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1070 unsigned long private, enum migrate_mode mode
, int reason
)
1074 int nr_succeeded
= 0;
1078 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1082 current
->flags
|= PF_SWAPWRITE
;
1084 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1087 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1091 rc
= unmap_and_move_huge_page(get_new_page
,
1092 private, page
, pass
> 2, mode
);
1094 rc
= unmap_and_move(get_new_page
, private,
1095 page
, pass
> 2, mode
);
1103 case MIGRATEPAGE_SUCCESS
:
1108 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1109 * unlike -EAGAIN case, the failed page is
1110 * removed from migration page list and not
1111 * retried in the next outer loop.
1118 rc
= nr_failed
+ retry
;
1121 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1123 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1124 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1127 current
->flags
&= ~PF_SWAPWRITE
;
1134 * Move a list of individual pages
1136 struct page_to_node
{
1143 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1146 struct page_to_node
*pm
= (struct page_to_node
*)private;
1148 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1151 if (pm
->node
== MAX_NUMNODES
)
1154 *result
= &pm
->status
;
1157 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1160 return alloc_pages_exact_node(pm
->node
,
1161 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1165 * Move a set of pages as indicated in the pm array. The addr
1166 * field must be set to the virtual address of the page to be moved
1167 * and the node number must contain a valid target node.
1168 * The pm array ends with node = MAX_NUMNODES.
1170 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1171 struct page_to_node
*pm
,
1175 struct page_to_node
*pp
;
1176 LIST_HEAD(pagelist
);
1178 down_read(&mm
->mmap_sem
);
1181 * Build a list of pages to migrate
1183 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1184 struct vm_area_struct
*vma
;
1188 vma
= find_vma(mm
, pp
->addr
);
1189 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1192 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1194 err
= PTR_ERR(page
);
1202 /* Use PageReserved to check for zero page */
1203 if (PageReserved(page
))
1207 err
= page_to_nid(page
);
1209 if (err
== pp
->node
)
1211 * Node already in the right place
1216 if (page_mapcount(page
) > 1 &&
1220 if (PageHuge(page
)) {
1221 isolate_huge_page(page
, &pagelist
);
1225 err
= isolate_lru_page(page
);
1227 list_add_tail(&page
->lru
, &pagelist
);
1228 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1229 page_is_file_cache(page
));
1233 * Either remove the duplicate refcount from
1234 * isolate_lru_page() or drop the page ref if it was
1243 if (!list_empty(&pagelist
)) {
1244 err
= migrate_pages(&pagelist
, new_page_node
,
1245 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1247 putback_movable_pages(&pagelist
);
1250 up_read(&mm
->mmap_sem
);
1255 * Migrate an array of page address onto an array of nodes and fill
1256 * the corresponding array of status.
1258 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1259 unsigned long nr_pages
,
1260 const void __user
* __user
*pages
,
1261 const int __user
*nodes
,
1262 int __user
*status
, int flags
)
1264 struct page_to_node
*pm
;
1265 unsigned long chunk_nr_pages
;
1266 unsigned long chunk_start
;
1270 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1277 * Store a chunk of page_to_node array in a page,
1278 * but keep the last one as a marker
1280 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1282 for (chunk_start
= 0;
1283 chunk_start
< nr_pages
;
1284 chunk_start
+= chunk_nr_pages
) {
1287 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1288 chunk_nr_pages
= nr_pages
- chunk_start
;
1290 /* fill the chunk pm with addrs and nodes from user-space */
1291 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1292 const void __user
*p
;
1296 if (get_user(p
, pages
+ j
+ chunk_start
))
1298 pm
[j
].addr
= (unsigned long) p
;
1300 if (get_user(node
, nodes
+ j
+ chunk_start
))
1304 if (node
< 0 || node
>= MAX_NUMNODES
)
1307 if (!node_state(node
, N_MEMORY
))
1311 if (!node_isset(node
, task_nodes
))
1317 /* End marker for this chunk */
1318 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1320 /* Migrate this chunk */
1321 err
= do_move_page_to_node_array(mm
, pm
,
1322 flags
& MPOL_MF_MOVE_ALL
);
1326 /* Return status information */
1327 for (j
= 0; j
< chunk_nr_pages
; j
++)
1328 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1336 free_page((unsigned long)pm
);
1342 * Determine the nodes of an array of pages and store it in an array of status.
1344 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1345 const void __user
**pages
, int *status
)
1349 down_read(&mm
->mmap_sem
);
1351 for (i
= 0; i
< nr_pages
; i
++) {
1352 unsigned long addr
= (unsigned long)(*pages
);
1353 struct vm_area_struct
*vma
;
1357 vma
= find_vma(mm
, addr
);
1358 if (!vma
|| addr
< vma
->vm_start
)
1361 page
= follow_page(vma
, addr
, 0);
1363 err
= PTR_ERR(page
);
1368 /* Use PageReserved to check for zero page */
1369 if (!page
|| PageReserved(page
))
1372 err
= page_to_nid(page
);
1380 up_read(&mm
->mmap_sem
);
1384 * Determine the nodes of a user array of pages and store it in
1385 * a user array of status.
1387 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1388 const void __user
* __user
*pages
,
1391 #define DO_PAGES_STAT_CHUNK_NR 16
1392 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1393 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1396 unsigned long chunk_nr
;
1398 chunk_nr
= nr_pages
;
1399 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1400 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1402 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1405 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1407 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1412 nr_pages
-= chunk_nr
;
1414 return nr_pages
? -EFAULT
: 0;
1418 * Move a list of pages in the address space of the currently executing
1421 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1422 const void __user
* __user
*, pages
,
1423 const int __user
*, nodes
,
1424 int __user
*, status
, int, flags
)
1426 const struct cred
*cred
= current_cred(), *tcred
;
1427 struct task_struct
*task
;
1428 struct mm_struct
*mm
;
1430 nodemask_t task_nodes
;
1433 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1436 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1439 /* Find the mm_struct */
1441 task
= pid
? find_task_by_vpid(pid
) : current
;
1446 get_task_struct(task
);
1449 * Check if this process has the right to modify the specified
1450 * process. The right exists if the process has administrative
1451 * capabilities, superuser privileges or the same
1452 * userid as the target process.
1454 tcred
= __task_cred(task
);
1455 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1456 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1457 !capable(CAP_SYS_NICE
)) {
1464 err
= security_task_movememory(task
);
1468 task_nodes
= cpuset_mems_allowed(task
);
1469 mm
= get_task_mm(task
);
1470 put_task_struct(task
);
1476 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1477 nodes
, status
, flags
);
1479 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1485 put_task_struct(task
);
1490 * Call migration functions in the vma_ops that may prepare
1491 * memory in a vm for migration. migration functions may perform
1492 * the migration for vmas that do not have an underlying page struct.
1494 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1495 const nodemask_t
*from
, unsigned long flags
)
1497 struct vm_area_struct
*vma
;
1500 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1501 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1502 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1510 #ifdef CONFIG_NUMA_BALANCING
1512 * Returns true if this is a safe migration target node for misplaced NUMA
1513 * pages. Currently it only checks the watermarks which crude
1515 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1516 unsigned long nr_migrate_pages
)
1519 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1520 struct zone
*zone
= pgdat
->node_zones
+ z
;
1522 if (!populated_zone(zone
))
1525 if (!zone_reclaimable(zone
))
1528 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1529 if (!zone_watermark_ok(zone
, 0,
1530 high_wmark_pages(zone
) +
1539 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1543 int nid
= (int) data
;
1544 struct page
*newpage
;
1546 newpage
= alloc_pages_exact_node(nid
,
1547 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1548 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1556 * page migration rate limiting control.
1557 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1558 * window of time. Default here says do not migrate more than 1280M per second.
1559 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1560 * as it is faults that reset the window, pte updates will happen unconditionally
1561 * if there has not been a fault since @pteupdate_interval_millisecs after the
1562 * throttle window closed.
1564 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1565 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1566 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1568 /* Returns true if NUMA migration is currently rate limited */
1569 bool migrate_ratelimited(int node
)
1571 pg_data_t
*pgdat
= NODE_DATA(node
);
1573 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1574 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1577 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1583 /* Returns true if the node is migrate rate-limited after the update */
1584 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1585 unsigned long nr_pages
)
1588 * Rate-limit the amount of data that is being migrated to a node.
1589 * Optimal placement is no good if the memory bus is saturated and
1590 * all the time is being spent migrating!
1592 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1593 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1594 pgdat
->numabalancing_migrate_nr_pages
= 0;
1595 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1596 msecs_to_jiffies(migrate_interval_millisecs
);
1597 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1599 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1600 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1606 * This is an unlocked non-atomic update so errors are possible.
1607 * The consequences are failing to migrate when we potentiall should
1608 * have which is not severe enough to warrant locking. If it is ever
1609 * a problem, it can be converted to a per-cpu counter.
1611 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1615 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1619 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1621 /* Avoid migrating to a node that is nearly full */
1622 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1625 if (isolate_lru_page(page
))
1629 * migrate_misplaced_transhuge_page() skips page migration's usual
1630 * check on page_count(), so we must do it here, now that the page
1631 * has been isolated: a GUP pin, or any other pin, prevents migration.
1632 * The expected page count is 3: 1 for page's mapcount and 1 for the
1633 * caller's pin and 1 for the reference taken by isolate_lru_page().
1635 if (PageTransHuge(page
) && page_count(page
) != 3) {
1636 putback_lru_page(page
);
1640 page_lru
= page_is_file_cache(page
);
1641 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1642 hpage_nr_pages(page
));
1645 * Isolating the page has taken another reference, so the
1646 * caller's reference can be safely dropped without the page
1647 * disappearing underneath us during migration.
1653 bool pmd_trans_migrating(pmd_t pmd
)
1655 struct page
*page
= pmd_page(pmd
);
1656 return PageLocked(page
);
1659 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1661 struct page
*page
= pmd_page(*pmd
);
1662 wait_on_page_locked(page
);
1666 * Attempt to migrate a misplaced page to the specified destination
1667 * node. Caller is expected to have an elevated reference count on
1668 * the page that will be dropped by this function before returning.
1670 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1673 pg_data_t
*pgdat
= NODE_DATA(node
);
1676 LIST_HEAD(migratepages
);
1679 * Don't migrate file pages that are mapped in multiple processes
1680 * with execute permissions as they are probably shared libraries.
1682 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1683 (vma
->vm_flags
& VM_EXEC
))
1687 * Rate-limit the amount of data that is being migrated to a node.
1688 * Optimal placement is no good if the memory bus is saturated and
1689 * all the time is being spent migrating!
1691 if (numamigrate_update_ratelimit(pgdat
, 1))
1694 isolated
= numamigrate_isolate_page(pgdat
, page
);
1698 list_add(&page
->lru
, &migratepages
);
1699 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1700 node
, MIGRATE_ASYNC
, MR_NUMA_MISPLACED
);
1702 if (!list_empty(&migratepages
)) {
1703 list_del(&page
->lru
);
1704 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1705 page_is_file_cache(page
));
1706 putback_lru_page(page
);
1710 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1711 BUG_ON(!list_empty(&migratepages
));
1718 #endif /* CONFIG_NUMA_BALANCING */
1720 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1722 * Migrates a THP to a given target node. page must be locked and is unlocked
1725 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1726 struct vm_area_struct
*vma
,
1727 pmd_t
*pmd
, pmd_t entry
,
1728 unsigned long address
,
1729 struct page
*page
, int node
)
1732 pg_data_t
*pgdat
= NODE_DATA(node
);
1734 struct page
*new_page
= NULL
;
1735 struct mem_cgroup
*memcg
= NULL
;
1736 int page_lru
= page_is_file_cache(page
);
1737 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1738 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1742 * Rate-limit the amount of data that is being migrated to a node.
1743 * Optimal placement is no good if the memory bus is saturated and
1744 * all the time is being spent migrating!
1746 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1749 new_page
= alloc_pages_node(node
,
1750 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1754 isolated
= numamigrate_isolate_page(pgdat
, page
);
1760 if (mm_tlb_flush_pending(mm
))
1761 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1763 /* Prepare a page as a migration target */
1764 __set_page_locked(new_page
);
1765 SetPageSwapBacked(new_page
);
1767 /* anon mapping, we can simply copy page->mapping to the new page: */
1768 new_page
->mapping
= page
->mapping
;
1769 new_page
->index
= page
->index
;
1770 migrate_page_copy(new_page
, page
);
1771 WARN_ON(PageLRU(new_page
));
1773 /* Recheck the target PMD */
1774 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1775 ptl
= pmd_lock(mm
, pmd
);
1776 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1779 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1781 /* Reverse changes made by migrate_page_copy() */
1782 if (TestClearPageActive(new_page
))
1783 SetPageActive(page
);
1784 if (TestClearPageUnevictable(new_page
))
1785 SetPageUnevictable(page
);
1786 mlock_migrate_page(page
, new_page
);
1788 unlock_page(new_page
);
1789 put_page(new_page
); /* Free it */
1791 /* Retake the callers reference and putback on LRU */
1793 putback_lru_page(page
);
1794 mod_zone_page_state(page_zone(page
),
1795 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1801 * Traditional migration needs to prepare the memcg charge
1802 * transaction early to prevent the old page from being
1803 * uncharged when installing migration entries. Here we can
1804 * save the potential rollback and start the charge transfer
1805 * only when migration is already known to end successfully.
1807 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1810 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1811 entry
= pmd_mkhuge(entry
);
1812 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1815 * Clear the old entry under pagetable lock and establish the new PTE.
1816 * Any parallel GUP will either observe the old page blocking on the
1817 * page lock, block on the page table lock or observe the new page.
1818 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1819 * guarantee the copy is visible before the pagetable update.
1821 flush_cache_range(vma
, mmun_start
, mmun_end
);
1822 page_add_new_anon_rmap(new_page
, vma
, mmun_start
);
1823 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1824 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1825 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1826 update_mmu_cache_pmd(vma
, address
, &entry
);
1828 if (page_count(page
) != 2) {
1829 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1830 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1831 update_mmu_cache_pmd(vma
, address
, &entry
);
1832 page_remove_rmap(new_page
);
1836 page_remove_rmap(page
);
1839 * Finish the charge transaction under the page table lock to
1840 * prevent split_huge_page() from dividing up the charge
1841 * before it's fully transferred to the new page.
1843 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1845 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1847 unlock_page(new_page
);
1849 put_page(page
); /* Drop the rmap reference */
1850 put_page(page
); /* Drop the LRU isolation reference */
1852 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1853 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1855 mod_zone_page_state(page_zone(page
),
1856 NR_ISOLATED_ANON
+ page_lru
,
1861 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1863 ptl
= pmd_lock(mm
, pmd
);
1864 if (pmd_same(*pmd
, entry
)) {
1865 entry
= pmd_mknonnuma(entry
);
1866 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1867 update_mmu_cache_pmd(vma
, address
, &entry
);
1876 #endif /* CONFIG_NUMA_BALANCING */
1878 #endif /* CONFIG_NUMA */